WO2011091726A1 - 基于激光成像的高分辨率海浪微尺度波探测方法 - Google Patents

基于激光成像的高分辨率海浪微尺度波探测方法 Download PDF

Info

Publication number
WO2011091726A1
WO2011091726A1 PCT/CN2011/070243 CN2011070243W WO2011091726A1 WO 2011091726 A1 WO2011091726 A1 WO 2011091726A1 CN 2011070243 W CN2011070243 W CN 2011070243W WO 2011091726 A1 WO2011091726 A1 WO 2011091726A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
target
optical
signal
tube
Prior art date
Application number
PCT/CN2011/070243
Other languages
English (en)
French (fr)
Inventor
孙剑锋
郜键
魏靖松
王骐
Original Assignee
哈尔滨工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨工业大学 filed Critical 哈尔滨工业大学
Publication of WO2011091726A1 publication Critical patent/WO2011091726A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging

Definitions

  • the invention relates to the field of submarine detection, in particular to a method for detecting ocean wave micro-scale waves.
  • the detection of submarines is generally divided into two types, one is sonar detection and the other is non-sounding potential.
  • Sonar detection its advantages are already well known in the ocean. At present, submarine surface treatment has made the sound wave noise reduction of the submarine close to the ocean background noise, so it is difficult for the sonar to distinguish the submarine in the ocean background.
  • sonar detection includes active sonar and passive sonar detection. Active sonar detection is easy to expose its own target, passive sonar signal and noise is relatively low, and sea clutter is difficult to filter out. Therefore, in recent years, non-sounding potential has received attention at home and abroad.
  • the non-sounding potential includes laser direct exploration, direct exploration of the magnetic probe, laser detection of the indirect potential of the submarine wake, and microwave detection of the surface wave indirect exploration.
  • the laser directly explores the potential, and uses a single laser to directly enter the sea surface. After hitting the submarine, it receives its reflected echo, that is, single point ranging. It is reported that foreign countries are doing 70 meters underwater detection. However, it is a single point detection, the scanning efficiency is very low, and the mobility is poor, which is not conducive to a wide range of search submarines. At the same time, the single-beam laser is limited by the sea surface environment, and the potential for detecting the potential is not ideal.
  • the magnetic probe directly explores the potential, which is to use the submarine to navigate underwater, change the earth's magnetic field, and detect the potential of the earth's magnetic field to realize the potential exploration. Its detection range decreases rapidly with increasing height. Therefore, it is not conducive to a wide range of search submarines.
  • the surface of modern submarines has been demagnetized, and the change of the earth's magnetic field is very small, which also brings difficulties to the exploration of the magnetic probe.
  • This type of snorkeling method uses infrared technology to detect the heat discharged from the submarine to realize the detection of the submarine.
  • the heat emitted by the submarine is very large, but the heat that is transmitted to the sea level is very small, and the infrared detector with extremely high sensitivity is required, which brings difficulties to the exploration work.
  • the sea surface itself radiates heat very randomly, and it also has a great interference to its detection.
  • the submarine will generate a large number of air bubbles during the underwater navigation.
  • the indirect exploration of the bubbles in the wake of the laser detection submarine is to use the laser to detect these bubble curtains to determine the trajectory of the submarine wake, and to determine the position of the submarine from the submarine trajectory. . Since the presence or absence of air bubbles under water has a significant impediment to the optical properties of seawater, that is, to the backscattering intensity of the laser, the backscattering intensity of the laser received by the receiving system can determine whether there is air bubbles under the water.
  • the domestic research unit is the Naval Engineering University, Xi'an Institute of Optics and Mechanics. The main report is still in the static pool experiment, and no marine field experiments have been conducted yet.
  • the detection method is to determine whether there is a submarine underwater; in addition, the sea surface has a great influence on the transmission of the laser beam, which brings certain difficulties to determine the wake of the submarine. Moreover, the bubble distribution inherent in the ocean is also relatively random, which brings certain difficulties to the detection of this method.
  • the transmission of laser light by seawater is greatly attenuated. If the depth of the bubble is deep in the water, the divergence angle of the laser must be small, which also limits the maneuverability of large-area and wide-range search detection.
  • Microwave detection of sea surface waves indirectly explores the potential, with all-weather, all-day advantages, while real-time detection of large areas of the sea. But its accuracy is not very high. All the reports are SAR's detection of the wave of the internal wave caused by the topography of the seamount, with waves ranging from tens of meters to hundreds of meters. The detection of the wave of the internal wave caused by the submarine has not been reported. The sea wave caused by the submarine is generally about 20cm-50cm. In addition, SAR's detection of sea surface micro-scale waves cannot be directly based on distance information into a three-dimensional image, and its amplitude is obtained by signal intensity inversion, so there is also a certain error.
  • the object of the present invention is to solve the problems of small detection area, low scanning efficiency and low detection precision in the existing methods of detecting potential, and a high-resolution ocean wave micro-scale wave detecting method based on laser imaging is provided.
  • High-resolution ocean wave micro-scale wave detection method based on laser imaging which is implemented based on a wave micro-scale wave detector including a laser, a transmitting optical antenna, a receiving optical antenna, a stripe tube, a CCD detector, Signal processing system, beam splitting system, PIN tube and delay device;
  • a high-resolution ocean wave micro-scale wave detection method based on laser imaging the process of which is:
  • the laser beam output by the laser is incident on the beam splitting system and split into two laser beams.
  • One laser beam is emitted as a probe light signal to the target through the transmitting optical antenna, the other laser beam is received by the PIN tube, and the PIN tube detects the laser light.
  • the delay device After outputting an electrical signal to the delay device, the delay device delays the electrical signal and sends it to the control signal input end of the stripe tube to start the stripe tube operation;
  • the optical signal returned by the target is received by the receiving optical antenna and transmitted by the receiving optical antenna to the slit of the stripe tube.
  • the stripe tube collects and images the optical signal at the slit under working condition, and the CCD detector collects the stripe in real time.
  • the image formed by the tube forms image data, and the image data is output to the signal processing system in real time, and finally all the image data received by the signal processing system is reconstructed and reconstructed to obtain a three-dimensional image of the object.
  • the invention has a range resolution of up to centimeter level and is detected by an airborne large field of view, has a wide detection range, and has high search efficiency.
  • FIG. 1 is a schematic structural view of a sea wave micro-scale wave detector in Embodiment 1;
  • FIG. 2 is a schematic structural view of a sea wave micro-scale wave detector in Embodiment 2;
  • FIG. 3 and FIG. 4 are schematic structural views of a transmitting optical antenna in Embodiment 3
  • FIG. 5 is a schematic structural view of a sea wave micro-scale wave detector in Embodiment 6;
  • FIG. 6 is a schematic view of a high-low frequency sea wave;
  • FIG. 7 is a view of the actual measuring device of the present invention;
  • FIG. 8 to FIG. 12 is a wave photograph;
  • FIG. 13 is a stripe image of the wave K in FIG. 12;
  • FIG. 14 is a waveform diagram obtained by inverting the stripe image of FIG. 13;
  • FIG. 15 is a reconstructed distance image;
  • Figure 17 is a schematic diagram for calculating the sea level difference;
  • Figure 18 is a schematic view showing the structure of the ocean wave
  • FIG. 1 which is implemented based on an ocean wave micro-scale wave detector, and the ocean wave micro-scale wave detector includes Laser 1, transmitting optical antenna 2, receiving optical antenna 4, stripe tube 5, CCD detector 6, signal processing system 7, beam splitting system 8, PIN tube 9 and delay device 10;
  • a high-resolution ocean wave micro-scale wave detection method based on laser imaging the process of which is:
  • the laser beam output from the laser 1 is incident on the beam splitting system 8 and split into two laser beams, wherein one laser beam is emitted as a probe light signal to the target via the transmitting optical antenna 2, and the other laser beam is received by the PIN tube 9, and the PIN is received.
  • the tube 9 After detecting the laser, the tube 9 outputs an electrical signal to the delay device 10, and the delay device 10 delays the electrical signal and sends it to the control signal input end of the stripe tube 5 to start the stripe tube 5;
  • the optical signal returned by the target is received by the receiving optical antenna 4, and is emitted by the receiving optical antenna 4 to the slit of the stripe tube 5.
  • the stripe tube 5 collects and images the optical signal at the slit under working condition, and CCD detects
  • the device 6 collects the image formed by the stripe tube 5 in real time and forms image data, and outputs the image data to the signal processing system 7 in real time, and finally restores and reconstructs all the received image data by the signal processing system 7 to obtain a target.
  • a three-dimensional image of the object A three-dimensional image of the object.
  • the function of the delay device 10 in this embodiment is to control the working start time of the stripe tube to ensure that the stripe tube can be activated after the optical signal returned by the target object reaches the slit of the stripe tube 5, thereby ensuring that the stripe tube can Obtain stable target image information.
  • the laser 1 is a Nd:YAG pulse laser, and the output laser has a wavelength of 532 nm (green light);
  • the signal processing system 7 uses a dsp board developed by Lingyun; and the delay device 10 is manufactured by Stanford, USA.
  • the model is DG535 delay device;
  • the CCD detector 6 model uses Dalsa1M60;
  • the stripe tube 5 uses the Russian-made K008 single-slit stripe tube camera.
  • the optical signal returned by the target mainly refers to a laser echo signal reflected and scattered back by the target.
  • the electrical signal output by the delayer 10 is received by a ramp voltage generator in the stripe tube 5.
  • the laser light is incident on the slit of the stripe tube 5, and is imaged by the relay lens inside the stripe tube 5 on the photocathode inside the stripe tube 5, thereby generating photoelectrons which are accelerated by the acceleration system inside the stripe tube 5, After being deflected by the deflection yoke connected to the ramp voltage generator inside the stripe tube 5, the phosphor screen inside the stripe tube 5 is bombarded to generate visible light.
  • a frame image of the stripe tube 5 can only image a profile of the object in the gated region.
  • the stripe tube 5 displays the stripe at different relative positions on the screen, and the relative distance of the stripe can be used to restore the cross-sectional profile of the target, and reconstruct the distance image of the target; in addition, according to the intensity of the image of the stripe tube 5, Reconstruction obtains the intensity image of the target.
  • the ocean wave micro-scale wave detector is mounted on an aircraft or a hull, and the scanning of the micro-scale wave of the ocean wave in a large area is realized by the navigation of the aircraft or the ship.
  • Embodiment 2 This embodiment is described with reference to FIG. 2 .
  • the present embodiment further defines Embodiment 1.
  • the ocean wave micro-scale wave detector further includes a mirror group 11 , and the mirror group 11 is placed in receiving optics. Between the antenna 4 and the stripe tube 5, the transmission direction of the optical signal output from the receiving optical antenna 4 is changed such that the optical signal is incident on the slit of the stripe tube 5.
  • the number of mirrors in the mirror group 11 is at least one.
  • Embodiment 3 This embodiment is described with reference to FIG. 3 and FIG. 4, which is further defined by Embodiment 1 or 2.
  • the transmitting optical antenna 2 is composed of a beam expander lens group 201 and a compression mirror 202.
  • the beam expander lens group is composed of one or more lenses;
  • the specific process of the laser beam as a probe light signal to the target through the transmitting optical antenna 2 is:
  • a laser beam is expanded by the expanding lens group 201 and then incident on the compression mirror 202, and after being compressed by the compression mirror 202 in the vertical direction, the beam cross section is linear, and then emitted to the target.
  • the action of the transmitting optical antenna 2 composed of the beam expanding lens group 201 and the compression mirror 202 corresponds to a line light source.
  • the light beam can be incident from the beam expanding lens group 201 and emitted from the compression mirror 202, as shown in FIG. It can be incident from the compression mirror 202 and exit from the beam expander lens group 201, see Fig. 4.
  • Embodiment 4 This embodiment is further defined by Embodiment 1, 2 or 3.
  • the receiving optical antenna 4 is implemented by a focusing lens group, and the focusing lens group is one or more focusing lenses;
  • the light signal returned by the object is received by the focus lens group, and the light signal is focused by the focus lens group to the slit of the stripe tube 5.
  • the present embodiment is further defined by Embodiments 1 to 4.
  • the beam splitting system 8 uses a beam splitter having a transflective ratio greater than 1, so that the laser light generated by the laser 1 is split into transmitted light by a beam splitter. The two laser beams are reflected and the transmitted light is emitted to the transmitting optical antenna 2, and the reflected light is emitted to the PIN tube 9.
  • the present embodiment can make the intensity of the transmitted light as the probe light higher than the intensity of the reflected light, because the probe light is lost in the process of transmitting and returning to the target object, thereby not increasing the output power of the laser 1
  • the laser output from the laser 1 is more fully utilized.
  • Embodiment 6 This embodiment is described with reference to FIG. 5.
  • the present embodiment is further defined by Embodiments 1 to 5.
