WO2011092756A1 - 換気装置 - Google Patents

換気装置 Download PDF

Info

Publication number
WO2011092756A1
WO2011092756A1 PCT/JP2010/004931 JP2010004931W WO2011092756A1 WO 2011092756 A1 WO2011092756 A1 WO 2011092756A1 JP 2010004931 W JP2010004931 W JP 2010004931W WO 2011092756 A1 WO2011092756 A1 WO 2011092756A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
motor
detection unit
unit
value
Prior art date
Application number
PCT/JP2010/004931
Other languages
English (en)
French (fr)
Inventor
列樹 中島
徹 市川
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010020070A external-priority patent/JP5556200B2/ja
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201080062870.1A priority Critical patent/CN102741619B/zh
Priority to US13/522,763 priority patent/US8669730B2/en
Publication of WO2011092756A1 publication Critical patent/WO2011092756A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/60Energy consumption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a ventilating apparatus that constantly ventilates a room so as to obtain a set air volume regardless of the duct length and the influence of external wind pressure.
  • this type of ventilation device includes a box-shaped ventilation fan main body 103, a motor 101 provided inside the ventilation fan main body 103, and a blade 102 driven by the motor 101.
  • the ventilation fan main body 103 is provided on the ceiling portion 104.
  • this kind of ventilator includes a rotation speed detection unit 105 that detects the rotation speed of the motor 101, and a current detection unit 106 that detects a current flowing through the motor. Such a ventilator controls the motor 101 based on the number of rotations detected by the number-of-rotations detection unit 105 and the current detected by the current detection unit 106.
  • the total ventilation air volume ventilated in a period of a predetermined cycle is determined from the rotation speed detected by the rotation speed detection unit 105 and the current detected by the current detection unit 106.
  • the excess and deficiency of the air volume is determined by comparing the total air volume obtained and the target total ventilation air volume of the predetermined cycle, and the total ventilation air volume of the next cycle period becomes a value obtained by adding the excess and deficiency to the target total ventilation air volume.
  • To control the ventilation air volume of the next cycle period is performed every cycle.
  • DC motors are often used as drive motors for driving the blades
  • air volumes are often set in multiple stages (for example, rapid, strong, weak).
  • the air volume control is performed with a very wide range of 100 m 3 / h to 400 m 3 / h.
  • the present invention can accurately detect the current flowing to the motor, and thus provides a ventilation device that can keep the air volume constant even if the ventilation device has a very wide range of air volume.
  • the ventilating apparatus of the present invention is a ventilating apparatus that can change the air volume, and includes a DC motor that drives blades and a control circuit that controls the DC motor.
  • the control circuit includes a first current detection unit that detects a current flowing through the DC motor, a rotation speed detection unit that detects the rotation speed of the DC motor, and a rotation speed and a first current detection unit that are detected by the rotation speed detection unit. And a controller configured to control the DC motor based on the current detected by the controller.
  • the first current detection unit includes a plurality of low resistances, detects a motor current using a low resistance divided voltage value, and detects the number of rotations detected by the rotation speed detection unit and the first current detection unit. It is characterized in that the ventilation air volume is obtained from the current and the current.
  • FIG. 1 is an attachment state diagram of a ventilating apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a mounting view showing a state in which the ventilating apparatus according to the first embodiment of the present invention is attached to a ceiling.
  • FIG. 3 is a block diagram showing the configuration of the control circuit of the ventilator according to the first embodiment of the present invention.
  • FIG. 4 is a configuration diagram of a current detection unit of the ventilation device according to the first embodiment of the present invention.
  • FIG. 5 is a static pressure (Pa) -ventilated air volume (Q) characteristic curve diagram of the ventilating apparatus according to the first embodiment of the present invention.
  • FIG. 6 is a flow chart showing the operation of the ventilation system of the first embodiment of the present invention.
  • FIG. 7 is a block diagram of a current detection unit according to a second embodiment of the present invention.
  • FIG. 8 is a flowchart showing the driving operation of the ventilating apparatus according to the second embodiment of the present invention.
  • FIG. 9 is a block diagram showing the configuration of a control circuit according to a third embodiment of the present invention.
  • FIG. 10 is a flowchart showing the driving operation of the ventilating apparatus according to the third embodiment of the present invention.
  • FIG. 11 is an attachment diagram of a ventilator according to a fourth embodiment of the present invention.
  • FIG. 12 is a flowchart showing the driving operation of the ventilation system of the fourth embodiment of the present invention.
  • FIG. 13 is a configuration diagram of a current detection unit of a ventilation system according to a fifth embodiment of the present invention.
  • FIG. 14 is a diagram showing the relationship between the current linear correction value and the current of the ventilator of the fifth embodiment of the present invention.
  • FIG. 15 is a diagram showing a configuration in which a differential is provided for the current threshold value of the ventilator of the fifth embodiment of the present invention.
  • FIG. 16 is a flowchart showing the driving operation of the ventilating apparatus according to the fifth embodiment of the present invention.
  • FIG. 17 is a block diagram showing the configuration of the control circuit of the fifth embodiment of the present invention.
  • Embodiment 1 As an example of the ventilation system of the present invention, a ventilation system provided on a ceiling in a building will be described as an example.
  • the main body 3 of the ventilator is installed, for example, on the ceiling 2 of the room 1.
  • a suction port 3a is provided below the main body 3.
  • An adapter 4 is provided on the side surface of the main body 3, and one end of an exhaust duct 5 is connected to the adapter 4.
  • the other end of the exhaust duct 5 is connected to an exhaust port 6 provided on a wall surface in the room.
  • the suction port 3a is provided with a louver 9 having a vent that covers the suction port 3a.
  • control circuit 10 which drives the DC motor 8 is arrange
  • the switch 11 (an integrated switch) is disposed on the wall of the room and connected to the main body 3 of the ventilator. The switch 11 is used to switch on / off the commercial power supply and to switch the fan notch by the user switching.
  • FIG. 3 is a block diagram showing the configuration of the control circuit 10 of the main body 3 of the ventilator.
  • the rectifier circuit 13 is connected to the commercial power supply 12.
  • the rectifying circuit 13 is connected to a smoothing capacitor 13 a that smoothes the voltage to a DC voltage.
  • a voltage detection unit 14 for detecting a DC voltage and a DC motor 8 are connected in parallel to the smoothing capacitor 13a.
  • the switching power supply circuit 15 (for example, an AC-DC converter) is further connected to the smoothing capacitor 13a.
  • the DC motor 8 incorporates a control circuit that controls the DC motor 8.
  • the control circuit includes a control drive IC 8a for DC motor control and a Hall element 18b which is a position detection sensor for detecting the position of the rotor of the DC motor 8 and a drive circuit 8b for energizing the stator winding of the DC motor 8 A three-phase winding (not shown) which is a daughter winding is provided.
  • the ground of the control drive IC 8a and the ground of the drive circuit 8b are connected in common.
  • the current flowing to the ground (GA) side of the DC motor 8 is the sum of the current flowing to the control drive IC 8a, that is, the DC motor driving current, and the current flowing to the three-phase winding through the driving circuit 8b, that is, the current flowing to the motor itself That is, it is a total current.
  • the switching power supply circuit 15 outputs a voltage (for example, +15 V) of the control drive IC 8 a and a voltage (for example, +5 V) for operating the control unit 16 (for example, a microcomputer).
  • a temperature detection unit 17 that measures the temperature of the switching power supply circuit 15 is provided.
  • the temperature measured by the temperature detection unit 17 is input to the control unit 16.
  • a current detection unit 18 (first current detection unit) that detects the current flowing through the DC motor 8 is provided.
  • the current detection unit 18 detects the current flowing to the ground (GA) of the DC motor 8 and inputs the current to the control unit 16.
  • the control unit 16 outputs a control signal VSP to the DC motor 8 based on the current detected by the current detection unit 18.
  • the DC motor 8 varies the applied voltage in accordance with the voltage value (motor command voltage) of the control signal VSP.
  • the control signal VSP is configured to output a pulse from the control unit 16, smooth the output value with the smoothing capacitor 18 a, and apply the smoothed DC voltage to the DC motor 8.
  • the smoothing capacitor 18 a is connected to the ground (GA) of the DC motor 8.
  • the smoothing capacitor 18 a smoothes the control signal VSP based on the potential of the ground (GA).
  • the drive circuit 8b When the voltage of the control signal VSP is applied to the DC motor 8, the drive circuit 8b is driven by the control drive IC 8a, and a current flows in the three-phase winding. When current flows in the three-phase winding, the rotor of the DC motor 8 rotates. The rotation of the rotor is detected by, for example, the Hall element 18b. Then, the Hall element 18 b outputs an output according to the rotation of the DC motor 8 to the rotation speed detection unit 19. Thus, the rotation speed detection unit 19 can detect the rotation speed of the DC motor 8.
  • control unit 16 determines in advance the relationship between the current and the number of revolutions when the static pressure is varied from P0 to Pmax in the ventilation air volume, and stores it as a data table (not shown).
  • FIG. 4 is a diagram showing the configuration of the current detection unit 18.
  • the current detection unit 18 is configured of a low resistance of 1.5 ⁇ or less.
  • two low resistors 20a are arranged in series in the ground (GA) of the DC motor 8, and one side of the low resistors 20a arranged in series is connected to the ground of the switching power supply circuit 15.
  • a first resistor 20b (low resistor) and a second resistor 20c (low resistor) are provided so as to be connectable in parallel with the low resistor 20a.
  • the first resistor 20b or the second resistor 20c is configured to be connectable to the low resistor 20a by the first switching unit 20d or the second switching unit 20e, respectively.
  • the resistance value of the current detection unit 18 can be switched by switching the first switching unit 20 d and the second switching unit 20 e which are low resistance switching units.
  • the potential of the ground (GA) of the DC motor 8 is amplified by the amplifier 21 (for example, an operational amplifier).
  • the temperature detection unit 17 is configured of, for example, a thermistor.
  • a thermistor is one that changes its resistance when it is given heat.
  • values detected by the temperature detection unit 17, the current detection unit 18, the rotation speed detection unit 19, and the voltage detection unit 14 are input to the control unit 16 (microcomputer).
  • a program capable of performing a series of operations is written in the control unit 16 based on the detection values of the input detection units.
  • the current detection unit 18 detects the current of the DC motor 8
  • the first switching unit 20d and the second switching unit 20e are switched as needed to detect the current.
  • the voltage value of the control signal VSP supplied to the DC motor 8 is connected to the ground (GA) of the DC motor 8 as a reference. Therefore, if the first switching unit 20d and the second switching unit 20e are switched to connect the first resistor 20b, the resistance value of the current detection unit 18 changes from 3 ⁇ to 1 ⁇ . Then, the ground level of the DC motor 8 changes with respect to the ground level of the control unit 16, and the voltage value of the control signal VSP to be actually applied changes. Therefore, a program for correcting the control signal VSP is also written in the control unit 16.
  • FIG. 5 is a static pressure (Pa) -ventilated air volume (m 3 / h) characteristic curve
  • FIG. 6 is a flowchart showing the operation of the ventilator of the present embodiment.
  • the ventilator 3 when the switch 11 is operated by the ventilator user and the weak notch is set as the turning on of the commercial power supply 12 and the fan notch, the ventilator 3 is powered on and controlled. Power is applied to the circuit 10. As shown in FIG. 5, when the weak notch is set, 100 m 3 / h is selected as the air volume.
