WO2011078577A2 - 하이브리드 산업용 차량의 전력변환장치 - Google Patents

하이브리드 산업용 차량의 전력변환장치 Download PDF

Info

Publication number
WO2011078577A2
WO2011078577A2 PCT/KR2010/009205 KR2010009205W WO2011078577A2 WO 2011078577 A2 WO2011078577 A2 WO 2011078577A2 KR 2010009205 W KR2010009205 W KR 2010009205W WO 2011078577 A2 WO2011078577 A2 WO 2011078577A2
Authority
WO
WIPO (PCT)
Prior art keywords
converter
switch
battery
ultracapacitor
power
Prior art date
Application number
PCT/KR2010/009205
Other languages
English (en)
French (fr)
Other versions
WO2011078577A3 (ko
Inventor
홍민석
김춘택
Original Assignee
두산인프라코어 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 두산인프라코어 주식회사 filed Critical 두산인프라코어 주식회사
Publication of WO2011078577A2 publication Critical patent/WO2011078577A2/ko
Publication of WO2011078577A3 publication Critical patent/WO2011078577A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1423Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle with multiple batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/40Working vehicles
    • B60L2200/42Fork lift trucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/20Inrush current reduction, i.e. avoiding high currents when connecting the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/001Emergency protective circuit arrangements for limiting excess current or voltage without disconnection limiting speed of change of electric quantities, e.g. soft switching on or off
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/60Electric or hybrid propulsion means for production processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a power converter of a hybrid industrial vehicle, and more particularly, to a power of a hybrid industrial vehicle capable of preventing inrush current flowing from a battery to an ultra capacitor (UC) by a potential difference when an operation of a hybrid electric forklift is started. It relates to an inverter.
  • UC ultra capacitor
  • Forklift trucks are industrial vehicles used to load cargo. It is used to lift relatively heavy loads to a desired location or to transport them to another location within a limited area. Forklifts are divided into basic forklifts and electric forklifts.
  • the basic forklift uses an engine as a power source, drives a hydraulic pump with the engine, and performs a steering operation of a steering device and a tilting / lifting operation of a work machine with a hydraulic oil discharged from the hydraulic pump.
  • the electric forklift uses a battery as a power source, the electric motor rotates by the battery, and the pump motor rotates by the rotation of the electric motor, and the hydraulic pump is driven by the rotation of the pump motor to be steered by the hydraulic oil discharged from the hydraulic pump.
  • the steering operation of the device and the tilting / lifting operation of the work machine are performed.
  • Electric forklifts are mainly used indoors because they use batteries and electric motors to reduce smoke and noise.
  • Ultracapacitors have a much higher self-discharge rate than batteries, so when starting the forklift operation in the fully discharged state of the ultracapacitor, an excessive current may flow from the battery to the ultracapacitor due to the potential difference between the battery and the ultracapacitor.
  • the excess current flowing to the ultracapacitor is called inrush current. This inrush current can damage the ultracapacitor.
  • the present invention was devised to solve the above problems, and an object of the present invention is to provide a power converter of a hybrid industrial vehicle capable of safely performing an initial charging operation of an ultracapacitor with a low cost and simple configuration.
  • the power converter of a hybrid industrial vehicle in the power converter of a hybrid industrial vehicle using a battery and an ultracapacitor as a power source, DC-DC converter for changing the voltage level of the battery, and A DC link that receives the voltage output from the DC-DC converter and the voltage of the ultracapacitor and outputs it to an interleaver, and connects the output terminal of the battery and the DC-DC converter during an initial charging operation of the hybrid industrial vehicle, And a switch unit connecting the ultra capacitor and the input terminal of the DC-DC converter.
  • the present invention can perform the initial charging operation of the ultracapacitor using the existing DC-DC converter only by adding a switch unit to the power converter, there is no need for a separate charging circuit for initial charging, Accordingly, the manufacturing cost of the power converter can be lowered, and the circuit design of the power converter is not necessary to secure a space for mounting the charging circuit in the power converter.
  • the present invention because the residual voltage of the ultra-capacitor is discharged to the battery by the operation of the switch unit during the replacement or maintenance of the ultra-capacitor, there is an effect that can prevent an electric shock accident of the operator by the residual voltage of the ultra-capacitor.
  • FIG. 1 is a block diagram of a power conversion device of an electric hybrid forklift truck according to the present invention.
  • FIG. 2 is a view showing an initial charging operation of the power converter according to the present invention.
  • FIG. 3 is a view showing the normal operation of the power conversion apparatus according to the present invention.
  • Figure 4 is a view showing the discharge operation of the power converter when the replacement / maintenance of the ultracapacitor.
  • Figure 5 is a flow chart showing the operation of the power conversion apparatus according to the present invention.
  • control unit 42 switch unit
  • FIG. 1 illustrates a schematic configuration of a power converter of a hybrid industrial vehicle according to an embodiment of the present invention.
  • the input terminal of the power converter 40 is connected to the battery 10 and the ultra capacitor 20, and the output terminal of the power converter 40 is connected to the inverter 30.
  • the power converter 40 receives a voltage from the battery 10 and the ultra capacitor 20, performs a predetermined process, and outputs the voltage to the inverter 30.
  • the inverter 30 converts the direct current output from the power converter 40 into alternating current and supplies it to the load.
  • the power converter 40 receives the voltage output from the DC-DC converter 43, the DC-DC converter 43, and the voltage of the ultracapacitor 20 to step down or step up the DC voltage level of the battery 10.
  • the initial charging operation is performed with the ultra capacitor 20 when the hybrid electric forklift truck starts operation.
