WO2011094886A1 - Anode for electroplating - Google Patents

Anode for electroplating Download PDF

Info

Publication number
WO2011094886A1
WO2011094886A1 PCT/CL2010/000007 CL2010000007W WO2011094886A1 WO 2011094886 A1 WO2011094886 A1 WO 2011094886A1 CL 2010000007 W CL2010000007 W CL 2010000007W WO 2011094886 A1 WO2011094886 A1 WO 2011094886A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
anodes
surface anode
anode according
rigidity
Prior art date
Application number
PCT/CL2010/000007
Other languages
Spanish (es)
French (fr)
Inventor
Pedro Alejandro AYLWIN GÓMEZ
Original Assignee
New Tech Copper Spa.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44354846&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011094886(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by New Tech Copper Spa. filed Critical New Tech Copper Spa.
Priority to PCT/CL2010/000007 priority Critical patent/WO2011094886A1/en
Publication of WO2011094886A1 publication Critical patent/WO2011094886A1/en
Priority to CL2012002083U priority patent/CL2012002083U1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • C25D17/12Shape or form

Definitions

  • the innovations and inventions are intended to achieve advantages in electrodeposition, such as to achieve denser and more compact deposits, more uniform and without occlusion of impurities. It is also about reducing energy losses, due to a decrease in overvoltage, which improves the efficiency of the cathodic current and reduces the electrolytic deposition of impurities in the cathode.
  • metal lead sheets were initially used, and then evolved into lead alloys such as calcium lead and others. All these anodes present erosion problems, which results in the production of anodic mud, with the consequent contamination of the cathode, when cathode impurities are trapped by occlusion, forcing the periodic cleaning of the mud with loss of production time and also generating A problem of environmental pollution.
  • anodes is titanium, with variants such as that indicated in US Patent 4,260,470, which consists of synthesizing titanium powders, to prepare a titanium sponge as a porous base matrix for the anode.
  • This porous matrix infiltrates with molten lead or molten lead alloys. In this way, flat strips are obtained which, when joined together in a co-planar parallel arrangement, forms the large anodes.
  • FIG. 1 shows a front elevation view of a light anode with square perforations, whose diagonals are parallel to the horizontal and vertical edges of the anode.
  • FIG. 2 shows a front elevation view of the light anode with square perforations, the sides of which are parallel to the horizontal and vertical edges of the anode.
  • - Figure 3 shows a front elevation view of the light anode with circular perforations, whose centers are aligned along lines parallel to the horizontal and vertical edges of the anode.
  • - Figure 4 shows a front elevation view of the unfolded light metal anode, with a solid material reinforcement at the edges and vertically to the center of it, attached to its connecting bar.
  • FIG. 5 shows an isometric perspective view of the lower right corner of a light anode, in which you can see the details of the perforations, especially that of its internal walls.
  • FIG. 6 shows a front elevation view of the deployed light metal anode, without solid material reinforcements, attached to its connecting rod.
  • FIG. 7 shows a front elevation view of a reinforcement frame of the deployed light metal anode.
  • - Figure 8 shows a front elevation view of the reinforcement frame, in which a lightweight metal anode deployed has been partially introduced.
  • FIG. 9 shows an elevation view of a lightweight deployed metal anode, fully inserted into the reinforcement frame.
  • FIG. 10 shows a perspective view of a supporting structure of insulating material for anodes and cathodes, in which there is a light metal anode deployed, fully inserted in its reinforcement frame, and supported on the two horizontal beams structure superiors.
  • FIG. 11 shows a perspective view of a supporting structure of insulating material for anodes and cathodes, which is fully filled with lightweight deployed metal anodes, fully inserted in its reinforcement frames, and supported on the two beams upper horizontals of the structure.
  • Support head of the reinforcement frame of the deployed light metal anode, to the longitudinal horizontal beam, of the supporting structure of insulating material for anodes and cathodes.
  • This invention is in the field of electrolytic deposition of metals. It consists of an anode, with openings that cross its thickness making it lighter, which also allows the flow of electrolyte through it, which helps solve technical and operational problems of current technology.
  • the second ones, based on meshes, which to minimize the contact resistance of the mesh, are limited to those of unfolded metal, which are generated from a single sheet, maintaining the continuity of the base material.
  • the anode can be achieved by cutting the shape of the anode, indicated with the number 5 in Figure 6, and attaching it to the connecting rod 6, as shown in the Figure of the same number, and then enter it in slot 9 of profile 7, as shown in Figure 8, which once entered fully looks as shown in Figure 9.
  • it reinforce previously with a metal frame on all its edges, and even, if necessary with a central vertical reinforcement, as can be seen in Figure 4.
  • This last anode must be inserted into the insulating frame of Figure 7, as described previously for the mesh 5 of Figure 6.
  • the perforations and openings of the mesh by allowing the passage of the electrolyte with flow perpendicular to the cathode, facilitate the renewal of the electrolyte in contact with the cathode, preventing the generation of tight areas that may form bumps on the cathode surface, or less deposition in it, that is, non-uniform deposit.
  • the pilot cell is constructed of fiberglass reinforced plastic, 40 cm wide by 55 cm long and 35 cm deep.
  • the pilot cell was charged with the anodes and cathodes, it was filled with the copper sulfate electrolyte, of a composition equivalent to that of the simulated Industrial Plant and the deposit was initiated at a potential of 2.6 Volts between cathode and anode , using a current density of 300 Amps per square meter.
  • This benefit translates into greater uniformity from crop to crop, and within the same crop less variability of the cathode weight and the chemical and physical quality of the cathodes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

