WO2011083536A1 - 光学ドライブ装置 - Google Patents

光学ドライブ装置 Download PDF

Info

Publication number
WO2011083536A1
WO2011083536A1 PCT/JP2010/007320 JP2010007320W WO2011083536A1 WO 2011083536 A1 WO2011083536 A1 WO 2011083536A1 JP 2010007320 W JP2010007320 W JP 2010007320W WO 2011083536 A1 WO2011083536 A1 WO 2011083536A1
Authority
WO
WIPO (PCT)
Prior art keywords
recording
optical
recording mark
control unit
drive device
Prior art date
Application number
PCT/JP2010/007320
Other languages
English (en)
French (fr)
Inventor
博司 香山
和雄 百尾
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/201,665 priority Critical patent/US8391124B2/en
Priority to JP2011548871A priority patent/JP5496226B2/ja
Priority to EP10842056.3A priority patent/EP2523190A4/en
Publication of WO2011083536A1 publication Critical patent/WO2011083536A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2407Tracks or pits; Shape, structure or physical properties thereof
    • G11B7/24085Pits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0901Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following only
    • G11B7/0906Differential phase difference systems
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/126Circuits, methods or arrangements for laser control or stabilisation
    • G11B7/1267Power calibration

Definitions

  • the present invention relates to an optical drive device capable of recording information on an optical disc.
  • the data recorded on the optical disc is reproduced by irradiating a relatively weak light beam of constant intensity onto the rotating optical disc and detecting the reflected light modulated by the optical disc.
  • pre-pit information is recorded in advance concentrically or spirally at the manufacturing stage of the optical disc.
  • a recording material film capable of optically recording / reproducing data is deposited by a method such as vapor deposition on a substrate on which concentric or spiral grooves are formed.
  • a crystalline recording material film is not irradiated by irradiating the recording material film with a light beam whose optical power is modulated as described above.
  • Amorphous record marks are formed. This amorphous recording mark is formed by rapid cooling after a portion of the recording material film irradiated with the recording light beam rises to a temperature above the melting point.
  • the light power for irradiating the recording mark with the light beam is set low, the temperature of the recording mark irradiated with the light beam does not exceed the melting point, and returns to the crystalline state after rapid cooling (erasing of the recording mark). In this way, it is possible to rewrite the recording mark many times. If the magnitude of the light power of the light beam when recording data is inadequate, the shape of the recording mark may be distorted, making it difficult to reproduce the data.
  • Focus control refers to the case where the position of the objective lens is called the normal direction of the disc surface (hereinafter referred to as “depth direction of the optical disc” so that the position of the focal point (focusing point) of the light beam is always located on the target track. There is a) to control.
  • tracking control is to control the position of the objective lens in the radial direction of the optical disc (hereinafter referred to as “disc radial direction”) so that the spot of the light beam is positioned on a predetermined track.
  • Patent Document 1 and Patent Document 2 disclose an optical disc provided with a reproduction-only layer (ROM layer) in which a prepit is formed and a rewritable layer in which a recording mark is formed.
  • ROM layer reproduction-only layer
  • rewritable layer in which a recording mark is formed.
  • the depth from the disk surface (the surface on the light incident side) to each layer is largely different. Therefore, when reading data from the read-only layer, focus the light beam on the read-only layer, read data from the rewritable layer, or write data to the rewritable layer, write the light beam to the rewritable layer. Focus on
  • Patent Documents 3 and 4 disclose a technique for forming a recording mark in a layer on which an optical disc is formed with prepits.
  • the pre-pit is a physical structure of the optical disc and is formed at the time of manufacturing the optical disc.
  • the recording mark is usually formed by irradiating the optical disk with a light beam in an optical drive device to cause a change in the optical structure of the recording material film of the optical disk. That is, there is a difference in the recording method between the prepit and the recording mark.
  • Patent Document 3 uses a difference in the polarization direction of light (magnetic anisotropy) as a method of separating a signal from a prepit and a signal from a recording mark.
  • the need for an optical system for detecting the difference in polarization direction complicates the structure of the optical pickup.
  • Patent Document 4 performs additional recording by irradiating strong light to a part of the reflective film on the surface on which the prepits are formed. In order to read out the additionally recorded information, it is necessary to detect a slight change in reflectance (paragraph [0038] and FIG. 6 of Patent Document 4). Since the length of the additional recording part in which the reflectance has changed is shorter than the length of the prepit, it is difficult to appropriately read the additional recording information.
  • An object of the present invention is to provide an optical drive device capable of simplifying the structure of an optical disc even when recording marks are recorded on the optical disc on which prepits are formed.
  • An optical drive apparatus is an optical drive apparatus capable of recording information on an optical disc, wherein the optical disc comprises a substrate having a plurality of prepits formed on a track, and a recording film supported by the substrate. And the optical drive device controls the optical pickup to form a recording mark at a position overlapping the plurality of prepits on the optical pickup and irradiates recording light onto the recording film. And a recording control unit for causing the recording mark to overlap with at least ten prepits.
  • the recording control unit continuously irradiates the recording film with the recording light from the optical pickup while forming the recording mark.
  • a tracking control unit that performs tracking control based on information on the prepits included in a signal indicating reflected light detected by the optical pickup.
  • the tracking control unit performs tracking control on the basis of information on the prepits included in a signal indicating reflected light detected by the optical pickup while the recording mark is formed. .
  • the tracking control unit forms the recording mark based on information of prepits included in a signal indicating reflected light detected by the optical pickup before forming the recording mark. Perform tracking control of
  • the optical pickup further includes a reproduction control unit that reads information from the optical disc having a recording mark formed at a position overlapping the prepit by the recording control unit using the optical pickup, the reproduction control unit including the optical pickup The position where the recording mark is recorded is detected by the recording control unit on the basis of the jitter characteristic of the signal indicating the reflected light detected in the above.
  • the optical pickup further includes a reproduction control unit that reads information from the optical disc having a recording mark recorded at a position overlapping the prepit by the recording control unit using the optical pickup, the reproduction control unit including the optical pickup The position where the recording mark is recorded is detected by the recording control unit on the basis of the amplitude of the signal indicating the reflected light detected in the above.
  • the optical pickup further includes a reproduction control unit that reads information from the optical disc having a recording mark recorded at a position overlapping the prepit by the recording control unit using the optical pickup, the reproduction control unit including the optical pickup.
  • the information by the prepit and the information by the recording mark are separated based on the frequency of the signal indicating the reflected light detected in
  • the recording control unit when forming the recording mark, adjusts the power of the recording light so that the shape of the prepit located at the position overlapping the recording mark does not change to an unreadable state. Do.
  • the prepits of the optical disc have a recess shape as viewed from the recording film side.
  • the recording control unit when the recording control unit forms the recording mark, the recording control unit locally changes the reflectance of a portion of the recording film located in the concave portion of the prepit. Adjust the power.
  • the recording control unit when forming the recording mark, adjusts the power of the recording light so as to locally deform the shape of the portion located in the concave portion of the prepit.
  • Another optical drive apparatus is an optical drive apparatus capable of recording information on an optical disc, wherein the optical disc is supported by a substrate on which a plurality of prepits are formed on a track, and the substrate A recording film, the optical drive device controls the optical pickup and the optical pickup to form a recording mark at a position overlapping the plurality of prepits on the track, and recording light on the recording film And the recording control unit adjusts the power of the recording light so as to locally change the reflectance of the portion of the recording film located in the recess of the prepit.
  • the recording mark is composed of a plurality of portions of which the reflectance is locally changed.
  • Still another optical drive apparatus is an optical drive apparatus capable of recording information on an optical disc, wherein the optical disc is supported by a substrate on which a plurality of prepits are formed on a track, and the substrate A recording film, and the optical drive device controls the optical pickup to form a recording mark at a position overlapping the plurality of prepits on the optical pickup and for recording on the recording film.
  • a recording control unit for emitting light wherein the recording control unit adjusts the power of the recording light so as to locally deform the shape of the portion of the recording film located in the recess of the prepit.
  • the recording mark is composed of a plurality of portions locally deformed in shape.
  • each recording mark is composed of ten or more portions where the reflectance is locally changed.
  • the structure of the optical disc can be simplified even when the recording mark is recorded on the optical disc on which the prepits are formed.
  • FIG. 6 is a perspective view showing a prepit of the optical disc in the first embodiment.
  • Plan view of the optical disc (after formation of the recording mark 3) according to the first embodiment A diagram showing a prepit and a bit string of a recording mark according to the first embodiment
  • the figure which shows the position of the recording mark on the optical disk concerning Embodiment 1 The figure which shows the position of the recording mark on the optical disk concerning a comparative example
  • a diagram showing the position of the recording mark on the optical disk in which the groove is formed Flow chart showing an example of recording operation (additional recording operation) in the first embodiment
  • FIG. 6 is a view showing an example of an RF signal waveform on an optical disc according to the first embodiment (after formation of a recording mark).
  • FIG. 6 is a view showing another example of the waveform of the RF signal on the optical disc in the first embodiment (after the formation of the recording mark).
  • the figure which shows the waveform (at the time of TE control ON) of the DPD signal on the optical disk concerning Embodiment 1 The figure which shows the waveform (at the time of TE control OFF) of the DPD signal on the optical disk concerning Embodiment 1
  • Diagram showing TE signal during recording mark recording according to another embodiment A diagram for explaining detection of a recording mark position in a track according to another embodiment
  • a diagram showing the position of a recording mark on an optical disc according to another embodiment A table showing an example of the relationship between recording power and the number of recording prohibited tracks
  • a diagram schematically showing two adjacent recording marks 3 formed when the recording power is set to 2 mW and the number of recording prohibited tracks is set to one.
  • a diagram schematically showing two adjacent recording marks 3 formed when the recording power is set to 3 mW and the number of recording prohibited tracks is set to two.
  • a diagram schematically showing two adjacent recording marks 3 formed when the recording power is set to 4 mW and the number of recording prohibited tracks is set to 3.
  • Configuration of the present embodiment> ⁇ 1.1 Configuration of optical drive (Fig. 1)> A configuration example of the optical drive 500 in the present embodiment will be described with reference to FIG.
  • the optical drive 500 can be used for a personal computer, an optical disc player, an optical disc recorder, and the like.
  • FIG. 1 is a block diagram showing a configuration example of the optical drive 500.
  • the optical drive 500 includes an optical pickup 501, a spindle motor 503 that rotates the optical disc 1, a transfer motor 502 that controls the position of the optical pickup 501, a system controller 505 that controls these operations, and a non-volatile memory 506. Is equipped.
  • the optical pickup 501 includes a light source (semiconductor laser) for emitting a light beam, an objective lens 504 for condensing the light beam to form a light spot on the optical disc 1, and an actuator for driving the objective lens 504.
  • a light source semiconductor laser
  • an objective lens 504 for condensing the light beam to form a light spot on the optical disc 1
  • an actuator for driving the objective lens 504.
  • the system controller 505 generates a servo signal including a focus error (FE) signal and a tracking error (TE) signal based on the electric signal obtained from the optical pickup 501, as well as waveform equalization of a reproduction signal, binarized slice, synchronization Performs analog signal processing such as data.
  • a focus error (FE) signal and a tracking error (TE) signal based on the electric signal obtained from the optical pickup 501, as well as waveform equalization of a reproduction signal, binarized slice, synchronization Performs analog signal processing such as data.
  • TE tracking error
  • the system controller 505 causes the light spot formed on the optical disc 1 by the optical pickup 501 to follow the target track of the rotating optical disc 1 by the generated servo signal.
  • the system controller 505 realizes a series of control such as focus control and tracking control of the objective lens 504 provided in the optical pickup 501, transfer control of the optical pickup 501, and spindle motor control by digital servo. That is, in addition to driving the actuator (not shown) of the objective lens 504, the system controller 505 drives the transfer motor 502 for transferring the optical pickup 501 to the inner periphery or outer periphery of the optical disk 1 and rotates the optical disk 1.
  • the spindle motor 503 is appropriately driven.
  • the system controller 505 can be realized by a semiconductor IC.
  • the non-volatile memory 506 stores software executed by the system controller 505, various parameters, and the like.
  • the non-volatile memory 506 includes information indicating a position where the recording mark 3 is to be recorded in the optical disc 1.
  • FIG. 2 is a view schematically showing a part of the cross section of the optical disc 1.
  • the optical disc 1 includes a substrate 101 in which the prepits 2 are formed on the main surface, and a laminated structure supported on the main surface of the substrate 101.
  • the laminated structure in the present embodiment includes the recording film 102, the protective film 103, and the hard coat 104 laminated from the side of the substrate 101.
  • the optical drive device 500 of FIG. 1 applies light to the recording film 102 from the hard coat 104 side by the optical pickup 501 when writing data on the optical disk 1, and forms the recording mark 3 on the recording film 102.
  • the substrate 101 is a member that is the basis of the optical disc 1. Although one pre-pit 2 is described in FIG. 2, a large number of pre-pits 2 are formed on the main surface of the actual substrate 101 on the recording film 102 side.
  • the pre-pits 2 are physical asperities on the main surface of the substrate 101, and are made in the process of molding the substrate 101 when the optical disc 1 is manufactured.
  • the substrate 101 having the prepits 2 on the surface can be produced, for example, by a known method for producing a BD-ROM.
  • the length of the prepits 2 in the track direction can be set, for example, in the range of 0.15 ⁇ m to several times thereof.
  • the prepit 2 is formed on the optical disc 1 by “In-Pit”.
  • In-Pit refers to a pre-pit having the shape of a recess with respect to the light incident surface.
  • On-Pit refers to a pre-pit having the shape of a convex portion with respect to the light incident surface.
  • the prepits 2 are recesses formed on the light incident side of the substrate 101, but in other examples, the prepits 2 may be protrusions.
  • the substrate 101 may be formed of, for example, a polycarbonate material.