  • the control unit 41 detects the start of operation of the forklift, the control unit 41 controls the switch unit 42 so that the voltage of the battery 10 is charged by the ultra capacitor 20 through the DC-DC converter 43. do.
  • the switch unit 42 may include a first switch MC1 installed between the battery 10 and an input terminal of the DC-DC converter 42, and a second switch installed between the ultra capacitor 20 and the output terminal of the DC-DC converter 42.
  • MC2 the third switch SR1 provided between one end of the first switch MC1 and the other end of the second switch MC2, the fourth switch provided between the other end of the first switch MC1 and one end of the second switch MC2. It consists of a switch SR2.
  • the first switch MC1 and the second switch MC2 may use a high-capacity large-capacity contactor
  • the third switch SR1 and the fourth switch SR2 may use a small capacity relay.
  • FIG 2 illustrates an initial charging operation of the power converter according to the present invention.
  • the first switch MC1 and the second switch MC2 are turned off, and the third switch SR1 and the fourth switch SR2 are turned on, so that the battery 10 and the DC-DC converter ( The output terminal of 43 is connected, and the ultra capacitor 20 and the input terminal of the DC-DC converter 43 are connected.
  • the switch unit 42 By the on / off operation of the switch unit 42 as described above, the current from the battery 10 flows into the ultra capacitor 20 through the DC-DC converter 43 as shown by the arrow shown in FIG. The initial charging operation to the ultra capacitor 20 is performed.
  • FIG 3 shows normal operation of the power conversion apparatus according to the present invention.
  • the forklift receives power from the battery 10 and the ultra capacitor 20 to start a normal operation operation.
  • the first switch MC1 and the second switch MC2 are turned on, and the third switch SR1 and the fourth switch SR2 are turned off, so that the battery 10 and the DC-DC converter ( The input terminal of 43 is connected, and the ultra capacitor 20 and the output terminal of the DC-DC converter 43 are connected.
  • the switch unit 42 By the on / off operation of the switch unit 42, the current from the battery 10 flows into the inverter 30 via the DC-DC converter 43 and the DC link 44, and the ultracapacitor 20 The current from ⁇ flows into the inverter 30 via the DC link 44.
  • the operator In order to replace or service the ultracapacitor 20, the operator must separate the ultracapacitor 20 from the forklift. When there is a residual voltage in the ultracapacitor 20 when the ultracapacitor 20 is separated, an electric shock accident may occur due to the remaining voltage.
  • the controller 41 controls the switch unit 42 to control the ultracapacitor 20.
  • the voltage is discharged to the battery 10 through the DC-DC converter 43.
  • the first switch MC1 and the second switch MC2 are turned off, and the third switch SR1 and the fourth switch SR2 are turned on, so that the battery 10 and the DC-DC converter ( The output terminal of 43 is connected, and the ultra capacitor 20 and the input terminal of the DC-DC converter 43 are connected.
  • This connection structure is the same as that of the initial charging operation. However, since there is a residual voltage in the ultracapacitor 20, as shown by the arrow shown in FIG. 4, the current from the ultracapacitor 20 flows into the battery 10 through the DC-DC converter 43. The discharging operation of the ultra capacitor 20 may be performed.
  • FIG. 5 is a flowchart illustrating an operation process of a power conversion apparatus according to the present invention.
  • a hybrid key switch of a hybrid electric forklift is turned on (S10).
  • the hybrid operation of the forklift is started, and the controller 41 determines whether the voltage V_dc charged in the DC link 44 is greater than or equal to a predetermined reference voltage (S11).
  • the reference voltage is typically 90% of the battery voltage. If the DC link voltage is below the reference voltage, wait until the DC link voltage is above the reference voltage. If the DC link voltage does not reach the reference voltage after a certain time (eg 5 seconds), it is treated as an error occurrence.
  • the controller 41 determines whether the ultracapacitor 20 voltage is greater than or equal to the reference voltage (S12).
  • the controller 41 controls the switch 42 to turn on the first switch MC1 and the second switch MC2 (S16). Accordingly, the input terminal of the battery 10 and the DC-DC converter 43 are connected, and the output terminals of the ultra capacitor 20 and the DC-DC converter 43 are connected to perform normal operation immediately without an initial charging operation. do.
  • the controller 41 controls the switch unit 42 to turn on the third switch SR1 and the fourth switch SR2 (S13). Accordingly, the output terminal of the battery 10 and the DC-DC converter 43 are connected, and the input terminal of the ultra capacitor 20 and the DC-DC converter 43 is connected, so that the initial charging operation to the ultra capacitor 20 is performed. Is performed.
  • the controller 41 determines whether the voltage of the ultra capacitor 20 is equal to or greater than the reference voltage (S14). If the voltage of the ultra capacitor 20 does not reach the reference voltage, charging is continued. When the voltage of the ultra capacitor 20 is equal to or higher than the reference voltage, the controller 41 turns off the third switch SR1 and the fourth switch SR2 (S15), and the first switch MC1 and the second switch ( MC2) is turned on (S16), and thus, the battery 10 and the ultracapacitor 20 perform the hybrid normal operation operation of sharing the power of the load.
  • the present invention has been described by taking a power converter of a hybrid electric forklift as an example, but is not limited thereto, and is applicable to the power converter of all hybrid electric industrial vehicles having a battery and an ultracapacitor. Therefore, the embodiments disclosed in the specification of the present invention are not intended to limit the present invention.
  • the scope of the present invention should be construed by the claims below, and all techniques within the scope equivalent thereto will be construed as being included in the scope of the present invention.
  • the present invention can be applied to the power converter of the hybrid industrial vehicle as a technology that can safely perform the initial charging operation of the ultra capacitor with a simple configuration when the operation of the hybrid electric forklift is started.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Forklifts And Lifting Vehicles (AREA)

