WO2011093252A1 - 磁気抵抗効果素子、それを用いた磁気メモリセル及びランダムアクセスメモリ - Google Patents

磁気抵抗効果素子、それを用いた磁気メモリセル及びランダムアクセスメモリ Download PDF

Info

Publication number
WO2011093252A1
WO2011093252A1 PCT/JP2011/051264 JP2011051264W WO2011093252A1 WO 2011093252 A1 WO2011093252 A1 WO 2011093252A1 JP 2011051264 W JP2011051264 W JP 2011051264W WO 2011093252 A1 WO2011093252 A1 WO 2011093252A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
tunnel magnetoresistive
magnetic layer
cofeb
magnetoresistive element
Prior art date
Application number
PCT/JP2011/051264
Other languages
English (en)
French (fr)
Inventor
正二 池田
大野 英男
山本 浩之
伊藤 顕知
高橋 宏昌
Original Assignee
株式会社日立製作所
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所, 国立大学法人東北大学 filed Critical 株式会社日立製作所
Priority to US13/575,387 priority Critical patent/US9042165B2/en
Publication of WO2011093252A1 publication Critical patent/WO2011093252A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3286Spin-exchange coupled multilayers having at least one layer with perpendicular magnetic anisotropy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/329Spin-exchange coupled multilayers wherein the magnetisation of the free layer is switched by a spin-polarised current, e.g. spin torque effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/123Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys having a L10 crystallographic structure, e.g. [Co,Fe][Pt,Pd] thin films
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/16Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing cobalt