In the electroplating of metals, the use of anodes having surfaces that have been increased by means of protuberances on the faces thereof increases the possibility of short-circuits occurring by reducing the anode-cathode distance, said protuberances being intended to improve current efficiency. A similar effect is produced with the use of anode meshes which increase the possibility of short-circuits occurring, along with the associated disastrous consequences, owing to the flexibility thereof. The present invention solves these problems by increasing the surface of the anode with the provision of multiple perforations that extend through the planar surfaces thereof or through the use of a reinforcing frame when anode meshes are employed.

Description

ANODO PARA LA DEPOSITACIÓN ELECTROLÍTICA  ANODE FOR ELECTROLYTIC DEPOSITATION
DESCRIPCION DE LO CONOCIDO EN LA MATERIA. DESCRIPTION OF THE KNOWN IN THE MATTER.
El campo de la producción de metales por electro deposición es muy fértil en la generación de innovaciones e invenciones debido a su enorme importancia. The field of metal production by electro deposition is very fertile in the generation of innovations and inventions due to its enormous importance.
Las innovaciones e invenciones tienen por objeto lograr ventajas en la electro deposición, como las de lograr depósitos mas densos y compactos, mas uniformes y sin oclusión de impurezas. También se trata de disminuir las pérdidas de energía, por disminución del sobre voltaje, lo que mejora la eficiencia de la corriente catódica y disminuye la deposición electrolítica de impurezas en el cátodo. The innovations and inventions are intended to achieve advantages in electrodeposition, such as to achieve denser and more compact deposits, more uniform and without occlusion of impurities. It is also about reducing energy losses, due to a decrease in overvoltage, which improves the efficiency of the cathodic current and reduces the electrolytic deposition of impurities in the cathode.
El uso hasta la fecha de electrodos de superficie aumentada, como los de malla con el empleo de diafragmas y bolsas que recubren ambos electrodos, según lo señalado en la Patente Canadiense N° 1002476, es útil para la electrólisis de cloruro de sodio y en otros procesos electrolíticos, pero es impracticable para la obtención de láminas de cátodos metálicos. The use to date of surface electrodes, such as mesh with the use of diaphragms and bags that cover both electrodes, as indicated in Canadian Patent No. 1002476, is useful for electrolysis of sodium chloride and other electrolytic processes, but it is impractical for obtaining metal cathode sheets.
Respecto a los materiales empleados en la fabricación de los ánodos insolubles para la obtención de metales, se empleó inicialmente láminas de plomo metálico, para luego evolucionar a aleaciones de plomo como las de plomo calcio y otras. Todos estos ánodos presentan problemas de erosión, que resulta en la producción de barros anódicos, con la consiguiente contaminación del cátodo, al atraparse en él cátodo impurezas por oclusión, forzando a la limpieza periódica de los barros con pérdida de tiempo de producción y generando además un problema de contaminación ambiental. With regard to the materials used in the manufacture of insoluble anodes for obtaining metals, metal lead sheets were initially used, and then evolved into lead alloys such as calcium lead and others. All these anodes present erosion problems, which results in the production of anodic mud, with the consequent contamination of the cathode, when cathode impurities are trapped by occlusion, forcing the periodic cleaning of the mud with loss of production time and also generating A problem of environmental pollution.
Intentando resolver los problemas enunciados en el párrafo precedente, se ha utilizado materiales nuevos que producen una cantidad de barros muy inferior al que desprenden los ánodos fabricados en base a plomo o sus aleaciones, lográndose una duración prolongada, que se traduce en menores inventarios de ánodos, menores detenciones para limpieza de borra y por tanto una operación mas eficiente. Uno de los materiales nuevos para la fabricación de j Trying to solve the problems set forth in the preceding paragraph, new materials have been used that produce a quantity of mud much lower than that produced by the anodes manufactured on the basis of lead or its alloys, achieving a prolonged duration, which translates into lower inventories of anodes , lower arrests for cleaning of the eraser and therefore a more efficient operation. One of the new materials for the manufacture of j
ánodos es el titanio, con variantes como la señalada en la Patente Americana US 4.260.470, que consiste en sintetizar polvos de titanio, para preparar una esponja de titanio como una matriz porosa base para el ánodo. Esta matriz porosa se infiltra con plomo fundido o aleaciones de plomo fundido. De esta manera se obtienen tiritas planas que al juntarlas en un arreglo paralelo co-planar, forma los ánodos de gran tamaño. anodes is titanium, with variants such as that indicated in US Patent 4,260,470, which consists of synthesizing titanium powders, to prepare a titanium sponge as a porous base matrix for the anode. This porous matrix infiltrates with molten lead or molten lead alloys. In this way, flat strips are obtained which, when joined together in a co-planar parallel arrangement, forms the large anodes.