Abstract

본 발명은 하이브리드 산업용 차량의 전력변환장치에 관한 것으로, 상세하게는 하이브리드 전동 지게차의 동작이 개시될 때 전위차에 의해 배터리에서 울트라 커패시터(UC)로 흐르는 돌입전류를 방지하기 위하여 기존의 DC-DC 컨버터를 이용하여 울트라 커패시터로의 초기 충전 동작을 수행할 수 있는 하이브리드 산업용 차량의 전력변환장치에 관한 것이다. 이를 위하여, 본 발명은 전력변환장치 내에 배터리, 울트라 커패시터 및 DC-DC 컨버터 간의 연결 관계를 설정하는 스위치부를 설치하여, 스위치부의 온/오프 동작에 의해 배터리의 전압이 DC-DC 컨버터를 통해 울트라 커패시터로 충전될 수 있다. 이에 따라, 초기 충전을 위한 별도의 충전 회로가 필요 없어서, 전력변환장치의 제작 단가를 낮출 수 있고, 전력변환장치 내 충전 회로 장착을 위한 공간 확보 문제를 해결할 수 있다.

Description

하이브리드 산업용 차량의 전력변환장치
본 발명은 하이브리드 산업용 차량의 전력변환장치에 관한 것으로, 상세하게는 하이브리드 전동 지게차의 동작이 개시될 때 전위차에 의해 배터리에서 울트라 커패시터(UC)로 흐르는 돌입전류를 방지할 수 있는 하이브리드 산업용 차량의 전력변환장치에 관한 것이다.
지게차는 화물을 실어 옮기는데 사용되는 산업용 차량이다. 비교적 고중량의 하물을 원하는 위치로 들어올리거나, 제한된 구역 내에서 다른 장소로 운반하는데 사용된다. 지게차는 기본형 지게차와 전동 지게차로 구분된다.
기본형 지게차는 동력원으로 엔진을 사용하여, 엔진으로 유압 펌프를 구동하고, 유압 펌프에서 토출되는 압유로 조향장치의 조향동작 및 작업기의 틸팅/리프팅(Tilting/Lifting) 동작을 수행한다.
전동 지게차는 동력원으로 배터리를 사용하여, 배터리에 의해 전기 모터가 회전하고 전기 모터의 회전에 의해 펌프 모터가 회전하여, 펌프 모터의 회전에 따라 유압 펌프가 구동하여 유압 펌프에서 토출된 압유에 의해 조향장치의 조향동작 및 작업기의 틸팅/리프팅 동작을 수행하게 된다. 전동 지게차는 배터리와 전기 모터를 사용하여 매연 및 소음이 적기 때문에 주로 실내에서 많이 사용된다.
이러한 전동 지게차의 동력원인 배터리에 울트라 커패시터(UC)를 추가 사용하여, 배터리와 울트라 커패시터의 협조로 부하의 동력을 분담할 수 있는 하이브리드 전동 지게차가 개발되었다.
울트라 커패시터는 자체 방전율이 배터리보다 매우 크므로 울트라 커패시터의 완전 방전 상태에서 지게차의 운용을 개시하는 경우, 배터리와 울트라 커패시터의 전위차에 의해 배터리에서 울트라 커패시터로 과대 전류가 흐를 수 있다. 울트라 커패시터로 흐르는 과대 전류를 돌입 전류(inrush current)라고 한다. 이러한 돌입 전류에 의해 울트라 커패시터가 손상될 수 있다.
돌입 전류에 의한 울트라 커패시터의 손상을 방지하기 위해, 배터리에서 울트라 커패시터로의 소전류 충전 동작이 필요하다. 이에 따라 종래 하이브리드 전동 지게차의 전력변환장치에서는 별도의 충전 회로를 장착하여 소전류 충전 동작을 수행하였다. 그러나 별도의 충전 회로를 장착해야 하기 때문에 전력변환장치의 생산 비용이 증가하고 전력변환장치 내에 충전 회로의 장착 공간을 확보하기 위한 설계변경을 해야 하는 문제점이 있다.
본 발명은 상기와 같은 문제점을 해결하기 위해 창안된 것으로서, 본 발명의 목적은 저렴하고 간단한 구성으로 안전하게 울트라 커패시터의 초기 충전 동작을 수행할 수 있는 하이브리드 산업용 차량의 전력변환장치를 제공하는 것에 있다.