  • the prepits 2 are arranged concentrically or spirally to form a track. That is, a row of prepits 2 is formed on the track. Unrewritable data is recorded on the substrate 101 by the pre-pit 2 from the time of fabrication.
  • the main surface of the substrate 101 on which the prepits 2 are formed functions as a read-only information recording surface (ROM surface).
  • the optical disc 1 used in the present embodiment also has a recording film 102 in contact with the ROM surface.
  • the recording film 102 When the optical disc 1 is loaded into the optical drive device of FIG. 1 and operated, the recording film 102 is irradiated with the light emitted from the optical pickup 501. The light is condensed on the recording film 102 through the objective lens 504 to form a light spot on the recording film 102. As the optical disc 1 rotates, the light spot moves on the optical disc in the circumferential direction. When information is additionally written on the recording film 102, the recording film 102 is irradiated with sufficiently strong light, and as a result, optical characteristics such as reflectance, transmittance, and phase difference of the recording film 102 in the irradiated portion change.
  • a portion of the recording film 102 whose optical characteristics have been changed by the irradiation of the recording light functions as the “recording mark 3”.
  • Information can be written to the recording film 102 by forming a plurality of recording marks 3 along the tracks.
  • the portion between the adjacent recording mark 3 and the recording mark 3 on the same track will be referred to as a "space".
  • the lengths of the recording mark 3 and the space are determined according to the information to be recorded. In other words, the recording mark 3 has a length selected from a plurality of different lengths.
  • the recording film 102 When reading the information written on the recording film 102, the recording film 102 is irradiated with the relatively weak light emitted from the optical pickup.
  • the recording film 102 suitably used in the present embodiment can reflect the light without particularly having a reflective layer. That is, the recording film 102 acts as a recording film and a reflection film.
  • the recording film 102 can be formed of, for example, a phase change material such as Ge, Sb, Te, In, Ag or the like. When the recording film 102 formed of a phase change material is used, the recording mark can be rewritten. Also, the recording film 102 can be formed of an inorganic or organic material such as Te, Pd, O, Cu, Ge, Bi, N or the like.
  • the recording mark formed on the recording film 102 made of such a material can not be rewritten.
  • the recording film 102 may be, for example, a metal film formed of Al or Ag. When such a metal film is irradiated with strong light, it is possible to form an opening in the metal film. This opening corresponds to the "recording mark".
  • the protective film 103 protects the recording film 102.
  • the protective film 103 can be formed of a resin material.
  • the hard coat 104 reduces scratches and dirt from the outside of the recording film 102 and the protective film 103.
  • hardcoat 104 may be formed from SiO 2 particles and a lubricant.
  • the recording film 102 in the present embodiment is in contact with the surface (main surface) of the substrate 101 on which the prepits 2 are formed, but another film or layer may be provided between the main surface of the substrate 101 and the recording film 102. May exist.
  • the optical disc 1 be designed such that the intensity of the reflected light obtained when the light beam from the optical pickup is focused on the recording film 102 changes depending on the presence or absence of the prepit 2.
  • the important point is that when writing information on the recording film 102 with the recording mark 3 or reading information on the recording mark 3 formed on the recording film 102, the tracking error signal by the prepit 2 Needs to be generated. Therefore, the thickness of the film or layer disposed between the main surface of the substrate 101 and the recording film 102 is preferably 0.5 ⁇ m or less.
  • Both required tracking control can be performed based on the same tracking error signal.
  • the configuration of the tracking error signal generation unit for generating the tracking error signal becomes extremely simple. Since the tracking error signal generation unit can be realized using a set of four-divided light detectors, the configuration of the present embodiment has an advantage that the optical pickup can be manufactured at low cost.
  • FIG. 4A is a plan view of the optical disc 1a before the recording mark 3 is formed.
  • prepits 2 are concentrically or spirally cut on the substrate 101 from the inner periphery to the outer periphery.
  • FIG. 4B is a plan view of the optical disc 1 b after the recording mark 3 is formed.
  • the recording mark 3 is formed on the recording film 102 so as to overlap the prepit 2.
  • the length (the size measured along the track) of the recording marks 3 is set so that each recording mark 3 overlaps with at least ten prepits 2.
  • the recording mark 3 described in FIG. 4B overlaps three prepits arranged in series on the track, the actual recording mark overlaps with more than ten prepits 2. ing.
  • the length of the recording mark is at least 10 times the shortest length of the prepit, and preferably at least 50 times the shortest length of the prepit. For example, when data modulated by the 1-7 modulation method is formed by the prepit 2, assuming that the channel clock cycle is T, the minimum length of the prepit 2 is 2T, and the maximum length is 8T.
  • the length of the recording mark 3 is set to, for example, 80T or more.
  • the prepit 2 can be read by the optical drive device 500 even after the recording mark 3 is formed. The reason why the prepit 2 can be read will be described later.
  • the system controller 505 determines the recording mark 3 to be recorded on the optical disc 1.
  • the recording length of 1 bit of the recording mark 3 is recorded in advance.
  • the 1-bit recording length of the recording mark 3 is determined to be a mark longer than the length of the prepit 2 formed on the optical disc 1.
  • FIG. 5 where a large number of prepits 2 are formed to indicate 128-bit data, it is determined that a recording mark 3 of 1 bit is to be formed.
  • FIG. 5 a diagram schematically showing the prepits 2 and the recording marks 3 is shown together with the signal waveform. The position of the prepit 2 in this figure is only a schematic example and does not correspond exactly to the waveform of the prepit signal shown.
  • the portion in which the recording mark 3 is formed is “1”, and the portion in which the recording mark 3 is not formed is “0”.
  • the length of the recording mark 3 for one bit is typically constant on the same track.
  • a portion where two “1” s are continuous has a length of 2 bits and can be interpreted as being constituted by two continuous recording marks 3.
  • the length of each prepit 2 is modulated according to the information as in the BD-ROM, and is not constant.
  • the number of bits of the ROM data recorded by the prepit 2 corresponds to the length of one recording mark 3 (the recording length of 1 bit of the additional data), which is recorded in advance in the non-volatile memory 506 of FIG. It is done.
  • the recording length of one bit of the postscript data corresponds to the length of 128 bits of the ROM data, but the present invention is not limited to such an example.
  • the frequency of each data in the RF signal is different by at least one digit. It is preferable to do.
  • the system controller 505 uses the 1-bit recording length of the recording mark 3 recorded in the non-volatile memory 506 to determine the length of the recording mark 3. Thereby, the system controller 505 generates a control signal of the recording mark 3 for recording on the optical disc 1.
  • FIG. 6A is a diagram showing an example of the formation position of the recording mark 3 in the present embodiment.
  • FIG. 6B is a view showing an example of the formation position of the recording mark 3 in the comparative example.
  • the system controller 505 adjusts the formation position of the recording mark 3 so that the recording mark 3 formed on each track does not interact with the recording mark 3 formed on the adjacent track.
  • the first recording mark 3a is formed on the track t7
  • the second recording mark 3b is formed on the track t3.
  • the second recording mark 3b is formed not on the track t3 but on the track t6.
  • false detection may be made that the first recording mark 3a is formed.
  • the optical disc used in the present embodiment there is no guide groove, and the heat generated by the irradiation of the light beam is diffused in the radial direction of the optical disc (the direction perpendicular to the track) to form the long recording mark 3. It's easy to do.
  • the light source when the recording mark 3 is formed, the light source does not emit light in a multipulse manner, but emits light continuously. For this reason, the width of the recording mark 3 tends to be larger than that of the track pitch. The width of the recording mark 3 tends to be wider as the power of the light beam irradiated for forming the recording mark is larger.
  • the distance between the center lines of the recording marks 3 adjacent to each other in the radial direction of the optical disc is at least two track pitch. This spacing may vary depending on the power of the light beam, or may be fixed at a sufficiently wide value.
  • a track on which the recording mark 3 is formed and a track on which the recording mark 3 is not formed may be determined, and a track in which the recording mark 3 is not formed may be arranged between the tracks on which the recording mark 3 is formed. .
  • FIG. 6C shows the formation position of the recording mark on the optical disc in which the groove is provided between the prepits.
  • a tracking error signal preferably a DPD signal
  • a guide groove for tracking is not necessary.
  • the grooves are formed between the tracks, the heat diffusion is blocked by the grooves, so that the effect of suppressing the expansion of the width of the recording mark can be obtained.
  • grooves may be formed between the tracks.
  • the groove depth is set independently of the generation of the tracking error signal and is arbitrary.
  • a track on which the recording mark 3 can be formed is referred to as a “recording area track”, and a track not forming the recording mark is referred to as a “recording prohibited track”.
  • the center line interval of the recording marks adjacent in the radial direction of the optical disc is at least 2 track pitch It is.
  • the power of the light beam emitted for recording mark formation can be optimized to different values depending on the optical disc loaded in the optical drive. For this reason, the width of the recording mark 3 may vary depending on the type of the optical disc loaded in the optical drive device.
  • a learning operation is performed to determine the power of the light beam.
  • This learning operation includes the steps of test recording and evaluation of the reproduced signal. Specifically, first, a plurality of recording marks are formed by irradiating the optical disc with light beams with recording powers of different sizes, and then the recording marks are irradiated with a light beam for reproduction to improve the quality of the reproduction signal. evaluate.
  • the quality of the reproduction signal can be evaluated by the shape and jitter of the signal waveform. It is preferable to select the recording power that provides the highest quality reproduction signal.
  • the system controller 505 may divide the track on the optical disc into the “recording area track” and the “recording prohibited track” regardless of the magnitude of the recording power.
  • this information is stored in the memory of the optical disk apparatus.
  • the information defining the relationship between the "recording power” and the "recording prohibited track” is the value of the recording power and the number of "recording prohibited tracks" when recording is performed with the recording power.
  • This information is stored in the non-volatile memory 506, for example, in the form of a table.
  • the value of “recording power” in the above information is the value of the recording power when the optical disk 1 is irradiated with the light beam by changing the recording power continuously or stepwise.
  • the value of the recording power matches the value of the recording power set at the time of learning of the recording power.
  • the recording power for performing the actual recording operation can be selected from the values of “recording power” in the table. .
  • the recording power when performing the actual recording operation is different from the value of “recording power” in the table
  • the recording power that is larger than the recording power when performing the actual recording operation and is closest to the recording power is selected from the table, and the number of "recording prohibited tracks" corresponding to the selected recording power is selected.
  • the actual recording power is 2.3 mW
  • FIG. 17A schematically shows two adjacent recording marks 3 formed when the recording power is set to 1 mW and the number of recording prohibited tracks is set to zero.
  • the width of the recording mark 3 is small and the recording marks 3 are formed adjacent to each other in the radial direction of the optical disc in adjacent tracks, crosstalk (reading the next recording mark when reproducing) or It is possible to prevent cross erase (that erases the next recording mark already recorded when recording).
  • the relationship between the optimum recording power and the number of "recording prohibited tracks” can be set by various methods. For example, reproducing the recording marks 3 formed with a plurality of different recording powers, and measuring how the signal quality such as the amplitude and jitter of the reproduced signal changes depending on the number of recording prohibited tracks
  • the number of non-recordable tracks may be determined according to Also, the number of "recording prohibited tracks” may be determined by determining how the error rate at the time of decoding the information on the recording mark changes depending on the number of recording prohibited tracks.
  • FIG. 17B schematically shows two adjacent recording marks 3 formed when the recording power is set to 2 mW and the number of recording prohibited tracks is set to one.
  • the width of the recording mark 3 is slightly expanded. Therefore, if the recording marks 3 are formed adjacent to each other in the radial direction of the optical disc in the adjacent tracks as shown in FIG. 17A, crosstalk and cross erase can not be sufficiently prevented. Therefore, in this example, when the recording power is set to 2 mW, one recording prohibited track is arranged between the recording marks 3 adjacent in the radial direction of the optical disc. As a result, crosstalk and cross erase can be prevented.
  • FIG. 17C schematically shows two adjacent recording marks 3 formed when the recording power is set to 3 mW and the number of recording prohibited tracks is set to two.
  • FIG. 17D schematically shows two adjacent recording marks 3 formed when the recording power is set to 4 mW and the number of recording prohibited tracks is set to three.
  • a part of the recording mark 3 covers at least a part of the adjacent “recording prohibited track”.
  • the recording mark 3 is not formed on the recording prohibited track, and therefore, the center of the recording mark 3 is not located on the recording prohibited track.
  • a recording prohibited track is a track whose center of the recording mark 3 is prohibited from being located on the center of the track, and even if the recording mark 3 recorded on another track extends and is partially covered Good.
  • the “recording area track” in the example of FIG. 17D is the tracks t3 and t7, and the “recording prohibited track” is the tracks t4, t5 and t6.
  • a part of the recording mark 3 formed on the track t3 which is a "recording area track” covers the track t4 which is a "recording prohibited track”. Even in such a case, it can be said that "three recording prohibited tracks are disposed between two adjacent recording marks".
  • the width of the recording mark 3 (the size in the radial direction of the optical disk) is expanded. It is desirable to appropriately set the number of "recording prohibited tracks” sandwiched between the track “and the" recording area track “and keep the number in the non-volatile memory 506.
  • FIGS. 17A, 17B, 17C and 17D corresponds to the example shown in the table of FIG. 16, but the relationship between the recording power and the number of recording prohibited tracks is the same as FIG. It is not limited to the examples shown in FIGS. 17A to 17D.
  • FIG. 7 is a flowchart showing an example of the appending operation.
  • the system controller 505 reads the information at the time of recording power learning from the non-volatile memory 506 (step S1).
  • the information at the time of the recording power learning includes the above-described information indicating the number of “recording prohibited tracks” adjacent to the “recording area track”.
  • An example of this information is the information described with reference to FIG. 16, and is stored in the non-volatile memory 506 in the form of a table.
  • recording power learning is performed by the system controller 505 in the recording power learning area on the optical disc 1 (step S2).
  • the recording power learning is performed by recording on a specific track at a recording power of 1 mW shown in FIG. 16 and recording on a track separated by one track at a recording power of 2 mW. Also, recording is performed on a track separated by two tracks with a recording power of 3 mW. Further, recording is performed on a track separated by 3 tracks with a recording power of 4 mW. Furthermore, recording is performed on a track separated by 4 tracks with a recording power of 5 mW.
