WO2011095665A1 - Procedure and reactor for the obtainment of nanoparticles - Google Patents

Procedure and reactor for the obtainment of nanoparticles Download PDF

Info

Publication number
WO2011095665A1
WO2011095665A1 PCT/ES2011/070069 ES2011070069W WO2011095665A1 WO 2011095665 A1 WO2011095665 A1 WO 2011095665A1 ES 2011070069 W ES2011070069 W ES 2011070069W WO 2011095665 A1 WO2011095665 A1 WO 2011095665A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
nanoparticles
gas
chamber
reactor
Prior art date
Application number
PCT/ES2011/070069
Other languages
Spanish (es)
French (fr)
Inventor
Enric Bertran Serra
María José INESTROSA IZURIETA
Noemí AGUILÓ AGUAYO
Original Assignee
Universidad De Barcelona
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Barcelona filed Critical Universidad De Barcelona
Publication of WO2011095665A1 publication Critical patent/WO2011095665A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/4645Radiofrequency discharges
    • H05H1/466Radiofrequency discharges using capacitive coupling means, e.g. electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • B22F2202/13Use of plasma
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2245/00Applications of plasma devices
    • H05H2245/50Production of nanostructures

Definitions

  • the present invention relates to the field of nanotechnology, in particular to the obtaining of nanoparticles, that is, of particles with a dimension smaller than approximately 100 nm.
  • the nanoparticles although having a dimension smaller than 100 nm, are in turn larger units than atoms and molecules. Depending on their size, the nanoparticles have their own characteristics, have discrete behaviors, typical of quantum physics, and have deviated properties from the laws of classical physics. The size of the nanoparticles depends on the application for which they are used.
  • Recent applications require nanoparticles of increasingly smaller sizes, which are difficult to obtain (cf. e.g. B.M. Jelencovic and A.
  • the nanoparticles have applications in many technological sectors, such as biomedicine-biotechnology, information and communication technologies, energy production and storage, materials science, food and water research, the environment, security systems, and catalysis.
  • crystalline silicon nanoparticles which have unique derived optical, electronic, chemical and biological properties, extending the applications to other technological fields (cf. eg N. O'Farrell et al., "Silicon nanoparticles:
  • nanoparticles depend on their size distribution, also called dispersion, which is often expressed as a lognormal distribution. Studies on obtaining nanoparticles are known, both in the gas / vapor phase and in the liquid phase.
  • nanoparticles obtained in the liquid phase are usually very uniform, but it is difficult to apply liquid phase procedures on an industrial scale because the production speed is very low and there are many by-products.
  • gas / steam phase processes are more appropriate on an industrial scale because the production speed is high and the purity of the product is also high. But both procedures often present difficulties in controlling the size and dispersion of nanoparticles, which is illustrated, for example, in an article by K. Kim et al. ("Generation of size and structure controlled Si nanoparticles using pulse plasma for energy devices", Thin Solid Films 2009, vol. 517, pp. 4184-41 17, where the size of the nanoparticles obtained is between 10 and 120 nm, not to mention its dispersion), and in the references cited there.
  • the present invention solves the deficiencies or limitations of the state of the art, providing a new method of obtaining nanoparticles of small sizes (up to 3 nm in diameter) and of low dispersion (less than 15%), as well as a new plasma reactor modulation specially designed for the implementation of this procedure.
  • one aspect of the present invention relates to a new plasma reactor comprising a vacuum chamber 3, provided with at least one connection 7 to a pumping unit arranged to make a vacuum.
  • This pumping unit can be composed of several pumps arranged in several pumping lines.
  • the reactor also has a plasma chamber 4, where plasma is produced, arranged to circulate the gases in a laminar regime, with at least one cathode 6 capacitively coupled with the walls of the chamber, the walls of the plasma chamber 4 being ready to act as an anode.
  • a power system that feeds the cathode 6.
  • the plasma chamber 4 is a stainless steel box with a square base.
  • the reactor also has a collection channel 5 which at one of its ends forms an extension of the plasma chamber 4 and, on the other end, communicates with the vacuum chamber 3, the walls of the collection channel 5 being also arranged for Act as anode.
  • the collection channel 5 has the same shape and section as the plasma chamber 4.
  • the reactor has at least one gas inlet 1 to the vacuum chamber 3, with an open-close valve arranged to be computer controllable; and it has at least one gas inlet 2 to the plasma chamber 4, with an open-close valve arranged to be computer controllable.
  • a computerized gas feeding system allows to control the flows of precursor gas and entrainment gas, in a synchronized manner with the plasma modulator.
  • the reactor has at least one door for nanoparticle extraction and cleaning inside.
  • the reactor comprises one or more sensors for measuring the pressure of the gases, one or more sight glasses for the ocular monitoring of obtaining the nanoparticles, and a heating system together with a device for measuring the
  • thermocouple e.g. a thermocouple
  • Another aspect of the invention relates to a process for obtaining nanoparticles using any one of the reactors described above, comprising the following steps: (i) performing the desired vacuum in the vacuum chamber 3; (ii) initiate plasma excitation and modulate it with rectangular pulses; (iii) introducing, in a substantially laminar regime, a nanoparticle precursor gas diluted in a entrainment gas,
  • the process of the present invention allows control of all the parameters involved in the process: temperature, pressure, gas flow, RF power, modulation signal and sequence of the process and its automation. This represents an advantage over other procedures for obtaining nanoparticles by plasma.
  • the precursor gas is silane, whereby silicon nanoparticles are obtained.
  • a preferred carrier gas is argon.
  • the process of the present invention can be performed at room temperature, which is an advantage over other processes in which the plasma flame heats the particles.
  • the present invention allows to obtain very small nanoparticles (with diameters of up to 3 nm), and with a very low particle size dispersion (less than 15%).
  • the shorter the pulse duration the smaller the nanoparticles obtained.
  • the quality of the synthesized nanoparticles is very high, with a high level of purity, and with a known composition and structure.
  • amorphous silicon or crystalline silicon nanoparticles can be obtained.
  • the mixture of gases eg silane and argon
  • a polymerization process followed by a nucleation process occurs.
  • the coalescence phase (which would lead to an increase in the size of the resulting particles) is avoided by entering gases into the reactor sequentially.
  • This sequencing is synchronized with the modulation of the RF signal, with pulses of duration of the order of the millisecond, so that the particles formed have time to move and stop growing, and are deposited on the walls of the collection channel 5 or on the desired substrate that has previously been introduced. It is also an advantage of the present invention the possibility of collecting the nanoparticles directly on a substrate or final device so that no subsequent manipulation of the particles occurs, thus avoiding contamination. Likewise, it is advantageous that the process hinders the oxidation of the nanoparticles.
  • the residence time in the plasma is programmable, it is possible to obtain two or more populations of particles in the same process, with different sizes.
  • the production of particles can also be combined with layers that are of the same or another material, thus producing nanoparticles in an amorphous matrix. Alloys and metal nanoparticles can also be synthesized.
  • FIG. 1 is a scheme of a plasma reactor for obtaining nanoparticles according to the invention.
  • FIG. 2 shows in detail the plasma chamber 4 and the collection channel 5 of the reactor of FIG. one .
  • FIG. 3 shows the sequences of power pulses (RF radio frequency) and the double gas input: two of argon (Ar and Ar * ) and one of silane (Si).
  • FIG. 4 shows transmission electron microscopy (TEM) images of amorphous silicon nanoparticles obtained according to the invention.
  • FIG. 5 shows a high resolution TEM image, in which crystalline planes are distinguished, and a diffraction pattern (SAED, selected electron diffraction area) with their corresponding Miller indices indicated, presenting crystalline silicon nanoparticles obtained according to the invention.
  • SAED selected electron diffraction area
  • FIG. 6 shows the size dependence of the nanoparticles
  • a low pressure and ambient temperature plasma reactor comprising a radio frequency (RF) discharge with capacitive coupling was used.
  • Said reactor was formed by four main elements: a gas management system, a vacuum equipment, a plasma chamber 4, where the nanoparticles were generated, and an RF power source with an impedance matching circuit.
  • the gases that were used to carry out the discharges were introduced into the chamber, which were argon (Ar) and silane (SiH 4 , in the abbreviated figures as Si).
  • the system consisted of various stainless steel gas lines equipped with mass flow controllers of the PID type (proportional-integral-differential), so that in each case it was possible to independently regulate the quantities of gases and, therefore, the proportion of them.
  • the vacuum equipment had two elements: a vacuum chamber 3, which contained a total volume of 108 I, and a pumping unit.
  • the connection to the pumping unit 7 is shown in FIG. one .
  • Vacuum chamber 3 was equipped with a pair of sight glasses for ocular monitoring of the process, with a main door for sample extraction and system cleaning, with various entrances with electrical passages for RF power input, with a thermocouple, with a heating system supply, with a cooling system supply, with a gas inlet 1 to the vacuum chamber 3, with a gas inlet 2 to the plasma chamber 4, and with an air inlet.
  • pressure sensors for the different ranges, namely: (i) a pressure sensor of the Pirani type based on the thermal conductivity of the gas, for primary vacuum; (ii) a capacitive type pressure sensor, for measuring the absolute pressure from 0.005 to 2 Torr (267 Pa), based on a mechanically deformable condenser; and (iii) a pressure sensor of the Penning type for high vacuum (from 10 "1 Pa to 10 " 6 Pa), based on the electrical conductivity of the ionized gas that is confined in a magnetic trap.
  • the pumping unit was composed of four vacuum pumps arranged in two independent pumping lines.
  • a first primary pumping line was formed by a mechanical vane pump of 8 m 3 / h, which allowed to reach a vacuum of 1 Pa and was used for pumping from atmospheric pressure (from air and in general from oxidizing gases) .
  • a second pumping line was composed of three pumps, namely: a turbomolecular pump of 360 l / s, which allowed a final vacuum to be reached prior to the process of the order of 10 "4 Pa; a" root “type blade pump, for high pumping flows in a viscous regime, which was used during the process for the extraction of gases from the chamber; and a mechanical pump of double stage vanes of 40 m 3 / h, located at the exit of the roots pump and the turbomolecular pump output.
  • the plasma chamber 4 (or reaction chamber) was in the center of the vacuum chamber 3 (or process chamber) and was in the shape of a stainless steel box with a square base, side equal to 20 cm and height equal to 4 cm, whereby the reaction volume was 1 .600 cm 3 .
  • the cathode 6 In the upper part of the plasma chamber 4 there was a cathode 6, while its lower part and its walls acted as an anode.
  • the cathode 6 consisted of a square of stainless steel, 20 cm x 20 cm, electrostatically shielded by its rear.
  • the cathode was connected to an RF power generator operating at 13.56 MHz and, in order to obtain a nanoparticle formation with controlled size, said plasma excitation power was modulated with rectangular pulses. Each pulse alternated a time or period of ignition (TON) with a time or period of shutdown (T 0FF ) -
  • TON time or period of ignition
  • T 0FF time or period of shutdown
  • the parameters that controlled the RF power in a nanoparticle formation process were: the ignition time of the T 0N plasma, the T 0FF plasma shutdown time, the number of cycles, the incident power and the reflected power.
  • the power reflected to the source be minimal or zero.
  • a reactive impedance matching circuit of the " ⁇ " type was inserted between the RF source and the cathode.
  • the reactor comprised two gas inlets.
  • a gas inlet 1 went directly to the vacuum chamber 3, and argon (Ar) and silane (Si) were introduced through it.
  • the other gas inlet 2 went to the plasma chamber 4, and argon was introduced through it (Ar * ).
  • the plasma chamber 4 and the substrate were subjected to cleaning, by generating about 2 min of a pure Ar plasma.
  • the nanoparticles resulting from the use of short ignition times are presented in the images, either in isolation (cf. upper part of FIG. 4), or in agglomerated form (cf. lower part of the FIG. 4).
  • T 0N ⁇ 1 s short ignition times
  • images, with which the particles were counted and measured then build histograms by size, such as those on the right sides of FIG. 4.
  • histograms were adjusted and on it the average value and the variance of the function were defined, respectively.