이를 위하여, 본 발명에 의한 하이브리드 산업용 차량의 전력변환장치는, 배터리 및 울트라 커패시터를 동력원으로 사용하는 하이브리드 산업용 차량의 전원변환장치에 있어서, 상기 배터리의 전압 레벨을 변경하는 DC-DC 컨버터와, 상기 DC-DC 컨버터에서 출력된 전압 및 상기 울트라 커패시터의 전압을 입력 받아 인터버로 출력하는 DC 링크와, 상기 하이브리드 산업용 차량의 초기 충전 동작 시, 상기 배터리와 상기 DC-DC 컨버터의 출력단을 연결시키고, 상기 울트라 커패시터와 상기 DC-DC 컨버터의 입력단을 연결시키는 스위치부를 포함하는 것을 특징으로 한다.
상기와 같이, 본 발명은 전력변환장치에 스위치부를 추가하는 것만으로 기존 DC-DC 컨버터를 이용하여 울트라 커패시터의 초기 충전 동작을 수행할 수 있기 때문에, 초기 충전을 위한 별도의 충전 회로가 필요 없고, 이에 따라 전력변환장치의 제작 단가를 낮출 수 있고, 전력변환장치 내 충전 회로 장착을 위한 공간 확보를 위해 전력변환장치의 회로 설계를 할 필요가 없다.
또한, 본 발명은 울트라 커패시터의 교체 또는 정비 시 스위치부의 동작에 의해 울트라 커패시터의 잔존 전압이 배터리로 방전되기 때문에, 울트라 커패시터의 잔존 전압에 의한 작업자의 감전 사고를 방지할 수 있는 효과가 있다.
도 1은 본 발명에 의한 전기식 하이브리드 지게차의 전력변환장치의 구성도.
도 2는 본 발명에 의한 전력변환장치의 초기 충전 동작을 나타낸 도면.
도 3은 본 발명에 의한 전력변환장치의 정상 운용 동작을 나타낸 도면.
도 4는 울트라 커패시터의 교체/정비 시 전력변환장치의 방전 동작을 나타낸 도면.
도 5는 본 발명에 의한 전력변환장치의 동작 과정을 나타낸 순서도.
<도면의 주요 부분에 대한 부호 설명>
10: 배터리 20: 울트라 커패시터(UC)
30: 인버터 40: 전력변환장치
41: 제어부 42: 스위치부
43: DC-DC 컨버터 44: DC 링크
이하, 첨부된 도면을 첨부하여 본 발명에 따른 실시예를 상세하게 설명하면 다음과 같다. 본 발명의 구성 및 그에 따른 작용 효과는 이하의 상세한 설명을 통해 명확하게 이해될 것이다. 본 발명의 상세한 설명에 앞서, 동일한 구성요소에 대해서는 다른 도면 상에 표시되더라도 가능한 동일한 부호로 표시하며, 공지된 구성에 대해서는 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 구체적인 설명은 생략하기로 함에 유의한다.
도 1은 본 발명의 실시예에 따른 하이브리드 산업용 차량의 전력변환장치의 개략적인 구성을 나타낸 것이다.
도 1을 참조하면, 전력변환장치(40)의 입력단은 배터리(10) 및 울트라 커패시터(20)에 연결되고, 전력변환장치(40)의 출력단은 인버터(30)에 연결된다. 전력변환장치(40)는 배터리(10) 및 울트라 커패시터(20)로부터 전압을 입력받아 소정의 처리를 수행한 후 인버터(30)로 출력한다. 인버터(30)는 전력변환장치(40)로부터 출력된 직류를 교류로 변환하여 부하로 공급한다.
전력변환장치(40)는 배터리(10)의 직류 전압 레벨을 강압 또는 승압하는 DC-DC 컨버터(43), DC-DC 컨버터(43)에서 출력된 전압 및 울트라 커패시터(20)의 전압을 입력 받아 인터버(30)로 출력하는 DC 링크(44), 배터리(10)와 울트라 커패시터(20) 및 DC-DC 컨버터(43) 간의 연결 관계를 설정하는 스위치부(42), 스위치부(42) 및 DC-DC 컨버터(43)의 동작을 제어하는 제어부(41) 등으로 구성된다.