  • the data recorded under the five recording conditions are reproduced, and the optimum recording condition of the recording characteristic is selected based on the signal quality and the like.
  • the recording power and the number of "recording prohibited tracks" are determined.
  • the recording power learning area does not have to be an area fixed on the optical disc side.
  • the optical drive may optionally select an area from the optical disc and use the area for recording power learning.
  • an unrecorded part in the recording power learning area of the optical disc may be selected, and recording power learning may be performed at the selected part.
  • the location selected in this manner may be the location specified by the information read out from the information recorded on the optical disc.
  • step S3 actual data is recorded in the recording area using the recording condition determined in step S2 (step S3).
  • the data recording area does not have to be fixedly determined on the optical disc side, and can be arbitrarily set by the optical drive apparatus based on the information of the non-volatile memory 506. Also, the recording is performed by selecting an unrecorded part in the recording power learning area designated by reproducing the optical disc.
  • the system controller 505 determines the rotational speed of the spindle motor 503.
  • the power of the light source of the optical pickup 501 it is preferable to set the power of the light source of the optical pickup 501 so that the information in the prepit 2 will not disappear.
  • the system controller 505 controls the optical pickup 501, the spindle motor 503, and the like when the above conditions are determined. That is, the recording of the recording mark 3 by the optical pickup 501 is started.
  • Focus control and tracking control are performed so that the light beam emitted from the optical pickup 501 focuses on the prepit 2 on the optical disc 1 and follows the prepit 2 on the target track.
  • the optical drive device 500 performs focus control on the basis of astigmatism information obtained from the reflected light of the optical disc 1.
  • the optical drive device 500 executes tracking control based on phase difference information (hereinafter referred to as “DPD”) from the pre-pit 2 included in the reflected light of the optical disc 1.
  • the DPD signal is a tracking error signal that can be suitably used to track a row of prepits 2 having a depth that makes the amplitude of the RF signal sufficiently large.
  • the amplitude of the push-pull tracking error signal is the largest when the depth of the prepit 2 is ⁇ / 8, but the amplitude of the RF signal obtained from the prepit 2 with the depth of ⁇ / 8 is zero. . Conversely, although the amplitude of the RF signal obtained from the prepit 2 of depth ⁇ / 4 is maximized, the amplitude of the push-pull tracking error signal becomes zero from the prepit 2 of depth ⁇ / 4. It will For this reason, in order to perform tracking control on the series of prepits 2, it is preferable to use a tracking error signal of the DPD system instead of using a tracking error signal of the push-pull system.
  • a pre-pit exists at a position where the recording mark 3 is formed when the optical disc 1 is viewed from the normal direction of the disc surface. Therefore, the optical drive device 500 can perform DPD tracking control using the pre-pit signal included in the reflected light from the optical disc 1 even in the case where the recording mark 3 is formed in the track having no guide groove. is there.
  • the light beam is irradiated with the power necessary to obtain the DPD signal necessary for tracking control, but when the recording mark 3 is formed, the power of the light beam is temporarily increased.
  • the optical properties of the recording film 102 that has been irradiated with the power-enhanced light beam locally change to form the recording mark 3.
  • the light source does not emit light in a multipulse manner, but emits light continuously.
  • the optical power necessary to form the recording mark 3 is P high
  • the optical power not forming the recording mark 3 but necessary to obtain the DPD signal is P low .
  • the recording mark 3 is formed when the optical power is raised from P low to P high . For this reason, the recording mark 3 having a length proportional to the time during which the light power is raised from P low to P high is formed.
  • the long recording mark 3 can be correctly formed on the track while generating the tracking error signal (DPD signal) with one beam.
  • the level of the RF signal indicating the intensity of the reflected light is also high as a whole.
  • the relatively high frequency waveform on the RF signal is, for example, due to the plurality of prepits 2 shown in FIG. 6A. Since one recording mark 3 overlaps a large number of prepits 2 as shown in FIG. 6A, the intensity of the reflected light when forming the recording mark 3 is also large as shown in FIG. 8A.
  • the high frequency signal by the prepit 2 is superimposed.
  • the signal of the pre-pit 2 is schematically described, and a pre-pit signal of a higher frequency than that shown is superimposed on the actual reflected light.
  • the light amount of the light source of the optical pickup 501 is adjusted so that the reflected light of the prepit 2 is not saturated by the light receiving element of the optical pickup 501.
  • the system controller 505 can obtain the signal from the prepit 2 during the formation of the recording mark 3.
  • the DPD signal can be obtained while the recording mark 3 is being formed. Therefore, the optical drive device 500 can form the recording mark 3 after performing DPD tracking control.
  • the tracking error signal and the clock signal can be generated during that time.
  • the ability to continuously generate a tracking error signal and a clock signal during that time is useful for forming a high quality recording mark.
  • DPP tracking control is performed by dividing the light beam into three beams in the forward pass, preparing three sets of four-divided photodetectors. As a result, the TE offset generated when the objective lens follows the eccentricity of the optical disc 1 is canceled, and the guide groove of the optical disc is stably followed.
  • the photodetector may be one set of four divided photodetectors. That is, the size of the light detector can be reduced, and the size of the optical disc 1 can be reduced in size and price.
  • the size of the optical disc 1 is similarly reduced, which contributes to the price reduction.
  • the utilization efficiency of the light source is improved and the power consumption is reduced.
  • the beam is not split into three beams, the available time of the light source is increased, and a light source with low emission power is available.
  • the recording length of the recording mark 3 is made sufficiently longer than the prepit 2. Therefore, switching of the light quantity of the light source of the optical pickup 501 can be reduced. Therefore, an inexpensive laser control circuit can be used.
  • FIG. 8B shows an example of the waveform of an RF signal obtained from the portion where the recording mark of 1 bit is formed and the unrecorded portion located before and after it.
  • the level of the RF signal obtained from the portion where the recording mark is formed is lower than the level of the RF signal obtained from the unrecorded portion.
  • FIG. 8A when the recording mark is formed, the power of the light beam is high, and the level of the RF signal obtained during the formation of the recording mark even if the reflectance of the recording mark is lower than the reflectance of the unrecorded part. Will be higher.
  • the optical disc 1 is irradiated with a light beam of relatively low constant power, as shown in FIG. 8B, the level of the RF signal obtained from the recording mark whose reflectance is lowered is lowered. . Since the level of the RF signal is thus different between the recording mark and the unrecorded part, the recording mark can be detected by detecting this.
  • the system controller 505 in the present embodiment can control the optical pickup 501 to read information from the optical disc 1 on which the recording mark 3 is recorded on the prepit 2. More specifically, the system controller 505 can detect both the recording mark 3 and the prepit 2 recorded on the optical disc 1. This is because, since the recording length of the recording mark 3 is much longer than that of the pre-pit 2 and the signal frequencies are different, it is possible to easily divide two types of signals from the RF signal by the frequency.
  • the system controller 505 can separate the prepit signal and the recording mark signal from the RF signal as shown in FIG. 8B by including the filter circuit as shown in FIG.
  • the system controller 505 can perform tracking control using the signal of the prepit 2. For example, as shown in FIG. 8B, even after the recording of the recording mark 3, the signal light (waveform of high frequency) of the prepit 2 can be obtained. Also, it is possible to obtain a DPD signal by the prepit 2. This is because the information of the recording mark 3 is recorded so as not to crush (do not erase) the information of the prepit 2. As described above, since the signal frequency bands of the recording mark 3 and the prepit 2 are sufficiently separated, it is possible to separate the respective information from the reflected light by the filter circuit. If the shortest mark length of the recording mark 3 is 10 times or more longer than the longest pit of the pre-pit 2, it is possible to easily separate due to the characteristics of the filter circuit.
  • the method of reading the information by the recording mark 3 based on the reflected light of the optical disc 1 is not limited to the above method. Another example of a method of reading information by the recording mark 3 will be described with reference to FIGS. 10A and 10B.
  • FIG. 10A shows a waveform example of the reflected light in the case where the reflected light intensity from the recording mark is lower than the reflected light (RF signal) intensity from the unrecorded part.
  • FIG. 10B shows a waveform example of the reflected light when the average value of the reflected light intensity from the recording mark is higher than the average of the reflected light intensity from the unrecorded part.
  • the horizontal axis in FIGS. 10A and 10B is time.
  • the information by the recording mark 3 can be extracted from the RF signal, but the information by the recording mark 3 is extracted based on the average value 12 of the RF signal and / or the envelope. It can also be taken out.
  • 10A and 10B show a dashed line indicating the average value 12 of the RF signal and a solid line indicating the upper envelope 14 and the lower envelope 16 of the RF signal.
  • the average value 12 of the RF signal, the upper envelope 14 and the lower envelope 16 are all at different levels between the recording mark and the unrecorded part.
  • the average value 12 of the RF signal is determined, and when the average value 12 is relatively decreased, it can be determined that the light beam passes above the recording mark 3.
  • the upper envelope 14 or lower envelope 16 of the RF signal may be determined, and when it is relatively lowered, it may be determined that the light beam is passing above the recording mark 3.
  • the upper envelope 14 of the RF signal does not change between the recording mark and the unrecorded part.
  • Such a waveform may occur, for example, when the shape of the prepit 2 is changed by heat while the optical characteristics of the recording film hardly change because the power of the light beam when forming the recording mark is small. .
  • Such a phenomenon may be caused by the fact that the shape of the prepits 2 is changed due to heat, thereby increasing the intensity of light reflected from the prepits 2 when the depth of the prepits 2 changes from ⁇ / 4.
  • the average value 12 of the RF signal or the lower envelope 16 may be determined, and when it is relatively elevated, it may be determined that the light beam has passed above the recording mark 3.
  • the "recording mark" is not necessarily formed in the recording film. Even if the optical characteristics (reflectance etc.) of the area where the recording mark is formed in the recording film is not changed as compared with the unrecorded part, the physical state of the substrate surface is changed from the physical state of the unrecorded part. Thus, the recording mark can be formed (FIG. 10B). In other words, the recording marks in the present invention can be formed on the recording film or the substrate surface.
  • the waveform of the RF signal as shown in FIG. 10B can also be obtained, for example, in the following case. That is, although the optical characteristics of the recording film hardly changed as a whole due to the small power of the light beam when forming the recording mark, heat is accumulated in the concave portion of the prepit 2, and as a result, recording If the optical characteristics of the portion of the film located in the concave portion of the prepit 2 locally change, an RF signal as shown in FIG. 10B may be obtained.
  • the system controller 505 can perform tracking control based on the DPD signal. This is because the information of the recording mark 3 is recorded so as not to crush the prepit 2 (do not delete the information by the prepit 2). Also in the example shown in FIGS. 10A and 10B, even in the area where the recording mark 3 is formed, the information of the prepit 2 is not erased but remains in the RF signal.
  • FIG. 11 shows the waveform of the DPD signal obtained from the optical disc after the write-once information is recorded. Tracking control is on. Tracking is performed so that the DPD signal is maintained at the zero level (GND).
  • the waveforms in FIG. 11 indicate that TE control is stably performed in the unrecorded area and the recording mark area.
  • FIG. 12 shows the waveform of the DPD signal obtained from the optical disc after the write-once information is recorded. Tracking control is off. The level of the DPD signal increases and decreases as the light beam crosses the track, and shows a triangular waveform.
  • the DPD signal can be properly obtained both during the formation of the recording mark and after the formation of the recording mark. If the tracking error signal can not be obtained from the area where the recording mark is formed, the length of the recording mark may be sufficiently shortened and tracking hold may be performed when the recording mark is formed. However, if the tracking hold is performed when the recording mark is long, the tracking may be missed. According to the present invention, a DPD signal can be obtained even if a recording mark is present on a prepit. If tracking control is performed using this DPD signal, tracking is long when tracking holding is performed. It is possible to create a recording mark.
  • FIG. 13 shows an example of the waveform of an RF signal when the intensity of the reflected light is saturated beyond the detection range of the photodetector during the formation of the recording mark.
  • the recording mark can be formed more stably.
  • the reflectance of the reflective film is lowered due to the power (light quantity) of the light source and the detection accuracy of the DPD signal is lowered, it is difficult to obtain an appropriate tracking error signal from the recording mark formation region. Also in such a case, it may be effective to perform tracking hold in the area where the recording mark is formed.
  • DPD tracking control is performed during the recording operation of the recording mark 3.
  • tracking control may be performed using a push-pull signal.
  • DPD tracking control is performed stably when the frequency band of the prepit 2 playback signal is out of the signal band of the phase difference detection circuit of DPD tracking control (this is the case when the optical disc is extremely slow or fast). You may not be able to In such a case, the push-pull signal can perform tracking control more stably.
  • the recording mark 3 is detected using the amplitude of the RF signal as shown in FIG. 10A and the like.
  • the present invention is not limited to this, and the recording mark 3 may be detected based on the signal quality (jitter characteristics etc.) of the RF signal shown in FIG. Since the prepits are formed at the locations where the recording marks 3 are recorded, even if there is no difference in the amplitude of the RF signal between the recording portion and the unrecorded portion of the recording marks, the reproduction jitter due to both prepits is different. There is a possibility. It is possible to detect on which part the recording mark is recorded based on the difference in reproduction jitter.
  • the present invention when forming the plurality of recording marks 3, the first recording mark 3a and the second recording mark 3b are prevented from being recorded in the adjacent track.
  • the present invention is not limited to this.
  • the recording marks 3 may not be adjacent in the radial direction of the optical disc.
  • the center line spacing of the recording marks adjacent to each other in the radial direction of the optical disc is 2 track pitch or more.
  • the recessed portion of the prepit may provide the heat insulating effect to the recording film, and the recording of the recording mark 3 may be facilitated. At this time, the power of the light source of the optical pickup 501 can be weakened.
  • the prepit may be unreadable after the recording mark is recorded. That is, in the present embodiment, any configuration may be used as long as the recording mark can be recorded on the prepit.
  • the present invention is applicable to an optical drive device or the like capable of recording information on an optical disc.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