Abstract

Procedure and reactor for the obtainment of nanoparticles. The plasma reactor of FIG. 1 is used, having a vacuum chamber 3, a plasma chamber 4 provided with a cathode, a collection channel the walls whereof act as anode, a gas inlet 1 to the vacuum chamber 3, and a gas inlet 2 to the plasma chamber 4. The desired vacuum is attained, excitation of the plasma is initiated and modulated through rectangular pulses, silane diluted in argon is introduced, synchronising the flow of the carrier gas with the modulation of the plasma such that the total pressure is constant, and finally nanoparticles are collected. It is useful for the obtainment of nanoparticles of small size (up to 3 nm in diameter) having low dispersion (less than 15%), including at ambient temperature, of both amorphous silicon and crystalline silicon.

Description

Procedimiento y reactor para la obtención de nanopartículas  Procedure and reactor for obtaining nanoparticles
La presente invención se relaciona con el campo de la nanotecnología, en particular con la obtención de nanopartículas, o sea, de partículas con dimensión menor que 100 nm aproximadamente. The present invention relates to the field of nanotechnology, in particular to the obtaining of nanoparticles, that is, of particles with a dimension smaller than approximately 100 nm.
ESTADO DE LA TÉCNICA STATE OF THE TECHNIQUE
Las nanopartículas, aunque tienen una dimensión menor que 100 nm, a su vez son unidades más grandes que los átomos y las moléculas. Dependiendo de su tamaño, las nanopartículas poseen características propias, presentan comportamientos discretos, propios de la físico-química cuántica, y tienen propiedades desviadas de las leyes de la físico-química clásica. El tamaño de las nanopartículas depende de la aplicación para la que se usan. The nanoparticles, although having a dimension smaller than 100 nm, are in turn larger units than atoms and molecules. Depending on their size, the nanoparticles have their own characteristics, have discrete behaviors, typical of quantum physics, and have deviated properties from the laws of classical physics. The size of the nanoparticles depends on the application for which they are used.
Aplicaciones recientes requieren nanopartículas de tamaños cada vez más pequeños, cuya obtención es difícil (cf. p.ej. B.M. Jelencovic and A. Recent applications require nanoparticles of increasingly smaller sizes, which are difficult to obtain (cf. e.g. B.M. Jelencovic and A.
Gallagher, "Particle accumulation in a flowing silane discharge", Journal of Applied Physics 1997, vol. 82, pp. 1546-1553). Gallagher, "Particle accumulation in a flowing silane discharge", Journal of Applied Physics 1997, vol. 82, pp. 1546-1553).
Las nanopartículas tienen aplicaciones en muchos sectores tecnológicos, tales como biomedicina-biotecnología, tecnologías de la información y de la comunicación, producción y almacenamiento de energía, ciencia de materiales, búsqueda de alimentos y agua, medio ambiente, sistemas de seguridad, y catálisis. Especialmente interesantes son las nanopartículas de silicio cristalino, que presentan singulares propiedades ópticas, electrónicas, químicas y biológicas derivadas, extendiendo las aplicaciones a otros campos tecnológicos (cf. p.ej. N. O'Farrell et al., "Silicon nanoparticles: The nanoparticles have applications in many technological sectors, such as biomedicine-biotechnology, information and communication technologies, energy production and storage, materials science, food and water research, the environment, security systems, and catalysis. Especially interesting are crystalline silicon nanoparticles, which have unique derived optical, electronic, chemical and biological properties, extending the applications to other technological fields (cf. eg N. O'Farrell et al., "Silicon nanoparticles:
applications in cell biology and medicine", Int. J. Nanomedicine 2006, vol. 1 , pp. 451 -472). applications in cell biology and medicine ", Int. J. Nanomedicine 2006, vol. 1, pp. 451-472).
Las propiedades de las nanopartículas dependen de su distribución de tamaños, también llamada dispersión, la cual se expresa frecuentemente en forma de distribución lognormal. Se conocen estudios sobre la obtención de nanopartículas, tanto en fase gas/vapor como en fase líquida. Las The properties of nanoparticles depend on their size distribution, also called dispersion, which is often expressed as a lognormal distribution. Studies on obtaining nanoparticles are known, both in the gas / vapor phase and in the liquid phase. The
nanopartículas obtenidas en fase líquida suelen ser muy uniformes, pero es difícil aplicar procedimientos de fase líquida a escala industrial porque la velocidad de producción es muy baja y hay muchos subproductos. Por otra parte, los procedimientos en fase gas/vapor son más apropiados a escala industrial debido a que la velocidad de producción es alta y la pureza del producto también. Pero ambos procedimientos suelen presentar dificultades en el control del tamaño y la dispersión de las nanopartículas, lo que se ilustra p.ej. en un artículo de K. Kim et al. ("Generation of size and structure controlled Si nanoparticles using pulse plasma for energy devices", Thin Solid Films 2009, vol. 517, pp. 4184-41 17, donde el tamaño de las nanopartículas obtenidas está entre 10 y 120 nm, sin mencionarse su dispersión), y en las referencias allí citadas. nanoparticles obtained in the liquid phase are usually very uniform, but it is difficult to apply liquid phase procedures on an industrial scale because the production speed is very low and there are many by-products. For other On the other hand, gas / steam phase processes are more appropriate on an industrial scale because the production speed is high and the purity of the product is also high. But both procedures often present difficulties in controlling the size and dispersion of nanoparticles, which is illustrated, for example, in an article by K. Kim et al. ("Generation of size and structure controlled Si nanoparticles using pulse plasma for energy devices", Thin Solid Films 2009, vol. 517, pp. 4184-41 17, where the size of the nanoparticles obtained is between 10 and 120 nm, not to mention its dispersion), and in the references cited there.
En resumen, pues, las modernas aplicaciones de las nanopartículas han renovado el interés en la obtención de nanopartículas de tamaño controlado (hasta tamaños tan pequeños como unos pocos nm) y de baja dispersión (también llamadas "monodispersas"). In summary, then, the modern applications of nanoparticles have renewed interest in obtaining nanoparticles of controlled size (up to sizes as small as a few nm) and of low dispersion (also called "monodisperse").
EXPLICACIÓN DE LA INVENCIÓN EXPLANATION OF THE INVENTION
La presente invención soluciona las deficienciencias o limitaciones del estado de la técnica, proporcionando un nuevo procedimiento de obtención de nanopartículas de tamaños pequeños (hasta 3 nm de diámetro) y de baja dispersión (inferior al 15%), así como un nuevo reactor de plasma modulado especialmente concebido para la puesta en práctica de ese procedimiento. The present invention solves the deficiencies or limitations of the state of the art, providing a new method of obtaining nanoparticles of small sizes (up to 3 nm in diameter) and of low dispersion (less than 15%), as well as a new plasma reactor modulation specially designed for the implementation of this procedure.