  • the temperature detected by the temperature detection unit 17 is input to the control unit 16.
  • the control unit 16 is in a standby state for 3 seconds after the application of the power. Thereafter, a control signal VSP (hereinafter referred to as start-up compensation VSP) as a start-up compensation value is applied to the DC motor 8. Since there is a possibility that the DC motor 8 can not start due to a low temperature or the like, it is preferable to select a value that can operate the DC motor 8 even under a low temperature or the like.
  • VSP start-up compensation VSP
  • the standby state refers to a state in which the control unit 16 is left as it is without immediately driving the DC motor 8.
  • the ventilating apparatus of the present embodiment is configured to be able to directly turn on / off the commercial power source 12 by the switch 11. Therefore, when the ventilation system user turns on the ventilation system continuously as entering / turning off / on, the DC motor 8 may rotate with inertia even when the power is turned off. If the power is turned on in that state, a voltage is generated by the rotation of the motor, and a regenerative current may flow to break the element. In order to prevent this, a standby state is provided to wait for the DC motor 8 to stop completely.
  • both the first switching unit 20d and the second switching unit 20e of the current detection unit 18 are open.
  • the control unit 16 keeps the first switching unit 20 d and the second switching unit 20 e as they are, and then the control unit 16.
  • the detection value of the current detection unit 18 input to the control unit 16 is compared with the data table stored in advance in the control unit 16.
  • the control unit 16 raises the DUTY every three seconds.
  • the control unit 16 determines that the ventilation air volume is the prescribed and stops the variation of the DUTY.
  • the duct resistance is increased due to the influence of the external wind or the like, the number of rotations is decreased and the current is increased.
  • the first switching unit 20 d is turned on (ON).
  • the first resistor 20b is connected in parallel with the low resistor 20a. That is, the resistance value of the current detection unit 18 is 1 ⁇ . If the value detected by the current detection unit 18 does not reach 3.0 V when the first switching unit 20 d is turned on, the state is maintained as it is. Then, similarly to the above, the detection value of the current detection unit 18 input to the control unit 16 is compared with the data table stored in advance in the control unit 16.
  • the DUTY is changed every three seconds. This is repeated, and when there is no rotational speed difference with respect to the prescribed rotational speed, the control unit 16 determines that the prescribed ventilating air flow rate has been obtained and stops the variation of the DUTY.
  • the second switching unit 20 e is further turned on.
  • the second resistor 20c is connected in parallel to the low resistor 20a and the first resistor 20b. That is, the resistance value of the current detection unit 18 is 0.6 ⁇ .
  • the detection value of the current detection unit 18 input to the control unit 16 is compared with the data table stored in advance in the control unit 16.
  • the DUTY is changed every three seconds. This is repeated, and when there is no rotational speed difference with respect to the prescribed rotational speed, the control unit 16 determines that the prescribed ventilating air flow rate has been obtained and stops the variation of the DUTY.
  • Control unit 16 includes an instruction voltage change unit 200 that corrects the voltage value of control signal VSP.
  • the command voltage changing unit 200 controls the control signal according to the switching state.
  • the voltage value of VSP is corrected, and a correction value is given to the DC motor 8.
  • the current flowing through the three-phase winding of the DC motor 8 is calculated by subtracting the current flowing through the control drive IC 8 a from the current detected by the current detection unit 18 of the DC motor 8. As shown in FIG. 4, the current flowing in the control drive IC 8 a is detected by the current detection unit 18 c, and the detected value is input to the control unit 16 via the amplifier 21. Further, since the standby current of the DC motor 8 changes linearly with the ambient temperature, the temperature correction coefficient is calculated from the temperature detected by the temperature detection unit 17 to calculate the temperature correction.
  • the ventilator configured as described above switches the first switching unit 20d and the second switching unit 20e according to the detected value of the current flowing through the DC motor 8. Thereby, the resistance value of the current detection unit 18 is switched, and the current detection is performed by always selecting the optimum resistance with respect to the current flowing through the DC motor. As a result, the current flowing through the DC motor can be detected accurately, so that the ventilation air volume can be kept constant even when the duct resistance changes due to the influence of the external air or the like.
  • the change of the DUTY described in the present embodiment is made to have a period of 3 seconds, the effect is the same even if the period is made shorter or made longer.
  • the switching threshold of the first switching unit 20d and the second switching unit 20e is set to 3.0 V, the effect is the same even when the threshold is changed.
  • the number of the first switching unit 20d, the second switching unit 20e, and the corresponding resistors is two, the effect is the same when adjusting by changing the number of switching units and resistors. .
  • the current detection method of the current detection unit 18 is configured by the low resistance switching method, the effect is the same even when using a method including an amplification factor change unit (not shown) that switches the amplification factor of the amplifier 21 It is.
  • FIG. 7 is a block diagram of a current detection unit according to a second embodiment of the present invention.
  • FIG. 8 is a flowchart showing the driving operation of the ventilating apparatus according to the second embodiment of the present invention.
  • the current detection unit 18 of the present embodiment includes the ground (GA) of the DC motor 8 and the switching power supply circuit 15 instead of the first switching unit 20d or the second switching unit 20e of the first embodiment.
  • a plurality of low resistances are arranged in series between the grounds of to detect the current.
  • a current detection unit 18c (second one) is provided between the power supply line (+15 V) of the switching power supply circuit 15 and the control drive IC 8a. (Current detection unit) of
  • the ventilator 3 is powered on and the control circuit 10 is energized.
  • the weak notch is set, 100 m 3 / h is selected as the air volume.
  • the control unit 16 When the fan notch is set, the control unit 16 provides the start compensation VSP three seconds after the application of the power to operate the DC motor 8.
  • the current detection unit 18c that detects the current flowing to the control drive IC 8a detects the current.
  • the detection value detected by the current detection unit 18 c is input to the control unit 16.
  • the control unit 16 detects a plurality of detection values detected by the current detection unit 18 that detects the current of the DC motor 8 (for example, in the case where three low resistances are connected in series as shown in FIG.
  • the optimum detection value is selected from the current detection value, the second current detection value, and the third current detection value.
  • the current flowing through the three-phase winding is calculated from the difference between the selected detection value and the detection value of the current detection unit 18c.
  • the rotation speed of the rotor of the DC motor 8 is calculated by comparing the value input to the control unit 16 with the table data set in advance in the control unit 16.
  • the comparison method and the subsequent control are the same as in the first embodiment.
  • the criteria for selecting an optimal detection value from a plurality of current detection values are, for example, as follows. For example, when the control unit 16 is applied with a power supply of +5 V and the control unit 16 has a resolution of 10 bits, it has the highest resolution among the plurality of detection values detected by the current detection unit 18 Choose a value.
  • the total low resistance is 4.5 ⁇ , and the voltage generated in each low resistance with respect to the ground of the switching power supply circuit 15 is 0.225 V, 0.15 V, It becomes 0.075V.
  • the values input to the control unit 16 are 2.25 V, 1.5 V, and 0.75 V, respectively.
  • 2.25 V is selected as the detection value of the current detection unit 18 because 2.25 V can be the highest with respect to 5 V at full scale.
  • the values inputted to the control unit 16 are 3.5 V, 3.0 V, and 1. in the same manner. It becomes 5V.
  • 3.5 V which can be as high as 5 V originally from the resolving power, is selected as the detection value.
  • the amplifier may exceed the allowable range of the input value due to the characteristics of the amplifier, so that the correct value may not be output from the amplifier. Therefore, in this case, 3.0 V, which has the next highest resolving power, is selected as the detection value of the current detection unit 18.
  • the ventilation device configured as described above can accurately detect the current flowing through the three-phase winding of the DC motor 8, so that the ventilation air volume can be constant even when the duct resistance changes due to the influence of the external air or the like. You can keep
  • the current detection unit 18 detects a plurality of current values without switching the switching device or the like, it is possible to eliminate the ground change that occurs at the time of switching and to eliminate noise and the like caused by the ground change.
  • the current flowing through the winding is determined by subtracting the current (drive current) detected by the current detection unit 18 c from the current flowing through the DC motor 8 detected by the current detection unit 18. .
  • a temperature detection unit is provided in the vicinity of the DC motor 8 to detect the temperature of the DC motor 8, calculate the drive current of the DC motor 8 from the detected value, and subtract it from the detection value of the current detection unit 18 It is also possible to detect the current flowing in the Further, even if the winding current is directly detected by a current sensor or the like, the effect is equivalent.
  • the current detection is performed with high accuracy to keep the ventilation air volume constant.
  • the control circuit 10 stores a storage unit 22 (not shown) for storing ON / OFF of the power source, a humidity detection unit 23 for detecting humidity, and a secondary
  • the battery 24 and the diode 201 are further provided.
  • the cathode side of the diode 201 is connected to the power supply (+5 V side) of the control circuit 10
  • the anode side of the diode 201 is connected to the positive side of the secondary battery 24 (for example, button cell) Be done.
  • the negative side of the secondary battery 24 is connected to the ground.
  • a control circuit 10 is provided with a zero cross circuit (not shown).
  • the zero crossing circuit is a circuit that detects the passage of the zero point of the AC voltage.
  • the switch 11 when the switch 11 is operated by the ventilator user and the weak notch is set as the turning on of the commercial power and the fan notch, the power of the main body 3 of the ventilator is turned on and the power is applied to the control unit 16 .
  • the zero cross is input to the control unit 16, and the control unit 16 recognizes that the power is input.
  • the humidity detection unit 23 starts the detection of the humidity, and is input to the control unit 16.
  • control is started with reference to table data (not shown) set in advance.
  • the value when the DC motor 8 is stabilized is stored.
  • the DC motor 8 In order to control the start compensation VSP to be applied to the DC motor 8 three seconds after the application of the power, the DC motor 8 is in a standby state for three seconds after the application of the power.
  • the current detection unit 18 detects the current in the standby state and stores the current in the storage unit 22. Three seconds after the power is applied, the DC motor 8 starts to rotate, and the current detection unit 18 detects the current including the standby current. Therefore, a difference is subtracted from the standby current stored in the storage unit 22 to calculate the winding current.
  • the control unit 16 starts counting time starting from the time when the DC motor 8 starts to rotate, and then counts the time until the power is set to OFF and the energization to the DC motor 8 is cut off.
  • control unit 16 makes the following determination.
  • the control unit 16 determines that there is no influence of the temperature rise of the DC motor 8 and stands by Keep the same without detecting the current of
  • control unit 16 determines that the temperature rise of DC motor 8 is affected. Then, the standby current is measured again to calculate the winding current of the DC motor 8. At this time, it may be further determined whether or not the shutoff time of the DC motor 8 is less than one minute, and the standby current may be measured again only in the case of less than one minute.
  • the ventilator configured as described above can further detect humidity, and thus can detect the specific gravity of air, so that the influence on humidity can be eliminated.
  • the current flowing through the winding of the DC motor 8 can be accurately detected without providing a thermistor to specially change the change in the standby current due to the temperature rise of the DC motor 8, the duct resistance Even if it changes due to the influence of air, the ventilation air volume can be kept constant.
  • Embodiment 4 The fourth embodiment will be described with reference to FIGS. 11 to 12. The description of the same components as in the first embodiment will be omitted.
  • the ventilation device of the present embodiment further includes an orifice (not shown) so that a differential pressure difference is generated inside the exhaust duct 5.
  • the differential pressure detection unit 25 installed on the side surface of the exhaust duct 5 is installed.
  • the HIGH side pressure inlet (not shown) of the differential pressure detection unit 25 is disposed in front of the orifice of the exhaust duct 5 and the LOW side pressure inlet (not shown) is provided behind the orifice of the exhaust duct 5.
  • the differential pressure detection unit 25 is connected to the control circuit 10 installed in the main body 3 by a signal line (not shown).
  • the configuration of the differential pressure detection unit 25 uses, for example, a differential pressure sensor (50 Pa) to accurately detect a low ventilation air flow.
  • the differential pressure sensor has a symmetrical structure in which the pressure receiving surface is a silicon diaphragm, and when the pressure is received, the diaphragm fluctuates and the electrostatic capacitance changes, so that the change of the electrostatic capacitance is electrically output.
  • the ventilating apparatus is configured to be able to vary the ventilation air volume in multiple stages, particularly for a ventilating apparatus using a DC motor.
  • the ventilation air volume is varied, the current flowing to the DC motor is also varied naturally.
  • the current detected by the current detection unit 18 is amplified and the voltage input to the control unit 16 has a resolution Even if the optimum value of is selected, it is very difficult to control the air volume at 1.35 V because it is only 1.35 V. Therefore, in the present embodiment, the differential pressure detection unit 25 is provided, and the configuration in which the current detection unit 18 detects the current value is used in combination.
  • the control unit 16 detects the value of the differential pressure detection unit 25 for three seconds in the standby state after the power is applied. If the value of the differential pressure detection unit 25 is output even though the DC motor 8 is not rotating, the attachment state of the differential pressure detection unit 25 has an effect, and therefore, the control unit 16 is provided.
  • the output voltage of the differential pressure detection unit 25 is voltage corrected by the differential pressure adjustment unit (not shown) (a zero point adjustment is performed).
  • the silicon diaphragm type differential pressure sensor adds weight to the diaphragm and outputs it as a differential pressure signal, so it is necessary to adjust the output.
  • the DC motor 8 starts to rotate, and the current detection unit 18 detects the current flowing through the DC motor 8, and the current is input to the control unit 16.
  • the value of the differential pressure detection unit 25 is used to start operation of the DC motor 8 with reference to the differential pressure data table set in advance. .
  • the ventilator configured as described above can detect the differential pressure accurately even if the ventilation volume is small, but the differential pressure is detected by the differential pressure detection unit, so that the ventilation volume can be accurately detected.
  • a small ventilation air volume can be detected by the differential pressure detection unit 25, when a large air volume is detected, the differential pressure range may be swung out and undetectable.
  • a large current flows, so the value measured by the current detection unit 18 can be used.
  • the duct resistance changes due to the influence of external wind or the like, or the notch is changed by the ventilator user. , Can keep the ventilation air volume constant.
  • the temperature detection unit 17 for measuring the temperature of the switching power supply circuit 15 is provided in the vicinity of the switching power supply circuit 15.
  • the DC motor 8 is configured to include a temperature detection unit 28 that detects the temperature of the Hall element.
  • the relationship between the input resistance of the Hall element (in the absence of a magnetic field and the resistance between the input terminals when the output terminal is open) and the temperature is that the resistance is quadratically curved as the temperature is higher and the temperature is lower when the temperature is low. It has a characteristic that becomes low (for example, at -40 ° C: 1800 ⁇ , 25 ° C: 240 ⁇ , 50 ° C: 100 ⁇ ).
  • control unit 16 is configured to include a storage unit 29 that stores a value for correcting the variation of the electronic component in a non-volatile storage device or the like.
  • an EEPROM is used as the non-volatile storage device.
  • An EEPROM is a semiconductor memory device in which data can be erased or rewritten by voltage operation.
  • the variation in the electronic components causes a decrease in motor current detection accuracy. Therefore, in order to improve the detection accuracy of the motor current, the microcomputer power supply that affects the detection accuracy of the motor current, and the resistors constituting the current detection unit 18 that detects the current flowing through the DC motor 8 are calibrated.
  • Calibration is performed as follows. First, as shown in FIG. 13, for example, a current of 100 mA is supplied between VM and G, and the first switching unit 20d and the second switching unit 20e are turned off. In this manner, the variation in the resistance value of the low resistor 20a provided as one of the resistors of the current detection unit 18 is calibrated. Next, the first switching unit 20d is turned on, and the resistance value of the first resistor 20b is similarly calibrated. Finally, the second switching unit 20e is also turned on to calibrate the resistance value of the second resistor 20c. The results of the above calibrations are sequentially stored in the storage unit 29. Hereinafter, for example, a method of converting the current value when the low resistance 20a is used will be described. As shown in FIG.
  • the current detection unit 18 switches the first switching unit 20d and the second switching unit 20e to detect the current.
  • the detected value of the current input to the control unit 16 is an AD value (analog digital value read by the microcomputer according to the open / close state of the first switching unit 20d and the second switching unit 20e.
  • the relationship between the converted value) and the current (AD value-current) flowing through the current detection resistor occurs in three steps. Therefore, by switching the low resistance switching unit which is the first switching unit 20d or the second switching unit 20e, the result obtained in each case becomes discontinuous. Therefore, appropriate control can not be performed.
  • the current value calculation unit 202 included in the control unit 16 multiplies the raw data of the AD value by a predetermined magnification. For example, when reading the voltage value of only the low resistor 20a, the AD value is tripled, when reading the voltage value obtained by adding the first resistor 20b, 4 times when reading the voltage value added with the second resistor 20c The current detection value which becomes non-continuous by 12 times is converted to the continuous value. This enables one-to-one correspondence between the current value and the AD value.
  • converted value (raw AD value) ⁇ (magnification factor k / microcomputer AD value resolution (1024)) ⁇ (theoretical value (calculation result) / resistance adjustment AD value).
  • the current threshold is provided with a differential.
  • control unit 16 outputs the control signal VSP to the DC motor 8 based on the current value detected by the current detection unit 18 while confirming the response of the rotational speed from the DC motor 8.
  • the DC motor 8 varies the applied voltage in accordance with the value of the control signal VSP. However, when the control signal VSP is output but there is no reply of the rotational speed, it is determined that the DC motor 8 has some abnormality and all switching units are stopped.
  • the temperature detected by the temperature detection unit 28 that detects the temperature of the Hall element is input to the control unit 16.
  • the current flowing through the winding of the DC motor 8 is calculated by subtracting the current flowing through the Hall element from the current detected by the current detection unit 18 of the DC motor 8.
  • the current flowing through the Hall element is converted from the detection value of the temperature detection unit 28. Further, since the current flowing through the winding of the DC motor 8 changes depending on the ambient temperature, the current flowing through the Hall element is determined from the temperature detected by the temperature detection unit 28 and the Hall element temperature correction unit (shown in FIG. Temperature correction is performed.
  • the current value calculation unit 202 sets the values actually stored in the current detection unit 18 to the values stored in the storage unit 29 according to the above-described method. A correction is made from the theoretical value to calculate a converted value.
  • the control unit 16 refers to the rotation speed corresponding to the conversion value from the value detected by the current detection unit 18 from the data table and compares it with the actual rotation speed detected by the rotation speed detection unit 19. As a result of comparison, when it is determined that the rotational speed is high, the control unit 16 raises the DUTY every three seconds. If this operation is repeated and the rotational speed difference disappears, it is determined that the regulated ventilation air flow rate, and the variable of the duty is stopped.
  • the duct resistance is increased due to the influence of the external wind or the like, the number of rotations is decreased and the current is increased.
  • the first switching unit 20 d is turned on.
  • the first resistor 20b is connected in parallel with the low resistor 20a. That is, the resistance value of the current detection unit 18 is 1 ⁇ . If the conversion value does not reach 3.0 V when the first switching unit 20 d is turned on, the state as it is is maintained. Then, similarly to the above, the detection value of the current detection unit 18 input to the control unit 16 is compared with the data table stored in advance in the control unit 16.
  • the DUTY is changed every three seconds. This is repeated, and when there is no rotational speed difference with respect to the prescribed rotational speed, the control unit 16 determines that the prescribed ventilating air flow rate has been obtained and stops the variation of the DUTY.
  • the second switching unit 20 e is further turned on. Then, similarly to the above, the conversion value from the detection value of the current detection unit 18 input to the control unit 16 is compared with the data table stored in advance in the control unit 16.
  • the DUTY is changed every three seconds. This is repeated, and when there is no rotational speed difference with respect to the prescribed rotational speed, the control unit 16 determines that the prescribed ventilating air flow rate has been obtained and stops the variation of the DUTY.
  • the ventilation air volume is adjusted by raising and lowering the DUTY every 3 seconds.
  • the second switching unit 20e when the second switching unit 20e is in the ON state, the influence of the external air or the like is eliminated and the static pressure is lowered, the duct resistance is eliminated, and the current flowing to the DC motor 8 is reduced. Therefore, when the conversion value from the value detected by the current detection unit 18 due to the current reduction is 2.7 V, that is, the second switching unit 20 e is turned off with a differential current threshold of 0.3 V with respect to 3.0 V. Do. In addition, even if the second switching unit 20e is turned off, if the detection value is still 3.0 V or more, the first switching unit 20d is turned off.
  • Control unit 16 includes an instruction voltage change unit that corrects the voltage value of control signal VSP.
  • the command voltage changing unit controls the control signal VSP according to the switching state. And corrects the voltage value of V.sub.0 and supplies the correction value to the DC motor 8.
  • the ventilator configured as described above switches the resistance value using the first switching unit 20d and the second switching unit 20e while detecting the current flowing through the DC motor 8, and always selects the optimum resistance value for the current. To perform current detection while securing the required resolution. Therefore, since the current can be detected accurately, the ventilation air volume can be kept constant even when the duct resistance changes due to the influence of the external wind or the like.
  • the ventilating device attached to a building according to the present invention is widely useful in products that can obtain an air volume within a predetermined time regardless of duct resistance and external wind pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

風量が可変できる換気装置であって、羽根を駆動するDCモータと、DCモータを制御する制御回路を備える。制御回路は、DCモータに流れる電流を検出する第1の電流検出部と、DCモータの回転数を検出する回転数検出部と、回転数検出部が検出する回転数と第1の電流検出部が検出する電流に基づいてDCモータを制御する制御部とを備える。電流検出部は、複数の低抵抗器を備え、低抵抗器の分圧値を用いてモータ電流を検出し、回転数検出部が検出する回転数と第1の電流検出部が検出する電流とから換気風量を求める。

Description

換気装置
 本発明は、ダクトの長さや外風圧の影響に関わらず、設定された風量が得られるように室内の換気を常時換気する換気装置に関する。
 従来、この種の換気装置は、箱体状の換気扇本体103と、換気扇本体103内部に設けられたモータ101と、モータ101により駆動される羽根102を備える。換気扇本体103は天井部104に設けられる。また、この種の換気装置は、モータ101の回転数を検出する回転数検出部105と、モータに流れる電流を検出する電流検出部106とを備える。このような換気装置は、回転数検出部手段105が検出する回転数と電流検出部106が検出する検出する電流に基づいてモータ101を制御する。さらに、回転数検出部105が検出する回転数と電流検出部106が検出する電流とから所定周期の期間に換気される総換気風量を求める。求められた総換気風量と所定周期の目標総換気風量とを比較して風量の過不足を求め、次の周期期間の総換気風量が、目標総換気風量にその過不足を加算した値となるように次の周期期間の換気風量を制御する。このような制御を周期毎に行う。
 このような従来の換気装置においては、羽根を駆動する駆動用のモータは、DCモータを使用していることが多く、風量を多段(例えば、急速、強、弱)に設定することが多い。換気装置の風量を多段に設定すると、例えば風量領域が100m/h~400m/hと非常に広い範囲を風量制御することになる。非常に広い範囲を風量制御し、且つ、モータに流れる電流-回転数を用いて風量が一定になるように風量制御するには、電流をより精度よく検出する必要がある。
特開2004-340490号公報
 本発明は、モータに流れる電流を精度よく検出することができるため、換気装置が非常に広い範囲の風量を備えたとしても風量を一定にすることができる換気装置を提供する。
 本発明の換気装置は、風量が可変できる換気装置であって、羽根を駆動するDCモータと、DCモータを制御する制御回路を備える。制御回路は、DCモータに流れる電流を検出する第1の電流検出部と、DCモータの回転数を検出する回転数検出部と、回転数検出部が検出する回転数と第1の電流検出部が検出する電流に基づいてDCモータを制御する制御部とを備える。第1の電流検出部は、複数の低抵抗器を備え、低抵抗の分圧値を用いてモータ電流を検出し、回転数検出部が検出する回転数と第1の電流検出部が検出する電流とから換気風量を求めることを特徴とする。
図1は本発明の実施の形態1の換気装置の取り付け状態図である。 図2は本発明の実施の形態1の換気装置を天井に取り付けた状態を示す取り付け図である。 図3は本発明の実施の形態1の換気装置の制御回路の構成を示したブロック図である。 図4は本発明の実施の形態1の換気装置の電流検出部の構成図である。 図5は本発明の実施の形態1の換気装置の静圧(Pa)-換気風量(Q)特性曲線図である。 図6は本発明の実施の形態1の換気装置の運転動作を示すフローチャートである。 図7は本発明の実施の形態2の電流検出部の構成図である。 図8は本発明の実施の形態2の換気装置の運転動作を示すフローチャートである。 図9は本発明の実施の形態3の制御回路の構成を示したブロック図である。 図10は本発明の実施の形態3の換気装置の運転動作を示すフローチャートである。 図11は本発明の実施の形態4の換気装置取り付け図である。 図12は本発明の実施の形態4の換気装置の運転動作を示すフローチャートである。 図13は本発明の実施の形態5の換気装置の電流検出部の構成図である。 図14は本発明の実施の形態5の換気装置の電流リニア補正値と電流の関係を示す図である。 図15は本発明の実施の形態5の換気装置の電流しきい値にディファレンシャルを設けた構成を示す図である。 図16は本発明の実施の形態5の換気装置の運転動作を示すフローチャートである。 図17は本発明の実施の形態5の制御回路の構成を示したブロック図である。
 以下、本願発明の実施の形態について図1~図17を参照しながら説明する。
 (実施の形態1)
 本発明の換気装置の一例として、建物内の天井に設けられた換気装置を例にとり説明する。
 図1、図2に示すように、換気装置の本体3は、例えば室内1の天井裏2に設置されている。本体3の下方には吸込口3aが設けられている。本体3の側面にはアダプタ4が設けられており、アダプタ4には排気ダクト5の一端が接続されている。排気ダクト5の他端は室内の壁面に設けられている排気口6に接続されている。以上の構成より、吸込口3aから吸い込まれた空気は排気ダクト5を通じて排気口6から外気へ排気される。
 本体3内部には、羽根7と羽根7を回転させるDCモータ8を備える。吸込口3aには、この吸込口3aを覆う通気口を有したルーバ9を備える。
 また、DCモータ8を駆動する制御回路10は、換気装置の本体3の天井面側に配置される。スイッチ11(一体にして構成したスイッチ)は室内の壁に配置され換気装置の本体3と接続されている。スイッチ11は、商用電源の入り/切りや、ファンノッチの切り替えを使用者が切換えることで行うものである。
 図3は換気装置の本体3の制御回路10の構成を示したブロック図である。図3において、商用電源12には、整流回路13が接続されている。整流回路13には、電圧を平滑して直流電圧にする平滑コンデンサ13aが接続されている。平滑コンデンサ13aには、直流電圧を検出する電圧検出部14とDCモータ8が並列に接続されている。平滑コンデンサ13aには、更にスイッチング電源回路15(例えばAC-DCコンバータ)が接続されている。
 DCモータ8は、DCモータ8を制御する制御回路を内蔵している。制御回路はDCモータ制御用の制御用ドライブIC8aとDCモータ8のロータの位置を検出する位置検出センサであるホール素子18bとDCモータ8の固定子巻き線の通電を行う駆動回路8bと前記固定子巻き線である三相巻き線(図示せず)を備える。制御用ドライブIC8aのグランドと駆動回路8bのグランドは共通に接続されている。よって、DCモータ8のグランド(GA)側に流れる電流は、制御用ドライブIC8aに流れる電流すなわちDCモータ駆動電流と、駆動回路8bを通して三相巻き線に流れる電流すなわちモータ自身に流れる電流との総和すなわち総合電流となっている。
 スイッチング電源回路15は、制御用ドライブIC8aの電圧(例えば+15V)と制御部16(例えば、マイクロコンピュータ)を動作させる電圧(例えば+5V)を出力する。スイッチング電源回路15の近傍には、スイッチング電源回路15の温度を測定する温度検出部17を備える。温度検出部17で測定した温度は、制御部16に入力される。また、DCモータ8に流れる電流を検出する電流検出部18(第1の電流検出部)を備える。電流検出部18は、DCモータ8のグランド(GA)へ流れる電流を検出し、制御部16に入力する。
 制御部16は、電流検出部18で検出した電流に基づいて、制御信号VSPをDCモータ8に出力する。DCモータ8は、制御信号VSPの電圧値(モータ指示電圧)に応じて印加電圧を可変する。
 制御信号VSPは、制御部16からパルスを出力し、出力した値を平滑コンデンサ18aで平滑化し、平滑化された直流電圧をDCモータ8に印加する構成となる。平滑コンデンサ18aは、DCモータ8のグランド(GA)と接続される。そして、平滑コンデンサ18aは、このグランド(GA)の電位を基準に制御信号VSPを平滑するものである。
 DCモータ8に制御信号VSPの電圧が印加されると、制御用ドライブIC8aにより、駆動回路8bが駆動され、三相巻き線に電流が流れる。三相巻き線に電流が流れると、DCモータ8のロータが回転する。ロータの回転を、例えば、ホール素子18bで検出する。そして、ホール素子18bは、DCモータ8の回転に応じた出力を回転数検出部19に対して行う。これにより、回転数検出部19はDCモータ8の回転数を検出できる。
 また、制御部16には、換気風量において静圧をP0からPmaxまで変動させた場合の電流-回転数の関係を予め求め、データテーブル(図示せず)として記憶させておく。
 図4は、電流検出部18の構成を示す図である。図4において、電流検出部18は、1.5Ω以下の低抵抗器により構成されている。DCモータ8のグランド(GA)に低抵抗器20aを例えば2個直列に配置し、直列配置した低抵抗器20aの片側をスイッチング電源回路15のグランドに接続する。また、低抵抗器20aに並列に接続自在に第1抵抗器20b(低抵抗器)と第2抵抗器20c(低抵抗器)とを設ける。これら第1抵抗器20bまたは第2抵抗器20cはそれぞれ第1切換え部20dまたは第2切換え部20eにより低抵抗器20aに対して接続自在に構成される。これら低抵抗切換え部である第1切換え部20dおよび第2切換え部20eを切換えることで、電流検出部18の抵抗値を切換えることができる。
 そして、DCモータ8のグランド(GA)の電位は増幅器21(例えば、オペアンプ)で増幅される。
 また、温度検出部17は、例えばサーミスタで構成される。サーミスタとは熱を与えると抵抗値が変化するものである。
 また、図3に示すように、制御部16(マイクロコンピュータ)には、温度検出部17、電流検出部18、回転数検出部19、電圧検出部14で検出した値が入力される。制御部16には、入力された各検出部の検出値を元に一連の動作が可能なプログラムが書き込まれている。