Definitions

  • the present invention relates to a magnetoresistive effect element using a perpendicular magnetization material, a magnetic memory cell using the same, and a random access memory.
  • MRAM Magnetic Random Access Memory
  • MRAM Magnetic Random Access Memory
  • MTJ Magnetic Tunneling Junction
  • TMR tunneling magnetoresistance
  • the MTJ element has a structure in which a nonmagnetic layer (insulating layer) is sandwiched between two ferromagnetic layers, and the magnetization direction of one ferromagnetic layer (recording layer) can be reversed by an external magnetic field.
  • information is recorded by controlling the magnetization direction of the magnetic layer. Since the magnetization direction of the magnetic material does not change even when the power is turned off, a nonvolatile operation in which recorded information is retained can be realized.
  • Patent Document 1 discloses an MTJ element using an in-plane magnetization material as a recording layer and utilizing spin-injection magnetization reversal and a memory in which the MTJ element is integrated: SPRAM (SPin-transfer magnetic Random Access Memory).
  • the thermal stability of magnetic information in the MTJ element becomes a problem.
  • the thermal energy due to the environmental temperature is higher than the magnetic energy necessary for reversing the magnetization direction of the recording layer of the MTJ element, magnetization reversal occurs without applying an external magnetic field or current. Since the magnetic energy of the MTJ element decreases as the size decreases, this thermal stability decreases as the element becomes finer. In order to maintain thermal stability even in a fine region and realize a highly reliable operation, it is effective to increase the magnetocrystalline anisotropy of the recording layer material of the MTJ element.
  • Patent Document 2 an MTJ element using a perpendicular magnetization material having higher magnetocrystalline anisotropy than an in-plane magnetization material has been disclosed (Patent Document 2). Further, in the MTJ element to which the perpendicular magnetization material is applied, the influence of the demagnetizing field applied in the recording layer is different from the in-plane magnetization MTJ element and works in the direction of reducing the current density required for the magnetization reversal (write current density). Therefore, there is an advantage that the write current density can be reduced and the power consumption can be suppressed as compared with the in-plane magnetization MTJ element.
  • magnesium oxide MgO
  • insulating layer barrier layer
  • CoFeB, etc. a material with high electron spin polarizability is arranged on both sides thereof.
  • the structure which does is disclosed (patent document 3).
  • the perpendicular magnetization ferromagnetic layer is disposed in direct contact with the high polarizability magnetic layer.
  • an element using a structure (laminated ferrimagnetic structure) in which a nonmagnetic layer is sandwiched between two perpendicular magnetization layers has been proposed as a perpendicular magnetization layer (Patent Document 3). In this case, since the magnetizations of the two perpendicular magnetization layers are coupled in the antiparallel direction, there is an effect of suppressing the leakage magnetic field generated from the perpendicular magnetization layer.
  • the CoFeB layer is oriented to bcc (001) with the MgO (001) crystal as a nucleus.
  • the bcc (001) orientation of MgO (001) and CoFeB is realized using such a mechanism.
  • the TMR ratio decreases as the annealing temperature increases, although the TMR ratio is improved up to the temperature, there is a problem that the TMR ratio is lowered at a temperature higher than that.
  • the present invention provides a perpendicular magnetization MTJ element that exhibits a high TMR ratio even after annealing.
  • the magnetoresistive effect element (MTJ element) of the present invention is an MTJ element to which a perpendicular magnetization ferromagnetic material is applied, and a CoFeB layer which is a ferromagnetic layer having a high polarizability is arranged on the substrate side or both sides of the MgO barrier layer. To do. Further, a perpendicular magnetization magnetic layer is disposed on the interface opposite to the barrier layer of the high polarizability magnetic layer via an intermediate layer made of a metal having a melting point of 1600 ° C. or higher or an alloy thereof.
  • a perpendicular magnetization MTJ element showing a high TMR ratio after annealing can be produced.
  • FIG. 1 is a schematic cross-sectional view of an MTJ element of Example 1.
  • FIG. FIG. 6 is a diagram schematically showing a magnetization reversal operation of the MTJ element of Example 1.
  • FIG. 6 is a diagram schematically showing a magnetization reversal operation of the MTJ element of Example 1.
  • FIG. 6 is a diagram schematically showing a magnetization reversal operation of the MTJ element of Example 1. It is a figure which shows the annealing temperature dependence of the TMR ratio regarding the MTJ element of Example 1.
  • FIG. 6 is a schematic cross-sectional view of an MTJ element of Example 2.
  • FIG. 6 is a schematic cross-sectional view of an MTJ element of Example 3.
  • FIG. 10 is a diagram schematically showing a magnetization reversal operation of the MTJ element of Example 3.
  • FIG. 10 is a diagram schematically showing a magnetization reversal operation of the MTJ element of Example 3.
  • FIG. 10 is a diagram schematically showing a magnetization reversal operation of the MTJ element of Example 3. It is a cross-sectional schematic diagram which shows the structural example of a magnetic memory cell. It is a schematic diagram which shows the structural example of a random access memory.
  • FIG. 1 is a schematic cross-sectional view of the MTJ element in Example 1.
  • a first high polarizability magnetic layer 41 and a second high polarizability magnetic layer 42 having a high electron spin polarizability are disposed on both sides of the barrier layer 10.
  • the first intermediate layer 31 and the second intermediate layer 32 are disposed outside the first intermediate layer 31, and the first magnetic layer 21 and the second magnetic layer 22 are disposed in contact therewith.
  • a lower electrode 11 and an underlayer 13 are formed below the first magnetic layer 21, and a cap layer 14 and an upper electrode 12 are formed above the second magnetic layer 22.
  • each layer is 10 layers of MgO (film thickness: 1 nm) for the barrier layer 10 and 10 layers of CoFe (film thickness: 0.2 nm) and Pd (film thickness: 1.2 nm) for the first magnetic layer 21.
  • a multilayer film film thickness: 14 nm
  • a multilayer film that is formed by stacking two layers of CoFe (film thickness: 0.2 nm) and Pd (film thickness: 1.2 nm) on the second magnetic layer 22 for three periods ( Film thickness: 4.2 nm) was used.
  • CoFeB (film thickness: 1 nm) is applied to the first high polarizability magnetic layer 41 and the second high polarizability magnetic layer 42, and Ta is applied to the first intermediate layer 31 and the second intermediate layer 32.
  • Fem thickness: 0.5 nm was used.
  • a Ta layer (film thickness: 5 nm) was used as the lower electrode 11, and Ru (film thickness: 10 nm) was used as the base layer 13.
  • the cap layer 14 a thin film in which Ta (film thickness: 5 nm) and Ru (film thickness: 5 nm) were stacked in this order was used.
  • Each layer was formed on the Si substrate 5 using an RF sputtering method using Ar gas.
  • the laminated film After forming the laminated film, it was processed into a pillar shape having an upper surface area of 50 ⁇ 50 nm using electron beam (EB) lithography and ion beam etching. Thereafter, the upper electrode 12 having a laminated structure of Cr (film thickness: 5 nm) / Au (film thickness: 100 nm) was formed. Although not shown, the upper electrode layer 12 and the lower electrode layer 11 are connected to wirings for supplying current to the element.
  • EB electron beam
  • the barrier layer 10 the first magnetic layer 21, the second magnetic layer 22, the first high polarizability magnetic layer 41, the second high polarizability magnetic layer 42 related to the resistance change of the element, Only the first intermediate layer 31 and the second intermediate layer 32 are shown.
  • the second magnetic layer 22 having a smaller thickness than the first magnetic layer 21 is reversed in magnetization first.
  • the layer (second high polarizability magnetic layer 42 / second intermediate layer 32 / second magnetic layer 22) serves as a recording layer, and the lower laminated magnetic layer (first magnetic layer 21 / first intermediate layer) Layer 31 / first high polarizability magnetic layer 41) is the fixed layer.
  • FIG. 2A shows an initial state in which no current is passed through the element.
  • the magnetization 61 of the first magnetic layer 21, the magnetization 62 of the first high polarizability magnetic layer 41, the magnetization 64 of the second magnetic layer 22, and the magnetization 63 of the second high polarizability magnetic layer 42 all face upward. ing. Since the first high polarizability magnetic layer 41 is ferromagnetically coupled to the first magnetic layer 21, the magnetizations of the first and second polarizable magnetic layers 41 are linked in the same direction. The same applies to the magnetizations of the second high polarizability magnetic layer 42 and the first magnetic layer 22.
  • FIG. 2B shows the direction of magnetization when a current is passed through the element from the state of FIG. 2A.
  • spin-polarized electrons 80 pass through the second high polarizability magnetic layer 42 and flow into the first high polarizability magnetic layer 41.
  • only electrons having spins in the same direction as the spins of the second high polarizability magnetic layer 42 flow into the first high polarizability magnetic layer 41, and electrons having spins in the reverse direction flow into the barrier layer 10. Reflected on the surface.
  • the reflected electrons act on the magnetization 63 of the second high polarizability magnetic layer 42 of the recording layer, and the magnetization 63 of the second high polarizability magnetic layer 42 is reversed by the spin injection magnetization reversal.
  • the magnetization 64 of the second magnetic layer 22 magnetically coupled to the second high polarizability magnetic layer 42 is also reversed.
  • the magnetization 62 of the first high polarizability magnetic layer 41 in the fixed layer and the magnetization 63 of the second high polarizability magnetic layer 42 in the recording layer are in an antiparallel arrangement, and the MTJ element changes from the low resistance state to the high resistance state.
  • the magnetization 62 of the first high polarizability magnetic layer 41 in the fixed layer and the magnetization 63 of the second high polarizability magnetic layer 42 of the recording layer are arranged in parallel, and the resistance of the MTJ element is changed from a high resistance state to a low resistance. Switch to state.
  • FIG. 3 shows the result of fabricating and evaluating the element having the structure of Example 1.
  • the TMR ratio increased with the annealing temperature, and a TMR ratio of 60% was obtained by annealing at 250 ° C.
  • an element fabricated without inserting the first intermediate layer 31 and the second intermediate layer 22 (CoFeB of the first high polarizability material 41 is at the top of the first magnetic layer 21.
  • the TMR ratio equivalent to that of the device of Example 1 was shown up to the annealing temperature of 200 ° C., but the TMR ratio decreased to 20% in the annealing at 250 ° C.
  • the crystallization of CoFeB proceeds from the side opposite to MgO (on the side of the intermediate layer or the magnetic layer adjacent to CoFeB), and is affected by the crystal structure of the intermediate layer or the magnetic layer, which is different from that of bcc (001). Crystallize with (fcc structure) or different crystal orientation (bcc (110)). Therefore, the insertion of a nonmagnetic material that suppresses the diffusion of B is effective for obtaining a CoFeB bcc (001) crystal.
  • Ta used for the intermediate layer in this example has a higher melting point (1600 ° C. or higher) than Co and Fe. In this case, the effect of advancing the crystallization of CoFeB as described above from the MgO side can be obtained.
  • Pd in contact with CoFeB in an element having a reduced TMR ratio at an annealing temperature of 250 ° C. has a melting point of 1600 ° C. or less, and it is difficult to cause crystallization of CoFeB from the MgO side.
  • Example 1 Ta was used for the first intermediate layer 31 and the second intermediate layer 32.
  • W, Ru, Pt, Ti, Os which is a material having a melting point of 1600 ° C. or more. Even when V, Cr, Nb, Mo, Rh, Hf, Re, or the like is used, the same effect as in the first embodiment can be obtained.
  • a combination of different materials may be used for the first intermediate layer 31 and the second intermediate layer 32.
  • Example 1 a laminated film of CoFe and Pd is applied as the perpendicular magnetization material of the first magnetic layer 21 and the second magnetic layer 22. However, even if other perpendicular magnetization materials are applied, Example 1 is applied. The same effect can be obtained.
  • Co and 50 Pt 50, Fe 50 Pt 50 , Fe 30 Ni 20 L1 0 type ordered alloy of Pt 50 such as, m-D0 19 type Co 75 Pt 25 ordered alloy or,, CoCrPt an alloy containing the material of the granular structure SiO
  • CoCr alloy or CoCrPt alloy containing Co and containing one or more elements of Cr, Ta, Nb, V, W, Hf, Ti, Zr, Pt, Pd, Fe, and Ni are also good.
  • a combination of different materials may be used for the first magnetic layer 21 and the second magnetic layer 22.
  • cap layer 14 Ru or Ta used in Example 1 is desirable from the viewpoint of reaction with the magnetic layer and diffusion by the annealing treatment.
  • other materials such as Pt, Cr, Ti, and W may be used.
  • Example 1 since the upper magnetic layer (second magnetic layer 22) of the barrier layer 10 is made thinner than the lower magnetic layer (first magnetic layer 21), the second magnetic layer 22 is recorded. Magnetization reversal as a layer. On the contrary, even when the lower magnetic layer (first magnetic layer 21) of the barrier layer 10 is made thinner than the upper magnetic layer (second magnetic layer 22), the same resistance change as in Example 1 is achieved. And an equivalent TMR ratio is obtained. However, in this case, the magnetic layer (first magnetic layer 21) below the barrier layer 10 serves as a recording layer, so that the magnetization of the first magnetic layer 21 is reversed.
  • Example 2 proposes an MTJ element in which a laminated structure of a perpendicular magnetization magnetic layer / intermediate layer / highly polarized magnetic layer is applied only to the lower side of the barrier layer 10.
  • FIG. 4 is a schematic cross-sectional view of the MTJ element of Example 2.
  • the basic configuration is the same as that of the element shown in Example 1, but in Example 2, the second high polarizability magnetic layer 42 and the second magnetic layer 22 exhibiting perpendicular magnetization are directly connected to each other. No intermediate layer is inserted between them.
  • each layer is 10 layers of MgO (film thickness: 1 nm) for the barrier layer 10 and 10 layers of CoFe (film thickness: 0.2 nm) and Pd (film thickness: 1.2 nm) for the first magnetic layer 21.
  • a multilayer film film thickness: 14 nm
  • a multilayer film that is formed by stacking two layers of CoFe (film thickness: 0.2 nm) and Pd (film thickness: 1.2 nm) on the second magnetic layer 22 for three periods ( Film thickness: 4.2 nm) was used.
  • CoFeB (film thickness: 1 nm) is applied to the first high polarizability magnetic layer 41 and the second high polarizability magnetic layer 42, and Ta (film thickness: 0.5 nm) is applied to the first intermediate layer 31. ) was used. Further, a Ta layer (film thickness: 5 nm) was used as the lower electrode 11, and Ru (film thickness: 10 nm) was used as the base layer 13. As the cap layer 14, a thin film in which Ta (film thickness: 5 nm) and Ru (film thickness: 5 nm) were stacked in this order was used.
  • Each layer was formed on the Si substrate 5 by RF sputtering using Ar gas. After sequentially laminating from the substrate 5 to the second high polarizability magnetic layer 42, in-situ annealing at 250 ° C. was performed in the vacuum chamber at that stage. Thereby, bcc (001) crystal orientation of MgO (001) and CoFeB was realized. Thereafter, the second magnetic layer 22 to the cap layer 14 were formed.
  • the laminated film After forming the laminated film, it was processed into a pillar shape having an upper surface area of 50 ⁇ 50 nm using electron beam (EB) lithography and ion beam etching. Thereafter, the upper electrode 12 having a laminated structure of Cr (film thickness: 5 nm) / Au (film thickness: 100 nm) was formed. Although not shown, the upper electrode layer 12 and the lower electrode layer 11 are connected to wirings for supplying current to the element.
  • EB electron beam
  • Example 1 The operation of the element is the same as in Example 1.
  • the second high polarizability magnetic layer 42 and the second magnetic layer 22 are ferromagnetically coupled, and the magnetizations of the two are linked in the same direction, so that FIGS. 2A to 2C of the first embodiment are changed. An operation similar to that shown is shown.
  • Example 2 As a result of fabricating and evaluating an element having the structure of Example 2, a TMR ratio of 60% was obtained in a state where the annealing process was not performed (as-depo) after the element was fabricated, and the TMR ratio even when annealed at 250 ° C. after the element was fabricated. There was no decline. This is because the bcc (001) crystal orientation and MgO (001) crystal orientation of CoFeB were realized at the stage of in-situ annealing when forming the thin film.