  • the ocean wave micro-scale wave detector in the present embodiment further includes an optical follow-up system 3, and the optical The moving system 3 is located between the transmitting optical antenna 2, the receiving optical antenna 4 and the target, and the optical signal emitted by the optical antenna 2 is transmitted to the target through the optical follower system 3, and the optical signal returned by the target passes through the optical follow-up system. 3 is received by the receiving optical antenna 4;
  • the optical follower system 3 effects a change in the optical path of the probe optical signal and the optical signal returned by the target under the control of the signal processing system 7.
  • the optical follower system 3 added in the present embodiment realizes a change in the optical path of the probe optical signal and the optical signal returned from the target, thereby expanding the field of view.
  • Embodiment 6 is composed of a first full-reflector 301, a second full-reflector 302, and a motor 303.
  • the motor 303 is configured to drive the second full mirror 302 to have a small amplitude harmonic swing with its initial position as an equilibrium position and its mirror center as a swing center; the first full mirror 301 and the second full mirror The reflecting surfaces of 302 are parallel and oppositely placed at the initial position;
  • the optical signal emitted by the optical antenna 2 is sequentially transmitted to the target through the first full-mirror 301 and the second full-reflector 302, and the optical signal returned by the target sequentially passes through the second full-reflector 302 and the first full-reflector 301.
  • a high-resolution ocean wave micro-scale wave detection method based on laser imaging the process of which is:
  • the signal processing system 7 outputs a control signal to the motor 303, so that the motor 303 starts to drive the second full mirror 302 to perform the small amplitude harmonic swing;
  • the laser beam outputted by the laser 1 is incident on the beam splitting system 8 and split into two laser beams.
  • One laser beam is received by the transmitting optical antenna 2 and emitted, and then reflected by the first full-reflecting mirror 301 and the second full-reflecting mirror 302 in turn.
  • the laser beam is received by the PIN tube 9 , and the PIN tube 9 detects the laser light and outputs an electrical signal to the delay device 10 , and the delay device 10 delays the electrical signal and then sends the signal to the delay device 10 .
  • the optical signal returned by the target object is received by the receiving optical antenna 4 and emitted, and then reflected by the second full-reflecting mirror 302 and the first full-reflecting mirror 301, and then incident on the slit of the stripe tube 5, when the stripe tube 5 is received.
  • the electrical signal output by the delay device 10 is started, the optical signal at the slit is collected and imaged, and the CCD detector 6 collects the image formed by the stripe tube 5 in real time, and outputs the collected image data to the signal processing system in real time. 7. Finally, all the received image data is reconstructed and reconstructed by the signal processing system 7 to obtain a three-dimensional image of the target.
  • the internal waves generated by the submarine are expressed as waves on the sea surface, which will cause certain changes to the waves.
  • the ocean wave can be regarded as a two-scale model, that is, a large wave including a low frequency (larger wavelength) and a small wave of a high frequency (smaller wavelength) on each large wave, see FIG.
  • Figure 7 is a diagram of the measured device. See Figure 8 to Figure 11 for the measured wave pattern: the bright part of the stripe is the high-frequency small wave on the low-frequency big wave, where each bright point is a high-frequency small wave peak, and the dark part of the stripe represents high-frequency small The wave trough of the wave; the area above the entire stripe represents the low frequency and large waves.
  • Figure 9 is a stripe image of the waves in calm sea water.
  • a stripe image is selected, see Fig. 13, and Fig. 13 corresponds to the wave K in Fig. 12, and Fig. 14 is a specific waveform diagram of the finally inverted wave.
  • Fig. 15 and Fig. 16 wherein Fig. 15 is the reconstructed distance image, and Fig. 16 is the reconstructed intensity.
  • the resolution of a single-frame stripe image is 1032 ⁇ 1392, and the reconstructed stripe image resolution is 70 ⁇ 1032.
  • stage one the tugboat stops at the beach, the engine rotates at a low speed
  • the second stage the tugboat driving process, the engine rotates at a high speed
  • the third stage the tugboat breaks down in the sea, and the engine rotates at a low speed. Due to the change in the rotational speed of the engine, the undulation height of the sea surface is different, and this different state can be known from the distance image obtained by the reconstruction.
  • the first, second, and third regions from top to bottom correspond to the three phases of the experiment, respectively: one region (light color) in the figure corresponds to phase one and two regions (dark) in the experiment. Corresponding to stage two, three areas (light color) correspond to stage three.
  • stage one when the engine rotates at a low speed, the sea surface undulation is small, and the sea wave is relatively far away from the detector, so the upper part of the image (the area) is lighter; 10 frames are taken in one area, and the calculation is performed.
  • the speed of the tugboat can also be derived from the relationship between the rotational speed of the engine and the sea level.
  • the intensity image of the sea surface can also reflect some aspects of the sea surface wave: when the engine speed is slow, the sea surface undulation is relatively large. At this time, it is considered that the wave reflection is stronger against the light, and the trough is stronger for light absorption. At this time, as the intensity image In a district, the place where the light is considered to be the peak is the peak, and the dark place is the trough.
  • the sea surface of the engine When the engine rotates at a high speed, the sea surface of the engine is generally floating upward. At this time, there are many small waves on the sea surface, and the reflection of light is strong, so a large piece is formed in the second area. The bright spot; when the engine decelerates, the sea surface tends to be smooth, forming an image like the three zones. Therefore, the engine speed can also be judged based on the intensity of the reflection of the intensity image.
  • the invention utilizes the reflection and scattering of the laser beam by the sea surface, and can directly perform three-dimensional imaging detection on the sea surface micro-scale wave, and the distance resolution can be achieved at the centimeter level; the invention can be realized by airborne or shipboard mode. Field of view detection, search efficiency is high; in addition, because the green light has a certain penetration effect on seawater, the bubble curtain generated by the wake of the offshore submarine can also be detected.
  • the invention can assist the SAR (synthetic aperture radar) to better perform sea surface wave detection: the SAR is used to perform preliminary detection on the sea surface to determine the suspicious point, and then the method of the invention is used to detect the suspicious points one by one to find out whether the water surface has The wake of the submarine indirectly realizes the detection of the submarine, which can greatly increase the confidence of the submarine detection.
  • the invention is also suitable for detecting the internal wave of the ocean surface caused by the submarine, and can filter the noise well for rain, fog and the like, and is not affected by rain or fog.
  • the invention can image high frequency small waves and has high detection precision.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

基于激光成像的高分辨率海浪微尺度波探测方法 技术领域
本发明涉及潜艇探测领域,具体涉及一种海浪微尺度波探测方法。
背景技术
目前对于潜艇的探测,一般分为两种,一种是声纳探测,一种是非声探潜。
声纳探测,其优势在海洋中已经是人所共知的。目前,潜艇表面处理已经把潜艇的声波降噪做到接近于海洋背景噪声,所以声纳很难分辨出海洋背景中的潜艇。另外声纳探测包括主动声纳和被动声纳探测。主动声纳探测容易暴露自身目标,被动声纳信噪比较低,海杂波很难滤除。所以,近年来非声探潜受到国内外的重视。
非声探潜又包括激光直接探潜、磁探仪直接探潜、激光探测潜艇尾流中的气泡间接探潜以及微波探测海表面波间接探潜等方式。
激光直接探潜,是利用单束激光直接打入海面下,打到潜艇之后接收其反射回波,即单点测距。目前据报导,国外做到水下70米探测。但是其为单点探测,扫描效率很低,机动性差,不利于大范围搜索潜艇。同时,单束激光受到海表面环境限制,探潜效果不是很理想。
磁探仪直接探潜,是利用潜艇在水下航行,改变地球磁场,通过探测地磁场变化,实现探潜。其探测范围随高度的增加,迅速减小。所以不利于大范围搜索潜艇。此外,现代潜艇表面都经过消磁处理,对地磁场改变很微小,这也给磁探仪探潜带来了困难。此种探潜方式是利用红外技术探测潜艇排出的热量来实现对潜艇的探测。潜艇散发的热量是很大,但是传播到海平面上的热量却很微小,需要灵敏度极高的红外探测器,给探潜工作带来了困难。此外,随着时间的不同,海面自身辐射热量也很随机,对其探测也形成了很大的干扰。
潜艇在水下航行过程中尾流会产生大量的气泡,激光探测潜艇尾流中的气泡间接探潜则是利用激光来探测这些气泡幕从而确定潜艇尾流的轨迹,从潜艇轨迹上判断潜艇的位置。由于水下有无气泡对海水的光学特性有显著不通,即对激光的后向散射强度有影响,通过接收***接收到的激光的后向散射强度可以判断水下是否有气泡。国内对此研究的单位有海军工程大学,西安光机所。其主要的报道还处在静水池实验,目前还没有进行海洋实地实验。但是,首先这种探测方式首要的是要确定水下是否有潜艇;此外,海表面对激光束传输影响很大,给确定潜艇尾迹带来一定的困难。而且海洋中固有的气泡分布也比较随机,这对此方法探测也带来了一定得困难。海水对激光的传输衰减很大,如果气泡在水下深度较深,则要求激光的发散角必须很小,这样也限制了大面积大范围搜索探测的机动性。
微波探测海表面波间接探潜,具有全天候、全天时的优点,同时可以对大面积海域进行实时探测。但其精度还不是很高。所有的报道都是SAR对于海底山脉地形引起的内波海面应波的探测,其波幅几十米到上百米之间。对于潜艇引起的内波海面应波的探测,却没有报道。潜艇引起的内波的海面应波一般在20cm-50cm左右。另外,SAR对海面微尺度波探测不能直接根据距离信息成三维像,其幅度是靠信号强度反演得到,从而也存在着一定的误差。
技术问题
本发明的目的是解决目前现有的探潜方法中存在的探测面积小、扫描效率低以及探测精度不高的问题,提供了一种基于激光成像的高分辨率海浪微尺度波探测方法。
技术解决方案
基于激光成像的高分辨率海浪微尺度波探测方法,它基于海浪微尺度波探测器实现,所述海浪微尺度波探测器包括激光器、发射光学天线、接收光学天线、条纹管、CCD探测器、信号处理***、分束***、PIN管和延时器;
基于激光成像的高分辨率海浪微尺度波探测方法,它的过程为:
激光器输出的激光束入射至分束***后分为两束激光,其中,一束激光作为探测光信号经由发射光学天线射向目标物,另一束激光由PIN管接收,且PIN管探测到激光后输出一个电信号至延时器,延时器将所述电信号延时后再发送至条纹管的控制信号输入端来启动条纹管工作;
目标物返回的光信号由接收光学天线接收,并由接收光学天线发射至条纹管的狭缝处,条纹管在工作状态下对狭缝处的光信号进行采集并成像,CCD探测器实时采集条纹管所成的像并形成图像数据,并将所述图像数据实时输出至信号处理***,最终由信号处理***对接收到的所有图像数据进行还原重构,得到目标物的三维图像。
有益效果
发明的距离分辨率可达厘米级,并采用机载大视场进行探测,探测范围广,且搜索效率高。
附图说明
图1为实施方式一中海浪微尺度波探测器的结构示意图;图2为实施方式二中海浪微尺度波探测器的结构示意图;图3和图4为实施方式三中发射光学天线的结构示意图;图5为实施方式六中海浪微尺度波探测器的结构示意图;图6为高低频海浪的示意图;图7为本发明的实测装置图;图8至图11为四幅实测海浪条纹像;图12为波浪照片图;图13为图12中的波浪K的条纹像;图14为对图13的条纹像反演所得波形图;图15为重构后的距离像;图16为重构后的强度像;图17为计算海面高度差的原理图;图18为实施方式七中海浪微尺度波探测器的结构示意图。
本发明的实施方式
具体实施方式一:结合图1说明本实施方式,本实施方式的基于激光成像的高分辨率海浪微尺度波探测方法,它基于海浪微尺度波探测器实现,所述海浪微尺度波探测器包括激光器1、发射光学天线2、接收光学天线4、条纹管5、CCD探测器6、信号处理***7、分束***8、PIN管9和延时器10;
基于激光成像的高分辨率海浪微尺度波探测方法,它的过程为:
激光器1输出的激光束入射至分束***8后分为两束激光,其中,一束激光作为探测光信号经由发射光学天线2射向目标物,另一束激光由PIN管9接收,且PIN管9探测到激光后输出一个电信号至延时器10,延时器10将所述电信号延时后再发送至条纹管5的控制信号输入端来启动条纹管5工作;
目标物返回的光信号由接收光学天线4接收,并由接收光学天线4发射至条纹管5的狭缝处,条纹管5在工作状态下对狭缝处的光信号进行采集并成像,CCD探测器6实时采集条纹管5所成的像并形成图像数据,并将所述图像数据实时输出至信号处理***7,最终由信号处理***7对接收到的所有图像数据进行还原重构,得到目标物的三维图像。
本实施方式中的延时器10的作用是:控制条纹管的工作启动时间,保证在目标物返回的光信号到达条纹管5的狭缝处之后,再启动条纹管工作,进而保证条纹管能够获得稳定的目标图像信息。
本实施方式中,所述激光器1选用Nd:YAG脉冲激光器,其输出激光的波长为532nm(绿光);所述信号处理***7采用凌云公司研发的dsp板;延时器10采用美国斯坦福产的型号为DG535的延时器;CCD探测器6的型号采用Dalsa1M60;条纹管5采用俄罗斯产K008型单狭缝条纹管相机。
所述由目标物返回的光信号,主要是指由目标物反射、散射回的激光回波信号。另外,延时器10输出的电信号由条纹管5中的斜坡电压发生器接收。激光入射至条纹管5的狭缝处,并由条纹管5内部的中继透镜成像于条纹管5内部的光电阴极上,从而产生光电子,所述光电子被条纹管5内部的加速***加速后,再经由条纹管5内部与所述斜坡电压发生器相连接的偏转***进行偏转后,轰击条纹管5内部的荧光屏,产生可见光。条纹管5的一帧图像只能对在选通区域内的目标物的一个剖面轮廓进行成像,由于目标物上不同位置的点的激光回波信号的行走时间-TOF(TimeofFlight)不同,因此在条纹管5的荧光屏上显示的是不同相对位置的条纹,利用条纹的相对距离就可以还原目标物的剖面轮廓,重构获得目标物的距离像;此外,根据条纹管5成像的强度,还可重构获得目标物的强度像。
本发明在实际探测中,将所述海浪微尺度波探测器搭载在飞机或船体上,利用飞机或船的航行实现对大面积海域中海浪微尺度波的扫描探测。
具体实施方式二:结合图2说明本实施方式,本实施方式是对实施方式一的进一步限定,所述海浪微尺度波探测器还包括反射镜组11,所述反射镜组11置于接收光学天线4和条纹管5之间,用于改变接收光学天线4输出的光信号的传输方向,使得所述光信号入射至条纹管5的狭缝处。