하이브리드 전동 지게차가 동작을 개시할 때 울트라 커패시터(20)로 초기 충전 동작이 수행된다. 제어부(41)가 지게차의 동작 개시를 감지하면, 제어부(41)는 스위치부(42)를 제어하여 배터리(10)의 전압이 DC-DC 컨버터(43)를 통해 울트라 커패시터(20)로 충전되도록 한다.
스위치부(42)는 배터리(10)와 DC-DC 컨버터(42)의 입력단 간에 설치된 제1 스위치(MC1), 울트라 커패시터(20)와 DC-DC 컨버터(42)의 출력단 간에 설치된 제2 스위치(MC2), 제1 스위치(MC1)의 일단과 제2 스위치(MC2)의 타단 간에 설치된 제3 스위치(SR1), 제1 스위치(MC1)의 타단과 제2 스위치(MC2)의 일단 간에 설치된 제4 스위치(SR2)로 구성된다. 여기서, 제1 스위치(MC1) 및 제2 스위치(MC2)는 대전류 도통용 대용량 컨텍터가 사용될 수 있고, 제3 스위치(SR1) 및 제4 스위치(SR2)는 소용량 릴레이가 사용될 수 있다.
도 2는 본 발명에 의한 전력변환장치의 초기 충전 동작을 나타낸 것이다.
도 2를 참조하면, 제1 스위치(MC1) 및 제2 스위치(MC2)는 오프 되고, 제3 스위치(SR1) 및 제4 스위치(SR2)은 온 되어, 배터리(10)와 DC-DC 컨버터(43)의 출력단이 연결되고, 울트라 커패시터(20)와 DC-DC 컨버터(43)의 입력단이 연결된다. 이와 같은 스위치부(42)의 온/오프 동작에 의해, 도 2에 도시된 화살표와 같이, 배터리(10)에서 나온 전류가 DC-DC 컨버터(43)를 통해 울트라 커패시터(20)로 흘러 들어감으로써, 울트라 커패시터(20)로의 초기 충전 동작이 수행된다.
도 3은 본 발명에 의한 전력변환장치의 정상 운용 동작을 나타낸 것이다.
울트라 커패시터(20)로의 초기 충전 동작이 완료되면, 지게차는 배터리(10) 및 울트라 커패시터(20)로부터 전력을 공급받아 정상적인 운용 동작을 시작한다.
도 3을 참조하면, 제1 스위치(MC1) 및 제2 스위치(MC2)는 온 되고, 제3 스위치(SR1) 및 제4 스위치(SR2)은 오프 되어, 배터리(10)와 DC-DC 컨버터(43)의 입력단이 연결되고, 울트라 커패시터(20)와 DC-DC 컨버터(43)의 출력단이 연결된다. 이와 같은 스위치부(42)의 온/오프 동작에 의해, 배터리(10)에서 나온 전류는 DC-DC 컨버터(43) 및 DC 링크(44)를 거쳐 인버터(30)로 흘러 들어가고, 울트라 커패시터(20)에서 나온 전류는 DC 링크(44)를 거쳐 인버터(30)로 흘러 들어간다.
도 4는 울트라 커패시터(20)의 교체/정비 시 전력변환장치의 방전 동작을 나타낸 것이다.
작업자가 울트라 커패시터(20)를 교체 또는 정비하기 위해서는 지게차로부터 울트라 커패시터(20)를 분리해야 한다. 울트라 커패시터(20)를 분리할 때 울트라 커패시터(20)에 잔존 전압이 있는 경우, 잔존 전압에 의해 감전 사고가 발생할 수 있다.
따라서, 울트라 커패시터(20)의 교체/정비 시, 작업자가 소정의 버튼이나 스위치를 조작하여 교체/정비 모드를 설정하면, 제어부(41)는 스위치부(42)를 제어하여 울트라 커패시터(20)의 전압이 DC-DC 컨버터(43)를 통해 배터리(10)로 방전되도록 한다.