Otra tendencia es el empleo de ánodos de superficie aumentada, como la señalada en la Solicitud de Patente Chilena N° 01002-2007, que utiliza múltiples pirámides truncadas de base cuadrada sobre ambas caras, con el inconveniente de aumentar el espesor del ánodo, lo que aumenta la probabilidad de ocurrencia de cortocircuitos al disminuir la distancia ánodo cátodo. Another trend is the use of increased surface anodes, such as that indicated in Chilean Patent Application No. 01002-2007, which uses multiple truncated pyramids with a square base on both sides, with the drawback of increasing the thickness of the anode, which The probability of occurrence of short circuits increases as the cathode anode distance decreases.
Otra tendencia es la de aumentar la superficie específica del ánodo, empleando mallas de metal de válvulas, como la señalada en la solicitud de Patente US N° 09/273,981, o como las rejillas de múltiples varillas descritas en la Patente EP0271924(A1), la que necesariamente tiene el inconveniente de una mayor resistencia de contacto entre las capas o varillas que la conforman. Esta tecnología tiene la ventaja lateral, que permite el flujo de electrolito a través del ánodo, lo que ayuda a homogeneizar la concentración del electrolito a través de toda la sección transversal de la Celda. En general, las mallas tienen la característica de ser mas o menos flexibles, lo que implica agregar un medio para evitar la producción de corto circuitos anodo-cátodo, como su introducción en bolsas, según lo descrito anteriormente. Another trend is to increase the specific surface of the anode, using metal meshes of valves, such as that indicated in US Patent Application No. 09 / 273,981, or as the multi-rod grilles described in Patent EP0271924 (A1), which necessarily has the disadvantage of a greater contact resistance between the layers or rods that make it up. This technology has the lateral advantage, which allows the flow of electrolyte through the anode, which helps to homogenize the concentration of the electrolyte throughout the entire cross section of the Cell. In general, the meshes have the characteristic of being more or less flexible, which means adding a means to avoid the production of short anode-cathode circuits, such as their introduction into bags, as described above.
Gran parte de las ventajas que se pretende obtener con estas mejoras, quedan disminuidas por la mayor complejidad de fabricación junto al mayor costo de producción de dichos ánodos. A large part of the advantages that are intended to be obtained with these improvements are diminished by the greater manufacturing complexity together with the higher production cost of said anodes.
DESCRIPCION DE LOS DIBUJOS DESCRIPTION OF THE DRAWINGS
1. - La Figura 1 muestra una vista en elevación frontal de un ánodo liviano con perforaciones cuadradas, cuyas diagonales son paralelas a los bordes horizontales y verticales del ánodo. 1. - Figure 1 shows a front elevation view of a light anode with square perforations, whose diagonals are parallel to the horizontal and vertical edges of the anode.
2. - La Figura 2 muestra una vista en elevación frontal del ánodo liviano con perforaciones cuadradas, cuyos lados son paralelos a los bordes horizontales y verticales del ánodo. 2. - Figure 2 shows a front elevation view of the light anode with square perforations, the sides of which are parallel to the horizontal and vertical edges of the anode.
3. - La Figura 3 muestra una vista en elevación frontal del ánodo liviano con perforaciones circulares, cuyos centros están alineados según líneas paralelas a los bordes horizontales y verticales del ánodo. 4. - La Figura 4 muestra una vista en elevación frontal del ánodo liviano de metal desplegado, con un refuerzo de material sólido en los bordes y verticalmente al centro de él, unido a su barra de conexión. 3. - Figure 3 shows a front elevation view of the light anode with circular perforations, whose centers are aligned along lines parallel to the horizontal and vertical edges of the anode. 4. - Figure 4 shows a front elevation view of the unfolded light metal anode, with a solid material reinforcement at the edges and vertically to the center of it, attached to its connecting bar.
5. - La Figura 5 muestra una vista en perspectiva isométrica de la esquina inferior derecha de un ánodo liviano, en la que se puede apreciar los detalles de las perforaciones, en especial la de sus paredes internas. 5. - Figure 5 shows an isometric perspective view of the lower right corner of a light anode, in which you can see the details of the perforations, especially that of its internal walls.
6. - La Figura 6 muestra una vista en elevación frontal del ánodo liviano de metal desplegado, sin refuerzos de material sólido, unido a su barra de conexión. 6. - Figure 6 shows a front elevation view of the deployed light metal anode, without solid material reinforcements, attached to its connecting rod.
7. - La Figura 7 muestra una vista en elevación frontal, de un marco de refuerzo del ánodo liviano de metal desplegado. 7. - Figure 7 shows a front elevation view of a reinforcement frame of the deployed light metal anode.
7b.- La Figura 7b muestra un corte por una sección transversal, del marco de refuerzo para los ánodos livianos de metal desplegado. 7b.- Figure 7b shows a cross-sectional section of the reinforcement frame for the light metal anodes deployed.
