JP2011084755A - Electrolyzer - Google Patents

Electrolyzer Download PDF

Info

Publication number
JP2011084755A
JP2011084755A JP2009235965A JP2009235965A JP2011084755A JP 2011084755 A JP2011084755 A JP 2011084755A JP 2009235965 A JP2009235965 A JP 2009235965A JP 2009235965 A JP2009235965 A JP 2009235965A JP 2011084755 A JP2011084755 A JP 2011084755A
Authority
JP
Japan
Prior art keywords
intermediate electrode
discharge
electrolysis
anode
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009235965A
Other languages
Japanese (ja)
Inventor
Masaaki Iosaki
雅章 庵崎
Kosuke Kadokura
康介 角倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kinotech Solar Energy Corp
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Kinotech Solar Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Kinotech Solar Energy Corp filed Critical Asahi Glass Co Ltd
Priority to JP2009235965A priority Critical patent/JP2011084755A/en
Publication of JP2011084755A publication Critical patent/JP2011084755A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a double pole type electrolyzer capable of reducing reverse reaction due to the contact with an electrode reaction product without raising the voltage between electrodes. <P>SOLUTION: The double pole type electrolyzer includes: a cathode 122 provided in the direct under side in an electrolytic cell 10 and having a cathode surface 122s, a first flow-down path 122a opened toward the direct under side from the cathode surface and first discharge flow-paths 122b, 122c communicating with the first flow-down path 122a; an anode 124 provided in the direct upper side in the electrolytic cell and having an anode surface 124s, a first upward flow path 124a and second discharge flow paths 124b, 124c communicating with the first upward flow path 124a, and an intermediate electrode 126 provided between the cathode and the anode and having the cathode surface 127s, the anode surface 126s, a second flow-down path 127a opened toward the direct under side from the cathode surface, a second upward flow path 126a opened toward the direct upper side from the anode surface, third discharge flow paths 127b, 127c communicating with the second flow-down path and forth discharge flow paths 126b, 126c communicating with the second upward flow path. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電解装置に関し、特に、複極式の電解装置に関するものである。   The present invention relates to an electrolysis apparatus, and more particularly to a bipolar electrolysis apparatus.

近年、太陽電池用途のシリコン製造に実質的に特化したものではあるが、四塩化珪素を亜鉛により還元する亜鉛還元法と呼ばれるシリコン製造方法において、副生する塩化亜鉛の電解を組入れたクローズドシステムが提案されている。ここに、亜鉛還元法の反応式は、SiCl4+2Zn→Si+2ZnCl2で示され、塩化亜鉛の電解の反応式は、ZnCl2→Zn+Cl2で示される。   In recent years, a closed system that incorporates the electrolysis of zinc chloride as a by-product in a silicon production method called zinc reduction, in which silicon tetrachloride is reduced by zinc, has been substantially specialized in the production of silicon for solar cells. Has been proposed. Here, the reaction formula of the zinc reduction method is represented by SiCl 4 + 2Zn → Si + 2ZnCl 2, and the reaction formula of zinc chloride electrolysis is represented by ZnCl 2 → Zn + Cl 2.

かかる状況下で、特許文献1及び2では、亜鉛還元法を用いたシリコン製造プロセスに関連した塩化亜鉛を溶融塩電解するための複極式の電解装置に関し、比抵抗の大きい溶融塩化亜鉛を実用的な消費電力で電解するためには、電解浴の温度を亜鉛の融点よりも更に高い500℃以上の高温として、電極間の距離を狭く設計する必要があり、これを実現するためには、陰極で析出する亜鉛と陽極で生成する塩素ガスとの接触機会を減少させる必要があることについて言及されている。   Under such circumstances, Patent Documents 1 and 2 relate to a bipolar electrolysis apparatus for molten salt electrolysis of zinc chloride related to a silicon production process using a zinc reduction method, and practical use of molten zinc chloride having a large specific resistance is performed. In order to perform electrolysis with a specific power consumption, it is necessary to design the temperature of the electrolytic bath at a high temperature of 500 ° C. or higher, which is higher than the melting point of zinc, and to design the distance between the electrodes to be small. It is mentioned that the contact opportunity between zinc deposited at the cathode and chlorine gas produced at the anode needs to be reduced.

また、非特許文献1では、塩化亜鉛を溶融塩電解するための単極式の電解装置に関し、三角柱形状のグラファイト電極を組み合わせた構造を開示している。   Further, Non-Patent Document 1 discloses a structure in which triangular prism-shaped graphite electrodes are combined with respect to a single electrode type electrolysis apparatus for carrying out molten salt electrolysis of zinc chloride.

特開2003−293181号公報JP 2003-293181 A 特開2003−328173号公報JP 2003-328173 A No.216,Vol.78 PROCESSING OF ENERGY AND METALLIC MINERALS AIChE SYMPOSIUM SERIESNo. 216, Vol. 78 PROCESSING OF ENERGY AND METALLIC MINEALS AIChE SYMPOSIUM SERIES

しかしながら、本発明者の検討によれば、特許文献1及び2に開示される構成では、塩化亜鉛溶融塩浴よりも比重が大きい亜鉛を電解槽底部から抜くものではあるが、陰極で析出した亜鉛が陽極で生成した塩素ガスによって再溶解する逆反応を、低減するための構造を提示し得ておらず、かかる観点では改善の余地がある。   However, according to the study of the present inventors, in the configurations disclosed in Patent Documents 1 and 2, zinc having a specific gravity larger than that of the zinc chloride molten salt bath is extracted from the bottom of the electrolytic cell. However, a structure for reducing the reverse reaction that is re-dissolved by the chlorine gas generated at the anode cannot be presented, and there is room for improvement from this viewpoint.

また、特許文献1及び2に開示される構成では、複極式の電解装置に関するものであるが、かかる複極式の電解装置は、中間電極への電源供給がいらないメリットがある反面、電極側面からの漏洩電流を防ぐための工夫が必要なため構造が複雑になる。特に、高電流密度で電解する場合、電極表面で生成するガスが滞留して実質的な有効電極面積を減少させ、電極間の電圧が上昇するから、直近で対向する電極対(本来の電解室部分)を飛び越えて流れる漏洩電流が増加して、想定外の効率低下を招く可能性があり、その設計は複雑なものとならざるを得ない。また、機械的な破損による漏洩電流の発生や短絡等の現象が発生すると、1つの電極群(陰極、複数の中間極及び陽極)の全てに影響が及び、内部における原因個所の特定が困難でもあり、かかる観点では改善の余地がある。   In addition, the configurations disclosed in Patent Documents 1 and 2 relate to a bipolar electrolysis apparatus. However, such a bipolar electrolysis apparatus has an advantage that power supply to the intermediate electrode is not required, but the side surface of the electrode. The structure becomes complicated because a device for preventing the leakage current is required. In particular, when electrolysis is performed at a high current density, the gas generated on the electrode surface stays and the effective effective electrode area is reduced, and the voltage between the electrodes rises. Leakage current that flows over (part) may increase, leading to unexpected efficiency degradation, and the design must be complicated. In addition, if a phenomenon such as a leakage current or a short circuit occurs due to mechanical damage, it affects all of one electrode group (cathode, multiple intermediate electrodes and anode), and it is difficult to identify the cause in the interior. There is room for improvement from this point of view.

また、非特許文献1に開示される構成では、単極式の電解槽に関するものであるが、電解反応を行う電解室部分は、傾斜した平面同士対向する狭い間隙に過ぎず、この間におい
て亜鉛と塩素ガスとが反応してしまう逆反応を、根本的に低減するための構造を提示し得ておらず、かかる観点では改善の余地がある。
In addition, the configuration disclosed in Non-Patent Document 1 relates to a monopolar electrolytic cell, but the electrolysis chamber portion for performing an electrolysis reaction is only a narrow gap facing inclined planes, and zinc and A structure for fundamentally reducing the reverse reaction that reacts with chlorine gas cannot be presented, and there is room for improvement from this viewpoint.

本発明は、以上の検討を経てなされたもので、比抵抗の大きい溶融塩を、実用的な電流密度と消費電力で電解するための複極式の電解装置を提供すること、具体的には、狭い電極間距離で設計する場合に生じる陰極面及び陽極面における電極反応生成物の接触による逆反応を、電極間電圧を上昇させることなく低減し得ると共に、漏洩電流による電流効率の低下を抑制し得る複極式の電解装置を提供することを目的とする。   The present invention has been made through the above studies, and provides a bipolar electrolysis apparatus for electrolyzing a molten salt having a large specific resistance with a practical current density and power consumption. The reverse reaction caused by the contact of electrode reaction products on the cathode and anode surfaces when designing with a narrow interelectrode distance can be reduced without increasing the interelectrode voltage, and the decrease in current efficiency due to leakage current is suppressed. An object of the present invention is to provide a bipolar electrolysis apparatus capable of performing the above.

併せて、本発明は、高温かつ高腐食性の電解浴や電解反応生成物を扱い得て、厳しい運転条件に耐え得る単純かつ保守の容易な構造を有し、及び工業化を前提とした大型の設備にスケールアップ可能で増産、増設が容易な構造を有する複極式の電解装置を提供することを目的とする。   In addition, the present invention can handle high-temperature and highly corrosive electrolytic baths and electrolytic reaction products, has a simple and easy-to-maintain structure that can withstand severe operating conditions, and is large-sized on the premise of industrialization. It is an object of the present invention to provide a bipolar electrolyzer having a structure that can be scaled up for facilities and can be easily increased and expanded.

本発明は、かかる事情に鑑み、各々が導電部材である陰極、陽極及び中間電極を鉛直下方から鉛直上方へと順次積層した構成の複極式の電極を有する電解装置において、各々が内部空間を持つ陰極、陽極及び中間電極の陰極や陽極として機能する(電解反応の場となる)外表面を穴開き構造とするか、又は陰極、陽極及び中間電極のかかる外表面を残すような柱状部を有する柱状構造とし、電解反応で生成する陰極反応生成物や陽極反応生成物を電極の内部空間又は柱状部の間隙へ導いて、かかる電解反応生成物が相互に接触する機会を根本的に低減し得る構成を完成させたものである。   In view of such circumstances, the present invention provides an electrolysis apparatus having a bipolar electrode having a structure in which a cathode, an anode, and an intermediate electrode, each of which is a conductive member, are sequentially stacked from vertically downward to vertically upward, each having an internal space. The outer surface that functions as the cathode or anode of the cathode, anode and intermediate electrode (where the electrolytic reaction takes place) has a perforated structure, or a columnar portion that leaves such an outer surface of the cathode, anode and intermediate electrode. It has a columnar structure, and the cathode reaction product and anode reaction product generated by the electrolytic reaction are led to the internal space of the electrode or the gap between the columnar parts, and the opportunity for such electrolytic reaction products to contact each other is fundamentally reduced. This is the completed configuration.

併せて、かかる構成には、複極式の電極を確実に固定しつつその積層数が簡便に増減できると共に電解室への液体電解質の供給を自在とする絶縁部材である電極枠や、各電極の内部から外部へ排出する陽極反応生成物と陰極両反応生成物とを分断すると共に隣接する電極への漏洩電流を低減する絶縁部材である遮蔽板を適宜組み合わせ得るものである。かかる電極枠は、一体型でも分割型でもよく、遮蔽板は、対応する電極枠に対して、互いの凹凸部を利用した嵌合や締結部材等で組み付ければよい。   In addition, in such a configuration, an electrode frame that is an insulating member that can easily increase or decrease the number of stacked layers while securely fixing a bipolar electrode and can freely supply a liquid electrolyte to the electrolysis chamber, and each electrode A shielding plate, which is an insulating member that divides the anode reaction product and the cathode reaction product discharged from the inside to the outside and reduces the leakage current to the adjacent electrodes, can be appropriately combined. Such an electrode frame may be an integral type or a divided type, and the shielding plate may be assembled to the corresponding electrode frame by fitting or fastening members using mutual uneven portions.

ここで、穴開き構造とは、電解反応生成物を、その反応の場から陰極、陽極及び中間電極から成る複極式の電極の各々の内部空間へ導くための多孔的な構造を意味し、幾何学的な形状は問わない。すなわち、その形状は平板に丸や多角形等の穴を開けたものでも、網目や格子等を用いたものでもよく、電解反応生成物を電解室内に滞留させずスムースに電極内部に導入できるものであれば足りる。   Here, the perforated structure means a porous structure for guiding the electrolytic reaction product from the reaction field to each internal space of a bipolar electrode composed of a cathode, an anode, and an intermediate electrode, Any geometric shape is acceptable. In other words, the shape may be a flat plate with holes such as circles and polygons, or a mesh or lattice, and the electrolytic reaction product can be smoothly introduced into the electrode without staying in the electrolytic chamber. If it is enough.

また、柱状構造とは、電解反応生成物を、その反応の場から複極式の電極の各々の電極面よりも内方へ導くための間隙部を画成する複数の柱状部を有する構造を意味し、柱状部の幾何学的な形状は問わない。すなわち、その形状は板状部に円柱や多角柱等の複数の柱状部を設けたものであればよく、柱状部間に間隙部を画成して電解反応生成物を電解室内に滞留させずスムースに間隙部に導入できるものであれば足りる。   In addition, the columnar structure is a structure having a plurality of columnar portions that define a gap portion for guiding an electrolytic reaction product from the reaction field to the inside of each electrode surface of the bipolar electrode. This means that the geometric shape of the columnar part is not limited. That is, the shape of the plate-shaped portion is not limited as long as a plurality of columnar portions such as a cylinder and a polygonal column are provided on the plate-shaped portion, and a gap portion is defined between the columnar portions to prevent the electrolytic reaction product from staying in the electrolytic chamber. Anything that can be smoothly introduced into the gap is sufficient.

このように各電極の内方に導入された電解反応生成物は、各電極において鉛直方向に交差する方向に開口した排出口から各電極の外部に排出されて適宜溜められる等した後で、次工程に送られることになるが、各電極の内部空間や排出口の幾何学的な形状も、電解反応生成物を滞留させず排出できるものであれば任意に設定可能である。   The electrolytic reaction product introduced inward of each electrode in this way is discharged to the outside of each electrode from the discharge port opened in the direction intersecting the vertical direction in each electrode and appropriately stored, etc. Although it will be sent to the process, the internal space of each electrode and the geometric shape of the discharge port can be arbitrarily set as long as the electrolytic reaction product can be discharged without stagnation.

つまり、穴開き構造が適用された各電極の内部構造は、電解反応生成物が、電極として機能する外表面から多孔部に誘導された後、電極内部を通過して、各電極の外部へ所定の排出方向で排出できる構造であれば足りる。例えば、各電極の構造としては、その内部に
おいて、電解反応生成物を外方に向かって流して排出する流路が実質的に形成されるものであれば足り、流路が規定された中空の箱型、複数のL字型貫通穴を有するブロック型、溝加工した平板を貼り合わせ型等が用い得る。
In other words, the internal structure of each electrode to which the perforated structure is applied is that the electrolytic reaction product is guided to the porous portion from the outer surface functioning as an electrode, passes through the inside of the electrode, and passes to the outside of each electrode. Any structure that can discharge in the direction of discharge is sufficient. For example, as the structure of each electrode, it is sufficient if a flow path for flowing and discharging the electrolytic reaction product to the outside is substantially formed in the inside, and it is sufficient that the flow path is hollow. A box type, a block type having a plurality of L-shaped through holes, a laminating type with a grooved flat plate, and the like can be used.

また、柱状構造が適用された各電極の内部構造は、電解反応生成物が、電極として機能する外表面から柱状部間の間隙部に誘導された後、柱状部が立設される基面で偏向されながら基面に沿って通過して、各電極の外部へ所定の排出方向で排出できる構造であれば足りる。   In addition, the internal structure of each electrode to which the columnar structure is applied is the base surface on which the columnar portion is erected after the electrolytic reaction product is guided from the outer surface functioning as an electrode to the gap between the columnar portions. Any structure that passes along the base surface while being deflected and can be discharged to the outside of each electrode in a predetermined discharge direction is sufficient.

また、例えば、鉛直方向と平行な電極面で電解反応を生じる平行平板型の電極を用いた電解装置の場合には、陽極反応生成物は鉛直上方向のみ、陰極反応生成物は鉛直下方向のみに集まるものであるが、以上の本発明の電解装置によれば、いずれの電解反応生成物も鉛直方向に交差する方向を適宜組み合わせて、互いの排出方向が重ならないように偏位して、例えば、互いの排出流路の排出端の位置を偏位して、電極外部に排出させることが可能であり、異種の電解反応生成物同士の接触機会を増やさずに各電極を大型化できる等の各電極のサイズ決定の自由度が高まる。   Further, for example, in the case of an electrolysis apparatus using a parallel plate type electrode that generates an electrolytic reaction on an electrode surface parallel to the vertical direction, the anode reaction product is only in the vertically upward direction, and the cathode reaction product is only in the vertically downward direction. However, according to the electrolysis apparatus of the present invention described above, any electrolytic reaction product is appropriately combined with the direction intersecting the vertical direction, so that the discharge directions do not overlap each other, For example, it is possible to deviate the position of the discharge end of each discharge channel and discharge it to the outside of the electrode, and to increase the size of each electrode without increasing the chance of contact between different types of electrolytic reaction products, etc. This increases the degree of freedom in determining the size of each electrode.

また、かかる電解反応生成物の電極外部への排出方向と、液体電解質の電解室への供給方向と、を互いに重ならないように偏位して、例えば電解反応生成物の排出流路の排出端の位置と、液体電解質の供給流路の導入端の位置と、を偏位して設定することも、電解の結果物である電解反応生成物が、電解の原料である液体電解質に同伴して電解室に不要に侵入し、逆反応を生じることを避ける観点からは好ましい。   Further, the discharge direction of the electrolytic reaction product to the outside of the electrode and the supply direction of the liquid electrolyte to the electrolytic chamber are shifted so as not to overlap each other, for example, the discharge end of the discharge flow path of the electrolytic reaction product And the position of the introduction end of the supply path of the liquid electrolyte can be set to be offset. The electrolytic reaction product, which is the result of electrolysis, is accompanied by the liquid electrolyte that is the raw material for electrolysis. This is preferable from the viewpoint of avoiding unnecessary entry into the electrolysis chamber and causing a reverse reaction.

また、気体である陽極反応生成物を電解室の外部に排出するためには、電解室内よりも電解室外の圧力を低く管理することが好ましい。   In order to discharge the anode reaction product, which is a gas, to the outside of the electrolysis chamber, it is preferable to manage the pressure outside the electrolysis chamber lower than in the electrolysis chamber.

また、気体である陽極反応生成物が通過する各電極の内部空間や基面は、かかる陽極反応生成物が通過しやすいようにその流れ方向に対して上り勾配に配設することが好ましく、液体である陰極反応生成物が通過する各電極の内部空間や基面は、かかる陰極反応生成物が通過しやすいようにその流れ方向に対して下り勾配に配設することが好ましい。併せて、各電極の陽極として作用する外表面も、陽極反応生成物が対応する電極の内部空間に導入されやすいようにその流れ方向に対して上り勾配に配設することが好ましく、各電極の陰極として作用する外表面も、陰極反応生成物が対応する電極の内部空間に導入されやすいようにその流れ方向に対して下り勾配に配設することが好ましい。   Further, the internal space and base surface of each electrode through which the anode reaction product that is a gas passes are preferably arranged in an upward gradient with respect to the flow direction so that the anode reaction product easily passes. It is preferable that the internal space and base surface of each electrode through which the cathode reaction product passes are arranged in a downward gradient with respect to the flow direction so that the cathode reaction product can easily pass through. In addition, the outer surface acting as the anode of each electrode is also preferably arranged in an upward gradient with respect to the flow direction so that the anode reaction product can be easily introduced into the inner space of the corresponding electrode. The outer surface acting as the cathode is also preferably arranged in a downward gradient with respect to the flow direction so that the cathode reaction product is easily introduced into the internal space of the corresponding electrode.

ここで、かかる電解装置における漏洩電流の回路は、電解室内部において液体電解質を挟んで対向する陰極として機能する外表面と陽極として機能する外表面との間で規定される電解電流の回路に対して、電解室外の液体電解質を通じて他の電解室における陰極として機能する外表面や陽極として機能する外表面との間で形成される並列回路であると考えられる。   Here, the leakage current circuit in the electrolysis apparatus is an electrolytic current circuit defined between an outer surface functioning as a cathode facing the liquid electrolyte and an outer surface functioning as an anode inside the electrolytic chamber. Thus, it is considered that this is a parallel circuit formed between an outer surface functioning as a cathode and an outer surface functioning as an anode in another electrolytic chamber through a liquid electrolyte outside the electrolytic chamber.

よって、漏洩電流の回路の抵抗が、電解電流の回路の抵抗と比べて十分大きくなるような設定ができれば、漏洩電流による電流効率低下を無視できる程度まで低減できる。すなわち、電解室内部において液体電解質を挟んで対向する陰極として機能する外表面の面積及び陽極として機能する外表面の面積が等しくAであり、これらの外表面の距離がDである場合に、漏洩電流の流れる空間の漏洩電流の経路に直交する面積をaとし、漏洩電流の経路の長さをdとすれば、d/a>D/Aとなる構成を実現すればよいことが分かる。   Therefore, if the resistance of the leakage current circuit is set to be sufficiently larger than the resistance of the electrolytic current circuit, the current efficiency drop due to the leakage current can be reduced to a negligible level. That is, when the area of the outer surface that functions as a cathode facing the liquid electrolyte and the area of the outer surface that functions as an anode are equal A in the inside of the electrolytic chamber and the distance between these outer surfaces is D, leakage occurs. It can be seen that a configuration in which d / a> D / A may be realized if the area orthogonal to the leakage current path in the space where current flows is a and the length of the leakage current path is d.

かかる観点から、漏洩電流を低減するには、電解槽内での各電極のサイズを大きくして、電解室外における液体電解質の存在する領域を狭めたり、各電極間の距離を増大するこ
とが必要になるが、本発明の電解装置の構成においては、電解反応生成物の接触機会を増やさずに各電極を大型化できる等の各電極のサイズ決定の自由度が高いものであるため、漏洩電流を低減しやすい基本構成を有するものであるともいえる。
From this point of view, in order to reduce the leakage current, it is necessary to increase the size of each electrode in the electrolytic cell to narrow the area where the liquid electrolyte exists outside the electrolysis chamber, or to increase the distance between the electrodes. However, in the configuration of the electrolysis apparatus of the present invention, since each electrode can be enlarged without increasing the chance of contact with the electrolytic reaction product, the degree of freedom in determining the size of each electrode is high. It can also be said that it has a basic configuration that can easily reduce the amount of light.

つまり、本発明は、第1の局面において、液体電解質を収容して鉛直方向に立設された電解槽と、前記電解槽において前記鉛直方向における下方に設けられて、陰極面、前記陰極面から前記鉛直方向における下方に向けて開けられた第1の流下流路及び前記第1の流下流路に連絡した第1の排出流路を有する陰極と、前記電解槽において前記鉛直方向における上方に設けられて、陽極面、前記陽極面から前記鉛直方向における上方に向けて開けられた第1の上昇流路及び前記第1の上昇流路に連絡した第2の排出流路を有する陽極と、前記電解槽において前記陰極と前記陽極との間に設けられて、陰極面、陽極面、前記陰極面から前記鉛直方向における下方に向けて開けられた第2の流下流路、前記陽極面から前記鉛直方向における上方に向けて開けられた第2の上昇流路、前記第2の流下流路に連絡した第3の排出流路及び前記第2の上昇流路に連絡した第4の排出流路を有する第1の中間電極と、前記陰極の前記陰極面と前記第1の中間電極の前記陽極面との間に画成される第1の電解室と、前記陽極の前記陽極面と前記第1の中間電極の前記陰極面との間に画成される第2の電解室と、を備え、前記陰極の前記第1の流下流路は、前記第1の電解室における電解で生成された前記電解生成溶融金属を、前記陰極の前記陰極面から前記鉛直方向における下方に移動自在として前記第1の排出流路に送出自在であり、前記陽極の前記第1の上昇流路は、前記第2の電解室における電解で生成された前記電解生成ガスを、前記陽極の前記陽極面から前記鉛直方向における上方に移動自在として前記第2の排出流路に送出自在であり、前記第1の中間電極の前記第2の流下流路は、前記第2の電解室における電解で生成された前記電解生成溶融金属を、前記第1の中間電極の前記陰極面から前記鉛直方向の下方に移動自在として前記第3の排出流路に送出自在であり、前記第1の中間電極の前記第2の上昇流路は、前記第1の電解室における電解で生成された前記電解生成ガスを、前記第1の中間電極の前記陽極面から前記鉛直方向における上方に移動自在として前記第4の排出流路に送出自在である構成の電解装置である。   That is, in the first aspect, the present invention provides an electrolytic cell that contains a liquid electrolyte and is erected in the vertical direction, and is provided below the vertical direction in the electrolytic cell. A cathode having a first downflow channel opened downward in the vertical direction and a first discharge channel communicating with the first downflow channel; and provided above the vertical direction in the electrolytic cell. An anode surface, a first ascending channel opened upward from the anode surface in the vertical direction, and an anode having a second discharge channel communicating with the first ascending channel, In the electrolytic cell, provided between the cathode and the anode, the cathode surface, the anode surface, a second flow channel opened downward from the cathode surface in the vertical direction, and the vertical from the anode surface Direction upward in direction A first intermediate channel having a second ascending channel opened, a third discharging channel communicating with the second descending channel, and a fourth discharging channel communicating with the second ascending channel An electrode, a first electrolytic chamber defined between the cathode surface of the cathode and the anode surface of the first intermediate electrode, the anode surface of the anode and the first intermediate electrode A second electrolysis chamber defined between the cathode surface, and the first flow channel of the cathode contains the electrolysis-generated molten metal generated by electrolysis in the first electrolysis chamber. The cathode can be moved downward from the cathode surface in the vertical direction to the first discharge channel, and the first rising channel of the anode can be electrolyzed in the second electrolysis chamber. The electrolytically generated gas generated in step 1 is moved upward in the vertical direction from the anode surface of the anode. The second discharge flow path of the first intermediate electrode can be sent to the second discharge flow path, and the electrolytically generated molten metal generated by electrolysis in the second electrolysis chamber, The first intermediate electrode is movable downward from the cathode surface in the vertical direction and can be sent to the third discharge channel, and the second rising channel of the first intermediate electrode is A configuration in which the electrolyzed gas generated by electrolysis in the first electrolysis chamber can be moved upward in the vertical direction from the anode surface of the first intermediate electrode and can be sent to the fourth discharge channel. This is an electrolysis apparatus.

また本発明は、かかる第1の局面に加えて、前記陰極の前記第1の排出流路は、前記陰極の内方を前記鉛直方向に交差する方向に延在し、前記第1の電解室における液体電解質の電解で生成された電解生成溶融金属を、前記第1の電解室よりも前記鉛直方向における下方で前記陰極の外部に排出し、前記陽極の前記第2の排出流路は、前記陽極の内方を前記鉛直方向に交差する方向に延在し、前記第2の電解室における液体電解質の電解で生成された電解生成ガスを、前記第2の電解室陽よりも前記鉛直方向における上方で前記陽極の外部に排出し、前記第1の中間電極の前記第3の排出流路は、前記第1の中間電極の内方を前記鉛直方向に交差する方向に延在し、前記第2の電解室における前記液体電解質の電解で生成された電解生成溶融金属を、前記第1の中間電極の前記陰極面よりも前記鉛直方向における下方で前記第1の中間電極の外部に排出し、前記第1の中間電極の前記第4の排出流路は、前記第1の中間電極の内方を前記鉛直方向に交差する方向に延在し、前記第1の電解室における前記液体電解質の電解で生成された電解生成ガスを、前記第1の中間電極の前記陽極面よりも前記鉛直方向における上方で前記第1の中間電極の外部に排出することを第2の局面とする。   According to the present invention, in addition to the first aspect, the first discharge channel of the cathode extends in the direction intersecting the vertical direction inside the cathode, and the first electrolysis chamber. The electrolytically generated molten metal generated by electrolysis of the liquid electrolyte in the above is discharged to the outside of the cathode below the first electrolysis chamber in the vertical direction, and the second discharge channel of the anode is The inside of the anode extends in a direction intersecting the vertical direction, and the electrolysis gas generated by electrolysis of the liquid electrolyte in the second electrolysis chamber is more in the vertical direction than the second electrolysis chamber positive. The third discharge flow path of the first intermediate electrode extends upward in the direction intersecting the vertical direction, and the third discharge flow path of the first intermediate electrode extends in the direction intersecting the vertical direction. Electrolytically generated melt generated by electrolysis of the liquid electrolyte in the electrolysis chamber of 2 The genus is discharged to the outside of the first intermediate electrode below the cathode surface of the first intermediate electrode in the vertical direction, and the fourth discharge flow path of the first intermediate electrode is An inner side of the first intermediate electrode extends in a direction intersecting the vertical direction, and an electrolysis gas generated by electrolysis of the liquid electrolyte in the first electrolysis chamber is converted into the electrolysis gas of the first intermediate electrode. Discharging outside the first intermediate electrode above the anode surface in the vertical direction is a second aspect.