  • Example 2 in-situ annealing is performed immediately after the second high polarizability magnetic layer 42 is formed. Since there is no contact layer on the second high polarizability magnetic layer 42, the second high polarizability magnetic layer 42 is crystallized under the influence of only the MgO (001) side. That is, the second high polarizability magnetic layer 42 has an advantage that a bcc (001) structure can be easily realized without being affected by the material of the upper layer.
  • Example 2 Ta was used for the first intermediate layer 31, but other than that, W, Ru, Pt, Ti, Os, V, Cr, Nb, Mo, which are materials having a melting point of 1600 ° C. or higher. , Rh, Hf, Re, etc., the same effect as in the second embodiment can be obtained. In addition, a combination of different materials may be used for the first intermediate layer 31 and the second intermediate layer 32.
  • CoFeB was used as the magnetic material of the second high polarizability magnetic layer 42, but other materials such as Co 50 Fe 50 and Fe having a bcc crystal structure may also be used. good.
  • an amorphous CoFeB film is formed as the first high polarizability magnetic layer 41, and the MgO barrier layer 10 is oriented and grown to (001) thereon.
  • a bcc (001) structure of Fe grows according to the crystal structure of MgO, and bcc-CoFeB (001) / MgO (by in-situ annealing treatment).
  • (001) / bcc-Fe (001) can be produced.
  • the laminated film of CoFe and Pd is applied as the perpendicular magnetization material of the first magnetic layer 21 and the second magnetic layer 22.
  • the second embodiment is applied. The same effect can be obtained.
  • Co and 50 Pt 50, Fe 50 Pt 50 , Fe 30 Ni 20 L1 0 type ordered alloy of Pt 50 such as, m-D0 19 type Co 75 Pt 25 ordered alloy or,, CoCrPt an alloy containing the material of the granular structure SiO
  • CoCr alloy or CoCrPt alloy containing Co and containing one or more elements of Cr, Ta, Nb, V, W, Hf, Ti, Zr, Pt, Pd, Fe, and Ni are also good.
  • a combination of different materials may be used for the first magnetic layer 21 and the second magnetic layer 22.
  • cap layer 14 Ru or Ta used in Example 2 is desirable from the viewpoint of reaction with the magnetic layer and diffusion by the annealing treatment.
  • other materials such as Pt, Cr, Ti, and W may be used.
  • Example 3 proposes an MTJ element in which a laminated structure of a perpendicular magnetization magnetic layer / a high polarizability magnetic layer / an intermediate layer / a high polarizability magnetic layer is applied below the barrier layer.
  • FIG. 5 is a schematic cross-sectional view of the MTJ element of Example 3. The basic configuration is the same as the element shown in the first embodiment, but the third high polarizability magnetic layer 43 is inserted between the first intermediate layer 31 and the first magnetic layer 21.
  • each layer is 10 layers of MgO (film thickness: 1 nm) for the barrier layer 10 and 10 layers of CoFe (film thickness: 0.2 nm) and Pd (film thickness: 1.2 nm) for the first magnetic layer 21.
  • a multilayer film film thickness: 14 nm
  • a multilayer film that is formed by stacking two layers of CoFe (film thickness: 0.2 nm) and Pd (film thickness: 1.2 nm) on the second magnetic layer 22 for three periods ( Film thickness: 4.2 nm) was used.
  • CoFeB (film thickness: 1 nm) is applied to the first high polarizability magnetic layer 41, the second high polarizability magnetic layer 42, and the third high polarizability layer 43, and the first intermediate layer is formed.
  • Ta film thickness: 0.5 nm
  • a Ta layer film thickness: 5 nm
  • Ru film thickness: 10 nm
  • the cap layer 14 a thin film in which Ta (film thickness: 5 nm) and Ru (film thickness: 5 nm) were stacked in this order was used.
  • CoFeB of the high polarizability magnetic layer is inserted one layer above and below the intermediate layer 31.
  • amorphous CoFeB after the formation of the thin film can further relax the surface unevenness of the first magnetic layer 21 and improve the surface flatness of the underlying layer of the MgO barrier layer. As a result, a more uniform barrier layer is obtained, which is effective for improving the TMR ratio and suppressing variation in device characteristics.
  • the MTJ element of Example 3 was fabricated by the same method as in Example 1 and the characteristics were evaluated. As a result, the same operation as in Example 1 was shown. was gotten.
  • Example 3 Ta was used for the first intermediate layer 31 and the second magnetic layer 32.
  • W, Ru, Pt, Ti, Os which is a material having a melting point of 1600 ° C. or more. Even if V, Cr, Nb, Mo, Rh, Hf, Re, or the like is used, the same effect as in the third embodiment can be obtained.
  • a combination of different materials may be used for the first intermediate layer 31 and the second intermediate layer 32.
  • the laminated film of CoFe and Pd is applied as the perpendicular magnetization material of the first magnetic layer 21 and the second magnetic layer 22.
  • the third embodiment is applied. The same effect can be obtained.
  • Co and 50 Pt 50, Fe 50 Pt 50 , Fe 30 Ni 20 L1 0 type ordered alloy of Pt 50 such as, m-D0 19 type Co 75 Pt 25 ordered alloy or,, CoCrPt an alloy containing the material of the granular structure SiO
  • CoCr alloy or CoCrPt alloy containing Co and containing one or more elements of Cr, Ta, Nb, V, W, Hf, Ti, Zr, Pt, Pd, Fe, and Ni are also good.
  • a combination of different materials may be used for the first magnetic layer 21 and the second magnetic layer 22.
  • cap layer 14 Ru or Ta used in Example 3 is desirable from the viewpoint of reaction with the magnetic layer and diffusion by the annealing treatment.
  • other materials such as Pt, Cr, Ti, and W may be used.
  • Example 4 the magnetic layer / intermediate layer / high polarizability magnetic layer and the high polarizability magnetic layer / intermediate layer / magnetic layer, which are above and below the barrier layer, have a laminated ferri structure having antiferromagnetic coupling, respectively.
  • An MTJ element to be used is proposed.
  • the basic configuration of the MTJ element of Example 4 and the material and film thickness of each layer are the same as those of Example 1 shown in FIG. 1 except for the first intermediate layer 31 and the second intermediate layer 32.
  • Ru having a film thickness of 0.8 nm was used as the first intermediate layer 31 and the second intermediate layer 32.
  • Example 4 The operation of the element of Example 4 will be described with reference to FIGS. 6A to 6C.
  • the barrier layer 10 the first magnetic layer 21, the second magnetic layer 22, the first high polarizability magnetic layer 41, the second high polarizability magnetic layer 42 related to the resistance change of the element, Only the first intermediate layer 31 and the second intermediate layer 32 are shown.
  • the second magnetic layer 22 When a current is passed in a direction perpendicular to the film surface of the element, the second magnetic layer 22 having a smaller thickness than the first magnetic layer 21 is reversed in magnetization first.
  • the layer (second high polarizability magnetic layer 42 / second intermediate layer 32 / second magnetic layer 22) serves as a recording layer, and the lower laminated magnetic layer (first magnetic layer 21 / first intermediate layer) Layer 31 / first high polarizability magnetic layer 41) is the fixed layer.
  • FIG. 6A shows an initial state in which no current is passed through the element.
  • Both the magnetization 61 of the first magnetic layer 21 and the magnetization 64 of the second magnetic layer 22 face upward.
  • the first high polarizability magnetic layer 41 and the second high polarizability magnetic layer 42 are respectively connected to the first magnetic layer 21 and the second magnetic layer via the first intermediate layer 31 and the second intermediate layer 32, respectively.
  • the layer 22 is antiferromagnetically coupled.
  • CoFeB which is a material of the high polarizability magnetic layers 41 and 42, is originally an in-plane magnetization material, but magnetization is oriented in the vertical direction by magnetic coupling with the perpendicular magnetization magnetic layers 21 and 22.
  • the magnetization 62 of the first high polarizability magnetic layer 41 faces downward, and similarly, with the second magnetic layer 22 and antiferromagnetic coupling.
  • the magnetization 63 of the second high polarizability magnetic layer 42 also faces downward.
  • FIG. 6B shows the direction of magnetization when a current is passed through the element from the state of FIG. 6A.
  • spin-polarized electrons 80 pass through the second high polarizability magnetic layer 42 and flow into the first high polarizability magnetic layer 41.
  • only electrons having spins in the same direction as the spins of the second high polarizability magnetic layer 42 flow into the first high polarizability magnetic layer 41, and electrons having spins in the reverse direction flow into the barrier layer 10. Reflected on the surface.
  • the reflected electrons act on the magnetization 63 of the second high polarizability magnetic layer 42 of the recording layer, and the magnetization 63 of the second high polarizability magnetic layer 42 is reversed by the spin injection magnetization reversal.
  • the magnetization 64 of the second magnetic layer 22 having antiferromagnetic coupling in the laminated ferrimagnetic structure is also reversed.
  • the magnetization 62 of the first high polarizability magnetic layer 41 in the fixed layer and the magnetization 63 of the second high polarizability magnetic layer 42 in the recording layer are arranged in an antiparallel arrangement, and the MTJ element changes from a low resistance state to a high resistance state. Switch to state.
  • the magnetization 62 of the first high polarizability magnetic layer 41 in the fixed layer and the magnetization 63 of the second high polarizability magnetic layer 42 of the recording layer are arranged in parallel, and the resistance of the MTJ element is changed from a high resistance state to a low resistance. Switch to state.
  • the high polarizability magnetic layer 41 (42) and the magnetic layer 21 (22) are coupled in antiparallel via the intermediate layer, but the resistance change due to the current occurs.
  • the characteristics are the same as in Example 1.
  • the change in TMR ratio due to annealing is the same as in Example 1, and the effect of improving the heat resistance of the TMR ratio is improved compared to a conventional MTJ element in which no intermediate layer is inserted between the high polarizability magnetic layer and the magnetic layer. confirmed.
  • Example 4 Ru was used for the first intermediate layer 31 and the second intermediate layer 32, but in addition, W, Ta, Pt, Ti, Os, which are materials having a melting point of 1600 ° C. or more are used. Even when V, Cr, Nb, Mo, Rh, Hf, Re, or the like is used, the same effect as in the fourth embodiment can be obtained. In addition, a combination of different materials may be used for the first intermediate layer 31 and the second intermediate layer 32.
  • the laminated film of CoFe and Pd is applied as the perpendicular magnetization material of the first magnetic layer 21 and the second magnetic layer 22.
  • the fourth embodiment is applied. The same effect can be obtained.
  • Co and 50 Pt 50, Fe 50 Pt 50 , Fe 30 Ni 20 L1 0 type ordered alloy of Pt 50 such as, m-D0 19 type Co 75 Pt 25 ordered alloy or,, CoCrPt an alloy containing the material of the granular structure SiO
  • CoCr alloy or CoCrPt alloy containing Co and containing one or more elements of Cr, Ta, Nb, V, W, Hf, Ti, Zr, Pt, Pd, Fe, and Ni are also good.
  • a combination of different materials may be used for the first magnetic layer 21 and the second magnetic layer 22.
  • Ru or Ta used in Example 4 is desirable from the viewpoint of reaction with the magnetic layer by the annealing treatment and diffusion.
  • other materials such as Pt, Cr, Ti, and W may be used.
  • Example 5 proposes an MTJ element using a ferromagnetic material of an amorphous alloy as a material for the intermediate layer.
  • the configuration of the element is the same as that of the MTJ element of Example 1 shown in FIG. 1, but amorphous alloy FeTaN is used for the first intermediate layer 31 and the second intermediate layer 32. Since FeTaN is a ferromagnetic material, the first magnetic layer 21, the first intermediate layer 31, and the first high polarizability magnetic layer 41 are magnetically coupled, and the magnetizations of the three layers are in the same direction. Therefore, the operation of the element is the same as that of the MTJ element of Example 1.
  • Example 5 As a result of producing the MTJ element of Example 5 by the same method as Example 1 and evaluating the characteristics, a TMR ratio equivalent to that of Example 1 was obtained, and the TMR was compared with a conventional MTJ element in which no intermediate layer was inserted. The heat resistance improvement effect of the ratio was confirmed.
  • a high TMR ratio can be obtained even after annealing at 250 ° C. because the FeTaN used for the first intermediate layer 31 and the second intermediate layer 32 contains Ta having a higher melting point than Co and Fe, and has a high polarizability. This is because the crystallization temperature is higher than that of CoFeB used for the magnetic layer.
  • CoFeB is crystallized by annealing, FeTaN in contact with it still maintains an amorphous state. Thereby, B in CoFeB hardly diffuses into FeTaN, and CoFeB crystallizes into bcc (001) from the MgO side.
  • FeTaN was used for the first intermediate layer 31 and the second intermediate layer 32.
  • an amorphous ferromagnetic alloy such as FeSiBNb, FeSiBZr, FeSiBHf, FeSiBTa, CoSiBNb, CoSiBZr, CoSiBHf, or CoSiBTa is used, the same effect as in Example 5 can be obtained.
  • a combination of different materials may be used for the first intermediate layer 31 and the second intermediate layer 32.
  • the laminated film of CoFe and Pd is applied as the perpendicular magnetization material of the first magnetic layer 21 and the second magnetic layer 22.
  • the fifth embodiment is applied. The same effect can be obtained.
  • Co and 50 Pt 50, Fe 50 Pt 50 , Fe 30 Ni 20 L1 0 type ordered alloy of Pt 50 such as, m-D0 19 type Co 75 Pt 25 ordered alloy or,, CoCrPt an alloy containing the material of the granular structure SiO
  • CoCr alloy or CoCrPt alloy containing Co and containing one or more elements of Cr, Ta, Nb, V, W, Hf, Ti, Zr, Pt, Pd, Fe, and Ni are also good.
  • a combination of different materials may be used for the first magnetic layer 21 and the second magnetic layer 22.
  • Ru or Ta used in Example 5 is desirable from the viewpoint of reaction with the magnetic layer by annealing and diffusion.
  • other materials such as Pt, Cr, Ti, and W may be used.
  • FIG. 7 is a schematic cross-sectional view showing a configuration example of a magnetic memory cell according to the present invention. This magnetic memory cell is equipped with the MTJ element 110 shown in the first to fifth embodiments.
  • the C-MOS 111 is composed of two n-type semiconductors 112 and 113 and one p-type semiconductor 114.
  • An electrode 121 serving as a drain is electrically connected to the n-type semiconductor 112 and connected to the ground via the electrode 141 and the electrode 147.
  • An electrode 122 serving as a source is electrically connected to the n-type semiconductor 113.
  • 123 is a gate electrode, and ON / OFF of the current between the source electrode 122 and the drain electrode 121 is controlled by ON / OFF of the gate electrode 123.
  • An electrode 145, an electrode 144, an electrode 143, an electrode 142, and an electrode 146 are stacked on the source electrode 122, and the lower electrode 11 of the MTJ element 110 is connected via the electrode 146.
  • the bit line 222 is connected to the upper electrode 12 of the MTJ element 110.
  • the magnetization direction of the recording layer of the MTJ element 110 is rotated by the current flowing through the MTJ element 110, that is, the spin transfer torque, and magnetic information is recorded.
  • the spin transfer torque is not a spatial external magnetic field, but a principle in which spins of a spin-polarized current flowing in the MTJ element give torque to the magnetic moment of the ferromagnetic recording layer of the MTJ element.
  • the MTJ element is provided with means for supplying current from the outside, and spin transfer torque magnetization reversal is realized by flowing current using the means.
  • the direction of magnetization of the recording layer in the MTJ element 110 is controlled by passing a current between the bit line 222 and the electrode 146.
  • FIG. 8 is a diagram showing a configuration example of a magnetic random access memory in which the magnetic memory cells are arranged in an array.
  • a word line 223 and a bit line 222 connected to the gate electrode 123 are electrically connected to a memory cell including the MTJ element 110.
  • the magnetic memory of the present invention can operate with lower power consumption than the conventional one, and realizes a gigabit-class high-density magnetic memory. Is possible.
  • a write enable signal is sent to the write driver connected to the bit line 222 to which a current is to be supplied to boost the voltage, and a predetermined current is supplied to the bit line 222.
  • a predetermined current is supplied to the bit line 222.
  • either the write driver 230 or the write driver 231 is dropped to the ground, and the current direction is controlled by adjusting the potential difference.
  • a write enable signal is sent to the write driver 232 connected to the word line 223 to boost the write driver 232 and turn on the transistor connected to the MTJ element to be written. As a result, a current flows through the MTJ element, and spin torque magnetization reversal is performed.
  • the signal to the write driver 232 is disconnected and the transistor is turned off.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Computer Hardware Design (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)
  • Thin Magnetic Films (AREA)

Abstract

垂直磁化材料を適用し、TMR比の高い磁気抵抗効果素子を提供する。 CoFeB層41/MgOバリア層10/CoFeB層42の外側に融点が1600℃以上の単体金属、もしくはその金属を含んだ合金からなる中間層31,32を挿入する。中間層31,32の挿入により、アニール時におけるCoFeB層の結晶化をMgO(001)結晶側から進行させ、CoFeB層をbcc(001)で結晶配向させる。

Description

磁気抵抗効果素子、それを用いた磁気メモリセル及びランダムアクセスメモリ
 本発明は、垂直磁化材料を用いた磁気抵抗効果素子と、それを用いた磁気メモリセル及びランダムアクセスメモリに関するものである。
 近年、磁性体を用いたメモリとしてMRAM(Magnetic Random Access Memory)が開発されている。MRAMは、トンネル磁気抵抗(Tunneling Magnetoresistive:TMR)効果を利用するMTJ(Magnetic Tunneling Junction)を要素素子として用いる。MTJ素子は2枚の強磁性体層で非磁性体層(絶縁層)を挟んだ構造を有し、片側の強磁性体層(記録層)の磁化方向を外部磁場によって反転できる。このように、MTJ素子では磁性体層の磁化方向を制御することによって、情報を記録する。電源を切っても磁性体の磁化方向は変化しないため、記録した情報が保持される不揮発動作を実現できる。MTJ素子の磁化方向を変化させる(情報を書き換える)には、外部から磁場を印加する方式の他、近年、MTJ素子に直接直流電流を流して磁化を反転させる、スピントランスファートルク磁化反転(スピン注入磁化反転)方式が見出されている。例えば、特許文献1には面内磁化材料を記録層として用い、スピン注入磁化反転を利用するMTJ素子及びそれを集積したメモリ:SPRAM(SPin-transfer trque Magnetic Random Access Memory)が開示されている。
 SPRAMの集積度向上にはMTJ素子の微細化が必要となるが、その際、MTJ素子における磁気情報の熱的安定性が課題となる。MTJ素子の記録層の磁化方向を反転させるために必要な磁気エネルギーに対し、環境温度による熱エネルギーが高くなる場合、外部磁場もしくは電流を印加しなくとも磁化の反転が起こる。サイズの縮小とともにMTJ素子の磁気エネルギーは減少するため、素子の微細化に伴いこの熱的安定性は低下する。微細な領域でも熱的安定性を維持し信頼性の高い動作を実現するためには、MTJ素子の記録層材料の結晶磁気異方性を高めるのが有効である。これまでに、面内磁化材料と比べ結晶磁気異方性の高い垂直磁化材料を用いたMTJ素子が開示されている(特許文献2)。さらに垂直磁化材料を適用したMTJ素子では、記録層内にかかる反磁界の影響が面内磁化MTJ素子とは異なり、磁化の反転に要する電流密度(書き込み電流密度)を低減する方向にはたらく。そのため、面内磁化MTJ素子と比べ書き込み電流密度を低減でき消費電力を抑制できる利点がある。
 垂直磁化MTJ素子において抵抗変化率(TMR比)を向上させる手段として、絶縁層(バリア層)に酸化マグネシウム(MgO)を用い、その両側に電子スピンの分極率が高い材料(CoFeBなど)を配置する構造が開示されている(特許文献3)。ここで垂直磁化の強磁性層は高分極率磁性層に直に接して配置される。さらに、垂直磁化層として、非磁性体層を2枚の垂直磁化層で挟んだ構造(積層フェリ構造)を用いる素子も提案されている(特許文献3)。この場合、2枚の垂直磁化層の磁化は反平行方向に結合されるため、垂直磁化層から発生する漏れ磁場を抑制する効果がある。
 上記のような垂直磁化MTJ素子を作製し、高いTMR比を得るためには、バリア層とその両側の高分極率磁性層の結晶配向制御が重要である。これまでの面内磁化TMR素子の研究から、NaCl構造をもつMgO(001)バリア層を用い、その両側にbcc(001)結晶構造をもつCoFeB層を配置すると、高いTMR比が得られることが知られている。室温でCoFeBを形成すると、CoFeBはアモルファスで成長する。その上にMgOを形成すると、MgO(001)結晶が成長する。その上にさらにCoFeBを形成した後、アニール処理を行うと、MgO(001)結晶を核にしてCoFeB層はbcc(001)に結晶配向する。面内磁化TMR素子の場合、このような機構を利用してMgO(001)とCoFeBのbcc(001)配向を実現する。
特開2002-305337号公報 特開2005-32878号公報 特開2007-142364号公報
 CoFeBとMgOの組み合わせを垂直磁化MTJ素子に適用する場合、CoFeBに接する材料を考慮する必要がある。上述したように、高いTMR比を得るにはCoFeBのbcc(001)結晶配向を実現するために、薄膜形成後のアニールが不可欠である。しかしながら、CoFeB/MgO/CoFeB積層構造を形成しても、CoFeBの外側に接する材料によっては、アニールでCoFeB層のbcc(001)配向が得られない場合がある。これは、CoFeBの結晶化がMgO界面からではなく、逆側の材料から進行することによる。MgO(001)とCoFeBのbcc(001)結晶配向を実現するには、CoFeBに隣接する材料として、CoFeBのMgO側からの結晶化を疎外しない適切な材料を選択する必要がある。従来の垂直TMR素子の構成では、CoFeBと垂直磁化磁性層が直に接するため、垂直磁化磁性層に用いる材料によっては薄膜形成後のアニール処理でCoFeBのbcc(001)構造実現が困難である。そのため、面内磁化MTJ素子と同様の手法(アニール温度上昇でCoFeBを結晶化させ高いTMR比を実現)を適用しようとした場合、アニール温度上昇に伴いTMR比が低下するか、もしくは、ある程度の温度までTMR比が向上するがそれ以上の温度では逆にTMR比が低下する課題がある。
 本発明は、上述した課題に鑑み、アニール処理後でも高いTMR比を示す垂直磁化MTJ素子を提供するものである。
 本発明の磁気抵抗効果素子(MTJ素子)は、垂直磁化の強磁性材料を適用したMTJ素子であり、MgOのバリア層の基板側あるいは両側に高分極率の強磁性層であるCoFeB層を配置する。さらに、高分極率磁性層のバリア層と反対側の界面には、融点が1600℃以上の金属もしくはその合金からなる中間層を介して垂直磁化磁性層を配置する。
 本発明によると、アニール後に高いTMR比を示す垂直磁化MTJ素子が作製可能となる。
実施例1のMTJ素子の断面模式図である。 実施例1のMTJ素子の磁化反転動作を模式的に示した図である。 実施例1のMTJ素子の磁化反転動作を模式的に示した図である。 実施例1のMTJ素子の磁化反転動作を模式的に示した図である。 実施例1のMTJ素子に関するTMR比のアニール温度依存性を示す図である。 実施例2のMTJ素子の断面模式図である。 実施例3のMTJ素子の断面模式図である。 実施例3のMTJ素子の磁化反転動作を模式的に示した図である。 実施例3のMTJ素子の磁化反転動作を模式的に示した図である。 実施例3のMTJ素子の磁化反転動作を模式的に示した図である。 磁気メモリセルの構成例を示す断面模式図である。 ランダムアクセスメモリの構成例を示す模式図である。
 本発明の実施形態を、図面を用いて詳細に説明する。
<実施例1>
 図1に、実施例1におけるMTJ素子の断面模式図を示す。バリア層10の両側には、電子スピンの分極率が高い第1の高分極率磁性層41と第2の高分極率磁性層42を配置する。その外側には、第1の中間層31と第2の中間層32を配置し、それらに接して第1の磁性層21と第2の磁性層22を配置する。また、第1の磁性層21の下側には、下部電極11及び下地層13が形成され、第2の磁性層22の上側にはキャップ層14と上部電極12が形成される。
 各層の材料としては、バリア層10にMgO(膜厚:1nm)、第1の磁性層21にCoFe(膜厚:0.2nm)とPd(膜厚:1.2nm)の2層膜を10周期積層した多層膜(膜厚:14nm)、第2の磁性層22にCoFe(膜厚:0.2nm)とPd(膜厚:1.2nm)の2層膜を3周期積層した多層膜(膜厚:4.2nm)を用いた。また、第1の高分極率磁性層41及び第2の高分極率磁性層42にはCoFeB(膜厚:1nm)を適用し、第1の中間層31及び第2の中間層32にはTa(膜厚:0.5nm)を用いた。また、下部電極11としては、Ta層(膜厚:5nm)、下地層13にはRu(膜厚:10nm)を用いた。キャップ層14は、Ta(膜厚:5nm)、Ru(膜厚:5nm)の順に積層した薄膜を用いた。各層はArガスを用いたRFスパッタリング法を用いてSi基板5の上に形成した。
 積層膜を形成後、電子ビーム(EB)リソグラフィとイオンビームエッチングを用いて、上面の面積が50×50nmのピラー形状に加工した。その後、Cr(膜厚:5nm)/Au(膜厚:100nm)の積層構造からなる上部電極12を形成した。なお、図示はしていないが、上部電極層12と下部電極層11にはそれぞれ、素子に電流を流すための配線が接続される。
 素子の動作について図2Aから図2Cを用いて説明する。簡単のために、素子の抵抗変化に関係するバリア層10、第1の磁性層21、第2の磁性層22、第1の高分極率磁性層41、第2の高分極率磁性層42、第1の中間層31、第2の中間層32のみを図示する。素子の膜面と垂直方向に電流を流すと、第1の磁性層21に比べ膜厚の薄い第2の磁性層22の方が先に磁化反転するため、バリア層10の上側にある積層磁性層(第2の高分極率磁性層42/第2の中間層32/第2の磁性層22)が記録層となり、下側にある積層磁性層(第1の磁性層21/第1の中間層31/第1の高分極率磁性層41)が固定層となる。
 図2Aは素子に電流を流していない初期状態を示す。第1の磁性層21の磁化61、第1の高分極率磁性層41の磁化62、第2の磁性層22の磁化64、第2の高分極率磁性層42の磁化63はともに上側を向いている。第1の高分極率磁性層41は第1の磁性層21と強磁性結合しているため、両者の磁化は連動して同方向を向く。また、第2の高分極率磁性層42と第1の磁性層22の磁化についても同様である。
 図2Bは図2Aの状態から、素子に電流を流した時の磁化の方向を示す。素子の下部から上部へ向けて電流70を流すと、スピン偏極した電子80が第2の高分極率磁性層42を通り、第1の高分極率磁性層41に流れる。その際、第2の高分極率磁性層42のスピンと同方向のスピンを持った電子のみが、第1の高分極率磁性層41に流れ込み、逆方向のスピンを持った電子はバリア層10の表面で反射される。反射された電子は記録層の第2の高分極率磁性層42の磁化63に作用し、スピン注入磁化反転により、第2の高分極率磁性層42の磁化63が反転する。同時に、第2の高分極率磁性層42と磁気結合している第2の磁性層22の磁化64も反転する。このとき固定層の第1の高分極率磁性層41の磁化62と、記録層にある第2の高分極率磁性層42の磁化63が反平行配列となりMTJ素子は低抵抗状態から高抵抗状態にスイッチする。
 一方、図2Bの状態から、逆に素子の上部から下部へ電流を流すと図2Cの状態となる。素子の上部から下部へ向けて電流70を流すと、スピン偏極した電子80が第1の高分極率磁性層41から第2の高分極率磁性層42に流れこみ、スピン注入磁化反転により、第2の高分極率磁性層42の磁化63が反転する。同時に、第2の高分極率磁性層42と磁気結合している第2の磁性層22の磁化64も反転する。このとき固定層にある第1の高分極率磁性層41の磁化62と、記録層の第2の高分極率磁性層42の磁化63が平行配列となりMTJ素子の抵抗は高抵抗状態から低抵抗状態にスイッチする。
 実施例1の構造の素子を作製し評価した結果を図3に示す。TMR比はアニール温度とともに増大し、250℃のアニールでTMR比60%が得られた。一方、比較として、第1の中間層31及び第2の中間層22を挿入せずに作製した素子(第1の高分極率材料41のCoFeBが、第1の磁性層21の最上部にあるPdと接する構成)の場合、アニール温度200℃までは実施例1の素子と同等のTMR比を示したが、250℃のアニールではTMR比は20%にまで低下した。すなわち、実施例1の構造の素子では、適切な中間層(Ta)の挿入によりTMR比の耐熱性が向上する効果が確認された。上述したように、中間層として融点が1600℃より低いPdがCoFeBに接する場合にはTMR比の耐熱性は悪く、その他に、融点が1600℃より低いAlなどを適用した場合にもPdの時と同様の結果となった。
 実施例1の素子でTMR比の耐熱性が向上するのは以下の理由による。CoFeBを熱処理すると、ホウ素(B)の拡散が起きる。その際、実施例1のように、CoFeBに適切な中間層が隣接しているとBの拡散が抑制され、CoFeBはMgO(001)結晶の界面から結晶化し、bcc(001)に配向する。一方、中間層がない場合(直接、磁性層が隣接する場合)、もしくは、中間層がBの拡散を抑制しにくい材料(Pd,Cu,Alなど)の場合、アニールによってCoFeB中のBが拡散によって抜けるため、低いアニール温度でCoFeBがCoFeに結晶化する。その時、CoFeBの結晶化はMgOと逆側(CoFeBに隣接する中間層側もしくは磁性層側)から進行し、中間層もしくは磁性層の結晶構造に影響を受けてbcc(001)とは異なる結晶構造(fcc構造)か、異なる結晶方位(bcc(110))で結晶化する。したがって、Bの拡散を抑制する非磁性材料の挿入がCoFeBのbcc(001)結晶を得るために有効となる。本実施例で中間層に用いたTaは、CoやFeに比べて高い融点(1600℃以上)を有する。この場合、上述したようなCoFeBの結晶化をMgO側から進行させる効果が得られる。一方、アニール温度250℃でTMR比が低下した素子においてCoFeBと接するPdは融点が1600℃以下であり、CoFeBの結晶化をMgO側から進行させるのが困難である。
 実施例1では、第1の中間層31と第2の中間層32にTaを用いたが、それ以外にも、融点が1600℃以上の材料である、W,Ru,Pt,Ti,Os,V,Cr,Nb,Mo,Rh,Hf,Reなどを用いても、実施例1と同様の効果が得られる。また、第1の中間層31と第2の中間層32に、異なる材料の組み合わせを用いてもよい。
 また、実施例1では、第1の磁性層21、第2の磁性層22の垂直磁化材料としてCoFeとPdの積層膜を適用したが、それ以外の垂直磁化材料を適用しても実施例1と同様の効果が得られる。具体的な材料として、例えば、Co50Pt50,Fe50Pt50,Fe30Ni20Pt50等のL10型規則合金や、m-D019型のCo75Pt25規則合金、もしくは、CoCrPt-SiO2,FePt-SiO2など粒状の磁性体が非磁性体の母相中に分散したグラニュラー構造の材料、もしくは、Fe,Co,Niのいずれかもしくは一つ以上を含む合金と、Ru,Pt,Rh,Pd,Crなどの非磁性金属を交互に積層した積層膜、もしくは、TbFeCo,GdFeCoなど、Gd,Dy,Tb等の希土類金属に遷移金属を含んだアモルファス合金を用いてもよい。また、Coを含み、Cr,Ta,Nb,V,W,Hf,Ti,Zr,Pt,Pd,Fe,Niの中の1つ以上の元素を含む、例えばCoCr合金や、CoCrPt合金を用いても良い。また、第1の磁性層21と第2の磁性層22に、異なる材料の組み合わせを用いてもよい。
 また、キャップ層14としては、アニール処理による磁性層との反応や拡散の観点から、実施例1で用いたRuもしくはTaが望ましい。ただし、それ以外の材料として、Pt,Cr,Ti,Wなどの金属を用いてもよい。
 また、実施例1では、バリア層10の上側の磁性層(第2の磁性層22)を下側の磁性層(第1の磁性層21)よりも薄くしたため、第2の磁性層22が記録層として磁化反転する。それとは逆に、バリア層10の下側の磁性層(第1の磁性層21)を上側の磁性層(第2の磁性層22)よりも薄くした場合でも、実施例1と同様の抵抗変化及び同等のTMR比が得られる。ただし、その際はバリア層10の下側の磁性層(第1の磁性層21)が記録層としてはたらくため、第1の磁性層21の磁化が反転する。
<実施例2>
 実施例2は、バリア層10の下側のみに、垂直磁化磁性層/中間層/高分極磁性層の積層構造を適用したMTJ素子を提案するものである。図4に、実施例2のMTJ素子の断面模式図を示す。基本的な構成は実施例1で示した素子と同様であるが、実施例2では、第2の高分極率磁性層42と垂直磁化を示す第2の磁性層22は直接接続され、両者の間に中間層は挿入しない。
 各層の材料としては、バリア層10にMgO(膜厚:1nm)、第1の磁性層21にCoFe(膜厚:0.2nm)とPd(膜厚:1.2nm)の2層膜を10周期積層した多層膜(膜厚:14nm)、第2の磁性層22にCoFe(膜厚:0.2nm)とPd(膜厚:1.2nm)の2層膜を3周期積層した多層膜(膜厚:4.2nm)を用いた。また、第1の高分極率磁性層41及び第2の高分極率磁性層42にはCoFeB(膜厚:1nm)を適用し、第1の中間層31にはTa(膜厚:0.5nm)を用いた。また、下部電極11としては、Ta層(膜厚:5nm)、下地層13にはRu(膜厚:10nm)を用いた。キャップ層14は、Ta(膜厚:5nm)、Ru(膜厚:5nm)の順に積層した薄膜を用いた。
 各層はArガスを用いたRFスパッタリング法によってSi基板5の上に形成した。基板5から第2の高分極率磁性層42まで順に積層した後、その段階で真空チャンバー内において250℃のin-situアニールを行った。これにより、MgO(001)とCoFeBのbcc(001)結晶配向を実現した。その後、第2の磁性層22からキャップ層14までを形成した。
 積層膜を形成後、電子ビーム(EB)リソグラフィとイオンビームエッチングを用いて、上面の面積が50×50nmのピラー形状に加工した。その後、Cr(膜厚:5nm)/Au(膜厚:100nm)の積層構造を有する上部電極12を形成した。なお、図示はしていないが、上部電極層12と下部電極層11にはそれぞれ、素子に電流を流すための配線が接続される。
 素子の動作については実施例1と同様である。実施例2では、第2の高分極率磁性層42と第2の磁性層22が強磁性結合し、両者の磁化は連動して同方向を向くため、実施例1の図2Aから図2Cに示したのと同様の動作を示す。
 実施例2の構造の素子を作製し評価した結果、素子作製後にアニール処理を行わない(as-depo)状態でTMR比60%が得られ、素子作製後に250℃でアニール処理した場合でもTMR比の低下はなかった。これは、薄膜形成時のin-situアニールの段階で、CoFeBのbcc(001)結晶配向とMgO(001)結晶配向を実現したことによる。一方、比較として、第1の中間層31を挿入せずに(第1の高分極率材料41のCoFeBが、第1の磁性層21の最上部にあるPdと接する構成)作製した素子の場合、as-depoから250℃未満の温度でのアニール条件においてTMR比は実施例2よりも低く、250℃のアニールでTMR比は20%にまで低下した。以上より、実施例2の構造の素子では、適切な中間層(Ta)の挿入によりTMR比の耐熱性が向上する効果が確認された。
 また、実施例2では、第2の高分極率磁性層42を形成した直後に、in-situアニールを行う。第2の高分極率磁性層42の上部には接触する層が無いため、第2の高分極率磁性層42はMgO(001)側のみの影響を受けて結晶化する。つまり、第2の高分極率磁性層42については、上部層の材料の影響されることなく、容易にbcc(001)構造を実現できる利点がある。
 実施例2では、第1の中間層31にTaを用いたが、それ以外にも、融点が1600℃以上の材料である、W,Ru,Pt,Ti,Os,V,Cr,Nb,Mo,Rh,Hf,Reなどを用いても実施例2と同様の効果が得られる。また、第1の中間層31と第2の中間層32に、異なる材料の組み合わせを用いてもよい。
 また、実施例2では、第2の高分極率磁性層42の磁性材料として、CoFeBを用いたが、それ以外にも、bcc結晶構造をとるCo50Fe50、Feなどの材料を用いても良い。例えば、第1の高分極率磁性層41としてアモルファスのCoFeBを成膜し、その上にMgOバリア層10を(001)に配向成長させる。その上に第2の高分極率磁性層42としてFeを堆積すると、MgOの結晶構造に従ってFeのbcc(001)構造が成長し、in-situアニール処理によって、bcc-CoFeB(001)/MgO(001)/bcc-Fe(001)を作製できる。
 また、実施例2では、第1の磁性層21及び第2の磁性層22の垂直磁化材料としてCoFeとPdの積層膜を適用したが、それ以外の垂直磁化材料を適用しても実施例2と同様の効果が得られる。具体的な材料として、例えば、Co50Pt50,Fe50Pt50,Fe30Ni20Pt50等のL10型規則合金や、m-D019型のCo75Pt25規則合金、もしくは、CoCrPt-SiO2,FePt-SiO2など粒状の磁性体が非磁性体の母相中に分散したグラニュラー構造の材料、もしくは、Fe,Co,Niのいずれかもしくは一つ以上を含む合金と、Ru,Pt,Rh,Pd,Crなどの非磁性金属を交互に積層した積層膜、もしくは、TbFeCo,GdFeCoなど、Gd,Dy,Tb等の希土類金属に遷移金属を含んだアモルファス合金を用いてもよい。また、Coを含み、Cr,Ta,Nb,V,W,Hf,Ti,Zr,Pt,Pd,Fe,Niの中の1つ以上の元素を含む、例えばCoCr合金や、CoCrPt合金を用いても良い。また、第1の磁性層21と第2の磁性層22に、異なる材料の組み合わせを用いてもよい。
 また、キャップ層14としては、アニール処理による磁性層との反応や拡散の観点から、実施例2で用いたRuもしくはTaが望ましい。ただし、それ以外の材料として、Pt,Cr,Ti,Wなどの金属を用いてもよい。
<実施例3>
 実施例3は、バリア層の下側に、垂直磁化磁性層/高分極率磁性層/中間層/高分極率磁性層の積層構造を適用したMTJ素子を提案するものである。図5に、実施例3のMTJ素子の断面模式図を示す。基本的な構成は実施例1で示した素子と同様であるが、第1の中間層31と第1の磁性層21の間に第3の高分極率磁性層43を挿入する。
 各層の材料としては、バリア層10にMgO(膜厚:1nm)、第1の磁性層21にCoFe(膜厚:0.2nm)とPd(膜厚:1.2nm)の2層膜を10周期積層した多層膜(膜厚:14nm)、第2の磁性層22にCoFe(膜厚:0.2nm)とPd(膜厚:1.2nm)の2層膜を3周期積層した多層膜(膜厚:4.2nm)を用いた。また、第1の高分極率磁性層41と、第2の高分極率磁性層42、及び第3の高分極率層43にはCoFeB(膜厚:1nm)を適用し、第1の中間層31にはTa(膜厚:0.5nm)を用いた。また、下部電極11としては、Ta層(膜厚:5nm)、下地層13にはRu(膜厚:10nm)を用いた。キャップ層14は、Ta(膜厚:5nm)、Ru(膜厚:5nm)の順に積層した薄膜を用いた。
 実施例3の薄膜積層構造では、高分極率磁性層のCoFeBを中間層31の上下に1層ずつ挿入する。この構造の場合、薄膜形成後はアモルファスであるCoFeBが、第一の磁性層21の表面凹凸をより緩和し、MgOバリア層の下地層における表面平坦性を向上できる。その結果、より均一なバリア層が得られ、TMR比の向上や素子特性のばらつき抑制などに有効である。
 実施例1と同様の方法で実施例3のMTJ素子を作製し、特性を評価した結果、実施例1と同様の動作を示し、TMR比のアニール温度依存性においても実施例1と同様の効果が得られた。
 実施例3では、第1の中間層31及び第2の磁性層32にTaを用いたが、それ以外にも、融点が1600℃以上の材料である、W,Ru,Pt,Ti,Os,V,Cr,Nb,Mo,Rh,Hf,Reなどを用いても実施例3と同様の効果が得られる。また、第1の中間層31と第2の中間層32に、異なる材料の組み合わせを用いてもよい。
 また、実施例3では、第1の磁性層21及び第2の磁性層22の垂直磁化材料としてCoFeとPdの積層膜を適用したが、それ以外の垂直磁化材料を適用しても実施例3と同様の効果が得られる。具体的な材料として、例えば、Co50Pt50,Fe50Pt50,Fe30Ni20Pt50等のL10型規則合金や、m-D019型のCo75Pt25規則合金、もしくは、CoCrPt-SiO2,FePt-SiO2など粒状の磁性体が非磁性体の母相中に分散したグラニュラー構造の材料、もしくは、Fe,Co,Niのいずれかもしくは一つ以上を含む合金と、Ru,Pt,Rh,Pd,Crなどの非磁性金属を交互に積層した積層膜、もしくは、TbFeCo,GdFeCoなど、Gd,Dy,Tb等の希土類金属に遷移金属を含んだアモルファス合金を用いてもよい。また、Coを含み、Cr,Ta,Nb,V,W,Hf,Ti,Zr,Pt,Pd,Fe,Niの中の1つ以上の元素を含む、例えばCoCr合金や、CoCrPt合金を用いても良い。また、第1の磁性層21と第2の磁性層22に、異なる材料の組み合わせを用いてもよい。
 また、キャップ層14としては、アニール処理による磁性層との反応や拡散の観点から、実施例3で用いたRuもしくはTaが望ましい。ただし、それ以外の材料として、Pt,Cr,Ti,Wなどの金属を用いてもよい。
<実施例4>