8. -La Figura 8 muestra una vista en elevación frontal del marco de refuerzo, en el que se ha introducido parcialmente, un ánodo liviano de metal desplegado. 8. -Figure 8 shows a front elevation view of the reinforcement frame, in which a lightweight metal anode deployed has been partially introduced.
9. - La Figura 9 muestra una vista en elevación de un ánodo liviano de metal desplegado, introducido totalmente en el marco de refuerzo. 9. - Figure 9 shows an elevation view of a lightweight deployed metal anode, fully inserted into the reinforcement frame.
10. - La Figura 10 muestra una vista en perspectiva de una estructura soportante de material aislante para ánodos y cátodos, en la que se aprecia un ánodo liviano de metal desplegado, introducido completamente en su marco de refuerzo, y apoyado sobre las dos vigas horizontales superiores de la estructura. 10. - Figure 10 shows a perspective view of a supporting structure of insulating material for anodes and cathodes, in which there is a light metal anode deployed, fully inserted in its reinforcement frame, and supported on the two horizontal beams structure superiors.
11. - La Figura 11 muestra una vista en perspectiva de una estructura soportante de material aislante para ánodos y cátodos, la que se aprecia totalmente llena de ánodos livianos de metal desplegado, introducidos completamente en sus marcos de refuerzo, y apoyados sobre las dos vigas horizontales superiores de la estructura. 11. - Figure 11 shows a perspective view of a supporting structure of insulating material for anodes and cathodes, which is fully filled with lightweight deployed metal anodes, fully inserted in its reinforcement frames, and supported on the two beams upper horizontals of the structure.
Los números indicados en las Figuras, tienen el siguiente significado: 1. Cara inferior del ánodo liviano con perforaciones cuadradas. 2. Vista interior de la cara lateral izquierda, de la perforación cuadrada, del ánodo liviano. The numbers indicated in the Figures have the following meaning: 1. Lower face of the light anode with square perforations. 2. Inside view of the left side face, of the square perforation, of the light anode.
3. Vista de la cara abierta posterior, de la perforación cuadrada, del ánodo liviano.  3. View of the posterior open face, of the square perforation, of the light anode.
4. Vista interior de la cara superior, de la perforación cuadrada, del ánodo liviano.  4. Inside view of the upper face, of the square perforation, of the light anode.
5. Lámina de metal desplegado del ánodo liviano.  5. Unfolded metal sheet of light anode.
6. Barra de conexión eléctrica del ánodo liviano de metal desplegado.  6. Electric connection rod of the deployed light metal anode.
7. Marco de refuerzo para el ánodo liviano de metal desplegado.  7. Reinforcement frame for the light metal anode deployed.
8. Cabezal de apoyo, del marco de refuerzo del ánodo liviano de metal desplegado, a la viga horizontal longitudinal, de la estructura soportante de material aislante para ánodos y cátodos.  8. Support head, of the reinforcement frame of the deployed light metal anode, to the longitudinal horizontal beam, of the supporting structure of insulating material for anodes and cathodes.
9. Canal del marco de refuerzo para la inserción de la lámina de metal desplegado del ánodo liviano.  9. Reinforcement frame channel for the insertion of the unfolded metal sheet of the light anode.
10. Viga horizontal longitudinal, de la estructura soportante de material aislante para ánodos y cátodos.  10. Longitudinal horizontal beam, of the supporting structure of insulating material for anodes and cathodes.
DESCRIPCION DE LA INVENCION DESCRIPTION OF THE INVENTION
Esta invención se sitúa en el campo de la depositación electrolítica de metales. Consiste en un ánodo, con aberturas que atraviesan su espesor haciéndolo más liviano, lo que además permite el flujo de electrolito a través de él, con lo que ayuda a resolver problemas técnicos y operacionales de la tecnología actual. This invention is in the field of electrolytic deposition of metals. It consists of an anode, with openings that cross its thickness making it lighter, which also allows the flow of electrolyte through it, which helps solve technical and operational problems of current technology.
Entre los problemas técnicos que ayuda a resolver, está la disminución de cortocircuitos, ya que la circulación de electrolito a través del ánodo y perpendicular al cátodo, homogeniza el depósito. Con esto se evita la formación de protuberancias que puedan dar origen a cortocircuitos. En el caso del ánodo de malla, se disminuye la probabilidad de ocurrencia de cortocircuitos entre ánodo y cátodo, al tener los bordes verticales e inferior, insertos en un marco de refuerzo de material aislante. Para mallas menos rígidas, se emplea además un refuerzo sobre el borde inferior, los bordes verticales y de ser necesario, adicionalmente un atiesador vertical intermedio. En el caso de los ánodos fabricados con láminas sólidas con perforaciones, se obtienen las mismas ventajas descritas anteriormente. Among the technical problems that help to solve, is the decrease of short circuits, since the circulation of electrolyte through the anode and perpendicular to the cathode, homogenizes the deposit. This prevents the formation of bumps that may give rise to short circuits. In the case of the mesh anode, the probability of occurrence of short circuits between anode and cathode is reduced, as the vertical and lower edges are inserted into a reinforcement frame of insulating material. For less rigid meshes, a reinforcement is also used on the lower edge, the vertical edges and, if necessary, additionally an intermediate vertical stiffener. In the case of anodes made of solid sheets with perforations, the same advantages described above are obtained.