また本発明は、かかる第1又は第2の局面に加えて、前記陰極の前記第1の排出流路から排出される前記電解生成溶融金属の排出方向及び前記第1の中間電極の前記第3の排出流路から排出される前記電解生成溶融金属の排出方向と、前記陽極の前記第2の排出流路から排出される前記電解生成ガスの排出方向及び前記第1の中間電極の前記第4の排出流路から排出される前記電解生成ガスの排出方向とは、前記鉛直方向に直交する面において互いに重ならないように偏位することを第3の局面とする。   In addition to the first or second aspect, the present invention provides a discharge direction of the electrolytically generated molten metal discharged from the first discharge flow path of the cathode and the third of the first intermediate electrode. The discharge direction of the electrolytically generated molten metal discharged from the discharge flow path, the discharge direction of the electrolytic generated gas discharged from the second discharge flow path of the anode, and the fourth of the first intermediate electrode The third aspect is to deviate from the discharge direction of the electrolysis product gas discharged from the discharge flow path so as not to overlap each other in a plane orthogonal to the vertical direction.

また本発明は、かかる第1から第3の局面に加えて、前記第1の中間電極及び前記陽極は、前記陰極に固定された電極枠を介して順次前記鉛直方向における上方に向かって積層されて、前記陰極、前記陽極及び前記第1の中間電極は、ユニット化された電極ユニットを成すことを第4の局面とする。   Further, according to the present invention, in addition to the first to third aspects, the first intermediate electrode and the anode are sequentially laminated upward in the vertical direction through an electrode frame fixed to the cathode. The fourth aspect is that the cathode, the anode, and the first intermediate electrode form a unitized electrode unit.

また本発明は、かかる第4の局面に加えて、前記電極枠は、前記陰極に固定されて前記第1の中間電極を載置し、前記第1の電解室に前記液体電解質を供給する供給流路を有する第1の枠部材と、前記第1の中間電極に固定されて前記陽極を載置し、前記第2の電解室に前記液体電解質を供給する供給流路を有する第2の枠部材と、を含むことを第5の局面とする。   According to the present invention, in addition to the fourth aspect, the electrode frame is fixed to the cathode, mounts the first intermediate electrode, and supplies the liquid electrolyte to the first electrolysis chamber. A first frame member having a flow path; and a second frame having a supply flow path that is fixed to the first intermediate electrode and on which the anode is placed and supplies the liquid electrolyte to the second electrolysis chamber. It is a 5th situation to include a member.

また本発明は、かかる第4の局面に加えて、前記第1の中間電極の前記第1の排出流路から排出される前記電解生成溶融金属の排出方向と、前記第1の電解室に前記液体電解質を供給する第1の枠部材の供給流路の供給方向と、が、前記鉛直方向に直交する面において重ならないように偏位し、かつ、前記第2の中間電極の前記第2の排出流路から排出される前記電解生成ガスの排出方向と、前記第2の電解室に前記液体電解質を供給する前記第2の枠部材の供給流路の供給方向と、が、前記鉛直方向に直交する面において重ならないように偏位することを第6の局面とする。   In addition to the fourth aspect, the present invention provides a discharge direction of the electrolytically generated molten metal discharged from the first discharge channel of the first intermediate electrode, and the first electrolytic chamber with the discharge direction. The supply direction of the supply flow path of the first frame member that supplies the liquid electrolyte is deviated so as not to overlap in a plane orthogonal to the vertical direction, and the second intermediate electrode has the second direction. The discharge direction of the electrolysis product gas discharged from the discharge channel and the supply direction of the supply channel of the second frame member that supplies the liquid electrolyte to the second electrolysis chamber are in the vertical direction. The sixth aspect is to deviate so as not to overlap each other in an orthogonal plane.

また本発明は、かかる第5の局面に加えて、前記第1の枠部材の前記供給流路における前記液体電解質の供給方向及び前記第2の枠部材の前記供給流路における前記液体電解質の供給方向は、前記陰極の前記第1の排出流路から排出される前記電解生成溶融金属の排出方向、前記第1の中間電極の前記第3の排出流路から排出される前記電解生成溶融金属の排出方向、前記陽極の前記第2の排出流路から排出される前記電解生成ガスの排出方向及び前記第1の中間電極の前記第4の排出流路から排出される前記電解生成ガスの排出方向に対して、前記鉛直方向に直交する面において互いに重ならないように偏位することを第6の局面とする。   In addition to the fifth aspect, the present invention provides the supply direction of the liquid electrolyte in the supply flow path of the first frame member and the supply of the liquid electrolyte in the supply flow path of the second frame member. The direction is the discharge direction of the electrolytically generated molten metal discharged from the first discharge channel of the cathode, and the direction of the electrolytically generated molten metal discharged from the third discharge channel of the first intermediate electrode. The discharge direction, the discharge direction of the electrolysis gas discharged from the second discharge flow path of the anode, and the discharge direction of the electrolysis gas discharged from the fourth discharge flow path of the first intermediate electrode On the other hand, the sixth aspect is to deviate so as not to overlap each other in a plane orthogonal to the vertical direction.

また本発明は、かかる第1から第7の局面に加えて、更に、前記第1の中間電極に対応して、前記鉛直方向における前記第3の排出流路と前記第4の排出流路の間に遮蔽板を有することを第8の局面とする。   Further, in addition to the first to seventh aspects, the present invention further includes the third discharge channel and the fourth discharge channel in the vertical direction corresponding to the first intermediate electrode. An eighth aspect is to have a shielding plate in between.

また本発明は、かかる第8の局面に加えて、前記遮蔽板は、前記第1の中間電極の前記第4の排出流路から排出される前記電解生成ガスを上昇させる上昇開口と、前記第1の中間電極の前記第3の排出流路から排出される前記電解生成溶融金属を流下させる流下開口と、を有することを第9の局面とする。   According to the present invention, in addition to the eighth aspect, the shielding plate includes a rising opening that raises the electrolysis gas discharged from the fourth discharge flow path of the first intermediate electrode, A ninth aspect of the present invention includes a flow-down opening for flowing down the electrolytically generated molten metal discharged from the third discharge flow path of one intermediate electrode.

また本発明は、かかる第8の局面に加えて、前記電解槽は、前記第1の中間電極の前記第4の排出流路から排出される前記電解生成ガスを外部に排出する排出開口と、前記第1の中間電極の前記第3の排出流路から排出される前記電解生成溶融金属を排出する排出開口と、を有することを第10の局面とする。   In addition to the eighth aspect of the present invention, the electrolytic cell has a discharge opening for discharging the electrolysis product gas discharged from the fourth discharge flow path of the first intermediate electrode to the outside. A tenth aspect includes a discharge opening for discharging the electrolytically generated molten metal discharged from the third discharge flow path of the first intermediate electrode.

また本発明は、かかる第1から第10のいずれかの局面に加えて、前記陰極の前記第1の排出流路の下面及び前記第1の中間電極の前記第3の排出流路の下面は、各々前記電解生成溶融金属の前記排出方向において下り勾配を有し、前記陽極の前記第2の排出流路の上面及び前記第1の中間電極の前記第4の排出流路の上面は、各々前記電解生成ガスの前記排出方向において上り勾配を有することを第11の局面とする。   According to the present invention, in addition to any of the first to tenth aspects, the lower surface of the first discharge channel of the cathode and the lower surface of the third discharge channel of the first intermediate electrode are , Each having a downward slope in the discharge direction of the electrolytically generated molten metal, and the upper surface of the second discharge channel of the anode and the upper surface of the fourth discharge channel of the first intermediate electrode are respectively An eleventh aspect has an upward gradient in the discharge direction of the electrolysis product gas.

また本発明は、かかる第5の局面に加えて、更に、前記電解槽において前記第1の中間電極と前記陽極との間に設けられた第2の中間電極を有し、前記第2の中間電極は、前記
電極枠における第3の枠部材を介して前記第1の中間電極の前記鉛直方向における上方に積層されて、前記陰極、前記陽極、前記第1の中間電極及び前記第2の中間電極は、ユニット化された電極ユニットを成すことを第12の局面とする。
In addition to the fifth aspect, the present invention further includes a second intermediate electrode provided between the first intermediate electrode and the anode in the electrolytic cell, and the second intermediate electrode. An electrode is stacked above the first intermediate electrode in the vertical direction via a third frame member in the electrode frame, and the cathode, the anode, the first intermediate electrode, and the second intermediate The electrode has a twelfth aspect of forming a unitized electrode unit.

また本発明は、かかる第1から12のいずれかの局面に加えて、前記第1の流下流路及び前記第2の流下流路は、各々対応して前記電解生成溶融金属を流下自在とする孔であり、前記第1の上昇流路及び第2の上昇流路は、各々対応して前記電解生成ガスを上昇自在とする孔であることを第13の局面とする。   Further, in addition to any one of the first to twelfth aspects of the present invention, the first flow channel and the second flow channel can flow the electrolytically generated molten metal freely corresponding to each other. In the thirteenth aspect, the first rising flow path and the second rising flow path are holes that allow the electrolytically generated gas to rise correspondingly.

また本発明は、かかる第1から12のいずれかの局面に加えて、 前記第1の流下流路及び前記第2の流下流路は、各々対応して前記電解生成溶融金属を流下自在とすべく複数の柱状部の間に画成される間隙部であり、前記第1の上昇流路及び第2の上昇流路は、各々対応して前記電解生成ガスを上昇自在とすべく複数の柱状部の間に画成される間隙部であることを第14の局面とする。   Further, according to the present invention, in addition to any one of the first to twelfth aspects, each of the first flow channel and the second flow channel can flow the electrolytically generated molten metal freely. The first ascending flow path and the second ascending flow path correspond to a plurality of columnar shapes so that the electrolyzed gas can be raised correspondingly. A fourteenth aspect is a gap defined between the portions.

また本発明は、かかる第1から14のいずれかの局面に加えて、前記液体電解質は、前記電解槽に収容された無水溶融塩化亜鉛又は塩化亜鉛を含む無水塩化物であることを第15の局面とする。   In addition to any one of the first to fourteenth aspects of the present invention, in the fifteenth aspect, the liquid electrolyte is anhydrous molten zinc chloride contained in the electrolytic cell or anhydrous chloride containing zinc chloride. Let it be a situation.

本発明の第1の局面における構成によれば、電解槽において鉛直方向下方から鉛直上方に向けて、陰極、第1の中間電極及び陽極を順次積層し、陰極の第1の流下流路が、第1の電解室における電解で生成された電解生成溶融金属を、陰極の陰極面から鉛直方向における下方に移動自在として、陰極の内部に形成された第1の排出流路に送出自在であり、陽極の第1の上昇流路が、第2の電解室における電解で生成された電解生成ガスを、陽極の陽極面から鉛直方向における上方に移動自在として、陽極の内部に形成された第2の排出流路に送出自在であり、第1の中間電極の第2の流下流路が、第2の電解室における電解で生成された電解生成溶融金属を、第1の中間電極の陰極面から鉛直方向の下方に移動自在として、第1の中間電極の内部に形成された第3の排出流路に送出自在であり、第1の中間電極の第2の上昇流路が、第1の電解室における電解で生成された電解生成ガスを、第1の中間電極の陽極面から鉛直方向における上方に移動自在として、第1の中間電極の内部に形成された第4の排出流路に送出自在であるため、狭い電極間距離で設計する場合に生じる陰極面及び陽極面における電極反応生成物の接触による逆反応を、電極間電圧を上昇させることなく低減し得ると共に、漏洩電流による電流効率の低下を抑制し得て、比抵抗の大きい溶融塩を、実用的な電流密度と消費電力で電解するための複極式の電解装置を提供することができる。併せて、高温かつ高腐食性の電解浴や電解反応生成物を扱い得て、厳しい運転条件に耐え得る単純かつ保守の容易な構造を有し、及び工業化を前提とした大型の設備にスケールアップ可能で増産、増設が容易な構造を実現することができる。よって、例えば、500℃以上の高温で、亜鉛還元法によるシリコン製造における副生塩化亜鉛を溶融塩電解する用途として好適な無隔膜複極式の電解装置を提供できる。   According to the configuration of the first aspect of the present invention, the cathode, the first intermediate electrode, and the anode are sequentially laminated in the electrolytic cell from vertically downward to vertically upward, and the first downstream flow path of the cathode is Electrolytically generated molten metal produced by electrolysis in the first electrolysis chamber can be moved downward in the vertical direction from the cathode surface of the cathode, and can be sent out to a first discharge channel formed inside the cathode, The first ascending flow path of the anode allows the electrolytically generated gas generated by electrolysis in the second electrolysis chamber to move upward in the vertical direction from the anode surface of the anode, and is formed in the anode. The second flow channel of the first intermediate electrode can be discharged to the discharge flow channel, and the electrolytically generated molten metal generated by electrolysis in the second electrolysis chamber can be vertically drawn from the cathode surface of the first intermediate electrode. The first intermediate electrode is movable downward in the direction. The second rising flow path of the first intermediate electrode is capable of delivering the electrolysis gas generated by electrolysis in the first electrolysis chamber to the first discharge flow path formed in the first portion. Cathode generated when designing with a narrow inter-electrode distance because it can be moved upward in the vertical direction from the anode surface of the intermediate electrode and can be sent to the fourth discharge channel formed inside the first intermediate electrode. The reverse reaction due to the contact of the electrode reaction product on the surface and the anode surface can be reduced without increasing the voltage between the electrodes, and the decrease in the current efficiency due to the leakage current can be suppressed. A bipolar electrolysis apparatus for electrolysis with a practical current density and power consumption can be provided. At the same time, it can handle high-temperature and highly corrosive electrolytic baths and electrolytic reaction products, has a simple and easy-to-maintain structure that can withstand harsh operating conditions, and scales up to large-scale equipment on the premise of industrialization. It is possible to realize a structure that is easy to increase production and expansion. Therefore, for example, it is possible to provide a non-diaphragm bipolar electrolysis apparatus suitable for use as a molten salt electrolysis of by-product zinc chloride in silicon production by a zinc reduction method at a high temperature of 500 ° C. or higher.

また、本発明の第2の局面における構成によれば、陰極の第1の排出流路が、陰極の内方を鉛直方向に交差する方向に延在し、第1の電解室における液体電解質の電解で生成された電解生成溶融金属を、第1の電解室よりも鉛直方向における下方で陰極の外部に排出し、前陽極の第2の排出流路が、陽極の内方を鉛直方向に交差する方向に延在し、第2の電解室における液体電解質の電解で生成された電解生成ガスを、第2の電解室陽よりも鉛直方向における上方で陽極の外部に排出し、第1の中間電極の第3の排出流路が、第1の中間電極の内方を鉛直方向に交差する方向に延在し、第2の電解室における液体電解質の電解で生成された電解生成溶融金属を、第1の中間電極の陰極面よりも鉛直方向における下方で第1の中間電極の外部に排出し、第1の中間電極の第4の排出流路が、第1の中間
電極の内方を鉛直方向に交差する方向に延在し、第1の電解室における液体電解質の電解で生成された電解生成ガスを、第1の中間電極の陽極面よりも鉛直方向における上方で第1の中間電極の外部に排出するものであるため、装置のスケールアップが容易に実現できると共に、電極反応生成物の接触による逆反応を確実に低減できる。
Further, according to the configuration of the second aspect of the present invention, the first discharge flow path of the cathode extends in the direction intersecting the inner side of the cathode in the vertical direction, and the liquid electrolyte in the first electrolysis chamber Electrolytically generated molten metal generated by electrolysis is discharged to the outside of the cathode below the first electrolysis chamber in the vertical direction, and the second discharge flow path of the front anode intersects the inside of the anode in the vertical direction. The electrolysis gas generated by electrolysis of the liquid electrolyte in the second electrolysis chamber is discharged to the outside of the anode above the second electrolysis chamber in the vertical direction, and the first intermediate The third discharge flow path of the electrode extends in the direction perpendicular to the inside of the first intermediate electrode, and the electrolytically generated molten metal generated by electrolysis of the liquid electrolyte in the second electrolytic chamber is Outside the first intermediate electrode below the cathode surface of the first intermediate electrode in the vertical direction The fourth discharge flow path of the first intermediate electrode extends in the direction perpendicular to the inside of the first intermediate electrode and is generated by electrolysis of the liquid electrolyte in the first electrolytic chamber. Since the electrolysis product gas is discharged to the outside of the first intermediate electrode above the anode surface of the first intermediate electrode in the vertical direction, the apparatus can be easily scaled up and the electrode reaction product It is possible to reliably reduce the reverse reaction due to the contact of.

また、本発明の第3の局面における構成によれば、陰極の第1の排出流路から排出される電解生成溶融金属の排出方向及び第1の中間電極の第4の排出流路から排出される電解生成溶融金属の排出方向と、陽極の第2の排出流路から排出される電解生成ガスの排出方向及び第1の中間電極の第3の排出流路から排出される電解生成ガスの排出方向と、を鉛直方向に直交する面において互いに重ならないように偏位させることにより、各電極の部材の共通性を高めながら、電極反応生成物の接触による逆反応をより確実に低減可能である。   According to the configuration of the third aspect of the present invention, the discharge direction of the electrolytically generated molten metal discharged from the first discharge channel of the cathode and the fourth discharge channel of the first intermediate electrode are discharged. The discharge direction of the electrolytically generated molten metal, the discharge direction of the electrolytically generated gas discharged from the second discharge channel of the anode, and the discharge of the electrolytically generated gas discharged from the third discharge channel of the first intermediate electrode By shifting the direction so that they do not overlap with each other in a plane perpendicular to the vertical direction, it is possible to more reliably reduce the reverse reaction due to the contact of the electrode reaction product while increasing the commonality of the members of each electrode. .

また、本発明の第4の局面における構成によれば、第1の中間電極及び陽極が、陰極に固定された電極枠を介して順次鉛直方向における上方に向かって積層されて、陰極、陽極及び第1の中間電極は、ユニット化された電極ユニットを成すことにより、各電極を確実に位置決めして固定しながら各電解室に液体電解質を確実に供給できると共に、装置のスケールアップがより容易に実現可能である。   According to the configuration of the fourth aspect of the present invention, the first intermediate electrode and the anode are sequentially stacked upward in the vertical direction through the electrode frame fixed to the cathode, and the cathode, the anode, and The first intermediate electrode forms a unitized electrode unit, so that the liquid electrolyte can be reliably supplied to each electrolysis chamber while each electrode is reliably positioned and fixed, and the scale-up of the apparatus is easier. It is feasible.

また、本発明の第5の局面における構成によれば、電極枠が、陰極に固定されて第1の中間電極を載置し、第1の電解室に液体電解質を供給する供給流路を有する第1の枠部材と、第1の中間電極に固定されて陽極を載置し、第2の電解室に液体電解質を供給する供給流路を有する第2の枠部材と、を含むことにより、各枠部材の共通性を高めながら各電極を確実に位置決めして固定できると共に、装置のスケールアップがより容易に実現可能である。   Further, according to the configuration of the fifth aspect of the present invention, the electrode frame has a supply flow path that is fixed to the cathode, places the first intermediate electrode, and supplies the liquid electrolyte to the first electrolysis chamber. Including a first frame member and a second frame member fixed to the first intermediate electrode and having an anode mounted thereon and having a supply channel for supplying a liquid electrolyte to the second electrolysis chamber, Each electrode can be reliably positioned and fixed while increasing the commonality of each frame member, and the scale-up of the apparatus can be realized more easily.

また、本発明の第6の局面における構成によれば、第1の中間電極の第1の排出流路から排出される電解生成溶融金属の排出方向と、第1の電解室に液体電解質を供給する第1の枠部材の供給流路の供給方向と、が、鉛直方向に直交する面において重ならないように偏位し、かつ、第2の中間電極の第2の排出流路から排出される電解生成ガスの排出方向と、第2の電解室に液体電解質を供給する第2の枠部材の供給流路の供給方向と、が、鉛直方向に直交する面において重ならないように偏位することにより、電極や電極枠の構成部材の共通性を高めながら、電極反応生成物が液体電解質に同伴して電解室に不要に侵入し、逆反応を生じることを確実に低減可能である。   According to the configuration of the sixth aspect of the present invention, the discharge direction of the electrolytically generated molten metal discharged from the first discharge flow path of the first intermediate electrode, and the liquid electrolyte is supplied to the first electrolysis chamber The supply direction of the supply flow path of the first frame member to be deviated so as not to overlap in a plane orthogonal to the vertical direction, and is discharged from the second discharge flow path of the second intermediate electrode The discharge direction of the electrolysis product gas and the supply direction of the supply flow path of the second frame member that supplies the liquid electrolyte to the second electrolysis chamber are deviated so as not to overlap each other in a plane orthogonal to the vertical direction. Thus, it is possible to reliably reduce the occurrence of a reverse reaction due to the electrode reaction product unnecessarily entering the electrolytic chamber accompanying the liquid electrolyte while increasing the commonality of the constituent members of the electrode and the electrode frame.

また、本発明の第7の局面における構成によれば、第1の枠部材の供給流路における液体電解質の供給方向及び第2の枠部材の供給流路における液体電解質の供給方向を、陰極の第1の排出流路から排出される電解生成溶融金属の排出方向、第1の中間電極の第3の排出流路から排出される電解生成溶融金属の排出方向、前陽極の第2の排出流路から排出される電解生成ガスの排出方向及び第1の中間電極の第4の排出流路から排出される電解生成ガスの排出方向に対して、鉛直方向に直交する面において互いに重ならないように偏位させることにより、電極や電極枠の構成部材の共通性を高めながら、電極反応生成物が液体電解質に同伴して電解室に不要に侵入し、逆反応を生じることをより確実に低減可能である。   According to the configuration of the seventh aspect of the present invention, the supply direction of the liquid electrolyte in the supply flow path of the first frame member and the supply direction of the liquid electrolyte in the supply flow path of the second frame member are The discharge direction of the electrolytically generated molten metal discharged from the first discharge channel, the discharge direction of the electrolytically generated molten metal discharged from the third discharge channel of the first intermediate electrode, and the second discharge flow of the front anode The discharge direction of the electrolysis gas discharged from the passage and the discharge direction of the electrolysis gas discharged from the fourth discharge flow path of the first intermediate electrode should not overlap each other in a plane perpendicular to the vertical direction. By deviating, it is possible to more reliably reduce the occurrence of a reverse reaction due to the electrode reaction product unnecessarily entering the electrolytic chamber accompanying the liquid electrolyte while increasing the commonality of the components of the electrode and electrode frame. It is.

また、本発明の第8の局面における構成によれば、更に、第1の中間電極に対応して、鉛直方向における第3の排出流路と第4の排出流路の間に遮蔽板を有することにより、各電解室の外部の液体電解質を介して流れる漏洩電流をより確実に低減でき、電流効率の低下をより確実に抑制することができる。   Further, according to the configuration of the eighth aspect of the present invention, a shielding plate is further provided between the third discharge channel and the fourth discharge channel in the vertical direction corresponding to the first intermediate electrode. As a result, the leakage current flowing through the liquid electrolyte outside each electrolysis chamber can be more reliably reduced, and the decrease in current efficiency can be more reliably suppressed.

また、本発明の第9の局面における構成によれば、遮蔽板が、第1の中間電極の第4の排出流路から排出される電解生成ガスを上昇させる上昇開口と、第1の中間電極の第3の排出流路から排出される電解生成溶融金属を流下させる流下開口と、を有することにより、電解槽における電極反応生成物の接触による逆反応をより確実に低減可能である。   Further, according to the configuration of the ninth aspect of the present invention, the shielding plate raises the electrolysis gas discharged from the fourth discharge flow path of the first intermediate electrode, and the first intermediate electrode By having the flow-down opening for flowing down the electrolytically generated molten metal discharged from the third discharge flow path, the reverse reaction due to the contact of the electrode reaction product in the electrolytic cell can be more reliably reduced.

また、本発明の第10の局面における構成によれば、電解槽が、第1の中間電極の第4の排出流路から排出される電解生成ガスを外部に排出する排出開口と、第1の中間電極の第3の排出流路から排出される電解生成溶融金属を排出する排出開口と、を有することにより、電解槽における電極反応生成物の接触による逆反応をより確実に低減可能である。   Further, according to the configuration of the tenth aspect of the present invention, the electrolytic cell discharges the electrolytically generated gas discharged from the fourth discharge flow path of the first intermediate electrode to the outside, and the first By having the discharge opening for discharging the electrolytically generated molten metal discharged from the third discharge flow path of the intermediate electrode, it is possible to more reliably reduce the reverse reaction due to the contact of the electrode reaction product in the electrolytic cell.

また、本発明の第11の局面における構成によれば、陰極の第1の排出流路の下面及び第1の中間電極の第3の排出流路の下面が、各々電解生成溶融金属の排出方向において下り勾配を有し、陽極の第2の排出流路の上面及び第1の中間電極の第4の排出流路の上面が、各々電解生成ガスの排出方向において上り勾配を有することにより、電解生成反応物をより確実に電解室から各電極内をスムースに通過させて排出することができ、電極反応生成物の接触による逆反応をより確実に低減可能である。   According to the configuration of the eleventh aspect of the present invention, the lower surface of the first discharge channel of the cathode and the lower surface of the third discharge channel of the first intermediate electrode are each in the discharge direction of the electrolytically generated molten metal. In which the upper surface of the second discharge channel of the anode and the upper surface of the fourth discharge channel of the first intermediate electrode each have an upward gradient in the discharge direction of the electrolysis gas. The product reaction product can be more securely passed through the electrodes from the electrolysis chamber and discharged, and the reverse reaction due to contact with the electrode reaction product can be more reliably reduced.

また、本発明の第12の局面における構成によれば、更に、電解槽において第1の中間電極と陽極との間に設けられた第2の中間電極を有し、第2の中間電極は、電極枠における第3の枠部材を介して第1の中間電極の鉛直方向における上方に積層されて、陰極、陽極、第1の中間電極及び第2の中間電極は、ユニット化された電極ユニットを成すことにより、装置のスケールアップがより容易に実現可能である。   Moreover, according to the configuration of the twelfth aspect of the present invention, the electrolysis cell further includes a second intermediate electrode provided between the first intermediate electrode and the anode, A cathode, an anode, a first intermediate electrode, and a second intermediate electrode are stacked in the vertical direction of the first intermediate electrode via a third frame member in the electrode frame. By doing so, the scale-up of the apparatus can be realized more easily.

また、本発明の第13の局面における構成によれば、第1の流下流路及び第2の流下流路、並びに第1の上昇流路及び第2の上昇流路をいずれも孔として形成する穴開き構造を採用することにより、電解反応生成物を電解室から外部に向けて確実に誘導することができる。   Further, according to the configuration of the thirteenth aspect of the present invention, the first downflow channel and the second downflow channel, and the first upflow channel and the second upflow channel are all formed as holes. By adopting the perforated structure, the electrolytic reaction product can be reliably guided outward from the electrolysis chamber.

また、本発明の第14の局面における構成によれば、第1の流下流路及び第2の流下流路、並びに第1の上昇流路及び第2の上昇流路をいずれも柱状部の間隙部として形成する柱状構造を採用することにより、より簡便な構成で電解反応生成物を電解室から外部に向けて確実に誘導することができる。   Further, according to the configuration of the fourteenth aspect of the present invention, the first falling flow channel and the second falling flow channel, and the first rising flow channel and the second rising flow channel are all separated by a gap between the columnar portions. By adopting the columnar structure formed as the part, the electrolytic reaction product can be reliably guided from the electrolysis chamber to the outside with a simpler configuration.