其中,反射镜组11中的反射镜的个数最少为1。
具体实施方式三:结合图3和图4说明本实施方式,本实施方式是对实施方式一或二的进一步限定,所述发射光学天线2由扩束透镜组201和压缩镜202组成,所述扩束透镜组由一个或多个透镜组合而成;
所述一束激光作为探测光信号经由发射光学天线2射向目标物的具体过程为:
一束激光经扩束透镜组201扩束后入射至压缩镜202,再由压缩镜202在竖直方向进行压缩后,光束截面类似线状,然后发射至目标物。
由扩束透镜组201和压缩镜202组成的发射光学天线2的作用相当于线光源,在本实施方式中,光束可从扩束透镜组201入射、从压缩镜202出射,见图3,也可从压缩镜202入射、从扩束透镜组201出射,见图4。
具体实施方式四:本实施方式是对实施方式一、二或三的进一步限定,所述接收光学天线4由一个聚焦透镜组实现,所述聚焦透镜组为一个或多个聚焦透镜;
所述目标物返回的光信号由接收光学天线4接收,并由接收光学天线4发射至条纹管5的狭缝处的具体过程为:
目标物返回的光信号由聚焦透镜组接收,并由聚焦透镜组将所述光信号聚焦至条纹管5的狭缝处。
具体实施方式五:本实施方式是对实施方式一至四的进一步限定,所述分束***8采用一个透反比大于1的分束镜,使激光器1产生的激光经分束镜分为透射光和反射光两束激光,并令透射光发射至发射光学天线2,反射光发射至PIN管9。
本实施方式可使得作为探测光的透射光的强度高于反射光的强度,因探测光在向目标物发射以及返回的过程中被损耗,由此可在不提高激光器1输出功率的基础上,更加充分地利用激光器1输出的激光。
具体实施方式六:结合图5说明本实施方式,本实施方式是对实施方式一至五的进一步限定,本实施方式中的海浪微尺度波探测器还包括一个光学随动***3,所述光学随动***3位于发射光学天线2、接收光学天线4和目标物之间,光学天线2发射出的光信号经过光学随动***3后发射向目标物,目标物返回的光信号经光学随动***3后由接收光学天线4接收;
所述光学随动***3在信号处理***7的控制下实现对探测光信号和目标物返回的光信号的光路的改变。
本实施方式增加的光学随动***3实现了对探测光信号和目标物返回的光信号的光路的改变,进而扩大了视野。
具体实施方式七:结合图18说明本实施方式,本实施方式是对实施方式六的进一步说明,所述光学随动***3由第一全反镜301、第二全反镜302和电机303组成;所述电机303用于驱动第二全反镜302以其初始位置为平衡位置、以其镜面中心为摆动中心做小幅度简谐摆动;所述第一全反镜301和第二全反镜302的反射面在初始位置时平行、相对放置;
光学天线2发射出的光信号依次经过第一全反镜301和第二全反镜302发射向目标物,目标物返回的光信号依次经过第二全反镜302和第一全反镜301后由接收光学天线4接收;
基于激光成像的高分辨率海浪微尺度波探测方法,它的过程为:
信号处理***7输出控制信号给电机303,使电机303开始带动第二全反镜302做所述小幅度简谐摆动;
激光器1输出的激光束入射至分束***8后分为两束激光,其中,一束激光由发射光学天线2接收并出射,再依次经由第一全反镜301和第二全反镜302反射后,射向目标物;另一束激光由PIN管9接收,且PIN管9探测到激光后输出一个电信号至延时器10,延时器10将所述电信号延时后再发送至条纹管5的控制信号输入端;
目标物返回的光信号由接收光学天线4接收并出射,再依次经由第二全反镜302和第一全反镜301反射后,射至条纹管5的狭缝处,当条纹管5接收到延时器10输出的电信号时,开始对狭缝处的光信号进行采集并成像,CCD探测器6实时采集条纹管5所成的像,并将采集到的图像数据实时输出至信号处理***7,最终由信号处理***7对接收到的所有图像数据进行还原重构,得到目标物的三维图像。
潜艇产生的内波,在海面上表现为海面应波,会对海浪引起一定的改变,通过不同时刻对海浪的观察比对,可判断水下是否有潜艇。海浪可视为二尺度模型,即包括低频(波长较大)的大波浪和每个大波浪上的高频(波长较小)的小波浪,参见图6。应用本发明,可对海面波中的低频长波浪和高频短波狼高分辨率成像,能够提高反潜的置信度。
图7为实测装置图。参见图8至图11的实测海浪条纹像:条纹中亮的部分为低频大波浪上的高频小波浪,其中每个亮点为一个高频小波浪的波峰,条纹中暗的部分代表高频小波浪的波谷;整条条纹上部的区域代表低频大波浪。其中,图9为平静海水中海浪的条纹像,通过该图中的两个亮点可以得知,海面很平静时,高频小波浪的波长也很大,但由于亮点的亮度较暗,因此可知当时的高频小波浪的波幅不大;图10中倾斜的条纹像,表现了低频大波浪的趋势;图11是波浪较小时海面海浪的条纹像,观察图11可知,由于条纹像较暗,海浪波幅也较小。
在海洋内波产生的波浪的条纹像中,选取一幅条纹像,参见图13,且图13对应图12中的海浪K,图14为最终反演出的海浪的具体波形图。通过快速采集多幅海浪条纹像,即可反演形成完整的海浪微尺度波的精细图像,参见图15和图16,其中图15是重构后的距离像,图16是重构后的强度像,单帧条纹像的分辨率为1032×1392,重构后的条纹像分辨率为70×1032。
整个实验过程分为三个阶段:阶段一、拖船停靠岸边,发动机低速转动;阶段二、拖船行驶过程,发动机高速转动;阶段三、拖船在海中抛锚,发动机低速转动。由于发动机的转速变化,会导致海面波浪起伏高度不同,这种不同的状态可从重构获得的距离像中获知。在图15中,从上至下的一区、二区、三区分别和实验的三个阶段各自对应:图中的一区(浅色)对应实验中的阶段一,二区(深色)对应阶段二,三区(浅色)对应阶段三。
在阶段一,发动机低速转动时,海面波浪起伏较小,海面波浪与探测器的距离相对较远,因此距离像的上部分(一区)的颜色较浅;在一区取10帧图像,计算其平均距离(以条纹像的最亮点为基准点)为445像素,换算成光程为L1=9.6m;同理。同理,可计算二区的的光程为:L2=((200/1392)×360)×0.15=7.8m,三区的光程为:L3=((200/1392)×390)×0.15=8.4m。一区与二区的光程差为:dL=L1-L2=9.6m-7.8m=1.8m,探测器与水平面的夹角Q大约为10度,如图17,可以推算出两区之间的海平面高度h=dL×cosQ=0.3m。根据发动机的转动速度与海面高度的关系,也可推算出拖船的航行速度。
海面的强度像也可反映海面波浪的一些情况:当发动机转速慢时,海面波浪起伏较大,此时认为,波峰对光反射较强,波谷对光吸收较强,此时,如强度像的一区,认为亮的地方是波峰,暗的地方是波谷;当发动机高速转动时,发动机尾部海面整体上浮,此时海面有许多的小波浪,对光的反射较强,因此在二区形成大片的亮斑;当发动机减速时,海面又趋于平稳,形成如三区的图像。因此根据强度像的反射强弱,也可判断发动机转速情况。
本发明利用海表面对激光束的反射和散射,对海表面微尺度波可直接进行三维成像探测,其距离分辨率目前可做到厘米级;本发明可通过机载或舰载方式,实现大视场探测,搜索效率高;此外,由于绿光对海水有一定的穿透作用,因此对于近海潜艇尾流产生的气泡幕也可以进行一定的探测。同时,本发明可以辅助SAR(合成孔径雷达)更好的进行海面波探测:应用SAR对海面进行初步探测确定可疑点,再利用本发明的方法对可疑点进行探测逐个排查,从而发现水面是否有潜艇尾迹,间接实现对水下潜艇的探测,可以大大增加潜艇探测的置信度。本发明还适合于潜艇引起的海洋表面内波的探测,对于雨、雾等天气可以很好的滤除噪声,受到雨、雾的影响不大。本发明能够对高频小波浪成像,具有较高的探测精度。

Claims (7)

  1. 基于激光成像的高分辨率海浪微尺度波探测方法,其特征在于它基于海浪微尺度波探测器实现,所述海浪微尺度波探测器包括激光器(1)、发射光学天线(2)、接收光学天线(4)、条纹管(5)、CCD探测器(6)、信号处理***(7)、分束***(8)、PIN管(9)和延时器(10);基于激光成像的高分辨率海浪微尺度波探测方法,它的过程为:激光器(1)输出的激光束入射至分束***(8)后分为两束激光,其中,一束激光作为探测光信号经由发射光学天线(2)射向目标物,另一束激光由PIN管(9)接收,且PIN管(9)探测到激光后输出一个电信号至延时器(10),延时器(10)将所述电信号延时后再发送至条纹管(5)的控制信号输入端来启动条纹管(5)工作;目标物返回的光信号由接收光学天线(4)接收,并由接收光学天线(4)发射至条纹管(5)的狭缝处,条纹管(5)在工作状态下对狭缝处的光信号进行采集并成像,CCD探测器(6)实时采集条纹管(5)所成的像并形成图像数据,并将所述图像数据实时输出至信号处理***(7),最终由信号处理***(7)对接收到的所有图像数据进行还原重构,得到目标物的三维图像。
  2. 据权利要求1所述的基于激光成像的高分辨率海浪微尺度波探测方法,其特征在于所述海浪微尺度波探测器还包括反射镜组(11),所述反射镜组(11)置于接收光学天线(4)和条纹管(5)之间,用于改变接收光学天线(4)输出的光信号的传输方向,使得所述光信号入射至条纹管(5)的狭缝处。
  3. 据权利要求1所述的基于激光成像的高分辨率海浪微尺度波探测方法,其特征在于所述发射光学天线(2)由扩束透镜组(201)和压缩镜(202)组成,所述扩束透镜组由一个或多个透镜组合而成;所述一束激光作为探测光信号经由发射光学天线(2)射向目标物的具体过程为:一束激光经扩束透镜组(201)扩束后入射至压缩镜(202),再由压缩镜(202)在竖直方向进行压缩后,光束截面类似线状,然后发射至目标物。
  4. 据权利要求1所述的基于激光成像的高分辨率海浪微尺度波探测方法,其特征在于所述接收光学天线(4)由一个聚焦透镜组实现,所述聚焦透镜组为一个或多个聚焦透镜;所述目标物返回的光信号由接收光学天线(4)接收,并由接收光学天线(4)发射至条纹管(5)的狭缝处的具体过程为:目标物返回的光信号由聚焦透镜组接收,并由聚焦透镜组将所述光信号聚焦至条纹管(5)的狭缝处。
  5. 据权利要求1所述的基于激光成像的高分辨率海浪微尺度波探测方法,其特征在于所述分束***(8)采用一个透反比大于1的分束镜,使激光器(1)产生的激光经分束镜分为透射光和反射光两束激光,并令透射光发射至发射光学天线(2),反射光发射至PIN管(9)。
  6. 据权利要求1所述的基于激光成像的高分辨率海浪微尺度波探测方法,其特征在于所述海浪微尺度波探测器还包括一个光学随动***(3),所述光学随动***(3)位于发射光学天线(2)、接收光学天线(4)和目标物之间,光学天线(2)发射出的光信号经过光学随动***(3)后发射向目标物,目标物返回的光信号经光学随动***(3)后由接收光学天线(4)接收;所述光学随动***(3)在信号处理***(7)的控制下实现对探测光信号和目标物返回的光信号的光路的改变。
  7. 据权利要求6所述的基于激光成像的高分辨率海浪微尺度波探测方法,其特征在于所述光学随动***(3)由第一全反镜(301)、第二全反镜(302)和电机(303)组成;所述电机(303)用于驱动第二全反镜(302)以其初始位置为平衡位置、以其镜面中心为摆动中心做小幅度简谐摆动;所述第一全反镜(301)和第二全反镜(302)的反射面在初始位置时平行、相对放置;光学天线(2)发射出的光信号依次经过第一全反镜(301)和第二全反镜(302)发射向目标物,目标物返回的光信号依次经过第二全反镜(302)和第一全反镜(301)后由接收光学天线(4)接收;基于激光成像的高分辨率海浪微尺度波探测方法,它的过程为:信号处理***(7)输出控制信号给电机(303),使电机(303)开始带动第二全反镜(302)做所述小幅度简谐摆动;激光器(1)输出的激光束入射至分束***(8)后分为两束激光,其中,一束激光由发射光学天线(2)接收并出射,再依次经由第一全反镜(301)和第二全反镜(302)反射后,射向目标物;另一束激光由PIN管(9)接收,且PIN管(9)探测到激光后输出一个电信号至延时器(10),延时器(10)将所述电信号延时后再发送至条纹管(5)的控制信号输入端;目标物返回的光信号由接收光学天线(4)接收并出射,再依次经由第二全反镜(302)和第一全反镜(301)反射后,射至条纹管(5)的狭缝处,当条纹管(5)接收到延时器(10)输出的电信号时,开始对狭缝处的光信号进行采集并成像,CCD探测器(6)实时采集条纹管(5)所成的像,并将采集到的图像数据实时输出至信号处理***(7),最终由信号处理***(7)对接收到的所有图像数据进行还原重构,得到目标物的三维图像。
PCT/CN2011/070243 2010-01-29 2011-01-14 基于激光成像的高分辨率海浪微尺度波探测方法 WO2011091726A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010300918A CN101762817A (zh) 2010-01-29 2010-01-29 基于激光成像的高分辨率海浪微尺度波探测方法
CN201010300918.X 2010-01-29

Publications (1)

Publication Number Publication Date
WO2011091726A1 true WO2011091726A1 (zh) 2011-08-04

Family

ID=42494103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/070243 WO2011091726A1 (zh) 2010-01-29 2011-01-14 基于激光成像的高分辨率海浪微尺度波探测方法

Country Status (2)

Country Link
CN (1) CN101762817A (zh)
WO (1) WO2011091726A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108152268A (zh) * 2018-01-08 2018-06-12 威海怡和专用设备制造有限公司 基于条纹管的libs光谱探测***
CN111580100A (zh) * 2020-06-30 2020-08-25 大连理工大学 一种基于微波远场本地光学重构的微波光子关联成像***
CN111624599A (zh) * 2020-05-27 2020-09-04 哈尔滨工程大学 一种航海雷达反演海浪有效波高计算方法
CN112558061A (zh) * 2020-12-22 2021-03-26 北京遥测技术研究所 一种天线共口径的小型化微波激光复合探测雷达
CN112766223A (zh) * 2021-01-29 2021-05-07 西安电子科技大学 基于样本挖掘与背景重构的高光谱图像目标检测方法
CN113447232A (zh) * 2021-06-29 2021-09-28 哈尔滨工业大学 一种时间相关单光子计数的尾流探测装置及其运行方法
CN113466869A (zh) * 2021-06-15 2021-10-01 青岛海洋科学与技术国家实验室发展中心 一种基于激光致声的水下目标探测方法
CN114114253A (zh) * 2021-11-30 2022-03-01 南京微麦科斯电子科技有限责任公司 一种基于人工智能算法的海浪监测阵列雷达

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101762817A (zh) * 2010-01-29 2010-06-30 哈尔滨工业大学 基于激光成像的高分辨率海浪微尺度波探测方法
CN101923161B (zh) * 2010-08-30 2012-12-05 哈尔滨工业大学 共光学***共探测器的微光被动与激光主动复合成像的探测装置和方法
CN102253394B (zh) * 2011-04-21 2012-10-24 北京理工大学 一种多光谱条纹管激光雷达三维成像装置
CN102735651B (zh) * 2012-07-16 2014-06-11 哈尔滨工业大学 基于测量条纹管最小探测能量密度的装置的测量方法
CN103438980B (zh) * 2013-09-01 2015-07-15 北京航空航天大学 一种基于线阵ccd和线状红外激光的液体表面波探测方法及装置
CN104199048B (zh) * 2014-09-12 2017-03-01 哈尔滨工业大学 条纹管激光成像雷达海面回波畸变测量浅层海水衰减系数的遥感方法
CN106932758A (zh) * 2015-12-31 2017-07-07 贾瑞清 雷达探测随动***及雷达天线智能移动升降探测平台
CN108008408B (zh) * 2017-11-24 2019-04-09 北京国泰蓝盾科技有限公司 搜索跟踪成像方法、装置及***
CN110133673B (zh) * 2019-05-07 2023-04-07 常州大学 一种基于无人潜艇激光浅海测深装置
CN111999742B (zh) * 2020-07-14 2022-04-22 哈尔滨工业大学 一种基于单量估计的Gm-APD激光雷达透雾成像重构方法
CN112676697B (zh) * 2020-12-31 2022-08-05 苏州科韵激光科技有限公司 一种显示面板的激光修复光学***及激光修复设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5467122A (en) * 1991-10-21 1995-11-14 Arete Associates Underwater imaging in real time, using substantially direct depth-to-display-height lidar streak mapping
WO2002025209A1 (en) * 2000-09-01 2002-03-28 Arete Associates Lidar with streak-tube imaging
US20070035624A1 (en) * 1999-09-03 2007-02-15 Arete Associates Lidar with streak-tube imaging, including hazard detection in marine applications; related optics
CN101762817A (zh) * 2010-01-29 2010-06-30 哈尔滨工业大学 基于激光成像的高分辨率海浪微尺度波探测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5467122A (en) * 1991-10-21 1995-11-14 Arete Associates Underwater imaging in real time, using substantially direct depth-to-display-height lidar streak mapping
US20070035624A1 (en) * 1999-09-03 2007-02-15 Arete Associates Lidar with streak-tube imaging, including hazard detection in marine applications; related optics
WO2002025209A1 (en) * 2000-09-01 2002-03-28 Arete Associates Lidar with streak-tube imaging
CN101762817A (zh) * 2010-01-29 2010-06-30 哈尔滨工业大学 基于激光成像的高分辨率海浪微尺度波探测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WEI,JINGSONG.: "Research of Streak Tube Laser 3D Imaging Technology.", CHINESE MASTER'S THESES FULL-TEXT DATABASE (INFORMATION AND TECHNOLOGY), 15 February 2009 (2009-02-15), pages 8 - 14, 26-58 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108152268A (zh) * 2018-01-08 2018-06-12 威海怡和专用设备制造有限公司 基于条纹管的libs光谱探测***
CN111624599A (zh) * 2020-05-27 2020-09-04 哈尔滨工程大学 一种航海雷达反演海浪有效波高计算方法
CN111624599B (zh) * 2020-05-27 2022-12-13 哈尔滨工程大学 一种航海雷达反演海浪有效波高计算方法
CN111580100B (zh) * 2020-06-30 2022-07-08 大连理工大学 一种基于微波远场本地光学重构的微波光子关联成像***
CN111580100A (zh) * 2020-06-30 2020-08-25 大连理工大学 一种基于微波远场本地光学重构的微波光子关联成像***
CN112558061A (zh) * 2020-12-22 2021-03-26 北京遥测技术研究所 一种天线共口径的小型化微波激光复合探测雷达
CN112766223A (zh) * 2021-01-29 2021-05-07 西安电子科技大学 基于样本挖掘与背景重构的高光谱图像目标检测方法
CN112766223B (zh) * 2021-01-29 2023-01-06 西安电子科技大学 基于样本挖掘与背景重构的高光谱图像目标检测方法
CN113466869A (zh) * 2021-06-15 2021-10-01 青岛海洋科学与技术国家实验室发展中心 一种基于激光致声的水下目标探测方法
CN113466869B (zh) * 2021-06-15 2024-02-02 青岛海洋科学与技术国家实验室发展中心 一种基于激光致声的水下目标探测方法
CN113447232B (zh) * 2021-06-29 2022-04-12 哈尔滨工业大学 一种时间相关单光子计数的尾流探测装置及其运行方法
CN113447232A (zh) * 2021-06-29 2021-09-28 哈尔滨工业大学 一种时间相关单光子计数的尾流探测装置及其运行方法
CN114114253A (zh) * 2021-11-30 2022-03-01 南京微麦科斯电子科技有限责任公司 一种基于人工智能算法的海浪监测阵列雷达

Also Published As

Publication number Publication date
CN101762817A (zh) 2010-06-30

Similar Documents

Publication Publication Date Title
WO2011091726A1 (zh) 基于激光成像的高分辨率海浪微尺度波探测方法
JP6577465B2 (ja) 水面下の物体を探知するためのレーザー探知測距装置
JP6576340B2 (ja) 水面の物体を探知するための探知システム
CN105738972B (zh) 一种水下探测***及水下探测方法
CN106526602A (zh) 一种基于热光鬼成像原理的超声波鬼成像方法及装置
US6829197B2 (en) Acoustical imaging interferometer for detection of buried underwater objects
CN109471121B (zh) 双介质空间激光光声雷达
WO2014178376A1 (ja) レーザレーダ装置
CN111452830B (zh) 一种实现轨道板裂缝自动检测的成像方法及装置
CN110542893A (zh) 一种机载双频激光雷达三通道光学接收装置
CN109298431B (zh) 一种三波段机载激光雷达***
CN210864039U (zh) 基于激光致声扫描方式的水下目标探测***
AU2020101889A4 (en) A three-channel optical receiver for airborne dual-frequency lidar
CN205787179U (zh) 一种水下探测***
CN111123619B (zh) 短相干照明与偏振结合的水下远距离光学成像装置及方法
US20060083111A1 (en) Method and apparatus for detecting submarines
CN106500635A (zh) 基于激光超声的长方体工件几何尺寸测量***
CN101930074A (zh) 一种基于激光成像的海浪微尺度波探测装置
CN111443352A (zh) 基于声光联合传感的海洋遥感测深方法及装置
Rajapan et al. Importance of underwater acoustic imaging technologies for oceanographic applications–a brief review
CN111103592B (zh) 一种高灵敏度的点元化阵列关联检测激光测深***
Wei et al. Design of three-channel optical receiving system for dual-frequency laser radar
Shi Analysis and research on backscattering effect of underwater imaging
CN102998668B (zh) 一种去除水下探测目标成像畸变的还原方法及装置
Whitman et al. Novel Technique for Real‐Time Depth‐Gated Acoustic Image Holography

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11736608

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11736608

Country of ref document: EP

Kind code of ref document: A1