도 4를 참조하면, 제1 스위치(MC1) 및 제2 스위치(MC2)는 오프 되고, 제3 스위치(SR1) 및 제4 스위치(SR2)은 온 되어, 배터리(10)와 DC-DC 컨버터(43)의 출력단이 연결되고, 울트라 커패시터(20)와 DC-DC 컨버터(43)의 입력단이 연결된다. 이러한 연결 구조는 초기 충전 동작에서의 연결구조과 동일하다. 다만, 울트라 커패시터(20)에 잔존 전압이 있기 때문에, 도 4에 도시된 화살표와 같이, 울트라 커패시터(20)에서 나온 전류가 DC-DC 컨버터(43)를 통해 배터리(10)로 흘러 들어감으로써, 울트라 커패시터(20)의 방전 동작이 수행될 수 있다.
도 5는 본 발명에 의한 전력변환장치의 동작 과정을 나타낸 순서도이다.
도 5를 참조하면, 먼저 하이브리드 전동 지게차의 하이브리드 키 스위치를 온 한다(S10). 하이브리드 키 스위치를 온 하면 지게차의 하이브리드 동작이 개시되고, 제어부(41)는 DC 링크(44)에 충전된 전압(V_dc)이 소정의 기준 전압 이상인지를 판단한다(S11). 기준 전압은 일반적으로 배터리 전압의 90% 수준이다. DC 링크 전압이 기준 전압 미만일 경우, DC 링크 전압이 기준 전압 이상이 될 때까지 대기한다. 일정 시간(예를 들어, 5초) 이후에도 DC 링크 전압이 기준 전압에 도달하지 않으면 에러 발생으로 처리한다.
DC 링크 전압이 기준 전압 이상일 경우, 제어부(41)는 울트라 커패시터(20) 전압이 기준 전압 이상인지를 판단한다(S12).
울트라 커패시터 전압이 기준 전압 이상인 경우, 제어부(41)는 스위치부(42)를 제어하여 제1 스위치(MC1) 및 제2 스위치(MC2)가 온 된다(S16). 이에 따라, 배터리(10)와 DC-DC 컨버터(43)의 입력단이 연결되고, 울트라 커패시터(20)와 DC-DC 컨버터(43)의 출력단이 연결되어, 초기 충전 동작 없이 바로 정상 운영 동작을 수행한다.
반면, 울트라 커패시터 전압이 기준 전압 미만인 경우, 제어부(41)는 스위치부(42)를 제어하여 제3 스위치(SR1) 및 제4 스위치(SR2)가 온 된다(S13). 이에 따라, 배터리(10)와 DC-DC 컨버터(43)의 출력단이 연결되고, 울트라 커패시터(20)와 DC-DC 컨버터(43)의 입력단이 연결되어, 울트라 커패시터(20)로의 초기 충전 동작이 수행된다.
다음, 제어부(41)는 울트라 커패시터(20)의 전압이 기준 전압 이상이 되는지 판단한다(S14). 울트라 커패시터(20)의 전압이 기준 전압이 도달하지 않으면 계속해서 충전이 수행된다. 울트라 커패시터(20)의 전압이 기준 전압 이상이 되면, 제어부(41)는 제3 스위치(SR1) 및 제4 스위치(SR2)를 오프 하고(S15), 제1 스위치(MC1) 및 제2 스위치(MC2)를 온 한다(S16), 이에 따라, 배터리(10) 및 울트라 커패시터(20)가 부하의 동력을 분담하는 하이브리드 정상 운용 동작을 수행한다.
본 발명은 하이브리드 전동 지게차의 전력변환장치을 예로 들어 설명하였으나, 이에 한정되는 것은 아니며, 배터리 및 울트라 커패시터를 구비한 모든 하이브리드 전기식 산업용 차량의 전력변환장치에 적용 가능한 것이다. 따라서 본 발명의 명세서에 개시된 실시예들은 본 발명을 한정하는 것이 아니다. 본 발명의 범위는 아래의 특허청구범위에 의해 해석되어야 하며, 그와 균등한 범위 내에 있는 모든 기술도 본 발명의 범위에 포함되는 것으로 해석해야 할 것이다.
본 발명은 하이브리드 전동 지게차의 동작이 개시될 때 간단한 구성으로 안전하게 울트라 커패시터의 초기 충전 동작을 수행할 수 있는 기술로 하이브리드 산업용 차량의 전력변환장치에 적용할 수 있다.

