WO2011092794A1 - Release film for mold for forming fine structure, and mold equipped with same - Google Patents

Release film for mold for forming fine structure, and mold equipped with same Download PDF

Info

Publication number
WO2011092794A1
WO2011092794A1 PCT/JP2010/007532 JP2010007532W WO2011092794A1 WO 2011092794 A1 WO2011092794 A1 WO 2011092794A1 JP 2010007532 W JP2010007532 W JP 2010007532W WO 2011092794 A1 WO2011092794 A1 WO 2011092794A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
release film
molding
nitride
platinum
Prior art date
Application number
PCT/JP2010/007532
Other languages
French (fr)
Japanese (ja)
Inventor
一真 栗原
裕二 齊藤
紀人 相馬
Original Assignee
独立行政法人産業技術総合研究所
伊藤光学工業株式会社
東海精密工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所, 伊藤光学工業株式会社, 東海精密工業株式会社 filed Critical 独立行政法人産業技術総合研究所
Publication of WO2011092794A1 publication Critical patent/WO2011092794A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • B29C33/68Release sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • C03B11/086Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor of coated dies
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/22Non-oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/30Intermediate layers, e.g. graded zone of base/top material
    • C03B2215/32Intermediate layers, e.g. graded zone of base/top material of metallic or silicon material