また、本発明の第15の局面における構成によれば、液体電解質が、電解槽に収容された無水溶融塩化亜鉛又は塩化亜鉛を含む無水塩化物であることにより、亜鉛還元法によるシリコン製造における副生塩化亜鉛を溶融塩電解する用途としてより好適に適用可能である。   According to the configuration of the fifteenth aspect of the present invention, the liquid electrolyte is anhydrous molten zinc chloride or anhydrous chloride containing zinc chloride contained in an electrolytic cell, so It can be more suitably applied as a use for performing molten salt electrolysis of raw zinc chloride.

本発明の第1の実施形態における電解装置の縦断面図であり、図2のZ−Z断面に相当する。It is a longitudinal cross-sectional view of the electrolysis apparatus in the 1st Embodiment of this invention, and is equivalent to the ZZ cross section of FIG. 本実施形態における電解装置の上面図である。It is a top view of the electrolyzer in this embodiment. 本実施形態における電解装置の電極ユニット及び電極枠を示す側面図であり、図2のY矢視図である。It is a side view which shows the electrode unit and electrode frame of the electrolyzer in this embodiment, and is a Y arrow line view of FIG. 本実施形態における電解装置の電極ユニットの陰極についての横断面図であり、図1のA−A断面に相当する。It is a cross-sectional view about the cathode of the electrode unit of the electrolysis apparatus in this embodiment, and is equivalent to the AA section of FIG. 本実施形態における電解装置の電極ユニットの陽極についての横断面図であり、図1のB−B断面に相当する。It is a cross-sectional view about the anode of the electrode unit of the electrolyzer in this embodiment, and is equivalent to the BB cross section of FIG. 本実施形態における電解装置の電極ユニットの第1中間電極又は第2中間電極についての横断面図であり、図1のC−C断面又はD−D断面に相当する。It is a cross-sectional view about the 1st intermediate electrode or the 2nd intermediate electrode of the electrode unit of the electrolysis device in this embodiment, and is equivalent to the CC section or DD section of FIG. 本実施形態における電解装置の電極ユニットの第1中間電極又は第2中間電極についての横断面図であり、図1のE−E断面又はF−F断面に相当する。It is a cross-sectional view about the 1st intermediate electrode or the 2nd intermediate electrode of the electrode unit of the electrolytic device in this embodiment, and is equivalent to the EE cross section or FF cross section of FIG. 本実施形態における電解装置の電極枠の第1枠部材、第2枠部材又は第3枠部材についての横断面図であり、図1のG−G断面、H−H断面又はI−I断面に相当する。It is a cross-sectional view about the 1st frame member of the electrode frame of the electrolysis apparatus in this embodiment, the 2nd frame member, or the 3rd frame member, and is in the GG section, HH section, or II section of Drawing 1 Equivalent to. 本発明の第2の実施形態における電解装置の縦断面図であり、位置的には図1に相当する。It is a longitudinal cross-sectional view of the electrolyzer in the 2nd Embodiment of this invention, and corresponds to FIG. 1 in position. 本実施形態における電解装置の上面図である。It is a top view of the electrolyzer in this embodiment. 本実施形態の変形例における電解装置の部分拡大縦断面図であり、電解で生成された溶融金属の排出流路側を示す。It is the elements on larger scale longitudinal section of the electrolysis device in the modification of this embodiment, and shows the discharge channel side of the molten metal generated by electrolysis. 本実施形態の変形例における電解装置の部分拡大縦断面図であり、電解で生成されたガスの排出流路側を示す。It is the elements on larger scale longitudinal section of the electrolysis device in the modification of this embodiment, and shows the discharge channel side of the gas generated by electrolysis. 本発明の第3の実施形態における電解装置の縦断面図であり、図2のZ−Z断面に相当する。It is a longitudinal cross-sectional view of the electrolyzer in the 3rd Embodiment of this invention, and is equivalent to the ZZ cross section of FIG. 本実施形態における電解装置の上面図である。It is a top view of the electrolyzer in this embodiment. 本発明の第4の実施形態における電解装置の縦断面図であり、位置的には図1に相当する。It is a longitudinal cross-sectional view of the electrolyzer in the 4th Embodiment of this invention, and corresponds to FIG. 1 in position. 本実施形態における電解装置の電極ユニット及び電極枠を示す側面図であり、位置的には図3に相当する。It is a side view which shows the electrode unit and electrode frame of the electrolyzer in this embodiment, and corresponds to FIG. 3 in position. 本実施形態における電解装置の電極ユニットの陰極についての横断面図であり、図15のJ−J断面に相当する。It is a cross-sectional view about the cathode of the electrode unit of the electrolyzer in this embodiment, and is equivalent to the JJ cross section of FIG. 本実施形態における電解装置の電極ユニットの陽極についての横断面図であり、図15のK−K断面に相当する。It is a cross-sectional view about the anode of the electrode unit of the electrolyzer in this embodiment, and is equivalent to the KK cross section of FIG. 本実施形態における電解装置の電極ユニットの第1中間電極又は第2中間電極についての横断面図であり、図15のL−L断面又はM−M断面に相当する。It is a cross-sectional view about the 1st intermediate electrode or the 2nd intermediate electrode of the electrode unit of the electrolytic device in this embodiment, and is equivalent to the LL cross section or MM cross section of FIG. 本実施形態における電解装置の電極ユニットの第1中間電極又は第2中間電極についての横断面図であり、図15のN−N断面又はO−O断面に相当する。It is a cross-sectional view about the 1st intermediate electrode or the 2nd intermediate electrode of the electrode unit of the electrolytic device in this embodiment, and is equivalent to the NN cross section or OO cross section of FIG.

以下、図面を適宜参照して、本発明の各実施形態における電解装置につき詳細に説明する。なお、図中、x、y、z軸は、3軸直交座標系をなし、z軸に平行な方向が、鉛直方向であり、適宜、z軸の正方向を上方、z軸の負方向を下方というものとする。   Hereinafter, the electrolysis apparatus according to each embodiment of the present invention will be described in detail with reference to the drawings as appropriate. In the figure, the x, y, and z axes form a three-axis orthogonal coordinate system, and the direction parallel to the z axis is the vertical direction. The z axis positive direction is upward, and the z axis negative direction is appropriate. Let's say down.

(第1の実施形態)
まず、本発明の第1の実施形態における電解装置につき、図1から図8を参照して、詳細に説明する。
(First embodiment)
First, the electrolysis apparatus according to the first embodiment of the present invention will be described in detail with reference to FIGS.

図1は、本実施形態における電解装置の縦断面図であって、図2のZ−Z断面に相当し、図2は、本実施形態における電解装置の上面図である。図3は、本実施形態における電解装置の電極ユニット及び電極枠を示す側面図であり、図2のY矢視図である。図4は、本実施形態における電解装置の電極ユニットの陰極についての横断面図であって、図1のA−A断面に相当し、図5は、本実施形態における電解装置の電極ユニットの陽極についての横断面図であって、図1のB−B断面に相当する。図6は、本実施形態における電解装置の電極ユニットの第1中間電極又は第2中間電極についての横断面図であって、図1のC−C断面又はD−D断面に相当し、図7は、本実施形態における電解装置の電極ユニットの第1中間電極又は第2中間電極についての横断面図であって、図1のE−E断面又はF−F断面に相当する。また、図8は、本実施形態における電解装置の電極枠の第1枠部材、第2枠部材又は第3枠部材についての横断面図であり、図1のG−G断面、H−H断面又はI−I断面に相当する。   FIG. 1 is a longitudinal sectional view of the electrolysis apparatus in the present embodiment, which corresponds to the ZZ cross section in FIG. 2, and FIG. 2 is a top view of the electrolysis apparatus in the present embodiment. FIG. 3 is a side view showing an electrode unit and an electrode frame of the electrolysis apparatus in the present embodiment, and is a view taken in the direction of arrow Y in FIG. 4 is a cross-sectional view of the cathode of the electrode unit of the electrolyzer according to this embodiment, corresponding to the AA cross section of FIG. 1, and FIG. 5 is the anode of the electrode unit of the electrolyzer according to this embodiment. It is a cross-sectional view about, and corresponds to the BB cross section of FIG. 6 is a cross-sectional view of the first intermediate electrode or the second intermediate electrode of the electrode unit of the electrolysis apparatus according to the present embodiment, which corresponds to the CC cross section or the DD cross section of FIG. These are the cross-sectional views about the 1st intermediate electrode or the 2nd intermediate electrode of the electrode unit of the electrolytic device in this embodiment, Comprising: It corresponds to the EE cross section or FF cross section of FIG. FIG. 8 is a cross-sectional view of the first frame member, the second frame member, or the third frame member of the electrode frame of the electrolysis apparatus according to this embodiment, and is a GG cross section or a HH cross section in FIG. Or it corresponds to the II cross section.

図1及び図2に示すように、本実施形態の電解装置1は、側壁部に供給口10U、取り出し口10L、挿通孔10a及び10bを有し、鉛直方向に直立して底部が閉じられ、液体電解質である溶融塩化亜鉛及び電極ユニット20を収容する角筒状でアルミナ製の電解槽10を備える。なお、電解槽10の材質としては、アルミナの他に、同様に溶融塩化亜鉛に対して耐食性の高い窒化珪素や石英が用い得る。また、液体電解質は、図示を省略する加熱ヒータにより550℃に保たれ、液体電解質としては、無水溶融塩化亜鉛や、塩化亜鉛を含む無水塩化物が使用可能である。   As shown in FIGS. 1 and 2, the electrolysis apparatus 1 of the present embodiment has a supply port 10U, a take-out port 10L, and insertion holes 10a and 10b in the side wall portion, and stands upright in the vertical direction, and the bottom portion is closed. An electrolytic cell 10 made of alumina in a rectangular tube shape that accommodates molten zinc chloride that is a liquid electrolyte and the electrode unit 20 is provided. As the material of the electrolytic cell 10, in addition to alumina, silicon nitride or quartz having high corrosion resistance against molten zinc chloride can be used. The liquid electrolyte is kept at 550 ° C. by a heater (not shown), and anhydrous molten zinc chloride or anhydrous chloride containing zinc chloride can be used as the liquid electrolyte.

具体的には、かかる電極ユニット20においては、電解槽10の底部に固定された陰極22及び鉛直上方で陰極22に対向する陽極24が設けられ、陰極22及び陽極24の間には、鉛直上方に向かって順次第1の中間電極26及び第2の中間電極28が設けられる。つまり、陰極22、第1の中間電極26、第2の中間電極28及び陽極24は、この順で典型的には第1の枠部材32、第2の枠部材34及び第3の枠部材36から成る電極枠30を介し鉛直上方に向かって積層されてユニット化され、電極ユニット20を成している。また、陰極22と第1の中間電極26との間には、第1の電解室40が画成され、第1の中間電極26と第2の中間電極28との間には、第2の電解室42が画成され、かつ、第2の中間電極28と陽極24との間には、第3の電解室44が画成される。なお、陰極22、第1の中間電極26、第2の中間電極28及び陽極24は、溶融塩化亜鉛に対する耐食性を考慮して、典型的には導電性グラファイト製である。また、電極ユニット20は、複極式の電極ユニットであるが、必要に応じて中間電極の個数は適宜設定自在であり、第1の中間電極26及び第2の中間電極28の一方を省略しても良いし、更に個数を増やして、第3の中間電極等を設けてもかまわず、対応して電解室の個数、電極枠30の高さやそれを構成する枠部材の個数も増減することになる。また、電極枠30の材質としては、溶融塩化亜鉛に対して耐食性の高い絶縁材料であるアルミナ、窒化珪素又は石英が用い得る。   Specifically, in the electrode unit 20, a cathode 22 fixed to the bottom of the electrolytic cell 10 and an anode 24 facing the cathode 22 vertically above are provided, and between the cathode 22 and the anode 24 vertically above A first intermediate electrode 26 and a second intermediate electrode 28 are sequentially provided toward the front. That is, the cathode 22, the first intermediate electrode 26, the second intermediate electrode 28, and the anode 24 are typically the first frame member 32, the second frame member 34, and the third frame member 36 in this order. The electrode unit 20 is formed by stacking vertically upward through an electrode frame 30 composed of a unit. A first electrolysis chamber 40 is defined between the cathode 22 and the first intermediate electrode 26, and a second electrolysis chamber 40 is defined between the first intermediate electrode 26 and the second intermediate electrode 28. An electrolysis chamber 42 is defined, and a third electrolysis chamber 44 is defined between the second intermediate electrode 28 and the anode 24. The cathode 22, the first intermediate electrode 26, the second intermediate electrode 28, and the anode 24 are typically made of conductive graphite in consideration of corrosion resistance against molten zinc chloride. In addition, the electrode unit 20 is a bipolar electrode unit, but the number of intermediate electrodes can be appropriately set as necessary, and one of the first intermediate electrode 26 and the second intermediate electrode 28 is omitted. It is also possible to increase the number and provide a third intermediate electrode or the like, and correspondingly increase or decrease the number of electrolysis chambers, the height of the electrode frame 30 and the number of frame members constituting the same. become. As a material for the electrode frame 30, alumina, silicon nitride, or quartz, which is an insulating material having high corrosion resistance against molten zinc chloride, can be used.

詳しくは、陰極22は、矩形板状の部材であり、電解槽10の挿通孔10bを介して陰極22に連絡する陰極電流フィーダ50の電位に対して等電位に設定される。また、陰極22においては、陰極22の上面である陰極面22sから鉛直下方に延在して陥設された複数の流下孔22aが設けられ、流下孔22aにおける陰極面22s側の角部22rは、断面円弧状のR形状を有する。更に図3及び図4にも示すように、陰極22は、流下孔22aに連絡すると共に、陰極22の内部を鉛直方向に直交する方向に延在して陰極22の外部に連通する複数の排出流路22b及び22cを有し、排出流路22bは流下孔22aからx軸の正方向に延在する一方で、排出流路22cは流下孔22aからy軸の正方向に延在する。   Specifically, the cathode 22 is a rectangular plate-like member, and is set to an equipotential with respect to the potential of the cathode current feeder 50 that communicates with the cathode 22 through the insertion hole 10 b of the electrolytic cell 10. Further, the cathode 22 is provided with a plurality of descending holes 22a extending vertically downward from the cathode surface 22s which is the upper surface of the cathode 22, and the corner 22r on the cathode surface 22s side of the descending hole 22a is , Having an R shape with a circular arc cross section. Further, as shown in FIGS. 3 and 4, the cathode 22 communicates with the flow down hole 22 a and extends in the direction perpendicular to the vertical direction to communicate with the outside of the cathode 22. The discharge channel 22b extends in the positive x-axis direction from the flow down hole 22a, while the discharge flow channel 22c extends in the positive y-axis direction from the flow down hole 22a.

第1の中間電極26は、矩形板状の部材であり、第1の中間電極26の下面に陽極部として機能する陽極面26sを有すると共に、第1の中間電極26の上面に陰極部として機能する陰極面27sを有する。また、第1の中間電極26においては、陽極面26sから鉛直上方に延在して陥設された複数の上昇孔26aが設けられ、上昇孔26aにおける陽極面26s側の角部26rは、断面円弧状のR形状を有すると共に、陰極面27sから鉛直下方に延在して陥設された複数の流下孔27aが設けられ、流下孔27aにおける陰極面27s側の角部27rは、円弧状のR形状を有する。更に、図6にも示すように、第1の中間電極26は、上昇孔26aに連絡すると共に、第1の中間電極26の内部において鉛直方向に直交する方向に延在して第1の中間電極26の外部に連通する複数の排出流路26b及び26cを有し、排出流路26bは上昇孔26aからx軸の負方向に延在する一方で、排出流路26cは上昇孔26aからy軸の負方向に延在する。また、図7にも示すように、第1の中間電極26は、流下孔27aに連絡すると共に、鉛直方向に直交する方向に延在して第1の中間電極26の外部に連通する複数の排出流路27b及び27cを有し、排出流路27bは流下孔27aからx軸の正方向に延在する一方で、排出流路27c
は流下孔27aからy軸の正方向に延在する。
The first intermediate electrode 26 is a rectangular plate-shaped member, and has an anode surface 26 s that functions as an anode portion on the lower surface of the first intermediate electrode 26 and functions as a cathode portion on the upper surface of the first intermediate electrode 26. It has a cathode surface 27s. Further, the first intermediate electrode 26 is provided with a plurality of rising holes 26a extending vertically upward from the anode surface 26s, and a corner portion 26r on the anode surface 26s side of the rising hole 26a has a cross section. A plurality of descending holes 27a having an arcuate R shape and extending vertically downward from the cathode surface 27s are provided, and a corner portion 27r on the cathode surface 27s side of the descending hole 27a has an arcuate shape. It has an R shape. Further, as shown in FIG. 6, the first intermediate electrode 26 communicates with the rising hole 26 a and extends in a direction perpendicular to the vertical direction inside the first intermediate electrode 26 to extend to the first intermediate electrode 26. The discharge channel 26b and 26c communicate with the outside of the electrode 26. The discharge channel 26b extends in the negative direction of the x axis from the rising hole 26a, while the discharge channel 26c extends from the rising hole 26a to y. Extends in the negative direction of the axis. Further, as shown in FIG. 7, the first intermediate electrode 26 communicates with the flow-down hole 27 a and extends in a direction orthogonal to the vertical direction to communicate with the outside of the first intermediate electrode 26. The discharge passages 27b and 27c are provided, and the discharge passage 27b extends from the flow down hole 27a in the positive direction of the x axis, while the discharge passage 27c
Extends from the flow down hole 27a in the positive direction of the y-axis.

第2の中間電極28は、第1の中間電極26と同一な部材である矩形板状の部材であり、第2の中間電極28の下面に陽極部として機能する陽極面28sを有すると共に、第2の中間電極28の上面に陰極部として機能する陰極面29sを有する。また、第2の中間電極28においては、陽極面28sから鉛直上方に延在して陥設された複数の上昇孔28aが設けられ、上昇孔28aにおける陽極面28s側の角部28rは、円弧状のR形状を有すると共に、陰極面29sから鉛直下方に延在して陥設された複数の流下孔29aが設けられ、流下孔29aにおける陰極面29s側の角部29rは、断面円弧状のR形状を有する。更に、図6において括弧内の符号を用いて示すように、第2の中間電極28は、上昇孔28aに連絡すると共に、第2の中間電極28のい内部において鉛直方向に直交する方向に延在して第2の中間電極28の外部に連通する複数の排出流路28b及び28cを有し、排出流路28bは上昇孔28aからx軸の負方向に延在する一方で、排出流路28cは上昇孔28aからy軸の負方向に延在する。また、図7において括弧内の符号を用いて示すように、第2の中間電極28は、流下孔29aに連絡すると共に、鉛直方向に直交する方向に延在して第2の中間電極28の外部に連通する複数の排出流路29b及び29cを有し、排出流路29bは流下孔29aからx軸の正方向に延在する一方で、排出流路29cは流下孔29aからy軸の正方向に延在する。   The second intermediate electrode 28 is a rectangular plate-like member that is the same member as the first intermediate electrode 26, has an anode surface 28 s that functions as an anode portion on the lower surface of the second intermediate electrode 28, and The upper surface of the second intermediate electrode 28 has a cathode surface 29s functioning as a cathode portion. Further, the second intermediate electrode 28 is provided with a plurality of rising holes 28a extending vertically upward from the anode surface 28s, and a corner portion 28r on the anode surface 28s side of the rising hole 28a has a circular shape. A plurality of descending holes 29a having an arcuate R shape and extending vertically downward from the cathode surface 29s are provided, and a corner 29r on the cathode surface 29s side of the descending hole 29a has an arcuate cross section. It has an R shape. Further, as indicated by the reference numerals in parentheses in FIG. 6, the second intermediate electrode 28 communicates with the ascending hole 28a and extends in a direction perpendicular to the vertical direction inside the second intermediate electrode 28. A plurality of discharge channels 28b and 28c communicating with the outside of the second intermediate electrode 28, and the discharge channels 28b extend from the rising hole 28a in the negative direction of the x-axis, 28c extends from the rising hole 28a in the negative direction of the y-axis. In addition, as shown using the reference numerals in parentheses in FIG. 7, the second intermediate electrode 28 communicates with the flow-down hole 29 a and extends in a direction perpendicular to the vertical direction so that the second intermediate electrode 28 There are a plurality of discharge passages 29b and 29c communicating with the outside, and the discharge passage 29b extends from the flow down hole 29a in the positive direction of the x axis, while the discharge flow passage 29c extends from the flow down hole 29a to the positive direction of the y axis. Extend in the direction.

陽極24は、陰極22と同様な部材であるが、陰極22とは排出流路の配置が相違する矩形板状の部材であり、電解槽10の挿通孔10aを介して陽極24に連絡する陽極電流フィーダ60の電位に対して等電位に設定される。また、陽極24においては、陽極24の下面である陽極面24sから鉛直上方に延在して陥設された複数の上昇孔24aが設けられ、上昇孔24aにおける陽極面24s側の角部24rは、断面円弧状のR形状を有する。更に図3及び図5にも示すように、陽極24は、上昇孔24aに連絡すると共に、陽極24の内部において鉛直方向に直交する方向に延在して陽極24の外部に連通する排出流路24b及び24cを有し、排出流路24bは上昇孔24aからx軸の負方向に延在する一方で、排出流路24cは上昇孔24aからy軸の負方向に延在する。   The anode 24 is a member similar to the cathode 22, but is a rectangular plate-like member having a different discharge channel arrangement from the cathode 22, and communicates with the anode 24 through the insertion hole 10 a of the electrolytic cell 10. The potential of the current feeder 60 is set equal to the potential. Further, the anode 24 is provided with a plurality of rising holes 24a extending vertically upward from the anode surface 24s which is the lower surface of the anode 24, and a corner 24r on the anode surface 24s side of the rising hole 24a is , Having an R shape with a circular arc cross section. Further, as shown in FIGS. 3 and 5, the anode 24 communicates with the ascending hole 24 a and extends in the direction perpendicular to the vertical direction inside the anode 24 and communicates with the outside of the anode 24. 24b and 24c, the discharge channel 24b extends from the rising hole 24a in the negative x-axis direction, while the discharge channel 24c extends from the rising hole 24a in the negative y-axis direction.

ここで、陰極22の複数の流下孔22a、第1の中間電極26の複数の上昇孔26a及び複数の流下孔27a、第2の中間電極28の複数の上昇孔28a及び複数の流下孔29a、並びに陽極24の複数の上昇孔24aが、電極ユニット20、つまり複極式の電極における穴開き構造である。また、陽極24の複数の排出流路24b及び複数の排出流路24c、第1の中間電極26の複数の排出流路26b及び複数の排出流路26c、並びに第2の中間電極28の複数の排出流路28b及び複数の排出流路28cと、陰極22の複数の排出流路22b及び複数の排出流路22c、第1の中間電極26の複数の排出流路27b及び複数の排出流路27c、並びに第2の中間電極28の複数の排出流路29b及び複数の排出流路29cと、のx−y平面における成す角は鋭角で90°以上180°以下の範囲内に設定され、溶融塩化亜鉛の電解により生成される溶融亜鉛及び塩素ガスの各排出方向がx−y平面において重ならず、かかる溶融亜鉛及び塩素ガスが不要に接触する機会が低減されている。   Here, a plurality of flow down holes 22a of the cathode 22, a plurality of rise holes 26a and a plurality of flow down holes 27a of the first intermediate electrode 26, a plurality of rise holes 28a and a plurality of flow down holes 29a of the second intermediate electrode 28, In addition, the plurality of rising holes 24a of the anode 24 is a holed structure in the electrode unit 20, that is, a bipolar electrode. The plurality of discharge channels 24b and the plurality of discharge channels 24c of the anode 24, the plurality of the discharge channels 26b and the plurality of discharge channels 26c of the first intermediate electrode 26, and the plurality of the second intermediate electrodes 28 The discharge channel 28b and the plurality of discharge channels 28c, the plurality of discharge channels 22b and the plurality of discharge channels 22c of the cathode 22, the plurality of the discharge channels 27b and the plurality of discharge channels 27c of the first intermediate electrode 26 , And a plurality of discharge channels 29b and a plurality of discharge channels 29c of the second intermediate electrode 28, the angle formed in the xy plane is set to an acute angle within a range of 90 ° to 180 °, and molten chloride Each discharge direction of the molten zinc and chlorine gas produced | generated by the electrolysis of zinc does not overlap in the xy plane, and the opportunity for such molten zinc and chlorine gas to contact unnecessary is reduced.

また、陰極22の流下孔22a、第1の中間電極26の流下孔27a及び第2の中間電極28の流下孔29aが、電解質40、42及び44から溶融亜鉛を対応して流下させる流下流路に相当し、陽極24の上昇孔24a、第1の中間電極26の上昇孔26a及び第2の中間電極28の上昇孔28aが、電解質40、42及び44から塩素ガスを対応して上昇させる上昇流路に相当する。    In addition, the flow down hole 22a of the cathode 22, the flow down hole 27a of the first intermediate electrode 26, and the flow down hole 29a of the second intermediate electrode 28 allow the molten zinc to flow down from the electrolytes 40, 42 and 44 correspondingly. The rising hole 24a of the anode 24, the rising hole 26a of the first intermediate electrode 26, and the rising hole 28a of the second intermediate electrode 28 rise correspondingly to increase the chlorine gas from the electrolytes 40, 42 and 44. Corresponds to the flow path.

第1の枠部材32は、鉛直方向に直立した角筒状の部材であり、更に図3及び図8にも示すように、陰極22と第1の中間電極26との間に画成される第1の電解室40に対し
て、電解槽10内の液体電解質である溶融塩化亜鉛を供給するための供給流路32a及び32bを有し、供給流路32a、32aは、x軸の方向で対向し、供給流路32b、32bは、y軸の方向で対向する。ここで、第1の枠部材32は、第1の電解室40に向かって突出する突出部32pを有し、供給流路32a及び32bは、かかる突出部32pを貫通して設けられる。更に、第1の枠部材32は、更に図6及び図7にも示すように、第1の中間電極26の排出流路26bに連絡して第1の中間電極26の外部に連通させる排出流路32cと、第1の中間電極26の排出流路26cに連絡して第1の中間電極26の外部に連通させる排出流路32eと、第1の中間電極26の排出流路27bに連絡して第1の中間電極26の外部に連通させる排出流路32dと、第1の中間電極26の排出流路27cに連絡して第1の中間電極26の外部に連通させる排出流路32fと、を有する。
The first frame member 32 is a rectangular tube-like member that stands upright in the vertical direction, and is defined between the cathode 22 and the first intermediate electrode 26 as shown in FIGS. 3 and 8. Supply channels 32a and 32b for supplying molten zinc chloride, which is a liquid electrolyte in the electrolytic cell 10, to the first electrolysis chamber 40, and the supply channels 32a and 32a are in the x-axis direction. The supply channels 32b and 32b face each other in the y-axis direction. Here, the 1st frame member 32 has the protrusion part 32p which protrudes toward the 1st electrolysis chamber 40, and the supply flow paths 32a and 32b are provided through this protrusion part 32p. Further, as shown in FIGS. 6 and 7, the first frame member 32 communicates with the discharge channel 26 b of the first intermediate electrode 26 and communicates with the outside of the first intermediate electrode 26. A passage 32c, a discharge passage 32e communicating with the discharge passage 26c of the first intermediate electrode 26 and communicating with the outside of the first intermediate electrode 26, and a discharge passage 27b of the first intermediate electrode 26 A discharge flow path 32d communicating with the outside of the first intermediate electrode 26, a discharge flow path 32f communicating with the discharge flow path 27c of the first intermediate electrode 26 and communicating with the outside of the first intermediate electrode 26, Have

第2の枠部材34は、第1の枠部材32と同一な部材であって、鉛直方向に直立した角筒状の部材であり、更に図3に示すと共に図8において括弧内の符号を用いて示すように、第1の中間電極26と第2の中間電極28との間に画成される第2の電解室42に対して、電解槽10内の液体電解質である溶融塩化亜鉛を供給するための供給流路34a及び34bを有し、供給流路34a、34aは、x軸の方向で対向し、供給流路34b、34bは、y軸の方向で対向する。ここで、第2の枠部材34は、第2の電解室42に向かって突出する突出部34pを有し、供給流路34a及び34bは、かかる突出部34pを貫通して設けられる。更に、第2の枠部材34は、更に図6及び図7において括弧内の符号を用いて示すように、第2の中間電極28の排出流路28bに連絡して第2の中間電極28の外部に連通させる排出流路34cと、第2の中間電極28の排出流路28cに連絡して第2の中間電極28の外部に連通させる排出流路34eと、第2の中間電極28の排出流路29bに連絡して第2の中間電極28の外部に連通させる排出流路34dと、第2の中間電極28の排出流路29cに連絡して第2の中間電極28の外部に連通させる排出流路34fと、を有する。   The second frame member 34 is the same member as the first frame member 32, and is a rectangular tube-like member that stands upright in the vertical direction. Further, the second frame member 34 is shown in FIG. As shown, the molten zinc chloride that is the liquid electrolyte in the electrolytic cell 10 is supplied to the second electrolysis chamber 42 defined between the first intermediate electrode 26 and the second intermediate electrode 28. Supply channels 34a and 34b, the supply channels 34a and 34a face each other in the x-axis direction, and the supply channels 34b and 34b face each other in the y-axis direction. Here, the 2nd frame member 34 has the protrusion part 34p which protrudes toward the 2nd electrolysis chamber 42, and the supply flow paths 34a and 34b are provided through this protrusion part 34p. Further, the second frame member 34 communicates with the discharge flow path 28b of the second intermediate electrode 28 as shown by using the reference numerals in parentheses in FIGS. A discharge flow path 34c communicating with the outside, a discharge flow path 34e communicating with the discharge flow path 28c of the second intermediate electrode 28 and communicating with the outside of the second intermediate electrode 28, and a discharge of the second intermediate electrode 28 A discharge flow path 34d communicating with the flow path 29b and communicating with the outside of the second intermediate electrode 28, and a discharge flow path 29c of the second intermediate electrode 28 and communicating with the outside of the second intermediate electrode 28 A discharge passage 34f.