Claims (5)

  1. 배터리 및 울트라 커패시터를 동력원으로 사용하는 하이브리드 산업용 차량의 전원변환장치에 있어서,
    상기 배터리의 전압 레벨을 변경하는 DC-DC 컨버터와,
    상기 DC-DC 컨버터에서 출력된 전압 및 상기 울트라 커패시터의 전압을 입력 받아 인터버로 출력하는 DC 링크와,
    상기 하이브리드 산업용 차량의 초기 충전 동작 시, 상기 배터리와 상기 DC-DC 컨버터의 출력단을 연결시키고, 상기 울트라 커패시터와 상기 DC-DC 컨버터의 입력단을 연결시키는 스위치부를 포함하는 것을 특징으로 하는 하이브리드 산업용 차량의 전력변환장치.
  2. 제1 항에 있어서,
    상기 하이브리드 산업용 차량의 정상 운용 동작 시, 상기 스위치부는 상기 배터리와 상기 DC-DC 컨버터의 입력단을 연결시키고, 상기 울트라 커패시터와 상기 DC-DC 컨버터의 출력단을 연결시키는 것을 특징으로 하는 하이브리드 산업용 차량의 전력변환장치.
  3. 제1항에 있어서,
    상기 울트라 커패시터의 교체 또는 정비 시, 상기 스위치부는 상기 배터리와 상기 DC-DC 컨버터의 출력단을 연결시키고, 상기 울트라 커패시터와 상기 DC-DC 컨버터의 입력단을 연결시키는 것을 특징으로 하는 하이브리드 산업용 차량의 전력변환장치.
  4. 제1항에 있어서,
    상기 스위치부는 상기 배터리와 상기 DC-DC 컨버터의 입력단 간에 설치된 제1 스위치(MC1)와,
    상기 울트라 커패시터와 상기 DC-DC 컨버터의 출력단 간에 설치된 제2 스위치(MC2)와,
    상기 제1 스위치의 일단과 상기 제2 스위치의 타단 간에 설치된 제3 스위치(SR1)와,
    상기 제1 스위치의 타단과 상기 제2 스위치의 일단 간에 설치된 제4 스위치(SR2)를 포함하는 것을 특징으로 하는 하이브리드 산업용 차량의 전력변환장치.
  5. 제1항에 있어서,
    상기 울트라 커패시터의 전압이 소정의 기준전압 미만인 경우, 상기 스위치부의 동작에 의해 상기 배터리의 전압이 상기 DC-DC 컨버터를 통해 상기 울트라 커패시터로 충전되는 것을 특징으로 하는 하이브리드 산업용 차량의 전력변환장치.
PCT/KR2010/009205 2009-12-24 2010-12-22 하이브리드 산업용 차량의 전력변환장치 WO2011078577A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090130328A KR101653837B1 (ko) 2009-12-24 2009-12-24 하이브리드 산업용 차량의 전력변환장치
KR10-2009-0130328 2009-12-24

Publications (2)

Publication Number Publication Date
WO2011078577A2 true WO2011078577A2 (ko) 2011-06-30
WO2011078577A3 WO2011078577A3 (ko) 2011-11-17

Family

ID=44196313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/009205 WO2011078577A2 (ko) 2009-12-24 2010-12-22 하이브리드 산업용 차량의 전력변환장치

Country Status (2)

Country Link
KR (1) KR101653837B1 (ko)
WO (1) WO2011078577A2 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2717416A1 (en) * 2011-05-27 2014-04-09 Toyota Jidosha Kabushiki Kaisha Power source system, vehicle comprising power source system, and method for controlling power source system
WO2017211464A1 (de) * 2016-06-10 2017-12-14 Sew-Eurodrive Gmbh & Co. Kg Verfahren zum betreiben eines elektrischen fahrzeuges und elektrisches fahrzeug
CN111645524A (zh) * 2019-02-05 2020-09-11 马自达汽车株式会社 车辆电源***
WO2021104621A1 (en) * 2019-11-27 2021-06-03 Abb Schweiz Ag Onboard powertrain for agv