Entre los beneficios adicionales, se encuentra la posibilidad del manejo de paquetes de ánodos para su carga y descarga de la celda, debido a su menor peso unitario. Para lograr dichos beneficios, se ha diseñado dos tipos de ánodos. Among the additional benefits, there is the possibility of handling anode packages for loading and unloading the cell, due to its lower unit weight. To achieve these benefits, two types of anodes have been designed.
- Los primeros, a partir de láminas sólidas, equivalentes a las utilizadas actualmente, como se muestra en las Figuras 1, 2, 3 a las que se ha practicado una multiplicidad de perforaciones que las atraviesan de una cara a la otra, las que pueden adoptar entre otras, las formas cuadrada, circular, romboidal, etc.. En la Figura 5, que muestra una vista en perspectiva isométrica de la esquina inferior derecha, se puede apreciar los detalles de un ánodo con perforaciones cuadradas, en que el número 1 designa el borde inferior de la lámina del ánodo, el número 2 designa la cara interior izquierda de la perforación cuadrada, el número 3 designa la vista parcial de la apertura libre en la cara posterior del ánodo y el número 4, designa la vista horizontal posterior de la perforación. Asumiendo que el lado de la perforación cuadrada sea igual al espesor del ánodo, y el espaciamiento de dichas perforaciones sea también igual al espesor del ánodo, por cada perforación se pierden dos unidades de área pero se generan cuatro áreas de igual magnitud, es decir el área total se incrementa en un 25%. Esto implica que para un valor dado de la corriente operacional de depositación, la densidad de corriente disminuye en igual porcentaje aproximadamente. - The first, from solid sheets, equivalent to those currently used, as shown in Figures 1, 2, 3 to which a multiplicity of perforations have been made that cross them from one side to the other, which can adopt, among others, the square, circular, rhomboidal shapes, etc. In Figure 5, which shows an isometric perspective view of the lower right corner, you can see the details of an anode with square perforations, in which the number 1 designates the bottom edge of the anode blade, number 2 designates the left inner face of the square hole, number 3 designates the partial view of the free opening on the rear face of the anode and number 4 designates the rear horizontal view of drilling. Assuming that the side of the square perforation is equal to the thickness of the anode, and the spacing of said perforations is also equal to the thickness of the anode, for each perforation two units of area are lost but four areas of equal magnitude are generated, that is, the Total area is increased by 25%. This implies that for a given value of the operational deposition current, the current density decreases by approximately the same percentage.
- Los segundos, a partir de mallas, que para minimizar las resistencias de contacto de la malla, se limitan a las de metal desplegado, que se generan a partir de una sola lámina, manteniendo la continuidad del material base.- The second ones, based on meshes, which to minimize the contact resistance of the mesh, are limited to those of unfolded metal, which are generated from a single sheet, maintaining the continuity of the base material.
En estos casos, dependiendo de la rigidez de la malla, el ánodo se puede lograr recortando la forma del ánodo, indicada con el número 5 en la Figura 6, y uniéndola a la barra de conexión 6, tal como se muestra en la Figura del mismo número, para luego introducirla en la ranura 9 del perfil 7, tal como se muestra en la Figura 8, la que una vez introducida totalmente se ve como se muestra en la Figura 9. En el caso de mallas de menor rigidez, ésta se refuerza previamente con un marco metálico por todos sus bordes, e incluso, de ser necesario con un refuerzo vertical central, como puede observarse en la Figura 4. Este último ánodo debe insertarse en el marco aislante de la Figura 7, al igual que lo descrito previamente para la malla 5 de la Figura 6. La utilización de los ánodos fabricados a partir de malla, en la estructura soportante de ánodos y cátodos descrita en la Patente Chilena N° 45288 de 11/08/2009 y mostrada en la Figura 10, debe hacerse apoyando los extremos 8 del marco de refuerzo, en la parte superior de las vigas horizontales superiores 10 de la Figura 10. El empleo de ánodos perforados o fabricados a partir de mallas son más livianos que los convencionales, lo que permite, mediante el uso de dispositivos mecánicos, la carga de paquetes de ánodos a la celda o la totalidad de ellos en una sola operación, lo que es muy importante, ya que dichas Plantas son operaciones a muy gran escala. In these cases, depending on the stiffness of the mesh, the anode can be achieved by cutting the shape of the anode, indicated with the number 5 in Figure 6, and attaching it to the connecting rod 6, as shown in the Figure of the same number, and then enter it in slot 9 of profile 7, as shown in Figure 8, which once entered fully looks as shown in Figure 9. In the case of meshes of less stiffness, it reinforce previously with a metal frame on all its edges, and even, if necessary with a central vertical reinforcement, as can be seen in Figure 4. This last anode must be inserted into the insulating frame of Figure 7, as described previously for the mesh 5 of Figure 6. The use of the anodes manufactured from mesh, in the supporting structure of anodes and cathodes described in Chilean Patent No. 45288 of 08/11/2009 and shown in Figure 10, should be done supporting the ends 8 d the reinforcing frame, at the top of the upper horizontal beams 10 of Figure 10. The use of perforated anodes or manufactured from meshes are lighter than conventional ones, which allows, by using mechanical devices, the loading of anode packages to the cell or all of them in a single operation, which It is very important, since these plants are very large-scale operations.