第3の枠部材36は、第1の枠部材32及び第2の枠部材34における排出流路を省略した部材である鉛直方向に直立した角筒状の部材であり、更に図3に示すと共に図8において括弧内の符号を用いて示すように、第2の中間電極28と陽極24との間に画成される第3の電解室44に対して、電解槽10内の液体電解質である溶融塩化亜鉛を供給するための供給流路36a及び36bを有し、供給流路36a、36aは、x軸の方向で対向し、供給流路36b、346は、y軸の方向で対向する。ここで、第3の枠部材36は、第3の電解室44に向かって突出する突出部36pを有し、供給流路36a及び36bは、かかる突出部36pを貫通して設けられる。   The third frame member 36 is a member in the shape of a rectangular tube upright in the vertical direction, which is a member in which the discharge flow paths in the first frame member 32 and the second frame member 34 are omitted, and is further shown in FIG. In FIG. 8, the liquid electrolyte in the electrolytic cell 10 with respect to the third electrolysis chamber 44 defined between the second intermediate electrode 28 and the anode 24 is indicated by using the reference numerals in parentheses. Supply channels 36a and 36b for supplying molten zinc chloride are provided, the supply channels 36a and 36a are opposed in the x-axis direction, and the supply channels 36b and 346 are opposed in the y-axis direction. Here, the third frame member 36 has a protruding portion 36p protruding toward the third electrolysis chamber 44, and the supply flow paths 36a and 36b are provided through the protruding portion 36p.

なお、例えば、電極22、24、26及び28における排出流路のうちで排出流路22b、24b、26b及び28bを残し、かつ電極枠30における供給流路のうちで供給流路32b、34b及び36bを残した構成にすれば、電解により生成される溶融亜鉛を排出する排出流路の排出端と、電解により生成される塩素ガスを排出する排出流路の排出端と、電解質である溶融塩化亜鉛を電解室へ供給する導入端と、を、電極枠30で支持された電極ユニット20の各側面において分散して配置することができ、電解により生成される溶融亜鉛の排出方向、電解により生成される塩素ガスの排出方向及び電解質である溶融塩化亜鉛の電解室への供給方向を、x−y平面上で互いに重ならないように異ならせることも可能である。   For example, the discharge channels 22b, 24b, 26b and 28b remain among the discharge channels in the electrodes 22, 24, 26 and 28, and the supply channels 32b, 34b and If the structure 36b is left, the discharge end of the discharge flow path for discharging molten zinc generated by electrolysis, the discharge end of the discharge flow path for discharging chlorine gas generated by electrolysis, and molten chloride that is an electrolyte An introduction end for supplying zinc to the electrolysis chamber can be dispersed and arranged on each side surface of the electrode unit 20 supported by the electrode frame 30, and the discharge direction of molten zinc produced by electrolysis, produced by electrolysis The discharge direction of the chlorine gas and the supply direction of the molten zinc chloride, which is the electrolyte, to the electrolysis chamber can be different from each other so as not to overlap each other on the xy plane.

以上の構成の電解装置1を組み立てるには、まず、陰極22の陰極面22sの端部上に第1の枠部材32の突出部32pの下面を当接しながら、陰極22上に第1の枠部材32を載置し、次いで、第1の枠部材32の突出部32pの上面上に第1の中間電極26の陽極面26sの端部を当接しながら、第1の枠部材上に第1の中間電極26を載置する。次いで、第1の枠部材32の上端部に第2の枠部材34の下端部を当接すると共に、第1の
中間電極26の陰極面27sの端部上に第2の枠部材34の突出部34pの下面を当接しながら、第1の中間電極26上に第2の枠部材34を載置する。そして、以降順次同様に、第2の枠部材34の突出部34pの上面上に第2の中間電極28の陽極面28sの端部を当接しながら、第2の枠部材34上に第2の中間電極28を載置し、第2の枠部材34の上端部に第3の枠部材36の下端部を当接すると共に、第2の中間電極26の陰極面29sの端部上に第3の枠部材36の突出部36pの下面を当接しながら、第2の中間電極26上に第3の枠部材36を載置し、最後に、第3の枠部材36の突出部36pの上面上に陽極24の陽極面24sの端部を当接しながら、第3の枠部材36上に陽極24を載置して、電極ユニット20を組み立てる。
To assemble the electrolysis apparatus 1 having the above configuration, first, the first frame is formed on the cathode 22 while the lower surface of the protruding portion 32p of the first frame member 32 is in contact with the end of the cathode surface 22s of the cathode 22. The member 32 is placed, and then the first frame member 32 is in contact with the end of the anode surface 26s of the first intermediate electrode 26 on the upper surface of the protrusion 32p of the first frame member 32, and the first frame member 1 The intermediate electrode 26 is placed. Next, the lower end portion of the second frame member 34 is brought into contact with the upper end portion of the first frame member 32, and the protruding portion of the second frame member 34 is placed on the end portion of the cathode surface 27 s of the first intermediate electrode 26. The second frame member 34 is placed on the first intermediate electrode 26 while contacting the lower surface of 34p. Thereafter, in the same manner, the second frame member 34 is in contact with the second frame member 34 while the end of the anode surface 28s of the second intermediate electrode 28 is in contact with the upper surface of the protrusion 34p of the second frame member 34. The intermediate electrode 28 is placed, the lower end portion of the third frame member 36 is brought into contact with the upper end portion of the second frame member 34, and the third intermediate electrode 26 is placed on the end portion of the cathode surface 29 s of the second intermediate electrode 26. The third frame member 36 is placed on the second intermediate electrode 26 while contacting the lower surface of the projecting portion 36p of the frame member 36, and finally, on the upper surface of the projecting portion 36p of the third frame member 36. The electrode unit 20 is assembled by placing the anode 24 on the third frame member 36 while abutting the end of the anode surface 24 s of the anode 24.

そして、かかる電極ユニット20の陰極22を下にして、電極ユニット20の陰極22を電解槽10の底部に固定した後、電解槽10の挿通孔10bに挿通された陰極電流フィーダ50を陰極22に連絡すると共に、電解槽10の挿通孔10aに挿通された陽極電流フィーダ60を陽極24に連絡して、電解装置1は組み上がる。なお、電極枠30は、構成要素である枠部材が分割されていない一体型とすることもでき、かかる一体型の場合には、陰極22、第1の中間電極26、第2の中間電極28及び陽極24をこの順で図示を省略する治具を用いて位置決めした後で、位置決めされた陰極22、第1の中間電極26、第2の中間電極28及び陽極24に一体型の電極枠30をセットして、電極ユニット20が得られる。また、電極ユニット20は、電解槽10内で組み立ててもかまわない。   The cathode 22 of the electrode unit 20 is fixed to the bottom of the electrolytic cell 10 with the cathode 22 of the electrode unit 20 facing down, and then the cathode current feeder 50 inserted through the insertion hole 10b of the electrolytic cell 10 is used as the cathode 22. At the same time, the anode current feeder 60 inserted into the insertion hole 10a of the electrolytic cell 10 is connected to the anode 24, and the electrolyzer 1 is assembled. The electrode frame 30 can also be an integrated type in which the frame member as a component is not divided. In such an integrated type, the cathode 22, the first intermediate electrode 26, and the second intermediate electrode 28 are provided. After positioning the anode 24 and the anode 24 in this order using a jig (not shown), the electrode frame 30 integrated with the positioned cathode 22, first intermediate electrode 26, second intermediate electrode 28 and anode 24 is integrated. Is set to obtain the electrode unit 20. The electrode unit 20 may be assembled in the electrolytic cell 10.

以上のように組み立てた電解装置1を用いて電解を行うには、電解槽10の側壁部の上部に設けられた供給口10Uから電解槽10内に液体電解質である溶融塩化亜鉛を投入して、溶融塩化亜鉛中に電極ユニット20を完全に浸漬させた状態で、図示を省略する電源から陰極電流フィーダ50及び陽極電流フィーダ60を介して電流を流す。   In order to perform electrolysis using the electrolytic apparatus 1 assembled as described above, molten zinc chloride, which is a liquid electrolyte, is introduced into the electrolytic cell 10 from the supply port 10U provided in the upper part of the side wall of the electrolytic cell 10. In a state where the electrode unit 20 is completely immersed in molten zinc chloride, a current is supplied from a power supply (not shown) through the cathode current feeder 50 and the anode current feeder 60.

ここで、陰極22の陰極面22sと第1の中間電極26の陽極面26sとの間に画成された第1の電解室40には、第1の枠部材32の供給流路32a及び32bを介して、溶融塩化亜鉛が供給され、第1の中間電極26の陰極面27sと第2の中間電極28の陽極面28sとの間に画成された第2の電解室42には、第2の枠部材34の供給流路34a及び34bを介して、溶融塩化亜鉛が供給され、かつ、第2の中間電極28の陰極面29sと陽極24の陽極面24sとの間に画成された第3の電解室44には、第3の枠部材36の供給流路36a及び36bを介して、溶融塩化亜鉛が供給されている。   Here, in the first electrolysis chamber 40 defined between the cathode surface 22 s of the cathode 22 and the anode surface 26 s of the first intermediate electrode 26, supply channels 32 a and 32 b of the first frame member 32 are provided. The molten zinc chloride is supplied to the second electrolytic chamber 42 defined between the cathode surface 27 s of the first intermediate electrode 26 and the anode surface 28 s of the second intermediate electrode 28. Molten zinc chloride is supplied via the supply flow paths 34 a and 34 b of the second frame member 34, and is defined between the cathode surface 29 s of the second intermediate electrode 28 and the anode surface 24 s of the anode 24. Molten zinc chloride is supplied to the third electrolysis chamber 44 through supply flow paths 36 a and 36 b of the third frame member 36.

すると、第1の電解室40、第2の電解室42及び第3の電解室44において、溶融塩化亜鉛の電解が行われ、各電解室において、電解反応生成物である溶融亜鉛M及び塩素ガスGが発生する。なお、図示の便宜上、図4及び図7につき、溶融亜鉛Mの流れる方向を代表的に示し、図5及び図6につき、塩素ガスGの流れる方向を代表的に示す。   Then, molten zinc chloride is electrolyzed in the first electrolysis chamber 40, the second electrolysis chamber 42, and the third electrolysis chamber 44, and in each electrolysis chamber, the molten zinc M and the chlorine gas which are electrolytic reaction products. G is generated. For convenience of illustration, the flowing direction of the molten zinc M is representatively shown in FIGS. 4 and 7, and the flowing direction of the chlorine gas G is representatively shown in FIGS.

かかる電解反応生成物である溶融亜鉛Mは、各々対応する陰極22における流下孔22a、第1の中間電極26における流下孔27a及び第2の中間電極28における流下孔29aに直ちに流下して、陰極22における排出流路22b及び22c、第1の中間電極26における排出流路27b及び27c並びにこれらに対応して連絡する第1の枠部材32における排出流路32d及び32f、並びに第2の中間電極28における排出流路29b及び29c並びにこれらに対応して連絡する第2の枠部材34における排出流路34d及び34fを介して、陰極22、第1の中間電極26及び第2の中間電極28の外部に排出されて、電解槽10内の液体電解質である溶融塩化亜鉛中を鉛直下方に流下し電解槽10の底部に溜められながら、電解槽10の側壁部の下部に設けられた取り出し口10Lから電解槽10の外部に取り出され、必要に応じて図示を省略する貯留部に収容される。   The molten zinc M, which is an electrolytic reaction product, immediately flows down to the flow-down hole 22a of the corresponding cathode 22, the flow-down hole 27a of the first intermediate electrode 26, and the flow-down hole 29a of the second intermediate electrode 28, respectively. 22, the discharge channels 22b and 22c, the discharge channels 27b and 27c of the first intermediate electrode 26, the discharge channels 32d and 32f of the first frame member 32 communicating with these, and the second intermediate electrode Of the cathode 22, the first intermediate electrode 26, and the second intermediate electrode 28 via the discharge passages 29b and 29c in FIG. 28 and the discharge passages 34d and 34f in the second frame member 34 corresponding to these. While being discharged to the outside and flowing down vertically in molten zinc chloride, which is a liquid electrolyte in the electrolytic cell 10, From outlet 10L provided in the lower part of the side wall portion 10 is taken out to the outside of the electrolytic cell 10 is accommodated in the reservoir is not shown if necessary.

一方で、かかる電解反応生成物である塩素ガスGは、各々対応する第1の中間電極26
における上昇孔26a、第2の中間電極28における上昇孔28a及び陽極24における上昇孔24aを直ちに上昇して、第1の中間電極26における排出流路26b及び26c並びにこれらに対応して連絡する第1の枠部材32における排出流路32c及び32e、第2の中間電極28における排出流路28b及び28c並びにこれらに対応して連絡する第2の枠部材34における排出流路34c及び34e、並びに陽極24における排出流路24b及び24cを介して、第1の中間電極26、第2の中間電極28及び陽極24の外部に排出されて、電解槽10内の液体電解質である溶融塩化亜鉛中を鉛直上方に上昇し溶融塩化亜鉛の液面から電解槽10の外部に排出され、必要に応じて図示を省略する貯留部に収容される。
On the other hand, the chlorine gas G which is such an electrolytic reaction product is supplied to each corresponding first intermediate electrode 26.
The rising hole 26a in the first intermediate electrode 28, the rising hole 28a in the second intermediate electrode 28, and the rising hole 24a in the anode 24 are immediately lifted, and the discharge channels 26b and 26c in the first intermediate electrode 26 and the first corresponding to these The discharge flow paths 32c and 32e in the first frame member 32, the discharge flow paths 28b and 28c in the second intermediate electrode 28, the discharge flow paths 34c and 34e in the second frame member 34 communicating with these, and the anode 24 is discharged to the outside of the first intermediate electrode 26, the second intermediate electrode 28, and the anode 24 through the discharge passages 24 b and 24 c, and vertically flows in the molten zinc chloride that is the liquid electrolyte in the electrolytic cell 10. It rises upward and is discharged from the surface of the molten zinc chloride to the outside of the electrolytic cell 10 and accommodated in a storage unit (not shown) as necessary.

この際、第1の電解室40、第2の電解室42及び第3の電解室44において、溶融塩化亜鉛の電解により生成される溶融亜鉛M及び塩素ガスGを互いに鉛直方向に分離すると共に、その後の排出経路や電解槽10でも、互いに実質的な接触をさせずに確実に移動できる。   At this time, in the first electrolysis chamber 40, the second electrolysis chamber 42, and the third electrolysis chamber 44, the molten zinc M and the chlorine gas G generated by electrolysis of molten zinc chloride are separated from each other in the vertical direction, The subsequent discharge path and the electrolytic cell 10 can also move reliably without making substantial contact with each other.

なお、本実施形態の電解装置1における電解槽10は、角筒状に限らず、多角筒状や円筒状とすることももちろん可能で、その場合には、対応して陰極22、第1の中間電極26、第2の中間電極28及び陽極24を多角板状や円板状にし、第1の枠部材32、第2の枠部材34及び第3の枠部材36も、多角筒状や円筒状することが、スペース効率上の観点等から好ましい。   Note that the electrolytic cell 10 in the electrolysis apparatus 1 of the present embodiment is not limited to a rectangular tube shape, and can naturally be a polygonal tube shape or a cylindrical shape. The intermediate electrode 26, the second intermediate electrode 28, and the anode 24 are formed in a polygonal plate shape or a disk shape, and the first frame member 32, the second frame member 34, and the third frame member 36 are also formed in a polygonal cylinder shape or a cylindrical shape. It is preferable from the viewpoint of space efficiency.

また、本実施形態の電解装置1において、中間電極は、少なくとも1つ設ければ足り、例えば、中間電極として第1の中間電極26だけを設けた場合には、第1の中間電極26の上面に陰極部として機能する陰極面27sと陽極24の下面である陽極面24sとが対向し、それらの間で第2の電解室が画成される。   In the electrolysis apparatus 1 of the present embodiment, it is sufficient to provide at least one intermediate electrode. For example, when only the first intermediate electrode 26 is provided as the intermediate electrode, the upper surface of the first intermediate electrode 26 is provided. The cathode surface 27s functioning as the cathode portion and the anode surface 24s, which is the lower surface of the anode 24, face each other, and a second electrolytic chamber is defined between them.

以上の構成においては、電解槽において鉛直方向下方から鉛直上方に向けて、陰極、第1の中間電極及び陽極を順次積層し、陰極の第1の流下流路が、第1の電解室における電解で生成された電解生成溶融金属を、陰極の陰極面から鉛直方向における下方に移動自在として、陰極の内部に形成された第1の排出流路に送出自在であり、陽極の第1の上昇流路が、第2の電解室における電解で生成された電解生成ガスを、陽極の陽極面から鉛直方向における上方に移動自在として、陽極の内部に形成された第2の排出流路に送出自在であり、第1の中間電極の第2の流下流路が、第2の電解室における電解で生成された電解生成溶融金属を、第1の中間電極の陰極面から鉛直方向の下方に移動自在として、第1の中間電極の内部に形成された第3の排出流路に送出自在であり、第1の中間電極の第2の上昇流路が、第1の電解室における電解で生成された電解生成ガスを、第1の中間電極の陽極面から鉛直方向における上方に移動自在として、第1の中間電極の内部に形成された第4の排出流路に送出自在であるため、狭い電極間距離で設計する場合に生じる陰極面及び陽極面における電極反応生成物の接触による逆反応を、電極間電圧を上昇させることなく低減し得ると共に、漏洩電流による電流効率の低下を抑制し得て、比抵抗の大きい溶融塩を、実用的な電流密度と消費電力で電解するための複極式の電解装置を提供することができる。併せて、高温かつ高腐食性の電解浴や電解反応生成物を扱い得て、厳しい運転条件に耐え得る単純かつ保守の容易な構造を有し、及び工業化を前提とした大型の設備にスケールアップ可能で増産、増設が容易な構造を実現することができる。よって、例えば、500℃以上の高温で、亜鉛還元法によるシリコン製造における副生塩化亜鉛を溶融塩電解する用途として好適な無隔膜複極式の電解装置を提供できる。   In the above configuration, the cathode, the first intermediate electrode, and the anode are sequentially stacked from the vertically lower side to the vertically upper side in the electrolytic cell, and the first downstream flow path of the cathode serves as the electrolysis in the first electrolysis chamber. The electrolytically generated molten metal produced in (1) can be moved downward in the vertical direction from the cathode surface of the cathode, and can be sent out to a first discharge channel formed inside the cathode, and the first upward flow of the anode The path is configured to allow the electrolysis gas generated by electrolysis in the second electrolysis chamber to move upward in the vertical direction from the anode surface of the anode, and to be sent to a second discharge channel formed inside the anode. And the second downstream flow path of the first intermediate electrode allows the electrolytically generated molten metal generated by electrolysis in the second electrolysis chamber to move vertically downward from the cathode surface of the first intermediate electrode. , The first formed inside the first intermediate electrode The second ascending channel of the first intermediate electrode is capable of vertically flowing the electrolysis gas generated by electrolysis in the first electrolysis chamber from the anode surface of the first intermediate electrode. Electrode reaction on the cathode and anode surfaces that occurs when designing with a narrow inter-electrode distance because it can be moved upward in the direction and sent to the fourth discharge channel formed inside the first intermediate electrode The reverse reaction due to the contact of the product can be reduced without increasing the voltage between the electrodes, and the decrease in the current efficiency due to the leakage current can be suppressed, and the molten salt having a large specific resistance can be used with a practical current density and consumption. A bipolar electrolysis apparatus for electrolysis with electric power can be provided. At the same time, it can handle high-temperature and highly corrosive electrolytic baths and electrolytic reaction products, has a simple and easy-to-maintain structure that can withstand harsh operating conditions, and scales up to large-scale equipment on the premise of industrialization. It is possible to realize a structure that is easy to increase production and expansion. Therefore, for example, it is possible to provide a non-diaphragm bipolar electrolysis apparatus suitable for use as a molten salt electrolysis of by-product zinc chloride in silicon production by a zinc reduction method at a high temperature of 500 ° C. or higher.

また、陰極の第1の排出流路が、陰極の内方を鉛直方向に交差する方向に延在し、第1の電解室における液体電解質の電解で生成された電解生成溶融金属を、第1の電解室よりも鉛直方向における下方で陰極の外部に排出し、前陽極の第2の排出流路が、陽極の内方
を鉛直方向に交差する方向に延在し、第2の電解室における液体電解質の電解で生成された電解生成ガスを、第2の電解室陽よりも鉛直方向における上方で陽極の外部に排出し、第1の中間電極の第3の排出流路が、第1の中間電極の内方を鉛直方向に交差する方向に延在し、第2の電解室における液体電解質の電解で生成された電解生成溶融金属を、第1の中間電極の陰極面よりも鉛直方向における下方で第1の中間電極の外部に排出し、第1の中間電極の第4の排出流路が、第1の中間電極の内方を鉛直方向に交差する方向に延在し、第1の電解室における液体電解質の電解で生成された電解生成ガスを、第1の中間電極の陽極面よりも鉛直方向における上方で第1の中間電極の外部に排出するものであるため、装置のスケールアップが容易に実現できると共に、電極反応生成物の接触による逆反応を確実に低減できる。
In addition, the first discharge channel of the cathode extends in the direction intersecting the vertical direction inside the cathode, and the electrolytically generated molten metal generated by electrolysis of the liquid electrolyte in the first electrolysis chamber The second discharge flow path of the front anode extends in a direction crossing the inner side of the anode in the vertical direction below the vertical electrolysis chamber in the second electrolysis chamber. The electrolytically generated gas generated by electrolysis of the liquid electrolyte is discharged to the outside of the anode above the second electrolytic chamber positive in the vertical direction, and the third discharge channel of the first intermediate electrode is the first discharge channel. The inner side of the intermediate electrode extends in a direction intersecting the vertical direction, and the electrolytically generated molten metal generated by electrolysis of the liquid electrolyte in the second electrolysis chamber is more perpendicular to the cathode surface of the first intermediate electrode. It discharges to the outside of the first intermediate electrode below, and the fourth discharge flow path of the first intermediate electrode The inside of the first intermediate electrode extends in a direction intersecting the vertical direction, and the electrolysis gas generated by the electrolysis of the liquid electrolyte in the first electrolysis chamber is perpendicular to the anode surface of the first intermediate electrode. Since the discharge is performed outside the first intermediate electrode in the direction, the apparatus can be easily scaled up, and the reverse reaction due to the contact of the electrode reaction product can be reliably reduced.

また、陰極の第1の排出流路から排出される電解生成溶融金属の排出方向及び第1の中間電極の第4の排出流路から排出される電解生成溶融金属の排出方向と、陽極の第2の排出流路から排出される電解生成ガスの排出方向及び第1の中間電極の第3の排出流路から排出される電解生成ガスの排出方向と、を鉛直方向に直交する面において互いに重ならないように偏位させることにより、各電極の部材の共通性を高めながら、電極反応生成物の接触による逆反応をより確実に低減可能である。   The discharge direction of the electrolytically generated molten metal discharged from the first discharge channel of the cathode, the discharge direction of the electrolytically generated molten metal discharged from the fourth discharge channel of the first intermediate electrode, and the first direction of the anode The discharge direction of the electrolysis gas discharged from the second discharge flow path and the discharge direction of the electrolysis gas discharged from the third discharge flow path of the first intermediate electrode overlap each other on a plane orthogonal to the vertical direction. By deviating so as not to occur, the reverse reaction due to the contact of the electrode reaction product can be more reliably reduced while increasing the commonality of the members of each electrode.

また、第1の中間電極及び陽極が、陰極に固定された電極枠を介して順次鉛直方向における上方に向かって積層されて、陰極、陽極及び第1の中間電極は、ユニット化された電極ユニットを成すことにより、各電極を確実に位置決めして固定しながら各電解室に液体電解質を確実に供給できると共に、装置のスケールアップがより容易に実現可能である。   In addition, the first intermediate electrode and the anode are sequentially stacked upward in the vertical direction through an electrode frame fixed to the cathode, and the cathode, the anode, and the first intermediate electrode are unitized electrode units. Thus, the liquid electrolyte can be reliably supplied to each electrolysis chamber while the electrodes are positioned and fixed reliably, and the scale-up of the apparatus can be more easily realized.

また、電極枠が、陰極に固定されて第1の中間電極を載置し、第1の電解室に液体電解質を供給する供給流路を有する第1の枠部材と、第1の中間電極に固定されて陽極を載置し、第2の電解室に液体電解質を供給する供給流路を有する第2の枠部材と、を含むことにより、各枠部材の共通性を高めながら各電極を確実に位置決めして固定できると共に、装置のスケールアップがより容易に実現可能である。   In addition, the electrode frame is fixed to the cathode, the first intermediate electrode is placed thereon, the first frame member having a supply flow path for supplying the liquid electrolyte to the first electrolysis chamber, and the first intermediate electrode And a second frame member having a supply flow path for supplying a liquid electrolyte to the second electrolysis chamber with the anode mounted thereon, thereby ensuring that each electrode is secured while increasing the commonality of the respective frame members. In addition to being able to position and fix the device, scale-up of the device can be realized more easily.

また、更に、電解槽において第1の中間電極と陽極との間に設けられた第2の中間電極を有し、第2の中間電極は、電極枠における第3の枠部材を介して第1の中間電極の鉛直方向における上方に積層されて、陰極、陽極、第1の中間電極及び第2の中間電極は、ユニット化された電極ユニットを成すことにより、装置のスケールアップがより容易に実現可能である。   Further, the electrolytic cell further includes a second intermediate electrode provided between the first intermediate electrode and the anode, and the second intermediate electrode is connected to the first intermediate member via the third frame member in the electrode frame. The cathode, anode, first intermediate electrode, and second intermediate electrode, which are stacked above the intermediate electrode in the vertical direction, form a unitized electrode unit, making it easier to scale up the device. Is possible.