 本発明の光学ドライブ装置は、光ディスクに情報を記録することが可能な光学ドライブ装置であって、光ディスクは、トラック(t1-t8)上に複数のプリピット(2)が形成された基板と、基板に支持される記録膜とを有する。この光学ドライブ装置は、光ピックアップと、トラック(t1-t8)上において複数のプリピット2に重なる位置で記録マーク(3a、3b)を形成するよう光ピックアップを制御し、記録膜に記録用の光を照射させる記録制御部とを備え、記録マーク(3a、3b)は、少なくとも10個のプリピット2とオーバーラップする。

Description

光学ドライブ装置
 本発明は、光ディスクに情報を記録することが可能な光学ドライブ装置に関する。
 光ディスクに記録されているデータは、比較的弱い一定強度の光ビームを回転する光ディスクに照射し、光ディスクによって変調された反射光を検出することによって再生される。再生専用の光ディスクには、光ディスクの製造段階でプリピットによる情報が予め同心円またはスパイラル状に記録されている。これに対して、書き換え可能な光ディスクでは、同心円またはスパイラル状のグルーブが形成された基板に、光学的にデータの記録/再生が可能な記録材料膜が蒸着等の方法によって堆積されている。書き換え可能な光ディスクにデータを記録する場合は、記録すべきデータに応じて光パワーを変調したパルス状の光ビームを光ディスクに照射し、それによって記録材料膜の特性を局所的に変化させることによってデータの書き込みを行う。
 記録可能な光ディスク又は書き換え可能な光ディスクでは、記録材料膜にデータを記録するとき、上述のように光パワーを変調した光ビームを記録材料膜に照射することより、結晶質の記録材料膜に非晶質の記録マークを形成する。この非晶質の記録マークは、記録用光ビームの照射を受けた記録材料膜の一部が融点以上の温度に上昇した後、急速に冷却されることによって形成される。光ビームを記録マークに照射するときの光パワーを低めに設定すると、光ビームが照射された記録マークの温度は融点を超えず、急冷後に結晶質に戻る(記録マークの消去)。こうして、記録マークの書き換えを何度も行うことが可能になる。データを記録するときの光ビームの光パワーの大きさが不適切であると、記録マークの形状が歪み、データを再生することが難しくなることがある。
 光ディスクに記録されているデータを再生するとき、または、記録可能な光ディスクにデータを記録するとき、光ビームが目標トラック上で常に所定の集束状態となる必要がある。このためには、「フォーカス制御」および「トラッキング制御」が必要となる。「フォーカス制御」は、光ビームの焦点(集束点)の位置が常に目標トラック上に位置するように対物レンズの位置をディスク表面の法線方向(以下、「光ディスクの深さ方向」と称する場合がある。)に制御することである。一方、トラッキング制御とは、光ビームのスポットが所定のトラック上に位置するように対物レンズの位置を光ディスクの半径方向(以下、「ディスク径方向」と称する。)に制御することである。
 上述したフォーカス制御およびトラッキング制御を行うためには、光ディスクから反射される光に基づいて、フォーカスずれやトラックずれを検知し、そのずれを縮小するように光ビームスポットの位置を調整することが必要である。フォーカスずれおよびトラックずれの大きさは、それぞれ、光ディスクからの反射光に基づいて生成される「フォーカス誤差(FE)信号」および「トラッキング誤差(TE)信号」によって示される。
 特許文献1および特許文献2は、プリピットが形成された再生専用層(ROM層)と記録マークが形成される書き換え可能層とを備える光ディスクを開示している。これらの文献に開示された光ディスクでは、ディスク表面(光入射側の面)から各層までの深さが大きく異なる。このため、再生専用層からデータを読み出すときは、再生専用層に光ビームをフォーカスさせ、書き換え可能層からデータを読み出したり、書き換え可能層にデータを書き込んだりするときは、書き換え可能層に光ビームをフォーカスさせる。
 特許文献3および4は、光ディスクのプリピットが形成された層に記録マークを形成する技術が開示されている。
特開平9-106546号公報 特開2000-186543号公報 国際公開第2002/039434号 特開2003-317318号公報
 プリピットは、光ディスクの物理的な構造であり、光ディスクの製造時に形成される。また、記録マークは、通常、光学ドライブ装置内で光ビームを光ディスクに照射し、光ディスクの記録材料膜に光学的な構造の変化を引き起こすことにより形成される。つまり、プリピットと記録マークは、記録方法に違いがある。
 特許文献1および特許文献2に開示されている技術によれば、再生専用層および書き換え可能層の各々からデータを再生するため、各層に別々にフォーカス制御およびトラッキング制御を行う必要がある。また、再生専用層か書き換え可能層かに応じて異なる種類のトラッキングエラー(TE)信号を生成する必要もある。書き換え可能層にはトラッキングのための案内溝が形成されるため、光ディスクの構造は複雑であり、製造が容易ではない。
 特許文献3に開示されている技術は、プリピットからの信号と記録マークからの信号とを分離する方法として、光の偏光方向の差異(磁気異方性)を用いている。偏光方向の差異を検出する光学系が必要であるため、光ピックアップの構造が複雑になる。
 特許文献4に開示されている技術は、プリピットが形成された面上における反射膜の一部に強い光を照射して追記録を行う。追記録された情報を読み出すには、反射率の僅かな変化を検出する必要がある(特許文献4の段落[0038]および図6)。反射率が変化した追記録部分の長さは、プリピットの長さよりも短いため、追記録情報を適切に読み出すことが困難である。
 本発明は、プリピットが形成された光ディスクに記録マークを記録する場合であっても、光ディスクの構造を簡素にできる光学ドライブ装置を提供することを目的とする。
 本発明の光学ドライブ装置は、光ディスクに情報を記録することが可能な光学ドライブ装置であって、前記光ディスクは、トラック上に複数のプリピットが形成された基板と、前記基板に支持される記録膜とを有し、前記光学ドライブ装置は、光ピックアップと、前記トラック上において前記複数のプリピットに重なる位置で記録マークを形成するよう前記光ピックアップを制御し、前記記録膜に記録用の光を照射させる記録制御部とを備え、前記記録マークは、少なくとも10個のプリピットとオーバーラップする。
 ある実施形態において、前記記録制御部は、前記記録マークを形成している間、前記光ピックアップから前記記録用の光を連続的に前記記録膜に照射させる。
 ある実施形態において、前記光ピックアップで検出された反射光を示す信号に含まれる前記プリピットの情報に基づいて、トラッキング制御を行なうトラッキング制御部を備える。
 ある実施形態において、前記トラッキング制御部は、前記記録マークが形成されている最中において、前記光ピックアップで検出された反射光を示す信号に含まれる前記プリピットの情報に基づいて、トラッキング制御を行う。
 ある実施形態において、前記トラッキング制御部は、前記記録マークを形成する前に前記光ピックアップで検出された反射光を示す信号に含まれるプリピットの情報に基づいて、前記記録マークを形成している間のトラッキング制御を行なう。
 ある実施形態において、前記記録制御部によって前記プリピットと重なる位置に記録マークが形成された光ディスクから、前記光ピックアップを用いて情報を読み出す再生制御部をさらに備え、前記再生制御部は、前記光ピックアップで検出された反射光を示す信号のジッタ特性に基づいて、前記記録制御部によって前記記録マークが記録された箇所を検知する。
 ある実施形態において、前記記録制御部によって前記プリピットと重なる位置に記録マークが記録された光ディスクから、前記光ピックアップを用いて情報を読み出す再生制御部をさらに備え、前記再生制御部は、前記光ピックアップで検出された反射光を示す信号の振幅に基づいて、前記記録制御部によって前記記録マークが記録された箇所を検知する。
 ある実施形態において、前記記録制御部によって前記プリピットと重なる位置に記録マークが記録された光ディスクから、前記光ピックアップを用いて情報を読み出す再生制御部をさらに備え、前記再生制御部は、前記光ピックアップで検出された反射光を示す信号の周波数に基づいて、前記プリピットによる情報と前記記録マークによる情報とを分離する。
 ある実施形態において、前記記録制御部は、前記記録マークを形成するとき、前記記録マークと重なる位置にある前記プリピットの形状が読み出し不能な状態に変化しないように前記記録用の光のパワーを調整する。
 ある実施形態において、前記光ディスクの前記プリピットは、前記記録膜の側から視て凹部形状を有している。
 ある実施形態において、前記記録制御部は、前記記録マークを形成するとき、前記記録膜のうちで前記プリピットの凹部に位置する部分の反射率を局所的に変化させるように前記記録用の光のパワーを調整する。
 ある実施形態において、前記記録制御部は、前記記録マークを形成するとき、前記プリピットの凹部に位置する部分の形状を局所的に変形させるように前記記録用の光のパワーを調整する。
 本発明の他の光学ドライブ装置は、光ディスクに情報を記録することが可能な光学ドライブ装置であって、前記光ディスクは、トラック上に複数のプリピットが形成された基板と、前記基板に支持される記録膜とを有し、前記光学ドライブ装置は、光ピックアップと、前記トラック上において前記複数のプリピットに重なる位置で記録マークを形成するよう前記光ピックアップを制御し、前記記録膜に記録用の光を照射させる記録制御部とを備え、前記記録制御部は、前記記録膜のうち前記プリピットの凹部に位置する部分の反射率を局所的に変化させるように前記記録用の光のパワーを調整し、前記記録マークは、局所的に反射率が変化した複数の部分によって構成される。
 本発明の更に他の光学ドライブ装置は、光ディスクに情報を記録することが可能な光学ドライブ装置であって、前記光ディスクは、トラック上に複数のプリピットが形成された基板と、前記基板に支持される記録膜とを有し、前記光学ドライブ装置は、光ピックアップと、前記トラック上において前記複数のプリピットに重なる位置で記録マークを形成するよう前記光ピックアップを制御し、前記記録膜に記録用の光を照射させる記録制御部とを備え、前記記録制御部は、前記記録膜のうち前記プリピットの凹部に位置する部分の形状を局所的に変形させるように前記記録用の光のパワーを調整し、前記記録マークは、局所的に形状が変形した複数の部分によって構成される。
 ある実施形態において、各記録マークは、局所的に反射率が変化した10個以上の部分によって構成される。
 本発明によれば、プリピットが形成された光ディスクに記録マークを記録する場合であっても、光ディスクの構造を簡素にできる。
本発明の実施形態1に係る光学ドライブ装置の構成図 実施形態1に係る光ディスクの断面図 実施形態1に係る光ディスクのプリピットを示す斜視図 実施形態1に係る光ディスク(記録マーク3の形成前)の平面図 実施形態1に係る光ディスク(記録マーク3の形成後)の平面図 実施形態1に係るプリピットと記録マークのビット列を示す図 実施形態1に係る光ディスク上の記録マークの位置を示す図 比較例に係る光ディスク上の記録マークの位置を示す図 溝が形成された光ディスク上の記録マークの位置を示す図 実施形態1における記録動作(追記動作)の一例を示すフローチャート 実施形態1に係る記録マーク記録中のRF信号を示す図 実施形態1に係る記録マーク記録後のRF信号を示す図 実施形態1に係るRF信号の分離(プリピット信号及び記録マーク信号)を説明するための図 本実施形態1に係る光ディスク上のRF信号の波形の一例(記録マーク形成後)を示す図 本実施形態1に係る光ディスク上のRF信号の波形の他の例(記録マーク形成後)を示す図 実施形態1に係る光ディスク上のDPD信号の波形(TE制御ON時)を示す図 実施形態1に係る光ディスク上のDPD信号の波形(TE制御OFF時)を示す図 他の実施形態に係る記録マーク記録中のTE信号を示す図 他の実施形態に係るトラックにおける記録マーク位置の検知を説明するための図 他の実施形態に係る光ディスク上の記録マークの位置を示す図 記録パワーと記録禁止トラックの本数との関係の例を示し表 記録パワーを1mW、記録禁止トラックの本数を0本に設定したときに形成した2つの隣接する記録マーク3を模式的に示す図 記録パワーを2mW、記録禁止トラックの本数を1本に設定したときに形成した2つの隣接する記録マーク3を模式的に示す図 記録パワーを3mW、記録禁止トラックの本数を2本に設定したときに形成した2つの隣接する記録マーク3を模式的に示す図 記録パワーを4mW、記録禁止トラックの本数を3本に設定したときに形成した2つの隣接する記録マーク3を模式的に示す図
(実施形態1)
 以下、本発明による光学ドライブ装置の実施形態を説明する。
 <1.本実施形態の構成>
 <1.1 光学ドライブの構成(図1)>
 図1を参照しながら、本実施形態における光学ドライブ500の構成例を説明する。光学ドライブ500は、パーソナルコンピューター、光ディスクプレーヤー、光ディスクレコーダー等に用いることができる。
 図1は、光学ドライブ500の構成例を示すブロック図である。光学ドライブ500は、光ピックアップ501と、光ディスク1を回転させるスピンドルモータ503と、光ピックアップ501の位置を制御する移送モータ502と、これらの動作を制御するシステムコントローラ505と、不揮発性メモリ506と、を備えている。
 光ディスク1から光学的に読み出されるデータは、光ピックアップ501の受光素子(図示せず)で電気信号に変換され、システムコントローラ505に入力される。光ピックアップ501は、光ビームを放射する光源(半導体レーザ)と、光ビームを集光して光スポットを光ディスク1上に形成するための対物レンズ504と、対物レンズ504を駆動するアクチュエータなどの公知の構成要素を備えている。