Las perforaciones y aberturas de la malla, al permitir el paso del electrolito con flujo perpendicular al cátodo, facilitan la renovación del electrolito en contacto con el cátodo, impidiendo la generación de zonas estancas que puedan formar protuberancias en la superficie del cátodo, o menor depositación en él, o sea, depósito no uniforme. The perforations and openings of the mesh, by allowing the passage of the electrolyte with flow perpendicular to the cathode, facilitate the renewal of the electrolyte in contact with the cathode, preventing the generation of tight areas that may form bumps on the cathode surface, or less deposition in it, that is, non-uniform deposit.
EJEMPLO DE APLICACIÓN APPLICATION EXAMPLE
A fin de probar experimentalmente las ventajas del invento, se procedió a montar una estructura soportante de material aislante para ánodos y cátodos, cargado con seis ánodos livianos, en una celda electrolítica piloto, de nuestro taller, la cual se puede operar en las mismas condiciones que una Planta Industrial de obtención de cobre. La experiencia se repitió dos veces. In order to experimentally test the advantages of the invention, a supporting structure of insulating material for anodes and cathodes, loaded with six light anodes, was assembled in a pilot electrolytic cell of our workshop, which can be operated in the same conditions than an Industrial Plant for obtaining copper. The experience was repeated twice.
La celda piloto está construida en plástico reforzado con fibra de vidrio, de 40 cm de ancho por 55 cm de largo y 35 cm de profundidad. The pilot cell is constructed of fiberglass reinforced plastic, 40 cm wide by 55 cm long and 35 cm deep.
Dentro de esta celda piloto se introdujo una estructura soportante de material aislante para ánodos y cátodos de 35 cm de ancho, por 50 cm de largo y 35 cm de alto, conteniendo un manojo de seis ánodos livianos. Within this pilot cell a supporting structure of insulating material for anodes and cathodes 35 cm wide, 50 cm long and 35 cm high, containing a bunch of six light anodes was introduced.
Una vez cargada la celda piloto con los ánodos y cátodos, se procedió a llenarla con el electrolito de sulfato de cobre, de composición equivalente al de la Planta Industrial simulada y se inició el depósito a un potencial de 2,6 Voltios entre cátodo y ánodo, empleando una densidad de corriente de 300 Amperes por metro cuadrado. Once the pilot cell was charged with the anodes and cathodes, it was filled with the copper sulfate electrolyte, of a composition equivalent to that of the simulated Industrial Plant and the deposit was initiated at a potential of 2.6 Volts between cathode and anode , using a current density of 300 Amps per square meter.
Al término de la operación, que fue equivalente a un ciclo de cosecha, se pudo observar lo siguiente: At the end of the operation, which was equivalent to a harvest cycle, the following could be observed:
1.- Mejora de la calidad catódica, tanto calidad química como calidad física. Respecto de la calidad química, se observa un menor contenido de impurezas como Plomo, Azufre y Fierro, y menor oclusión de Sulfato de Cobre. Respecto de la calidad física, se observa menores efectos de cortocircuitos con depósito de grano más fino y uniforme, debido a que se asegura el paralelismo entre ánodos y cátodos. 1.- Improvement of the cathodic quality, both chemical quality and physical quality. Regarding the chemical quality, there is a lower content of impurities such as Lead, Sulfur and Iron, and lower occlusion of Copper Sulfate. Regarding the physical quality, there are lower effects of short circuits with a finer and more uniform grain deposit, because the parallelism between anodes and cathodes is ensured.
2. - Aumento de la eficiencia de corriente. 2. - Increase in current efficiency.
Esta ventaja se puede aprovechar, dependiendo de la disponibilidad de electrolito, ya sea en una mayor producción de metal, un menor costo de energía eléctrica, o en acortar el ciclo de cosecha.  This advantage can be exploited, depending on the availability of electrolyte, either in a higher metal production, a lower cost of electrical energy, or in shortening the harvest cycle.
3. - Distribución equitativa de la corriente a través de los cátodos. 3. - Equitable distribution of the current through the cathodes.
Este beneficio se traduce en mayor uniformidad de cosecha en cosecha, y dentro de una misma cosecha menor variabilidad del peso de los cátodos y de la calidad química y física de los cátodos.  This benefit translates into greater uniformity from crop to crop, and within the same crop less variability of the cathode weight and the chemical and physical quality of the cathodes.