また、第1の流下流路及び第2の流下流路、並びに第1の上昇流路及び第2の上昇流路をいずれも柱状部の間隙部として形成する柱状構造を採用することにより、より簡便な構成で電解反応生成物を電解室から外部に向けて確実に誘導することができる。   Further, by adopting a columnar structure in which both the first downflow channel and the second downflow channel, and the first upflow channel and the second upflow channel are formed as gaps between the columnar parts, The electrolytic reaction product can be reliably guided from the electrolysis chamber to the outside with a simple configuration.

また、液体電解質が、電解槽に収容された無水溶融塩化亜鉛又は塩化亜鉛を含む無水塩化物であることにより、亜鉛還元法によるシリコン製造における副生塩化亜鉛を溶融塩電解する用途としてより好適に適用可能である。   In addition, since the liquid electrolyte is anhydrous molten zinc chloride contained in an electrolytic cell or anhydrous chloride containing zinc chloride, it is more suitable as an application for molten salt electrolysis of by-product zinc chloride in silicon production by the zinc reduction method. Applicable.

(第2の実施形態)
次に、本発明の第2の実施形態における電解装置につき、更に図9及び図10をも参照して、詳細に説明する。
(Second Embodiment)
Next, an electrolysis apparatus according to a second embodiment of the present invention will be described in detail with reference to FIGS. 9 and 10.

図9は、本実施形態における電解装置の縦断面図であり、図2のZ−Z断面に相当する。また、図10は、本実施形態における電解装置の上面図である。   FIG. 9 is a longitudinal sectional view of the electrolyzer according to the present embodiment, and corresponds to the ZZ section of FIG. FIG. 10 is a top view of the electrolyzer according to the present embodiment.

本実施形態における電解装置2は、第1の実施形態のものに対して、遮蔽板70及び80を設けたことが主たる相違点であり、残余の構成は同様である。よって、本実施形態においては、かかる相違点に着目して説明することとし、同様な構成については同一の符号を付して適宜説明を簡略化又は省略する。   The electrolysis apparatus 2 in this embodiment is mainly different from the first embodiment in that shielding plates 70 and 80 are provided, and the remaining configuration is the same. Therefore, in the present embodiment, description will be made by paying attention to such differences, and the same components are denoted by the same reference numerals, and description thereof will be simplified or omitted as appropriate.

図9及び図10に示すように、本実施形態の電解装置2は、電解槽10の内壁面と第1の第1の枠部材32の外壁面との間を塞ぐ矩形板状の遮蔽板70、及び電解槽10の内壁面と第2の枠部材34の外壁面との間を塞ぐ矩形板状の遮蔽板80を有する。なお、かかる遮蔽板70及び80は、融塩化亜鉛に対して耐食性の高い絶縁材料であるアルミナ、窒化珪素又は石英が用い得る。   As shown in FIGS. 9 and 10, the electrolysis apparatus 2 of this embodiment includes a rectangular plate-shaped shielding plate 70 that blocks between the inner wall surface of the electrolytic cell 10 and the outer wall surface of the first first frame member 32. And a rectangular plate-shaped shielding plate 80 that closes the space between the inner wall surface of the electrolytic cell 10 and the outer wall surface of the second frame member 34. The shielding plates 70 and 80 may be made of alumina, silicon nitride, or quartz, which is an insulating material having high corrosion resistance against molten zinc chloride.

具体的には、遮蔽板70は、電解槽10におけるx−y平面のx軸の正方向側及びy軸の正方向側の各内壁面に沿って遮蔽板70を貫通する流下孔70aと、電解槽10におけるx−y平面のx軸の負方向側及びy軸の負方向側の各内壁面に沿って遮蔽板70を貫通する上昇孔70bと、を有する。ここで、遮蔽板70の流下孔70aは、第1の枠部材32における全ての排出流路32d及び32fに対応して、最もy軸の負方向側の排出流路32dと同等か更にy軸の負方向側まで延在するy軸の方向の端部と、最もx軸の負方向側の排出流路32fと同等か更にx軸の負方向側まで延在するy軸の方向の端部と、を有する。また、遮蔽板70の上昇孔70bは、第1の枠部材32における全ての排出流路32c及び32eに対応して、最もy軸の正方向側の排出流路32cと同等か更にy軸の正方向側まで延在するy軸の方向の端部と、最もx軸の正方向側の排出流路32eと同等か更にx軸の正方向側まで延在するy軸の方向の端部と、を有する。また、かかる遮蔽板70の上面は、第1の枠部材32における排出流路32d及び32fの下面と面一であると共に、遮蔽板70の下面は、第1の枠部材32における排出流路32c及び32eの上面と面一である。   Specifically, the shielding plate 70 includes a flow-down hole 70a penetrating the shielding plate 70 along each inner wall surface on the positive direction side of the x axis and the positive direction side of the y axis in the xy plane in the electrolytic cell 10; And a rising hole 70b penetrating the shielding plate 70 along each inner wall surface on the negative x-axis side of the xy plane and the negative y-axis side of the electrolytic cell 10. Here, the flow-down hole 70a of the shielding plate 70 corresponds to all the discharge flow paths 32d and 32f in the first frame member 32, and is equivalent to the discharge flow path 32d on the most negative direction side of the y-axis, or further the y-axis. And an end in the y-axis direction extending to the negative direction side of the x-axis, and an end in the y-axis direction extending to the negative direction side of the x-axis or the discharge channel 32f closest to the negative direction of the x-axis And having. Further, the rising hole 70b of the shielding plate 70 corresponds to all of the discharge flow paths 32c and 32e in the first frame member 32, and is equivalent to the discharge flow path 32c on the most positive side of the y axis, or further, the y axis. An end portion in the y-axis direction extending to the positive direction side, and an end portion in the y-axis direction extending to the positive direction side of the x-axis which is the same as or more equal to the discharge channel 32e on the positive direction side of the x-axis Have. Further, the upper surface of the shielding plate 70 is flush with the lower surfaces of the discharge channels 32 d and 32 f in the first frame member 32, and the lower surface of the shielding plate 70 is the discharge channel 32 c in the first frame member 32. And 32e are flush with the upper surface.

また、遮蔽板80は、遮蔽板70と同一な構成を有し、電解槽10におけるx−y平面のx軸の正方向側及びy軸の正方向側の各内壁面に沿って遮蔽板80を貫通する流下孔80aと、電解槽10におけるx−y平面のx軸の負方向側及びy軸の負方向側の各内壁面に沿って遮蔽板80を貫通する上昇孔80bと、を有する。ここで、遮蔽板80の流下孔80aは、第2の枠部材34における全ての排出流路34d及び34fに対応して、最もy軸の負方向側の排出流路34dと同等か更にy軸の負方向側まで延在するy軸の方向の端部と、最もx軸の負方向側の排出流路34fと同等か更にx軸の負方向側まで延在するy軸の方向の端部と、を有する。また、遮蔽板80の上昇孔80bは、第2の枠部材34における全ての排出流路34c及び34eに対応して、最もy軸の正方向側の排出流路34cと同等か更にy軸の正方向側まで延在するy軸の方向の端部と、最もx軸の正方向側の排出流路34eと同等か更にx軸の正方向側まで延在するy軸の方向の端部と、を有する。また、かかる遮蔽板80の上面は、第2の枠部材34における排出流路34d及び34fの下面と面一であると共に、遮蔽板80の下面は、第2の枠部材34における排出流路34c及び34eの上面と面一である。   Further, the shielding plate 80 has the same configuration as the shielding plate 70, and the shielding plate 80 is provided along each inner wall surface on the positive direction side of the x-axis and the positive direction side of the y-axis of the electrolytic cell 10. And a rising hole 80b penetrating the shielding plate 80 along each inner wall surface on the negative x-axis side of the xy plane and on the negative y-axis side of the electrolytic cell 10. . Here, the flow-down hole 80a of the shielding plate 80 corresponds to all the discharge flow paths 34d and 34f in the second frame member 34, and is equivalent to the discharge flow path 34d on the most negative side of the y-axis, or further, the y-axis. The end in the y-axis direction extending to the negative direction side of the y-axis, and the end in the y-axis direction extending to the negative direction side of the x-axis or the discharge channel 34f closest to the negative direction side of the x-axis And having. Further, the rising hole 80b of the shielding plate 80 corresponds to all the discharge flow paths 34c and 34e in the second frame member 34, and is equivalent to the discharge flow path 34c on the most positive side of the y axis, or further, the y axis. An end portion in the y-axis direction extending to the positive direction side, and an end portion in the y-axis direction extending to the positive direction side of the x-axis, which is the same as or more than the discharge channel 34e on the positive direction side of the x-axis Have. Further, the upper surface of the shielding plate 80 is flush with the lower surfaces of the discharge channels 34 d and 34 f in the second frame member 34, and the lower surface of the shielding plate 80 is the discharge channel 34 c in the second frame member 34. And 34e are flush with the upper surface.

なお、遮蔽板70の流下孔70a及び上昇孔70b、並びに遮蔽板80の流下孔80a及び上昇孔80bは、流下や上昇させる電解反応生物の流量等が少ない場合には、各々間欠的な複数の孔としてもよいし、孔の面積を小さく設定することも可能である。   In addition, the flow-down hole 70a and the rising hole 70b of the shielding plate 70 and the flow-down hole 80a and the rising hole 80b of the shielding plate 80 are each provided with a plurality of intermittent flows when the flow rate or the like of the electrolytic reaction product to be flowed down or raised is small. It is good also as a hole, and it is also possible to set the area of a hole small.

以上の構成の電解装置2を組み立てるには、第1の実施形態と同様に、電極ユニット20を組み立てた後、第1の枠部材32の外壁面に遮蔽板70を固定すると共に、第2の枠部材34の外壁面に遮蔽板80を固定する。もちろん、先に、第1の枠部材32の外壁面に遮蔽板70を固定すると共に、第2の枠部材34の外壁面に遮蔽板80を固定した状態で、電極ユニット20を組み立てもかまわない。   In order to assemble the electrolysis apparatus 2 having the above configuration, after assembling the electrode unit 20 as in the first embodiment, the shielding plate 70 is fixed to the outer wall surface of the first frame member 32, and the second The shielding plate 80 is fixed to the outer wall surface of the frame member 34. Of course, the electrode unit 20 may be assembled with the shielding plate 70 fixed to the outer wall surface of the first frame member 32 and the shielding plate 80 fixed to the outer wall surface of the second frame member 34 first. .

そして、かかる電極ユニット20の陰極22を下にして、電極ユニット20の陰極22を電解槽10の底部に固定した後、電解槽10の挿通孔10bに挿通された陰極電流フィーダ50を陰極22に連絡すると共に、電解槽10の挿通孔10aに挿通された陽極電流フィーダ60を陽極24に連絡して、電解装置2は組み上がる。   The cathode 22 of the electrode unit 20 is fixed to the bottom of the electrolytic cell 10 with the cathode 22 of the electrode unit 20 facing down, and then the cathode current feeder 50 inserted through the insertion hole 10b of the electrolytic cell 10 is used as the cathode 22. At the same time, the anode current feeder 60 inserted into the insertion hole 10a of the electrolytic cell 10 is connected to the anode 24, and the electrolyzer 2 is assembled.

以上のように組み立てた電解装置2を用いて電解を行うには、第1の実施形態と同様に、電解槽10内に液体電解質である溶融塩化亜鉛を投入して、溶融塩化亜鉛中に電極ユニット20を完全に浸漬させた状態で、図示を省略する電源から陰極電流フィーダ50及び陽極電流フィーダ60を介して電流を流す。   In order to perform electrolysis using the electrolytic device 2 assembled as described above, similarly to the first embodiment, molten zinc chloride as a liquid electrolyte is introduced into the electrolytic cell 10 and an electrode is formed in the molten zinc chloride. In a state where the unit 20 is completely immersed, a current is supplied from a power supply (not shown) through the cathode current feeder 50 and the anode current feeder 60.

すると、第1の電解室40、第2の電解室42及び第3の電解室44において、溶融塩化亜鉛の電解が行われ、各電解室において、電解反応生成物である溶融亜鉛M及び塩素ガスGが発生する。   Then, molten zinc chloride is electrolyzed in the first electrolysis chamber 40, the second electrolysis chamber 42, and the third electrolysis chamber 44, and in each electrolysis chamber, the molten zinc M and the chlorine gas which are electrolytic reaction products. G is generated.

かかる電解反応生成物である溶融亜鉛Mは、各々対応して、陰極22における流下孔22a、第1の中間電極26における流下孔27a及び第2の中間電極28における流下孔29aに直ちに流下して、陰極22における排出流路22b及び22c、第1の中間電極26における排出流路27b及び27c並びにこれらに対応して連絡する第1の枠部材32における排出流路32d及び32f、並びに第2の中間電極28における排出流路29b及び29c並びにこれらに対応して連絡する第2の枠部材34における排出流路34d及び34fを介して、陰極22、第1の中間電極26及び第2の中間電極28の外部に排出された後、直接に電解槽10内の液体電解質である溶融塩化亜鉛中を鉛直下方に流下し電解槽10の底部に向かうか、又は対応する遮蔽板70及び80の上面を電解槽10の内壁面に向かって流れて流下孔70a及び80aに到達して流れ込み、流下孔70a及び80aを介して、電解槽10内の液体電解質である溶融塩化亜鉛中を鉛直下方に流下し電解槽10の底部に向かって、電解槽10の壁面の下部に設けられた取り出し口10Lから電解槽10の外部に取り出され、必要に応じて図示を省略する貯留部に収容される。ここで、遮蔽板80の流下孔80aを介して流下する溶融亜鉛Mは、下方の遮蔽板70を通過する必要があるが、遮蔽板70には流下孔70aが設けられているため、かかる流下孔70aを介して更に下方へと流下することができる。   Corresponding to each of these electrolytic reaction products, molten zinc M immediately flows down to the flow down hole 22a in the cathode 22, the flow down hole 27a in the first intermediate electrode 26, and the flow down hole 29a in the second intermediate electrode 28. The discharge passages 22b and 22c in the cathode 22, the discharge passages 27b and 27c in the first intermediate electrode 26, the discharge passages 32d and 32f in the first frame member 32 communicating with these, and the second Via the discharge channels 29b and 29c in the intermediate electrode 28 and the discharge channels 34d and 34f in the second frame member 34 communicating with these, the cathode 22, the first intermediate electrode 26 and the second intermediate electrode 28, after being discharged to the outside, the molten zinc chloride, which is the liquid electrolyte in the electrolytic cell 10, flows down vertically down toward the bottom of the electrolytic cell 10, Flows on the upper surfaces of the corresponding shielding plates 70 and 80 toward the inner wall surface of the electrolytic cell 10 and reaches the flow-down holes 70a and 80a, and flows through the flow-down holes 70a and 80a with the liquid electrolyte in the electrolytic cell 10. The molten zinc chloride flows down vertically and toward the bottom of the electrolytic cell 10 and is taken out of the electrolytic cell 10 from the extraction port 10L provided at the lower part of the wall surface of the electrolytic cell 10, and is illustrated as necessary. It is accommodated in the storage part to be omitted. Here, the molten zinc M flowing down through the flow down hole 80a of the shielding plate 80 needs to pass through the lower shielding plate 70. However, since the flow down hole 70a is provided in the shielding plate 70, the flow down is performed. It can flow down further through the hole 70a.

一方で、かかる電解反応生成物である塩素ガスGは、各々対応して、第1の中間電極26における上昇孔26a、第2の中間電極28における上昇孔28a及び陽極24における上昇孔24aを直ちに上昇して、第1の中間電極26における排出流路26b及び26c並びにこれらに対応して連絡する第1の枠部材32における排出流路32c及び32e、第2の中間電極28における排出流路28b及び28c並びにこれらに対応して連絡する第2の枠部材34における排出流路34c及び34e、並びに陽極24における排出流路24b及び24cを介して、第1の中間電極26、第2の中間電極28及び陽極24の外部に排出された後、対応する遮蔽板70及び80の下面に沿って電解槽10の内壁面に向かって流れて上昇孔70b及び80bに到達して流れ込み、上昇孔70b及び80bを介して、電解槽10内の液体電解質である溶融塩化亜鉛中を鉛直上方に上昇し電解槽10の溶融塩化亜鉛の液面から電解槽10の外部に排出されるか、又は直接に電解槽10内の液体電解質である溶融塩化亜鉛中を鉛直上方に上昇し電解槽10の溶融塩化亜鉛の液面から電解槽10の外部に排出され、必要に応じて図示を省略する貯留部に収容される。ここで、遮蔽板70の上昇孔70bを介して上昇する塩素ガスGは、上方の遮蔽板80を通過する必要があるが、遮蔽板80には上昇孔80bが設けられているため、かかる上昇孔80bを介して更に上方へと上昇することができる。   On the other hand, the chlorine gas G which is the electrolytic reaction product immediately passes through the rising hole 26a in the first intermediate electrode 26, the rising hole 28a in the second intermediate electrode 28, and the rising hole 24a in the anode 24. Ascending, the discharge channels 26b and 26c in the first intermediate electrode 26, the discharge channels 32c and 32e in the first frame member 32 communicating corresponding thereto, and the discharge channels 28b in the second intermediate electrode 28 And 28c, and the discharge passages 34c and 34e in the second frame member 34 communicated corresponding thereto, and the discharge passages 24b and 24c in the anode 24, the first intermediate electrode 26 and the second intermediate electrode 28 and the anode 24, and then flow toward the inner wall surface of the electrolytic cell 10 along the lower surfaces of the corresponding shielding plates 70 and 80, and the rising holes 70 b and It reaches 80b and flows through the rising holes 70b and 80b, and rises vertically in the molten zinc chloride, which is the liquid electrolyte in the electrolytic cell 10, from the surface of the molten zinc chloride in the electrolytic cell 10 to the electrolytic cell 10 It is discharged to the outside, or directly rises vertically in the molten zinc chloride, which is the liquid electrolyte in the electrolytic cell 10, and is discharged from the molten zinc chloride liquid level in the electrolytic cell 10 to the outside of the electrolytic cell 10. Accordingly, it is accommodated in a storage unit (not shown). Here, the chlorine gas G rising through the ascending hole 70b of the shielding plate 70 needs to pass through the upper shielding plate 80. However, since the ascending hole 80b is provided in the shielding plate 80, the ascent is performed. It can rise further upward through the hole 80b.

この際、遮蔽板70及び80を設けて、第1の中間電極26及び第2の中間電極28に
おける漏れ電流を効果的に低減しながら、第1の電解室40、第2の電解室42及び第3の電解室44において、溶融塩化亜鉛の電解により生成される溶融亜鉛M及び塩素ガスGを互いに鉛直方向に分離すると共に、その後の排出経路や電解槽10でも、互いに接触させずに確実に移動できる。
At this time, the first electrolysis chamber 40, the second electrolysis chamber 42, and the shielding plates 70 and 80 are provided while effectively reducing the leakage current in the first intermediate electrode 26 and the second intermediate electrode 28. In the third electrolysis chamber 44, the molten zinc M and chlorine gas G generated by the electrolysis of molten zinc chloride are separated from each other in the vertical direction, and the subsequent discharge path and the electrolytic cell 10 can be reliably brought into contact with each other. I can move.

次に、本実施形態の電解装置2における排出流路及び遮蔽板の変形例につき、更に図11及び図12をも参照して、詳細に説明する。   Next, modified examples of the discharge channel and the shielding plate in the electrolysis apparatus 2 of the present embodiment will be described in detail with reference to FIGS. 11 and 12.

図11は、本実施形態の変形例における電解装置の部分拡大縦断面図であり、電解で生成された溶融金属の排出流路側を示す。また、図12は、本実施形態の変形例における電解装置の部分拡大縦断面図であり、電解で生成されたガスの排出流路側を示す。   FIG. 11 is a partially enlarged longitudinal sectional view of an electrolysis apparatus according to a modification of the present embodiment, and shows a discharge channel side of molten metal generated by electrolysis. FIG. 12 is a partially enlarged longitudinal sectional view of the electrolysis apparatus according to the modification of the present embodiment, and shows the discharge channel side of the gas generated by electrolysis.

本変形例の電解装置3においては、図11に示すように、第1の中間電極26の流下孔27aに連絡する排出流路27b’の下面が、電解反応生成物である溶融亜鉛Mが排出される方向である第1の中間電極26の外部に向いて、下り勾配を有すると共に、かかる排出流路27b’に連絡する第1の枠部材32の排出流路32d’の下面も、排出流路27b’の下面に連続して第1の枠部材32の外部に向いて、下り勾配を有する。更に、流下孔100aを有する遮蔽板100についても、かかる排出流路32d’の下面に連続して電解槽10の内壁面に向かって下り勾配を有する上面を有する。なお、図示は省略するが、かかる下り勾配の構造は、第1の中間電極26において溶融亜鉛Mを排出する他の排出流路の下面、それに連絡する第1の枠部材32の排出流路の下面及びそれに連絡する遮蔽板100の上面について同様である。   In the electrolysis apparatus 3 of this modification, as shown in FIG. 11, the lower surface of the discharge flow path 27 b ′ communicating with the flow down hole 27 a of the first intermediate electrode 26 discharges molten zinc M that is an electrolytic reaction product. The lower surface of the discharge flow path 32d ′ of the first frame member 32 that has a downward slope toward the outside of the first intermediate electrode 26, which is the direction in which the discharge is performed, and communicates with the discharge flow path 27b ′ Continuing on the lower surface of the path 27b ′, it faces the outside of the first frame member 32 and has a downward slope. Further, the shielding plate 100 having the flow-down hole 100a also has an upper surface having a downward slope toward the inner wall surface of the electrolytic cell 10 continuously from the lower surface of the discharge channel 32d '. Although not shown in the drawings, such a downward gradient structure is provided on the lower surface of another discharge channel for discharging the molten zinc M in the first intermediate electrode 26 and the discharge channel of the first frame member 32 connected to the lower surface. The same applies to the lower surface and the upper surface of the shielding plate 100 connected to the lower surface.

同様に、図11において括弧内の符号で示すように、第2の中間電極28の流下孔29aに連絡する排出流路29b’の下面が、電解反応生成物である溶融亜鉛Mが排出される方向である第2の中間電極28の外部に向いて、下り勾配を有すると共に、かかる排出流路29b’に連絡する第2の枠部材34の排出流路34d’の下面も、排出流路29b’の下面に連続して第2の枠部材34の外部に向いて、下り勾配を有する。更に、流下孔110aを有する遮蔽板110についても、かかる排出流路34d’の下面に連続して電解槽10の内壁面に向かって下り勾配を有する上面を有する。なお、図示は省略するが、かかる下り勾配の構造は、第2の中間電極28において溶融亜鉛Mを排出する他の排出流路の下面、それに連絡する第2の枠部材34の排出流路の下面及びそれに連絡する遮蔽板110の上面について同様である。また、陰極22の排出流路22bの下面等についても、同様の下り勾配を有していてもよい。   Similarly, as indicated by reference numerals in parentheses in FIG. 11, the molten zinc M, which is an electrolytic reaction product, is discharged from the lower surface of the discharge passage 29 b ′ communicating with the flow down hole 29 a of the second intermediate electrode 28. The lower surface of the discharge flow path 34d ′ of the second frame member 34 that has a downward slope toward the outside of the second intermediate electrode 28 that is the direction and communicates with the discharge flow path 29b ′ is also the discharge flow path 29b. Continuing on the lower surface of 'and facing the outside of the second frame member 34, it has a downward slope. Further, the shielding plate 110 having the flow-down hole 110a also has an upper surface having a downward slope continuously toward the inner wall surface of the electrolytic cell 10 continuously from the lower surface of the discharge flow path 34d '. Although not shown in the drawings, such a downward gradient structure is provided on the lower surface of another discharge channel for discharging the molten zinc M at the second intermediate electrode 28 and the discharge channel of the second frame member 34 connected to the lower surface. The same applies to the lower surface and the upper surface of the shielding plate 110 connected to the lower surface. Further, the lower surface of the discharge channel 22b of the cathode 22 may have a similar downward gradient.

また、図12に示すように、第1の中間電極26の上昇孔26aに連絡する排出流路26b’の上面が、電解反応生成物である塩素ガスGが排出される方向である第1の中間電極26の外部に向いて、上り勾配を有すると共に、かかる排出流路26b’に連絡する第1の枠部材32の排出流路32c’の上面も、排出流路26b’の上面に連続して第1の枠部材32の外部に向いて、上り勾配を有する。更に、流下孔100bを有する遮蔽板100についても、かかる排出流路32c’の下面に連続して電解槽10の内壁面に向かって上り勾配を有する下面を有する。なお、図示は省略するが、かかる下り勾配の構造は、第1の中間電極26において塩素ガスGを排出する他の排出流路の上面、それに連絡する第1の枠部材32の排出流路の上面及びそれに連絡する遮蔽板100の下面について同様である。   In addition, as shown in FIG. 12, the upper surface of the discharge flow path 26b ′ communicating with the rising hole 26a of the first intermediate electrode 26 is in the direction in which the chlorine gas G as the electrolytic reaction product is discharged. The upper surface of the discharge channel 32c ′ of the first frame member 32 that has an upward slope toward the outside of the intermediate electrode 26 and communicates with the discharge channel 26b ′ is also continuous with the upper surface of the discharge channel 26b ′. The first frame member 32 has an upward slope toward the outside. Furthermore, the shielding plate 100 having the flow-down hole 100b also has a lower surface having an upward slope toward the inner wall surface of the electrolytic cell 10 continuously from the lower surface of the discharge channel 32c '. Although not shown in the drawings, such a downward slope structure is provided on the upper surface of another discharge channel for discharging the chlorine gas G in the first intermediate electrode 26, and on the discharge channel of the first frame member 32 connected thereto. The same applies to the upper surface and the lower surface of the shielding plate 100 connected to the upper surface.

同様に、図12において括弧内の符号で示すように、第2の中間電極28の上昇孔28aに連絡する排出流路28b’の上面が、電解反応生成物である塩素ガスGが排出される方向である第2の中間電極28の外部に向いて、上り勾配を有すると共に、かかる排出流路28b’に連絡する第2の枠部材34の排出流路34c’の上面も、排出流路28b’
の上面に連続して第2の枠部材34の外部に向いて、上り勾配を有する。更に、流下孔110bを有する遮蔽板110についても、かかる排出流路34c’の下面に連続して電解槽10の内壁面に向かって上り勾配を有する下面を有する。なお、図示は省略するが、かかる下り勾配の構造は、第2の中間電極28において塩素ガスGを排出する他の排出流路の上面、それに連絡する第2の枠部材34の排出流路の上面及びそれに連絡する遮蔽板110の下面について同様である。また、陽極24の排出流路24bの上面等についても、同様の上り勾配を有していてもよい。
Similarly, as indicated by reference numerals in parentheses in FIG. 12, the chlorine gas G, which is an electrolytic reaction product, is discharged from the upper surface of the discharge passage 28b ′ communicating with the rising hole 28a of the second intermediate electrode 28. The upper surface of the discharge channel 34c ′ of the second frame member 34 that has an upward slope toward the outside of the second intermediate electrode 28 that is the direction and communicates with the discharge channel 28b ′ is also the discharge channel 28b. '
The second frame member 34 has an upward slope continuously from the upper surface of the second frame member 34. Further, the shielding plate 110 having the flow-down hole 110b also has a lower surface having an upward slope toward the inner wall surface of the electrolytic cell 10 continuously from the lower surface of the discharge channel 34c ′. Although not shown in the drawing, such a downwardly inclined structure is provided on the upper surface of another discharge channel for discharging the chlorine gas G at the second intermediate electrode 28 and the discharge channel of the second frame member 34 connected thereto. The same applies to the upper surface and the lower surface of the shielding plate 110 connected to the upper surface. Further, the upper surface of the discharge channel 24b of the anode 24 may have a similar upward slope.