 システムコントローラ505は、光ピックアップ501から得た電気信号に基づいて、フォーカスエラー(FE)信号およびトラッキングエラー(TE)信号を含むサーボ信号の生成、ならび再生信号の波形等価、2値化スライス、同期データなどのアナログ信号処理を行う。
 システムコントローラ505は、生成されたサーボ信号により、光ピックアップ501が光ディスク1上に形成する光スポットを、回転する光ディスク1の目標トラックに追従させる。システムコントローラ505は、光ピックアップ501が備える対物レンズ504のフォーカス制御およびトラッキング制御、光ピックアップ501の移送制御、スピンドルモータ制御など一連の制御をデジタルサーボで実現する。すなわち、システムコントローラ505の働きにより、対物レンズ504のアクチュエータ(図示せず)の駆動のほか、光ピックアップ501を光ディスク1の内周や外周へ移送させる移送モータ502の駆動や、光ディスク1を回転させるスピンドルモータ503の駆動が適切に行われる。なお、システムコントローラ505は、半導体ICで実現可能である。
 不揮発性メモリ506には、システムコントローラ505で実行されるソフトウェア及び各種パラメータ等が記憶されている。不揮発性メモリ506には、光ディスク1において、記録マーク3を記録すべき箇所を示した情報が含まれている。
 <1.2 光ディスクの構成(図2、図3、図4)>
 図2、3、4を参照しながら、光ディスク1の構成を説明する。
 図2は、光ディスク1の断面の一部を模式的に示す図である。光ディスク1は、プリピット2が主面に形成された基板101と、基板101の主面に支持された積層構造とを備えている。本実施形態における積層構造は、基板101の側から積層された記録膜102と保護膜103とハードコート104とを有している。
 図1の光学ドライブ装置500は、データを光ディスク1に追記するとき、光ピックアップ501によってハードコート104の側から記録膜102に光を照射して、記録膜102に記録マーク3を形成する。
 基板101は、光ディスク1の基礎となる部材である。図2では、1つのプリピット2が記載されているが、現実の基板101の主面には、記録膜102側に、多数のプリピット2が形成されている。プリピット2は、基板101の主面における物理的な凹凸であり、光ディスク1の製造時に基板101の成型工程で作られる。プリピット2を表面に有する基板101は、例えばBD-ROMを製造する公知の方法によって作製され得る。
 プリピット2の深さは、照射する光ビームの波長をλとするとき、例えばλ/7~λ/4の範囲内の大きさに設定される。例えばλ=約405nmのとき、プリピット2の深さの典型例は、約60~100nm(0.06~0.1μm)に設定され得る。プリピット2のトラック方向における長さは、例えば0.15μmから、その数倍までの範囲内に設定され得る。
 本実施形態では、図3に示すように、「In-Pit」で光ディスク1にプリピット2が形成されている。「In-Pit」とは、光入射面に対して、凹部の形状を有するプリピットをいう。一方、「On-Pit」とは、光入射面に対して、凸部の形状を有するプリピットをいう。図2、3に示す例では、プリピット2は基板101の光入射側面に形成された凹部であるが、他の例において、プリピット2は凸部であってもよい。
 基板101は、例えばポリカーボネート材料から形成され得る。プリピット2は、同心円またはスパイラル状に配列され、トラックを形成する。すなわち、トラック上にプリピット2の列が形成されている。プリピット2により、基板101には作製時から書き換え不能のデータを記録される。プリピット2が形成されている基板101の主面は、読み出し専用の情報記録面(ROM面)として機能する。本実施形態で使用する光ディスク1は、このROM面に接する記録膜102をも有している。
 光ディスク1が図1の光学ドライブ装置に装填され、動作するとき、記録膜102は、光ピックアップ501から出射された光によって照射される。光は、対物レンズ504を介して記録膜102上に集光され、記録膜102上に光スポットを形成する。光ディスク1の回転に伴って光スポットは、光ディスク上をその周方向に移動することになる。記録膜102に情報の追記がなされるとき、記録膜102は十分に強い光で照射され、その結果、照射部分における記録膜102の反射率、透過率、位相差等の光学特性が変化する。
 記録膜102のうち、記録用の光の照射によって光学特性が変化した部分が「記録マーク3」として機能する。トラックに沿って複数の記録マーク3を形成することにより、記録膜102に情報(追記データ)を書き込むことができる。同一トラック上において、隣接する記録マーク3と記録マーク3との間の部分を「スペース」と呼ぶことにする。記録マーク3およびスペースの長さは、記録すべき情報に応じて決定される。言い換えると、記録マーク3は、異なる複数の長さから選択された長さを有している。記録マーク3およびスペースが存在するトラックを読み出しのための光で走査すると、反射光(再生光)の強度が記録マーク3とスペースとの間で変化する。再生光の強度を検出することにより、記録膜102に記録された情報(追記情報)を読み出すことができる。再生光の強度変化は、高い周波数で生じるため、再生信号は「RF信号」と称されている。
 記録膜102に追記された情報を読み出すとき、記録膜102は光ピックアップから出射された比較的弱い光で照射される。本実施形態で好適に用いられる記録膜102は、特別に反射層を有していなくとも、前記光を反射することができる。つまり、記録膜102は、記録膜及び反射膜として作用する。記録膜102は、例えば、Ge、Sb、Te、In、Ag等による相変化材料から形成され得る。相変化材料から形成された記録膜102を用いると、記録マークの書き換えを行うことができる。また、記録膜102は、Te、Pd、O、Cu、Ge、Bi、N等の無機あるいは有機材料から形成され得る。このような材料からなる記録膜102に形成した記録マークは書き換えることはできない。記録膜102は、例えばAlやAgから形成した金属膜であってもよい。このような金属膜に強い光を照射すると、金属膜に開口部を形成することが可能である。この開口部が「記録マーク」に相当する。
 保護膜103は、記録膜102を保護する。例えば、保護膜103は、樹脂材料から形成され得る。ハードコート104は、記録膜102や保護膜103の外側からの傷や汚れを軽減する。例えば、ハードコート104は、SiO2粒子と潤滑剤から形成され得る。
 本実施形態における記録膜102は、基板101のプリピット2が形成された面(主面)に接触しているが、基板101の主面と記録膜102との間には、他の膜または層が存在していてもよい。ただし、光ピックアップからの光ビームを記録膜102上にフォーカスしているときに得られる反射光の強度がプリピット2の有無によって変化するように光ディスク1が設計されていることが好ましい。本発明の好ましい実施形態において、重要な点は、記録膜102に記録マーク3で情報を書き込むとき、あるいは、記録膜102に形成された記録マーク3の情報を読み出すとき、プリピット2によるトラッキングエラー信号を生成する必要がある。このため、基板101の主面と記録膜102との間に配置される膜または層の厚さは、0.5μm以下であることが好ましい。
 本実施形態によれば、光ディスク1からプリピット2の情報を読み出すときに必要なトラッキング制御と、記録マーク3の情報を光ディスク1に追記するとき、および記録マーク3の情報を光ディスク1から読み出すときに必要なトラッキング制御の両方が、同一のトラッキングエラー信号に基づいて実行できる。このため、トラッキングエラー信号を生成するトラッキングエラー信号生成部の構成が著しく簡単になる。トラッキングエラー信号生成部は、一組の四分割光検出器を使って実現できるため、本実施形態の構成には、光ピックアップを低コストで製造できる利点がある。
 次に、図4Aおよび図4Bを参照して、記録マーク3を形成する前の光ディスク1と、記録マーク3を形成した後の光ディスク1を説明する。
 図4Aは、記録マーク3を形成する前の光ディスク1aの平面図である。光ディスク1aには、基板101上にプリピット2が同心円状またはスパイラル状に内周から外周まで刻まれている。図4Bは、記録マーク3を形成した後の光ディスク1bの平面図である。光ディスク1bでは、記録マーク3がプリピット2に重なるように記録膜102に形成されている。記録マーク3の長さ(トラックに沿って計測されるサイズ)は、各記録マーク3が少なくとも10個のプリピット2とオーバーラップするように設定されている。図4Bに記載されている記録マーク3は、トラック上に直列的に配列された3つのプリピットとオーバーラップしているが、実際の記録マークは、10個を超える個数のプリピット2とオーバーラップしている。記録マークの長さは、プリピットの最短長の10倍以上であり、好ましくはプリピットの最短長の50倍以上である。例えば1-7変調方式で変調されたデータがプリピット2によって形成される場合、チャネルクロックの周期をTとすると、プリッピット2の最小長さは2Tであり、最大長さは8Tである。記録マーク3の長は、例えば80T以上に設定される。プリピット2は、記録マーク3が形成された後も、光学ドライブ装置500で読み取り可能である。プリピット2が読み取り可能な理由については後述する。
 <2.光学ドライブの動作>
 <2.1 システムコントローラ505の記録制御>
 次に、システムコントローラ505による記録マーク3の記録制御を説明する。以下では、システムコントローラ505の記録前の制御及び記録中の制御を説明する。なお、システムコントローラ505は、外部機器からの指示を受け付けると、記録マークを光ディスクに記録するよう動作する。
 <2.1.1       記録前の制御>
 システムコントローラ505は、光ディスク1に記録する記録マーク3を決定する。ここで不揮発性メモリ506には、記録マーク3の1ビットの記録長が予め記録されている。前述したように、記録マーク3の1ビットの記録長は、光ディスク1に形成されたプリピット2の長さよりも長いマークになるよう決められている。例えば、図5に示すように、多数のプリピット2が128ビットのデータを示すように形成されているところに、1ビットの記録マーク3が形成されるよう決められている。図5では、プリピット2および記録マーク3を模式的に示す図が信号波形とともに記載されている。この図におけるプリピット2の位置は、模式的な例に過ぎず、図示されているプリピット信号の波形とは厳密には対応していない。
 図5の例では、記録マーク3が形成されている部分が「1」、記録マーク3が形成されていない部分が「0」を示す。1ビット分の記録マーク3の長さは、典型的には、同一トラック上で一定である。例えば2つの「1」が連続している部分は、2ビット分の長さを持ち、連続する2つの記録マーク3によって構成されていると解釈できる。一方、各プリピット2の長さは、BD-ROMのように情報に応じて変調されており、一定ではない。
 1つの記録マーク3の長さ(追記データの1ビットの記録長)が、プリピット2によって記録されているROMデータの何ビット分に対応するかは、あらかじめ図1の不揮発性メモリ506内に記録されている。本実施形態では、追記データの1ビットの記録長さは、ROMデータの128ビットの長さに相当しているが、本発明は、このような例に限定されない。後述するように、本発明によれば、追記データとROMデータとが重畳したRF信号が再生されるため、これらのデータを識別するため、RF信号における各データの周波数を1桁以上異なるようにすることが好ましい。
 システムコントローラ505は、不揮発性メモリ506に記録された記録マーク3の1ビットの記録長を用いて、記録マーク3の長さを決定する。これによって、システムコントローラ505は、光ディスク1に記録するための記録マーク3の制御信号を生成する。
 次に、図6Aおよび図6Bを参照しながら、記録マーク3の形成位置を説明する。図6Aは、本実施形態における記録マーク3の形成位置の例を示す図である。図6Bは、比較例における記録マーク3の形成位置の例を示す図である。
 本実施形態では、システムコントローラ505が、各トラックに形成する記録マーク3が、隣接するトラックに形成されている記録マーク3との間で影響し合わないように、記録マーク3の形成位置を調整する。図6Aに示す例では、第1の記録マーク3aがトラックt7に形成され、第2の記録マーク3bがトラックt3に形成されている。図6Bに示す比較例では、第2の記録マーク3bがトラックt3ではなく、トラックt6に形成されている。比較例では、例えばトラックt7から追記情報を読み出そうとするとき、隣接するトラックt6に形成された第2の記録マーク3bの影響を受ける結果、第1の記録マーク3aが形成されてない領域に第1の記録マーク3aが形成されているとの誤検出を行う可能性がある。
 本実施形態で使用する光ディスクには、案内溝が存在せず、また、長い記録マーク3を形成するため、光ビームの照射によって発生した熱が光ディスクの半径方向(トラックに垂直な方向)に拡散しやすい。特に、本実施形態では、記録マーク3を形成するとき、光源をマルチパルス状に発光させるのではなく、連続的に発光させる。このため、記録マーク3の幅は、トラックピッチ程度、または、それ以上に大きくなりやすい。記録マーク3の幅は、記録マーク形成のために照射する光ビームのパワーが大きいほど、広くなりやすい。本発明の好ましい実施形態では、光ディスクの半径方向に隣接する記録マーク3の中心線間隔が少なくとも2トラックピッチとなるようにする。この間隔は、光ビームのパワーに応じて変化するようにしてもよいし、充分に広い値に固定されてもよい。また、記録マーク3を形成するトラックと、記録マーク3を形成しないトラックとを決め、記録マーク3を形成するトラックの間には、必ず記録マーク3を形成しないトラックを配置するようにしてもよい。
 図6Cは、プリピット間に溝を設けた光ディスク上の記録マークの形成位置を示している。プリピットから得られるトラッキングエラー信号(好ましくはDPD信号)を用いてトラッキング制御を行う場合、トラッキングのための案内溝は不要である。しかし、溝をトラック間に形成すると、熱の拡散が溝によって阻止されるため、記録マークの幅の拡大を抑制する効果が得られる。このため、溝をトラック間に形成してもよい。溝の深さは、トラッキングエラー信号の生成とは無関係に設定され、任意である。