Así pues, un aspecto de la presente invención se refiere a un nuevo reactor de plasma que comprende una cámara de vacío 3, provista de al menos una conexión 7 a una unidad de bombeo dispuesta para hacer vacío. Esta unidad de bombeo puede estar compuesta por varias bombas dispuestas en varias líneas de bombeo. Thus, one aspect of the present invention relates to a new plasma reactor comprising a vacuum chamber 3, provided with at least one connection 7 to a pumping unit arranged to make a vacuum. This pumping unit can be composed of several pumps arranged in several pumping lines.
El reactor también tiene una cámara de plasma 4, donde se produce el plasma, dispuesta para que circulen los gases en régimen laminar, con al menos un cátodo 6 acoplable capacitivamente con las paredes de la cámara, estando las paredes de la cámara de plasma 4 dispuestas para actuar como ánodo. Hay un sistema de potencia que alimenta al cátodo 6. En una realización particular la cámara de plasma 4 es una caja de acero inoxidable con base cuadrada. El reactor tiene también un canal de recolección 5 que por uno de sus extremos forma una extensión de la cámara de plasma 4 y, por el otro extremo, comunica con la cámara de vacío 3, estando también las paredes del canal de recolección 5 dispuestas para actuar como ánodo. En una realización particular el canal de recolección 5 tiene la misma forma y sección que la cámara de plasma 4. De esta manera, dentro de la primera zona sucede la reacción, y en la siguiente zona se recogen las muestras. Este tipo de toma de muestras, que se puede denominar "recolección por plasma remoto", es característico de la presente invención y presenta diferencias ventajosas (p.ej. flujo laminar y ausencia de rejilla) respecto a otros tipos utilizados anteriormente (cf. L. Boufendi y A. Bouchoule, "Particle nucleation and growth in a low-pressure argon-silane discharge", Plasma Sources Sci. Technol. 1994, vol. 3, pp. 262-267). The reactor also has a plasma chamber 4, where plasma is produced, arranged to circulate the gases in a laminar regime, with at least one cathode 6 capacitively coupled with the walls of the chamber, the walls of the plasma chamber 4 being ready to act as an anode. There is a power system that feeds the cathode 6. In a particular embodiment the plasma chamber 4 is a stainless steel box with a square base. The reactor also has a collection channel 5 which at one of its ends forms an extension of the plasma chamber 4 and, on the other end, communicates with the vacuum chamber 3, the walls of the collection channel 5 being also arranged for Act as anode. In a particular embodiment the collection channel 5 has the same shape and section as the plasma chamber 4. In this way, within the first zone the reaction occurs, and in the next zone the samples are collected. This type of sampling, which can be called "remote plasma collection", is characteristic of the present invention and presents advantageous differences (eg laminar flow and absence of grid) with respect to other types previously used (cf. L Boufendi and A. Bouchoule, "Particle nucleation and growth in a low-pressure argon-silane discharge", Plasma Sources Sci. Technol. 1994, vol. 3, pp. 262-267).
El reactor tiene al menos una entrada de gases 1 a la cámara de vacío 3, con válvula de apertura-cierre dispuesta para ser controlable por ordenador; y tiene al menos una entrada de gases 2 a la cámara de plasma 4, con válvula de apertura-cierre dispuesta para ser controlable por ordenador. Un sistema computerizado de alimentanción de gases permite controlar los flujos de gas precursor y de gas de arrastre, de manera sincronizada con el modulador del plasma. The reactor has at least one gas inlet 1 to the vacuum chamber 3, with an open-close valve arranged to be computer controllable; and it has at least one gas inlet 2 to the plasma chamber 4, with an open-close valve arranged to be computer controllable. A computerized gas feeding system allows to control the flows of precursor gas and entrainment gas, in a synchronized manner with the plasma modulator.
El reactor tiene al menos una puerta para extracción de nanopartículas y limpieza de su interior. Y, en realizaciones particulares, el reactor comprende uno o más sensores para medir la presión de los gases, una o más mirillas para el seguimiento ocular de la obtención de las nanopartículas, y un sistema de calefacción junto con un dispositivo para medida de la The reactor has at least one door for nanoparticle extraction and cleaning inside. And, in particular embodiments, the reactor comprises one or more sensors for measuring the pressure of the gases, one or more sight glasses for the ocular monitoring of obtaining the nanoparticles, and a heating system together with a device for measuring the
temperatura (p.ej. un termopar). temperature (eg a thermocouple).
Otro aspecto de la invención se refiere a un procedimiento de obtención de nanopartículas usando uno cualquiera de los reactores que se han descrito antes, que comprende los siguientes pasos: (i) realizar el vacío deseado en la cámara de vacío 3; (ii) iniciar la excitación del plasma y modularla con pulsos rectangulares; (iii) introducir, en un régimen sustancialmente laminar, un gas precursor de nanopartículas diluido en un gas de arrastre, Another aspect of the invention relates to a process for obtaining nanoparticles using any one of the reactors described above, comprising the following steps: (i) performing the desired vacuum in the vacuum chamber 3; (ii) initiate plasma excitation and modulate it with rectangular pulses; (iii) introducing, in a substantially laminar regime, a nanoparticle precursor gas diluted in a entrainment gas,
sincronizando el flujo del gas de arrastre con la modulación de plasma, de manera que durante el tiempo de apagado del plasma (T0FF ) se cierra el flujo de gas de arrastre que entra en la cámara de plasma 4 y se abre un flujo sustancialmente igual de gas de arrastre que entra en la cámara de vacío 3, manteniéndose así una presión total sustancialmente constante; y (iv) apagar el plasma, recolectar las nanopartículas depositadas en las paredes de la cámara de plasma 4 y mayoritariamente en las paredes del canal de recolección 5, u opcionalmente depositadas sobre la superficie de un sustrato previamente introducido en el canal de recolección 5. synchronizing the flow of the entrainment gas with the plasma modulation, so that during the shutdown time of the plasma (T 0FF ) the flow is closed of entrainment gas entering the plasma chamber 4 and a substantially equal flow of entrainment gas entering the vacuum chamber 3 is opened, thus maintaining a substantially constant total pressure; and (iv) turn off the plasma, collect the nanoparticles deposited on the walls of the plasma chamber 4 and mostly on the walls of the collection channel 5, or optionally deposited on the surface of a substrate previously introduced into the collection channel 5.
El procedimiento de la presente invención permite tener control de todos los parámetros que intervienen en el proceso: temperatura, presión, flujo de gases, potencia RF, señal de modulación y secuencia del proceso y su automatización. Ello representa una ventaja respecto a otros procedimientos de obtención de nanopartículas mediante plasma. The process of the present invention allows control of all the parameters involved in the process: temperature, pressure, gas flow, RF power, modulation signal and sequence of the process and its automation. This represents an advantage over other procedures for obtaining nanoparticles by plasma.