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101373566B1 (ko) * 2012-04-16 2014-03-12 전북대학교산학협력단 복합형 에너지 저장장치 및 방법
KR101410000B1 (ko) 2012-05-16 2014-07-02 엘지전자 주식회사 에너지 저장장치 및 그 동작방법
CN103795115B (zh) * 2014-01-26 2016-03-02 华南理工大学 一种便携式车载备用电源
KR101443280B1 (ko) * 2014-05-20 2014-09-22 삼성탈레스 주식회사 전자기기 및 인버터 전력 공급 방법
US9590497B2 (en) * 2014-10-14 2017-03-07 Rosemount Aerospace Inc. Systems and methods for capacitor charge extraction
CN110601132B (zh) * 2018-06-12 2022-03-01 浙江绍兴苏泊尔生活电器有限公司 残余电压的控制方法、电路及使用该方法的家用电器
JP6961548B2 (ja) * 2018-07-19 2021-11-05 日立建機株式会社 建設機械
KR102155117B1 (ko) * 2018-10-02 2020-09-11 영남대학교 산학협력단 전기차용 능동형 전력 디커플링 기능을 갖는 일체형 멀티 충전시스템
CN111216574B (zh) * 2018-11-23 2021-04-06 广州汽车集团股份有限公司 充电和放电控制***、方法及装置、控制设备
KR102153626B1 (ko) 2019-04-04 2020-09-08 울산대학교 산학협력단 다중 동력원을 갖는 차량의 동력제어방법
KR102466643B1 (ko) 2020-12-22 2022-11-14 울산대학교 산학협력단 에너지 재생 기능을 갖는 다중 동력원 굴삭기의 동력 제어 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002247711A (ja) * 2001-02-20 2002-08-30 Honda Motor Co Ltd ハイブリッド車両の制御装置
JP2004129463A (ja) * 2002-10-07 2004-04-22 Nissan Motor Co Ltd アイドルストップ車両用電源制御装置
JP2006158173A (ja) * 2004-10-29 2006-06-15 Toyota Motor Corp モータ駆動装置
JP2006314172A (ja) * 2005-05-09 2006-11-16 Komatsu Ltd モータ駆動装置
JP2007336715A (ja) * 2006-06-15 2007-12-27 Toyota Motor Corp 車両用の電力供給装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002247711A (ja) * 2001-02-20 2002-08-30 Honda Motor Co Ltd ハイブリッド車両の制御装置
JP2004129463A (ja) * 2002-10-07 2004-04-22 Nissan Motor Co Ltd アイドルストップ車両用電源制御装置
JP2006158173A (ja) * 2004-10-29 2006-06-15 Toyota Motor Corp モータ駆動装置
JP2006314172A (ja) * 2005-05-09 2006-11-16 Komatsu Ltd モータ駆動装置
JP2007336715A (ja) * 2006-06-15 2007-12-27 Toyota Motor Corp 車両用の電力供給装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2717416A1 (en) * 2011-05-27 2014-04-09 Toyota Jidosha Kabushiki Kaisha Power source system, vehicle comprising power source system, and method for controlling power source system
EP2717416A4 (en) * 2011-05-27 2014-06-25 Toyota Motor Co Ltd ENERGY SOURCE SYSTEM, VEHICLE COMPRISING ENERGY SOURCE SYSTEM AND METHOD FOR CONTROLLING ENERGY SOURCE SYSTEM
WO2017211464A1 (de) * 2016-06-10 2017-12-14 Sew-Eurodrive Gmbh & Co. Kg Verfahren zum betreiben eines elektrischen fahrzeuges und elektrisches fahrzeug
CN111645524A (zh) * 2019-02-05 2020-09-11 马自达汽车株式会社 车辆电源***
US11173858B2 (en) * 2019-02-05 2021-11-16 Mazda Motor Corporation Vehicle power supply system
WO2021104621A1 (en) * 2019-11-27 2021-06-03 Abb Schweiz Ag Onboard powertrain for agv
US12005795B2 (en) 2019-11-27 2024-06-11 Abb Schweiz Ag Onboard powertrain for an automated guided vehicle

Also Published As

Publication number Publication date
KR20110073635A (ko) 2011-06-30
KR101653837B1 (ko) 2016-09-02
WO2011078577A3 (ko) 2011-11-17

Similar Documents

Publication Publication Date Title
WO2011078577A2 (ko) 하이브리드 산업용 차량의 전력변환장치
CN111264014B (zh) 蓄电***
EP2497677B1 (en) Electric vehicle
EP3726694B1 (en) Vehicle-mounted power supply apparatus
US9102238B2 (en) Fail state determination apparatus for electric vehicle charging system
WO2010024653A2 (ko) 배터리 팩과 부하 간의 스위치부 제어장치 및 방법, 그리고 상기 장치를 포함하는 배터리 팩 및 배터리 관리 장치
KR20220005071A (ko) 차량의 배터리 시스템, 충방전 방법 및 차량
US20070247106A1 (en) Hybrid vehicle control system and method
US9755443B2 (en) Safety concept for batteries
US20130302652A1 (en) Method for Operating a Battery System, Battery System and Motor Vehicle
WO2013129231A1 (ja) 電源装置
JP2014050116A (ja) 充放電システム
EP3800083A1 (en) Power-supply and recharge groups of an electric vehicle and methods thereof
JP2010213406A (ja) 電圧変換装置
CN106864283B (zh) 电动型移动充电车供电方法、服务能力计算方法
WO2020080630A1 (ko) 자동차 배터리 비상 충전 장치 및 방법
CN101798038B (zh) 电梯控制***
JP5349001B2 (ja) 電動巻上下装置用電源装置
KR101524879B1 (ko) 산업용 차량의 전력변환장치
KR101856298B1 (ko) 친환경 차량의 전원 제어 시스템 및 방법
WO2023142086A1 (zh) 电池管理装置、***
CN116545085A (zh) 双路输出蓄电池、供电***及轨道车辆
JP6668210B2 (ja) 電源制御装置及び電源システム
WO2013032159A2 (ko) 하이브리드 전원 장치 및 그 제어 방법
CN114851849A (zh) 用于车辆的电动移动***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839774

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10839774

Country of ref document: EP

Kind code of ref document: A2