Claims

REIVINDICACIONES
1. Anodo de superficie aumentada para la depositación electrolítica de metales, CARACTERIZADO por disponer de múltiples aberturas que atraviesan el ánodo desde su cara anterior hasta su cara posterior, con rigidez apropiada para su uso, provista por su espesor, por refuerzos, o por un marco de material aislante, externo. 1. Increased surface anode for electrolytic deposition of metals, CHARACTERIZED by having multiple openings that cross the anode from its anterior face to its posterior face, with appropriate rigidity for use, provided by its thickness, by reinforcements, or by a Insulating material frame, external.
2. Ánodo de superficie según la reivindicación 1, CARACTERIZADO porque las múltiples aberturas son perforaciones cuadradas sobre una lámina de espesor suficiente para asegurar su rigidez. 2. Surface anode according to claim 1, CHARACTERIZED in that the multiple openings are square perforations on a sheet of sufficient thickness to ensure its rigidity.
3. Anodo de superficie según la reivindicación 1, CARACTERIZADO porque las múltiples aberturas son perforaciones cuadradas con sus diagonales alineadas paralelas a los bordes de una lámina de espesor suficiente para asegurar su rigidez. 3. Surface anode according to claim 1, CHARACTERIZED in that the multiple openings are square perforations with their diagonals aligned parallel to the edges of a sheet of sufficient thickness to ensure its rigidity.
4. Ánodo de superficie según la reivindicación 1, CARACTERIZADO porque las múltiples aberturas son perforaciones circulares sobre una lámina de espesor suficiente para asegurar su rigidez. 4. Surface anode according to claim 1, CHARACTERIZED in that the multiple openings are circular perforations on a sheet of sufficient thickness to ensure its rigidity.
5. Anodo de superficie según la reivindicación 1, CARACTERIZADO porque sus aberturas corresponden a las de un metal desplegado de espesor suficiente para asegurar su rigidez. 5. Surface anode according to claim 1, CHARACTERIZED in that its openings correspond to those of a deployed metal of sufficient thickness to ensure its rigidity.
6. Anodo de superficie según la reivindicación 1, CARACTERIZADO porque sus aberturas corresponden a las de un metal desplegado, con refuerzos rígidos en todos sus bordes. 6. Surface anode according to claim 1, CHARACTERIZED in that its openings correspond to those of a deployed metal, with rigid reinforcements on all its edges.
7. Ánodo de superficie según la reivindicación 1, CARACTERIZADO porque sus aberturas corresponden a las de un metal desplegado, con refuerzos rígidos en todos sus bordes y en su vertical central. 7. Surface anode according to claim 1, CHARACTERIZED in that its openings correspond to those of a deployed metal, with rigid reinforcements at all its edges and in its central vertical.
8. Ánodo de superficie según la reivindicación 1, CARACTERIZADO por emplear un marco de refuerzo en los tres lados sumergidos en el electrolito, cuya sección transversal corresponde a la de un perfil "C", marco que se apoya en una estructura soportante para ánodos y cátodos de material aislante, que se instala dentro de una celda de electro- obtención de metales. 8. Surface anode according to claim 1, CHARACTERIZED by employing a reinforcement frame on the three sides submerged in the electrolyte, whose cross section corresponds to that of a "C" profile, a frame that rests on a supporting structure for anodes and cathodes of insulating material, which is installed inside a metal electro-obtaining cell.
PCT/CL2010/000007 2010-02-03 2010-02-03 Anode for electroplating WO2011094886A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CL2010/000007 WO2011094886A1 (en) 2010-02-03 2010-02-03 Anode for electroplating
CL2012002083U CL2012002083U1 (en) 2010-02-03 2012-07-26 Increased surface anode for the electrolytic deposition of metals that has multiple openings in a square and / or circular shape with their diagonals aligned parallel to the edge comprising reinforcements or by a framework of external insulating material.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CL2010/000007 WO2011094886A1 (en) 2010-02-03 2010-02-03 Anode for electroplating

Publications (1)

Publication Number Publication Date
WO2011094886A1 true WO2011094886A1 (en) 2011-08-11

Family

ID=44354846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2010/000007 WO2011094886A1 (en) 2010-02-03 2010-02-03 Anode for electroplating

Country Status (1)

Country Link
WO (1) WO2011094886A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3317410A (en) * 1962-12-18 1967-05-02 Ibm Agitation system for electrodeposition of magnetic alloys
EP0823400A1 (en) * 1996-08-06 1998-02-11 First Ocean Co., Ltd. An electrode structure for electrolysis of water and a method for sterilization of water thereby
EP1138807A2 (en) * 2000-03-24 2001-10-04 Applied Materials, Inc. Perforated anode for uniform deposition of a metal layer
US20030201189A1 (en) * 2002-03-01 2003-10-30 Bergsma S. Craig Cu-ni-fe anode for use in aluminum producing electrolytic cell
EP1923357A1 (en) * 2005-08-10 2008-05-21 Central Japan Railway Company Method for producing ozone water and apparatus for producing ozone water

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3317410A (en) * 1962-12-18 1967-05-02 Ibm Agitation system for electrodeposition of magnetic alloys
EP0823400A1 (en) * 1996-08-06 1998-02-11 First Ocean Co., Ltd. An electrode structure for electrolysis of water and a method for sterilization of water thereby
EP1138807A2 (en) * 2000-03-24 2001-10-04 Applied Materials, Inc. Perforated anode for uniform deposition of a metal layer
US20030201189A1 (en) * 2002-03-01 2003-10-30 Bergsma S. Craig Cu-ni-fe anode for use in aluminum producing electrolytic cell
EP1923357A1 (en) * 2005-08-10 2008-05-21 Central Japan Railway Company Method for producing ozone water and apparatus for producing ozone water

Similar Documents

Publication Publication Date Title
WO2017142042A1 (en) Flow battery
EP0189535B1 (en) Electrolysis apparatus
BR112018069046B1 (en) ELECTROLYTIC CELL AND METHOD FOR THE PRODUCTION OF ALUMINUM METAL BY ELECTROCHEMICAL REDUCTION OF ALUMINA
US3839179A (en) Electrolysis cell
JP5650506B2 (en) Electrolyzed water production equipment
WO2011094886A1 (en) Anode for electroplating
DE1467067B2 (en) Electrolytic cell
EP0102099B1 (en) Vertical electrode plate for gas-forming electrolyzers
CA2586149C (en) Modular system for improving electro-metallurgical processes
DE19816334A1 (en) Electrolysis apparatus for the production of halogen gases
CS221549B2 (en) Electrolyser for electrolysis of liquid electrolyte
RU2001127744A (en) ELECTROLYZERS FOR ELECTROLYTIC PRODUCTION OF ALUMINUM WITH ANODES OXIDATING OXYGEN
AR004350A1 (en) ELECTROLYTIC CELL THAT HAS AN ANODE ASSEMBLY AND A CATODE ASSEMBLY, ELECTRODE ASSEMBLY, AND EXTENDED FLAT STRIP PIECE ADAPTED TO BE FOLDED BY CONVERTING IT INTO A PROJECTING ELEMENT FOR A BAND-SHAPED ELECTRODE ASSEMBLY.
BR112012005051B1 (en) CATHOD STRUCTURE FOR AN ELECTROLYSIS CELL
RU2309199C2 (en) Diaphragm electrolyzer
FI20116193A (en) Frame and electrolysis system
JP2011084755A (en) Electrolyzer
RU2007145723A (en) Cathode finger for diaphragm cell
RU2017106835A (en) PERFORATED METAL INERT ANODE FOR PRODUCING ALUMINUM BY MELT ELECTROLYSIS
DE2413943A1 (en) BIPOLAR ELECTRODE AND ITS USE IN ELECTROLYSIS DEVICES
SK13282003A3 (en) Arrangement of anode for utilisation in an electrolysis cell
CN208157571U (en) A kind of device for accumulator plate chemical conversion
DE352662C (en) Electrode for collector cells
JP5511083B2 (en) Molten salt electrolytic cell
CN108713073A (en) Electrode structure with resistor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10844973

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012002083

Country of ref document: CL

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 001165-2012

Country of ref document: PE

WWE Wipo information: entry into national phase

Ref document number: 000037-2013

Country of ref document: PE

122 Ep: pct application non-entry in european phase

Ref document number: 10844973

Country of ref document: EP

Kind code of ref document: A1