En una realización particular el gas precursor es silano, con lo que se obtienen nanopartículas de silicio. Un gas de arrastre preferido es el argón. In a particular embodiment the precursor gas is silane, whereby silicon nanoparticles are obtained. A preferred carrier gas is argon.
El procedimiento de la presente invención puede realizarse a temperatura ambiente, lo cual constituye una ventaja frente a otros procedimientos en los que la llama del plasma recalienta las partículas. The process of the present invention can be performed at room temperature, which is an advantage over other processes in which the plasma flame heats the particles.
La presente invención permite obtener nanopartículas muy pequeñas (con diámetros de hasta 3 nm), y con una dispersión en el tamaño de las partículas muy baja (inferior al 15%). Cuanto más corta es la duración del pulso, más pequeñas son las nanopartículas obtenidas. La calidad de las nanopartículas sintetizadas es muy alta, con un elevado nivel de pureza, y con una composición y estructura conocidas. Además, como se ilustra en la descripción detalla adjunta, dependiendo del valor de los parámetros empleados, puede obtenerse nanopartículas de silicio amorfo o de silicio cristalino. The present invention allows to obtain very small nanoparticles (with diameters of up to 3 nm), and with a very low particle size dispersion (less than 15%). The shorter the pulse duration, the smaller the nanoparticles obtained. The quality of the synthesized nanoparticles is very high, with a high level of purity, and with a known composition and structure. In addition, as illustrated in the attached detailed description, depending on the value of the parameters used, amorphous silicon or crystalline silicon nanoparticles can be obtained.
Cuando la mezcla de gases (p. ej. de silano y argón) es inyectada en el reactor en régimen laminar, se produce un proceso de polimerización seguido de uno de nucleación. La fase de coalescencia (que conllevaría un aumento del tamaño de las partículas resultantes) se evita mediante la entrada de gases en el reactor de forma secuencial. Esta secuenciación está sincronizada con la modulación de la señal de RF, con pulsos de duración del orden del milisegundo, de forma que las partículas formadas tienen tiempo de desplazarse y de dejar de crecer, y se depositan sobre las paredes del canal de recolección 5 o sobre el sustrato deseado que previamente se haya introducido. También es una ventaja de la presente invención la posibilidad de recoger las nanopartículas directamente sobre un sustrato o dispositivo final de forma que no se produce ninguna manipulación posterior de las partículas, evitando así su contaminación. Asimismo, resulta ventajoso que el procedimiento dificulta la oxidación de las nanopartículas. When the mixture of gases (eg silane and argon) is injected into the reactor in a laminar regime, a polymerization process followed by a nucleation process occurs. The coalescence phase (which would lead to an increase in the size of the resulting particles) is avoided by entering gases into the reactor sequentially. This sequencing is synchronized with the modulation of the RF signal, with pulses of duration of the order of the millisecond, so that the particles formed have time to move and stop growing, and are deposited on the walls of the collection channel 5 or on the desired substrate that has previously been introduced. It is also an advantage of the present invention the possibility of collecting the nanoparticles directly on a substrate or final device so that no subsequent manipulation of the particles occurs, thus avoiding contamination. Likewise, it is advantageous that the process hinders the oxidation of the nanoparticles.
Además, dado que el tiempo de residencia en el plasma es programable, es posible obtener dos o más poblaciones de partículas en el mismo proceso, con distintos tamaños. Puede también combinarse la producción de partículas con capas que sean del mismo material o de otro, consiguiéndose así producir nanopartículas en una matriz amorfa. Se pueden sintetizar además aleaciones y nanopartículas metálicas. In addition, since the residence time in the plasma is programmable, it is possible to obtain two or more populations of particles in the same process, with different sizes. The production of particles can also be combined with layers that are of the same or another material, thus producing nanoparticles in an amorphous matrix. Alloys and metal nanoparticles can also be synthesized.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y dibujos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención. Además, la presente invención cubre todas las posibles combinaciones de realizaciones particulares y preferidas aquí indicadas. Throughout the description and the claims the word "comprises" and its variants are not intended to exclude other technical characteristics, additives, components or steps. For those skilled in the art, other objects, advantages and features of the invention will be derived partly from the description and partly from the practice of the invention. The following examples and drawings are provided by way of illustration, and are not intended to be limiting of the present invention. In addition, the present invention covers all possible combinations of particular and preferred embodiments indicated herein.
BREVE DESCRIPCIÓN DE LOS DIBUJOS BRIEF DESCRIPTION OF THE DRAWINGS
La FIG. 1 es un esquema de un reactor de plasma para obtención de nanopartículas según la invención. FIG. 1 is a scheme of a plasma reactor for obtaining nanoparticles according to the invention.
La FIG. 2 muestra en detalle la cámara de plasma 4 y el canal de recolección 5 del reactor de la FIG. 1 . FIG. 2 shows in detail the plasma chamber 4 and the collection channel 5 of the reactor of FIG. one .
La FIG. 3 muestra las secuencias de pulsos de potencia (radiofrecuencia RF) y de la doble entrada de gases: dos de argón (Ar y Ar*) y una de silano (Si). La FIG. 4 muestra imágenes de microscopía electrónica de transmisión (TEM, transmission electrón microscopy) de nanopartículas de silicio amorfo obtenidas según la invención. FIG. 3 shows the sequences of power pulses (RF radio frequency) and the double gas input: two of argon (Ar and Ar * ) and one of silane (Si). FIG. 4 shows transmission electron microscopy (TEM) images of amorphous silicon nanoparticles obtained according to the invention.
La FIG. 5 muestra una imagen de TEM de alta resolución, en la que se distinguen planos cristalinos, y un patrón de difracción (SAED, selected área electrón diffraction) con sus correspondientes índices de Miller indicados, presentando nanopartículas de silicio cristalino obtenidas según la invención. FIG. 5 shows a high resolution TEM image, in which crystalline planes are distinguished, and a diffraction pattern (SAED, selected electron diffraction area) with their corresponding Miller indices indicated, presenting crystalline silicon nanoparticles obtained according to the invention.
La FIG. 6 muestra la dependencia del tamaño de las nanopartículas FIG. 6 shows the size dependence of the nanoparticles
(diámetro D, en nm) respecto al tiempo de encendido del plasma (T0N en ms), según los parámetros de la tabla. Los círculos corresponden a Si amorío y los cuadrados a Si cristalino. (diameter D, in nm) with respect to plasma ignition time (T 0N in ms), according to the parameters in the table. The circles correspond to Si amorío and the squares to crystalline Si.
EXPOSICIÓN DETALLADA DE UN MODO DE REALIZACIÓN Reactor utilizado DETAILED EXHIBITION OF AN EMBODIMENT MODE Reactor used
Se usó un reactor de plasma de baja presión y temperatura ambiente que comprende una descarga de radio-frecuencia (RF) con acoplamiento capacitivo. Dicho reactor estaba formado por cuatro elementos principales: un sistema de gestión de gases, un equipo de vacío, una cámara de plasma 4, donde se generaban las nanopartículas, y una fuente de potencia RF con un circuito de adaptación de impedancias. A low pressure and ambient temperature plasma reactor comprising a radio frequency (RF) discharge with capacitive coupling was used. Said reactor was formed by four main elements: a gas management system, a vacuum equipment, a plasma chamber 4, where the nanoparticles were generated, and an RF power source with an impedance matching circuit.
Mediante el sistema de gestión de gases se introdujeron en la cámara los gases que se utilizaron para realizar las descargas, que fueron argón (Ar) y silano (SiH4, en las figuras abreviado como Si). El sistema consistió en diversas líneas de gas de acero inoxidable equipadas con controladores de flujo másico del tipo PID (proporcional-integral-diferencial), de modo que en cada caso fuera posible regular de forma independiente las cantidades de gases y, por tanto, la proporción de los mismos. Through the gas management system the gases that were used to carry out the discharges were introduced into the chamber, which were argon (Ar) and silane (SiH 4 , in the abbreviated figures as Si). The system consisted of various stainless steel gas lines equipped with mass flow controllers of the PID type (proportional-integral-differential), so that in each case it was possible to independently regulate the quantities of gases and, therefore, the proportion of them.
El equipo de vacío poseía dos elementos: una cámara de vacío 3, que encerraba un volumen total de 108 I, y una unidad de bombeo. La conexión a la unidad de bombeo 7 se muestra en la FIG. 1 . La cámara de vacío 3 estaba equipada con un par de mirillas para el seguimiento ocular del proceso, con una puerta principal para extracción de las muestras y limpieza del sistema, con diversas entradas con pasamuros eléctricos para entrada de la potencia RF, con un termopar, con una alimentación de sistema calefactor, con una alimentación del sistema de refrigeración, con una entrada de gases 1 a la cámara de vacío 3, con una entrada de gases 2 a la cámara de plasma 4, y con una entrada de aire. Había también tres sensores de presión para los distintos rangos, a saber: (i) un sensor de presión de tipo Pirani basado en la conductividad térmica del gas, para vacío primario; (ii) un sensor de presión de tipo capacitivo, para la medida de la presión absoluta desde 0,005 hasta 2 Torr (267 Pa), basado en un condensador deformable mecánicamente; y (iii) un sensor de presión del tipo Penning para alto vacío (desde 10"1 Pa hasta 10"6 Pa), basado en la conductividad eléctrica del gas ionizado que está confinado en una trampa magnética. The vacuum equipment had two elements: a vacuum chamber 3, which contained a total volume of 108 I, and a pumping unit. The connection to the pumping unit 7 is shown in FIG. one . Vacuum chamber 3 was equipped with a pair of sight glasses for ocular monitoring of the process, with a main door for sample extraction and system cleaning, with various entrances with electrical passages for RF power input, with a thermocouple, with a heating system supply, with a cooling system supply, with a gas inlet 1 to the vacuum chamber 3, with a gas inlet 2 to the plasma chamber 4, and with an air inlet. There were also three pressure sensors for the different ranges, namely: (i) a pressure sensor of the Pirani type based on the thermal conductivity of the gas, for primary vacuum; (ii) a capacitive type pressure sensor, for measuring the absolute pressure from 0.005 to 2 Torr (267 Pa), based on a mechanically deformable condenser; and (iii) a pressure sensor of the Penning type for high vacuum (from 10 "1 Pa to 10 " 6 Pa), based on the electrical conductivity of the ionized gas that is confined in a magnetic trap.
La unidad de bombeo estaba compuesta por cuatro bombas de vacío dispuestas en dos líneas de bombeo independientes. Una primera línea de bombeo primario estaba formada por una bomba mecánica de paletas de 8 m3/h, que permitía alcanzar un vacío de 1 Pa y se utilizaba para el bombeo desde la presión atmosférica (del aire y en general de los gases oxidantes). Una segunda línea de bombeo estaba compuesta por tres bombas, a saber: una bomba turbomolecular de 360 l/s, que permitía alcanzar un vacío último previo al proceso del orden de 10"4 Pa; una bomba tipo "roots" de alabes, para flujos elevados de bombeo en régimen viscoso, que se utilizaba durante el proceso para la extracción de los gases de la cámara; y una bomba mecánica de paletas de doble etapa de 40 m3/h, situada a la salida de la bomba roots y a la salida de la bomba turbomolecular. The pumping unit was composed of four vacuum pumps arranged in two independent pumping lines. A first primary pumping line was formed by a mechanical vane pump of 8 m 3 / h, which allowed to reach a vacuum of 1 Pa and was used for pumping from atmospheric pressure (from air and in general from oxidizing gases) . A second pumping line was composed of three pumps, namely: a turbomolecular pump of 360 l / s, which allowed a final vacuum to be reached prior to the process of the order of 10 "4 Pa; a" root "type blade pump, for high pumping flows in a viscous regime, which was used during the process for the extraction of gases from the chamber; and a mechanical pump of double stage vanes of 40 m 3 / h, located at the exit of the roots pump and the turbomolecular pump output.
Como se indica esquemáticamente en la FIG. 1 , la cámara de plasma 4 (o cámara de reacción) se encontraba en el centro de la cámara de vacío 3 (o cámara de proceso) y tenía forma de caja de acero inoxidable con base cuadrada, de lado igual a 20 cm y altura igual a 4 cm, con lo cual el volumen de reacción era de 1 .600 cm3. En la parte superior de la cámara de plasma 4 había un cátodo 6, mientras que su parte inferior y sus paredes actuaban de ánodo. El cátodo 6 consistía en un cuadrado de acero inoxidable, de 20 cm x 20 cm, apantallado electrostáticamente por su parte trasera. A continuación de la cámara de reacción había un canal de recolección 5, que era una extensión de la misma, de sección transversal de 20 cm x 4 cm, y de longitud 20 cm, en contacto enteramente con el ánodo, de modo que se obtenía el doble de recorrido del gas en régimen laminar, tal como se ilustra en la FIG. 2. As schematically indicated in FIG. 1, the plasma chamber 4 (or reaction chamber) was in the center of the vacuum chamber 3 (or process chamber) and was in the shape of a stainless steel box with a square base, side equal to 20 cm and height equal to 4 cm, whereby the reaction volume was 1 .600 cm 3 . In the upper part of the plasma chamber 4 there was a cathode 6, while its lower part and its walls acted as an anode. The cathode 6 consisted of a square of stainless steel, 20 cm x 20 cm, electrostatically shielded by its rear. Following the reaction chamber there was a collection channel 5, which was an extension thereof, with a cross section of 20 cm x 4 cm, and a length 20 cm, in contact entirely with the anode, so that twice the path of the laminar gas was obtained, as illustrated in FIG. 2.
El cátodo estaba conectado a un generador de potencia RF que operaba a 13.56 MHz y, para obtener una formación de nanopartículas con tamaño controlado, se modulaba dicha potencia de excitación del plasma con pulsos rectangulares. En cada pulso se alternaba un tiempo o período de encendido (TON) con un tiempo o período de apagado (T0FF)- De este modo los parámetros que controlaban la potencia RF en un proceso de formación de nanopartículas eran: el tiempo de encendido del plasma T0N, el tiempo de apagado del plasma T0FF, el número de ciclos, la potencia incidente y la potencia reflejada. En general se deseaba que la potencia reflejada a la fuente fuera mínima o nula. Para ello se intercalaba un circuito reactivo de adaptación de impedancia del tipo "π" entre la fuente RF y el cátodo. The cathode was connected to an RF power generator operating at 13.56 MHz and, in order to obtain a nanoparticle formation with controlled size, said plasma excitation power was modulated with rectangular pulses. Each pulse alternated a time or period of ignition (TON) with a time or period of shutdown (T 0FF ) - In this way the parameters that controlled the RF power in a nanoparticle formation process were: the ignition time of the T 0N plasma, the T 0FF plasma shutdown time, the number of cycles, the incident power and the reflected power. In general, it was desired that the power reflected to the source be minimal or zero. For this purpose, a reactive impedance matching circuit of the "π" type was inserted between the RF source and the cathode.
Previamente al proceso era necesario ajustar los condensadores variables del circuito de adaptación con el fin de minimizar la potencia reflejada hacia la fuente. Prior to the process it was necessary to adjust the variable capacitors of the adaptation circuit in order to minimize the power reflected towards the source.
Con el fin de evitar el arrastre de las partículas generadas entre dos pulsos de plasma, y facilitar la recolección de las mismas, el reactor comprendía dos entradas de gases. Una entrada de gases 1 iba directamente a la cámara de vacío 3, y por ella se introducía argón (Ar) y silano (Si). La otra entrada de gases 2 iba a la cámara de plasma 4, y por ella se introducía argón (Ar*). In order to avoid the entrainment of the particles generated between two plasma pulses, and facilitate their collection, the reactor comprised two gas inlets. A gas inlet 1 went directly to the vacuum chamber 3, and argon (Ar) and silane (Si) were introduced through it. The other gas inlet 2 went to the plasma chamber 4, and argon was introduced through it (Ar * ).
Durante el tiempo de apagado del plasma T0FF se cerraba el flujo de Ar interno hacia el cámara de plasma 4, a la vez que se abría el flujo During the shutdown time of the plasma T 0FF the internal Ar flow to the plasma chamber 4 was closed, while the flow was opened
directamente hacia la cámara de vacío 3, sin pasar por la cámara de plasma 4, como se ilustra en la FIG. 3. De este modo, la presión total permanecía invariable, así como las condiciones previas al encendido del plasma (plasma ON). Por medio de un programa de instrumentación virtual en lenguaje LabVIEW, se realizaba una secuencia temporal prediseñada en la que se generaban pulsos de potencia RF y se actuaba sobre las válvulas de las dos entradas de gases. En la presente invención a este sistema se le llama "flujo secuencial". directly towards the vacuum chamber 3, without passing through the plasma chamber 4, as illustrated in FIG. 3. Thus, the total pressure remained unchanged, as well as the conditions prior to plasma ignition (plasma ON). Through a virtual instrumentation program in LabVIEW language, a pre-designed time sequence was performed in which pulses of RF power were generated and the valves of the two gas inlets were operated. In the present invention this system is called "sequential flow".
Obtención de nanopartículas Previamente a la generación de las nanopartículas, la cámara de plasma 4 y el sustrato fueron sometidas a una limpieza, mediante generación de unos 2 min de un plasma de Ar puro. Obtaining nanoparticles Prior to the generation of the nanoparticles, the plasma chamber 4 and the substrate were subjected to cleaning, by generating about 2 min of a pure Ar plasma.
El procedimiento comenzaba al encender el plasma en la cámara de plasma 4, donde comenzaban a generarse nanopartículas. Luego, a medida que transcurría el tiempo, las nanopartículas iban creciendo confinadas en el interior de dicho plasma, dada su carga negativa. Finalmente, al apagar el plasma, las nanopartículas se dirigían en parte hacia las paredes del la cámara de plasma 4, quedando depositadas sobre las mismas, y además a las paredes del canal de recolección 5, donde principalmente se The procedure began when the plasma was switched on in plasma chamber 4, where nanoparticles began to be generated. Then, as time went by, the nanoparticles grew confined inside the plasma, given their negative charge. Finally, when the plasma was turned off, the nanoparticles were directed in part towards the walls of the plasma chamber 4, being deposited on them, and also to the walls of the collection channel 5, where mainly
recolectaban las nanopartículas de tamaño deseado y de muy baja  collected nanoparticles of desired size and very low
dispersión.  dispersion.
Tamaño de las nanopartículas obtenidas Size of nanoparticles obtained
Para la obtención de los datos representados en la FIG. 6 se utilizaron muestras depositadas sobre rejillas de cobre con base de carbono To obtain the data represented in FIG. 6 samples deposited on copper grids with carbon base were used
agujereado, como las utilizadas generalmente en microscopía electrónica de transmisión (TEM). Las nanopartículas depositadas sobre las rejillas fueron posteriormente observadas y estudiadas en el microscopio electrónico.  bored, such as those generally used in transmission electron microscopy (TEM). The nanoparticles deposited on the grids were subsequently observed and studied in the electron microscope.
Los parámetros y los valores utilizados para la formación de un tipo específico de nanopartículas de la presente realización fueron los de la tabla adjunta. The parameters and values used for the formation of a specific type of nanoparticles of the present embodiment were those of the attached table.
Figure imgf000011_0001
Figure imgf000011_0001
Las nanopartículas resultantes del uso de tiempos de encendido cortos (T0N < 1 s) se presentan en las imágenes, bien de forma aislada (cf. parte superior de la FIG. 4), bien de forma aglomerada (cf. parte inferior de la FIG. 4). Para el análisis de resultados se utilizó un programa específico de tratamiento de imágenes, con el que se contabilizaban y se medían las partículas, para luego construir histogramas por tamaño, como los de las partes derechas de la FIG. 4. Finalmente, para determinar el tamaño y la distribución sobre los histogramas se ajustó una distribución lognormal y sobre ella se definió el valor medio y la varianza de la función, respectivamente. The nanoparticles resulting from the use of short ignition times (T 0N <1 s) are presented in the images, either in isolation (cf. upper part of FIG. 4), or in agglomerated form (cf. lower part of the FIG. 4). For the analysis of results, a specific treatment program was used. images, with which the particles were counted and measured, then build histograms by size, such as those on the right sides of FIG. 4. Finally, to determine the size and distribution on the histograms, a lognormal distribution was adjusted and on it the average value and the variance of the function were defined, respectively.

Claims

REIVINDICACIONES
1 . Reactor de plasma para la obtención de nanopartículas que comprende: one . Plasma reactor for obtaining nanoparticles comprising:
(i) una cámara de vacío (3) provista de al menos una conexión (7) a una unidad de bombeo dispuesta para hacer vacío; (i) a vacuum chamber (3) provided with at least one connection (7) to a pumping unit arranged to make a vacuum;
(ii) una cámara de plasma (4) donde se produce el plasma, dispuesta para que circulen los gases en régimen laminar, con al menos un cátodo (6) acoplable capacitivamente con sus paredes, estando las paredes de la cámara de plasma (4) dispuestas para actuar como ánodo; (ii) a plasma chamber (4) where plasma is produced, arranged to circulate the gases in a laminar regime, with at least one cathode (6) capacitively coupled with its walls, the walls of the plasma chamber being (4 ) ready to act as an anode;
(iii) un canal de recolección (5) que por uno de sus extremos forma una extensión de la cámara de plasma (4) y, por el otro extremo, comunica con la cámara de vacío (3), estando también las paredes del canal de recolección 5 dispuestas para actuar como ánodo; (iii) a collection channel (5) that at one end forms an extension of the plasma chamber (4) and, on the other end, communicates with the vacuum chamber (3), the walls of the channel being also of collection 5 arranged to act as anode;
(iv) al menos una entrada de gases (1 ) a la cámara de vacío (3), con válvula de apertura-cierre dispuesta para ser controlable por ordenador; (iv) at least one gas inlet (1) to the vacuum chamber (3), with an open-close valve arranged to be computer controllable;
(v) al menos una entrada de gases (2) a la cámara de plasma (4), con válvula de apertura-cierre dispuesta para ser controlable por ordenador; (v) at least one gas inlet (2) to the plasma chamber (4), with an open-close valve arranged to be computer controllable;
(vi) un sistema de potencia que alimenta al cátodo (6); y (vi) a power system that feeds the cathode (6); Y
(vii) al menos una puerta para extracción de nanopartículas y limpieza del interior del reactor. (vii) at least one door for nanoparticle extraction and cleaning inside the reactor.
2. Reactor según la reivindicación 1 , que comprende uno o más sensores para medir la presión de los gases 2. Reactor according to claim 1, comprising one or more sensors for measuring the gas pressure
3. Reactor según la reivindicación 2, que comprende una o más mirillas para el seguimiento ocular de la obtención de las nanopartículas. 3. Reactor according to claim 2, comprising one or more sight glasses for the ocular monitoring of obtaining the nanoparticles.
4. Reactor según la reivindicación 3, que comprende un sistema de calefacción y un dispositivo para medida de la temperatura. 4. Reactor according to claim 3, comprising a heating system and a temperature measuring device.
5. Procedimiento de obtención de nanopartículas que usa un reactor tal como se define en cualquiera de las reivindicaciones 1 a 4, y que comprende los pasos de: 5. Procedure for obtaining nanoparticles using a reactor as defined in any one of claims 1 to 4, and comprising the steps of:
(i) realizar el vacío deseado en la cámara de vacío (3); (i) perform the desired vacuum in the vacuum chamber (3);
(ii) iniciar la excitación del plasma y modularla con pulsos rectangulares; (ii) initiate plasma excitation and modulate it with rectangular pulses;
(iii) introducir, en un régimen sustancialmente laminar, un gas precursor de nanopartículas diluido en un gas de arrastre, sincronizando el flujo del gas de arrastre con la modulación de plasma, de manera que durante el tiempo de apagado del plasma T0FF se cierra el flujo de gas de arrastre que entra en la cámara de plasma (4) y se abre un flujo sustancialmente igual de gas de arrastre que entra en la cámara de vacío (3), manteniéndose así una presión total sustancialmente constante; y (iii) introducing, in a substantially laminar regime, a nanoparticle precursor gas diluted in a entrainment gas, synchronizing the flow of the entrainment gas with the plasma modulation, so that during the shutdown time of the plasma T 0FF closes the flow of entrained gas entering the plasma chamber (4) and a substantially equal flow of entrained gas enters the vacuum chamber (3), thus maintaining a substantially constant total pressure; Y
(iv) apagar el plasma y recolectar las nanopartículas depositadas sobre las paredes de la cámara de plasma (4) y principalmente sobre las paredes del canal de recolección (5), y opcionalmente depositadas sobre la superficie de un sustrato previamente introducido en el canal de recolección (5). (iv) turn off the plasma and collect the nanoparticles deposited on the walls of the plasma chamber (4) and mainly on the walls of the collection channel (5), and optionally deposited on the surface of a substrate previously introduced into the channel of collection (5).
6. Procedimiento según la reivindicación 5, donde el gas precursor es silano. 6. Method according to claim 5, wherein the precursor gas is silane.
7. Procedimiento según la reivindicación 6, donde el gas de arrastre es argón. 7. Method according to claim 6, wherein the entrainment gas is argon.
8. Procedimiento según cualquiera de las reivindicaciones 5-7, donde la temperatura es temperatura ambiente. 8. Method according to any of claims 5-7, wherein the temperature is room temperature.
PCT/ES2011/070069 2010-02-04 2011-02-03 Procedure and reactor for the obtainment of nanoparticles WO2011095665A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201000157A ES2363900B1 (en) 2010-02-04 2010-02-04 PROCEDURE AND REACTOR FOR THE OBTAINING OF NANOPARTICLES.
ESP201000157 2010-02-04

Publications (1)

Publication Number Publication Date
WO2011095665A1 true WO2011095665A1 (en) 2011-08-11

Family

ID=44343118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/070069 WO2011095665A1 (en) 2010-02-04 2011-02-03 Procedure and reactor for the obtainment of nanoparticles

Country Status (2)

Country Link
ES (1) ES2363900B1 (en)
WO (1) WO2011095665A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080220175A1 (en) * 2007-01-22 2008-09-11 Lorenzo Mangolini Nanoparticles wtih grafted organic molecules
US20090014423A1 (en) * 2007-07-10 2009-01-15 Xuegeng Li Concentric flow-through plasma reactor and methods therefor
US20090056628A1 (en) * 2004-06-18 2009-03-05 Uwe Kortshagen Process and apparatus for forming nanoparticles using radiofrequency plasmas
WO2010008116A2 (en) * 2008-07-14 2010-01-21 Korea Electro Technology Research Institute Method and chamber for inductively coupled plasma processing for cylinderical material with three-dimensional surface

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090056628A1 (en) * 2004-06-18 2009-03-05 Uwe Kortshagen Process and apparatus for forming nanoparticles using radiofrequency plasmas
US20080220175A1 (en) * 2007-01-22 2008-09-11 Lorenzo Mangolini Nanoparticles wtih grafted organic molecules
US20090014423A1 (en) * 2007-07-10 2009-01-15 Xuegeng Li Concentric flow-through plasma reactor and methods therefor
WO2010008116A2 (en) * 2008-07-14 2010-01-21 Korea Electro Technology Research Institute Method and chamber for inductively coupled plasma processing for cylinderical material with three-dimensional surface

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
COSTA ET AL.: "Preparation of nanoscale amorphous silicon based powder in a square-wave-modulated rf plasma reactor.", VACUUM, vol. 45, no. 10, 1994, pages 1115 - 1117 *
VIVET F.ET AL.: "Synthesis and characterization of SiC:H ultrafine powder generated in an argon-silane-methane low-pressure radio-frequency discharge.", JOURNAL OF APPLIED PHYSICS, vol. 83, no. 12, 15 June 1998 (1998-06-15), pages 7474 - 7475, XP012044385 *

Also Published As

Publication number Publication date
ES2363900B1 (en) 2012-06-25
ES2363900A1 (en) 2011-08-18

Similar Documents

Publication Publication Date Title
Uschakov et al. Plasma-chemical synthesis of copper oxide nanoparticles in a low-pressure arc discharge
Lu et al. Synthesis and thermochromic properties of vanadium dioxide colloidal particles
Cvelbar et al. Reactive oxygen plasma-enabled synthesis of nanostructured CdO: tailoring nanostructures through plasma–surface interactions
CN107087338A (en) A kind of gas discharge type plasma density automatic regulating system and device
JP2013521215A (en) Photoluminescent nanoparticles and method of preparation
Ahadi et al. Stable production of TiOx nanoparticles with narrow size distribution by reactive pulsed dc magnetron sputtering
CN102502590B (en) Device for preparing multi-walled carbon nano-tubes based on arc discharge method
Werner et al. Synthesis of shape, size and structure controlled nanocrystals by pre-seeded inert gas condensation
WO2011095665A1 (en) Procedure and reactor for the obtainment of nanoparticles
CN105239041A (en) Preparation method capable of continuously adjusting particle size of silver nanospheres
Otobe et al. Fabrication of nanocrystalline Si by SiH4 plasma cell
Hojabri et al. Optical properties of nano-crystalline zirconia thin films prepared at different post-oxidation annealing times
US20080271987A1 (en) System and method for preparing nanoparticles using non-thermal pulsed plasma
JP2997448B2 (en) Ultrafine particle manufacturing method and manufacturing apparatus
JP2008532761A (en) Pure particle generator
Chang et al. Fabrication and process analysis of anatase type TiO2 nanofluid by an arc spray nanofluid synthesis system
CN210198999U (en) Chemical vapor deposition and scanning electron microscope combined equipment
CN206616268U (en) Plasma enhancing magnetic control sputtering system
Alrefae et al. Plasma chemical and physical vapour deposition methods and diagnostics for 2D materials
CN104513951B (en) Sweep angle reactive deposition equipment and operation method thereof
JP2005211730A (en) Method for manufacturing nanoparticle and nanoparticle manufacturing apparatus
CN103014675B (en) Device for forming AZO (ZnO:Al) film on substrate
CN204982041U (en) Magnetron sputtering target
JP2005246339A (en) Method and apparatus for manufacturing nanoparticle
Schultes et al. Co-deposition of silver nanoclusters and sputtered alumina for sensor devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11739428

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11739428

Country of ref document: EP

Kind code of ref document: A1