 実施例4は、バリア層の上下にある、磁性層/中間層/高分極率磁性層、及び、高分極率磁性層/中間層/磁性層を、それぞれ反強磁性結合を有する積層フェリ構造として用いるMTJ素子を提案するものである。実施例4のMTJ素子の基本構成、及び各層の材料と膜厚は、第1の中間層31と第2の中間層32を除いて図1に示した実施例1構成と同じである。実施例4では、第1の中間層31と第2の中間層32として、膜厚0.8nmのRuを用いた。実施例4の構成の場合、第1の磁性層21と第1の高分極率磁性層41、及び第2の高分極率磁性層42と第2の磁性層22が反強磁性結合するため、それらからの漏れ磁場を抑制できる利点がある。
 実施例4の素子の動作について図6Aから図6Cを用いて説明する。簡単のために、素子の抵抗変化に関係するバリア層10、第1の磁性層21、第2の磁性層22、第1の高分極率磁性層41、第2の高分極率磁性層42、第1の中間層31、第2の中間層32のみを図示する。素子の膜面と垂直方向に電流を流すと、第1の磁性層21に比べ膜厚の薄い第2の磁性層22の方が先に磁化反転するため、バリア層10の上側にある積層磁性層(第2の高分極率磁性層42/第2の中間層32/第2の磁性層22)が記録層となり、下側にある積層磁性層(第1の磁性層21/第1の中間層31/第1の高分極率磁性層41)が固定層となる。
 図6Aは素子に電流を流していない初期状態を示す。第1の磁性層21の磁化61、及び第2の磁性層22の磁化64はともに上側を向いている。第1の高分極率磁性層41及び第2の高分極率磁性層42はそれぞれ、第1の中間層31及び第2の中間層32を介して、第1の磁性層21及び第2の磁性層22と反強磁性結合している。高分極率磁性層41,42の材料であるCoFeBは本来面内磁化材料であるが、垂直磁化の磁性層21,22と磁気結合することで、磁化が垂直方向を向く。垂直磁化を示す第1の磁性層21と反強磁性結合するため、第1の高分極率磁性層41の磁化62は下側を向き、同様に、第2の磁性層22と反強磁性結合する第2の高分極率磁性層42の磁化63も下側を向く。
 図6Bは図6Aの状態から、素子に電流を流した時の磁化の方向を示す。素子の下部から上部へ向けて電流70を流すと、スピン偏極した電子80が第2の高分極率磁性層42を通り、第1の高分極率磁性層41に流れる。その際、第2の高分極率磁性層42のスピンと同方向のスピンを持った電子のみが、第1の高分極率磁性層41に流れ込み、逆方向のスピンを持った電子はバリア層10の表面で反射される。反射された電子は記録層の第2の高分極率磁性層42の磁化63に作用し、スピン注入磁化反転により、第2の高分極率磁性層42の磁化63が反転する。同時に、積層フェリ構成で反強磁性結合となっている第2の磁性層22の磁化64も反転する。このとき固定層の第1の高分極率磁性層41の磁化62と、記録層にある第2の高分極率磁性層42の磁化63が反平行配列となり、MTJ素子は低抵抗状態から高抵抗状態にスイッチする。
 一方、図6Bの状態から、逆に素子の上部から下部へ電流を流すと、図6Cの状態となる。素子の上部から下部へ向けて電流70を流すと、スピン偏極した電子80が第1の高分極率磁性層41から第2の高分極率磁性層42に流れ込み、スピン注入磁化反転により、第2の高分極率磁性層42の磁化63が反転する。同時に、積層フェリ構成で反強磁性結合している第2の磁性層22の磁化64も反転する。このとき固定層にある第1の高分極率磁性層41の磁化62と、記録層の第2の高分極率磁性層42の磁化63が平行配列となりMTJ素子の抵抗は高抵抗状態から低抵抗状態にスイッチする。
 以上のように、実施例4のMTJ素子では、中間層を介して高分極率磁性層41(42)と磁性層21(22)が反平行に結合して動作するが、電流による抵抗変化の特性は、実施例1と同様である。また、アニールによるTMR比の変化も実施例1と同様であり、高分極率磁性層と磁性層の間に中間層を挿入しない従来のMTJ素子に比べ、TMR比の耐熱性が向上する効果が確認された。
 実施例4では、第1の中間層31及び第2の中間層32にRuを用いたが、それ以外にも、融点が1600℃以上の材料である、W,Ta,Pt,Ti,Os,V,Cr,Nb,Mo,Rh,Hf,Reなどを用いても実施例4と同様の効果が得られる。また、第1の中間層31と第2の中間層32に、異なる材料の組み合わせを用いてもよい。
 また、実施例4では、第1の磁性層21及び第2の磁性層22の垂直磁化材料としてCoFeとPdの積層膜を適用したが、それ以外の垂直磁化材料を適用しても実施例4と同様の効果が得られる。具体的な材料として、例えば、Co50Pt50,Fe50Pt50,Fe30Ni20Pt50等のL10型規則合金や、m-D019型のCo75Pt25規則合金、もしくは、CoCrPt-SiO2,FePt-SiO2など粒状の磁性体が非磁性体の母相中に分散したグラニュラー構造の材料、もしくは、Fe,Co,Niのいずれかもしくは一つ以上を含む合金と、Ru,Pt,Rh,Pd,Crなどの非磁性金属を交互に積層した積層膜、もしくは、TbFeCo,GdFeCoなど、Gd,Dy,Tb等の希土類金属に遷移金属を含んだアモルファス合金を用いてもよい。また、Coを含み、Cr,Ta,Nb,V,W,Hf,Ti,Zr,Pt,Pd,Fe,Niの中の1つ以上の元素を含む、例えばCoCr合金や、CoCrPt合金を用いても良い。また、第1の磁性層21と第2の磁性層22に、異なる材料の組み合わせを用いてもよい。
 また、キャップ層14としては、アニール処理による磁性層との反応や拡散の観点から、実施例4で用いたRuもしくはTaが望ましい。ただし、それ以外の材料として、Pt,Cr,Ti,Wなどの金属を用いてもよい。
<実施例5>
 実施例5は、中間層の材料としてアモルファス合金の強磁性体を用いたMTJ素子を提案するものである。素子の構成は、図1に示した実施例1のMTJ素子と同様であるが、第1の中間層31と第2の中間層32に、アモルファス合金のFeTaNを用いる。FeTaNは強磁性体であるため、第1の磁性層21と第1の中間層31と第1の高分極率磁性層41は磁気的に結合し、3層の磁化は同方向を向く。そのため、素子の動作としては実施例1のMTJ素子と同様となる。実施例1と同様の方法で実施例5のMTJ素子を作製し、特性を評価した結果、実施例1と同等のTMR比が得られ、中間層を挿入しない従来のMTJ素子と比較してTMR比の耐熱性向上効果を確認した。
 250℃のアニール後でも高いTMR比が得られるのは、第1の中間層31、第2の中間層32に用いたFeTaNが、CoやFeに比べて高融点のTaを含み、高分極率磁性層に用いたCoFeBより高い結晶化温度を有するためである。アニールによりCoFeBが結晶化する際、それに接するFeTaNは依然アモルファス状態を保つ。これにより、CoFeB中のBはFeTaN中に拡散しにくく、MgO側からCoFeBがbcc(001)に結晶化する。
 実施例5では、第1の中間層31と第2の中間層32にFeTaNを用いたが、それ以外の材料として、FeTaC,FeZrB,FeHfB,FeTaB,CoZrNb,CoFeBNb,CoFeZr,CoFeZrNb,CoFeZrTa,CoTaZr,FeSiBNb,FeSiBZr,FeSiBHf,FeSiBTa,CoSiBNb,CoSiBZr,CoSiBHf,CoSiBTaなどのアモルファスの強磁性体合金を用いても、実施例5と同様の効果が得られる。また、第1の中間層31と第2の中間層32に、異なる材料の組み合わせを用いてもよい。
 また、実施例5では、第1の磁性層21と第2の磁性層22の垂直磁化材料としてCoFeとPdの積層膜を適用したが、それ以外の垂直磁化材料を適用しても実施例5と同様の効果が得られる。具体的な材料として、例えば、Co50Pt50,Fe50Pt50,Fe30Ni20Pt50等のL10型規則合金や、m-D019型のCo75Pt25規則合金、もしくは、CoCrPt-SiO2,FePt-SiO2など粒状の磁性体が非磁性体の母相中に分散したグラニュラー構造の材料、もしくは、Fe,Co,Niのいずれかもしくは一つ以上を含む合金と、Ru,Pt,Rh,Pd,Crなどの非磁性金属を交互に積層した積層膜、もしくは、TbFeCo,GdFeCoなど、Gd,Dy,Tb等の希土類金属に遷移金属を含んだアモルファス合金を用いてもよい。また、Coを含み、Cr,Ta,Nb,V,W,Hf,Ti,Zr,Pt,Pd,Fe,Niの中の1つ以上の元素を含む、例えばCoCr合金や、CoCrPt合金を用いても良い。また、第1の磁性層21と第2の磁性層22に、異なる材料の組み合わせを用いてもよい。
 また、キャップ層14としては、アニール処理による磁性層との反応や拡散の観点から、実施例5で用いたRuもしくはTaが望ましい。ただし、それ以外の材料として、Pt,Cr,Ti,Wなどの金属を用いてもよい。
<実施例6>
 実施例6は、本発明によるMTJ素子を適用したランダムアクセスメモリを提案するものである。図7は、本発明による磁気メモリセルの構成例を示す断面模式図である。この磁気メモリセルは、実施例1~5に示したMTJ素子110を搭載している。
 C-MOS111は、2つのn型半導体112,113と一つのp型半導体114からなる。n型半導体112にドレインとなる電極121が電気的に接続され、電極141及び電極147介してグラウンドに接続されている。n型半導体113には、ソースとなる電極122が電気的に接続されている。さらに123はゲート電極であり、このゲート電極123のON/OFFによりソース電極122とドレイン電極121の間の電流のON/OFFを制御する。上記ソース電極122に電極145、電極144、電極143、電極142、電極146が積層され、電極146を介してMTJ素子110の下部電極11が接続されている。
 ビット線222はMTJ素子110の上部電極12に接続されている。本実施例の磁気メモリセルでは、MTJ素子110に流れる電流、すなわちスピントランスファートルクによりMTJ素子110の記録層の磁化方向を回転し、磁気的情報を記録する。スピントランスファートルクは空間的な外部磁界ではなく主として、MTJ素子中を流れるスピン偏極した電流のスピンがMTJ素子の強磁性記録層の磁気モーメントにトルクを与える原理である。したがってMTJ素子に外部から電流を供給する手段を備え、その手段を用いて電流を流すことによりスピントランスファートルク磁化反転は実現される。本実施例では、ビット線222と電極146の間に電流を流すことによりMTJ素子110中の記録層の磁化の方向を制御する。
 図8は、上記磁気メモリセルをアレイ状に配置した磁気ランダムアクセスメモリの構成例を示す図である。ゲート電極123に接続されたワード線223、及びビット線222がMTJ素子110を備えるメモリセルに電気的に接続されている。実施例1~5に記載のMTJ素子を備えた磁気メモリセルを配置することにより、本発明の磁気メモリは従来よりも低消電力で動作が可能であり、ギガビット級の高密度磁気メモリを実現可能である。
 本構成の場合の書込みは、まず、電流を流したいビット線222に接続された書き込みドライバにライトイネーブル信号を送って昇圧し、ビット線222に所定の電流を流す。電流の向きに応じ、書き込みドライバ230ないし書き込みドライバ231のいずれかをグランドに落として、電位差を調節して電流方向を制御する。次に所定時間経過後、ワード線223に接続された書き込みドライバ232にライトイネーブル信号を送り、書き込みドライバ232を昇圧して、書き込みたいMTJ素子に接続されたトランジスタをオンにする。これによりMTJ素子に電流が流れ、スピントルク磁化反転が行われる。所定の時間、トランジスタをオンにしたのち、書込みドライバ232への信号を切断し、トランジスタをオフにする。読出しの際は、読出したいMTJ素子につながったビット線222のみを読出し電圧Vに昇圧し、選択トランジスタのみをオンにして電流を流し、読出しを行う。この構造は最も単純な1トランジスタ+1メモリセルの配置なので、単位セルの占める面積は2F×4F=8F2と高集積なものにすることができる。
5 基板
10 バリア層
11 下部電極
12 上部電極
13 下地層
14 キャップ層
21 第1の磁性層
22 第2の磁性層
31 第1の中間層
32 第2の中間層
41 第1の高分極率磁性層
42 第2の高分極率磁性層
43 第3の高分極率磁性層
61,62,63,64 磁化
70 電流
80 電子
110 MTJ素子
111 C-MOS
112,113 n型半導体
114 p型半導体
121 ソース電極
122 ドレイン電極
123 ゲート電極
141,142,143,144,145,146,147 電極
222 ビット線
223 ワード線
230,231,232 書き込みドライバ

Claims (13)

  1.  垂直磁気異方性を有する強磁性体薄膜からなる記録層と、
     垂直磁気異方性を有し、磁化の方向が一方向に固定された強磁性体薄膜からなる固定層と、
     前記記録層と前記固定層の間に配置されたMgOのバリア層と、
     前記バリア層の少なくとも基板側界面に配置されたCoFeB層と、
     前記CoFeB層の前記バリア層と反対側の界面に配置された中間層とを有し、
     前記中間層は融点が1600℃以上の金属、もしくはその金属を含んだ合金であることを特徴とするトンネル磁気抵抗効果素子。
  2.  請求項1記載のトンネル磁気抵抗効果素子において、前記バリア層の基板と反対側の界面に第2のCoFeB層が配置され、前記第2のCoFeB層の前記バリア層と反対側の界面に、融点が1600℃以上の金属、もしくはその金属を含んだ合金である第2の中間層が配置されていることを特徴とするトンネル磁気抵抗効果素子。
  3.  請求項1記載のトンネル磁気抵抗効果素子において、前記中間層の材料は、W,Ru,Pt,Ti,Os,V,Cr,Nb,Mo,Rh,Hf,Reのいずれかであることを特徴とするトンネル磁気抵抗効果素子。
  4.  請求項1記載のトンネル磁気抵抗効果素子において、前記中間層は、アモルファスの強磁性体であり、かつCoFeBよりも結晶化温度が高い材料からなることを特徴とするトンネル磁気抵抗効果素子。
  5.  請求項1記載のトンネル磁気抵抗効果素子において、前記中間層の材料は、FeTaN,FeTaC,FeZrB,FeHfB,FeTaB,CoZrNb,CoFeBNb,CoFeZr,CoFeZrNb,CoFeZrTa,CoTaZrのいずれかであることを特徴とするトンネル磁気抵抗効果素子。
  6.  請求項1記載のトンネル磁気抵抗効果素子において、前記中間層は、Si及びBを含み、かつ、Fe,Coのいずれか、及び、Nb,Zr,Hf,Taのいずれかを含んだ合金であることを特徴とするトンネル磁気抵抗効果素子。
  7.  請求項1記載のトンネル磁気抵抗効果素子において、前記記録層及び前記固定層の両方もしくは一方は、Co,Fe,Niのいずれか、もしくはその1つ以上の元素と、Pt,Pdのうち1つ以上の元素を含む規則合金であることを特徴とするトンネル磁気抵抗効果素子。
  8.  請求項1記載のトンネル磁気抵抗効果素子において、前記記録層及び前記固定層の両方もしくは一方は、Coを含み、Cr,Ta,Nb,V,W,Hf,Ti,Zr,Pt,Pd,Fe,Niの中の1つ以上の元素を含む合金であることを特徴とするトンネル磁気抵抗効果素子。
  9.  請求項1記載のトンネル磁気抵抗効果素子において、前記記録層及び前記固定層の両方もしくは一方は、Fe,Co,Niのいずれか、もしくはその1つ以上を含む合金と、非磁性金属を交互に積層した積層膜であることを特徴とするトンネル磁気抵抗効果素子。
  10.  請求項1記載のトンネル磁気抵抗効果素子において、前記記録層及び前記固定層の両方もしくは一方は、粒状の磁性体の周囲を非磁性体が取り囲んだグラニュラー構造を有することを特徴とするトンネル磁気抵抗効果素子。
  11.  請求項1記載のトンネル磁気抵抗効果素子において、前記記録層及び前記固定層の両方もしくは一方は、希土類金属と遷移金属を含んだアモルファス合金であることを特徴とするトンネル磁気抵抗効果素子。
  12.  記録層と固定層を有するトンネル磁気抵抗効果素子と、
     前記トンネル磁気抵抗効果素子に電流を流すための電極と、
     前記トンネル磁気抵抗効果素子に流れる電流をオン・オフ制御するスイッチング素子とを備え、
     前記記録層の磁化がスピントランスファートルクにより反転可能な磁気メモリセルにおいて、
     前記トンネル磁気抵抗効果素子は、垂直磁気異方性を有する強磁性体薄膜からなる記録層と、垂直磁気異方性を有し、磁化の方向が一方向に固定された強磁性体薄膜からなる固定層と、前記記録層と前記固定層の間に配置されたMgOのバリア層と、前記バリア層の少なくとも基板側界面に配置されたCoFeB層と、前記CoFeB層の前記バリア層と反対側の界面に配置された中間層とを有し、前記中間層は融点が1600℃以上の金属、もしくはその金属を含んだ合金である
     ことを特徴とする磁気メモリセル。
  13.  複数の磁気メモリセルと、
     前記複数の磁気メモリセルの中から所望の磁気メモリセルを選択する手段と、
     前記選択された磁気メモリセルに対して情報の読み出しあるいは書き込みを行う手段とを備えたランダムアクセスメモリにおいて、
     前記磁気メモリセルは、記録層と固定層を有するトンネル磁気抵抗効果素子と、前記トンネル磁気抵抗効果素子に電流を流すための電極と、前記トンネル磁気抵抗効果素子に流れる電流をオン・オフ制御するスイッチング素子とを備え、
     前記トンネル磁気抵抗効果素子は、垂直磁気異方性を有する強磁性体薄膜からなる記録層と、垂直磁気異方性を有し、磁化の方向が一方向に固定された強磁性体薄膜からなる固定層と、前記記録層と前記固定層の間に配置されたMgOのバリア層と、前記バリア層の少なくとも基板側界面に配置されたCoFeB層と、前記CoFeB層の前記バリア層と反対側の界面に配置された中間層とを有し、前記中間層は融点が1600℃以上の金属、もしくはその金属を含んだ合金であり、
     前記選択された磁気メモリセルに対して情報の書き込みを行う手段は、前記磁気メモリセルの前記記録層をスピントランスファートルクにより磁化反転させる
     ことを特徴とするランダムアクセスメモリ。
PCT/JP2011/051264 2010-01-26 2011-01-25 磁気抵抗効果素子、それを用いた磁気メモリセル及びランダムアクセスメモリ WO2011093252A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/575,387 US9042165B2 (en) 2010-01-26 2011-01-25 Magnetoresistive effect element, magnetic memory cell using same, and random access memory

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-014576 2010-01-26
JP2010014576A JP4903277B2 (ja) 2010-01-26 2010-01-26 磁気抵抗効果素子、それを用いた磁気メモリセル及びランダムアクセスメモリ

Publications (1)

Publication Number Publication Date
WO2011093252A1 true WO2011093252A1 (ja) 2011-08-04

Family

ID=44319240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051264 WO2011093252A1 (ja) 2010-01-26 2011-01-25 磁気抵抗効果素子、それを用いた磁気メモリセル及びランダムアクセスメモリ

Country Status (3)

Country Link
US (1) US9042165B2 (ja)
JP (1) JP4903277B2 (ja)
WO (1) WO2011093252A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013149857A (ja) * 2012-01-20 2013-08-01 Renesas Electronics Corp 磁気抵抗効果素子及び磁気メモリ
JP2013187305A (ja) * 2012-03-07 2013-09-19 Fujitsu Ltd 磁気抵抗メモリおよび磁気抵抗メモリの製造方法

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111473A1 (ja) 2010-03-10 2011-09-15 株式会社日立製作所 磁気抵抗効果素子及び磁気メモリ
JP5725735B2 (ja) 2010-06-04 2015-05-27 株式会社日立製作所 磁気抵抗効果素子及び磁気メモリ
JP5786341B2 (ja) * 2010-09-06 2015-09-30 ソニー株式会社 記憶素子、メモリ装置
JP5123365B2 (ja) * 2010-09-16 2013-01-23 株式会社東芝 磁気抵抗素子及び磁気メモリ
JP5177585B2 (ja) 2010-09-17 2013-04-03 株式会社東芝 磁気抵抗効果素子及び磁気メモリ
JP2013055088A (ja) * 2011-08-31 2013-03-21 Fujitsu Ltd 磁気抵抗素子及び磁気記憶装置
US9007818B2 (en) 2012-03-22 2015-04-14 Micron Technology, Inc. Memory cells, semiconductor device structures, systems including such cells, and methods of fabrication
JP6090800B2 (ja) * 2012-04-09 2017-03-15 国立大学法人東北大学 磁気抵抗効果素子および磁気メモリ
JP2013235914A (ja) 2012-05-08 2013-11-21 Toshiba Corp 磁気抵抗素子および磁気メモリ
US9054030B2 (en) 2012-06-19 2015-06-09 Micron Technology, Inc. Memory cells, semiconductor device structures, memory systems, and methods of fabrication
US8923038B2 (en) 2012-06-19 2014-12-30 Micron Technology, Inc. Memory cells, semiconductor device structures, memory systems, and methods of fabrication
US9490054B2 (en) * 2012-10-11 2016-11-08 Headway Technologies, Inc. Seed layer for multilayer magnetic materials
US9379315B2 (en) 2013-03-12 2016-06-28 Micron Technology, Inc. Memory cells, methods of fabrication, semiconductor device structures, and memory systems
US20140306303A1 (en) * 2013-04-16 2014-10-16 Headway Technologies, Inc. Seed Layer for Perpendicular Magnetic Anisotropy (PMA) Thin Film
KR102099879B1 (ko) 2013-05-03 2020-04-10 삼성전자 주식회사 자기 소자
SG11201506142YA (en) * 2013-05-20 2015-09-29 Jx Nippon Mining & Metals Corp Sputtering target for magnetic recording medium
KR102105078B1 (ko) 2013-05-30 2020-04-27 삼성전자주식회사 자기 기억 소자
US9368714B2 (en) 2013-07-01 2016-06-14 Micron Technology, Inc. Memory cells, methods of operation and fabrication, semiconductor device structures, and memory systems
KR102082328B1 (ko) * 2013-07-03 2020-02-27 삼성전자주식회사 수직 자기터널접합을 구비하는 자기 기억 소자
US9466787B2 (en) 2013-07-23 2016-10-11 Micron Technology, Inc. Memory cells, methods of fabrication, semiconductor device structures, memory systems, and electronic systems
US9142756B2 (en) 2013-09-06 2015-09-22 Makoto Nagamine Tunneling magnetoresistive element having a high MR ratio
US9209386B2 (en) 2013-09-06 2015-12-08 Makoto Nagamine Magneto-resistive element having a ferromagnetic layer containing boron
US9461242B2 (en) 2013-09-13 2016-10-04 Micron Technology, Inc. Magnetic memory cells, methods of fabrication, semiconductor devices, memory systems, and electronic systems
US9608197B2 (en) 2013-09-18 2017-03-28 Micron Technology, Inc. Memory cells, methods of fabrication, and semiconductor devices
US9373781B2 (en) 2013-11-12 2016-06-21 Samsung Electronics Co., Ltd. Dual perpendicular magnetic anisotropy magnetic junction usable in spin transfer torque magnetic random access memory applications
KR102126975B1 (ko) 2013-12-09 2020-06-25 삼성전자주식회사 자기 기억 소자 및 그 제조 방법
US10454024B2 (en) 2014-02-28 2019-10-22 Micron Technology, Inc. Memory cells, methods of fabrication, and memory devices
US9281466B2 (en) 2014-04-09 2016-03-08 Micron Technology, Inc. Memory cells, semiconductor structures, semiconductor devices, and methods of fabrication
US9269888B2 (en) 2014-04-18 2016-02-23 Micron Technology, Inc. Memory cells, methods of fabrication, and semiconductor devices
JP6375719B2 (ja) * 2014-06-24 2018-08-22 富士電機株式会社 磁性薄膜および磁性薄膜を含む応用デバイス
KR102277490B1 (ko) * 2014-07-18 2021-07-14 삼성전자주식회사 자기 기억 소자 및 그의 형성 방법
JP6345037B2 (ja) * 2014-08-26 2018-06-20 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
JP2015038998A (ja) * 2014-09-12 2015-02-26 株式会社東芝 磁気記録素子及び磁気メモリ
US9007725B1 (en) 2014-10-07 2015-04-14 Western Digital (Fremont), Llc Sensor with positive coupling between dual ferromagnetic free layer laminates
US9349945B2 (en) 2014-10-16 2016-05-24 Micron Technology, Inc. Memory cells, semiconductor devices, and methods of fabrication
KR102268187B1 (ko) 2014-11-10 2021-06-24 삼성전자주식회사 자기 기억 소자 및 그 제조 방법
US9768377B2 (en) 2014-12-02 2017-09-19 Micron Technology, Inc. Magnetic cell structures, and methods of fabrication
US9735350B2 (en) 2015-01-05 2017-08-15 Samsung Electronics Co., Ltd. Method and system for removing boron from magnetic junctions usable in spin transfer torque memory applications
US10439131B2 (en) 2015-01-15 2019-10-08 Micron Technology, Inc. Methods of forming semiconductor devices including tunnel barrier materials
JP6876335B2 (ja) * 2016-07-29 2021-05-26 国立大学法人東北大学 磁気トンネル接合素子およびその製造方法
US10038138B1 (en) * 2017-10-10 2018-07-31 Headway Technologies, Inc. High temperature volatilization of sidewall materials from patterned magnetic tunnel junctions
JP2020043133A (ja) 2018-09-06 2020-03-19 キオクシア株式会社 磁気記憶装置
JP6806199B1 (ja) * 2019-08-08 2021-01-06 Tdk株式会社 磁気抵抗効果素子およびホイスラー合金
US20230225219A1 (en) * 2022-01-07 2023-07-13 Samsung Electronics Co., Ltd. Magnetic tunneling junction device and memory device including the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008028362A (ja) * 2006-06-22 2008-02-07 Toshiba Corp 磁気抵抗素子及び磁気メモリ
JP2008283173A (ja) * 2008-04-07 2008-11-20 Sony Corp 磁気抵抗効果素子及び磁気メモリ装置
JP2009081216A (ja) * 2007-09-25 2009-04-16 Toshiba Corp 磁気抵抗効果素子およびそれを用いた磁気ランダムアクセスメモリ
JP2009194398A (ja) * 2009-05-25 2009-08-27 Toshiba Corp 磁気抵抗効果素子、及び磁気抵抗効果素子を備えた磁気記憶装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2817999B1 (fr) 2000-12-07 2003-01-10 Commissariat Energie Atomique Dispositif magnetique a polarisation de spin et a empilement(s) tri-couche(s) et memoire utilisant ce dispositif
JP4253225B2 (ja) 2003-07-09 2009-04-08 株式会社東芝 磁気抵抗効果素子および磁気メモリ
JP5096702B2 (ja) * 2005-07-28 2012-12-12 株式会社日立製作所 磁気抵抗効果素子及びそれを搭載した不揮発性磁気メモリ
JP4444241B2 (ja) 2005-10-19 2010-03-31 株式会社東芝 磁気抵抗効果素子、磁気ランダムアクセスメモリ、電子カード及び電子装置
US20070297220A1 (en) 2006-06-22 2007-12-27 Masatoshi Yoshikawa Magnetoresistive element and magnetic memory

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008028362A (ja) * 2006-06-22 2008-02-07 Toshiba Corp 磁気抵抗素子及び磁気メモリ
JP2009081216A (ja) * 2007-09-25 2009-04-16 Toshiba Corp 磁気抵抗効果素子およびそれを用いた磁気ランダムアクセスメモリ
JP2008283173A (ja) * 2008-04-07 2008-11-20 Sony Corp 磁気抵抗効果素子及び磁気メモリ装置
JP2009194398A (ja) * 2009-05-25 2009-08-27 Toshiba Corp 磁気抵抗効果素子、及び磁気抵抗効果素子を備えた磁気記憶装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013149857A (ja) * 2012-01-20 2013-08-01 Renesas Electronics Corp 磁気抵抗効果素子及び磁気メモリ
JP2013187305A (ja) * 2012-03-07 2013-09-19 Fujitsu Ltd 磁気抵抗メモリおよび磁気抵抗メモリの製造方法

Also Published As

Publication number Publication date
JP2011155073A (ja) 2011-08-11
JP4903277B2 (ja) 2012-03-28
US20130028013A1 (en) 2013-01-31
US9042165B2 (en) 2015-05-26

Similar Documents

Publication Publication Date Title
JP4903277B2 (ja) 磁気抵抗効果素子、それを用いた磁気メモリセル及びランダムアクセスメモリ
JP5579175B2 (ja) 磁気抵抗効果素子及びそれを用いたランダムアクセスメモリ
US9153306B2 (en) Tunnel magnetoresistive effect element and random access memory using same
JP5096702B2 (ja) 磁気抵抗効果素子及びそれを搭載した不揮発性磁気メモリ
US8456898B2 (en) Magnetic element having perpendicular anisotropy with enhanced efficiency
JP4575136B2 (ja) 磁気記録素子、磁気記録装置、および情報の記録方法
JP5725735B2 (ja) 磁気抵抗効果素子及び磁気メモリ
US8830735B2 (en) Magnetic memory including memory cells incorporating data recording layer with perpendicular magnetic anisotropy film
JP5600344B2 (ja) 磁気抵抗効果素子及び磁気メモリ
TWI397069B (zh) Memory components and memory
JP4970113B2 (ja) 磁気抵抗素子及び磁気メモリ
US20100240152A1 (en) Current-Confined Effect of Magnetic Nano-Current-Channel (NCC) for Magnetic Random Access Memory (MRAM)
WO2012004883A1 (ja) 磁気抵抗効果素子及びそれを用いたランダムアクセスメモリ
US20150255134A1 (en) Storage cell, storage device, and magnetic head
KR101636492B1 (ko) 메모리 소자
KR20110098899A (ko) 자기 메모리 소자 및 불휘발성 기억장치
JP5456035B2 (ja) トンネル磁気抵抗効果素子及びそれを用いたランダムアクセスメモリ
JP2002289941A (ja) 磁気抵抗効果素子及び磁気記憶装置
JP5591888B2 (ja) 磁気抵抗効果素子及びそれを搭載した不揮発性磁気メモリ
JP5777124B6 (ja) 磁気抵抗効果素子、磁性膜、及び、磁性膜の製造方法
KR20190104865A (ko) 자기접합 및 하이브리드 캡핑층을 갖는 자기장치, 이를 이용하는 자기메모리 및 자기장치의 제공방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11736965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13575387

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11736965

Country of ref document: EP

Kind code of ref document: A1