 本明細書では、記録マーク3が形成され得るトラックを「記録領域トラック」、記録マークを形成しないトラックを「記録禁止トラック」と称することとする。記録禁止トラックの本数が1本の場合、その記録禁止トラックを挟む2つの記録領域トラックに形成される記録マークのうち、光ディスクの半径方向に隣接する記録マークの中心線間隔は、少なくとも2トラックピッチである。
 記録マーク形成のために照射する光ビームのパワーは、光学ドライブ装置に装填される光ディスクによって異なる値に最適化され得る。このため、記録マーク3の幅は、光学ドライブ装置に装填される光ディスクの種類によって変化し得る。
 光ディスクが光学ドライブ装置に装填された後、光ビームのパワーを決定するための学習動作を実行することが好ましい。この学習動作は、テスト記録のステップと再生信号の評価ステップとを含む。具体的には、まず、異なる大きさの記録パワーで光ビームを光ディスクに照射して複数の記録マークを形成した後、これらの記録マークに再生用の光ビームを照射して再生信号の質を評価する。再生信号の質は、信号波形の形状やジッタによって評価され得る。質の最も高い再生信号が得られる記録パワーを選択することが好ましい。
 2つの記録領域トラックの間に何本の記録禁止トラックを配置するかは、記録マークの現実の幅に基づいて決定する必要はなく、上記の学習動作によって決定した記録パワーに基づいて決定してもよい。記録マークの幅が充分に小さいとき、2つの記録領域トラックの間に記録禁止トラックを1本も配置しなくてもよい。システムコントローラ505は、記録パワーの大きさとは無関係に光ディスク上のトラックを「記録領域トラック」と「記録禁止トラック」とに分けてもよい。
 本発明の好ましい実施形態では、複数の「記録パワー」と、各記録パワーに対応する「記録禁止トラック」との関係を規定する情報を決定した後、この情報を光ディスク装置のメモリに格納する。「記録パワー」と「記録禁止トラック」の関係を規定する情報は、例えば図16に示されるように、記録パワーの値と、その記録パワーで記録を行うときの「記録禁止トラック」の本数とを関連づけたものである。この情報は、例えばテーブルの形態で不揮発性メモリ506に格納される。
 上記の情報における「記録パワー」の値は、記録パワーを連続的または段階的に変えて光ディスク1に光ビームを照射するときの記録パワーの値である。この記録パワーの値は、記録パワーの学習時において設定される記録パワーの値と一致することが好ましい。
 図16に示すようなテーブルが不揮発性メモリ506に格納されている場合、好ましい例では、そのテーブルにおける「記録パワー」の値の中から、実際の記録動作を行うときの記録パワーが選択され得る。ただし、実際の記録動作を行うときの記録パワーが、テーブルにおける「記録パワー」の値と異なるときは、実際の記録動作を行うときの記録パワーよりも大きく、かつ、その記録パワーに最も近い記録パワーをテーブルから選択し、選択された記録パワーに対応する「記録禁止トラック」の本数を選択することが好ましい。例えば、現実の記録パワーが2.3mWの場合、図16に例示されるテーブルでは、3mWの記録パワーを選択し、これに対応する「記録禁止トラック」の本数を2本に設定することが好ましい。
 図17Aは、記録パワーを1mW、記録禁止トラックの本数を0本に設定したときに形成した2つの隣接する記録マーク3を模式的に示している。この例では、記録マーク3の幅が小さく、隣接するトラックにおいて、記録マーク3を光ディスクの半径方向に隣接するように形成しても、クロストーク(再生する際に隣の記録マークを読み出す)やクロスイレース(記録する際に既に記録されている隣の記録マークを消してしまう)を防止できる。
 最適な記録パワーと「記録禁止トラック」の本数との関係は、種々の方法で設定可能である。例えば、複数の異なる記録パワーで形成された記録マーク3を再生し、再生された信号の振幅やジッタ等の信号品質が、記録禁止トラックの本数に依存してどのよう変化するかを測定することにより、記録禁止トラックの本数を決定してもよい。また、記録マークの情報をデコードする際のエラーレートが記録禁止トラックの本数に依存してどのように変化するかを求め、「記録禁止トラック」の本数を決定してもよい。
 図17Bは、記録パワーを2mW、記録禁止トラックの本数を1本に設定したときに形成した2つの隣接する記録マーク3を模式的に示している。この例では、記録マーク3の幅がやや広がっている。このため、図17Aに示すように隣接するトラックにおいて、記録マーク3を光ディスクの半径方向に隣接するように形成すると、クロストークやクロスイレースを十分に防止できない。したがって、この例では、記録パワーを2mWに設定するとき、光ディスクの半径方向に隣接する記録マーク3の間に1本の記録禁止トラックを配置する。その結果、クロストークやクロスイレースを防止することができる。
 図17Cは、記録パワーを3mW、記録禁止トラックの本数を2本に設定したときに形成した2つの隣接する記録マーク3を模式的に示している。図17Dは、記録パワーを4mW、記録禁止トラックの本数を3本に設定したときに形成した2つの隣接する記録マーク3を模式的に示している。
 図17Cおよび図17Dに示す例では、記録マーク3の一部が隣接する「記録禁止トラック」の少なくとも一部を覆っている。記録禁止トラックには、記録マーク3が形成されず、したがって、記録マーク3の中心が記録禁止トラック上に位置することはない。しかし、記録マーク3の幅が拡大した結果、記録マーク3の一部が記録禁止トラック上にはみ出すことは許容される。記録禁止トラックとは、そのトラック中心上に記録マーク3の中心が位置することが禁止されるトラックであり、他のトラック上に記録された記録マーク3が延びてきて一部が覆われてもよい。
 図17Dの例における「記録領域トラック」は、トラックt3、t7であり、「記録禁止トラック」は、トラックt4、t5、t6である。「記録領域トラック」であるトラックt3に形成した記録マーク3の一部は、「記録禁止トラック」であるトラックt4を覆っている。このような場合でも、「隣接する2つの記録マークの間に、3つの記録禁止トラックが配置されている」と言える。
 図17A、図17B、図17C、図17Dに示すように、記録パワーを上昇させていくと、記録マーク3の幅(光ディスクの半径方向のサイズ)が広がるため、その度合いに応じて「記録領域トラック」と「記録領域トラック」の間に挟まれる「記録禁止トラック」の本数を適切に設定し、不揮発性メモリ506内に保持させておくことが望ましい。
 なお、記録パワー学習で設定する最も高い記録パワーにおいてもトラック方向に位置する記録マーク同士がお互いにクロストークやクロスイレースの影響を及ぼさない「記録禁止トラック」の本数を固定値で設定しても良い。
 図17A、図17B、図17C、図17Dを参照しながら説明したことは、図16の表に示す例に対応しているが、記録パワーと記録禁止トラックの本数との関係は、図16および図17Aから図17Dに示す例に限定されない。
 次に、図7を参照して、追記動作の一例を説明する。図7は、追記動作の一例を示すフローチャートである。
 まず、追記を開始するに先立ち、システムコントローラ505は、不揮発性メモリ506から記録パワー学習時の情報を読み出す(ステップS1)。記録パワー学習時の情報は、「記録領域トラック」に隣接する「記録禁止トラック」の本数を示す前述の情報を含む。この情報の例は、図16を参照して説明した情報であり、テーブルの形態で不揮発性メモリ506に格納される。
 次に、不揮発性メモリ506からの情報に基づき、光ディスク1上の記録パワー学習領域において、システムコントローラ505により記録パワー学習が実施される(ステップS2)。記録パワー学習は、図16に示す記録パワー1mWで特定のトラックに記録し、記録パワー2mWで1トラック離したトラックに記録する。また、記録パワー3mWで2トラック離したトラックに記録する。更に、記録パワー4mWで3トラック離したトラックに記録する。更に、記録パワー5mWで4トラック離したトラックに記録する。本実施形態では、この5通りの記録条件で記録したデータを再生し、信号品質などに基づいて、記録特性の最適な記録条件を選択する。最適な記録条件が決定されると、その記録パワーと「記録禁止トラック」の本数が決まる。
 記録パワー学習領域は、光ディスク側で固定された領域である必要はない。不揮発性メモリ506の情報に基づき、光学ドライブ装置が光ディスクから任意に領域を選択し、その領域を記録パワー学習に使用してもよい。
 なお、起動時ではなく、光ディスクの再生中に、光ディスクの記録パワー学習領域内の未記録箇所を選択し、その選択された箇所で記録パワー学習を実行してもよい。このようにして選択される箇所は、光ディスクに記録されていた情報を読み出し、その情報によって指定された箇所であってもよい。
 次にステップS2で決定された記録条件を用いて、記録領域に実際のデータを記録する(ステップS3)。データの記録領域は、記録パワー学習領域と同様に、光ディスク側で固定して決められる必要はなく、不揮発性メモリ506の情報に基づき、光学ドライブ装置側が任意に設定可能である。また、光ディスクを再生して指定された、記録パワー学習領域内の未記録箇所を選択して記録を実施する。
 「記録領域トラック」の本数、位置、または配置関係を決定した後、システムコントローラ505は、スピンドルモータ503の回転速度を決定する。記録マーク3を形成するために光ビームを光ディスク1に照射するとき、この光ビームのパワーが高すぎると、図2に示す基板101の一部が熱によって変形してプリピット2の形状が変化する可能性がある。プリピット2の情報が消えてしまわないように、光ピックアップ501の光源のパワーを設定することが好ましい。
 システムコントローラ505は、上記条件が決まると、光ピックアップ501、スピンドルモータ503等を制御する。つまり、光ピックアップ501による記録マーク3の記録が開始される。
 <2.1.2       記録中の制御>
 光ピックアップ501から出射された光ビームが、光ディスク1上のプリピット2にフォーカスし、目標とするトラック上のプリピット2を追従するようにフォーカス制御およびトラッキング制御が実行される。ここで光学ドライブ装置500は、光ディスク1の反射光から得られる非点収差情報に基づき、フォーカス制御を実行する。また、光学ドライブ装置500は、光ディスク1の反射光に含まれる、プリピット2からの位相差情報(Differential Phase Detection 以下、「DPD」)に基づき、トラッキング制御を実行する。DPD信号は、RF信号の振幅を十分に大きくするような深さを有するプリピット2の列にトラッキングするために好適に用いることのできるトラッキングエラー信号である。プッシュプル方式のトラッキングエラー信号の振幅は、プリピット2の深さがλ/8のときに最も大きくなるが、深さがλ/8のプリピット2から得られるRF信号の振幅はゼロになってしまう。逆に深さがλ/4のプリピット2から得られるRF信号の振幅は最大化されるが、深さがλ/4のプリピット2からは、プッシュプル方式のトラッキングエラー信号の振幅がゼロになってしまう。このため、プリピット2の列に対してトラッキング制御を行うには、プッシュプル方式のトラッキングエラー信号を用いるのではなく、DPD方式のトラッキングエラー信号を用いることが好ましい。
 なお、プリピット2の両側に、プリピット2の深さ(例えばλ/4)とは異なる深さ(例えばλ/8)を有するグルーブ(案内溝)を形成した場合、この案内溝を利用してプッシュプル方式のトラッキングエラー信号を生成することが可能である。本実施形態では、DPD方式のトラッキングエラー信号を用いるため、このようなグルーブは不要である。
 ここで、図8Aを参照して、記録マーク形成中のトラッキング制御を説明する。本実施形態では、ディスク表面の法線方向から光ディスク1を見たときの記録マーク3を形成する箇所に、プリピットが存在している。したがって、光学ドライブ装置500は、案内溝がないトラックにおいて、記録マーク3を形成する場合であっても、光ディスク1からの反射光に含まれるプリピット信号を用いてDPDトラッキング制御を行なうことが可能である。記録マーク3を形成しないときは、トラッキング制御に必要なDPD信号を得るために必要なパワーで光ビームを照射するが、記録マーク3を形成するとき、その光ビームのパワーを一時的に高める。パワーを高められた光ビームの照射を受けた記録膜102の光学的性質が局所的に変化し、記録マーク3が形成される。本実施形態では、プリピット2に比べて格段に長い記録マーク3を形成している間、前述したように、光源をマルチパルス状に発光させるのではなく、連続的に発光させる。ここで、記録マーク3を形成するために必要な光パワーをPhigh、記録マーク3を形成しないがDPD信号を得るために必要な光パワーをPlowとする。この場合、光パワーをPlowからPhighに上昇させているとき、記録マーク3が形成される。このため、光パワーをPlowからPhighに上昇させている時間に比例した長さの記録マーク3が形成される。
 従来、記録用の光ビームを光ディスク1の目標トラックに照射しながら、トラッキングエラー信号を得るための光ビーム(サブビーム)を目標トラックに隣接するトラックに照射する技術が存在する。本実施形態では、1本のビームでトラッキングエラー信号(DPD信号)を生成しながら、長い記録マーク3をトラック上に正しく形成することができる。
 図8Aに示す例では、記録マーク3を形成しているとき、光ビームのパワーが高いため、その反射光の強度を示すRF信号のレベルも全体として高くなっている。RF信号上の相対的に高い周波数の波形は、例えば図6Aに示す複数のプリピット2によるものである。図6Aに示すように、1つの記録マーク3が多数のプリピット2とオーバーラップしているため、記録マーク3を形成しているときの反射光の強度も、図8Aに示すように、多数のプリピット2による高周波信号が重畳される。図8Aでは、プリピット2の信号は模式的に記載されており、現実の反射光には、図示されているよりも高周波のプリピット信号が重畳される。