以上の構成の電解装置3を用いて電解を行うと、代表的に第1の中間電極26の流下孔27aに連絡する排出流路27b’及び第1の中間電極26の上昇孔26aに連絡する排出流路26b’について説明すれば、電解反応生成物である溶融亜鉛Mは、第1の中間電極26の排出流路27b’の下り勾配を有する下面、第1の枠部材32の排出流路32d’の下り勾配を有する下面、及び遮蔽板100の下り勾配を有する上面に沿って流れた後、遮蔽板100の流下孔100aを介して、電解槽10内の液体電解質である溶融塩化亜鉛中を鉛直下方に流下し電解槽10の底部に溜められる一方で、電解反応生成物である塩素ガスGは、第1の中間電極26の排出流路26b’の上り勾配を有する上面、第1の枠部材32の排出流路32c’の上り勾配を有する上面、及び遮蔽板100の上り勾配を有する下面に沿って流れた後、遮蔽板100の流下孔100bを介して、電解槽10内の液体電解質である溶融塩化亜鉛中を鉛直上方に上昇し電解槽10の溶融塩化亜鉛の液面から電解槽10の外部に排出される。   When electrolysis is performed using the electrolysis apparatus 3 having the above-described configuration, the discharge channel 27b ′ that communicates with the flow down hole 27a of the first intermediate electrode 26 and the rising hole 26a of the first intermediate electrode 26 are typically communicated. Explaining the discharge channel 26 b ′, the molten zinc M, which is an electrolytic reaction product, is a bottom surface having a downward slope of the discharge channel 27 b ′ of the first intermediate electrode 26, and the discharge channel of the first frame member 32. After flowing along the lower surface having a downward slope of 32d ′ and the upper surface having the downward slope of the shielding plate 100, the molten zinc chloride, which is the liquid electrolyte in the electrolytic cell 10, passes through the flow-down hole 100a of the shielding plate 100. The chlorine gas G, which is an electrolytic reaction product, flows downward vertically and is stored in the bottom of the electrolytic cell 10, while the upper surface of the first intermediate electrode 26 having the upward slope of the discharge flow path 26b ′, the first Of the discharge flow path 32c ′ of the frame member 32. After flowing along the upper surface having the slope and the lower surface having the upward slope of the shielding plate 100, the molten zinc chloride, which is the liquid electrolyte in the electrolytic cell 10, vertically flows through the flow-down hole 100 b of the shielding plate 100. To the outside of the electrolytic cell 10 from the surface of the molten zinc chloride in the electrolytic cell 10.

なお、本変形例で説明した勾配を有する排出流路の構成は、第1の実施形態に適用できることはもちろんである。   Of course, the configuration of the discharge flow path having the gradient described in the present modification can be applied to the first embodiment.

以上の構成においては、更に、第1の中間電極に対応して、鉛直方向における第3の排出流路と第4の排出流路の間に遮蔽板を有することにより、各電解室の外部の液体電解質を介して流れる漏洩電流をより確実に低減でき、電流効率の低下をより確実に抑制することができる。   In the above configuration, a shield plate is provided between the third discharge channel and the fourth discharge channel in the vertical direction corresponding to the first intermediate electrode, so that the outside of each electrolysis chamber is provided. Leakage current flowing through the liquid electrolyte can be more reliably reduced, and a decrease in current efficiency can be more reliably suppressed.

また、遮蔽板が、第1の中間電極の第4の排出流路から排出される電解生成ガスを上昇させる上昇開口と、第1の中間電極の第3の排出流路から排出される電解生成溶融金属を流下させる流下開口と、を有することにより、電解槽における電極反応生成物の接触による逆反応をより確実に低減可能である。   Further, the shielding plate raises the electrolysis gas discharged from the fourth discharge flow path of the first intermediate electrode, and the electrolytic generation discharged from the third discharge flow path of the first intermediate electrode. By having the flow-down opening through which the molten metal flows down, the reverse reaction due to the contact of the electrode reaction product in the electrolytic cell can be more reliably reduced.

また、陰極の第1の排出流路の下面及び第1の中間電極の第3の排出流路の下面が、各々電解生成溶融金属の排出方向において下り勾配を有し、陽極の第2の排出流路の上面及び第1の中間電極の第4の排出流路の上面が、各々電解生成ガスの排出方向において上り勾配を有することにより、電解生成反応物をより確実に電解室から各電極内をスムースに通過させて排出することができ、電極反応生成物の接触による逆反応をより確実に低減可能である。   Further, the lower surface of the first discharge channel of the cathode and the lower surface of the third discharge channel of the first intermediate electrode each have a downward slope in the discharge direction of the electrolytically generated molten metal, and the second discharge of the anode The upper surface of the flow path and the upper surface of the fourth discharge flow path of the first intermediate electrode each have an upward gradient in the discharge direction of the electrolysis gas, so that the electrolysis reaction product can be more reliably transferred from the electrolysis chamber to each electrode. Can be smoothly passed and discharged, and the reverse reaction due to the contact of the electrode reaction product can be more reliably reduced.

(第3の実施形態)
次に、本発明の第3の実施形態における電解装置につき、更に図13及び図14をも参照して、詳細に説明する。
(Third embodiment)
Next, an electrolysis apparatus according to a third embodiment of the present invention will be described in detail with reference to FIGS.

図13は、本実施形態における電解装置の縦断面図であり、図2のZ−Z断面に相当する。また、図14は、本実施形態における電解装置の上面図である。   FIG. 13 is a vertical cross-sectional view of the electrolysis apparatus in the present embodiment, and corresponds to the ZZ cross section of FIG. FIG. 14 is a top view of the electrolysis apparatus in the present embodiment.

本実施形態における電解装置4は、第2の実施形態のものに対して、遮蔽板100’及び110’の構成が異なることが主たる相違点であり、残余の構成は同様である。よって
、本実施形態においては、かかる相違点に着目して説明することとし、同様な構成については同一の符号を付して適宜説明を簡略化又は省略する。
The main difference of the electrolyzer 4 in this embodiment is that the configurations of the shielding plates 100 ′ and 110 ′ are different from those of the second embodiment, and the remaining configuration is the same. Therefore, in the present embodiment, description will be made by paying attention to such differences, and the same components are denoted by the same reference numerals, and description thereof will be simplified or omitted as appropriate.

図13及び図14に示すように、本実施形態の電解装置4においては、遮蔽板100’及び110’に流下孔や上昇孔が設けられておらず、電解槽10において、側壁部の上部に設けられた供給口10U及び側壁部の下部に設けられた取り出し口10Lに加え、電解室40、42及び44の位置に対応した側壁部に電解質を供給する3つの供給口10E、10E及び10Eが各々設けられ、かつ遮蔽板100’及び110’の位置に対応した側壁部に電解反応生成物を排出する排出開口10c、10d、10e及び10fが各々設けられている。   As shown in FIGS. 13 and 14, in the electrolysis apparatus 4 of this embodiment, the shielding plates 100 ′ and 110 ′ are not provided with flow-down holes or ascending holes, and in the electrolytic cell 10, the upper part of the side wall portion. In addition to the supply port 10U provided and the extraction port 10L provided at the lower part of the side wall, three supply ports 10E, 10E and 10E for supplying electrolyte to the side wall corresponding to the positions of the electrolysis chambers 40, 42 and 44 are provided. Discharge openings 10c, 10d, 10e, and 10f for discharging electrolytic reaction products are respectively provided in the side walls corresponding to the positions of the shielding plates 100 ′ and 110 ′.

具体的には、排出開口10cは、電解槽10の内壁面と第1の枠部材32の外壁面との間を塞ぐ矩形板状の遮蔽板100’の上面と面一な下端部を有すると共に、電解槽10におけるx軸の正方向側及びy軸の正方向側の各縦壁面を、第1の枠部材32における全ての排出流路32d及び32fに対応して、最もy軸の負方向側の排出流路32dと同等か更にy軸の負方向側まで延在するy軸の方向の端部と、最もx軸の負方向側の排出流路32fと同等か更にx軸の負方向側まで延在するy軸の方向の端部と、を有するように、所定の面積で開口する。   Specifically, the discharge opening 10 c has a lower end portion that is flush with the upper surface of the rectangular plate-shaped shielding plate 100 ′ that blocks between the inner wall surface of the electrolytic cell 10 and the outer wall surface of the first frame member 32. The vertical wall surfaces on the positive direction side of the x axis and the positive direction side of the y axis in the electrolytic cell 10 correspond to all the discharge flow paths 32d and 32f in the first frame member 32, and are in the negative direction of the y axis. An end in the y-axis direction that extends to the negative direction side of the y-axis, or the same as the discharge flow path 32f closest to the negative direction of the x-axis, or further in the negative direction of the x-axis And an end portion in the y-axis direction extending to the side.

同様に、排出開口10dは、電解槽10の内壁面と第2の枠部材34の外壁面との間を塞ぐ矩形板状の遮蔽板110’の上面と面一な下端部を有すると共に、電解槽10におけるx軸の正方向側及びy軸の正方向側の各縦壁面を、第2の枠部材34における全ての排出流路34d及び34fに対応して、最もy軸の負方向側の排出流路34dと同等か更にy軸の負方向側まで延在するy軸の方向の端部と、最もx軸の負方向側の排出流路34fと同等か更にx軸の負方向側まで延在するy軸の方向の端部と、を有するように、所定の面積で開口する。   Similarly, the discharge opening 10d has a lower end portion that is flush with the upper surface of a rectangular plate-shaped shielding plate 110 ′ that covers the space between the inner wall surface of the electrolytic cell 10 and the outer wall surface of the second frame member 34, as well as electrolysis. The vertical wall surfaces on the positive direction side of the x axis and the positive direction side of the y axis in the tank 10 correspond to all the discharge flow paths 34d and 34f in the second frame member 34, and are closest to the negative direction side of the y axis. An end in the y-axis direction that extends to the negative direction side of the y-axis, or the same as the discharge flow path 34d, and the discharge flow path 34f that is closest to the negative direction side of the x-axis or further to the negative direction side of the x-axis An opening with a predetermined area so as to have an end in the direction of the y-axis extending.

また、排出開口10eは、電解槽10の内壁面と第1の枠部材32の外壁面との間を塞ぐ矩形板状の遮蔽板100’の上面と面一な下端部を有すると共に、電解槽10におけるx軸の負方向側及びy軸の負方向側の各縦壁面を、第1の枠部材32における全ての排出流路32c及び32eに対応して、最もy軸の正方向側の排出流路32cと同等か更にy軸の正方向側まで延在するy軸の方向の端部と、最もx軸の正方向側の排出流路32eと同等か更にx軸の正方向側まで延在するy軸の方向の端部と、を有するように、所定の面積で開口する。   The discharge opening 10e has a lower end flush with the upper surface of the rectangular plate-shaped shielding plate 100 ′ that covers the space between the inner wall surface of the electrolytic cell 10 and the outer wall surface of the first frame member 32, and the electrolytic cell. 10 corresponding to all the discharge flow paths 32c and 32e in the first frame member 32, the vertical wall surfaces on the negative direction side of the x axis and the negative direction side of the y axis in FIG. An end in the y-axis direction that extends to the positive direction side of the y-axis, which is the same as the flow path 32c, and a discharge flow path 32e that is closest to the positive direction side of the x-axis or further extends to the positive direction side of the x-axis. An opening with a predetermined area is provided so as to have an end portion in the direction of the existing y axis.

同様に、排出開口10fは、電解槽10の内壁面と第2の枠部材34の外壁面との間を塞ぐ矩形板状の遮蔽板110’の上面と面一な下端部を有すると共に、電解槽10におけるx軸の負方向側及びy軸の負方向側の各縦壁面を、第2の枠部材34における全ての排出流路34c及び34eに対応して、最もy軸の正方向側の排出流路34cと同等か更にy軸の正方向側まで延在するy軸の方向の端部と、最もx軸の正方向側の排出流路34eと同等か更にx軸の正方向側まで延在するy軸の方向の端部と、を有するように、所定の面積で開口する。   Similarly, the discharge opening 10f has a lower end portion that is flush with the upper surface of the rectangular plate-shaped shielding plate 110 ′ that closes the space between the inner wall surface of the electrolytic cell 10 and the outer wall surface of the second frame member 34, and is used for electrolysis. The vertical wall surfaces on the negative direction side of the x axis and the negative direction side of the y axis in the tank 10 correspond to all the discharge flow paths 34c and 34e in the second frame member 34, and are closest to the positive direction side of the y axis. An end in the y-axis direction that extends to the positive direction side of the y-axis, which is the same as or more than the discharge flow path 34c, and the discharge flow path 34e on the most positive side of the x-axis or further to the positive direction side of the x-axis An opening with a predetermined area so as to have an end in the direction of the y-axis extending.

なお、電解槽10の排出開口10c、10d、10e及び10fは、排出させる電解反応生物の流量が少ない場合等には、各々間欠的な複数の開口としてもよいし、開口の面積を小さく設定することも可能である。   The discharge openings 10c, 10d, 10e and 10f of the electrolytic cell 10 may each be a plurality of intermittent openings when the flow rate of electrolytic reaction organisms to be discharged is small, etc. It is also possible.

以上の構成の電解装置4を用いて、各供給口10U及び10Eから溶融塩化亜鉛を供給して電解を行うと、第2の電解室42及び第3の電解室44で生成された溶融亜鉛Mは、各々対応して、第1の中間電極26における排出流路27b及び27c並びにこれらに対
応して連絡する第1の枠部材32における排出流路32d及び32f、並びに第2の中間電極28における排出流路29b及び29c並びにこれらに対応して連絡する第2の枠部材34における排出流路34d及び34fを介して、第1の中間電極26及び第2の中間電極28の外部に排出された後、対応する遮蔽板100’及び110’の上面に沿って電解槽10の内壁面に向かって流れて、電解槽10の排出開口10c及び10dに到達して流れ込み、排出開口10L、10c及び10dを介して、電解槽10の外部に排出され、必要に応じて図示を省略する貯留部に収容される。
When electrolysis is performed by supplying molten zinc chloride from the supply ports 10U and 10E using the electrolytic device 4 having the above configuration, the molten zinc M generated in the second electrolytic chamber 42 and the third electrolytic chamber 44 is produced. Respectively correspond to the discharge channels 27b and 27c in the first intermediate electrode 26, the discharge channels 32d and 32f in the first frame member 32 corresponding to these, and the second intermediate electrode 28. Discharged to the outside of the first intermediate electrode 26 and the second intermediate electrode 28 through the discharge passages 29b and 29c and the discharge passages 34d and 34f in the second frame member 34 corresponding to them. Then, it flows toward the inner wall surface of the electrolytic cell 10 along the upper surfaces of the corresponding shielding plates 100 ′ and 110 ′, reaches the discharge openings 10c and 10d of the electrolytic cell 10, and flows into the discharge openings 10L and 10L. And through 10d, it is discharged to the outside of the electrolytic cell 10 is accommodated in the reservoir is not shown if necessary.

一方で、第1の電解室40及び第2の電解室42で生成された塩素ガスGは、各々対応して、第1の中間電極26における排出流路26b及び26c並びにこれらに対応して連絡する第1の枠部材32における排出流路32c及び32e、並びに第2の中間電極28における排出流路28b及び28c並びにこれらに対応して連絡する第2の枠部材34における排出流路34c及び34eを介して、第1の中間電極26及び第2の中間電極28の外部に排出された後、対応する遮蔽板100’及び110’の下面に沿って電解槽10の内壁面に向かって流れて、電解槽10の排出開口10e及び10fに到達して流れ込み、排出開口10e及び10fを介して、電解槽10の外部に排出され、必要に応じて図示を省略する貯留部に収容される。   On the other hand, the chlorine gas G generated in the first electrolysis chamber 40 and the second electrolysis chamber 42 corresponds to the discharge passages 26b and 26c in the first intermediate electrode 26 and communicates with these. The discharge flow paths 32c and 32e in the first frame member 32, the discharge flow paths 28b and 28c in the second intermediate electrode 28, and the discharge flow paths 34c and 34e in the second frame member 34 that communicate with them. Through the first intermediate electrode 26 and the second intermediate electrode 28, and then flow toward the inner wall surface of the electrolytic cell 10 along the lower surfaces of the corresponding shielding plates 100 ′ and 110 ′. , Reaches the discharge openings 10e and 10f of the electrolytic cell 10, flows in, is discharged to the outside of the electrolytic cell 10 through the discharge openings 10e and 10f, and is accommodated in a storage unit (not shown) as necessary.

なお、第2の実施形態の変形例で説明した勾配を有する排出流路等の構成は、本実施形態に適用できることはもちろんである。   It should be noted that the configuration of the discharge channel having a gradient described in the modification of the second embodiment can be applied to this embodiment.

また、本実施形態における電解槽10が、電解室40、42及び44の位置に対応した側壁部に電解質を供給する3つの供給口10E、10E及び10Eを各々有し、かつ遮蔽板100’及び110’の位置に対応した側壁部に電解反応生成物を排出する排出開口10c、10d、10e及び10fを各々有する構成は、各変形例を含む第1及び第2の実施形態にもちろん適用可能である。   Moreover, the electrolytic cell 10 in this embodiment has three supply ports 10E, 10E, and 10E that supply electrolyte to the side wall portions corresponding to the positions of the electrolytic chambers 40, 42, and 44, respectively, and the shielding plates 100 ′ and The structure having the discharge openings 10c, 10d, 10e, and 10f for discharging the electrolytic reaction products in the side wall corresponding to the position 110 ′ can be applied to the first and second embodiments including the modifications. is there.

以上の構成においては、更に、第1の中間電極に対応して、鉛直方向における第3の排出流路と第4の排出流路の間に遮蔽板を有する構成に加えて、電解槽が、第1の中間電極の第4の排出流路から排出される電解生成ガスを外部に排出する排出開口と、第1の中間電極の第3の排出流路から排出される電解生成溶融金属を排出する排出開口と、を有することにより、電解槽における電極反応生成物の接触による逆反応をより確実に低減可能である。   In the above configuration, in addition to the configuration having a shielding plate between the third discharge channel and the fourth discharge channel in the vertical direction corresponding to the first intermediate electrode, the electrolytic cell includes: A discharge opening for discharging the electrolytically generated gas discharged from the fourth discharge channel of the first intermediate electrode to the outside, and an electrolytically generated molten metal discharged from the third discharge channel of the first intermediate electrode Therefore, the reverse reaction caused by the contact of the electrode reaction product in the electrolytic cell can be more reliably reduced.

(第4の実施形態)
次に、本発明の第4の実施形態における電解装置につき、更に図15から図20をも参照して、詳細に説明する。
(Fourth embodiment)
Next, an electrolysis apparatus according to a fourth embodiment of the present invention will be described in detail with reference to FIGS. 15 to 20.

図15は、本実施形態における電解装置の縦断面図であり、位置的には図1に相当する。図16は、本実施形態における電解装置の電極ユニット及び電極枠を示す側面図であり、位置的には図3に相当する。図17は、本実施形態における電解装置の電極ユニットの陰極についての横断面図であり、図15のJ−J断面に相当する。図18は、本実施形態における電解装置の電極ユニットの陽極についての横断面図であり、図15のK−K断面に相当する。図19は、本実施形態における電解装置の電極ユニットの第1中間電極又は第2中間電極についての横断面図であり、図15のL−L断面又はM−M断面に相当する。また、図20は、本実施形態における電解装置の電極ユニットの第1中間電極又は第2中間電極についての横断面図であり、図15のN−N断面又はO−O断面に相当する。   FIG. 15 is a longitudinal sectional view of the electrolyzer according to this embodiment, and corresponds to FIG. 1 in terms of position. FIG. 16 is a side view showing an electrode unit and an electrode frame of the electrolysis apparatus in the present embodiment, and corresponds to FIG. 3 in terms of position. FIG. 17 is a cross-sectional view of the cathode of the electrode unit of the electrolysis apparatus according to this embodiment, and corresponds to the JJ cross section of FIG. FIG. 18 is a cross-sectional view of the anode of the electrode unit of the electrolysis apparatus according to this embodiment, and corresponds to the KK cross section of FIG. FIG. 19 is a cross-sectional view of the first intermediate electrode or the second intermediate electrode of the electrode unit of the electrolysis apparatus according to this embodiment, and corresponds to the LL cross section or the MM cross section of FIG. FIG. 20 is a cross-sectional view of the first intermediate electrode or the second intermediate electrode of the electrode unit of the electrolysis apparatus according to this embodiment, and corresponds to the NN cross section or the OO cross section of FIG.

本実施形態における電解装置5においては、第1の実施形態の陰極22、陽極24、第1の中間電極26及び第2の中間電極28を有する電極ユニット20及び第1の枠部材3
2、第2の枠部材34及び第3の枠部材36を有する電極枠30が、陰極122、陽極124、第1の中間電極126及び第2の中間電極128を有する電極ユニット120及び第1の枠部材132、第2の枠部材134及び第3の枠部材136を有する電極枠130に置換されていることが主たる相違点であり、残余の構成は同様である。よって、本実施形態においては、かかる相違点に着目して説明することとし、同様な構成については同一の符号を付して適宜説明を簡略化又は省略する。
In the electrolysis apparatus 5 in the present embodiment, the electrode unit 20 and the first frame member 3 having the cathode 22, the anode 24, the first intermediate electrode 26, and the second intermediate electrode 28 of the first embodiment.
2, the electrode frame 30 having the second frame member 34 and the third frame member 36 includes a cathode 122, an anode 124, a first intermediate electrode 126, and an electrode unit 120 having a second intermediate electrode 128 and a first The main difference is that the electrode frame 130 having the frame member 132, the second frame member 134, and the third frame member 136 is replaced, and the remaining configuration is the same. Therefore, in the present embodiment, description will be made by paying attention to such differences, and the same components are denoted by the same reference numerals, and description thereof will be simplified or omitted as appropriate.

図15から図20に示すように、本実施形態の電解装置5の電解槽10内には、電極ユニット120及び電極枠130が収容される。   As shown in FIGS. 15 to 20, an electrode unit 120 and an electrode frame 130 are accommodated in the electrolytic cell 10 of the electrolysis apparatus 5 of the present embodiment.

具体的には、かかる電極ユニット120においては、電解槽10の底部に固定された陰極122及び鉛直上方で陰極122に対向する陽極124が設けられ、陰極122及び陽極124の間には、鉛直上方に向かって順次第1の中間電極126及び第2の中間電極128が設けられる。つまり、陰極122、第1の中間電極126、第2の中間電極128及び陽極124は、この順で典型的には第1の枠部材132、第2の枠部材134及び第3の枠部材136から成る電極枠130を介し鉛直上方に向かって積層されてユニット化され、電極ユニット120を成している。また、陰極122と第1の中間電極126との間には、第1の電解室40が画成され、第1の中間電極126と第2の中間電極128との間には、第2の電解室42が画成され、かつ、第2の中間電極128と陽極124との間には、第3の電解室44が画成される。   Specifically, in the electrode unit 120, a cathode 122 fixed to the bottom of the electrolytic cell 10 and an anode 124 vertically opposite to the cathode 122 are provided, and between the cathode 122 and the anode 124, a vertically upward position is provided. A first intermediate electrode 126 and a second intermediate electrode 128 are provided in order. In other words, the cathode 122, the first intermediate electrode 126, the second intermediate electrode 128, and the anode 124 are typically the first frame member 132, the second frame member 134, and the third frame member 136 in this order. An electrode unit 120 is formed by stacking vertically and vertically as a unit through an electrode frame 130 made of A first electrolysis chamber 40 is defined between the cathode 122 and the first intermediate electrode 126, and a second electrolysis chamber 40 is defined between the first intermediate electrode 126 and the second intermediate electrode 128. An electrolysis chamber 42 is defined, and a third electrolysis chamber 44 is defined between the second intermediate electrode 128 and the anode 124.

詳しくは、矩形板状の部材である陰極122は、その基面122Bから鉛直上方に向けて立設される複数の柱状部122Aを有し、かかる柱状部122Aの間では、複数の間隙部122aが画成される。柱状部122Aの上面は、陰極面122sであり、柱状部122Aの縦壁部と陰極面122sとの間は、断面円弧状のR形状を有する角部122rで連絡される。更に、陰極122は、複数の柱状部122Aを囲むように基面122Bから鉛直上方に向けて立設される壁部を貫くと共に、x軸の正方向に延在して陰極122の外部に連通する複数の排出流路122bを有する。   Specifically, the cathode 122, which is a rectangular plate-like member, has a plurality of columnar portions 122A standing vertically upward from the base surface 122B, and a plurality of gap portions 122a are provided between the columnar portions 122A. Is defined. The upper surface of the columnar portion 122A is a cathode surface 122s, and the vertical wall portion of the columnar portion 122A and the cathode surface 122s are connected to each other by a corner portion 122r having an R shape having an arcuate cross section. Further, the cathode 122 passes through a wall portion standing vertically upward from the base surface 122B so as to surround the plurality of columnar portions 122A, and extends in the positive direction of the x-axis to communicate with the outside of the cathode 122. A plurality of discharge channels 122b.

矩形板状の部材である第1の中間電極126は、その鉛直下方側の基面126Bから鉛直下方に向けて立設される複数の柱状部126Aを有し、かかる柱状部126Aの間では、複数の間隙部126aが画成されると共に、その鉛直上方側の基面127Bから鉛直上方に向けて立設される複数の柱状部127Aを有し、かかる柱状部127Aの間では、複数の間隙部127aが画成される。柱状部126Aの下面は、陽極面126sであり、柱状部126Aの縦壁部と陽極面126sとの間は、断面円弧状のR形状を有する角部126rで連絡されると共に、柱状部127Aの上面は、陰極面127sであり、柱状部127Aの縦壁部と陰極面127sとの間は、断面円弧状のR形状を有する角部127rで連絡される。更に、第1の中間電極126は、複数の柱状部126Aを囲むように基面126Bから鉛直下方に向けて立設される壁部を貫くと共に、x軸の負方向に延在して第1の中間電極126の外部に連通する複数の排出流路126bを有すると共に、複数の柱状部127Aを囲むように基面127Bから鉛直上方に向けて立設される壁部を貫くと共に、x軸の正方向に延在して第1の中間電極126の外部に連通する複数の排出流路127bを有する。   The first intermediate electrode 126, which is a rectangular plate-shaped member, has a plurality of columnar portions 126A erected vertically downward from a base surface 126B on the vertically lower side, and between the columnar portions 126A, A plurality of gap portions 126a are defined, and a plurality of columnar portions 127A are provided to stand vertically upward from a base surface 127B on the vertically upper side. Between the columnar portions 127A, a plurality of gaps are provided. Part 127a is defined. The lower surface of the columnar portion 126A is an anode surface 126s, and the vertical wall portion of the columnar portion 126A and the anode surface 126s are connected to each other by a corner portion 126r having an R shape with an arcuate cross section, and the columnar portion 127A. The upper surface is a cathode surface 127s, and the vertical wall portion of the columnar portion 127A and the cathode surface 127s are connected by a corner portion 127r having an R shape with a circular arc cross section. Further, the first intermediate electrode 126 penetrates a wall portion standing vertically downward from the base surface 126B so as to surround the plurality of columnar portions 126A, and extends in the negative direction of the x-axis. A plurality of discharge passages 126b communicating with the outside of the intermediate electrode 126, and through a wall portion standing vertically upward from the base surface 127B so as to surround the plurality of columnar portions 127A, A plurality of discharge passages 127b extending in the positive direction and communicating with the outside of the first intermediate electrode 126 are provided.

矩形板状の部材である第2の中間電極128は、第1の中間電極126と同一の部材であって、その鉛直下方側の基面128Bから鉛直下方に向けて立設される複数の柱状部128Aを有し、かかる柱状部128Aの間では、複数の間隙部128aが画成されると共に、その鉛直上方側の基面129Bから鉛直上方に向けて立設される複数の柱状部129Aを有し、かかる柱状部129Aの間では、複数の間隙部129aが画成される。柱状部128Aの下面は、陽極面128sであり、柱状部128Aの縦壁部と陽極面128sと
の間は、断面円弧状のR形状を有する角部128rで連絡されると共に、柱状部129Aの上面は、陰極面129sであり、柱状部129Aの縦壁部と陰極面129sとの間は、断面円弧状のR形状を有する角部129rで連絡される。更に、第2の中間電極128は、複数の柱状部128Aを囲むように基面128Bから鉛直下方に向けて立設される壁部を貫くと共に、x軸の負方向に延在して第2の中間電極128の外部に連通する複数の排出流路128bを有すると共に、複数の柱状部129Aを囲むように基面129Bから鉛直上方に向けて立設される壁部を貫くと共に、x軸の正方向に延在して第2の中間電極128の外部に連通する複数の排出流路129bを有する。
The second intermediate electrode 128, which is a rectangular plate-like member, is the same member as the first intermediate electrode 126, and has a plurality of columnar shapes standing vertically downward from the base surface 128B on the vertical lower side. Between the columnar portions 128A, a plurality of gap portions 128a are defined, and a plurality of columnar portions 129A standing vertically upward from a base surface 129B on the vertical upper side are formed. And a plurality of gap portions 129a are defined between the columnar portions 129A. The lower surface of the columnar portion 128A is an anode surface 128s, and the vertical wall portion of the columnar portion 128A and the anode surface 128s are connected to each other by a corner portion 128r having an arcuate cross-sectional shape, and the columnar portion 129A. The upper surface is a cathode surface 129s, and the vertical wall portion of the columnar portion 129A and the cathode surface 129s are connected by a corner portion 129r having an R shape with an arcuate cross section. Furthermore, the second intermediate electrode 128 passes through a wall portion standing vertically downward from the base surface 128B so as to surround the plurality of columnar portions 128A, and extends in the negative direction of the x-axis to form the second intermediate electrode 128B. A plurality of discharge passages 128b communicating with the outside of the intermediate electrode 128, and through a wall portion standing vertically upward from the base surface 129B so as to surround the plurality of columnar portions 129A, A plurality of discharge flow paths 129b extending in the positive direction and communicating with the outside of the second intermediate electrode 128 are provided.

矩形板状の部材である陽極124は、電流フィーダ60の取付け部を除き陰極122と同一な部材であるが、上下に反転し、かつ鉛直方向に180°回転されて配置され、その基面124Bから鉛直下方に向けて立設される複数の柱状部124Aを有し、かかる柱状部124Aの間では、複数の間隙部124aが画成される。柱状部124Aの下面は、陽極面124sであり、柱状部124Aの縦壁部と陽極面124sとの間は、断面円弧状のR形状を有する角部124rで連絡される。更に、陽極124は、複数の柱状部124Aを囲むように基面124Bから鉛直下方に向けて立設される壁部を貫くと共に、x軸の負方向に延在して陽極124の外部に連通する複数の排出流路124bを有する。   The anode 124, which is a rectangular plate member, is the same member as the cathode 122 except for the mounting portion of the current feeder 60. However, the anode 124 is turned upside down and rotated 180 ° in the vertical direction. A plurality of columnar portions 124A standing vertically downward from each other, and a plurality of gap portions 124a are defined between the columnar portions 124A. The lower surface of the columnar portion 124A is an anode surface 124s, and the vertical wall portion of the columnar portion 124A and the anode surface 124s are connected to each other by a corner portion 124r having an R shape having an arcuate cross section. Furthermore, the anode 124 passes through a wall portion standing vertically downward from the base surface 124B so as to surround the plurality of columnar portions 124A, and extends in the negative direction of the x axis to communicate with the outside of the anode 124. A plurality of discharge channels 124b.

ここで、陰極122の複数の間隙部122a、第1の中間電極126の複数の間隙部126a及び複数の間隙部127a、第2の中間電極128の複数の間隙部128a及び複数の間隙部129a、並びに陽極124の複数の間隙部124aが、電極ユニット120、つまり複極式の電極における柱状構造である。   Here, a plurality of gaps 122a of the cathode 122, a plurality of gaps 126a and a plurality of gaps 127a of the first intermediate electrode 126, a plurality of gaps 128a and a plurality of gaps 129a of the second intermediate electrode 128, The plurality of gaps 124a of the anode 124 has a columnar structure in the electrode unit 120, that is, a bipolar electrode.

また、陰極122の間隙部122a、第1の中間電極126の1間隙部27a及び第2の中間電極28の間隙部129aが、電解質40、42及び44から溶融亜鉛を対応して流下させる流下流路に相当し、陽極124の間隙部124a、第1の中間電極126の間隙部126a及び第2の中間電極128の間隙部128aが、電解質40、42及び44から塩素ガスを対応して上昇させる上昇流路に相当する。    Further, the gap 122a of the cathode 122, the one gap 27a of the first intermediate electrode 126, and the gap 129a of the second intermediate electrode 28 cause the molten zinc to flow down from the electrolytes 40, 42 and 44 correspondingly. The gap 124a of the anode 124, the gap 126a of the first intermediate electrode 126, and the gap 128a of the second intermediate electrode 128 raise the chlorine gas from the electrolytes 40, 42, and 44 correspondingly. Corresponds to the rising channel.

第1の枠部材132は、鉛直方向に直立した角筒状の部材であり、陰極122と第1の中間電極126との間に画成される第1の電解室40に対して、電解槽10内の液体電解質である溶融塩化亜鉛を供給するための供給流路132bを有し、供給流路132b、132bは、y軸の方向で対向する。ここで、第1の枠部材132は、第1の電解室40に向かって突出する突出部132pを有し、供給流路132bは、かかる突出部132pを貫通して設けられる。更に、第1の枠部材132は、第1の中間電極126の排出流路126bに連絡して第1の中間電極126の外部に連通させる排出流路132cと、第1の中間電極126の排出流路127bに連絡して第1の中間電極126の外部に連通させる排出流路132dとを有する。   The first frame member 132 is a rectangular tube-like member that stands upright in the vertical direction, and is an electrolytic cell with respect to the first electrolysis chamber 40 that is defined between the cathode 122 and the first intermediate electrode 126. 10 has a supply channel 132b for supplying molten zinc chloride, which is a liquid electrolyte, and the supply channels 132b and 132b face each other in the y-axis direction. Here, the 1st frame member 132 has the protrusion part 132p which protrudes toward the 1st electrolysis chamber 40, and the supply flow path 132b is provided through this protrusion part 132p. Further, the first frame member 132 communicates with the discharge channel 126 b of the first intermediate electrode 126 and communicates with the outside of the first intermediate electrode 126, and the discharge of the first intermediate electrode 126. A discharge channel 132d communicating with the channel 127b and communicating with the outside of the first intermediate electrode 126;

第2の枠部材134は、第1の枠部材132と同一な部材であって、鉛直方向に直立した角筒状の部材であり、第1の中間電極126と第2の中間電極128との間に画成される第2の電解室42に対して、電解槽10内の液体電解質である溶融塩化亜鉛を供給するための供給流路134bを有し、供給流路134b、134bは、y軸の方向で対向する。ここで、第2の枠部材134は、第2の電解室42に向かって突出する突出部134pを有し、供給流路134bは、かかる突出部134pを貫通して設けられる。更に、第2の枠部材134は、第2の中間電極128の排出流路128bに連絡して第2の中間電極128の外部に連通させる排出流路134cと、第2の中間電極128の排出流路129bに連絡して第2の中間電極128の外部に連通させる排出流路134dとを有する。   The second frame member 134 is the same member as the first frame member 132, and is a rectangular tube-like member that stands upright in the vertical direction. The second frame member 134 includes a first intermediate electrode 126 and a second intermediate electrode 128. A supply channel 134b for supplying molten zinc chloride, which is a liquid electrolyte in the electrolytic cell 10, is provided to the second electrolysis chamber 42 defined between the supply channels 134b and 134b. Opposite in the direction of the axis. Here, the second frame member 134 has a protrusion 134p that protrudes toward the second electrolysis chamber 42, and the supply flow path 134b is provided through the protrusion 134p. Further, the second frame member 134 is connected to the discharge channel 128 b of the second intermediate electrode 128 and communicates with the outside of the second intermediate electrode 128, and the discharge of the second intermediate electrode 128. A discharge channel 134d communicating with the channel 129b and communicating with the outside of the second intermediate electrode 128 is provided.

第3の枠部材136は、第1の枠部材132及び第2の枠部材134における排出流路
を省略した部材である鉛直方向に直立した角筒状の部材であり、第2の中間電極128と陽極124との間に画成される第3の電解室44に対して、電解槽10内の液体電解質である溶融塩化亜鉛を供給するための供給流路136bを有し、供給流路136b、1346は、y軸の方向で対向する。ここで、第3の枠部材136は、第3の電解室44に向かって突出する突出部136pを有し、は、かかる突出部136pを貫通して設けられる。
The third frame member 136 is a member in the shape of a square tube upright in the vertical direction, which is a member in which the discharge flow paths in the first frame member 132 and the second frame member 134 are omitted, and the second intermediate electrode 128. A supply channel 136b for supplying molten zinc chloride, which is a liquid electrolyte in the electrolytic cell 10, to the third electrolysis chamber 44 defined between the anode 124 and the anode 124. , 1346 are opposed in the direction of the y-axis. Here, the third frame member 136 has a protruding portion 136p protruding toward the third electrolysis chamber 44, and is provided through the protruding portion 136p.

ここで、陰極122の複数の排出流路122bは、x軸の正方向側で外部に開口し、第1の中間電極126の複数の排出流路127b及び第2の中間電極128の複数の排出流路129bは、電極枠130の排出流路132d及び排出流路134dを対応して介してx軸の正方向側で外部に開口する一方で、陽極124の複数の排出流路124bは、x軸の負方向側で外部に開口し、第1の中間電極126の複数の排出流路126b及び第2の中間電極128の複数の排出流路128bは、電極枠130の排出流路132c及び排出流路134cを対応して介してx軸の負方向側で外部に開口しているから、溶融塩化亜鉛の電解により生成される溶融亜鉛及び塩素ガスの各排出方向がx−y平面において重ならないように異なっている。   Here, the plurality of discharge passages 122b of the cathode 122 open to the outside on the positive direction side of the x axis, and the plurality of discharge passages 127b of the first intermediate electrode 126 and the plurality of discharge passages of the second intermediate electrode 128. The flow path 129b opens to the outside on the positive direction side of the x-axis via the discharge flow path 132d and the discharge flow path 134d of the electrode frame 130, while the plurality of discharge flow paths 124b of the anode 124 have x A plurality of discharge channels 126b of the first intermediate electrode 126 and a plurality of discharge channels 128b of the second intermediate electrode 128 are opened to the outside on the negative direction side of the shaft, and the discharge channels 132c and the discharge of the electrode frame 130 are discharged. Since the channel 134c is opened to the outside on the negative direction side of the x-axis, the discharge directions of the molten zinc and chlorine gas generated by electrolysis of molten zinc chloride do not overlap in the xy plane. So different.

更に、このように陰極122の複数の排出流路122b、第1の中間電極126の複数の排出流路127b及び第2の中間電極128の複数の排出流路129bが、x軸の正方向側で外部に開口すると共に、陽極124の複数の排出流路124b、第1の中間電極126の複数の排出流路126b及び第2の中間電極128の複数の排出流路128bが、x軸の負方向側で外部に開口する構成に加えて、電解室40、42及び44は、電極枠130の供給流路132b、134b及び136bを対応して介して、y軸の方向の両側で外部に開口しているから、電解により生成される溶融亜鉛を排出する排出流路の排出端と、電解により生成される塩素ガスを排出する排出流路の排出端と、電解質である溶融塩化亜鉛を電解室へ供給する導入端と、が、電極枠130で支持された電極ユニット120の各側面において分散して配置されており、電解により生成される溶融亜鉛の排出方向、電解により生成される塩素ガスの排出方向及び電解質である溶融塩化亜鉛の電解室への供給方向が、x−y平面上で互いに重ならないように異なっている。   Further, the plurality of discharge flow paths 122b of the cathode 122, the plurality of discharge flow paths 127b of the first intermediate electrode 126, and the plurality of discharge flow paths 129b of the second intermediate electrode 128 are thus formed on the positive side of the x axis. And the plurality of discharge channels 124b of the anode 124, the plurality of discharge channels 126b of the first intermediate electrode 126, and the plurality of discharge channels 128b of the second intermediate electrode 128 are negative in the x axis. In addition to the structure that opens to the outside on the direction side, the electrolysis chambers 40, 42, and 44 open to the outside on both sides in the y-axis direction through the supply flow paths 132b, 134b, and 136b of the electrode frame 130, respectively. Therefore, the discharge end of the discharge flow path for discharging molten zinc generated by electrolysis, the discharge end of the discharge flow path for discharging chlorine gas generated by electrolysis, and the molten zinc chloride as an electrolyte in the electrolysis chamber Supply end to supply Are dispersed on each side of the electrode unit 120 supported by the electrode frame 130, and are a discharge direction of molten zinc generated by electrolysis, a discharge direction of chlorine gas generated by electrolysis, and an electrolyte. The directions of supplying molten zinc chloride to the electrolysis chamber are different so as not to overlap each other on the xy plane.

また、本実施形態の電解装置5においても、より簡略化した基本的な構成として、中間電極は、少なくとも1つ設ければ足り、例えば、中間電極として第1の中間電極126だけを設けた場合には、第1の中間電極126の上面に陰極部として機能する陰極面127sと陽極124の下面である陽極面124sとが対向し、それらの間で第2の電解室が画成される。   Also, in the electrolysis apparatus 5 of the present embodiment, as a simpler basic configuration, it is sufficient to provide at least one intermediate electrode. For example, when only the first intermediate electrode 126 is provided as the intermediate electrode. The cathode surface 127s functioning as a cathode portion and the anode surface 124s which is the lower surface of the anode 124 are opposed to the upper surface of the first intermediate electrode 126, and a second electrolytic chamber is defined therebetween.

このように、第2の中間電極128が省略されている場合には、溶融塩化亜鉛の電解により生成される溶融亜鉛を排出する陰極122の複数の排出流路122b及び第1の中間電極126の複数の排出流路127bが、x軸の正方向側及びy軸の正方向側で外部に開口すると共に、溶融塩化亜鉛の電解により生成される塩素ガスを排出する陽極124の複数の排出流路124b及び第1の中間電極126の複数の排出流路126bが、x軸の負方向側及びy軸の負方向側で外部に開口する構成を採用し、かつ、第1の電解室40に溶融亜鉛を供給する第1の枠部材132の供給流路をx軸の負方向側及びy軸の負方向側で外部に開口させ、第2の電解室42に溶融亜鉛を供給する第2の枠部材134の供給流路をx軸の正方向側及びy軸の正方向側で外部に開口させてもよい。かかる構成によれば、溶融塩化亜鉛の電解により生成される溶融亜鉛及び塩素ガスの各排出方向がx−y平面において重ならないことに加え、第1の中間電極126の複数の排出流路127bから排出される溶融亜鉛の排出方向と、第1の電解室40に溶融亜鉛を供給する第1の枠部材132の供給流路の供給方向と、がx−y平面において重ならず、かつ、第1の中間電極126の複数の排出流路127bから排出される塩素ガスの排出方向と、第2の電解室42に溶融亜鉛を供給する第2の枠部材134の供給流路の供給方向と、がx−y平面において
重ならない。
Thus, when the 2nd intermediate electrode 128 is abbreviate | omitted, the several discharge flow path 122b of the cathode 122 which discharges the molten zinc produced | generated by electrolysis of molten zinc chloride, and the 1st intermediate electrode 126 A plurality of discharge channels 127b open to the outside on the positive direction side of the x-axis and the positive direction side of the y-axis, and a plurality of discharge channels of the anode 124 that discharges chlorine gas generated by electrolysis of molten zinc chloride 124b and the plurality of discharge passages 126b of the first intermediate electrode 126 are configured to open to the outside on the negative direction side of the x axis and the negative direction side of the y axis, and are melted in the first electrolysis chamber 40. A second frame for supplying molten zinc to the second electrolysis chamber 42 by opening the supply flow path of the first frame member 132 for supplying zinc to the outside on the negative direction side of the x axis and the negative direction side of the y axis. The supply flow path of the member 134 is connected to the positive direction side of the x axis and the positive side of the y axis. It may be outside is opened in the other side. According to such a configuration, the discharge directions of the molten zinc and chlorine gas generated by electrolysis of molten zinc chloride do not overlap in the xy plane, and the plurality of discharge channels 127b of the first intermediate electrode 126 are not overlapped. The discharge direction of the discharged molten zinc and the supply direction of the supply flow path of the first frame member 132 that supplies the molten zinc to the first electrolysis chamber 40 do not overlap in the xy plane, and A discharge direction of chlorine gas discharged from the plurality of discharge passages 127b of one intermediate electrode 126, a supply direction of a supply passage of the second frame member 134 for supplying molten zinc to the second electrolysis chamber 42, Do not overlap in the xy plane.

つまり、溶融塩化亜鉛の電解により生成される溶融亜鉛及び塩素ガスの各排出方向がx−y平面において重ならない構成を採用することに加え、少なくとも、第1の中間電極126の複数の排出流路127bから排出される溶融亜鉛の排出方向と、第1の中間電極126の直下の電解室40に溶融亜鉛を供給する第1の枠部材132の供給流路の供給方向と、がx−y平面において重ならず、かつ、第1の中間電極126の複数の排出流路127bから排出される塩素ガスの排出方向と、第1の中間電極126の直上の電解室42に溶融亜鉛を供給する第2の枠部材134の供給流路の供給方向と、がx−y平面において重ならないことが、電解生成物である溶融亜鉛及び塩素ガスの排出方向と、電解質である溶融亜鉛の供給方向と、の間の関係における基本的な条件である。   That is, in addition to adopting a configuration in which the discharge directions of molten zinc and chlorine gas generated by electrolysis of molten zinc chloride do not overlap in the xy plane, at least a plurality of discharge channels of the first intermediate electrode 126 The discharge direction of the molten zinc discharged from 127b and the supply direction of the supply flow path of the first frame member 132 that supplies the molten zinc to the electrolysis chamber 40 immediately below the first intermediate electrode 126 are in the xy plane. In which the molten zinc is supplied to the electrolytic chamber 42 directly above the first intermediate electrode 126 and the discharge direction of the chlorine gas discharged from the plurality of discharge passages 127 b of the first intermediate electrode 126. The supply direction of the supply flow path of the frame member 134 of the second frame member 134 does not overlap in the xy plane, the discharge direction of molten zinc and chlorine gas as electrolytic products, and the supply direction of molten zinc as an electrolyte, Between Is the basic conditions in the engagement.

以上の構成の電解装置5を、第1の実施形態と同様に組み立てた後に電解を行うと、図17及び図20につき、溶融亜鉛Mの流れる方向を代表的に示し、図18及び図19につき、塩素ガスGの流れる方向を代表的に示すように、電解で生成された電解反応生成物である溶融亜鉛Mは、各々対応する陰極122における間隙部122a、第1の中間電極126における間隙部127a及び第2の中間電極128における間隙部129aに直ちに流下した後、陰極122における基面122B、第1の中間電極126における基面127B及び第2の中間電極128における基面129Bで対応して偏向されてそれらに沿って移動して、陰極122における排出流路122b、第1の中間電極126における排出流路127b及びそれに対応して連絡する第1の枠部材132における排出流路132d、並びに第2の中間電極128における排出流路129b及びそれに対応して連絡する第2の枠部材134における排出流路134dを対応して介して、陰極122、第1の中間電極126及び第2の中間電極128の外部に排出されて、電解槽10内の液体電解質である溶融塩化亜鉛中を鉛直下方に流下し電解槽10の底部に溜められながら、電解槽10の側壁部の下部に設けられた取り出し口10Lから電解槽10の外部に取り出され、必要に応じて図示を省略する貯留部に収容される。   When electrolysis is performed after the electrolyzer 5 having the above configuration is assembled in the same manner as in the first embodiment, the direction in which the molten zinc M flows is representatively shown in FIG. 17 and FIG. As representatively showing the flowing direction of the chlorine gas G, the molten zinc M, which is an electrolytic reaction product generated by electrolysis, has a gap 122a in the corresponding cathode 122 and a gap in the first intermediate electrode 126, respectively. Immediately after flowing down to the gap portion 129a in 127a and the second intermediate electrode 128, the base surface 122B in the cathode 122, the base surface 127B in the first intermediate electrode 126, and the base surface 129B in the second intermediate electrode 128 correspond. The discharge flow path 122b in the cathode 122, the discharge flow path 127b in the first intermediate electrode 126, and the corresponding flow are deflected and moved along them. Correspondingly through the discharge flow path 132d in the first frame member 132 that communicates, the discharge flow path 129b in the second intermediate electrode 128 and the discharge flow path 134d in the second frame member 134 that communicates accordingly. The cathode 122, the first intermediate electrode 126, and the second intermediate electrode 128 are discharged to the outside, and flow down vertically in molten zinc chloride, which is a liquid electrolyte in the electrolytic cell 10, and are collected at the bottom of the electrolytic cell 10. However, it is taken out of the electrolytic cell 10 from the extraction port 10L provided in the lower part of the side wall part of the electrolytic cell 10, and is accommodated in the storage part which abbreviate | omits illustration as needed.

一方で、かかる電解反応生成物である塩素ガスGは、各々対応する第1の中間電極126における間隙部126a、第2の中間電極128における間隙部128a及び陽極124における間隙部124aを直ちに上昇した後、第1の中間電極126における基面126B、第2の中間電極128における基面128B及び陽極124における基面124Bで対応して偏向されてそれらに沿って移動して、第1の中間電極126における排出流路126b及びそれに対応して連絡する第1の枠部材132における排出流路132c、第2の中間電極128における排出流路128b及びそれに対応して連絡する第2の枠部材134における排出流路134c、並びに陽極124における排出流路124bを対応して介して、第1の中間電極126、第2の中間電極128及び陽極124の外部に排出されて、電解槽10内の液体電解質である溶融塩化亜鉛中を鉛直上方に上昇し溶融塩化亜鉛の液面から電解槽10の外部に排出され、必要に応じて図示を省略する貯留部に収容される。   On the other hand, the chlorine gas G, which is such an electrolytic reaction product, immediately rose in the gap portion 126a in the corresponding first intermediate electrode 126, the gap portion 128a in the second intermediate electrode 128, and the gap portion 124a in the anode 124. Thereafter, the base surface 126B of the first intermediate electrode 126, the base surface 128B of the second intermediate electrode 128, and the base surface 124B of the anode 124 are correspondingly deflected and moved along the first intermediate electrode 126. 126, the discharge flow path 126b in the first frame member 132 that communicates with the discharge flow path 126b, the discharge flow path 132b in the second intermediate electrode 128, and the second frame member 134 that communicates with the discharge flow path. The first intermediate electrode 12 is disposed through the discharge channel 134c and the discharge channel 124b in the anode 124 correspondingly. Then, it is discharged to the outside of the second intermediate electrode 128 and the anode 124, rises vertically upward in the molten zinc chloride, which is the liquid electrolyte in the electrolytic cell 10, and is discharged from the surface of the molten zinc chloride to the outside of the electrolytic cell 10. Then, it is accommodated in a storage unit (not shown) as necessary.

この際、第1の電解室40、第2の電解室42及び第3の電解室44において、溶融塩化亜鉛の電解により生成される溶融亜鉛M及び塩素ガスGを互いに鉛直方向に分離すると共に、その後の排出経路や電解槽10でも、互いに実質的な接触をさせずに確実に移動できる。併せて、第1の電解室40、第2の電解室42及び第3の電解室44に供給される溶融塩化亜鉛に、電解反応生成物である溶融亜鉛M及び塩素ガスGが、不要に混入することが避けられる。   At this time, in the first electrolysis chamber 40, the second electrolysis chamber 42, and the third electrolysis chamber 44, the molten zinc M and the chlorine gas G generated by electrolysis of molten zinc chloride are separated from each other in the vertical direction, The subsequent discharge path and the electrolytic cell 10 can also move reliably without making substantial contact with each other. In addition, the molten zinc chloride supplied to the first electrolysis chamber 40, the second electrolysis chamber 42, and the third electrolysis chamber 44 is unnecessarily mixed with molten zinc M and chlorine gas G, which are electrolytic reaction products. Is avoided.

なお、第2の実施形態の変形例で説明した勾配を有する排出流路の構成は、本実施形態における排出流路に適用できることはもちろんであり、かかる場合、併せて、陰極122
の基面122B、第1の中間電極126の基面127B及び第2の中間電極128の基面129Bが、電解反応生成物である溶融亜鉛Mが排出される方向である第1の中間電極26の外部に向いて下り勾配を有し、陽極124の基面124B、第1の中間電極126の基面126B及び第2の中間電極128の基面128Bが、電解反応生成物である塩素ガスGが排出される方向である第1の中間電極26の外部に向いて、上り勾配を有するものである。
It should be noted that the configuration of the discharge channel having the gradient described in the modification of the second embodiment can be applied to the discharge channel in the present embodiment. In such a case, the cathode 122 is also combined.
The first intermediate electrode 26 in which the base surface 122B of the first intermediate electrode 126, the base surface 127B of the first intermediate electrode 126, and the base surface 129B of the second intermediate electrode 128 are in the direction in which the molten zinc M that is an electrolytic reaction product is discharged. The base surface 124B of the anode 124, the base surface 126B of the first intermediate electrode 126, and the base surface 128B of the second intermediate electrode 128 are chlorine gas G that is an electrolytic reaction product. Toward the outside of the first intermediate electrode 26, which is the direction in which is discharged.

また、本実施形態における電解生成物である溶融亜鉛及び塩素ガスの各排出方向間の関係や、かかる排出方向と電解質である溶融亜鉛の供給方向との間の関係は、各変形例を含む第1から第3の実施形態にもちろん適用可能である。   In addition, the relationship between the discharge directions of the molten zinc and chlorine gas, which are electrolytic products in the present embodiment, and the relationship between the discharge direction and the supply direction of the molten zinc, which is an electrolyte, include each modification. Of course, the present invention can be applied to the first to third embodiments.

以上の構成においては、第1の流下流路及び第2の流下流路、並びに第1の上昇流路及び第2の上昇流路をいずれも柱状部の間隙部として形成する柱状構造を採用することにより、より簡便な構成で電解反応生成物を電解室から外部に向けて確実に誘導することができる。   In the above configuration, a columnar structure in which the first downflow channel and the second downflow channel, and the first upflow channel and the second upflow channel are both formed as gaps between the columnar portions is employed. Thus, the electrolytic reaction product can be reliably guided from the electrolytic chamber to the outside with a simpler configuration.

また、第1の中間電極の第1の排出流路から排出される電解生成溶融金属の排出方向と、第1の電解室に液体電解質を供給する第1の枠部材の供給流路の供給方向と、が、鉛直方向に直交する面において重ならないように偏位し、かつ、第2の中間電極の第2の排出流路から排出される電解生成ガスの排出方向と、第2の電解室に液体電解質を供給する第2の枠部材の供給流路の供給方向と、が、鉛直方向に直交する面において重ならないように偏位することにより、電極や電極枠の構成部材の共通性を高めながら、電極反応生成物が液体電解質に同伴して電解室に不要に侵入し、逆反応を生じることを確実に低減可能である。   The discharge direction of the electrolytically generated molten metal discharged from the first discharge channel of the first intermediate electrode and the supply direction of the supply channel of the first frame member that supplies the liquid electrolyte to the first electrolysis chamber Are displaced so as not to overlap in a plane orthogonal to the vertical direction, and the discharge direction of the electrolysis gas discharged from the second discharge flow path of the second intermediate electrode, and the second electrolysis chamber The supply direction of the supply flow path of the second frame member for supplying the liquid electrolyte to the electrode is displaced so as not to overlap in a plane orthogonal to the vertical direction, thereby allowing the commonality of the electrodes and the constituent members of the electrode frame. While increasing, it is possible to reliably reduce the occurrence of the reverse reaction due to the electrode reaction product accompanying the liquid electrolyte and unnecessarily entering the electrolytic chamber.

また、第1の枠部材の供給流路における液体電解質の供給方向及び第2の枠部材の供給流路における液体電解質の供給方向を、陰極の第1の排出流路から排出される電解生成溶融金属の排出方向、第1の中間電極の第3の排出流路から排出される電解生成溶融金属の排出方向、前陽極の第2の排出流路から排出される電解生成ガスの排出方向及び第1の中間電極の第4の排出流路から排出される電解生成ガスの排出方向に対して、鉛直方向に直交する面において互いに重ならないように偏位させることにより、電極や電極枠の構成部材の共通性を高めながら、電極反応生成物が液体電解質に同伴して電解室に不要に侵入し、逆反応を生じることをより確実に低減可能である。   Further, the electrolytic production and melting discharged from the first discharge flow path of the cathode is performed in accordance with the supply direction of the liquid electrolyte in the supply flow path of the first frame member and the supply direction of the liquid electrolyte in the supply flow path of the second frame member. The discharge direction of the metal, the discharge direction of the electrolytically generated molten metal discharged from the third discharge channel of the first intermediate electrode, the discharge direction of the electrolytically generated gas discharged from the second discharge channel of the front anode, and the first By deviating from the discharge direction of the electrolysis gas discharged from the fourth discharge flow path of the intermediate electrode of 1 so as not to overlap each other in the plane orthogonal to the vertical direction, the constituent members of the electrode and the electrode frame It is possible to more reliably reduce the occurrence of a reverse reaction due to the electrode reaction product accompanying the liquid electrolyte and entering the electrolytic chamber unnecessarily.

なお、以上の各変形例を含む各実施形態においては、溶融亜鉛Mや塩素ガスGを収容する外部の貯留部には、電解槽10内の溶融塩化亜鉛も流出して溜っていくが、回収系を設けて余剰に溜まった溶融塩化亜鉛を電解槽10内に戻すことも可能である。   In each of the embodiments including the above modifications, the molten zinc chloride in the electrolytic cell 10 also flows out and collects in the external reservoir that accommodates the molten zinc M and the chlorine gas G. It is also possible to return the molten zinc chloride accumulated excessively in the electrolytic cell 10 by providing a system.

また、本発明においては、部材の種類、配置、個数等は前述の実施形態に限定されるものではなく、その構成要素を同等の作用効果を奏するものに適宜置換する等、発明の要旨を逸脱しない範囲で適宜変更可能であることはもちろんである。   Further, in the present invention, the type, arrangement, number, and the like of the members are not limited to the above-described embodiments, and the components depart from the gist of the invention, such as appropriately replacing the constituent elements with those having the same operational effects. Of course, it can be appropriately changed within the range not to be.

以上のように、本発明においては、比抵抗の大きい溶融塩を、実用的な電流密度と消費電力で電解するための複極式の電解装置を提供すること、具体的には、狭い電極間距離で設計する場合に生じる陰極面及び陽極面における電極反応生成物の接触による逆反応を、電極間電圧を上昇させることなく低減し得ると共に、漏洩電流による電流効率の低下を抑制し得る複極式の電解装置を提供することができ、併せて、高温かつ高腐食性の電解浴や電解反応生成物を扱い得て、厳しい運転条件に耐え得る単純かつ保守の容易な構造を有し、及び工業化を前提とした大型の設備にスケールアップ可能で増産、増設が容易な構造を
有する複極式の電解装置を提供することができるものであり、その汎用普遍的な性格から太陽電池用シリコン等の製造分野に広範に適用され得るものと期待される。
As described above, the present invention provides a bipolar electrolysis apparatus for electrolyzing a molten salt having a large specific resistance with a practical current density and power consumption, specifically, between narrow electrodes. Bipolar that can reduce reverse reaction due to contact of electrode reaction product on cathode surface and anode surface that occurs when designing with distance without increasing the inter-electrode voltage and also suppress the decrease in current efficiency due to leakage current A simple and easy-to-maintain structure capable of handling high temperature and highly corrosive electrolytic baths and electrolytic reaction products, capable of withstanding harsh operating conditions, and It is possible to provide a bipolar electrolyzer with a structure that can be scaled up to large facilities on the premise of industrialization and can be easily expanded and expanded. Due to its universal nature, silicon for solar cells, etc. Production of It is expected to be widely applied to.

1、2、3、4、5…電解装置
10………電解槽
10a、10b…挿通孔
10c、10d、10e、10f…排出開口
20………電極ユニット
22………陰極
22a……流下孔
22b、22c…排出流路
22r……角部
22s……陰極面
24………陽極
24a……上昇孔
24b、24c…排出流路
24r……角部
24s……陽極面
26………第1の中間電極
26a……上昇孔
26b、26b’、26c…排出流路
26r……角部
26s……陽極面
27a……流下孔
27b、27b’、27c…排出流路
27r……角部
27s……陰極面
28………第2の中間電極
28a……上昇孔
28b、28b’、28c…排出流路
28r……角部
28s……陽極面
29a……流下孔
29b、29b’、29c…排出流路
29r……角部
29s……陰極面
30………電極枠
32………第1の枠部材
32a、32b…供給流路
32c、32c’、32d、32d’、32e、32f…排出流路
32p……突出部
34………第2の枠部材
34a、34b…供給流路
34c、34c’、34d、34d’、34e、34f…排出流路
34p……突出部
36………第3の枠部材
36a、36b…供給流路
36p……突出部
40………第1の電解室
42………第2の電解室
44………第3の電解室
50………陰極電流フィーダ
60………陽極電流フィーダ
70………第1の遮蔽部材
70a……流下孔
70b……上昇孔
80………第2の遮蔽部材
80a……流下孔
80b……上昇孔
100……第1の遮蔽部材
100、100’…第1の遮蔽部材
100a…流下孔
100b…上昇孔
110、110’…第2の遮蔽部材
110a…流下孔
110b…上昇孔
120……電極ユニット
122……陰極
122a…間隙部
122b…排出流路
122r…角部
122s…陰極面
124……陽極
124a…間隙部
124b…排出流路
124r…角部
124s…陽極面
126……第1の中間電極
126a…上昇孔
126b…排出流路
126r…角部
126s…陽極面
127a…間隙部
127b…排出流路
127r…角部
127s…陰極面
128……第2の中間電極
128a…上昇孔
128b…排出流路
128r…角部
128s…陽極面
129a…間隙部
129b…排出流路
129r…角部
129s…陰極面
130……電極枠
132……第1の枠部材
132b…供給流路
132c、132d…排出流路
132p…突出部
134……第2の枠部材
134b…供給流路
134c、134d…排出流路
134p…突出部
136……第3の枠部材
136b…供給流路
136p…突出部

1, 2, 3, 4, 5 ... Electrolytic device 10 ... Electrolytic cell 10a, 10b ... Insertion hole 10c, 10d, 10e, 10f ... Discharge opening 20 ...... Electrode unit 22 ......... Cathode 22a ... Flowing hole 22b, 22c ... discharge channel 22r ... corner 22s ... cathode surface 24 ...... anode 24a ... ascending hole 24b, 24c ... discharge channel 24r ... corner 24s ... anode surface 26 ...... first Intermediate electrode 26a ... Ascending hole 26b, 26b ', 26c ... Discharge flow path 26r ... Corner portion 26s ... Anode surface 27a ... Downflow holes 27b, 27b', 27c ... Discharge flow path 27r ... Corner portion 27s ... ... Cathode surface 28 ......... Second intermediate electrode 28a ... Rising hole 28b, 28b ', 28c ... Discharge flow path 28r ... Corner 28s ... Anode surface 29a ... Downflow holes 29b, 29b', 29c ... Discharge Channel 29r …… Corner 2 s... Cathode surface 30... Electrode frame 32... First frame members 32 a and 32 b Supply channel 32 c, 32 c ′, 32 d, 32 d ′, 32 e and 32 f Discharge channel 32 p Projecting portion 34 ......... second frame members 34a, 34b ... supply channels 34c, 34c ', 34d, 34d', 34e, 34f ... discharge channels 34p ... projections 36 ......... third frame members 36a, 36b ... Supply flow path 36p ...... Projection 40 ......... First electrolysis chamber 42 ......... Second electrolysis chamber 44 ......... Third electrolysis chamber 50 ......... Cathode current feeder 60 ......... Anode current feeder 70 ......... first shielding member 70a ...... flowing hole 70b ...... rising hole 80 ......... second shielding member 80a ...... flowing hole 80b ... rising hole 100 ... first shielding member 100, 100 '... 1st shielding member 100a ... Flow-down hole 100b ... Ascending hole DESCRIPTION OF SYMBOLS 10, 110 '... 2nd shielding member 110a ... Flow-down hole 110b ... Ascending hole 120 ... Electrode unit 122 ... Cathode 122a ... Gap part 122b ... Discharge flow path 122r ... Corner | angular part 122s ... Cathode surface 124 ... Anode 124a ... Gap portion 124b ... Drain channel 124r ... Corner 124s ... Anode surface 126 ... First intermediate electrode 126a ... Rising hole 126b ... Drain channel 126r ... Corner 126s ... Anode surface 127a ... Gap portion 127b ... Drain channel 127r ... corner portion 127s ... cathode surface 128 ... second intermediate electrode 128a ... rising hole 128b ... discharge channel 128r ... corner portion 128s ... anode surface 129a ... gap portion 129b ... discharge channel 129r ... corner portion 129s ... cathode surface 130 ... Electrode frame 132 ... First frame member 132b ... Supply flow path 132c, 132d ... Discharge flow path 132p ... Projection 134 ...... second frame member 134b ... supply channel 134c, 134d ... discharge channel 134p ... protrusion 136 ...... third frame member 136 b ... supply channel 136p ... projecting portion

Claims (15)

液体電解質を収容して鉛直方向に立設された電解槽と、
前記電解槽において前記鉛直方向における下方に設けられて、陰極面、前記陰極面から前記鉛直方向における下方に向けて開けられた第1の流下流路及び前記第1の流下流路に連絡した第1の排出流路を有する陰極と、
前記電解槽において前記鉛直方向における上方に設けられて、陽極面、前記陽極面から前記鉛直方向における上方に向けて開けられた第1の上昇流路及び前記第1の上昇流路に連絡した第2の排出流路を有する陽極と、
前記電解槽において前記陰極と前記陽極との間に設けられて、陰極面、陽極面、前記陰極面から前記鉛直方向における下方に向けて開けられた第2の流下流路、前記陽極面から前記鉛直方向における上方に向けて開けられた第2の上昇流路、前記第2の流下流路に連絡した第3の排出流路及び前記第2の上昇流路に連絡した第4の排出流路を有する第1の中間電極と、
前記陰極の前記陰極面と前記第1の中間電極の前記陽極面との間に画成される第1の電解室と、
前記陽極の前記陽極面と前記第1の中間電極の前記陰極面との間に画成される第2の電解室と、
を備え、
前記陰極の前記第1の流下流路は、前記第1の電解室における電解で生成された前記電解生成溶融金属を、前記陰極の前記陰極面から前記鉛直方向における下方に移動自在として前記第1の排出流路に送出自在であり、
前記陽極の前記第1の上昇流路は、前記第2の電解室における電解で生成された前記電解生成ガスを、前記陽極の前記陽極面から前記鉛直方向における上方に移動自在として前記第2の排出流路に送出自在であり、
前記第1の中間電極の前記第2の流下流路は、前記第2の電解室における電解で生成された前記電解生成溶融金属を、前記第1の中間電極の前記陰極面から前記鉛直方向の下方に移動自在として前記第3の排出流路に送出自在であり、
前記第1の中間電極の前記第2の上昇流路は、前記第1の電解室における電解で生成された前記電解生成ガスを、前記第1の中間電極の前記陽極面から前記鉛直方向における上方に移動自在として前記第4の排出流路に送出自在である電解装置。
An electrolytic cell containing a liquid electrolyte and vertically installed;
In the electrolytic cell, provided in a lower part in the vertical direction, and communicated with a cathode surface, a first flow channel that opens downward from the cathode surface in the vertical direction, and a first flow channel that communicates with the first flow channel. A cathode having one discharge channel;
In the electrolytic cell, provided in the upper direction in the vertical direction, and communicated with an anode surface, a first ascending channel opened from the anode surface upward in the vertical direction, and the first ascending channel An anode having two discharge channels;
In the electrolytic cell, provided between the cathode and the anode, a cathode surface, an anode surface, a second flow channel opened downward from the cathode surface in the vertical direction, from the anode surface to the anode A second ascending channel opened upward in the vertical direction, a third discharging channel communicating with the second descending channel, and a fourth discharging channel communicating with the second ascending channel A first intermediate electrode having
A first electrolysis chamber defined between the cathode surface of the cathode and the anode surface of the first intermediate electrode;
A second electrolysis chamber defined between the anode surface of the anode and the cathode surface of the first intermediate electrode;
With
The first downflow channel of the cathode allows the electrolytically generated molten metal generated by electrolysis in the first electrolysis chamber to be movable downward in the vertical direction from the cathode surface of the cathode. Can be sent to the discharge channel of
The first ascending flow path of the anode allows the electrolysis gas generated by electrolysis in the second electrolysis chamber to move upward in the vertical direction from the anode surface of the anode. It can be sent to the discharge channel,
The second downstream flow path of the first intermediate electrode causes the electrolytically generated molten metal generated by electrolysis in the second electrolysis chamber to pass from the cathode surface of the first intermediate electrode in the vertical direction. Can be moved downward and sent to the third discharge channel,
The second ascending flow path of the first intermediate electrode causes the electrolysis product gas generated by electrolysis in the first electrolysis chamber to flow upward in the vertical direction from the anode surface of the first intermediate electrode. An electrolyzer that is freely movable and can be sent to the fourth discharge channel.
前記陰極の前記第1の排出流路は、前記陰極の内方を前記鉛直方向に交差する方向に延在し、前記第1の電解室における液体電解質の電解で生成された電解生成溶融金属を、前記第1の電解室よりも前記鉛直方向における下方で前記陰極の外部に排出し、
前記陽極の前記第2の排出流路は、前記陽極の内方を前記鉛直方向に交差する方向に延在し、前記第2の電解室における液体電解質の電解で生成された電解生成ガスを、前記第2の電解室陽よりも前記鉛直方向における上方で前記陽極の外部に排出し、
前記第1の中間電極の前記第3の排出流路は、前記第1の中間電極の内方を前記鉛直方向に交差する方向に延在し、前記第2の電解室における前記液体電解質の電解で生成された電解生成溶融金属を、前記第1の中間電極の前記陰極面よりも前記鉛直方向における下方で前記第1の中間電極の外部に排出し、前記第1の中間電極の前記第4の排出流路は、前記第1の中間電極の内方を前記鉛直方向に交差する方向に延在し、前記第1の電解室における前記液体電解質の電解で生成された電解生成ガスを、前記第1の中間電極の前記陽極面よりも前記鉛直方向における上方で前記第1の中間電極の外部に排出する請求項1に記載の電解装置。
The first discharge channel of the cathode extends inward of the cathode in a direction crossing the vertical direction, and electrolysis generated molten metal generated by electrolysis of a liquid electrolyte in the first electrolysis chamber is formed. , To the outside of the cathode below the first electrolysis chamber in the vertical direction,
The second discharge flow path of the anode extends in a direction intersecting the vertical direction inside the anode, and an electrolysis gas generated by electrolysis of a liquid electrolyte in the second electrolysis chamber, Discharging to the outside of the anode above the second electrolytic chamber positive in the vertical direction,
The third discharge channel of the first intermediate electrode extends inward of the first intermediate electrode in a direction intersecting the vertical direction, and electrolyzes the liquid electrolyte in the second electrolysis chamber. The electrolytically generated molten metal generated in (1) is discharged to the outside of the first intermediate electrode below the cathode surface of the first intermediate electrode in the vertical direction, and the fourth of the first intermediate electrode is discharged. The discharge flow path extends inward of the first intermediate electrode in a direction intersecting the vertical direction, and the electrolytically generated gas generated by electrolysis of the liquid electrolyte in the first electrolysis chamber, 2. The electrolysis apparatus according to claim 1, wherein the electrolysis apparatus discharges to the outside of the first intermediate electrode above the anode surface of the first intermediate electrode in the vertical direction.
前記陰極の前記第1の排出流路から排出される前記電解生成溶融金属の排出方向及び前記第1の中間電極の前記第3の排出流路から排出される前記電解生成溶融金属の排出方向と、前記陽極の前記第2の排出流路から排出される前記電解生成ガスの排出方向及び前記
第1の中間電極の前記第4の排出流路から排出される前記電解生成ガスの排出方向とは、前記鉛直方向に直交する面において互いに重ならないように偏位する請求項1又は2に記載の電解装置。
A discharge direction of the electrolytically generated molten metal discharged from the first discharge channel of the cathode and a discharge direction of the electrolytically generated molten metal discharged from the third discharge channel of the first intermediate electrode; The discharge direction of the electrolysis gas discharged from the second discharge flow path of the anode and the discharge direction of the electrolysis gas discharged from the fourth discharge flow path of the first intermediate electrode The electrolyzer according to claim 1, wherein the electrolyzer is deviated so as not to overlap each other in a plane perpendicular to the vertical direction.
前記第1の中間電極及び前記陽極は、前記陰極に固定された電極枠を介して順次前記鉛直方向における上方に向かって積層されて、前記陰極、前記陽極及び前記第1の中間電極は、ユニット化された電極ユニットを成す請求項1から3のいずれかに記載の電解装置。   The first intermediate electrode and the anode are sequentially stacked upward in the vertical direction through an electrode frame fixed to the cathode, and the cathode, the anode, and the first intermediate electrode are unit The electrolyzer according to any one of claims 1 to 3, wherein the electrode unit is formed. 前記電極枠は、前記陰極に固定されて前記第1の中間電極を載置し、前記第1の電解室に前記液体電解質を供給する供給流路を有する第1の枠部材と、前記第1の中間電極に固定されて前記陽極を載置し、前記第2の電解室に前記液体電解質を供給する供給流路を有する第2の枠部材と、を含む請求項4に記載の電解装置。   The electrode frame is fixed to the cathode, mounts the first intermediate electrode, and includes a first frame member having a supply channel for supplying the liquid electrolyte to the first electrolysis chamber, and the first frame member 5. An electrolyzer according to claim 4, further comprising: a second frame member that is fixed to the intermediate electrode and has a supply flow path for supplying the liquid electrolyte to the second electrolysis chamber. 前記第1の中間電極の前記第1の排出流路から排出される前記電解生成溶融金属の排出方向と、前記第1の電解室に前記液体電解質を供給する第1の枠部材の供給流路の供給方向と、が、前記鉛直方向に直交する面において重ならないように偏位し、かつ、前記第2の中間電極の前記第2の排出流路から排出される前記電解生成ガスの排出方向と、前記第2の電解室に前記液体電解質を供給する前記第2の枠部材の供給流路の供給方向と、が、前記鉛直方向に直交する面において重ならないように偏位する請求項5に記載の電解装置。   The discharge direction of the electrolytically generated molten metal discharged from the first discharge channel of the first intermediate electrode, and the supply channel of the first frame member that supplies the liquid electrolyte to the first electrolysis chamber The discharge direction of the electrolysis gas discharged from the second discharge flow path of the second intermediate electrode is deviated so as not to overlap with the direction perpendicular to the vertical direction. And the supply direction of the supply flow path of the second frame member that supplies the liquid electrolyte to the second electrolysis chamber is deviated so as not to overlap in a plane orthogonal to the vertical direction. The electrolyzer described in 1. 前記第1の枠部材の前記供給流路における前記液体電解質の供給方向及び前記第2の枠部材の前記供給流路における前記液体電解質の供給方向は、前記陰極の前記第1の排出流路から排出される前記電解生成溶融金属の排出方向、前記第1の中間電極の前記第3の排出流路から排出される前記電解生成溶融金属の排出方向、前記陽極の前記第2の排出流路から排出される前記電解生成ガスの排出方向及び前記第1の中間電極の前記第4の排出流路から排出される前記電解生成ガスの排出方向に対して、前記鉛直方向に直交する面において互いに重ならないように偏位する請求項6に記載の電解装置。   The supply direction of the liquid electrolyte in the supply flow path of the first frame member and the supply direction of the liquid electrolyte in the supply flow path of the second frame member are from the first discharge flow path of the cathode. The discharge direction of the electrolytically generated molten metal discharged, the discharge direction of the electrolytically generated molten metal discharged from the third discharge channel of the first intermediate electrode, and the second discharge channel of the anode The discharge direction of the electrolysis gas discharged and the discharge direction of the electrolysis gas discharged from the fourth discharge flow path of the first intermediate electrode overlap each other on a plane orthogonal to the vertical direction. The electrolyzer according to claim 6, wherein the electrolyzer is displaced so as not to become. 更に、前記第1の中間電極に対応して、前記鉛直方向における前記第3の排出流路と前記第4の排出流路の間に遮蔽板を有する請求項1から7のいずれかに記載の電解装置。   Further, according to the first intermediate electrode, a shielding plate is provided between the third discharge channel and the fourth discharge channel in the vertical direction. Electrolytic device. 前記遮蔽板は、前記第1の中間電極の前記第4の排出流路から排出される前記電解生成ガスを上昇させる上昇開口と、前記第1の中間電極の前記第3の排出流路から排出される前記電解生成溶融金属を流下させる流下開口と、を有する請求項8に記載の電解装置。   The shielding plate discharges from the ascending opening for raising the electrolysis product gas discharged from the fourth discharge flow path of the first intermediate electrode, and from the third discharge flow path of the first intermediate electrode. The electrolysis apparatus according to claim 8, further comprising a flow opening that allows the electrolytically generated molten metal to flow down. 前記電解槽は、前記第1の中間電極の前記第4の排出流路から排出される前記電解生成ガスを外部に排出する排出開口と、前記第1の中間電極の前記第3の排出流路から排出される前記電解生成溶融金属を排出する排出開口と、を有する請求項8に記載の電解装置。   The electrolytic cell includes a discharge opening that discharges the electrolysis product gas discharged from the fourth discharge channel of the first intermediate electrode to the outside, and the third discharge channel of the first intermediate electrode. The electrolysis apparatus according to claim 8, further comprising: a discharge opening that discharges the electrolytically generated molten metal discharged from the apparatus. 前記陰極の前記第1の排出流路の下面及び前記第1の中間電極の前記第3の排出流路の下面は、各々前記電解生成溶融金属の前記排出方向において下り勾配を有し、前記陽極の前記第2の排出流路の上面及び前記第1の中間電極の前記第4の排出流路の上面は、各々前記電解生成ガスの前記排出方向において上り勾配を有する請求項1から10のいずれかに記載の電解装置。   The lower surface of the first discharge channel of the cathode and the lower surface of the third discharge channel of the first intermediate electrode each have a downward slope in the discharge direction of the electrolytically generated molten metal, and the anode The upper surface of the second discharge channel and the upper surface of the fourth discharge channel of the first intermediate electrode each have an upward slope in the discharge direction of the electrolysis product gas. An electrolyzer according to any one of the above. 更に、前記電解槽において前記第1の中間電極と前記陽極との間に設けられた第2の中間電極を有し、前記第2の中間電極は、前記電極枠における第3の枠部材を介して前記第1の中間電極の前記鉛直方向における上方に積層されて、前記陰極、前記陽極、前記第1の中間電極及び前記第2の中間電極は、ユニット化された電極ユニットを成す請求項5に
記載の電解装置。
The electrolytic cell further includes a second intermediate electrode provided between the first intermediate electrode and the anode, and the second intermediate electrode is interposed via a third frame member in the electrode frame. The first intermediate electrode is stacked above the vertical direction in the vertical direction, and the cathode, the anode, the first intermediate electrode, and the second intermediate electrode form a unitized electrode unit. The electrolyzer described in 1.
前記第1の流下流路及び前記第2の流下流路は、各々対応して前記電解生成溶融金属を流下自在とする孔であり、前記第1の上昇流路及び第2の上昇流路は、各々対応して前記電解生成ガスを上昇自在とする孔である請求項1から12のいずれかに記載の電解装置。   The first downflow channel and the second downflow channel are holes that allow the electrolytically generated molten metal to freely flow down, and the first upflow channel and the second upflow channel are respectively The electrolysis apparatus according to any one of claims 1 to 12, wherein each of the holes is a hole that allows the electrolysis product gas to freely rise. 前記第1の流下流路及び前記第2の流下流路は、各々対応して前記電解生成溶融金属を流下自在とすべく複数の柱状部の間に画成される間隙部であり、前記第1の上昇流路及び第2の上昇流路は、各々対応して前記電解生成ガスを上昇自在とすべく複数の柱状部の間に画成される間隙部である請求項1から12のいずれかに記載の電解装置。   The first flow channel and the second flow channel are gap portions that are defined between a plurality of columnar portions so that the electrolytically generated molten metal can flow freely. 13. The ascending channel of 1 and the second ascending channel are gap portions defined between a plurality of columnar portions so as to allow the electrolyzed gas to rise correspondingly. An electrolyzer according to claim 1. 前記液体電解質は、前記電解槽に収容された無水溶融塩化亜鉛又は塩化亜鉛を含む無水塩化物である請求項1から14のいずれかに記載の電解装置。   The electrolyzer according to any one of claims 1 to 14, wherein the liquid electrolyte is anhydrous molten zinc chloride or anhydrous chloride containing zinc chloride accommodated in the electrolytic cell.
JP2009235965A 2009-10-13 2009-10-13 Electrolyzer Withdrawn JP2011084755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009235965A JP2011084755A (en) 2009-10-13 2009-10-13 Electrolyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009235965A JP2011084755A (en) 2009-10-13 2009-10-13 Electrolyzer

Publications (1)

Publication Number Publication Date
JP2011084755A true JP2011084755A (en) 2011-04-28

Family

ID=44077923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009235965A Withdrawn JP2011084755A (en) 2009-10-13 2009-10-13 Electrolyzer

Country Status (1)

Country Link
JP (1) JP2011084755A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105483756A (en) * 2015-12-22 2016-04-13 河南中孚实业股份有限公司 Power-failure short-circuit discharge device for extra-large direct-current power supply loop bridging bus and operating method for power-failure short-circuit discharge device
CN110592617A (en) * 2019-08-29 2019-12-20 青海物产工业投资有限公司 Secondary starting method for full-series power failure of aluminum electrolysis cell
CN111211358A (en) * 2020-03-18 2020-05-29 联动天翼新能源有限公司 Multi-lug quick-charging cylindrical lithium battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105483756A (en) * 2015-12-22 2016-04-13 河南中孚实业股份有限公司 Power-failure short-circuit discharge device for extra-large direct-current power supply loop bridging bus and operating method for power-failure short-circuit discharge device
CN110592617A (en) * 2019-08-29 2019-12-20 青海物产工业投资有限公司 Secondary starting method for full-series power failure of aluminum electrolysis cell
CN110592617B (en) * 2019-08-29 2021-06-15 青海物产工业投资有限公司 Secondary starting method for full-series power failure of aluminum electrolysis cell
CN111211358A (en) * 2020-03-18 2020-05-29 联动天翼新能源有限公司 Multi-lug quick-charging cylindrical lithium battery

Similar Documents

Publication Publication Date Title
US8608914B2 (en) Electrolysis system and method
ES2233870T3 (en) PRESSURE ELECTROLYZER AND OPERATING PROCEDURE OF THE SAME.
KR101716349B1 (en) Continuous electrolyzed oxidizing/reduction water generator device
CN1519394A (en) Electrochemical system
BR112018069046B1 (en) ELECTROLYTIC CELL AND METHOD FOR THE PRODUCTION OF ALUMINUM METAL BY ELECTROCHEMICAL REDUCTION OF ALUMINA
CN104641020B (en) Externally reinforced water electrolyser module
JP2011084755A (en) Electrolyzer
RU2516226C2 (en) Electrochemical module cell for processing electrolyte solutions
CN116096943B (en) electrolysis device
CN104507874A (en) Method of hypochlorite production and related sea water electrolyzer with anti scale implement
WO2009122705A1 (en) Electrolysis vessel
US4440610A (en) Molten salt bath for electrolytic production of aluminum
US4326941A (en) Electrolytic cell
AU2008299528B2 (en) Control of by-pass current in multi-polar light metal reduction cells
US11401615B2 (en) Filter press end assembly and fluid management system for use in unipolar electrochemical devices
JP2011099165A (en) Electrolyzer using electrolysis
JP2018508339A (en) Electrolytic module
KR101786378B1 (en) Vertical type electroysis apparatus
JP4557565B2 (en) Electrolyzer
RU2614450C1 (en) Electrochemical module cell for treatment of electrolyte solutions
JP2000239873A (en) Electrolytic device and electrolytic cell used for the same
JP2003268581A (en) Gaseous hydrogen and oxygen mixture generator
KR850001013B1 (en) Apparatus for electrolytic production of magnesium metal from its chloride
US20230305914A1 (en) Filter Press End Assembly and Fluid Management System for use in Unipolar Electrochemical Devices
WO2020077479A1 (en) System for injecting alternating current into electrolytic cells, which comprises sheets that separate the electrodes of the cell into groups

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130108