 つまり、電流検出部18がDCモータ8の電流を検出する場合に、必要に応じて第1切換え部20dと第2切換え部20eを切換えて電流を検出する。先の構成でも述べたように、DCモータ8に与える制御信号VSPの電圧値は、DCモータ8のグランド(GA)を基準に接続されている。そのため、仮に第1切換え部20dと第2切換え部20eとを切換えて第1抵抗器20bを接続した状態にすると、電流検出部18の抵抗値が3Ωから1Ωに変化する。そして、DCモータ8のグランドレベルが制御部16のグランドレベルに対して変化してしまい実際に与えたい制御信号VSPの電圧値が変化する。よって、制御部16には制御信号VSPの補正をおこなうプログラムも書き込まれている。
 上記のような構成の本実施の形態の換気装置の具体的な動作を、図5及び図6を用いて説明する。図5は静圧(Pa)-換気風量(m/h)特性曲線図、図6は本実施の形態の換気装置の運転動作を示すフローチャートである。
 例えば、図6に示すように、換気装置使用者により、スイッチ11が操作され、商用電源12の入り及びファンノッチとして弱ノッチが設定されると、換気装置の本体3に電源が投入され、制御回路10に電源が印加される。図5に示すように、弱ノッチが設定されると風量として100m/hが選定される。
 また、図6に示すように、温度検出部17で検出した温度が、制御部16に入力される。ファンノッチが設定されると制御部16は、DCモータ8を確実に動作させるため、電源印加後3秒間は待機状態となる。その後、起動補償値としての制御信号VSP(以下起動補償VSPという)をDCモータ8に印加する。起動補償VSPは、低温等でDCモータ8が起動できない可能性があるため、低温等でもDCモータ8を動作できる値を選択するのが好ましい。
 ここで、待機状態とは、制御部16がDCモータ8をすぐに駆動せずにそのまま放置している状態をいう。
 電源印加後、3秒間DCモータ8を待機状態で維持している理由としては以下の通りである。本実施の形態の換気装置は、商用電源12をスイッチ11により直接入り/切りできる構成になっている。そのため、換気装置使用者が入り/切り/入りと連続して換気装置の電源を入れた場合、電源が切りになった状態においてもDCモータ8が惰性で回転していることがある。その状態において電源を入りとすると、モータの回転により電圧が発生しているため回生電流が流れて素子を壊す恐れがある。これを防ぐため、DCモータ8が完全に停止するのを待つために待機状態を設けるようにしている。
 DCモータ8に起動補償VSPが入力されると、DCモータ8の三相巻き線に電流が流れDCモータ8が回転する。その時の電流検出部18で検出した電流、回転数検出部19で検出した回転数、電圧検出部14で検出した電圧の値が制御部16に入力される。
 この時、電流検出部18の第1切換え部20d、第2切換え部20eはともに開放している。
 次に、制御部16は、電流検出部18で検出した値が例えば3.0Vに達していない場合は、第1切換え部20dと第2切換え部20eとをそのままの状態に保ち、制御部16に入力された電流検出部18の検出値と予め制御部16の中に記憶させているデータテーブルとを比較する。その結果、DCモータ8のロータの回転数が規定の換気風量を得るための規定の回転数よりも高いと判断した場合は、制御部16は3秒毎にDUTYをアップさせる。この操作を繰り返して、規定の回転数との回転数差がなくなった場合は、制御部16は規定の換気風量であると判断しDUTYの可変を停止する。
 また例えば、外風等の影響によりダクト抵抗が上昇した場合は、回転数が低下し電流が増加する。例えば上記の結果、電流検出部18で検出した値が3.0V以上となった場合は、第1切換え部20dをオン(ON)する。これにより、第1抵抗器20bが低抵抗器20aと並列に接続される。つまり、電流検出部18の抵抗値は1Ωとなる。第1切換え部20dをONした場合において電流検出部18で検出した値が3.0Vに達していない場合は、そのままの状態を維持する。そして上記と同様に、制御部16に入力された電流検出部18の検出値と予め制御部16の中に記憶させているデータテーブルとを比較する。そしてDCモータ8のロータの回転数が規定の回転数に対して高いもしくは低い場合にはDUTYを3秒毎に変化させる。これを繰り返し、規定の回転数に対して回転数差がなくなった場合は、制御部16は規定の換気風量が得られたと判断してDUTYの可変を停止する。
 一方、第1切換え部20dをONした場合において電流検出部18で検出した値が3.0V以上となった場合は、更に第2切換え部20eをONする。これにより第2抵抗器20cが低抵抗器20aおよび第1抵抗器20bに対して並列に接続される。つまり、電流検出部18の抵抗値は、0.6Ωとなる。そして、上記と同様に制御部16に入力された電流検出部18の検出値と予め制御部16の中に記憶させているデータテーブルとを比較する。そしてDCモータ8のロータの回転数が規定の回転数に対して高いもしくは低い場合にはDUTYを3秒毎に変化させる。これを繰り返し、規定の回転数に対して回転数差がなくなった場合は、制御部16は規定の換気風量が得られたと判断してDUTYの可変を停止する。
 上記のように、3秒毎にDUTYをアップさせたりダウンさせたりして換気風量を調整する。制御部16は、制御信号VSPの電圧値を補正する指示電圧変動部200を備える。上記のように第1切換え部20dまたは第2切換え部20eを切換えて第1抵抗器20bまたは第2抵抗器20cを接続した場合には、切換え状態に合わせて、指示電圧変動部200は制御信号VSPの電圧値を補正し、補正値をDCモータ8に与える。
 DCモータ8の三相巻き線に流れる電流は、DCモータ8の電流検出部18で検出した電流から、制御用ドライブIC8aに流れる電流を減算することで算出する。図4に示すように制御用ドライブIC8aに流れる電流は、電流検出部18cにより検出され、検出値は、増幅器21を介して制御部16に入力される。また、DCモータ8の待機電流は、雰囲気温度によってリニアに変化するため、温度検出部17で検出した温度から温度補正係数を割り出し、温度補正を行うことで算出する。
 以上のように構成した換気装置は、DCモータ8に流れる電流の検出値に応じて第1切換え部20d、第2切換え部20eを切換える。これにより、電流検出部18の抵抗値を切換え、DCモータに流れる電流に対して常に最適な抵抗を選んで電流検出を行う。これにより、精度よくDCモータに流れる電流を検出することができるため、ダクト抵抗が外風等の影響で変化した場合においても、一定に換気風量を保つことができる。
 なお、本実施の形態中に記載しているDUTYの変化を三秒周期にしているが、この周期を短くしたり、長くしたりして可変させても効果は同じである。
 また、第1切換え部20d、第2切換え部20eの切換えの閾値を3.0Vと設定しているがこの閾値を変更した場合においても効果は同じである。
 また、第1切換え部20d、第2切換え部20eとそれに対応する抵抗器の個数を2個で構成したが、切換え部及び抵抗器の個数を変更して調整した場合においても効果は同じである。
 また、電流検出部18の電流検出方法を低抵抗切換え方法で構成したが、増幅器21の増幅率の切換えを行う増幅率変更部(図示せず)を備える方法を用いた場合においても効果は同じである。
 (実施の形態2)
 本発明の実施の形態2について、図7~図8を参照しながら説明する。なお、実施の形態1と同様の構成要素についてはその説明を省略する。図7は本発明の実施の形態2の電流検出部の構成図である。図8は本発明の実施の形態2の換気装置の運転動作を示すフローチャートである。
 本実施の形態の電流検出部18は、実施の形態1の第1切換え部20dまたは第2切換え部20eの代わりに、図7に示すようにDCモータ8のグランド(GA)とスイッチング電源回路15のグランド間に複数個の低抵抗を直列に配置して電流を検出する。
 また、実施の形態1と同様に、制御用ドライブIC8aに流れる電流を検出するために、スイッチング電源回路15の電源供給ライン(+15V)と制御用ドライブIC8aとの間に電流検出部18c(第2の電流検出部)を備える構成とする。
 上記構成において、本実施の形態の換気装置の動作を図8に示すフローチャートを用いて説明する。
 なお、実施の形態1と同様の動作についてはその説明を省略する。例えば、換気装置使用者により、スイッチ11が操作され、商用電源の入り及びファンノッチとして弱ノッチが設定されると、換気装置の本体3に電源が投入され、制御回路10に電源が印加される。図8に示すように、弱ノッチが設定されると風量として100m/hが選定される。
 ファンノッチが設定されると制御部16は、DCモータ8を動作させるため、電源印加3秒後に起動補償VSPを与える。起動補償VSPがDCモータ8に印加されると制御用ドライブIC8aに流れる電流を検出する電流検出部18cが電流を検出する。電流検出部18cで検出した検出値は制御部16に入力される。
 制御部16は、DCモータ8の電流を検出する電流検出部18で検出した複数の検出値(例えば図7に示すように3つの低抵抗を直列に接続している場合には、それぞれ第1の電流検出値、第2の電流検出値、第3の電流検出値)から最適な検出値を選びだす。選び出した検出値と、電流検出部18cの検出値との差から三相巻き線に流れる電流を算出する。
 そして、制御部16に入力された値と予め制御部16に設定しているテーブルデータとを比較して、DCモータ8のロータの回転数を算出する。比較方法及びその後の制御については実施の形態1と同様である。
 複数の電流検出値から最適な検出値を選ぶ基準は例えば以下の通りである。制御部16が例えば+5Vの電源が印加され、制御部16が10ビットの分解能力を持っている場合、電流検出部18で検出された複数の検出値の中で一番分解能力を持っている値を選定する。
 例えば、DCモータ8に電流が50mA流れた場合、低抵抗の総合計は4.5Ωとなり、スイッチング電源回路15のグランドに対して各低抵抗に発生する電圧は、0.225V、0.15V、0.075Vとなる。この場合、増幅器21の増幅能力が例えば10倍とすると、制御部16に入力される値はそれぞれ、2.25V、1.5V、0.75Vとなる。このとき、分解能力は、フルスケールの5Vに対して2.25Vが一番高くできるため、電流検出部18の検出値として2.25Vが選ばれる。
 また、外風の影響等でDCモータ8に流れる電流が50mAから100mAに変化した場合、同様の算出方法により、制御部16に入力される値はそれぞれ、3.5V、3.0V、1.5Vとなる。この場合、本来なら分解能力から5Vに最も高くできる3.5Vが検出値として選ばれる。しかし、これは増幅器の電源として+5Vで印加した場合には、増幅器の特性から入力値の許容範囲をオーバしてしまうことがあるので、増幅器から正確な値が出力されないことがある。したがって、この場合は、分解能力が次に高い3.0Vを電流検出部18の検出値として選ぶことになる。
 以上のように構成した換気装置は、DCモータ8の三相巻き線に流れる電流を精度よく検出することができるため、ダクト抵抗が外風等の影響で変化した場合においても、一定に換気風量を保つことができる。
 また、電流検出部18において、切換え器等の切換え無しで、電流値を複数検出するため、切換え時に発生するグランド変化をなくすことができ、グランド変化によって起こる騒音等をなくすことができる。
 なお、本実施の形態においては、電流検出部18の検出したDCモータ8を流れる電流から、電流検出部18cの検出した電流(駆動電流)を差し引いて、巻き線に流れる電流を求める構成にした。また、DCモータ8の近傍に温度検出部を備えて、DCモータ8の温度を検出し、検出した値からDCモータ8の駆動電流を算出して電流検出部18の検出値から差し引いて巻き線に流れる電流を検出するようにしても構わない。また、巻き線電流を直接電流センサ等で検出しても、効果は同等である。
 (実施の形態3)
 実施の形態1、2において精度よく電流の検出を行って、換気風量を一定に保つ実施の形態を説明している。
 本発明の実施形態3では、さらに換気風量を精度よく一定に保つために、換気装置の通電履歴を認識し、電源の入り/切りによる影響を受けにくくする実施の形態を図9~図10を参照しながら説明する。なお、実施の形態1と同様の構成要素についてはその説明を省略する。
 本実施の形態の換気装置は、図9に示すように、制御回路10は内部に電源の入り/切りを記憶する記憶部22(図示せず)と湿度を検出する湿度検出部23と二次電池24とダイオード201とをさらに備える。制御回路10は、電源切りの時に、ダイオード201のカソード側は制御回路10の電源(+5V側)に接続され、ダイオード201のアノード側には二次電池24(例えば、ボタン電池)のプラス側が接続される。また、二次電池24のマイナス側はグランドに接続されている。
 また、商用電源12の入り/切りを確認するために、ゼロクロス回路(図示せず)を制御回路10に備える構成とする。ゼロクロス回路とは、交流電圧のゼロ地点の通過を検出する回路である。
 上記構成において、換気装置の動作を図10に示すフローチャートを用いて説明する。
 例えば、換気装置使用者により、スイッチ11が操作され、商用電源の入り及びファンノッチとして弱ノッチが設定されると、換気装置の本体3に電源が投入され、制御部16に電源が印加される。電源が印加されるとゼロクロスが制御部16に入力され制御部16は電源が入力されたことを認識する。湿度検出部23が湿度の検出を開始し、制御部16に入力される。制御部16に湿度の検出結果が入力されると予め設定しているテーブルデータ(図示せず)を参照し制御を開始する。
 テーブルデータにおけるDCモータ8の電流は、DCモータ8が安定した時の値が保存されている。電源印加から3秒後に起動補償VSPをDCモータ8に与えるよう制御するため、電源印加から3秒間DCモータ8は待機状態になる。待機状態時の電流を電流検出部18が検出し、記憶部22に格納する。電源印加から3秒後にDCモータ8が回転を開始し、待機電流を含んだ電流を電流検出部18が検出する。そのため、記憶部22に格納した待機電流から差を引いて巻き線電流を算出する。また、DCモータ8が回転を開始する時点を起点として制御部16が時間カウントを開始し、次に電源が切りに設定されDCモータ8への通電が遮断されるまでの時間をカウントする。
 その後、換気装置使用者により、スイッチ11が操作され、商用電源が切りに設定されると、ゼロクロスが制御部16に入力されなくなる。そのため、二次電池24から制御部16に対して電源を供給し、電源がオフ(OFF)した時間、すなわちDCモータ8の遮断時間のカウントを開始する。
 その後、再びスイッチ11が操作され、商用電源の入りが設定されると、制御部16は以下のような判断を行う。
 まずDCモータ8の通電時間が1時間以上経過後にDCモータ8の遮断時間が5分以上経過している場合は、制御部16はDCモータ8の温度上昇の影響がないと判断して待機状態の電流を検出することなくそのままの状態を保つ。
 一方、DCモータ8への通電時間が1時間以上経過後にDCモータ8の遮断時間が極端に短い場合(例えば5分未満)は、制御部16はDCモータ8の温度上昇の影響があると判断して再度待機電流を測定しDCモータ8の巻き線電流を算出することとなる。なお、この際、DCモータ8の遮断時間が1分未満かどうかをさらに判定し、1分未満の場合にのみ、再度待機電流を測定するようにしてもよい。
 以上のように構成した換気装置は、さらに湿度を検出することができることから空気の比重を検出できるため、湿度に対する影響をなくすことができる。また、DCモータ8の温度上昇による待機電流の変化をサーミスタを設けて特別に補正しなくてもDCモータ8の巻き線に流れる電流を精度よく検出することができるため、ダクト抵抗が外風等の影響で変化した場合においても、一定に換気風量を保つことができる。
 (実施の形態4)
 実施の形態4について、図11~図12を参照しながら説明する。なお、実施の形態1と同様の構成要素についてはその説明を省略する。
 図11に示すように、本実施の形態の換気装置は、排気ダクト5内部に差圧差が発生するようにオリフィス(図示せず)をさらに備える。排気ダクト5の側面には設置した差圧検知部25が設置されている。差圧検知部25のHIGH側圧導入口(図示せず)を排気ダクト5のオリフィスの手前に設置し、LOW側圧導入口(図示せず)を排気ダクト5のオリフィスの後ろに備えるようにする。差圧検知部25は、本体3に設置した制御回路10と信号線(図示せず)で接続されている。
 差圧検知部25の構成は、例えば、低い換気風量を精度よく検出するために、差圧センサ(50Pa)を使用する。差圧センサとは、受圧面をシリコンダイアフラムとした対称構造とし、圧力を受けるとダイアフラムが変動し、静電容量が変化するため、その静電容量の変化を電気的に出力するものである。
 上記構成において、換気装置の動作を図12に示すフローチャートを用いて説明する。
 換気装置は、実施の形態1でも述べたように、特にDCモータを使用する換気装置に関しては、換気風量が多段に可変できる構成になっている。また、換気風量を可変するとDCモータに流れる電流もおのずと可変されることとなる。
 例えば、実施の形態2で述べた電流検出部18を用いて30mA電流が流れた時を考えた場合、電流検出部18で検出した電流を増幅して制御部16に入力される電圧は、分解能の最適な値を選びだしたとしても、1.35Vにしかならないため1.35Vで風量を制御するのは非常に困難である。そこで、本実施の形態は、差圧検知部25を設けて、電流検出部18による電流値を検出する構成を併用する。
 例えば、換気装置使用者により、スイッチ11が操作され、商用電源の入り及びファンノッチとして弱ノッチが設定されると、換気装置の本体3に電源が投入され、制御部16に電源が印加される。電源が印加されてから、待機状態である3秒間の間に制御部16は差圧検知部25の値を検出する。DCモータ8が回転していないにも関わらず差圧検知部25の値が出力している状態ならば、差圧検知部25の取り付け状態が影響しているため、制御部16に備えられた差圧調整部(図示せず)にて差圧検知部25の出力電圧を電圧補正する(ゼロ点調整をおこなう)。
 シリコンダイアフラム方式の差圧センサは、取り付け状態によっては、ダイアフラムに重量が加わってしまい差圧の信号として出力してしまうため出力調整をおこなう必要がある。
 電源印加から3秒後にDCモータ8が回転を始め、電流検出部18がDCモータ8に流れる電流を検出し、制御部16に入力される。DCモータ8に流れる電流が小さい場合(例えば30mA以下)の場合は、差圧検知部25の値を用いて、予め設定している差圧用データテーブルを参照してDCモータ8の運転を開始する。
 また、外風の影響やスイッチ11がノッチを弱から急速に変更した場合において、DCモータ8に流れる電流が所定の電流より大きくなった(例えば30mA以上)場合は、予め設定している電流用データテーブルに変更してDCモータ8の運転を継続することとなる。
 以上のように構成した換気装置は、換気風量が少ない場合、電流が小さく電流検出が難しいでも、差圧検知部で差圧を検出するため、小さい換気風量でも精度よく検出できる。
 また、小さい換気風量は差圧検知部25で検出することはできるが大きな風量を検知した場合、差圧のレンジが振り切れてしまい検出できない可能性がある。しかし、大きな風量の場合、大きい電流が流れるのでの電流検出部18で測定した値を利用することができる。このように小さい風量の場合と大きな風量に場合で、それぞれ検出する対象を選定することで、ダクト抵抗が外風等の影響で変化した場合やノッチが換気装置使用者によって変更された場合においても、一定に換気風量を保つことができる。
 (実施の形態5)
 実施の形態5について、図13~図17を参照しながら説明する。なお、実施の形態1と同様の構成要素についてはその説明を省略する。
 実施の形態1では、スイッチング電源回路15の近傍に、スイッチング電源回路15の温度を測定する温度検出部17を備えたが、本実施の形態では、図17に示すように、温度検出部17の代わりとして、DCモータ8に、ホール素子の温度を検出する温度検出部28を備える構成とする。
 ホール素子の入力抵抗(無磁界中で、出力端子開放時の入力端子間の抵抗)と温度の関係は、温度が低い場合は抵抗値が高く温度が低くなるにつれて2次曲線的に抵抗値が低くなる特性を持っている(例えば、-40℃時:1800Ω、25℃:240Ω、50℃:100Ωとなる)。
 また、制御部16には、不揮発性記憶装置等に電子部品のばらつきを校正する値を記憶する記憶部29を備える構成とする。
 不揮発性記憶装置としては、例えばEEPROMを使用する。EEPROMとは、電圧の操作によってデータの消去や書き換えが可能となる半導体記憶装置である。
 電子部品のばらつきは、モータ電流検出精度の低下の原因になる。そのため、モータ電流の検出精度を向上させるため、モータ電流の検出精度に影響するマイコン電源、DCモータ8に流れる電流を検出する電流検出部18を構成する抵抗器の校正を行う。
 校正は以下のように行う。まず、図13に示すように、VM-G間に例えば、100mAの電流を流し、第1切換え部20d、第2切換え部20eはOFFにする。このようにして電流検出部18の抵抗器の一つとして備えた低抵抗器20aの抵抗値のばらつきの校正を行う。次に、第1切換え部20dをONし、同様に第1抵抗器20bの抵抗値の校正を行う。最後に、第2切換え部20eもONして第2抵抗器20cの抵抗値の校正を行う。上記のこれら校正の結果は、順次、記憶部29に記憶する。以下に例えば、低抵抗20aを用いた場合の電流値の換算方法を説明する。図17に示すように、制御部16は電流値演算部202をさらに備え、電流値演算部202は記憶部29で記憶している値と、計算で求められる理論値とを比較し、換算値を割り出す。(例えば、低抵抗器20aの抵抗の理論値では3.0Ω×100mA=0.3Vとなるはずであるが、記憶部29に記憶されている値は(2.8Ω×100mA=)0.28Vである。)つまり、実際に計測した電流値に対応する電圧に対して、0.3÷0.28=1.07倍した値でデータテーブルを参照し電流に対応する回転数を得る。第1の抵抗器20bや第2の抵抗器20cを接続している場合も同様の方法で電流値を換算する。
 また、電流検出部18は、すでに実施の形態1で説明したように、DCモータ8の電流を検出する場合に、第1切換え部20dと第2切換え部20eを切換えて電流を検出する。このような構成では、制御部16に入力される電流の検出値は、図14に示すように、第1切換え部20dと第2切換え部20eの開閉状態によって、マイコンが読み込むAD値(アナログデジタル変換後の値)と電流検出抵抗器に流れる電流(AD値―電流)との関係が3段階発生する。よって第1切換え部20dや第2切換え部20eである低抵抗切換え部を切換えることでそれぞれの場合で得られる結果が非連続となってしまう。そのため、適切な制御ができなくなってしまう。つまり一つのAD値に三つの電流値が存在することとなってしまい制御ができない。そこで本実施の形態では、制御部16に備えられる電流値演算部202は、AD値の生データに所定の倍率を掛ける。例えば低抵抗器20aのみの電圧値を読む場合はAD値を3倍、第1抵抗器20bを加えた電圧値を読む場合は4倍、さらに第2抵抗器20cを加えた電圧値を読む場合は12倍をして非連続となる電流検出値を連続値に換演算する。これにより電流値とAD値の一対一の対応を可能とする。
 以下に上記の換算式を示す。つまり、換算値=(生AD値)×(倍率係数k/マイコンAD値分解能(1024))×(理論値(計算結果)/抵抗調整AD値)となる。
 また、本実施の形態では抵抗値の異なる複数の低抵抗を切換えるため、図15に示すように電流しきい値にディファレンシャルを設ける構成となっている。
 また、制御部16は、DCモータ8からの回転数の返答を確認しながら、電流検出部18で検出した電流値に基づいて、制御信号VSPをDCモータ8に出力する。DCモータ8は、制御信号VSPの値に応じて印加電圧を可変するものである。しかし、制御信号VSPを出力しているにもかかわらず回転数の返答がない場合は、DCモータ8になんらかの異常が生じたものと判断して、全ての切り替え部を停止する構成とする。
 上記構成において、換気装置の動作を図16に示すフローチャートを用いて説明する。
 なお、実施の形態1と同様の動作についてはその説明を省略する。
 ホール素子の温度を検出する温度検出部28で検出した温度が制御部16に入力される。DCモータ8の巻き線に流れる電流は、DCモータ8の電流検出部18で検出した電流から、ホール素子に流れる電流を減算することで算出する。ホール素子に流れる電流は温度検出部28の検出値より換算される。また、DCモータ8の巻き線に流れる電流は雰囲気温度によって変化するため、温度検出部28で検出した温度からホール素子に流れる電流を割り出し、制御部16に備えられるホール素子温度補正部(図示せず)にて温度補正を行う。
 DCモータ8に起動補償値として制御信号VSPが入力されると、DCモータ8の巻き線に電流が流れDCモータ8が回転する。そして、この時の電流検出部18で検出した電流、回転数検出部19で検出した回転数が制御部16に入力される。
 また、この時、回転数の情報が制御部16に入力されない場合には、異常があると判断し全ての切り替え手段をOFFする。
 制御部16に回転数の情報が入力されると、電流値演算部202は、電流検出部18から実際に検出される値に対して、上述の方法で記憶部29に記憶されている値と理論値とから補正を行い、換算値を算出する。
 電流検出部18で検出した値からの換算値が例えば3.0Vに達していない場合は、第1切換え部20dと第2切換え部20eはそのままの状態を保つ。そして、制御部16は電流検出部18で検出した値からの換算値に対応する回転数をデータテーブルから参照して、回転数検出部19が検知した実際の回転数と比較する。比較した結果、回転数が高いと判断した時は、制御部16は3秒毎にDUTYをアップさせる。この操作を繰り返して、回転数差がなくなった場合は、規定換気風量であると判断しDUTYの可変を停止する。
 また例えば、外風等の影響によりダクト抵抗が上昇した場合は、回転数が低下し電流が増加する。例えば上記の結果、電流検出部18で検出した値からの換算値が3.0V以上となった場合は、第1切換え部20dをONする。これにより、第1抵抗器20bが低抵抗器20aと並列に接続される。つまり、電流検出部18の抵抗値は1Ωとなる。第1切換え部20dをONした場合において換算値が3.0Vに達していない場合は、そのままの状態を維持する。そして上記と同様に、制御部16に入力された電流検出部18の検出値と予め制御部16の中に記憶させているデータテーブルとを比較する。そしてDCモータ8のロータの回転数が規定の回転数に対して高いもしくは低い場合にはDUTYを3秒毎に変化させる。これを繰り返し、規定の回転数に対して回転数差がなくなった場合は、制御部16は規定の換気風量が得られたと判断してDUTYの可変を停止する。
 一方第1切換え部20dをONした場合において電流検出部18で検出した値が3.0Vを超えた場合は、更に第2切換え部20eをONする。そして、上記と同様に制御部16に入力された電流検出部18の検出値からの換算値と予め制御部16の中に記憶させているデータテーブルとを比較する。そしてDCモータ8のロータの回転数が規定の回転数に対して高いもしくは低い場合にはDUTYを3秒毎に変化させる。これを繰り返し、規定の回転数に対して回転数差がなくなった場合は、制御部16は規定の換気風量が得られたと判断してDUTYの可変を停止する。
 上記のように、3秒毎にDUTYをアップさせたりダウンさせたりして換気風量を調整する。
 また、第2切換え部20eがONの状態にて、外風等の影響がなくなり静圧が下降した場合は、ダクト抵抗がなくなるため、DCモータ8に流れる電流が低下する。そのため、電流検出部18が電流低下により検出した値からの換算値が2.7Vとなる場合、すなわち3.0Vに対して0.3Vのディファレンシャルの電流しきい値で第2切換え部20eをOFFする。また、第2切換え部20eをOFFしてもなお検出値が3.0V以上の場合は、第1切換え部20dをOFFする。
 上記のように、3秒毎にDUTYをアップさせたりダウンさせたりして換気風量を調整する。制御部16は、制御信号VSPの電圧値を補正する指示電圧変動部を備える。上記のように第1切換え部20dまたは第2切換え部20eを切換えて第1抵抗器20bまたは第2抵抗器20cを接続した場合には、切換え状態に合わせて、指示電圧変動部は制御信号VSPの電圧値を補正し、補正値をDCモータ8に与える。
 以上のように構成した換気装置は、DCモータ8の流れる電流を検出しながら第1切換え部20d、第2切換え部20eを用いて抵抗値を切換えていき、電流に対して常に最適な抵抗値を選んで必要な分解能を確保しながら電流検出を行う。そのため、精度よく電流を検出することができるため、ダクト抵抗が外風等の影響で変化した場合においても、一定に換気風量を保つことができる。
 本発明にかかる建物に取り付けられる換気装置は、ダクト抵抗、外風圧に拘わりなく所定の時間内で風量が得られる製品のおいて広く有用である。
 1  室内
 2  天井裏
 3  本体
 4  アダプタ
 5  排気ダクト
 6  排気口
 7  羽根
 8  DCモータ
 8a  制御用ドライブIC
 8b  駆動回路
 9  ルーバ
 10  制御回路
 11  スイッチ
 12  商用電源
 13  整流回路
 14  電圧検出部
 15  スイッチング電源回路
 16  制御部
 17  温度検出部
 18  電流検出部
 18c  電流検出部
 19  回転数検出部
 20a  低抵抗器
 20b  第1抵抗器
 20c  第2抵抗器
 20d  第1切換え部
 20e  第2切換え部
 21  増幅器
 22  記憶部
 23  湿度検出部
 24  二次電池
 25  差圧検知部
 28  温度検出部
 29  記憶部
 200  指示電圧変動部
 201  ダイオード
 202  電流値演算部

Claims (18)

  1. 風量が可変できる換気装置であって、
    羽根を駆動するDCモータと、前記DCモータを制御する制御回路を備え、
    前記制御回路は、前記DCモータに流れる電流を検出する第1の電流検出部と、前記DCモータの回転数を検出する回転数検出部と、前記回転数検出部が検出する回転数と前記第1の電流検出部が検出する電流に基づいて前記DCモータを制御する制御部とを備え、
    前記第1の電流検出部は、複数の低抵抗器を備え、前記低抵抗器の分圧値を用いてモータ電流を検出し、
    前記回転数検出部が検出する回転数と前記第1の電流検出部が検出する電流とから換気風量を求める
    ことを特徴とした換気装置。
  2. 前記複数の低抵抗器の接続/非接続を切換える低抵抗切換え部を備え、
    前記制御部は前記第1の電流検出部が検出する電流に基づいて、前記低抵抗切換え部を切換える
    ことを特徴とした請求項1記載の換気装置。
  3. 前記DCモータのグランド電位を増幅する増幅器と
    前記増幅器の増幅率を変更する増幅率変更部とを備え、
    前記制御部は前記第1の電流検出部が検出する電流に基づいて、前記増幅率変更部を切換える
    ことを特徴とした請求項1記載の換気装置。
  4. モータに印加する電圧を検出する電圧検出部を備え、前記回転数と前記電流と前記電圧とに基づいて前記換気風量を求めることを特徴とした請求項1記載の換気装置。
  5. 前記第1の電流検出部の抵抗値を前記低抵抗切換え部によって切換えることで非連続となる前記第1の電流検出部の電流検出値を、各々の前記抵抗値の比に基づき連続値に演算する電流値演算部を設けた
    請求項2記載の換気装置。
  6. 規定の電流値を前記低抵抗器に流した状態で前記低抵抗器の両端に発生する電圧値を記憶値として前記規定の電流値に対応づけて不揮発性記憶装置に記憶する記憶部と、前記DCモータ運転時に前記低抵抗器の両端に発生する電圧値と前記記憶部に記憶した前記記憶値とを比較することで前記電流値を求める電流値演算部を有する
    ことを特徴とした請求項5記載の換気装置。
  7. 前記低抵抗切換え部により前記第1の電流検出部の抵抗値を切り替えるための電流しきい値にディファレンシャルを設けた
    ことを特徴とした請求項2記載の換気装置。
  8. 前記低抵抗切換え部により前記第1の電流検出部の抵抗値を切り替える際に、前記DCモータへのモータ指示電圧を変動させる指示電圧変動部を有する
    ことを特徴とした請求項2記載の換気装置。
  9. モーターロック時には前記低抵抗切換え部の全ての切り替え部をオフにする
    ことを特徴とした請求項2記載の換気装置。
  10. 差圧検知部を備え、前記第1の電流検出部で検出される電流値が所定の値以下の場合には、前記差圧検知部の検出値に基づいて前記換気風量を決定する
    ことを特徴とした請求項1記載の換気装置。
  11. 差圧検知部の取り付け状態による出力電圧を電圧補正する差圧調整部を備えることを特徴とした請求項10記載の換気装置。
  12. 制御用ドライブICに流れる前記DCモータを駆動するモータ駆動電流を検出する第2の電流検出部を備え、前記第1の電流検出部で検出される前記DCモータに流れる総合電流から前記DCモータ駆動電流を差し引いて電流値を算出することを特徴とした請求項1記載の換気装置。
  13. 前記DCモータの巻き線に流れる電流を検出する電流検出部を備えることを特徴とした請求項4記載の換気装置。
  14. 前記制御回路内部に温度検出部を備えることを特徴とした請求項1記載の換気装置。
  15. 前記DCモータ内部に温度検出部を備えることを特徴とした請求項1記載の換気装置。
  16. 前記DCモータ内部の温度を測定しモータ内蔵のホール素子の温度特性を補正するホール素子温度補正部を有する請求項15記載の換気装置。
  17. 換気装置の周囲の湿度を測定する湿度測定部を備えることを特徴とした請求項1記載の換気装置。
  18. 前記制御回路内部に電源の入り/切りを記憶する記憶部と電源切りの時に前記制御回路に電力を供給する二次電池とを備え、前記制御部は電源の入り/切りを常に監視することを特徴とした請求項1記載の換気装置。
PCT/JP2010/004931 2009-02-17 2010-08-05 換気装置 WO2011092756A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080062870.1A CN102741619B (zh) 2010-02-01 2010-08-05 换气装置
US13/522,763 US8669730B2 (en) 2009-02-17 2010-08-05 Ventilation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010020070A JP5556200B2 (ja) 2009-02-17 2010-02-01 換気装置
JP2010-020070 2010-02-01

Publications (1)

Publication Number Publication Date
WO2011092756A1 true WO2011092756A1 (ja) 2011-08-04

Family

ID=44320382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004931 WO2011092756A1 (ja) 2009-02-17 2010-08-05 換気装置

Country Status (2)

Country Link
CN (1) CN102741619B (ja)
WO (1) WO2011092756A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2799789A1 (en) * 2013-04-30 2014-11-05 Gidelmar, S.A. Method and system for automatically adjusting the operation of a fan and a computer program implementing the method
US20150241076A1 (en) * 2012-10-10 2015-08-27 Daikin Industries, Ltd. Humidity control and ventilation device
JP2016080246A (ja) * 2014-10-16 2016-05-16 リンナイ株式会社 換気装置
WO2019111724A1 (ja) * 2017-12-08 2019-06-13 株式会社デンソー 空調装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013204137A1 (de) * 2013-03-11 2014-09-11 BSH Bosch und Siemens Hausgeräte GmbH Verfahren zum Ermitteln eines Betriebszustands einer Dunstabzugshaubenanordnung
CN104344492B (zh) * 2013-07-25 2018-03-27 广东美的制冷设备有限公司 管道式通风装置及其风量控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007032998A (ja) * 2005-07-29 2007-02-08 Matsushita Electric Ind Co Ltd 空気調和機
JP2008139224A (ja) * 2006-12-05 2008-06-19 Hioki Ee Corp 測定装置
JP2010022102A (ja) * 2008-07-09 2010-01-28 Panasonic Corp ブラシレスdcモータとそれを搭載した換気送風装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3938179B2 (ja) * 2004-11-18 2007-06-27 松下電器産業株式会社 交流電源直結型ブラシレスdcモータおよびそれを搭載した電気機器
JP5111002B2 (ja) * 2007-07-27 2012-12-26 三菱電機株式会社 熱交換換気装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007032998A (ja) * 2005-07-29 2007-02-08 Matsushita Electric Ind Co Ltd 空気調和機
JP2008139224A (ja) * 2006-12-05 2008-06-19 Hioki Ee Corp 測定装置
JP2010022102A (ja) * 2008-07-09 2010-01-28 Panasonic Corp ブラシレスdcモータとそれを搭載した換気送風装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150241076A1 (en) * 2012-10-10 2015-08-27 Daikin Industries, Ltd. Humidity control and ventilation device
US9903604B2 (en) * 2012-10-10 2018-02-27 Daikin Industries, Ltd. Humidity control and ventilation device
EP2799789A1 (en) * 2013-04-30 2014-11-05 Gidelmar, S.A. Method and system for automatically adjusting the operation of a fan and a computer program implementing the method
JP2016080246A (ja) * 2014-10-16 2016-05-16 リンナイ株式会社 換気装置
WO2019111724A1 (ja) * 2017-12-08 2019-06-13 株式会社デンソー 空調装置
JP2019104262A (ja) * 2017-12-08 2019-06-27 株式会社デンソー 空調装置

Also Published As

Publication number Publication date
CN102741619A (zh) 2012-10-17
CN102741619B (zh) 2015-03-25

Similar Documents

Publication Publication Date Title
JP5556200B2 (ja) 換気装置
WO2011092756A1 (ja) 換気装置
JP5327045B2 (ja) モータ制御装置とその制御方法、及びモータ装置
US20100256821A1 (en) Constant airflow control of a ventilation system
WO2014024359A1 (ja) モータ制御装置、モータ制御方法および送風装置
JP6609796B2 (ja) 換気装置
JP5988224B2 (ja) モータ制御装置及びモータ制御方法
JP5315762B2 (ja) インバータ装置およびそれを搭載した風量一定換気送風装置
WO2014208095A1 (ja) 換気装置
JP2001193688A (ja) 送風装置及び流体圧送装置の駆動装置
JP6255576B2 (ja) 換気装置
JP4409157B2 (ja) ファンモータおよびそれを搭載した電気機器
JP2014059116A (ja) 空気清浄機
JP2009264622A (ja) 換気装置
KR101192283B1 (ko) 일정 풍량 제어를 위한 모터의 교정
JP6229167B2 (ja) ブラシレスdcモータを搭載した送風装置
KR101103018B1 (ko) 환기 시스템의 일정한 공기 흐름 제어
JP2015010530A (ja) 換気装置
JP2008220077A (ja) ブラシレスdcモータの駆動装置およびそれを搭載した換気送風装置
JP6255573B2 (ja) 換気装置
JP2010242767A (ja) 送風機の風量制御方法
JP2015028301A (ja) 換気装置
JP6182736B2 (ja) 換気装置
JP2012115127A (ja) ブラシレスdcモータの制御装置およびそれを用いた送風装置
JP2009167926A (ja) 送風装置およびそれを搭載した電気機器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080062870.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10844526

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13522763

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10844526

Country of ref document: EP

Kind code of ref document: A1