 図8Aに示すように、記録マーク3の形成中において、光ディスク1の反射光から、プリピット信号を分離して読み出すことが可能である。これは、プリピット2の長さに比べて記録マーク3の記録長が充分に長いからである。また、プリピット2の反射光が光ピックアップ501の受光素子で飽和しないように光ピックアップ501の光源の光量を調整したためである。
 このように、システムコントローラ505は、記録マーク3の形成中において、プリピット2からの信号を得ることができる。言い換えると、記録マーク3を形成している最中も、DPD信号を得ることができる。このため、光学ドライブ装置500は、DPDトラッキング制御を行った上で記録マーク3を形成できる。
 加えて、記録開始直前のプリピット2の情報を読み取りながらPLL制御を安定にかけてクロック信号を生成できる。そのクロック信号を基準に記録タイミングを生成し、さらに、記録マーク3の形成中もプリピット2の情報を読み取り、クロックの生成が可能である。このため、記録マークを形成するために必要な高いパワーで発光するタイミングを正確に制御でき、結果としてジッタの少ない記録マーク3を作成できる。
 前述したように、本実施形態では、記録マーク3の形成中もマルチパルスではなく連続的な光の照射を行うため、その間にトラッキングエラー信号およびクロック信号の生成が可能になる。特に本実施形態では、非常に長い記録マーク3を形成するため、その最中にトラッキングエラー信号およびクロック信号を継続的に生成できることは品質の高い記録マークの形成を行う上で有益である。
 ここで、DPDトラッキング制御を使うメリットを説明する。通常の記録用の光ピックアップでは、往路で3ビームに分割し、4分割の光検出器を3組用意して、DPPトラッキング制御を行う。これにより、光ディスク1の偏芯に対物レンズが追従することにより発生するTEオフセットをキャンセルし、光ディスクの案内溝に安定に追従する。
 一方、本実施形態では、記録中にもDPDトラッキングでトラッキング制御が可能である。そのため、光検出器は、4分割の光検出器が1組で良い。つまり、光検出器のサイズが小さくなり、光ディスク1のサイズを小型化、低価格化することが可能となる。また、3ビームに分割する必要がないので、往路の回折格子が不要になる。そのため、同様に光ディスク1のサイズを小型化、低価格化に寄与する。さらに、3ビームに分割しないので、光源の利用効率が良くなり、消費電力が減少する。加えて、3ビームに分割しないので、光源の利用可能時間が増大し、低発光パワーの光源が利用可能となる。
 なお、本実施形態では、記録マーク3の記録長をプリピット2よりも十分長くした。そのため、光ピックアップ501の光源の光量の切替を少なくすることができる。このため、安価なレーザー制御回路を利用することができる。
 <2.2 システムコントローラ505の再生制御>
 次に、図8Bから図12を参照して、システムコントローラ505による光ディスク1の再生制御を説明する。光ディスク1には、プリピット2上に記録マーク3が記録されているものとする。
 図8Bは、1ビットの記録マークが形成されている部分、および、その前後に位置する未記録部分から得られるRF信号の波形例を示している。記録マークが形成されている部分から得られるRF信号のレベルは、未記録部分から得られるRF信号のレベルよりも低い。図8Aでは、記録マークを形成するとき、光ビームのパワーが高くなるため、記録マークの反射率が未記録部分の反射率よりも低下したとしても、記録マーク形成中に得られるRF信号のレベルは高くなる。しかし、データ再生時には、比較的低い一定のパワーの光ビームで光ディスク1を照射するため、図8Bに示すように、反射率が低下した記録マークから得られるRF信号のレベルが低下することになる。記録マークと未記録部分との間には、このようにRF信号のレベルに差異があるため、これを検知すれば、記録マークを検出することができる。
 本実施形態におけるシステムコントローラ505は、光ピックアップ501を制御し、プリピット2上に記録マーク3が記録された光ディスク1から情報を読み出すことが可能である。より詳細には、システムコントローラ505は、光ディスク1に記録された記録マーク3及びプリピット2を両方検出可能である。これは、記録マーク3の記録長がプリピット2に対して格段に長く、それぞれの信号周波数が異なるため、RF信号から2種類の信号を容易に周波数で分割できるためである。図9は、RF信号を受け取り、その中から相対的に周波数が高いプリピット信号を選択的に通過させるハイパスフィルタ(HPF)と、同様にRF信号を受け取り、その中から相対的に周波数が低い記録マーク信号を選択的に通過させるローパスフィルタ(LPF)とを備えるフィルタ回路の構成例を示している。システムコントローラ505は、図9に示すようなフィルタ回路を含むことにより、図8Bに示すようなRF信号からプリピット信号と記録マーク信号とを分離することができる。
 また、システムコントローラ505は、プリピット2上に記録マーク3が記録されたとしても、プリピット2の信号を用いて、トラッキング制御可能である。例えば、図8Bに示すように、記録マーク3記録後においても、プリピット2の信号光(高周波の波形)を取得できる。また、プリピット2によるDPD信号を得ることもできる。これは、プリピット2の情報を潰さない(消してしまわない)ように記録マーク3の情報を記録したためである。上述したように、記録マーク3とプリピット2の信号周波数帯域が十分に離れていることにより、それぞれの情報を反射光からフィルタ回路で分離することが可能になる。なお、プリピット2の最長ピットより記録マーク3の最短マーク長が10倍以上と長ければ、フィルタ回路の特性上、容易に分離することが可能になる。
 光ディスク1の反射光に基づいて記録マーク3による情報を読み出す方法は、上記の方法に限定されない。図10Aおよび図10Bを参照して、記録マーク3による情報を読み出す方法の他の例を説明する。
 図10Aは、記録マークからの反射光強度が未記録部分からの反射光(RF信号)強度よりも低い場合の反射光の波形例を示す。一方、図10Bは、記録マークからの反射光強度の平均値が未記録部分からの反射光強度の平均よりも高い場合の反射光の波形例を示している。図10Aおよび図10Bの横軸は時間である。
 前述したように、図9に示すフィルタ回路を用いることにより、RF信号から記録マーク3による情報を取り出すことができるが、RF信号の平均値12および/またはエンベロープに基づいて記録マーク3による情報を取り出すこともできる。図10Aおよび図10Bには、RF信号の平均値12を示す破線、ならびに、RF信号の上エンベロープ14および下エンベロープ16を示す実線が示される。図10Aに示す波形の例では、RF信号の平均値12、上エンベロープ14、および下エンベロープ16のいずれもが、記録マークと未記録部との間で異なるレベルにある。このため、例えばRF信号の平均値12を求め、この平均値12が相対的に低下したとき、光ビームが記録マーク3の上を通過していると判定することができる。同様に、RF信号の上エンベロープ14または下エンベロープ16を求め、それが相対的に低下したとき、光ビームが記録マーク3の上を通過していると判定してもよい。
 図10Bに示す例では、RF信号の上エンベロープ14が記録マークと未記録部分との間で変化していない。このような波形は、例えば、記録マークを形成するときの光ビームのパワーが小さいために記録膜の光学特性がほとんど変化しなかったのに、プリピット2の形状が熱によって変化した場合に生じ得る。このような現象は、プリピット2の形状が熱で変化し、それによってプリピット2の深さがλ/4から変化したとき、プリピット2からの反射光の強度が高まることによって生じ得る。図10Bに示すような場合、RF信号の平均値12または下エンベロープ16を求め、それが相対的に上昇したとき、光ビームが記録マーク3の上を通過していると判定すればよい。
 上述したように、本発明によれば、「記録マーク」は、必ずしも記録膜中に形成されるとは限られない。記録膜において記録マークが形成された領域の光学特性(反射率など)が未記録部分に比べて変化していない場合でも、基板表面の物理的状態を未記録部分の物理的状態から変化させることにより記録マークを形成することができる(図10B)。言い換えると、本発明における記録マークは、記録膜または基板表面に形成され得る。
 なお、図10Bに示すようなRF信号の波形は、例えば、次のような場合にも得られる。すなわち、記録マークを形成するときの光ビームのパワーが小さいために記録膜の光学特性が、全体としては、ほとんど変化しなかったのに、プリピット2の凹部に熱が蓄積され、その結果、記録膜のうち、プリピット2の凹部に位置する部分の光学特性が局所的に変化すると、図10Bに示すようなRF信号が得られることがある。
 システムコントローラ505は、プリピット2上に記録マーク3が形成されたとしても、DPD信号に基づくトラッキング制御を行うことができる。これは、プリピット2を潰さない(プリピット2による情報を消してしまわない)ように記録マーク3の情報を記録したためである。図10Aおよび図10Bに示す例でも、記録マーク3を形成した領域でも、プリピット2の情報は消去されず、RF信号に残っている。
 次に、図11および図12を参照する。図11は、追記情報を記録した後の光ディスクから得られるDPD信号の波形を示している。トラッキング制御はオン状態にある。DPD信号がゼロレベル(GND)に維持されるようにトラッキングが実行されている。図11の波形は、未記録部でも記録マーク部でも安定にTE制御が行われていることを示している。
 図12は、追記情報を記録した後の光ディスクから得られるDPD信号の波形を示している。トラッキング制御はオフ状態にある。DPD信号のレベルは、光ビームがトラックを横切るごとに増減し、三角波状の波形を示している。
 このように、DPD信号は、記録マークの形成中も、記録マークを形成した後も適正に得られる。もしも、記録マークを形成した領域からトラッキングエラー信号を得ることができない場合は、記録マークの長さを十分に短縮し、記録マーク形成時にトラッキングホールドを行えばよい。しかしながら、記録マークが長い場合にトラッキングホールドを行うと、トラッキングが外れてしまうことになる。本発明によれば、記録マークがプリピット上に存在してもDPD信号が得られるため、このDPD信号を用いてトラッキング制御を行えば、トラッキングホールドを行った場合にトラッキングが外れてしまうような長い記録マークを作成することが可能である。
(他の実施形態)
 図13を参照して、トラッキングホールドを行う例を説明する。図13は、記録マークの形成中に、反射光の強度が光検出器の検出レンジを越えて飽和するときのRF信号の波形例を示している。図13に示すように、記録中にRF信号振幅が大きく、光検出器の検出レンジを越えて飽和してしまう場合であっても、より安定して記録マークを形成できる。また、光源のパワー(光量)によって反射膜の反射率が下がり、DPD信号の検出精度が下がってしまう場合も、記録マーク形成領域からは適正なトラッキングエラー信号を得ることが困難になる。このような場合も、記録マークが形成されている領域ではトラッキングホールドを行うことが有効であり得る。
 上記の実施形態では、記録マーク3の記録動作中に、DPDトラッキング制御を行なうようにした。しかし、これに限られず、記録マーク3の記録動作中に、プッシュプル信号を用いてトラッキング制御を行っても良い。プリピット2の再生信号の周波数帯域が、DPDトラッキング制御の位相差検出回路の信号帯域を外れるような場合(光ディスクを極端に遅く、あるいは速く回転させた場合に該当)、DPDトラッキング制御を安定に行うことができない場合がある。このような場合、プッシュプル信号の方がより安定にトラッキング制御を行うことができる。
 上記の実施形態では、図10Aなどに示すようなRF信号の振幅を用いて記録マーク3を検知するようにした。しかし、これに限られず、図14に示すRF信号の信号品質(ジッタ特性等)に基づいて記録マーク3を検知するようにしてもよい。記録マーク3が記録された箇所にプリピットが形成されているため、記録マークの記録部と未記録部との間でRF信号の振幅に差異が無い場合においても、双方のプリピットによる再生ジッタに差異があり得る。このような再生ジッタの差異に基づいて、どの部分に記録マークが記録されているかを検知することができる。
 本実施形態では、図6Aに示すように、複数の記録マーク3を形成する際、第1の記録マーク3aと第2の記録マーク3bが隣接するトラックに記録されないようにした。しかし、これに限られず、例えば、図15に示すように、光ディスクの半径方向において、記録マーク3が隣接しないようにしてもよい。この場合においても、光ディスクの半径方向に隣接する記録マークの中心線間隔は、2トラックピッチ以上である。
 In-Pitで形成した場合、以下のメリットがある。つまり、プリピットの凹んでいる部分が記録膜に断熱効果を与え、記録マーク3の記録が容易になる場合がある。その際、光ピックアップ501の光源のパワーを弱くできる。
 プリピットは、記録マークが記録された後に、読み取り不可能であってもかまわない。つまり、本実施形態では、プリピット上に記録マークが記録できれば、どのような構成であってもよい。
 本発明は、光ディスクに情報を記録することが可能な光学ドライブ装置などに適用可能である。
1 光ディスク
2 プリピット
3 記録マーク
3a 第1の記録マーク
3b 第2の記録マーク
4  溝
101 基板
102 記録膜
103 保護膜
104 ハードコート
500 光学ドライブ装置
501 光ピックアップ
502 移送モータ
503 スピンドルモータ
505 システムコントローラ
506 不揮発性メモリ