Definitions

  • the present invention relates to a release film for realizing a mold having good releasability.
  • the present invention relates to a release film effective for improving the release property of a mold having nanometer-size irregularities.
  • the mold having the release film of the present invention is, for example, a fine antireflection molded product composed of nanostructures, a biochip with nanopillars, a light guide plate with micrometer-sized irregularities, and the like. This is useful in forming irregularities.
  • a mold release layer is formed on the outermost surface of the mold in order to improve the mold releasability between the mold and the molded product.
  • Japanese Patent Application Laid-Open Nos. 07-172849, 2005-231932, and 2009-0667607 disclose a metal mold including a mold base material, an intermediate layer, and a release layer in this order.
  • the mold base material is a cemented carbide whose main component is tungsten carbide (WC), titanium nitride (TiN), chromium carbide (Cr 3 C 2 ) or alumina (Al 2 O 3 ).
  • cermet Made of cermet, chromium (Cr), molybdenum (Mo), nickel (Ni), cobalt (Co), tungsten (W), titanium (Ti), stainless steel (SUS), silicon carbide (SiC), etc. It is made of metal, carbide, or nitride, and the release layer is made of a fluorine-based organic material, or platinum (Pt), palladium (Pd), iridium (Ir), By using a mold composed of an inorganic material (see Patent Documents 1 to 3) such as hum (Rh), osmium (Os), ruthenium (Ru), rhenium (Re), tungsten (W), etc. Improves releasability.
  • the above-mentioned release film is applied to the mold surface provided with nanometer-size irregularities for forming an antireflection structure (such as a moth-eye type antireflection structure) that can be realized by a nanostructure, an optical disk substrate, a grating, and the like.
  • an antireflection structure such as a moth-eye type antireflection structure
  • the release film no satisfactory mold has been obtained.
  • a release layer made of an organic material when a release layer made of an organic material is applied to the outermost surface (molding surface) of a mold having irregularities of nanometer size, there is an advantage that good release properties can be realized.
  • the release layer made of an organic material has a problem that the repetition durability is not sufficient and the number of times it can be molded is small.
  • a release layer made of an inorganic material such as platinum (Pt), palladium (Pd), iridium (Ir), rhodium (Rh), osmium (Os), ruthenium (Ru), rhenium (Re), tungsten (W), etc.
  • platinum palladium
  • Ir iridium
  • Rh rhodium
  • Os osmium
  • Ru ruthenium
  • Re rhenium
  • molding is carried out by devising such as improving the releasability of the resin.
  • an additive for improving releasability is filled in a resin used for molding.
  • molds since it is generally required that molds can be molded with many types of resins as characteristics required for molds, improvement of mold releasability of these molds themselves is further required.
  • JP-A-2009-061465, JP-A-2007-277019, JP-A-10-278049, and JP-A-2006-307323 disclose titanium nitride (TiN). Further, chromium nitride (CrN), tantalum nitride (TaN), carbon nitride (CN), niobium nitride (NbN), and the like have been proposed as thin films having excellent releasability (see Patent Documents 4 to 6). However, these are not sufficient as a release film for improving the mold release property of a mold having fine irregularities.
  • the present invention provides a release film that realizes good mold release properties and improvement of repeated durability of molding, and can produce good molded products.
  • the purpose is to achieve dramatically better release properties and repeated durability compared to conventional release films It is said.
  • a noble metal nitride produced by a vacuum film forming apparatus such as sputtering or PVD, that is, platinum (Pt), palladium (Pd), gold (Au), rhodium (Rh). , Osmium (Os), ruthenium (Ru), iridium (Ir), rhenium (Re) or their alloys nitrides were used as release films.
  • platinum nitride (Pt—N) has a particularly excellent effect.
  • the mold release film according to the first embodiment of the present invention includes a noble metal nitride as a main component.
  • the noble metal is platinum (Pt), palladium (Pd), gold (Au), rhodium (Rh), osmium (Os), ruthenium (Ru), iridium (Ir), rhenium (Re), and alloys thereof.
  • the noble metal is platinum (Pt), palladium (Pd), or an iridium (Ir) -rhenium (Re) alloy.
  • the mold according to the second embodiment of the present invention is characterized by having a base material, a super hard layer having irregularities formed on the surface, and the release film of the first embodiment.
  • the mold may be a mold for resin molding or glass molding.
  • the mold may be a mold for injection molding, press molding, cast molding, transfer molding, or nanoimprint molding.
  • the mold may have fine unevenness, and preferably have nanometer-size unevenness for forming an antireflection structure.
  • the release film of the present invention used is useful as a release film for improving the release property of a mold having fine irregularities. Therefore, the release film of the present invention is useful for resin molding and glass molding, and is used for injection molding dies, press molding dies, cast molding dies, transfer molding dies, and nanoimprint molding dies. It can be applied as a release film to be applied.
  • FIG. 1 is a view showing the light transmittance of a molded product obtained using a mold for forming an antireflection structure having a release film made of platinum nitride or platinum.
  • FIG. 2 is a diagram showing mass loss due to heating of the platinum release film and the platinum nitride release film.
  • release properties of release films made of various metals and alloys and their nitrides will be described in detail.
  • Table 1 shows the contact angle of the release film made of each material with pure water.
  • Table 1 shows the contact angle of the release film made of each material with pure water.
  • the contact angle is improved by nitriding and the release property can be improved, which is an unpredictable feature.
  • a release film containing a nitride of gold (Au), rhodium (Rh), osmium (Os), ruthenium (Ru), iridium (Ir), rhenium (Re) as a main component, or nitride of these metals The same effect could be confirmed with a release film containing as a mixed material.
  • the repetition durability of the aforementioned release film was evaluated using a sample mold in which a release film having a thickness of 50 nm was formed on the surface of a flat plate mold having a diameter of 30 mm via an intermediate layer.
  • resin contamination on the mold surface and the occurrence of point defects on the design surface of the molded product due to molding defects when molding is repeated 10,000 times using a sample mold.
  • the evaluation was repeated using polycarbonate, ZEONEX (registered trademark, cycloolefin polymer resin), acrylic, and the like as the molding resin. The evaluations of these molding resins were combined to evaluate repeated durability.
  • the release film containing the noble metal nitride of the present invention as a main component contains 50% or more, preferably 85% or more of noble metal nitride based on the mass of the release film. Further, the noble metal nitride contained in the release film preferably contains a nitride component (N) of 10% or more, preferably 30% or more by mass ratio.
  • the release film of the present invention may contain a small amount of impurities on condition that the performance is not adversely affected.
  • the release film made of the noble metal nitride of the present invention can be formed by using a vacuum film forming technique such as sputtering (including reactive sputtering) or PVD.
  • a release film made of a noble metal nitride can be formed using other techniques such as a sol-gel method. From the viewpoint that a dense film of noble metal nitride can be formed, it is preferable to form a release film using a vacuum film forming technique.
  • the release film of the present invention preferably has a thickness of 5 nm to 200 nm.
  • a release film having a film thickness of less than 5 nm is effective in improving mold release properties, but there is a risk that repeated durability will be lowered. Further, in a release film having a film thickness exceeding 200 nm, there is a risk that repeated durability may be lowered due to the influence of film stress.
  • a mold for applying the release film of the present invention can be manufactured by a conventional method described in JP 2008-143162 A, JP 2005-331868 A, and the like (Patent Document 8 and 9).
  • a mold for producing an antireflection structure in which irregularities are formed on the surface at a controlled interval below the wavelength in the visible range is used. It will be described in detail below using an example.
  • an adhesion layer is formed on the surface of a base material such as nickel (Ni), stainless steel (SUS), tungsten carbide (WC) using titanium (Ti), nickel (Ni), chromium (Cr), Subsequently, a cemented carbide layer was formed.
  • the super hard layer is preferably formed using silicon nitride, titanium nitride, diamond-like carbon (DLC), carbon nitride, or the like.
  • unevenness of nanometer size for transferring to the molded product is formed on the surface of the cemented carbide layer.
  • irregularities with a height of 160 nm are formed at intervals controlled at intervals of 300 nm or less.
  • the formation of irregularities of nanometer size on these cemented carbide layers was performed by etching the cemented carbide layers by a dry etching process using metal nanoparticles as a mask material.
  • the metal nanoparticles may be gold, silver, platinum or palladium metal, gold, silver, platinum or palladium metal alloy, or gold, silver, platinum. , Or a metal oxide of palladium was formed by heating.
  • non-metallic silica colloids or organic particles can also be used as the nano-particles as the mask material.
  • the nanometer-sized unevenness of the cemented carbide layer may be formed using a mask formed not by nanoparticles but by other lithography methods.
  • a self-assembled film such as an alumina hole can be used as a mask material for forming the irregularities of the cemented carbide layer.
  • an intermediate layer made of titanium (Ti), nickel (Ni), chromium (Cr), etc. is formed, followed by a release film made of platinum nitride.
  • die of this invention which has the unevenness
  • a mold having a release film containing another metal nitride as a main component can be obtained.
  • nanometer-sized unevenness means unevenness having an interval and height of less than 1 micrometer.
  • nanometer-sized irregularities mean irregularities having an interval and height of 700 nanometers or less. More preferably, “a nanometer-sized unevenness” means an unevenness having an interval and height of 300 nanometers or less, which is not more than the wavelength of light in the visible range.
  • a mold having nanometer-sized irregularities formed as described above and having a release film formed on its molding surface can be used for molding a resin or glass.
  • die can be used in techniques, such as injection molding, press molding, cast molding, transfer molding, and nanoimprint molding.
  • This example relates to a mold for producing an antireflection structure in which irregularities are formed on the surface at intervals controlled to be equal to or less than a wavelength in the visible range.
  • an adhesion layer was formed on the nickel base material surface using chromium (Cr), and then a super hard layer was formed using silicon nitride.
  • nanometer-sized irregularities having an irregularity interval of 100 nm and an irregularity height of 160 nm were formed on the surface of the cemented carbide layer by dry etching using gold nanoparticles as a mask material.
  • an intermediate layer made of chromium (Cr) with a thickness of 5 nm is formed, and subsequently a release film made of platinum nitride with a thickness of 10 nm is formed, A mold having nanometer size irregularities and having a release film formed on the molding surface was obtained.
  • an intermediate layer and a platinum nitride release film were formed using a reactive sputtering apparatus. Specifically, by using a target made of chromium and applying a bias voltage to the hard layer, which is the film formation substrate, while generating a plasma in an argon atmosphere, the pinhole (thin film removal) becomes more precise.
  • An intermediate layer made of chromium (Cr) without any metal was formed.
  • the film formation pressure at this time was 0.5 Pa, and the film formation rate was 0.3 ⁇ / second.
  • the film was formed under the conditions that the RF power during film formation was 100 W and the bias voltage to the substrate was 25 W.
  • a release film made of platinum nitride that is dense and free of pinholes (thin film loss) was formed.
  • the film formation pressure at this time was 0.5 Pa, and the film formation rate was 2.9 K / sec.
  • the film was formed under the conditions that the RF power during film formation was 100 W and the bias voltage to the substrate was 25 W. Using a similar method, a mold having a release film made of the metal or metal nitride shown in Table 1 was manufactured. However, when forming a release film made of metal, a release film was obtained by performing a sputtering process in an argon atmosphere not containing nitrogen.
  • FIG. 1 shows a case in which a metal mold for producing an antireflection structure having nanometer-sized irregularities formed on its surface is used, and the platinum nitride film of the present invention is used as a release film, and a conventional platinum film is used.
  • the result of measuring the light transmittance of the molded product when no release film was used was shown.
  • the use of platinum nitride as the release layer increases the transmittance.
  • a molded product is obtained. This is because good transmission optical characteristics were obtained as a result of improved mold release properties between the mold and the resin material. Moreover, the releasability of the resin with respect to the unevenness of nanometer size was evaluated by observing the surface of the mold after molding.
  • the criteria for determining the releasability of the resin for the nanometer-sized irregularities at this time are as follows. A: There is no appearance defect on the design surface, and the reflectance characteristics of the molded product when it is molded using a mold having an antireflection nanostructure is 0.5% or less. B: There is no appearance defect on the design surface, but the reflectance characteristics of the molded product are 0.5% to 1%.
  • FIG. 2 shows the results of measuring the weight loss when the platinum nitride film of the present invention and the conventional platinum film are heated.
  • the heat resistance limit is about 600 ° C.
  • the release film made of platinum nitride of the present invention has a heat resistance up to about 750 ° C. It turns out that it has sex. Therefore, by using a release film made of platinum nitride, molding at a higher temperature required for press molding of glass or the like can be performed. That is, it can be seen that the release film of the present invention made of a noble metal nitride can achieve an improvement in heat resistance in addition to an improvement in the release property.
  • platinum nitride is useful as a release film and can improve the mold release property.
  • the unevenness is fine and has a high aspect ratio (the height / interval of the unevenness is 1 or more)
  • the mold release property of the mold is generally significantly deteriorated. Therefore, the release film of the present invention has an unevenness of nanometer size. It is particularly useful as a release film for transferring.
  • palladium nitride is also a nanometer-sized release film as a mold release film having nanometer-size irregularities formed thereon. It is useful as a release film for transferring irregularities.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

Provided is a release film which makes it possible to attain satisfactory releasability and improvements in durability in repetitions of molding, etc., and with which it is possible to produce satisfactory molded articles. Also provided is a mold equipped with the release film. In particular, in a mold having recesses and protrusions of a nanometer size (for example, a mold for forming an antireflection structure), the release film attains far better releasability than conventional release films and further attains excellent durability in repetitions of use. As the release film, use is made of a noble-metal nitride, that is, the nitride of platinum (Pt), palladium (Pd), gold (Au), rhodium (Rh), osmium (Os), ruthenium (Ru), iridium (Ir), rhenium (Re), or an alloy thereof. Of these, platinum nitride (Pt-N) produces a highly excellent effect.

Description

微細構造形成のための金型用離型膜およびそれを用いた金型Mold release film for forming fine structure and mold using the same
 本発明は、離型性の良好な金型を実現するための離型膜に関する。本発明は、特に、ナノメートルサイズの凹凸を持つ金型の離型性改善に有効な離型膜に関する。本発明の離型膜を有する金型は、たとえば、ナノ構造体で構成された反射防止成形品の製造、ナノピラーが形成されたバイオチップ、マイクロメートルサイズの凹凸が形成された導光板など、微細凹凸の成形において有用である。 The present invention relates to a release film for realizing a mold having good releasability. In particular, the present invention relates to a release film effective for improving the release property of a mold having nanometer-size irregularities. The mold having the release film of the present invention is, for example, a fine antireflection molded product composed of nanostructures, a biochip with nanopillars, a light guide plate with micrometer-sized irregularities, and the like. This is useful in forming irregularities.
 従来より、微細な凹凸が表面に形成された金型または高い面精度が要求される金型などを用いて成形品を製造する場合、成形金型とプラスチック樹脂またはガラスなどの成形品との離型性が不十分であることに起因して、成形品に不良が発生することが問題になっている。 Conventionally, when a molded product is manufactured using a mold having fine irregularities formed on the surface or a mold that requires high surface accuracy, the mold is not separated from a molded product such as plastic resin or glass. Due to inadequate moldability, it has been a problem that defects occur in molded products.
 一般に、金型と成形品との離型性を向上させるために、金型の最表面に離型層を形成することが行われている。具体的には、特開平07-172849号公報、特開2005-231932号公報、および特開2009-067607号公報は、金型母材と、中間層と、離型層とをこの順に含む金型であって:金型母材がタングステンカーバイド(WC)を主成分とする超硬合金、チタンニトリド(TiN)、クロムカーバイド(Cr32)またはアルミナ(Al23)を主成分とするサーメット、クロム(Cr)、モリブデン(Mo)、ニッケル(Ni)、コバルト(Co)、タングステン(W)、チタン(Ti)、ステンレス(SUS)、シリコンカーバイド(SiC)などで作製され、中間層が金属、炭化物、または窒化物からなり、離型層が、フッ素系の有機材料、あるいは白金(Pt),パラジウム(Pd)、イリジウム(Ir)、ロジウム(Rh),オスミウム(Os)、ルテニウム(Ru)、レニウム(Re)、タングステン(W)などの無機材料(特許文献1~3参照)で構成される金型を用いることによって、金型の離型性向上を実現している。 In general, a mold release layer is formed on the outermost surface of the mold in order to improve the mold releasability between the mold and the molded product. Specifically, Japanese Patent Application Laid-Open Nos. 07-172849, 2005-231932, and 2009-0667607 disclose a metal mold including a mold base material, an intermediate layer, and a release layer in this order. The mold base material is a cemented carbide whose main component is tungsten carbide (WC), titanium nitride (TiN), chromium carbide (Cr 3 C 2 ) or alumina (Al 2 O 3 ). Made of cermet, chromium (Cr), molybdenum (Mo), nickel (Ni), cobalt (Co), tungsten (W), titanium (Ti), stainless steel (SUS), silicon carbide (SiC), etc. It is made of metal, carbide, or nitride, and the release layer is made of a fluorine-based organic material, or platinum (Pt), palladium (Pd), iridium (Ir), By using a mold composed of an inorganic material (see Patent Documents 1 to 3) such as hum (Rh), osmium (Os), ruthenium (Ru), rhenium (Re), tungsten (W), etc. Improves releasability.
 しかしながら、金型表面に微細凹凸が形成されたような複雑な金型になると、離型性の向上は、これらの手法では十分に解決されていないのが現状である。 However, in the present situation, in the case of a complicated mold in which fine irregularities are formed on the mold surface, the improvement in releasability is not sufficiently solved by these methods.
 たとえば、ナノ構造体で実現できる反射防止構造(モスアイ型反射防止構造など)、光ディスク基板、グレーティングなどを成形するためのナノメートルサイズの凹凸が付与された金型表面に、前述した離型膜を付与した場合であっても、より良好な離型性(成形性)に加えて、離型膜の優れた繰り返し耐久性(薄膜の硬さ、薄膜の密着、クラッキング強度)などの全ての要求をすべて満足する金型は得られていない。 For example, the above-mentioned release film is applied to the mold surface provided with nanometer-size irregularities for forming an antireflection structure (such as a moth-eye type antireflection structure) that can be realized by a nanostructure, an optical disk substrate, a grating, and the like. Even when applied, all requirements such as excellent releasability (moldability) and excellent repetitive durability of the release film (thin film hardness, thin film adhesion, cracking strength) No satisfactory mold has been obtained.
 すなわち、ナノメートルサイズの凹凸を有する金型の最表面(成形面)に有機材料からなる離型層を付与した場合には、良好な離型性を実現できる利点はある。しかしながら、有機材料からなる離型層は繰り返し耐久性が十分ではなく、成形できる回数が少ないという問題がある。一方、白金(Pt),パラジウム(Pd)、イリジウム(Ir)、ロジウム(Rh),オスミウム(Os)、ルテニウム(Ru)、レニウム(Re)、タングステン(W)などの無機材料からなる離型層においては、繰り返し耐久性などは得られるが、良好な離形性などが実現出来ないことが課題となっている。 That is, when a release layer made of an organic material is applied to the outermost surface (molding surface) of a mold having irregularities of nanometer size, there is an advantage that good release properties can be realized. However, the release layer made of an organic material has a problem that the repetition durability is not sufficient and the number of times it can be molded is small. On the other hand, a release layer made of an inorganic material such as platinum (Pt), palladium (Pd), iridium (Ir), rhodium (Rh), osmium (Os), ruthenium (Ru), rhenium (Re), tungsten (W), etc. However, there is a problem that good releasability cannot be realized, although repeated durability can be obtained.
 そのため、現在では、樹脂の離形性を改善するなどの工夫をして成形を行っている。たとえば、成形に用いる樹脂中に離形性を向上させる添加剤の充填が行われている。しかしながら、一般に金型として求められる特性として、多くの種類の樹脂で成形できることが要求されるため、これら金型自体の離形性改善が更に求められている。 Therefore, at present, molding is carried out by devising such as improving the releasability of the resin. For example, an additive for improving releasability is filled in a resin used for molding. However, since it is generally required that molds can be molded with many types of resins as characteristics required for molds, improvement of mold releasability of these molds themselves is further required.
 また、上述の薄膜の他に、特開2009-061465号公報、特開2007-277019号公報、および特開平10-278049号公報、および特開2006-307323号公報には、窒化チタン(TiN)、窒化クロム(CrN)、窒化タンタル(TaN)、窒化カーボン(CN)、窒化ニオブ(NbN)などが、優れた離形性を示す薄膜として提案されている(特許文献4~6参照)。しかしながら、これらも、微細な凹凸を持つ金型の離型性を向上する離型膜としては十分とは言えない。特に、可視域の波長以下の間隔で構成されたナノメートルサイズの凹凸が表面に形成された反射防止機能付与用の金型に用いた場合には、離型性が不良になり、十分な低反射特性を有する成形品を得ることが出来ない。 In addition to the above-described thin film, JP-A-2009-061465, JP-A-2007-277019, JP-A-10-278049, and JP-A-2006-307323 disclose titanium nitride (TiN). Further, chromium nitride (CrN), tantalum nitride (TaN), carbon nitride (CN), niobium nitride (NbN), and the like have been proposed as thin films having excellent releasability (see Patent Documents 4 to 6). However, these are not sufficient as a release film for improving the mold release property of a mold having fine irregularities. In particular, when it is used in a mold for imparting an antireflection function having nanometer-sized irregularities formed on the surface with an interval equal to or less than the wavelength in the visible range, the releasability becomes poor and sufficiently low. A molded product having reflection characteristics cannot be obtained.
特開平07-172849号公報Japanese Patent Application Laid-Open No. 07-172849 特開2005-231932号公報JP 2005-231932 A 特開2009-067607号公報JP 2009-0667607 A 特開2009-061465号公報JP 2009-061465 A 特開2007-277019号公報JP 2007-277019 A 特開平10-278049号公報Japanese Patent Laid-Open No. 10-278049 特開2006-307323号公報JP 2006-307323 A 特開2008-143162号公報JP 2008-143162 A 特開2005-331868号公報JP 2005-331868 A
 本発明は、良好な離型性と、成形の繰り返し耐久性などの向上とを実現し、良好な成形品を生産できる離型膜を提供するものである。特に、ナノメートルサイズの凹凸を持った金型(反射防止金型など)に対し、従来の離型膜に比べて、飛躍的に良好な離型性、ならびに繰り返し耐久性を実現することを目的としている。 The present invention provides a release film that realizes good mold release properties and improvement of repeated durability of molding, and can produce good molded products. In particular, for molds with unevenness of nanometer size (such as anti-reflection molds), the purpose is to achieve dramatically better release properties and repeated durability compared to conventional release films It is said.
 上記問題を解決するために、本発明では、スパッタやPVDなどの真空成膜装置で作製した貴金属の窒化物、すなわち、白金(Pt)、パラジウム(Pd)、金(Au)、ロジウム(Rh),オスミウム(Os)、ルテニウム(Ru)、イリジウム(Ir)、レニウム(Re)またはそれらの合金の窒化物を離型膜として用いた。なかでも、窒化白金(Pt-N)は、特に優れた効果を有するものである。 In order to solve the above problem, in the present invention, a noble metal nitride produced by a vacuum film forming apparatus such as sputtering or PVD, that is, platinum (Pt), palladium (Pd), gold (Au), rhodium (Rh). , Osmium (Os), ruthenium (Ru), iridium (Ir), rhenium (Re) or their alloys nitrides were used as release films. Among these, platinum nitride (Pt—N) has a particularly excellent effect.
 具体的には、本発明の第1の実施形態である金型用離型膜は、貴金属の窒化物を主成分として含むことを特徴とする。ここで、前記貴金属は、白金(Pt)、パラジウム(Pd)、金(Au)、ロジウム(Rh),オスミウム(Os)、ルテニウム(Ru)、イリジウム(Ir)、レニウム(Re)およびそれらの合金からなる群から選択されることが望ましい。また、特に望ましくは、前記貴金属は、白金(Pt)、パラジウム(Pd)、またはイリジウム(Ir)-レニウム(Re)合金である。 Specifically, the mold release film according to the first embodiment of the present invention includes a noble metal nitride as a main component. Here, the noble metal is platinum (Pt), palladium (Pd), gold (Au), rhodium (Rh), osmium (Os), ruthenium (Ru), iridium (Ir), rhenium (Re), and alloys thereof. Preferably it is selected from the group consisting of More preferably, the noble metal is platinum (Pt), palladium (Pd), or an iridium (Ir) -rhenium (Re) alloy.
 また、本発明の第2の実施形態である金型は、母材と、表面に凹凸が形成された超硬層と、第1の実施形態の離型膜とを有することを特徴とする。ここで、前記金型は、樹脂成形用またはガラス成形用の金型であってもよい。また、前記金型は、前記金型が、射出成形用、プレス成形用、キャスト成形用、トランスファー成形用またはナノインプリント成形用の金型であってもよい。さらに、前記金型は、微細な凹凸を有してもよく、好ましくは反射防止構造を形成するためのナノメートルサイズの凹凸を有してもよい。 Further, the mold according to the second embodiment of the present invention is characterized by having a base material, a super hard layer having irregularities formed on the surface, and the release film of the first embodiment. Here, the mold may be a mold for resin molding or glass molding. Further, the mold may be a mold for injection molding, press molding, cast molding, transfer molding, or nanoimprint molding. Furthermore, the mold may have fine unevenness, and preferably have nanometer-size unevenness for forming an antireflection structure.
 白金(Pt)、パラジウム(Pd)、金(Au)、ロジウム(Rh),オスミウム(Os)、ルテニウム(Ru)、イリジウム(Ir)、レニウム(Re)、それらの合金などの貴金属の窒化物を用いた本発明の離形膜は、微細な凹凸を持つ金型の離型性を向上させる離形膜として有用である。そのため、本発明の離型膜は、樹脂成形、ガラス成形に有用であり、射出成形用金型、プレス成形用金型、キャスト成形用金型、トランスファー成形用金型、ナノインプリント成形用金型に付与する離形膜として適用が可能である。 Noble metal nitrides such as platinum (Pt), palladium (Pd), gold (Au), rhodium (Rh), osmium (Os), ruthenium (Ru), iridium (Ir), rhenium (Re), and alloys thereof. The release film of the present invention used is useful as a release film for improving the release property of a mold having fine irregularities. Therefore, the release film of the present invention is useful for resin molding and glass molding, and is used for injection molding dies, press molding dies, cast molding dies, transfer molding dies, and nanoimprint molding dies. It can be applied as a release film to be applied.
図1は、窒化白金または白金からなる離型膜を有する反射防止構造形成用金型を用いて得られた成形品の光透過率を示す図である。FIG. 1 is a view showing the light transmittance of a molded product obtained using a mold for forming an antireflection structure having a release film made of platinum nitride or platinum. 図2は、白金離型膜および窒化白金離型膜の加熱による質量減を示す図である。FIG. 2 is a diagram showing mass loss due to heating of the platinum release film and the platinum nitride release film.
 はじめに、各種金属および合金、ならびにそれらの窒化物からなる離型膜の離型性について詳述する。 First, the release properties of release films made of various metals and alloys and their nitrides will be described in detail.
 第1表に各材料からなる離型膜の純水に対する接触角を示す。ここで、平板シリコンウエハの表面に膜厚200nmの中間層と、膜厚200nmの各種材料の離型層とを積層したサンプルを協和界面化学社製のDM-300を用いて測定することによって、純水に対する接触角を求めた。一般的に、接触角が大きい程、表面エネルギーが低いため密着力は弱くなる。そのため、接触角が大きいほど離型性が良い傾向を示す。 Table 1 shows the contact angle of the release film made of each material with pure water. Here, by measuring a sample in which an intermediate layer having a thickness of 200 nm and a release layer made of various materials having a thickness of 200 nm are stacked on the surface of a flat silicon wafer using DM-300 manufactured by Kyowa Interface Chemical Co., Ltd., The contact angle for pure water was determined. In general, the greater the contact angle, the lower the surface energy and the weaker the adhesion. Therefore, the larger the contact angle, the better the releasability.
 第1表によると、白金(Pt)、パラジウム(Pd)、金(Au)、イリジウム-レニウム合金(Ir-Re)については、金属または合金よりも窒化物の接触角が大きくなり、窒化による離型性の向上が得られることがわかる。そのため、従来技術の特開平07-172849号公報、特開2005-231932号公報、および特開2009-067607号公報に記載されている白金(Pt)、パラジウム(Pd)、金(Au)、ロジウム(Rh),オスミウム(Os)、ルテニウム(Ru)、レニウム(Re)などの貴金属をそのまま離型膜として用いた場合(特許文献1~3参照)と比較して、これらの金属は窒化することで離型性を改善できる事が分かる。また、これらの材料を主成分とする合金および混合材料でも同様の効果が期待できる。 According to Table 1, for platinum (Pt), palladium (Pd), gold (Au), and iridium-rhenium alloy (Ir-Re), the contact angle of nitride is larger than that of metal or alloy, and separation by nitriding It can be seen that improved moldability is obtained. Therefore, platinum (Pt), palladium (Pd), gold (Au), rhodium described in JP-A-07-172849, JP-A-2005-231932, and JP-A-2009-0667607 are disclosed. Compared with the case where noble metals such as (Rh), osmium (Os), ruthenium (Ru), and rhenium (Re) are used as they are as a release film (see Patent Documents 1 to 3), these metals are nitrided. It can be seen that the releasability can be improved. Similar effects can be expected with alloys and mixed materials containing these materials as main components.
 一方、従来技術の特開平07-172849号公報、特開2005-231932号公報、および特開2009-067607号公報に記載されている離型膜に用いられているタングステン(W)の金属(特許文献1~3参照)、ならびに特開2009-061465号公報、特開2007-277019号公報、特開平10-278049号公報、および特開2006-307323号公報に記載されているチタン(Ti)、タンタル(Ta)およびニオブ(Nb)の窒化物(特許文献4~7参照)について、第1表の金属および窒化物の接触角を比較した場合、窒化により必ずしも接触角が大きくなるとは限らず、むしろ減少するものも多い。このことから、これらの金属においては、窒化により離型性が向上する結果が必ずしも得られないことが分かる。 On the other hand, the tungsten (W) metal used in the release film described in the prior art Japanese Patent Application Laid-Open Nos. 07-172849, 2005-231932, and 2009-0667607 (patent References 1 to 3), and titanium (Ti) described in JP-A-2009-061465, JP-A-2007-277019, JP-A-10-278049, and JP-A-2006-307323, For nitrides of tantalum (Ta) and niobium (Nb) (see Patent Documents 4 to 7), when the contact angles of the metals and nitrides in Table 1 are compared, the contact angle is not necessarily increased by nitriding, There are many things that decrease rather. From this, it can be seen that these metals do not always have the result of improving the releasability by nitriding.
 従って、貴金属の離型膜において、窒化により接触角が向上し、離型性の向上を図ることができることは、予想しがたい格別の特徴といえる。 Therefore, in the noble metal release film, the contact angle is improved by nitriding and the release property can be improved, which is an unpredictable feature.
 第1表の結果から、本発明の貴金属窒化物を含む離型膜のうち、窒化白金(Pt-N)または窒化パラジウム(Pd-N)を主成分として含む離型膜、あるいは、窒化白金または窒化パラジウムを混合材料として含む離型膜は、上述の従来技術の離型膜にくらべ、特に良好な離型性を示すことが分かる。また、金(Au)、ロジウム(Rh),オスミウム(Os)、ルテニウム(Ru)、イリジウム(Ir)、レニウム(Re)の窒化物を主成分として含む離型膜、あるいは、それら金属の窒化物を混合材料として含む離型膜でも同様の効果が確認できた。 From the results in Table 1, among the release films containing the noble metal nitride of the present invention, a release film containing platinum nitride (Pt—N) or palladium nitride (Pd—N) as a main component, or platinum nitride or It can be seen that the release film containing palladium nitride as a mixed material exhibits particularly good release properties as compared with the above-described prior art release films. In addition, a release film containing a nitride of gold (Au), rhodium (Rh), osmium (Os), ruthenium (Ru), iridium (Ir), rhenium (Re) as a main component, or nitride of these metals The same effect could be confirmed with a release film containing as a mixed material.
 加えて、直径30mmの平板金型の表面に中間層を介して、膜厚50nmの離型膜を形成したサンプルの金型を用いて、前述の離型膜の繰り返し耐久性を評価した。サンプル金型を用いて反復して10,000回の成形を行った際の、金型表面の樹脂汚染、ならびに成形不良によって発生する成形品の意匠面の点欠陥の発生を、評価の指標として用いた。ここで、成形樹脂としてポリカーボネート、ゼオネックス(登録商標、シクロオレフィンポリマー樹脂)、アクリルなどを用いて評価を繰り返した。これら成形樹脂の評価を総合して、繰り返し耐久性の評価とした。 In addition, the repetition durability of the aforementioned release film was evaluated using a sample mold in which a release film having a thickness of 50 nm was formed on the surface of a flat plate mold having a diameter of 30 mm via an intermediate layer. As an evaluation index, resin contamination on the mold surface and the occurrence of point defects on the design surface of the molded product due to molding defects when molding is repeated 10,000 times using a sample mold. Using. Here, the evaluation was repeated using polycarbonate, ZEONEX (registered trademark, cycloolefin polymer resin), acrylic, and the like as the molding resin. The evaluations of these molding resins were combined to evaluate repeated durability.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明の貴金属の窒化物を主成分として含む離型膜は、離型膜の質量を基準として、50%以上、好ましくは85%以上の貴金属の窒化物を含む。また、離型膜中に含まれる貴金属の窒化物は、質量比で10%以上、好ましくは30%以上の窒化物成分(N)を含むことが好ましい。本発明の離型膜は、その性能に悪影響を与えないことを条件として、微量の不純物を含んでもよい。 The release film containing the noble metal nitride of the present invention as a main component contains 50% or more, preferably 85% or more of noble metal nitride based on the mass of the release film. Further, the noble metal nitride contained in the release film preferably contains a nitride component (N) of 10% or more, preferably 30% or more by mass ratio. The release film of the present invention may contain a small amount of impurities on condition that the performance is not adversely affected.
 本発明の貴金属の窒化物からなる離型膜は、スパッタ法(反応性スパッタ法を含む)、PVD法などの真空成膜技術を用いて形成することができる。あるいはまた、ゾルゲル法などの他の技術を用いて貴金属の窒化物からなる離型膜を形成することができる。貴金属の窒化物の緻密な膜を形成できるという観点から、真空成膜技術を用いて離型膜を形成することが好ましい。 The release film made of the noble metal nitride of the present invention can be formed by using a vacuum film forming technique such as sputtering (including reactive sputtering) or PVD. Alternatively, a release film made of a noble metal nitride can be formed using other techniques such as a sol-gel method. From the viewpoint that a dense film of noble metal nitride can be formed, it is preferable to form a release film using a vacuum film forming technique.
 本発明の離型膜は5nm~200nmの膜厚を有することが望ましい。5nm未満の膜厚を有する離型膜は、離型性の向上には有効であるが、繰り返し耐久性の低下が発生する恐れがある。また、200nmを超える膜厚の離型膜においては、膜応力の影響による繰り返し耐久性の低下が発生する恐れがある。 The release film of the present invention preferably has a thickness of 5 nm to 200 nm. A release film having a film thickness of less than 5 nm is effective in improving mold release properties, but there is a risk that repeated durability will be lowered. Further, in a release film having a film thickness exceeding 200 nm, there is a risk that repeated durability may be lowered due to the influence of film stress.
 本発明の離型膜を適用するための金型は、特開2008-143162号公報、特開2005-331868号公報などに記載される従来技術の方法で製造することができる(特許文献8および9参照)。 A mold for applying the release film of the present invention can be manufactured by a conventional method described in JP 2008-143162 A, JP 2005-331868 A, and the like (Patent Document 8 and 9).
 次に、窒化白金膜を金型の離型膜として用いるための最良の実施形態について、凹凸が可視域の波長以下に制御された間隔で表面に形成された反射防止構造作製用の金型を例に用いて、以下に詳述する。 Next, regarding the best embodiment for using a platinum nitride film as a mold release film, a mold for producing an antireflection structure in which irregularities are formed on the surface at a controlled interval below the wavelength in the visible range is used. It will be described in detail below using an example.
 最初に、ニッケル(Ni)、ステンレス(SUS)、タングステンカーバイド(WC)などの母材の表面に、チタン(Ti)、ニッケル(Ni)、クロム(Cr)などを用いて密着層を形成し、引き続いて超硬層を形成した。ここで、超硬層は、窒化シリコン、窒化チタン、ダイヤモンドライクカーボン(DLC)、窒化炭素などを用いて形成することが望ましい。続いて、超硬層の表面に、成形品に転写を行うためのナノメートルサイズの凹凸を形成する。反射防止構造の場合には、たとえば、300nm以下の間隔で制御された間隔で、高さ160nmの凹凸を形成する。これら超硬層へのナノメートルサイズの凹凸形成は、金属ナノ粒子をマスク材料として用いるドライエッチング工程により超硬層をエッチングすることによって行った。この際に、金属ナノ粒子は、金、銀、白金、またはパラジウムのいずれかの金属、金、銀、白金、またはパラジウムのいずれかの金属を主成分とする合金、あるいは、金、銀、白金、またはパラジウムのいずれかの金属酸化物を加熱することにより形成した。あるいはまた、非金属であるシリカコロイド、あるいは有機物の粒子などをマスク材料であるナノ粒子として用いることもできる。別法として、ナノ粒子でなく、他のリソグラフィー法で形成されるマスクを用いて超硬層のナノメートルサイズの凹凸を形成してもよい。さらなる別法として、超硬層の凹凸の形成のためのマスク材料として、アルミナのホールなどの自己組織化膜を用いることもできる。 First, an adhesion layer is formed on the surface of a base material such as nickel (Ni), stainless steel (SUS), tungsten carbide (WC) using titanium (Ti), nickel (Ni), chromium (Cr), Subsequently, a cemented carbide layer was formed. Here, the super hard layer is preferably formed using silicon nitride, titanium nitride, diamond-like carbon (DLC), carbon nitride, or the like. Subsequently, unevenness of nanometer size for transferring to the molded product is formed on the surface of the cemented carbide layer. In the case of the antireflection structure, for example, irregularities with a height of 160 nm are formed at intervals controlled at intervals of 300 nm or less. The formation of irregularities of nanometer size on these cemented carbide layers was performed by etching the cemented carbide layers by a dry etching process using metal nanoparticles as a mask material. At this time, the metal nanoparticles may be gold, silver, platinum or palladium metal, gold, silver, platinum or palladium metal alloy, or gold, silver, platinum. , Or a metal oxide of palladium was formed by heating. Alternatively, non-metallic silica colloids or organic particles can also be used as the nano-particles as the mask material. As an alternative method, the nanometer-sized unevenness of the cemented carbide layer may be formed using a mask formed not by nanoparticles but by other lithography methods. As a further alternative, a self-assembled film such as an alumina hole can be used as a mask material for forming the irregularities of the cemented carbide layer.
 超硬層表面にナノメートルサイズの凹凸を作製した後に、チタン(Ti)、ニッケル(Ni)、クロム(Cr)などからなる中間層を形成し、続いて窒化白金からなる離型膜を成膜することによって、ナノメートルサイズの凹凸を有し、その成形面に離型膜が形成された本発明の金型を得ることができる。同様にして、他の金属窒化物を主成分として含む離型膜を有する金型を得ることができる。 After producing nanometer-sized irregularities on the surface of the cemented carbide layer, an intermediate layer made of titanium (Ti), nickel (Ni), chromium (Cr), etc. is formed, followed by a release film made of platinum nitride. By doing so, the metal mold | die of this invention which has the unevenness | corrugation of nanometer size, and the release film was formed in the molding surface can be obtained. Similarly, a mold having a release film containing another metal nitride as a main component can be obtained.
 本発明において、「ナノメートルサイズの凹凸」とは、1マイクロメートル未満の間隔および高さを有する凹凸を意味する。好ましくは、「ナノメートルサイズの凹凸」とは、700ナノメートル以下の間隔および高さを有する凹凸を意味する。より好ましくは、「ナノメートルサイズの凹凸」とは、可視域の光の波長以下である300ナノメートル以下の間隔および高さを有する凹凸を意味する。 In the present invention, “nanometer-sized unevenness” means unevenness having an interval and height of less than 1 micrometer. Preferably, “nanometer-sized irregularities” mean irregularities having an interval and height of 700 nanometers or less. More preferably, “a nanometer-sized unevenness” means an unevenness having an interval and height of 300 nanometers or less, which is not more than the wavelength of light in the visible range.
 以上のように形成されたナノメートルサイズの凹凸を有し、その成形面に離型膜が形成された金型は、樹脂またはガラスの成形に用いることができる。上記の金型は、射出成形、プレス成形、キャスト成形、トランスファー成形、ナノインプリント成形などの技術において使用することができる。 A mold having nanometer-sized irregularities formed as described above and having a release film formed on its molding surface can be used for molding a resin or glass. Said metal mold | die can be used in techniques, such as injection molding, press molding, cast molding, transfer molding, and nanoimprint molding.
 本実施例は、可視域の波長以下に制御された間隔で凹凸が表面に形成された反射防止構造作製用の金型に関する。最初に、ニッケル母材表面にクロム(Cr)を用いて密着層を形成し、続いて窒化シリコンを用いて超硬層を形成した。続いて、金のナノ粒子をマスク材料とするドライエッチングによって、超硬層の表面に、100nmの凹凸間隔および160nmの凹凸高さを有する、ナノメートルサイズの凹凸を形成した。 This example relates to a mold for producing an antireflection structure in which irregularities are formed on the surface at intervals controlled to be equal to or less than a wavelength in the visible range. First, an adhesion layer was formed on the nickel base material surface using chromium (Cr), and then a super hard layer was formed using silicon nitride. Subsequently, nanometer-sized irregularities having an irregularity interval of 100 nm and an irregularity height of 160 nm were formed on the surface of the cemented carbide layer by dry etching using gold nanoparticles as a mask material.
 超硬層表面にナノメートルサイズの凹凸を作製した後に、クロム(Cr)からなる膜厚5nmの中間層を形成し、続いて窒化白金からなる膜厚10nmの離型膜を成膜して、ナノメートルサイズの凹凸を有し、その成形面に離型膜が形成された金型を得た。ここで、反応性スパッタリング装置を用いて、中間層および窒化白金離型膜を形成した。具体的には、クロムからなるターゲットを用いて、被成膜基板である超硬層にバイアス電圧を印加しながら、アルゴン雰囲気中でプラズマを発生させることにより、より緻密でピンホール(薄膜抜け)のないクロム(Cr)からなる中間層を形成した。この時の成膜圧力を0.5Paとし、成膜速度を0.3Å/秒とした。また、成膜時のRF電力は100Wであり、また基板へのバイアス電圧は25Wの条件で成膜を行った。続いて、白金ターゲットを用いて、被成膜基板である超硬層にバイアス電圧を印加しながら、窒素およびアルゴンの混合雰囲気中でプラズマを発生させ、窒素と白金とを反応させることによって、より緻密でピンホール(薄膜抜け)のない窒化白金からなる離型膜を形成した。この時の成膜圧力を0.5Paとし、成膜速度を2.9Å/秒とした。また、成膜時のRF電力は100Wであり、また基板へのバイアス電圧は25Wの条件で成膜を行った。同様の手法を用いて、第1表に示した金属または金属窒化物からなる離型膜を有する金型を製造した。ただし、金属からなる離型膜を形成する場合には、窒素を含まないアルゴン雰囲気中でスパッタ工程を行うことにより、離型膜を得た。 After producing nanometer-sized irregularities on the surface of the cemented carbide layer, an intermediate layer made of chromium (Cr) with a thickness of 5 nm is formed, and subsequently a release film made of platinum nitride with a thickness of 10 nm is formed, A mold having nanometer size irregularities and having a release film formed on the molding surface was obtained. Here, an intermediate layer and a platinum nitride release film were formed using a reactive sputtering apparatus. Specifically, by using a target made of chromium and applying a bias voltage to the hard layer, which is the film formation substrate, while generating a plasma in an argon atmosphere, the pinhole (thin film removal) becomes more precise. An intermediate layer made of chromium (Cr) without any metal was formed. The film formation pressure at this time was 0.5 Pa, and the film formation rate was 0.3 Å / second. The film was formed under the conditions that the RF power during film formation was 100 W and the bias voltage to the substrate was 25 W. Subsequently, using a platinum target, while applying a bias voltage to the cemented carbide layer, which is the film formation substrate, generating a plasma in a mixed atmosphere of nitrogen and argon, and reacting nitrogen and platinum more, A release film made of platinum nitride that is dense and free of pinholes (thin film loss) was formed. The film formation pressure at this time was 0.5 Pa, and the film formation rate was 2.9 K / sec. The film was formed under the conditions that the RF power during film formation was 100 W and the bias voltage to the substrate was 25 W. Using a similar method, a mold having a release film made of the metal or metal nitride shown in Table 1 was manufactured. However, when forming a release film made of metal, a release film was obtained by performing a sputtering process in an argon atmosphere not containing nitrogen.
 続いて、上記のように得られた金型を用いた樹脂材料の成形を詳述する。成形には、全電動射出成形機(住友重機械工業株式会社製)を用いて、後で記述する成形条件で成形を行った。また、樹脂として、アクリペット(登録商標)VH(三菱レイヨン株式会社、アクリル樹脂)を用いた。成形には、金型温度100℃、樹脂温度280℃、保圧60mPaの条件を用いた。金型と樹脂材料との離型性が良好なほど、ナノメートルサイズの凹凸を忠実に成形することができるため、より良好な反射防止効果を実現することができる。また、反射防止効果とともに透過率も向上することから、良好な離型性を有する金型は、高透過性を示す光学レンズなどの製造に有用である。図1に、ナノメートルサイズの凹凸が表面に形成された反射防止構造作製用の金型を用い、離型膜として本発明の窒化白金膜を用いた場合、および従来技術の白金膜を用いた場合、離型膜を用いなかった場合の、成形品の光透過率を測定した結果を示した。図1において、従来の白金の離型膜を用いた結果と、本発明の窒化白金の離型膜を用いた結果を比較すると、窒化白金を離型層に用いることにより、より高透過率の成形品が得られていることが分かる。これは、金型と樹脂材料との離型性が向上した結果、良好な透過光学特性が得られたためである。また、成形を行った後の金型の表面の観察によって、ナノメートルサイズの凹凸に対する樹脂の離型性を評価した。この時のナノメートルサイズの凹凸に対する樹脂の離型性の判定基準は、以下のとおりである。
A:意匠面の外観欠陥の発生が無く、反射防止ナノ構造の金型を用いて成形した時の成形品の反射率特性が0.5%以下である。
B:意匠面の外観欠陥の発生が無いが、成形品の反射率特性が0.5%~1%である。
C:意匠面の外観欠陥の発生が無いが、成形品の反射率特性が1%~2%である、あるいは、成形品の反射率特性が1%以下の特性を示すが、意匠面の外観欠陥の発生がある。
D:意匠面の外観欠陥の発生があり、成形品の反射率特性が1%以上である。
結果を第1表に示した。
Subsequently, molding of the resin material using the mold obtained as described above will be described in detail. For molding, all electric injection molding machine (manufactured by Sumitomo Heavy Industries, Ltd.) was used, and molding was performed under molding conditions described later. Further, Acrypet (registered trademark) VH (Mitsubishi Rayon Co., Ltd., acrylic resin) was used as the resin. For molding, conditions of a mold temperature of 100 ° C., a resin temperature of 280 ° C., and a holding pressure of 60 mPa were used. The better the mold releasability between the mold and the resin material, the more accurately the nanometer-size irregularities can be formed, so that a better antireflection effect can be realized. In addition, since the transmittance is improved together with the antireflection effect, a mold having good releasability is useful for manufacturing an optical lens exhibiting high transmittance. FIG. 1 shows a case in which a metal mold for producing an antireflection structure having nanometer-sized irregularities formed on its surface is used, and the platinum nitride film of the present invention is used as a release film, and a conventional platinum film is used. In the case, the result of measuring the light transmittance of the molded product when no release film was used was shown. In FIG. 1, when the result of using the conventional platinum release film and the result of using the platinum nitride release film of the present invention are compared, the use of platinum nitride as the release layer increases the transmittance. It can be seen that a molded product is obtained. This is because good transmission optical characteristics were obtained as a result of improved mold release properties between the mold and the resin material. Moreover, the releasability of the resin with respect to the unevenness of nanometer size was evaluated by observing the surface of the mold after molding. The criteria for determining the releasability of the resin for the nanometer-sized irregularities at this time are as follows.
A: There is no appearance defect on the design surface, and the reflectance characteristics of the molded product when it is molded using a mold having an antireflection nanostructure is 0.5% or less.
B: There is no appearance defect on the design surface, but the reflectance characteristics of the molded product are 0.5% to 1%.
C: There is no appearance defect on the design surface, but the reflectance property of the molded product is 1% to 2%, or the reflectance property of the molded product is 1% or less. There is a defect.
D: The appearance defect of the design surface is generated, and the reflectance property of the molded product is 1% or more.
The results are shown in Table 1.
 図2に、本発明の窒化白金膜および従来例の白金膜を加熱した際の重量減を測定した結果を示す。図2に示すように、従来技術の白金を用いた場合には、耐熱性の限界は600℃程度であるのに対し、本発明の窒化白金からなる離型膜は、750℃程度までの耐熱性を有することが分かる。したがって、窒化白金からなる離型膜を用いることによって、ガラスなどのプレス成形に要求されるより高い温度での成形が可能となる。すなわち、貴金属の窒化物からなる本発明の離型膜は、離型性の向上に加えて、耐熱性の向上を達成できることが分かる。 FIG. 2 shows the results of measuring the weight loss when the platinum nitride film of the present invention and the conventional platinum film are heated. As shown in FIG. 2, when platinum of the prior art is used, the heat resistance limit is about 600 ° C., whereas the release film made of platinum nitride of the present invention has a heat resistance up to about 750 ° C. It turns out that it has sex. Therefore, by using a release film made of platinum nitride, molding at a higher temperature required for press molding of glass or the like can be performed. That is, it can be seen that the release film of the present invention made of a noble metal nitride can achieve an improvement in heat resistance in addition to an improvement in the release property.
 これらの結果により、窒化白金は離形膜として有用であり、金型の離型性を向上できることが分かる。特に、凹凸が微細かつ高アスペクト比(凹凸の高さ/間隔が1以上)になると、一般に金型の離型性は著しく悪化するため、本発明の離型膜は、ナノメートルサイズの凹凸の転写を行うための離型膜として特に有用である。 From these results, it can be seen that platinum nitride is useful as a release film and can improve the mold release property. In particular, when the unevenness is fine and has a high aspect ratio (the height / interval of the unevenness is 1 or more), the mold release property of the mold is generally significantly deteriorated. Therefore, the release film of the present invention has an unevenness of nanometer size. It is particularly useful as a release film for transferring.
 また、第1表に示すように、ナノメートルサイズの凹凸が形成された金型の離型膜として、図2に示した窒化白金離型膜以外にも、窒化パラジウムもまた、ナノメートルサイズの凹凸の転写を行うための離型膜として有用である。 As shown in Table 1, in addition to the platinum nitride release film shown in FIG. 2, palladium nitride is also a nanometer-sized release film as a mold release film having nanometer-size irregularities formed thereon. It is useful as a release film for transferring irregularities.

Claims (10)

  1.  貴金属の窒化物を主成分として含むことを特徴とする金型用離形膜。 A mold release film characterized by containing a precious metal nitride as a main component.
  2.  前記貴金属が、白金(Pt)、パラジウム(Pd)、金(Au)、ロジウム(Rh),オスミウム(Os)、ルテニウム(Ru)、イリジウム(Ir)、レニウム(Re)およびそれらの合金からなる群から選択されることを特徴とする、請求項1に記載の離形膜。 The noble metal is made of platinum (Pt), palladium (Pd), gold (Au), rhodium (Rh), osmium (Os), ruthenium (Ru), iridium (Ir), rhenium (Re), and alloys thereof. The release film according to claim 1, wherein the release film is selected from the following.
  3.  前記貴金属が、白金(Pt)であることを特徴とする、請求項2に記載の離形膜。 The release film according to claim 2, wherein the noble metal is platinum (Pt).
  4.  前記貴金属が、パラジウム(Pd)であることを特徴とする、請求項2に記載の離形膜。 The release film according to claim 2, wherein the noble metal is palladium (Pd).
  5.  前記貴金属が、イリジウム(Ir)-レニウム(Re)合金であることを特徴とする、請求項2に記載の離形膜。 3. The release film according to claim 2, wherein the noble metal is an iridium (Ir) -rhenium (Re) alloy.
  6.  母材と、表面に凹凸が形成された超硬層と、請求項1から5のいずれかに記載の離型膜とを有することを特徴とする金型。 A mold comprising: a base material; a cemented carbide layer having irregularities formed on a surface thereof; and a release film according to any one of claims 1 to 5.
  7.  前記金型が、樹脂成形用またはガラス成形用の金型であることを特徴とする、請求項6に記載の金型。 The mold according to claim 6, wherein the mold is a mold for resin molding or glass molding.
  8.  前記金型が、射出成形用、プレス成形用、キャスト成形用、トランスファー成形用またはナノインプリント成形用の金型であることを特徴とする、請求項7に記載の金型。 The mold according to claim 7, wherein the mold is a mold for injection molding, press molding, cast molding, transfer molding or nanoimprint molding.
  9.  前記金型が、微細な凹凸を持つ金型であることを特徴とする、請求項8に記載の金型。 The mold according to claim 8, wherein the mold is a mold having fine irregularities.
  10.  前記金型が、反射防止構造を形成するためのナノメートルサイズの凹凸を有する金型であることを特徴とする、請求項9に記載の金型。 10. The mold according to claim 9, wherein the mold is a mold having irregularities of nanometer size for forming an antireflection structure.
PCT/JP2010/007532 2010-01-28 2010-12-24 Release film for mold for forming fine structure, and mold equipped with same WO2011092794A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-017347 2010-01-28
JP2010017347A JP5709238B2 (en) 2010-01-28 2010-01-28 Mold with release film

Publications (1)

Publication Number Publication Date
WO2011092794A1 true WO2011092794A1 (en) 2011-08-04

Family

ID=44318807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/007532 WO2011092794A1 (en) 2010-01-28 2010-12-24 Release film for mold for forming fine structure, and mold equipped with same

Country Status (2)

Country Link
JP (1) JP5709238B2 (en)
WO (1) WO2011092794A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016150853A (en) * 2015-02-16 2016-08-22 三菱電機株式会社 Molding die, and manufacturing method thereof
JP2020180031A (en) * 2019-04-26 2020-11-05 日本山村硝子株式会社 Method for manufacturing glass molding die

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017043444A (en) * 2015-08-26 2017-03-02 横浜ゴム株式会社 Manufacturing method of conveyor belt

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62119128A (en) * 1985-11-15 1987-05-30 Matsushita Electric Ind Co Ltd Forming of optical glass element
JPH01115829A (en) * 1987-10-27 1989-05-09 Tanaka Kikinzoku Kogyo Kk Forming mold for glass molded article
JPH04265234A (en) * 1991-02-18 1992-09-21 Asahi Optical Co Ltd Forming die for optical glass element
JPH0710561A (en) * 1993-06-25 1995-01-13 Canon Inc Die for molding optical device
JPH07172849A (en) * 1993-12-16 1995-07-11 Matsushita Electric Ind Co Ltd Mold for press-forming optical element and its production
JP2004331457A (en) * 2003-05-08 2004-11-25 Pentax Corp Molding die and its producing method
JP2008143162A (en) * 2006-11-15 2008-06-26 National Institute Of Advanced Industrial & Technology Die for molding optical element having antireflection structure, its manufacturing process, and optical element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62119128A (en) * 1985-11-15 1987-05-30 Matsushita Electric Ind Co Ltd Forming of optical glass element
JPH01115829A (en) * 1987-10-27 1989-05-09 Tanaka Kikinzoku Kogyo Kk Forming mold for glass molded article
JPH04265234A (en) * 1991-02-18 1992-09-21 Asahi Optical Co Ltd Forming die for optical glass element
JPH0710561A (en) * 1993-06-25 1995-01-13 Canon Inc Die for molding optical device
JPH07172849A (en) * 1993-12-16 1995-07-11 Matsushita Electric Ind Co Ltd Mold for press-forming optical element and its production
JP2004331457A (en) * 2003-05-08 2004-11-25 Pentax Corp Molding die and its producing method
JP2008143162A (en) * 2006-11-15 2008-06-26 National Institute Of Advanced Industrial & Technology Die for molding optical element having antireflection structure, its manufacturing process, and optical element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016150853A (en) * 2015-02-16 2016-08-22 三菱電機株式会社 Molding die, and manufacturing method thereof
JP2020180031A (en) * 2019-04-26 2020-11-05 日本山村硝子株式会社 Method for manufacturing glass molding die
JP7210370B2 (en) 2019-04-26 2023-01-23 日本山村硝子株式会社 Glass molding mold manufacturing method

Also Published As

Publication number Publication date
JP5709238B2 (en) 2015-04-30
JP2011152770A (en) 2011-08-11

Similar Documents

Publication Publication Date Title
TWI628516B (en) Nano imprinting with reusable polymer template with metallic or oxide coating
TW200842939A (en) Reflective mask blank for EUV lithography, and substrate with function film for the mask blank
JP4690100B2 (en) Mold for glass optical element and method for manufacturing glass optical element
WO2011092794A1 (en) Release film for mold for forming fine structure, and mold equipped with same
TWM275211U (en) Mold kernel for molding glass
CN100999383A (en) Hard coating for glass molding and glass molding die having the hard coating
Wei et al. High quality anti-sticking coating based on multilayer structure
JP2010084162A (en) Method for manufacturing replica mold
JP2008093686A (en) Mold for molding magnesium alloy, method of manufacturing it and method of molding magnesium alloy
JP2005343783A (en) Mold
JP2006044270A (en) Die with ultra-hard coating
JP5376984B2 (en) Mold for glass molding
CN100383277C (en) Die with superhard filming
JP6423056B1 (en) Imprint mold and method for producing imprint mold
JP3630375B2 (en) Mold for glass molding
CN2749881Y (en) Module with superhard coating
WO2019223109A1 (en) Flexible nanoimprint template and manufacturing method therefor
CN100370060C (en) Mold with super hard coating
JP3653957B2 (en) Press mold
CN1775701B (en) Mould core with superhard coating
JP2005298325A (en) Die having ultra-hard coating film
JP2011201738A (en) Mold for molding optical element, optical element, and method for manufacturing optical element
JP2014069984A (en) Method for manufacturing molding die for press molding, the molding die for press molding, and method for manufacturing glass optical element using the molding die for press molding
JP4720731B2 (en) Mold
TWI337176B (en) Mold for press-molding glass lens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10844561

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10844561

Country of ref document: EP

Kind code of ref document: A1