Claims (16)

  1.  光ディスクに情報を記録することが可能な光学ドライブ装置であって、
     前記光ディスクは、トラック上に複数のプリピットが形成された基板と、前記基板に支持される記録膜とを有し、
     前記光学ドライブ装置は、
     光ピックアップと、
     前記トラック上において前記複数のプリピットに重なる位置で記録マークを形成するよう前記光ピックアップを制御し、前記記録膜に記録用の光を照射させる記録制御部と、
    を備え、
     前記記録マークは、少なくとも10個のプリピットとオーバーラップする、光学ドライブ装置。
  2.  前記記録制御部は、前記記録マークを形成している間、前記光ピックアップから前記記録用の光を連続的に前記記録膜に照射させる、請求項1に記載の光学ドライブ装置。
  3.  前記光ピックアップで検出された反射光を示す信号に含まれる前記プリピットの情報に基づいて、トラッキング制御を行なうトラッキング制御部を備える、請求項1に記載の光学ドライブ装置。
  4.  前記トラッキング制御部は、前記記録マークが形成されている最中において、前記光ピックアップで検出された反射光を示す信号に含まれる前記プリピットの情報に基づいて、トラッキング制御を行う請求項3に記載の光学ドライブ装置。
  5.  前記トラッキング制御部は、前記記録マークを形成する前に前記光ピックアップで検出された反射光を示す信号に含まれるプリピットの情報に基づいて、前記記録マークを形成している間のトラッキング制御を行なう、請求項1に記載の光学ドライブ装置。
  6.  前記記録制御部によって前記プリピットと重なる位置に記録マークが形成された光ディスクから、前記光ピックアップを用いて情報を読み出す再生制御部をさらに備え、
     前記再生制御部は、前記光ピックアップで検出された反射光を示す信号のジッタ特性に基づいて、前記記録制御部によって前記記録マークが記録された箇所を検知する、請求項1に記載の光学ドライブ装置。
  7.  前記記録制御部によって前記プリピットと重なる位置に記録マークが記録された光ディスクから、前記光ピックアップを用いて情報を読み出す再生制御部をさらに備え、
     前記再生制御部は、前記光ピックアップで検出された反射光を示す信号の振幅に基づいて、前記記録制御部によって前記記録マークが記録された箇所を検知する、請求項1に記載の光学ドライブ装置。
  8.  前記記録制御部によって前記プリピットと重なる位置に記録マークが記録された光ディスクから、前記光ピックアップを用いて情報を読み出す再生制御部をさらに備え、
     前記再生制御部は、前記光ピックアップで検出された反射光を示す信号の周波数に基づいて、前記プリピットによる情報と前記記録マークによる情報とを分離する、請求項1に記載の光学ドライブ装置。
  9.  前記記録制御部は、前記記録マークを形成するとき、前記記録マークと重なる位置にある前記プリピットの形状が読み出し不能な状態に変化しないように前記記録用の光のパワーを調整する、請求項1に記載の光学ドライブ装置。
  10.  前記光ディスクの前記プリピットは、前記記録膜の側から視て凹部形状を有している、請求項1に記載の光学ドライブ装置。
  11.  前記記録制御部は、前記記録マークを形成するとき、前記記録膜のうちで前記プリピットの凹部に位置する部分の反射率を局所的に変化させるように前記記録用の光のパワーを調整する、請求項10に記載の光学ドライブ装置。
  12.  前記記録制御部は、前記記録マークを形成するとき、前記プリピットの凹部に位置する部分の形状を局所的に変形させるように前記記録用の光のパワーを調整する、請求項10に記載の光学ドライブ装置。
  13.  光ディスクに情報を記録することが可能な光学ドライブ装置であって、
     前記光ディスクは、トラック上に複数のプリピットが形成された基板と、前記基板に支持される記録膜とを有し、
     前記光学ドライブ装置は、
     光ピックアップと、
     前記トラック上において前記複数のプリピットに重なる位置で記録マークを形成するよう前記光ピックアップを制御し、前記記録膜に記録用の光を照射させる記録制御部と、
    を備え、
     前記記録制御部は、前記記録膜のうち前記プリピットの凹部に位置する部分の反射率を局所的に変化させるように前記記録用の光のパワーを調整し、前記記録マークは、局所的に反射率が変化した複数の部分によって構成される、光学ドライブ装置。
  14.  光ディスクに情報を記録することが可能な光学ドライブ装置であって、
     前記光ディスクは、トラック上に複数のプリピットが形成された基板と、前記基板に支持される記録膜とを有し、
     前記光学ドライブ装置は、
     光ピックアップと、
     前記トラック上において前記複数のプリピットに重なる位置で記録マークを形成するよう前記光ピックアップを制御し、前記記録膜に記録用の光を照射させる記録制御部と、
    を備え、
     前記記録制御部は、前記記録膜のうち前記プリピットの凹部に位置する部分の形状を局所的に変形させるように前記記録用の光のパワーを調整し、前記記録マークは、局所的に形状が変形した複数の部分によって構成される、光学ドライブ装置。
  15.  各記録マークは、局所的に反射率が変化した10個以上の部分によって構成される、請求項13に記載の光学ドライブ装置。
  16.  各記録マークは、局所的に反射率が変化した10個以上の部分によって構成される、請求項14に記載の光学ドライブ装置。
PCT/JP2010/007320 2010-01-08 2010-12-17 光学ドライブ装置 WO2011083536A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/201,665 US8391124B2 (en) 2010-01-08 2010-12-17 Optical drive
JP2011548871A JP5496226B2 (ja) 2010-01-08 2010-12-17 光学ドライブ装置
EP10842056.3A EP2523190A4 (en) 2010-01-08 2010-12-17 OPTICAL DRIVE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010002517 2010-01-08
JP2010-002517 2010-01-08

Publications (1)

Publication Number Publication Date
WO2011083536A1 true WO2011083536A1 (ja) 2011-07-14

Family

ID=44305283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/007320 WO2011083536A1 (ja) 2010-01-08 2010-12-17 光学ドライブ装置

Country Status (4)

Country Link
US (1) US8391124B2 (ja)
EP (1) EP2523190A4 (ja)
JP (1) JP5496226B2 (ja)
WO (1) WO2011083536A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002039434A1 (fr) * 2000-11-07 2002-05-16 Matsushita Electric Industrial Co., Ltd. Disque optique, dispositif d'enregistrement pour disque optique, dispositif de reproduction pour disque optique, procede de reproduction de disque optique et procede de production de disque optique
WO2003017274A1 (en) * 2001-08-13 2003-02-27 Sony Corporation Optical disk recording and/or reproducing apparatus and its recording and/or reproducing method
JP4211395B2 (ja) * 2000-12-19 2009-01-21 ソニー株式会社 光ディスク、光ディスクの記録方法及び再生方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61271628A (ja) * 1985-05-25 1986-12-01 Nec Home Electronics Ltd 光デイスクの記録再生方法
EP1251502B1 (en) * 1995-10-09 2004-07-28 Matsushita Electric Industrial Co., Ltd. An optical disk with an optical barcode
JP3076230B2 (ja) 1995-10-13 2000-08-14 日本電気株式会社 光ディスク
JP2000348388A (ja) * 1999-06-04 2000-12-15 Sharp Corp 光記録媒体
JP2002237102A (ja) * 2000-07-07 2002-08-23 Tdk Corp 光記録媒体およびその製造方法
JP2002133714A (ja) * 2000-10-23 2002-05-10 Pioneer Electronic Corp 多層情報記録媒体及び記録装置
AU2002219606A1 (en) * 2002-01-11 2003-07-30 Fujitsu Limited Optical information recording medium
US20030207206A1 (en) 2002-04-22 2003-11-06 General Electric Company Limited play data storage media and method for limiting access to data thereon
JP4193408B2 (ja) 2002-04-22 2008-12-10 ソニー株式会社 光記録媒体及びその製造方法、光記録方法、光再生方法
KR100687533B1 (ko) 2002-08-26 2007-02-27 다이요 유덴 가부시키가이샤 광정보 기록매체
US7778143B2 (en) * 2004-04-15 2010-08-17 Panasonic Corporation Optical disk and optical disk apparatus
US8040785B2 (en) * 2006-05-30 2011-10-18 Panasonic Corporation Optical disc, optical disc manufacturing method, optical disc recording device and optical disc reproduction device
EP2264703A4 (en) * 2008-03-12 2011-06-08 Panasonic Corp OPTICAL PLATE RECORDING DEVICE, OPTICAL PLATE RECORDING CIRCUIT, AND OPTICAL PLATE
JP2010186545A (ja) 2009-01-16 2010-08-26 Sharp Corp 光情報記録媒体再生方法、光情報記録媒体記録再生方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002039434A1 (fr) * 2000-11-07 2002-05-16 Matsushita Electric Industrial Co., Ltd. Disque optique, dispositif d'enregistrement pour disque optique, dispositif de reproduction pour disque optique, procede de reproduction de disque optique et procede de production de disque optique
JP4211395B2 (ja) * 2000-12-19 2009-01-21 ソニー株式会社 光ディスク、光ディスクの記録方法及び再生方法
WO2003017274A1 (en) * 2001-08-13 2003-02-27 Sony Corporation Optical disk recording and/or reproducing apparatus and its recording and/or reproducing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2523190A4 *

Also Published As

Publication number Publication date
US8391124B2 (en) 2013-03-05
JP5496226B2 (ja) 2014-05-21
EP2523190A4 (en) 2016-12-07
JPWO2011083536A1 (ja) 2013-05-13
EP2523190A1 (en) 2012-11-14
US20110299372A1 (en) 2011-12-08

Similar Documents

Publication Publication Date Title
TWI289840B (en) Optical disk, optical disk apparatus, optical disk recording and reproduction method, and apparatus and method for recording BCA code
JP2007519143A (ja) 情報保存媒体、これに記録された情報再生装置及び方法
JP2002352469A (ja) 多層情報記録媒体及び情報記録再生装置
JP4618730B2 (ja) 情報再生方法及び情報再生装置
JP4226204B2 (ja) 光学式記録媒体、その製造装置および製造方法
JP4847864B2 (ja) 光ディスク判別方法及び光ディスク装置
US8031582B2 (en) Optical information recording medium, BCA information recorder, and BCA information recording method
JP4200335B2 (ja) 情報記録媒体、並びに情報記録装置及び方法
JP2002133714A (ja) 多層情報記録媒体及び記録装置
KR20060043506A (ko) 광 기록 매체, 광 기록 매체의 제조 방법, 기록/재생 방법및 기록/재생 장치
US20050276212A1 (en) Information record medium, and information record apparatus and method
WO2001059773A1 (fr) Support d'enregistrement d'informations optiques, procede d'enregistrement/reproduction correspondant et tete de lecture a rayon laser
JPH11120560A (ja) 光ディスクの記録方法及びアクセス方法、光ディスク、光ディスク記録装置及び光ディスク装置
JP2008516367A (ja) 光記録担体
JP5496226B2 (ja) 光学ドライブ装置
US8218413B2 (en) Optical disc drive
JP4154256B2 (ja) 光学式情報記録媒体の記録再生装置、および光学式情報記録媒体の記録再生方法
US8238213B2 (en) Optical disc drive
JP2012226809A (ja) 光記録媒体及び駆動装置
KR100759910B1 (ko) 정보 기록 매체, 및 정보 기록 장치 및 방법
JP2005293820A (ja) 光学式記録媒体、光学式記録媒体の製造方法、記録/再生方法、および記録/再生装置
JP2011165304A (ja) 光学ドライブ装置
KR20050026633A (ko) 광 기록 재생 시스템
JP2006323978A (ja) 情報記録/再生方法および情報記録/再生装置
JP2008217909A (ja) 情報記録媒体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13201665

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011548871

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10842056

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010842056

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE