WO2011078286A1 - Molding material, molded article and process for production thereof, and housing for electric/electronic device - Google Patents

Molding material, molded article and process for production thereof, and housing for electric/electronic device Download PDF

Info

Publication number
WO2011078286A1
WO2011078286A1 PCT/JP2010/073241 JP2010073241W WO2011078286A1 WO 2011078286 A1 WO2011078286 A1 WO 2011078286A1 JP 2010073241 W JP2010073241 W JP 2010073241W WO 2011078286 A1 WO2011078286 A1 WO 2011078286A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
cellulose
molding material
mass
material according
Prior art date
Application number
PCT/JP2010/073241
Other languages
French (fr)
Japanese (ja)
Inventor
中井 義博
俊英 芳谷
上平 茂生
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2011078286A1 publication Critical patent/WO2011078286A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B13/00Preparation of cellulose ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/12Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes
    • C08F283/124Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes on to polysiloxanes having carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F285/00Macromolecular compounds obtained by polymerising monomers on to preformed graft polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0066Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • C08L1/32Cellulose ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers

Definitions

  • the present invention relates to a molding material, a molded body, a manufacturing method thereof, and a casing for electrical and electronic equipment.
  • PC Polycarbonate
  • ABS Acrylonitrile-butadiene-styrene resin
  • PC / ABS etc.
  • These resins are produced by reacting compounds obtained from petroleum as a raw material.
  • fossil resources such as oil, coal, and natural gas are mainly composed of carbon that has been fixed in the ground for many years.
  • fossil resources or products made from fossil resources are burned and carbon dioxide is released into the atmosphere, carbon that was originally not deep in the atmosphere but fixed deep in the ground Is rapidly released as carbon dioxide, and carbon dioxide in the atmosphere greatly increases, which causes global warming.
  • polymers such as ABS and PC made from petroleum, which is a fossil resource, have excellent characteristics as materials for electrical and electronic equipment, but are made from petroleum, which is a fossil resource. Therefore, it is desirable to reduce the amount used from the viewpoint of preventing global warming.
  • a plant-derived resin is originally produced by a photosynthesis reaction using carbon dioxide and water in the atmosphere as raw materials. Therefore, even if plant-derived resin is incinerated to generate carbon dioxide, the carbon dioxide is equivalent to carbon dioxide originally in the atmosphere, so the balance of carbon dioxide in the atmosphere is plus or minus zero After all, there is an idea that the total amount of CO 2 in the atmosphere is not increased. Based on this idea, plant-derived resins are referred to as so-called “carbon neutral” materials. The use of carbon-neutral materials in place of petroleum-derived resins is an urgent need to prevent global warming in recent years.
  • polysaccharides typified by cellulose are attracting great attention these days as biomass materials that can be regenerated on the earth obtained from plants and as biodegradable materials in the environment.
  • Cellulose is not only used for paper, but also its derivatives, such as cellulose acetate, cellulose acetate propionate, cellulose acetate butyrate, and cellulose acetate phthalate are used in many fields as film materials. Is commercially distributed.
  • hydroxypropylmethylacetylcellulose is described in Patent Document 3 and Patent Document 4.
  • Patent Document 3 and Patent Document 4 describe that this hydroxypropylmethylacetylcellulose is useful as an additive for reducing the vapor pressure of an organic solvent that easily volatilizes.
  • the substitution degree of each substituent in hydroxypropylmethylacetylcellulose described in Patent Document 3 and Patent Document 4 is, for example, a molar substitution degree (MS) of hydroxypropyl group in a range of about 2 to 8, a substitution degree of methyl group Is in the range of about 0.1 to 1 and the degree of substitution of the acetyl group is in the range of about 0.8 to 2.5.
  • MS molar substitution degree
  • Patent Document 6 discloses an example of a film containing acetylbutyl cellulose and an elastomer such as synthetic rubber.
  • cellulose generally does not have thermoplasticity, it is difficult to mold by heating or the like, and thus is not suitable for molding. Further, even if thermoplasticity can be imparted, there is a problem that strength such as impact resistance is greatly reduced.
  • the cellulose derivatives described in Patent Documents 3 and 4 are not preferable as a molding material because they are water-soluble or swellable and lack strength.
  • the cellulose derivative described in Patent Document 5 is described as being poorly water-soluble, but only described in the text, and its synthesis method and usage form are specifically disclosed in Examples and the like. Absent.
  • the molded product containing the cellulose derivative and the elastomer described in Patent Document 6 has adhesiveness, it can be used for specific applications, but is not suitable for use as a general molding material.
  • An object of the present invention is a molding material and molding having performance such as high heat resistance (thermal deformation temperature), better impact resistance, impact resistance after residence (Charpy impact strength) and high rigidity (flexural modulus). Is to provide a body. Another object of the present invention is to provide a molded body obtained by molding the molding material, a method for producing the molded body, and a housing for electric and electronic equipment composed of the molded body.
  • the present inventors pay attention to the molecular structure of cellulose, and convert the cellulose into a cellulose derivative having a specific structure having an ether structure and an ester structure, and bending it by using a molding material containing the cellulose derivative having the specific structure and further rubber particles.
  • the present invention is completed by finding that a molding material and a molded body excellent in impact resistance, impact resistance after staying and rigidity can be provided without lowering the performance such as strength, heat distortion temperature and molding processability. It came to. That is, the said subject can be achieved by the following means.
  • R C1 represents a hydrocarbon group
  • R C2 represents an alkylene group having 2 to 4 carbon atoms
  • n represents an integer of 1 or more.
  • the cellulose derivative is contained in an amount of 40 to 90% by mass
  • the rubber particles are contained in an amount of 5 to 50% by mass
  • the aliphatic polyester elastomer is contained in an amount of 5 to 50% by mass with respect to the total amount of the cellulose derivative, rubber particles and aliphatic polyester elastomer [15].
  • [22] [20] A casing for an electric and electronic device comprising the molded article according to [20].
  • the molding material of the present invention has excellent thermoplasticity, it can be molded by heat molding or the like.
  • the molding material and the molded body of the present invention are excellent in performance such as bending strength, high heat resistance (thermal deformation temperature), and molding processability, and have good impact resistance, impact resistance after residence, and high rigidity.
  • it can be suitably used as components such as automobiles, home appliances, electric and electronic devices, machine parts, housing / building materials, and the like.
  • the hydrogen atom of the hydroxyl group contained in cellulose is A cellulose derivative comprising at least one group substituted in A) below and at least one group substituted in B) below;
  • the present invention relates to a molding material containing rubber particles.
  • Cellulose derivative contained in the molding material of the present invention has a hydrogen atom of a hydroxyl group contained in cellulose.
  • a cellulose derivative comprising at least one group substituted with A) below and at least one group substituted with B) below.
  • R 2 , R 3 and R 6 are each independently a hydrogen atom, A) hydrocarbon group: —R A , B) acyl group: —CO—R B (R B is carbon Represents a hydrogen group) or other substituents. However, at least a part of R 2 , R 3 , and R 6 represents A) a hydrocarbon group, and at least a part of R 2 , R 3 , and R 6 represents B) an acyl group.
  • the cellulose derivative in the present invention has thermoplasticity because at least part of the hydroxyl group of the ⁇ -glucose ring is etherified and esterified with A) a hydrocarbon group and B) an acyl group. It can be expressed and is suitable for molding. Furthermore, since cellulose is a completely plant-derived component, it is carbon neutral and can greatly reduce the burden on the environment.
  • the “cellulose” referred to in the present invention is a polymer compound in which a large number of glucoses are bonded by ⁇ -1,4-glycosidic bonds, and the carbon atoms at the 2nd, 3rd and 6th positions in the glucose ring of cellulose. Means that the hydroxyl group bonded to is unsubstituted. Further, “hydroxyl group contained in cellulose” refers to a hydroxyl group bonded to carbon atoms at the 2nd, 3rd and 6th positions in the glucose ring of cellulose.
  • the cellulose derivative only needs to contain the A) hydrocarbon group and B) acyl group in any part of the whole, and may be composed of the same repeating unit, or a plurality of types. It may consist of repeating units.
  • the cellulose derivative does not need to contain all of the A) hydrocarbon group and B) acyl group in one repeating unit. More specific embodiments include the following embodiments, for example. (1) At least one of R 2 , R 3 and R 6 is A) a repeating unit substituted with a hydrocarbon group, and at least one of R 2 , R 3 and R 6 is substituted with B) an acyl group A cellulose derivative composed of repeating units.
  • At least one of R 2 , R 3 and R 6 of one repeating unit is substituted with A) a hydrocarbon group, and at least one of the other is substituted with B) an acyl group ( That is, a cellulose derivative composed of the same type of repeating units having the substituents A) and B) in one repeating unit.
  • the cellulose derivative may contain an unsubstituted repeating unit (that is, a repeating unit in which R 2 , R 3 and R 6 are all hydrogen atoms in the general formula (A)).
  • the cellulose derivative may have other substituents other than a hydrogen atom, A) a hydrocarbon group, and B) an acyl group.
  • R A may be an aliphatic group or an aromatic group.
  • R A When R A is an aliphatic group, it may be linear, branched, or cyclic, and may have an unsaturated bond. Examples of the aliphatic group include an alkyl group, a cycloalkyl group, an alkenyl group, and an alkynyl group.
  • R A When R A is an aromatic group, it may be either a single ring or a condensed ring. In the case where R A is an aromatic group, the preferred carbon number is 6 to 18, more preferably 6 to 14, and still more preferably 6 to 10.
  • the aromatic group examples include a phenyl group, a naphthyl group, a phenanthryl group, and an anthryl group.
  • the hydrocarbon group is preferably an aliphatic group because the resulting molding material (hereinafter sometimes referred to as “cellulose resin composition” or “resin composition”) has excellent impact resistance. From the viewpoint of excellent moldability such as melt flow rate, an alkyl group is more preferable, and an alkyl group having 1 to 4 carbon atoms (lower alkyl group) is more preferable.
  • Specific examples include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, pentyl group, hexyl group, heptyl group, 2-ethylhexyl group, tert-butyl group, isoheptyl group, and the like.
  • a group or an ethyl group is particularly preferred.
  • R B represents a hydrocarbon group.
  • R B is an aliphatic group, and may be any aromatic group. If R B is an aliphatic group, straight chain, branched, and may be any of circular, it may have an unsaturated bond. Examples of the aliphatic group include an alkyl group, a cycloalkyl group, an alkenyl group, and an alkynyl group. If R B is an aromatic group may be either monocyclic and condensed. Examples of the aromatic group include a phenyl group, a naphthyl group, a phenanthryl group, and an anthryl group. R B is preferably an alkyl group or an aryl group.
  • R B is more preferably an alkyl group having 1 to 12 carbon atoms or an aryl group, still more preferably an alkyl group having 1 to 12 carbon atoms, and particularly preferably an alkyl group having 1 to 4 carbon atoms (preferably a methyl group).
  • R B it is also preferably a hydrocarbon group having a branched structure having 3 to 10 carbon atoms, more preferably an alkyl group having a branched structure having 3 to 10 carbon atoms, having 7-9 carbon atoms More preferably, it is an alkyl group having a branched structure.
  • the R B specifically, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a pentyl group, a hexyl group, a heptyl group, 3-heptyl, 2-ethylhexyl group, tert- butyl Group, isoheptyl group, and the like.
  • R B is a methyl group, an ethyl group, a propyl group, a 3-heptyl group, or a 2-ethylhexyl group, and more preferably a methyl group, an ethyl group, a 3-heptyl group, or a 2-ethylhexyl group.
  • the cellulose derivative in the molding material of the present invention is a cellulose derivative in which the hydrogen atom of the hydroxyl group contained in cellulose contains at least one group substituted with A) and at least one group substituted with B).
  • it is preferable from the viewpoint of impact resistance that it further contains at least one group in which the hydrogen atom of the hydroxyl group contained in cellulose is substituted by the following C).
  • C) a group containing an alkyleneoxy group: —R C2 —O— and an acyl group: —CO—R C1 (R C1 represents a hydrocarbon group, and R C2 represents an alkylene group having 2 to 4 carbon atoms. )
  • R C1 represents a hydrocarbon group.
  • R C1 the same groups as those described above for R B can be applied.
  • the preferred range of R C1 is the same as R B.
  • R C2 represents an alkylene group having 2 to 4 carbon atoms.
  • R C2 may be linear, branched or cyclic, but is preferably linear or branched, and more preferably branched.
  • the alkyleneoxy group (—R C2 —O—) is preferably an alkyleneoxy group having 2 or 3 carbon atoms. Specific examples of the alkyleneoxy group preferably include the following structures.
  • a group represented by the following formula (1) or (2) in which —R C2 —O— is branched is preferable because the obtained resin composition has excellent bending elastic modulus.
  • the group of C) may contain a plurality of alkyleneoxy groups or may contain only one.
  • the group of C) can be represented by the following general formula (3).
  • R C1 represents a hydrocarbon group
  • R C2 represents an alkylene group having 2 to 4 carbon atoms.
  • the preferred ranges of R C1 and R C2 are the same as those described above.
  • n is an integer of 1 or more.
  • the upper limit of n is not particularly limited, and varies depending on the amount of alkyleneoxy group introduced, but is about 10, for example.
  • n is preferably 1 to 5, more preferably 1 to 3, and still more preferably 1.
  • R C2 When a plurality of R C2 are present, they may be the same or different, but are preferably the same.
  • the cellulose derivative in the present invention is a group of C) containing only one alkyleneoxy group (a group in which n is 1 in the general formula (3)) and C) containing two or more alkyleneoxy groups. And a group (a group in which n is 2 or more in the above general formula (3)).
  • the bonding direction of the alkyleneoxy group to the cellulose derivative in the group C) is not particularly limited, but it is preferable that the alkylene group part (R C2 ) of the alkyleneoxy group is bonded to the ⁇ -glucose ring structure side.
  • R B and R C1 are preferably each independently an alkyl group or an aryl group, and R B and R C1 are preferably each independently a methyl group, an ethyl group, or a propyl group.
  • R A in A), R B in B ), R C1 and R C2 in C) may have a further substituent or may be unsubstituted, but are preferably unsubstituted.
  • R A in the A), R B in the B), in the case where the where R C1 and R C2 in the C) has a further substituent examples of the further substituent include a halogen atom (e.g.
  • R C2 has 2 to 4 carbon atoms. Note that when R A , R B , and R C1 are other than an alkyl group, they may have an alkyl group (preferably having a carbon number of 1 to 5) as a substituent.
  • R B and R C1 have a further substituent, it is preferable that they substantially have no carboxyl group, sulfonic acid group, and salts thereof.
  • the molding material of the present invention can be made water-insoluble and the moldability can be further improved.
  • the cellulose derivative has a carboxyl group, a sulfonic acid group, and a salt thereof, it is known that the compound stability is deteriorated, and in particular, thermal decomposition may be promoted. It is preferable.
  • substantially free of carboxyl groups, sulfonic acid groups, and salts thereof means only when the cellulose derivative in the present invention has no carboxyl groups, sulfonic acid groups, and salts thereof.
  • the case where the cellulose derivative in the present invention has a trace amount of carboxyl groups, sulfonic acid groups, and salts thereof in a range insoluble in water is included.
  • the cellulose as a raw material may contain a carboxyl group
  • the cellulose derivative using the above-described substituents A) to C) introduced therein may contain a carboxyl group.
  • a sulfonic acid group, and a cellulose derivative substantially free of salts thereof may contain 1% by mass or less, more preferably 0.5% by mass or less.
  • the cellulose derivative in the present invention is preferably insoluble in water.
  • “being insoluble in water” means that the solubility in 100 parts by mass of water at 25 ° C. is 5 parts by mass or less.
  • butyrylmethylcellulose butyrylethylcellulose, butyrylpropylcellulose, butyrylbutylcellulose, butyrylpentylcellulose, butyrylhexylcellulose, butyrylcyclohexylcellulose, butyrylphenylcellulose, butyrylnaphthylcellulose,
  • Propionyloxyethylmethylpropionylcellulose propionyloxyethylethylpropionylcellulose, propionyloxyethylpropylpropionylcellulose, propionyloxyethylbutylpropionylcellulose, propionyloxyethylpentylpropionylcellulose, propionyloxyethylhexylpropionylcellulose, propionyloxyethylcyclohexylpropionylcellulose, Ethylphenylpropionylcellulose, propionyloxyethylnaphthylpropionylcellulose,
  • valeroxypropylmethyl valeroyl cellulose examples include valeroxybutyl methyl valeroyl cellulose.
  • the molding material of the present invention may contain only one kind of the specific cellulose derivative or two or more kinds.
  • substitution degree are not particularly limited.
  • a hydrocarbon group the degree of substitution DS A of —R A (the number of RA for the hydroxyl groups at the 2nd, 3rd and 6th positions of the ⁇ -glucose ring in the repeating unit) is 1.0 ⁇ DS A It is preferable that 1.0 ⁇ DS A ⁇ 2.5. Further, DS A is preferably 1.1 or more.
  • the number of unsubstituted hydroxyl groups present in the cellulose derivative is not particularly limited.
  • the degree of substitution DS H of hydrogen atoms (ratio in which the hydroxyl groups at the 2nd, 3rd and 6th positions in the repeating unit are unsubstituted) can be in the range of 0 to 1.5, preferably 0 to 0.6. And it is sufficient. By the DS H and 0.6 or less, or to improve the fluidity of the molding material, the foaming and the like due to water absorption of the molding material during acceleration and molding of the pyrolysis can or is suppressed.
  • the cellulose derivative in the present invention may have a substituent other than A) a hydrocarbon group, B) an acyl group, and C) a group containing an alkyleneoxy group and an acyl group.
  • substituents examples include a hydroxyethyl group, a hydroxypropyl group, a hydroxyethoxyethyl group, a hydroxypropoxypropyl group, a hydroxyethoxyethoxyethyl group, and a hydroxypropoxypropoxypropyl group. Therefore, the sum of the degree of substitution of all the substituents of the cellulose derivative is 3, but (DS A + DS B + DS C + DS H ) is 3 or less.
  • the amount of alkyleneoxy group introduced in the group C) is expressed in terms of molar substitution (MS: number of moles of substituent introduced per glucose residue) (edited by Cellulose Society, Cellulose Dictionary P142).
  • the molar substitution degree MS of the alkyleneoxy group is preferably 0 ⁇ MS, more preferably 0 ⁇ MS ⁇ 1.5, and still more preferably 0 ⁇ MS ⁇ 1.0. When MS is 1.5 or less (MS ⁇ 1.5), heat resistance, moldability and the like can be improved, and a cellulose derivative suitable for a molding material can be obtained.
  • the cellulose derivative in the molding material of the present invention is a cellulose derivative in which the hydrogen atom of the hydroxyl group contained in cellulose contains at least one group substituted with A) and at least one group substituted with B).
  • a hydrogen atom of a hydroxyl group contained in cellulose is substituted, from the viewpoint of moldability, it is substituted only by A) and B) or A), B), and C.
  • the hydrogen atom of the hydroxyl group contained in the cellulose is not substituted with a group other than the above A), B), and C).
  • the molecular weight of the cellulose derivative in the present invention is preferably such that the number average molecular weight (Mn) is in the range of 5 ⁇ 10 3 to 1000 ⁇ 10 3 , more preferably in the range of 10 ⁇ 10 3 to 500 ⁇ 10 3 , and 10 ⁇ 10 3 to A range of 200 ⁇ 10 3 is most preferred.
  • the mass average molecular weight (Mw) is preferably in the range of 7 ⁇ 10 3 to 10000 ⁇ 10 3 , more preferably in the range of 15 ⁇ 10 3 to 5000 ⁇ 10 3 , and in the range of 100 ⁇ 10 3 to 3000 ⁇ 10 3 . Is most preferred.
  • the molecular weight distribution is preferably in the range of 1.1 to 10.0, and more preferably in the range of 1.5 to 8.0. By setting the molecular weight distribution within this range, moldability and the like can be improved.
  • the number average molecular weight (Mn), mass average molecular weight (Mw) and molecular weight distribution (MWD) can be measured using gel permeation chromatography (GPC).
  • N-methylpyrrolidone is used as a solvent
  • a polystyrene gel is used, and the molecular weight can be determined using a conversion molecular weight calibration curve obtained in advance from a standard monodisperse polystyrene constituent curve.
  • the method for producing a cellulose derivative in the present invention is not particularly limited, and the cellulose derivative in the present invention can be produced by using cellulose as a raw material and etherifying and esterifying cellulose.
  • the raw material for cellulose is not limited, and examples thereof include cotton, linter, and pulp.
  • a preferred embodiment of a method for producing a cellulose derivative having the above A) hydrocarbon group: —R A and B) acyl group: —CO—R B includes cellulose ether, base It includes a step of esterification by reacting acid chloride or acid anhydride in the presence.
  • R B represents a hydrocarbon group
  • the cellulose ether for example, those in which at least a part of the hydrogen atoms of the hydroxyl groups at the 2nd, 3rd and 6th positions of the ⁇ -glucose ring contained in cellulose are substituted with hydrocarbon groups can be used. Specific examples include methyl cellulose, ethyl cellulose, propyl cellulose, butyl cellulose, allyl cellulose, and benzyl cellulose.
  • a preferred embodiment of a method for producing a cellulose derivative having a group containing —CO—R C1 (R C1 represents a hydrocarbon group and R C2 represents an alkylene group having 2 to 4 carbon atoms) is a hydrocarbon group.
  • a hydroxypropyl cellulose ether having a hydroxypropyl group are reacted with an acid chloride or an acid anhydride, to thereby carry out esterification (acylation).
  • alkyl chloride such as methyl chloride or ethyl chloride / alkylene oxide having 3 carbon atoms or the like is allowed to act on cellulose.
  • a method including a step of esterification by reacting an acid chloride or an acid anhydride is also included.
  • a method for reacting acid chloride for example, the method described in Cellulose 10; 283-296, 2003 can be used.
  • cellulose ether having a hydrocarbon group and a hydroxypropyl group examples include hydroxypropylmethylcellulose, hydroxypropylethylcellulose, hydroxypropylpropylcellulose, hydroxypropylallylcellulose, hydroxypropylbenzylcellulose, and the like. Preferred are hydroxypropylmethylcellulose and hydroxypropylethylcellulose.
  • acyl group and carboxylic acid chloride corresponding to the acyl group contained in C) can be used.
  • carboxylic acid chloride include acetyl chloride, propionyl chloride, butyryl chloride, isobutyryl chloride, pentanoyl chloride, 2-methylbutanoyl chloride, 3-methylbutanoyl chloride, pivaloyl chloride, hexanoyl chloride, 2-methylpentanoyl chloride, 3-methylpentanoyl chloride, 4-methylpentanoyl chloride, 2,2-dimethylbutanoyl chloride, 2,3-dimethylbutanoyl chloride, 3,3-dimethylbutanoyl chloride, 2- Ethylbutanoyl chloride, heptanoyl chloride, 2-methylhexanoyl chloride, 3-methylhexanoyl chloride, 4-methylhexanoyl chloride, 5-methylhex
  • carboxylic acid anhydrides corresponding to the acyl group contained in the above B) acyl group and C
  • carboxylic anhydrides include acetic anhydride, propionic anhydride, butyric anhydride, valeric anhydride, hexanoic anhydride, heptanoic anhydride, octanoic anhydride, 2-ethylhexanoic acid.
  • An anhydride, nonanoic acid anhydride, etc. are mentioned.
  • the cellulose derivative in the present invention preferably has no carboxylic acid as a substituent, for example, a dicarboxylic acid such as phthalic anhydride, maleic anhydride, or the like, and a compound that generates a carboxyl group by reacting with cellulose. It is preferable not to use.
  • a dicarboxylic acid such as phthalic anhydride, maleic anhydride, or the like
  • a compound that generates a carboxyl group by reacting with cellulose It is preferable not to use.
  • the molding material of the present invention contains rubber particles.
  • the rubber particles may be composed of a polymer component and have rubber elasticity.
  • rubber components include styrene butadiene rubber, acrylonitrile butadiene rubber, butadiene rubber, isoprene rubber, chloroprene rubber, ethylene propylene rubber, ethylene propylene diene copolymer rubber (DPDM), ethylene butene rubber, ethylene octene rubber, butyl rubber, and acrylic rubber.
  • chemically synthesized synthetic rubbers such as silicone rubber and chlorinated polyethylene. As will be described in detail later, these may be used alone or in combination of two or more.
  • the specific cellulose derivative was used alone without reducing the material performance such as flexural modulus, bending strength, heat distortion temperature, and moldability as much as possible.
  • the impact resistance and the impact resistance after staying can be improved without significantly reducing the rigidity. This is derived from the remarkable elasticity of the rubber particles.
  • the rubber particles are in the form of particles, they are physically and uniformly diffused when mixed with the specific cellulose derivative in the present invention, so that even when the specific cellulose derivative is used alone, Performances such as flexural modulus, strength, heat distortion temperature, and moldability are not significantly reduced.
  • the shape of the rubber particles in the present invention is not particularly limited, but is preferably substantially spherical.
  • the reason why the spherical shape is preferable is, for example, when rubber particles are mixed with a cellulose derivative in the production of a molding material, the dispersibility of the rubber particles is good and the impact resistance is easily improved, and the shape is not spherical. This is because the melt viscosity of the obtained resin composition is greatly increased in an indefinite shape, and the fluidity at the time of molding may be lowered.
  • the spherical shape is not limited to a single particle of rubber, and there is no problem at all even if the single or plural rubbers are aggregated or include other polymers.
  • the spherical shape means that the maximum diameter and the minimum diameter are measured for each of 50 arbitrary particles with a transmission electron microscope (TEM), and the average of the 50 ratios (maximum diameter / minimum diameter) is 1 to 1. It can be in the range of 2.
  • the average of this ratio is preferably 1 to 1.5, more preferably 1 to 1.3, and still more preferably 1 to 1.1.
  • the particle size of the rubber particles in the present invention is not particularly limited, but those having an average particle size of 10 to 1000 nm, preferably 30 to 500 nm, and particularly preferably 40 to 350 nm are those having good dispersibility in cellulose derivatives and impact resistance. From the viewpoint of improving the properties and rigidity.
  • the average particle diameter of the rubber-like polymer latex can be measured using a submicron particle size distribution measuring instrument CHDF-2000 manufactured by MATEC APPLIED SCIENCES.
  • the structure of the rubber particles in the present invention may be a structure formed of a single layer or a multiphase structure including a phase of a rubber elastic body.
  • Examples of the rubber particles having a single phase structure include crosslinked rubber particles and composite rubber particles, and examples of the rubber particles having a multilayer structure include core-shell rubber particles.
  • the rubber particles are preferably cross-linked from the viewpoint of the development of impact resistance due to rubber elasticity and the excellent creep characteristics of the material.
  • crosslinked rubber particles for example, particles obtained by copolymerizing a single or plural unsaturated compounds and a crosslinkable monomer can be used.
  • unsaturated compounds include aliphatic olefins such as ethylene and propylene, aromatic vinyl compounds such as styrene and methylstyrene, conjugated diene compounds such as butadiene, dimethylbutadiene, isoprene, and chloroprene, methyl acrylate, propyl acrylate, and acrylic acid.
  • Unsaturated carboxylic acid esters such as butyl, methyl methacrylate, propyl methacrylate and butyl methacrylate, vinyl cyanide such as acrylonitrile, and the like can be used.
  • an epoxy resin such as a carboxyl group, an epoxy group, a hydroxyl group and an amino group, an amide group, or a compound having a functional group reactive with a curing agent
  • acrylic acid, glycidyl methacrylate, vinylphenol, vinylaniline, acrylamide and the like can be used.
  • crosslinkable monomers include compounds having a plurality of polymerizable double bonds in the molecule such as divinylbenzene, diallyl phthalate, ethylene glycol dimethacrylate, allyl methacrylate, 1,3-butylene glycol dimethacrylate. Can do.
  • These particles can be produced by various conventionally known polymerization methods such as an emulsion polymerization method and a suspension polymerization method.
  • Typical emulsion polymerization methods include unsaturated compounds and crosslinkable monomers such as radical polymerization initiators such as cumene hydroperoxide and peroxides such as tert-butyl hydroperoxide, tert-dodecyl mercaptan, n-octyl mercaptan and the like.
  • Molecular weight regulators such as mercaptans and halogenated hydrocarbons, reducing agents such as dextrose and Rongalite, chelating agents such as sodium pyrophosphate and EDTA (ethylenediaminetetraacetic acid) and 2Na, metal catalysts such as iron and copper, and various known types
  • the emulsion polymerization is carried out in the presence of the emulsifier, and after reaching a predetermined polymerization conversion rate, a polymerization stopper is added to stop the polymerization reaction, and then the unreacted monomer in the polymerization system is removed by steam distillation or the like.
  • This is a method for obtaining a latex of a copolymer. Water is removed from the latex obtained by the emulsion polymerization method to obtain crosslinked rubber particles. Commercial products can also be used.
  • the rubber particles may be composite rubber particles in which two or more kinds of rubber components coexist.
  • Such composite rubber particles include composite rubber using two or more kinds of diene rubber, acrylic rubber, silicone rubber, polyolefin rubber, etc., preferably diene / acrylic composite rubber, silicone. / Acrylic composite rubber, particularly preferably silicone / acrylic composite rubber.
  • the silicone / acrylic composite rubber has a structure in which polyorganosiloxane and polyalkyl (meth) acrylate are intertwined so that they cannot be separated from each other.
  • the polyorganosiloxane constituting the silicone / acrylic composite rubber is a polymer containing dimethylsiloxane units as constituent units.
  • the dimethylsiloxane constituting the polyorganosiloxane include a dimethylsiloxane-based cyclic body having a 3-membered ring or more, and a 3- to 7-membered ring is preferable.
  • Specific examples include hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, and dodecamethylcyclohexasiloxane. These may be used alone or in combination of two or more.
  • the main component is preferably octamethylcyclotetrasiloxane because the particle size distribution can be easily controlled.
  • polyorganosiloxane Polyorganosiloxane which has a vinyl polymerizable functional group is preferable.
  • a vinyl polymerizable functional group-containing siloxane is not limited as long as it contains a vinyl polymerizable functional group and can be bonded to dimethylsiloxane via a siloxane bond, but the reactivity with dimethylsiloxane is not limited.
  • various alkoxysilane compounds containing a vinyl polymerizable functional group are preferable.
  • ⁇ -methacryloyloxyethyldimethoxymethylsilane ⁇ -methacryloyloxypropyldimethoxymethylsilane, ⁇ -methacryloyloxypropylmethoxydimethylsilane, ⁇ -methacryloyloxypropyltrimethoxysilane, ⁇ -methacryloyloxypropylethoxydiethylsilane, methacryloyloxysiloxanes such as ⁇ -methacryloyloxypropyldiethoxymethylsilane and ⁇ -methacryloyloxybutyldiethoxymethylsilane, vinylsiloxanes such as tetramethyltetravinylcyclotetrasiloxane, p-vinylphenyldimethoxymethylsilane and ⁇ -mercaptopropyl Examples include mercaptosiloxane such as dimethoxymethylsilane and ⁇ -mercapto
  • a siloxane-based crosslinking agent is added to a siloxane mixture comprising dimethylsiloxane and a siloxane having a vinyl polymerizable functional group, if necessary, and then emulsified with an emulsifier and water.
  • a siloxane mixture latex is obtained.
  • the siloxane mixture latex is made into fine particles by using a homomixer that makes fine particles by a shearing force generated by high-speed rotation, a homogenizer that makes fine particles by jetting power from a high-pressure generator, or the like.
  • a high-pressure emulsifier such as a homogenizer because the particle size distribution of the polyorganosiloxane latex becomes small.
  • the finely divided siloxane mixture latex is added to an acid aqueous solution containing an acid catalyst and polymerized at a high temperature.
  • the reaction solution is cooled and further neutralized with an alkaline substance such as caustic soda, caustic potash or sodium carbonate to stop the polymerization, thereby obtaining a polyorganosiloxane.
  • the emulsifier is preferably an anionic emulsifier.
  • the anionic emulsifier include sodium alkylbenzene sulfonate and sodium polyoxyethylene nonylphenyl ether sulfate.
  • sulfonic acid-based emulsifiers such as sodium alkylbenzene sulfonate and sodium lauryl sulfonate are particularly preferable.
  • These emulsifiers are used in the range of about 0.05 to 5 parts by mass with respect to 100 parts by mass of the siloxane mixture.
  • Examples of the acid catalyst used for polyorganosiloxane polymerization include sulfonic acids such as aliphatic sulfonic acid, aliphatic substituted benzenesulfonic acid, and aliphatic substituted naphthalenesulfonic acid, and mineral acids such as sulfuric acid, hydrochloric acid, and nitric acid. These acid catalysts are used alone or in combination of two or more. Of these, aliphatic substituted benzene sulfonic acid is preferable and n-dodecyl benzene sulfonic acid is particularly preferable because of its excellent stabilizing effect of polyorganosiloxane latex.
  • the polyorganosiloxane preferably has an average particle diameter of less than 100 nm because the pigment colorability of the resulting molding material is excellent. Further, it is more preferably less than 90 nm, particularly preferably less than 80 nm. On the other hand, the lower limit of the average particle diameter is preferably 10 nm, more preferably 20 nm, and still more preferably 30 nm because it can prevent the increase in latex viscosity and the generation of coagulum (coagulum) during production.
  • a method for controlling the particle diameter of the polyorganosiloxane for example, a method described in JP-A-5-279434 can be employed.
  • the polyalkyl (meth) acrylate constituting the silicone / acrylic composite rubber is a polymer containing an alkyl (meth) acrylate unit and a polyfunctional alkyl (meth) acrylate unit as constituent components.
  • alkyl (meth) acrylate examples include alkyl acrylates such as methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, and 2-ethylhexyl acrylate, and alkyls such as hexyl methacrylate, 2-ethylhexyl methacrylate, and n-lauryl methacrylate.
  • alkyl acrylates such as methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, and 2-ethylhexyl acrylate
  • alkyls such as hexyl methacrylate, 2-ethylhexyl methacrylate, and n-lauryl methacrylate.
  • a methacrylate is mentioned, These can be used individually or in combination of 2 or more types.
  • multiphase rubber particles examples include core-shell structured particles and salami structured particles.
  • rubber particles having a core-shell structure are preferable from the viewpoints of impact resistance, impact resistance after residence, and rigidity.
  • the core-shell rubber particles are spherical polymer particles consisting of a polymer whose center and surface layers are different, and are simply composed of a two-phase structure of a core phase and a single shell phase, or, for example, soft core, hard shell, soft
  • multi-core shell rubber particles having a multi-phase multi-layer structure having a plurality of shell phases such as a shell and a hard shell.
  • soft means a rubber phase (having a glass transition temperature Tg of room temperature or lower)
  • hard means a resin phase that is not rubber (having a glass transition temperature Tg exceeding room temperature).
  • the rubber component forming the core of the core-shell rubber particles having a soft core / hard shell structure the above-described crosslinked rubber particles and composite rubber particles can be used.
  • the rubber component of the core-shell rubber particles in the present invention is preferably a diene rubber, an acrylic rubber, and a silicone / acrylic composite rubber because the resulting resin composition is excellent in impact resistance and impact resistance after residence. Acrylic rubber and silicone / acrylic composite rubber are particularly preferred. Yes.
  • the shell component examples include polymers having a glass transition temperature of room temperature or higher, for example, homopolymers such as polystyrene, acrylonitrile, methyl acrylate, methyl methacrylate, acrylonitrile / styrene, methyl methacrylate / styrene, methyl methacrylate / alkyl acrylate ester. Copolymers such as methacrylic acid / acrylic acid or terpolymers such as styrene / acrylonitrile / methyl methacrylate are used.
  • homopolymers such as polystyrene, acrylonitrile, methyl acrylate, methyl methacrylate, acrylonitrile / styrene, methyl methacrylate / alkyl acrylate ester.
  • Copolymers such as methacrylic acid / acrylic acid or terpolymers such as styrene / acrylonitrile / methyl
  • the shell component the vinyl polymer as described above is preferable.
  • the core component content is preferably 10 to 95% by mass and the shell component content is preferably in the range of 90 to 5% by mass. If the content of the core component is 10% by mass or more, a sufficient impact resistance improvement effect can be obtained, and if it is 95% by mass or less, the core can be sufficiently covered with the shell, and the dispersibility into the cellulose derivative can be improved. It is preferable because it is excellent.
  • the core-shell rubber particles can be produced by a known method, for example, a method disclosed in US Pat. No. 4,419,496, European Patent 45,357, Japanese Patent Laid-Open No. 55-94917. Commercial products can also be used. Examples of commercially available core-shell rubber particles having a soft core / hard shell structure include “Paraloid (trademark) EXL-2655” (manufactured by Kureha Chemical Industry Co., Ltd.), -323A "(manufactured by Mitsubishi Rayon Co., Ltd.),” Staffyroid (trademark) AC-3355, TR-2122 "(manufactured by Takeda Pharmaceutical Company Limited) consisting of an acrylic ester / methacrylic ester copolymer, butyl acrylate / methacrylic acid “PARALOID (trademark) EXL-2611, EXL-3387” (manufactured by Rohm & Haas), “methabrene W-529” (manufactured
  • rubber particles in which the core is an acrylic rubber or silicone / acrylic composite rubber and the shell component is a vinyl polymer are preferable.
  • “Methbrene W529” manufactured by Mitsubishi Rayon Co., Ltd.) Polymers obtained by grafting methyl
  • “Metablene S2001, S2006, S2100, S2030, SX005, SX006, SRK200” polymer obtained by grafting methyl methacrylate on a silicone / acrylic composite rubber
  • Aliphatic polyester elastomer The molding material of the present invention can contain an aliphatic polyester elastomer having a molecular weight of 10,000 or more (hereinafter also referred to as “aliphatic polyester elastomer”). Aliphatic polyester elastomers have the properties of low glass transition temperature, softness and high ductility, so when mixed with the specific cellulose derivative in the present invention to form a molding material, when a specific cellulose derivative is used alone In addition, impact resistance at low temperatures (about ⁇ 50 ° C. to 0 ° C.) can be improved.
  • the specific cellulose derivative in the present invention since the specific cellulose derivative in the present invention includes an ether structure and an ester structure, it has an ether bond having a higher degree of freedom around the main chain than a conventional cellulose ester and the like. Excellent affinity. Therefore, the aliphatic polyester elastomer is excellent in dispersibility with respect to the specific cellulose derivative in the present invention, and both are mixed well, so that the impact resistance and moldability are higher than when the specific cellulose derivative is used alone. Further improvement. Moreover, it is excellent also in performance, such as rigidity, bending strength, and heat resistance.
  • the aliphatic polyester elastomer referred to in the present invention is not particularly limited as long as it is an aliphatic polyester elastomer having a molecular weight of 10,000 or more.
  • the aliphatic polyester elastomer in the present invention is preferably a polyester obtained by a condensation reaction of an aliphatic polyhydric alcohol and an aliphatic polybasic acid, or an aliphatic polyester obtained by ring-opening polymerization of a cyclic ester. Polyesters obtained by condensation reaction of polyhydric alcohols and aliphatic polybasic acids are more preferable.
  • polyesters examples include polyethylene adipate, polyethylene succinate, polybutylene adipate, polybutylene succinate, polybutylene succinate adipate, and the like. Is exemplified. Most preferred is polybutylene succinate.
  • Examples of the aliphatic polybasic acid used in the condensation reaction of an aliphatic polyhydric alcohol and an aliphatic polybasic acid (or an ester thereof) include succinic acid, oxalic acid, malonic acid, glutaric acid, adipic acid, pimelic acid, Suberic acid, sebacic acid, azelaic acid, decanedicarboxylic acid, octadecanedicarboxylic acid, cyclohexanedicarboxylic acid, dimer acid undecanedioic acid, dodecanedioic acid, and their anhydrides, or esters thereof are listed.
  • Examples of the alcohol include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, 3-methyl-1,5-pentanediol, 1,3-propanediol, 1,4-butanediol, 1,9 -Nonanji Lumpur, neopentyl glycol, 1,5-pentanediol, 1,6-hexanediol, decamethylene glycol, cyclohexane dimethanol, polytetramethylene glycol 1,4-cyclohexane dimethanol, and the like.
  • polyoxyalkylene glycol as a part of the aliphatic polyhydric alcohol, and examples thereof include polyoxyethylene glycol, polyoxypropylene glycol, polyoxytetramethylene glycol, and copolymers thereof.
  • the aliphatic polyester elastomer may be used alone or in combination of two or more.
  • any of D-form, L-form, and racemate may be used, and the form may be any of solid, liquid, or aqueous solution.
  • the aliphatic polyhydric alcohol is ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, 1,3-butanediol, 1,4-butanediol, 3-methyl- At least one selected from 1,5-pentanediol, 1,6-hexanediol, 1,9-nonanediol, neopentyl glycol, polytetramethylene glycol 1,4-cyclohexanedimethanol,
  • the basic acid is at least one selected from succinic acid, oxalic acid, malonic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, and anhydrides thereof. This is an aliphatic polybasic acid It is preferred.
  • the aliphatic polyhydric alcohol is at least one selected from diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, and More preferably, the aliphatic polybasic acid is at least one aliphatic polybasic acid selected from succinic acid, oxalic acid, malonic acid, glutaric acid, adipic acid, sebacic acid, dodecanedioic acid, and anhydrides thereof. preferable.
  • the total amount of the aliphatic polybasic acid (or its ester) component and the aliphatic polyhydric alcohol component may be initially mixed and reacted, or added in portions as the reaction proceeds. It doesn't matter.
  • the polycondensation reaction can be carried out by a common transesterification method or esterification method, or a combination of both. If necessary, the degree of polymerization can be increased by increasing or decreasing the pressure in the reaction vessel.
  • Examples of the cyclic ester used in the method for ring-opening polymerization of a cyclic ester include ⁇ -propiolactone, ⁇ -methyl- ⁇ -propiolactone, ⁇ -valerolactone, and ⁇ -caprolactone. Of these, ⁇ -caprolactone is particularly preferred.
  • the ring-opening polymerization can be carried out by a method such as polymerization in a solvent or bulk polymerization using a known ring-opening polymerization catalyst.
  • a vertical reactor a batch reactor, a horizontal reactor, a twin screw extruder or the like is used, and the reaction is preferably carried out in bulk or in solution.
  • Metals such as antimony, cadmium, manganese, iron, zirconium, vanadium, iridium, lanthanum, selenium, and organic metal compounds thereof, salts of organic acids, metal alkoxides, metal oxides, etc. It can also be used in combination with a promoter such as an acid.
  • These catalysts can be used singly or in combination of two or more, and the addition amount is preferably 0.1 mol or less, more preferably 0.8 mol or less, still more preferably with respect to 100 mol of all dicarboxylic acids. Is 0.6 mol or less.
  • the molecular weight can be increased using a chain extender.
  • chain extender include bifunctional or higher functional isocyanate compounds, epoxy compounds, aziridine compounds, oxazoline compounds, polyvalent metal compounds, polyfunctional acid anhydrides, phosphate esters, phosphites, and the like. Or you may combine 2 or more types.
  • the elastic modulus of the aliphatic polyester elastomer in the present invention is preferably 0.01 GPa or more and 1 GPa or less, and more preferably 0.1 GPa or more and 0.5 GPa or less.
  • the aliphatic polyester elastomer in the present invention has a molecular weight of 10,000 or more.
  • the molecular weight is a number average molecular weight measured by gel permeation chromatography (GPC). More specifically, N-methylpyrrolidone is used as a solvent, a polystyrene gel is used, and the molecular weight is obtained using a conversion molecular weight calibration curve obtained in advance from a standard monodisperse polystyrene constituent curve.
  • GPC gel permeation chromatography
  • HLC-8220 GPC manufactured by Tosoh Corporation
  • the aliphatic polyester elastomer When the molecular weight is less than 10,000, the aliphatic polyester elastomer is not preferable because it bleeds out, acts as a plasticizer for the resin to be mixed, and remarkably impairs the rigidity and heat resistance of the resin.
  • the number average molecular weight of the aliphatic polyester elastomer is preferably 10,000 to 500,000, more preferably 15,000 to 300,000, still more preferably 20,000 to 200,000.
  • a commercially available product may be used as the aliphatic polyester elastomer in the present invention.
  • the molding material of the present invention comprises 40 to 90% by mass of cellulose derivative, 5 to 50% by mass of rubber particles, and 5 of aliphatic polyester elastomer with respect to 100 parts by mass in total of the cellulose derivative, rubber particles and aliphatic polyester elastomer.
  • the content is preferably 50 to 50% by mass, more preferably 50 to 85% by mass of the cellulose derivative, 10 to 40% by mass of the rubber particles, and 5 to 30% by mass of the aliphatic polyester elastomer. More preferably, the cellulose derivative is 60 to 80% by mass, the rubber particles are 10 to 30% by mass, the aliphatic polyester elastomer is 5 to 20% by mass, most preferably the cellulose derivative is 65 to 75% by mass, and the rubber particles are 15%. -25% by mass, aliphatic polyester elastomer 5-15% by mass.
  • cellulose derivatives, rubber particles, and aliphatic polyester elastomers within this range, the rigidity, bending strength, impact resistance, moldability, Charpy impact strength before and after residence, etc. are moderately improved.
  • the Vicat softening point temperature is improved and the balance of physical properties as a molding material is improved.
  • the molding material of the present invention may further contain at least one of a cellulose ester resin and a cellulose ether resin.
  • the cellulose derivative is a cellulose ether ester and has a structure different from that of the cellulose ester resin and the cellulose ether resin. That is, both cellulose ester resin and cellulose ether resin may be included.
  • the cellulose ester resin and the cellulose ether resin in the present invention are not particularly limited.
  • Cellulose ester resins are usually produced by esterifying or etherifying cellulose such as wood pulp (conifer pulp, hardwood pulp) and cotton linter pulp. Since the cellulose ester resin has a glucopyranose ring as a main chain skeleton and has a highly polar and bulky ester group as a side chain, it can be mixed with a specific cellulose derivative in the present invention. The impact resistance and repeated impact characteristics can be improved as compared with the case where the derivative is used alone. Furthermore, since the specific cellulose derivative and cellulose ester resin in the present invention have the same main chain structure, the affinity is high and the dispersibility is excellent.
  • the cellulose ester resin can be produced by a conventional esterification method in which cellulose is reacted with an acylating agent, and can be produced through a saponification or aging step as necessary.
  • Cellulose ester resins are usually prepared by activating pulp (cellulose) with an activating agent (activation step), and then preparing an ester (such as a triester) with an acylating agent using a catalyst such as sulfuric acid (acylation) Step), and the degree of esterification can be adjusted by saponification (hydrolysis) / aging (saponification / aging process).
  • cellulose acetate it can be produced by a conventional method such as a sulfuric acid catalyst method, an acetic acid method, or a methylene chloride method.
  • the ratio of the acylating agent in the acylation step can be selected within a range that provides a desired degree of acylation (eg, degree of acetylation). For example, 230 to 300 parts by mass, preferably 240 parts per 100 parts by mass of pulp (cellulose). The amount is about 290 parts by mass, more preferably about 250-280 parts by mass. In the case of cellulose acetate, for example, acetic anhydride can be used as the acylating agent.
  • sulfuric acid is usually used as the acylation or aging catalyst.
  • the amount of sulfuric acid used is usually about 0.5 to 15 parts by mass, preferably about 5 to 15 parts by mass, and more preferably about 5 to 10 parts by mass with respect to 100 parts by mass of cellulose.
  • the saponification / ripening temperature can be selected from the range of 40 to 160 ° C., for example, about 50 to 70 ° C. Furthermore, in order to neutralize the remaining sulfuric acid, it may be treated with an alkali.
  • cellulose ester resin examples include organic acid esters [cellulose C2-6 carboxylic acid esters such as cellulose acetate (cellulose acetate), cellulose propionate, cellulose butyrate, etc.], mixed esters (cellulose acetate propionate, cellulose acetate, etc.).
  • Cellulose di-C2-6 carboxylates such as butyrate), grafts (polycaprolactone grafted cellulose acetate, etc.), inorganic acid esters (cellulose nitrate, cellulose sulfate, cellulose phosphate, etc.), mixed organic and inorganic acids
  • esters such as cellulose nitrate acetate).
  • a cellulose organic acid ester modified with an organic acid is preferable, and a cellulose organic acid ester modified with an organic acid having 2 to 12 carbon atoms is more preferable.
  • cellulose diacetate, cellulose triacetate, cellulose propionate, cellulose acetate propionate, cellulose butyrate, cellulose acetate butyrate, cellulose propionate butyrate and the like are preferable, and cellulose diacetate and cellulose acetate propionate are preferable.
  • Nate and cellulose acetate butyrate are more preferable.
  • the average substitution degree of the acyl group of the cellulose ester resin is 1 to 3, preferably 1.5 to 3 (for example, 1.7 to 3), more preferably about 1.8 to 3 (for example, 2 to 3). is there.
  • cellulose acetate it can be selected from the range of an average degree of acetylation of about 30 to 62.5%. It is preferably 45 to 62.5% (average substitution degree 1.8 to 3), more preferably 48 to 62.5% (average substitution degree 2 to 3).
  • a cellulose ether resin for example, a cellulose ether resin in which a hydroxyl group contained in cellulose is substituted with a hydrocarbon group (which may be substituted with another group) can be used.
  • a hydrocarbon group which may be substituted with another group
  • Specific examples include methyl cellulose, ethyl cellulose, propyl cellulose, butyl cellulose, hydroxypropyl cellulose, carboxymethyl cellulose, allyl cellulose, benzyl cellulose and the like.
  • methyl cellulose, ethyl cellulose, propyl cellulose and the like are preferable, and ethyl cellulose is more preferable.
  • the cellulose ether resin include Etocel 100 (manufactured by Dow Chemical Company).
  • the average substitution degree of the ether group of the cellulose ether resin is 1 to 3, preferably 1.7 to 3, and more preferably about 2.0 to 3.
  • the polymerization degree of the cellulose ester resin and the cellulose ether resin is not particularly limited, and the viscosity average polymerization degree is, for example, about 200 to 400, preferably about 250 to 400, and more preferably about 270 to 350.
  • the molding material of the present invention contains 20 to 80 mass of cellulose derivative with respect to the total amount of the cellulose derivative, rubber particles, aliphatic polyester elastomer, cellulose ester resin and cellulose ether resin. %, Rubber particles are contained in an amount of 5 to 40% by mass, aliphatic polyester elastomer is contained in an amount of 5 to 40% by mass, and the total amount of cellulose ester resin and cellulose ether resin is preferably contained in an amount of 5 to 50% by mass.
  • the rubber particles are 10% to 35% by weight, the aliphatic polyester elastomer is 5% to 30% by weight, and the total amount of the cellulose ester resin and the cellulose ether resin is 10% to 45% by weight. More preferably, the cellulose derivative is 20 to 60% by mass, the rubber particles are 10 to 30% by mass, the aliphatic polyester elastomer is 5 to 20% by mass, and the total amount of the cellulose ester resin and the cellulose ether resin is 15 to 40% by mass.
  • the cellulose derivative is 30 to 50% by mass
  • the rubber particles are 15 to 25% by mass
  • the aliphatic polyester elastomer is 5 to 15% by mass
  • the total amount of the cellulose ester resin and the cellulose ether resin is 20 to 40% by mass. is there.
  • cellulose derivatives By making at least one of cellulose derivatives, aliphatic polyester elastomers, rubber particles, cellulose ester resins, and cellulose ether resins within this range, a high flexural modulus and a high Vicat softening point temperature are achieved, while falling ball impact strength is improved. Can be improved.
  • Flame retardant The molding material of the present invention preferably further contains a flame retardant. Thereby, the flame retarding effect such as reduction or suppression of the burning rate can be improved.
  • the flame retardant is not particularly limited, and a conventional flame retardant can be used.
  • brominated flame retardants, chlorine-based flame retardants, phosphorus-containing flame retardants, silicon-containing flame retardants, nitrogen compound-based flame retardants, inorganic flame retardants and the like can be mentioned.
  • hydrogen halides are not generated by thermal decomposition during resin compounding or molding, and do not corrode processing machines or molds or deteriorate the working environment.
  • Phosphorus-containing flame retardants and silicon-containing flame retardants are preferred because they are less likely to adversely affect the environment through the generation of harmful substances such as dioxins when they are diffused or decomposed.
  • the brominated flame retardant there are no particular limitations on the brominated flame retardant, and conventional ones can be used.
  • decabromodiphenyl ether, ethylenebistetrabromophthalimide, 1,2-bispentabromophenylethane, tetrabromo Examples thereof include bisphenol A, brominated epoxy resin oligomer, and tris (tribromophenyl) phosphate.
  • the phosphorus-containing flame retardant is not particularly limited, and a commonly used one can be used. Examples thereof include organic phosphorus compounds such as phosphate esters, phosphate condensation esters, and polyphosphates.
  • phosphate esters include trimethyl phosphate, triethyl phosphate, tributyl phosphate, tri (2-ethylhexyl) phosphate, tributoxyethyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, tris (isopropylphenyl) Phosphate, tris (phenylphenyl) phosphate, trinaphthyl phosphate, cresyl diphenyl phosphate, xylenyl diphenyl phosphate, diphenyl (2-ethylhexyl) phosphate, di (isopropylphenyl) phenyl phosphate, monoisodecyl phosphate, 2-acryloyloxyethyl Acid phosphate, 2-methacryloyloxyethyl acid phosphate, diphenyl -2-acryloyloxye
  • Examples of the phosphoric acid condensed ester include resorcinol polyphenyl phosphate, resorcinol poly (di-2,6-xylyl) phosphate, bisphenol A polycresyl phosphate, hydroquinone poly (2,6-xylyl) phosphate, and condensates thereof. Aromatic phosphoric acid condensed ester and the like.
  • polyphosphates composed of salts of phosphoric acid, polyphosphoric acid and metals of Groups 1 to 14 of the periodic table, ammonia, aliphatic amines, and aromatic amines can also be mentioned.
  • lithium salts, sodium salts, calcium salts, barium salts, iron (II) salts, iron (III) salts, aluminum salts and the like as metal salts, methylamine salts as aliphatic amine salts examples include ethylamine salts, diethylamine salts, triethylamine salts, ethylenediamine salts, piperazine salts, and examples of aromatic amine salts include pyridine salts and triazines.
  • halogen-containing phosphate esters such as trischloroethyl phosphate, trisdichloropropyl phosphate, tris ( ⁇ -chloropropyl) phosphate), and structures in which a phosphorus atom and a nitrogen atom are connected by a double bond Phosphazene compounds having phosphoric acid and phosphoric ester amides.
  • phosphorus-containing flame retardants may be used singly or in combination of two or more.
  • silicon-containing flame retardant examples include an organic silicon compound having a two-dimensional or three-dimensional structure, polydimethylsiloxane, or a methyl group at a side chain or a terminal of polydimethylsiloxane, a hydrogen atom, a substituted or unsubstituted aliphatic hydrocarbon group, Examples thereof include those substituted or modified with an aromatic hydrocarbon group, so-called silicone oils, or modified silicone oils.
  • Examples of the substituted or unsubstituted aliphatic hydrocarbon group and aromatic hydrocarbon group include an alkyl group, a cycloalkyl group, a phenyl group, a benzyl group, an amino group, an epoxy group, a polyether group, a carboxyl group, a mercapto group, Examples include a chloroalkyl group, an alkyl higher alcohol ester group, an alcohol group, an aralkyl group, a vinyl group, or a trifluoromethyl group.
  • These silicon-containing flame retardants may be used alone or in combination of two or more.
  • Examples of the flame retardant other than the phosphorus-containing flame retardant or the silicon-containing flame retardant include, for example, magnesium hydroxide, aluminum hydroxide, antimony trioxide, antimony pentoxide, sodium antimonate, zinc hydroxystannate, zinc stannate, Metastannic acid, tin oxide, tin oxide salt, zinc sulfate, zinc oxide, ferrous oxide, ferric oxide, stannous oxide, stannic oxide, zinc borate, ammonium borate, ammonium octamolybdate, tungsten Metal salts of acids, complex oxides of tungsten and metalloid, ammonium sulfamate, ammonium bromide, zirconium compounds, guanidine compounds, fluorine compounds, graphite, swellable graphite and other inorganic flame retardants, chlorinated polyethylene, Polytetrafluoroethylene, polyhexafluoropropylene, tetrafluoro Ethylene / hex
  • the molding material of the present invention contains the cellulose derivative and rubber particles described above, and preferably further contains a flame retardant. Moreover, another additive can be contained as needed.
  • the content rate of the component contained in the molding material of this invention is not specifically limited.
  • the cellulose derivative is preferably contained in an amount of 50% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more, and particularly preferably 85 to 98% by mass.
  • the content ratio of the components contained in the molding material of the present invention is not particularly limited, but the content of the rubber particles is such that the mass composition ratio of the cellulose derivative and the rubber particles is from 50/50 to 50% from the viewpoint of improving impact resistance. It is preferably 95/5, more preferably 60/40 to 90/10, and still more preferably 70/30 to 90/10.
  • the molding material of the present invention contains a flame retardant
  • the content thereof is not limited, but is usually 50% by mass or less, preferably 5 to 30% by mass in the molding material. By setting it within this range, it is possible to obtain a sufficient effect of improving flame retardancy.
  • the molding material of the present invention may contain various additives such as a filler (reinforcing material) and a plasticizer, if necessary, in addition to the cellulose derivative and the rubber particles.
  • the molding material of the present invention can reinforce the mechanical properties of the molded body formed of the molding material.
  • a well-known thing can be used as a filler.
  • the shape of the filler may be any of fibrous, plate-like, granular, powdery and the like. Further, it may be inorganic or organic.
  • the inorganic filler glass fiber, carbon fiber, graphite fiber, metal fiber, potassium titanate whisker, aluminum borate whisker, magnesium whisker, silicon whisker, wollastonite, sepiolite, slag fiber, zonolite, Elastadite, gypsum fiber, silica fiber, silica-alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber and boron fiber, and other inorganic fillers; glass flakes, non-swellable mica, carbon black, graphite, metal foil , Ceramic beads, talc, clay, mica, sericite, zeolite, bentonite, dolomite, kaolin, fine silicate, feldspar, potassium titanate, shirasu balloon, calcium carbonate, magnesium carbonate, barium sulfate, calcium oxide Beam, aluminum oxide, titanium oxide, magnesium oxide, aluminum silicate, silicon oxide, aluminum hydroxide, magnesium hydroxide, gy
  • Organic fillers include synthetic fibers such as polyester fiber, nylon fiber, acrylic fiber, regenerated cellulose fiber, and acetate fiber, and natural fibers such as kenaf, ramie, cotton, jute, hemp, sisal, Manila hemp, flax, linen, silk, and wool. Examples thereof include fibrous organic fillers obtained from microcrystalline cellulose, sugar cane, wood pulp, paper waste, waste paper and the like, and granular organic fillers such as organic pigments.
  • the content thereof is not limited, but is usually 30 parts by mass or less, preferably 5 to 10 parts by mass with respect to 100 parts by mass of the cellulose derivative.
  • the molding material of the present invention preferably further contains an antioxidant.
  • an antioxidant As a result, the impact resistance, moldability, rigidity, bending strength, heat resistance and the like of the specific cellulose derivative can be suppressed, and dimensional stability, conductivity, and thermal conductivity can be imparted.
  • the antioxidant in the present invention may be a low molecular compound or a high molecular compound, for example, a hindered phenol antioxidant, a phosphorus antioxidant, an amine antioxidant, a sulfur oxidation.
  • An inhibitor can be used.
  • hindered phenol antioxidant examples include triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], pentaerythrityl-tetrakis [3- (3 , 5-di-tert-butyl-4-hydroxyphenyl) propionate], 1.6-hexanediol-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, octadodecyl-3 -(3,5-di-tert-butyl-4-hydroxyphenyl) propionate, N, N'-hexamethylenebis (3,5-di-tert-butyl-4-hydroxy-hydrocinnamamide, 3,5 -Di-t-butyl-4-hydroxy-benzylphosphonate-diethyl ester and 1,3,5-trimethyl-2,4,6-to Scan (3,5-di -t- butyl-4-hydroxybenzobenz
  • Phosphorous antioxidants include calcium hypophosphite, 2,6-di-t-butyl-4-methylphenol, tetrakis (methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate ) Phenol compounds such as methane, tris (3,5-di-t-butyl-4-hydroxybenzidine) isocyanurate, dilauryl-3,3′-thiodipropionate, dimyristyl-3,3′-thiodipropio Examples thereof include sulfur compounds such as nates, phosphorus compounds such as trisnonylphenyl phosphite and distearyl pentaerythritol diphosphite, among which calcium hypophosphite is preferable.
  • amine-based antioxidants include 4-acetoxy-2,2,6,6-tetramethylpiperidine, 4-stearoyloxy-2,2,6,6-tetramethylpiperidine, 4-acryloyloxy-2,2, 6,6-tetramethylpiperidine, 4-methoxy-2,2,6,6-tetramethylpiperidine, 4-benzoyloxy-2,2,6,6-tetramethylpiperidine, 4-cyclohexyloxy-2,2, 6,6-tetramethylpiperidine, 4-phenoxy-2,2,6,6-tetramethylpiperidine, 4-benzyloxy-2,2,6,6-tetramethylpiperidine, 4- (phenylcarbamoyloxy) -2 , 2,6,6-tetramethylpiperidine, bis (2,2,6,6-tetramethyl-4-piperidyl) oxalate, bis (2,2 6,6-tetramethyl-4-piperidyl) malonate, bis (2,2,6,6-tetramethyl-4-piperidyl
  • sulfur antioxidants include sulfur-containing compounds such as thioethers, dithioacid salts such as nickel dithiocarbamate, mercaptobenzimidazole, thiocarbanilide, and thiodipropion ester.
  • sulfur-containing compounds such as thioethers, dithioacid salts such as nickel dithiocarbamate, mercaptobenzimidazole, thiocarbanilide, and thiodipropion ester.
  • dithioacid salts such as nickel dithiocarbamate, mercaptobenzimidazole, thiocarbanilide, and thiodipropion ester.
  • thiodipropion ester-based compound is particularly preferable.
  • antioxidants examples include hindered phenolic antioxidants (for example, “Irganox 1010”, “Irganox 1076” manufactured by Ciba Specialty Chemicals, Kawaguchi Chemical Industries “Antage W-300”, It is preferable to use “ANTAGE CRYSTAL”, API Corporation “YOSHINOX BHT”, “YOSHINOX BB”, “TOMINOX SS” and the like.
  • the molding material of the present invention contains an antioxidant, the content thereof is not limited, but is usually 5% by mass or less, preferably 0.05 to 3% by mass with respect to the molding material. By setting it as this range, since the thermal deterioration and thermal decomposition of a cellulose derivative can be suppressed, the sufficient improvement effect of residence deterioration property can be acquired and it is preferable.
  • the molding material of the present invention may contain other components for the purpose of further improving various properties such as moldability and flame retardancy, as long as the object of the present invention is not impaired.
  • Other components include, for example, polymers other than the cellulose derivatives and the rubber particles, plasticizers, stabilizers (ultraviolet absorbers, etc.), mold release agents (fatty acids, fatty acid metal salts, oxy fatty acids, fatty acid esters, aliphatic moieties.
  • Saponified ester paraffin, low molecular weight polyolefin, fatty acid amide, alkylene bis fatty acid amide, aliphatic ketone, fatty acid lower alcohol ester, fatty acid polyhydric alcohol ester, fatty acid polyglycol ester, modified silicone), antistatic agent, flame retardant aid, Examples include processing aids, anti-drip agents, antibacterial agents, and antifungal agents. Further, a coloring agent containing a dye or a pigment can be added.
  • any of a thermoplastic polymer and a thermosetting polymer can be used, but a thermoplastic polymer is preferable from the viewpoint of moldability.
  • polymers other than cellulose derivatives include low density polyethylene, linear low density polyethylene, high density polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-propylene-nonconjugated diene copolymer, ethylene-butene- 1 copolymer, polypropylene homopolymer, polypropylene copolymer (such as ethylene-propylene block copolymer), polyolefins such as polybutene-1 and poly-4-methylpentene-1, polybutylene terephthalate, polyethylene terephthalate and other aromatic polyesters, etc.
  • Polyamide such as polyester, nylon 6, nylon 46, nylon 66, nylon 610, nylon 612, nylon 6T, nylon 12, etc., polystyrene, high impact polystyrene, polyacetate (Including homopolymers and copolymers), polyurethanes, aromatic and aliphatic polyketones, polyphenylene sulfide, polyetheretherketone, thermoplastic starch resins, polymethyl methacrylate and methacrylate-acrylate copolymers Acrylic resins such as AS resin (acrylonitrile-styrene copolymer), polyvinyl chloride, polyvinylidene chloride, vinyl ester resin, maleic anhydride-styrene copolymer, MS resin (methyl methacrylate-styrene copolymer) , Polycarbonate, polyarylate, polysulfone, polyethersulfone, phenoxy resin, polyphenylene ether, modified polyphenylene ether, thermoplastic polyimide such as polyetherimide
  • Various acrylic rubbers ethylene-vinyl acetate copolymers, ethylene-acrylic acid copolymers and alkali metal salts thereof (so-called ionomers), ethylene-acrylic acid alkyl ester copolymers (for example, ethylene-ethyl acrylate copolymer) Copolymer, ethylene-butyl acrylate copolymer), diene rubber (for example, 1,4-polybutadiene, 1,2-polybutadiene, polyisoprene, polychloroprene), copolymer of diene and vinyl monomer (for example, Styrene-butadiene random copolymer, styrene-butadiene block copolymer, styrene-butadiene-styrene block copolymer, styrene-isoprene random copolymer, styrene-isoprene block copolymer, sty
  • those having various degrees of crosslinking those having various microstructures such as cis structure and trans structure, those having vinyl groups, and those having various average particle diameters can be used. These polymers may be used alone or in combination of two or more.
  • the molding material of the present invention contains a polymer other than the cellulose derivative and the rubber particles, its content is preferably 30 parts by mass or less, more preferably 2 to 10 parts by mass with respect to 100 parts by mass of the cellulose derivative.
  • the molding material of the present invention may contain a plasticizer.
  • a plasticizer those commonly used for polymer molding can be used. Examples thereof include polyester plasticizers, glycerin plasticizers, polycarboxylic acid ester plasticizers, polyalkylene glycol plasticizers, and epoxy plasticizers.
  • polyester plasticizer examples include acid components such as adipic acid, sebacic acid, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid, rosin, propylene glycol, 1,3-butanediol, 1,4 -Polyesters composed of diol components such as butanediol, 1,6-hexanediol, ethylene glycol and diethylene glycol, and polyesters composed of hydroxycarboxylic acids such as polycaprolactone. These polyesters may be end-capped with a monofunctional carboxylic acid or monofunctional alcohol, or may be end-capped with an epoxy compound or the like.
  • acid components such as adipic acid, sebacic acid, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid, rosin, propylene glycol, 1,3-butanediol, 1,4
  • glycerin plasticizer examples include glycerin monoacetomonolaurate, glycerin diacetomonolaurate, glycerin monoacetomonostearate, glycerin diacetomonooleate, and glycerin monoacetomonomontanate.
  • polycarboxylic acid plasticizers include phthalates such as dimethyl phthalate, diethyl phthalate, dibutyl phthalate, dioctyl phthalate, diheptyl phthalate, dibenzyl phthalate, butyl benzyl phthalate, and trimellitic acid.
  • Trimellitic acid esters such as tributyl, trioctyl trimellitic acid, trihexyl trimellitic acid, diisodecyl adipate, n-octyl-n-decyl adipate, methyl diglycol butyl diglycol adipate, benzyl methyl diglycol adipate, adipic acid
  • Adipic acid esters such as benzylbutyl diglycol, citrate esters such as triethyl acetylcitrate and tributyl acetylcitrate, azelaic acid esters such as di-2-ethylhexyl azelate, sebashi Dibutyl, and include di-2-ethylhexyl sebacate and the like.
  • polyalkylene glycol plasticizer examples include polyethylene glycol, polypropylene glycol, poly (ethylene oxide / propylene oxide) block and / or random copolymer, polytetramethylene glycol, ethylene oxide addition polymer of bisphenols, and bisphenols.
  • a polyalkylene glycol such as a propylene oxide addition polymer, a tetrahydrofuran addition polymer of bisphenol, or a terminal epoxy-modified compound thereof, a terminal ester-modified compound, a terminal ether-modified compound, and the like.
  • the epoxy plasticizer generally refers to an epoxy triglyceride composed of an alkyl epoxy stearate and soybean oil, but there are also so-called epoxy resins mainly made of bisphenol A and epichlorohydrin. Can be used.
  • plasticizers include benzoate esters of aliphatic polyols such as neopentyl glycol dibenzoate, diethylene glycol dibenzoate, triethylene glycol di-2-ethylbutyrate, fatty acid amides such as stearamide, oleic acid
  • aliphatic carboxylic acid esters such as butyl, oxy acid esters such as methyl acetylricinoleate and butyl acetylricinoleate, pentaerythritol, and various sorbitols.
  • the content thereof is usually 5 parts by mass or less, preferably 0.005 to 5 parts by mass, more preferably 0.01 to 100 parts by mass of the cellulose derivative. Is 1 part by mass.
  • the molded body of the present invention can be obtained by molding a molding material containing the cellulose derivative and rubber particles. More specifically, a manufacturing method including a step of heating the cellulose derivative and rubber particles, or a molding material containing the cellulose derivative and rubber particles and various additives as necessary, and molding them by various molding methods. Obtained by.
  • the method for producing a molded body of the present invention includes a step of heating and molding the molding material. Examples of the molding method include injection molding, extrusion molding, blow molding and the like.
  • the heating temperature is usually 160 to 300 ° C, preferably 180 to 260 ° C.
  • the use of the molded product of the present invention is not particularly limited.
  • interior or exterior parts of electrical and electronic equipment home appliances, OA / media related equipment, optical equipment, communication equipment, etc.
  • automobiles mechanical parts, etc.
  • materials for housing and construction for example, from the viewpoint of having excellent heat resistance and impact resistance and low environmental load, for example, exterior parts for electric and electronic devices such as copiers, printers, personal computers, televisions (especially casings) ) Can be suitably used.
  • reaction solution was returned to room temperature and quenched by adding 200 mL of methanol under ice cooling.
  • methanol methanol
  • a white solid was precipitated.
  • the white solid was filtered off by suction filtration and washed 3 times with a large amount of methanol solvent.
  • the resulting white solid was vacuum-dried at 100 ° C. for 6 hours to obtain methylcellulose-2-ethylhexanoate (C-5).
  • the solubility of this cellulose derivative (C-5) in water at 25 ° C. was less than 0.1% by mass (insoluble).
  • the functional group substituted by the kind and substitution degree of a hydrocarbon group contained in cellulose the kind and alkylene substitution degree of an alkyleneoxy group, and a hydroxyl group (R ⁇ 2 >, R ⁇ 3 > and R ⁇ 6 >).
  • the type and degree of acylation were observed and determined by 1 H-NMR using the method described in Cellulose Communication 6, 73-79 (1999).
  • the degree of substitution of the hydrocarbon group is the number of moles of the hydrocarbon group substituted on the glucose ring unit, and takes a value of 0 or more and less than 3.
  • the molar substitution degree of the alkyleneoxy group is the number of moles of the alkyleneoxy group substituted on the glucose ring unit, and takes a value of 0 or more.
  • the degree of acylation indicates the degree of substitution with an acyl group by esterifying a hydroxyl group present in the glucose ring or ether substituent of cellulose, and is represented by 0 or more and 100.
  • C) of the group containing an alkyleneoxy group and an acyl group The molar substitution degree can be determined by multiplying the alkylene oxygen group molar substitution degree and the acylation degree.
  • the degree of substitution of the hydrocarbon group is the number of moles of the hydrocarbon group substituted on the glucose ring unit, and takes a value of 0 or more and less than 3.
  • the molar substitution degree of the alkyleneoxy group is the number of moles of the alkyleneoxy group substituted on the glucose ring unit, and takes a value of 0 or more.
  • the degree of acylation indicates the degree of substitution with an acyl group by esterifying a hydroxyl group present in the glucose ring or ether substituent of cellulose, and is represented by 0 or more and 100 or less.
  • C) of the group containing an alkyleneoxy group and an acyl group The molar substitution degree can be determined by multiplying the alkylene oxygen group molar substitution degree and the acylation degree.
  • a colloid titration method is performed, and the degree of substitution of carboxyl groups or sulfonic acid groups in the cellulose derivatives (C-1) to (C-7) is less than 0.02 (that is, the content of carboxyl groups or sulfonic acid groups is It was confirmed that it was less than 0.5% by mass with respect to the cellulose derivative.
  • a mixture comprising 0.003 parts by mass of ferrous sulfate, 0.1 parts by mass of sodium pyrophosphate and 5 parts by mass of ion-exchanged water was added thereto, followed by 15 parts by mass of acrylonitrile, 35 parts by mass of styrene monomer, and tert-dodecyl mercaptan.
  • a mixture consisting of 0.5 parts by mass and 0.5 parts by mass of cumene hydroperoxide was added dropwise over 3 hours, during which time the internal temperature was controlled so as not to exceed 70 ° C., and graft polymerization was carried out. Further, cumene hydroperoxide An additional 0.1 parts by mass was added and maintained at 70 ° C. for an additional hour before cooling.
  • the obtained latex was coagulated, washed with water and dried with a 0.5% sulfuric acid aqueous solution 1.2 times the amount of latex to obtain a rubber polymer (R-1) having polybutadiene as a core as a white powder. .
  • EDTA sodium ethylenediaminetetraacetate
  • ferrous sulfate a mixture of 0.0009 parts by mass of EDTA (disodium ethylenediaminetetraacetate), 0.0003 parts by mass of ferrous sulfate and 5 parts by mass of water was added to initiate polymerization of n-butyl acrylate, and the internal temperature was increased. The temperature reached 83 ° C., and the polymerization of n-butyl acrylate was terminated to obtain a poly n-butyl acrylate rubber latex.
  • the average particle size was 200 nm. The average particle size was measured by the sodium alginate method described in “Rubber Age, Vol. 88, p.484-490 (1960), by E. Schmidt, PH Biddison”.
  • the obtained latex was coagulated with 0.6% sulfuric acid aqueous solution 1.4 times the amount of latex, washed with water, and dried to give a rubber polymer (R-2) having poly n-butyl acrylate as a white powder. Got as a body.
  • ⁇ Synthesis Example 10 Preparation of rubbery polymer (R-3)> 98 parts by mass of octamethylcyclotetrasiloxane and 2 parts by mass of ⁇ -methacryloyloxypropyldimethoxymethylsilane were mixed to obtain 100 parts by mass of a siloxane-based mixture. An aqueous solution consisting of 0.67 parts by mass of sodium dodecylbenzenesulfonate and 300 parts by mass of water was added thereto, and the mixture was stirred at 10000 rpm for 2 minutes with a homomixer, and then passed once through the homogenizer at a pressure of 20 MPa. A stable premixed organosiloxane latex was obtained.
  • the atmosphere was replaced with nitrogen by passing a nitrogen stream through the reactor, and the jacket was heated to 60 ° C.
  • the internal liquid temperature reaches 50 ° C., from 0.00015 parts by mass of ferrous sulfate heptahydrate, 0.00044 parts by mass of disodium ethylenediaminetetraacetate, 0.4 parts by mass of Rongalite, and 10 parts by mass of water
  • the resulting aqueous solution was added to initiate radical polymerization, and the internal temperature was raised to 75 ° C. This state was maintained for 1 hour to complete the polymerization of n-butyl acrylate to obtain a composite rubbery polymer latex.
  • the average particle size was 60 nm.
  • aqueous solution consisting of 0.15 parts by weight of Rongalite ⁇ , 0.001 parts by weight of ferrous sulfate heptahydrate, 0.003 parts by weight of disodium salt of ethylenediaminetetraacetic acid, 5 parts by weight of water, A mixture of 9.5 parts by weight of acrylonitrile, 28.5 parts by weight of styrene, and 0.3 parts by weight of tert-butyl hydroperoxide was dropped and polymerized over 120 minutes, and the mixture was kept at 70 ° C. for 30 minutes. The contents were cooled.
  • the obtained graft copolymer latex was poured into a 1.5-fold 1% aluminum sulfate aqueous solution at 50 ° C. under examination, further heated to 70 ° C. and held for 5 minutes, and further 90 The temperature was raised to 0 ° C. and held for another 5 minutes. Dehydration and washing were repeated, and finally, it was dried overnight under an air stream to obtain a rubbery polymer (R-3) in the form of a white powder having a silicone / acrylic composite rubber as a core.
  • the obtained pellets were supplied to an injection molding machine (FANUC ROBOSHOT S-2000i, automatic injection molding machine) set at a cylinder temperature of 210 ° C., and a 4 mm ⁇ 10 mm ⁇ 80 mm multipurpose test piece (impact test) Piece and bending test piece) and a test piece for flame resistance test of 3.1 mm ⁇ 13 mm ⁇ 127 mm were molded.
  • FANUC ROBOSHOT S-2000i automatic injection molding machine
  • This mixture was supplied to a twin-screw kneading extruder (manufactured by Technobel Co., Ltd., Ultrano) set at a barrel temperature of 210 ° C. to produce pellets. Subsequently, the obtained pellets were supplied to a small injection molding machine (FANUC ROBOSHOT S-2000i, automatic injection molding machine) set at a cylinder temperature of 210 ° C., and a 4 mm ⁇ 10 mm ⁇ 80 mm multipurpose test piece (impact Test pieces and bending test pieces) and 8 cm ⁇ 5 cm ⁇ 2 mm plate-like test pieces, 10 mm ⁇ 10 mm ⁇ 4 mm Vicat softening point temperature measurement specimens were molded.
  • FANUC ROBOSHOT S-2000i automatic injection molding machine
  • the molding material of the present invention has excellent thermoplasticity, it can be molded by heat molding or the like.
  • the molding material and the molded body of the present invention are excellent in performance such as bending strength, high heat resistance (thermal deformation temperature), and molding processability, and have good impact resistance, impact resistance after residence, and high rigidity.
  • it can be suitably used as components such as automobiles, home appliances, electric and electronic devices, machine parts, housing / building materials, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Disclosed are: a molding material which has good bending strength, a high thermal deformation temperature and excellent moldability and also has good impact resistance, impact resistance (Charpy impact strength) after retention and high stiffness (bending elastic modulus); and a molded article. The molding material comprises: a cellulose derivative which contains at least one group that is produced by substituting a hydrogen atom in a hydroxy group contained in a cellulose by a group (A) and at least one group that is produced by substituting a hydrogen atom in a hydroxy group contained in the cellulose by a group (B); and rubber particles. (A) A hydrocarbon group: -RA. (B) An acyl group: -CO-RB (wherein RB represents a hydrocarbon group).

Description

成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体MOLDING MATERIAL, MOLDED BODY, ITS MANUFACTURING METHOD, AND ELECTRIC ELECTRONIC DEVICE CASE
 本発明は、成形材料、成形体、及びその製造方法、並びに電気電子機器用筐体に関する。 The present invention relates to a molding material, a molded body, a manufacturing method thereof, and a casing for electrical and electronic equipment.
 コピー機、プリンター等の電気電子機器を構成する部材には、その部材に求められる特性、機能等を考慮して、各種の素材が使用されている。例えば、電気電子機器の駆動機等を収納し、当該駆動機を保護する役割を果たす部材(筐体)にはPC(Polycarbonate)、ABS(Acrylonitrile-butadiene-styrene)樹脂、PC/ABS等が一般的に多量に使用されている(特許文献1)。これらの樹脂は、石油を原料として得られる化合物を反応させて製造されている。 Various materials are used for members constituting electrical and electronic devices such as copiers and printers in consideration of the characteristics and functions required of the members. For example, PC (Polycarbonate), ABS (Acrylonitrile-butadiene-styrene) resin, PC / ABS, etc. are generally used as a member (housing) that stores a drive machine for electrical and electronic equipment and protects the drive machine. In large amounts (Patent Document 1). These resins are produced by reacting compounds obtained from petroleum as a raw material.
 ところで、石油、石炭、天然ガス等の化石資源は、長年月の間、地中に固定されてきた炭素を主成分とするものである。このような化石資源、又は化石資源を原料とする製品を燃焼させて、二酸化炭素が大気中に放出された場合には、本来、大気中に存在せずに地中深くに固定されていた炭素を二酸化炭素として急激に放出することになり、大気中の二酸化炭素が大きく増加し、これが地球温暖化の原因となっている。したがって、化石資源である石油を原料とするABS、PC等のポリマーは、電気電子機器用部材の素材としては、優れた特性を有するものであるものの、化石資源である石油を原料とするものであるため、地球温暖化の防止の観点からは、その使用量の低減が望ましい。 By the way, fossil resources such as oil, coal, and natural gas are mainly composed of carbon that has been fixed in the ground for many years. When such fossil resources or products made from fossil resources are burned and carbon dioxide is released into the atmosphere, carbon that was originally not deep in the atmosphere but fixed deep in the ground Is rapidly released as carbon dioxide, and carbon dioxide in the atmosphere greatly increases, which causes global warming. Therefore, polymers such as ABS and PC made from petroleum, which is a fossil resource, have excellent characteristics as materials for electrical and electronic equipment, but are made from petroleum, which is a fossil resource. Therefore, it is desirable to reduce the amount used from the viewpoint of preventing global warming.
 一方、植物由来の樹脂は、元々、植物が大気中の二酸化炭素と水とを原料として光合成反応によって生成したものである。そのため、植物由来の樹脂を焼却して二酸化炭素が発生しても、その二酸化炭素は元々、大気中にあった二酸化炭素に相当するものであるから、大気中の二酸化炭素の収支はプラスマイナスゼロとなり、結局、大気中のCOの総量を増加させない、という考え方がある。このような考えから、植物由来の樹脂は、いわゆる「カーボンニュートラル」な材料と称されている。石油由来の樹脂に代わって、カーボンニュートラルな材料を用いることは、近年の地球温暖化を防止する上で急務となっている。 On the other hand, a plant-derived resin is originally produced by a photosynthesis reaction using carbon dioxide and water in the atmosphere as raw materials. Therefore, even if plant-derived resin is incinerated to generate carbon dioxide, the carbon dioxide is equivalent to carbon dioxide originally in the atmosphere, so the balance of carbon dioxide in the atmosphere is plus or minus zero After all, there is an idea that the total amount of CO 2 in the atmosphere is not increased. Based on this idea, plant-derived resins are referred to as so-called “carbon neutral” materials. The use of carbon-neutral materials in place of petroleum-derived resins is an urgent need to prevent global warming in recent years.
 このため、PCポリマーにおいて、石油由来の原料の一部としてデンプン等の植物由来資源を使用することにより石油由来資源を低減する方法が提案されている(特許文献2)。
 しかし、より完全なカーボンニュートラルな材料を目指す観点から、さらなる改良が求められている。
For this reason, in PC polymer, the method of reducing petroleum origin resources is proposed by using plant origin resources, such as starch, as some raw materials derived from petroleum (patent documents 2).
However, further improvements are required from the perspective of aiming for a more complete carbon neutral material.
 ここで、セルロースに代表される多糖類は、植物から得られる地球上で再生産可能なバイオマス材料として、また環境中にて生分解可能な材料として、昨今の大きな注目を集めつつある。セルロースは紙に用いられるばかりではなく、その誘導体であるセルロースエステルは、例えばセルロースアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートフタレート等が、フィルム材料等として多くの分野で用いられおり、商業的に流通している。 Here, polysaccharides typified by cellulose are attracting great attention these days as biomass materials that can be regenerated on the earth obtained from plants and as biodegradable materials in the environment. Cellulose is not only used for paper, but also its derivatives, such as cellulose acetate, cellulose acetate propionate, cellulose acetate butyrate, and cellulose acetate phthalate are used in many fields as film materials. Is commercially distributed.
 公知のセルロース誘導体として、ヒドロキシプロピルメチルアセチルセルロースが特許文献3及び特許文献4に記載されている。特許文献3及び特許文献4では、このヒドロキシプロピルメチルアセチルセルロースは、揮発しやすい有機溶剤の蒸気圧を低減するための添加剤として有用であることが記載されている。また、特許文献3及び特許文献4に記載のヒドロキシプロピルメチルアセチルセルロースにおける各置換基の置換度は、例えばヒドロキシプロピル基のモル置換度(MS)が約2から8の範囲、メチル基の置換度が約0.1から1の範囲、アセチル基の置換度は約0.8から2.5の範囲であることが記載されている。 As known cellulose derivatives, hydroxypropylmethylacetylcellulose is described in Patent Document 3 and Patent Document 4. Patent Document 3 and Patent Document 4 describe that this hydroxypropylmethylacetylcellulose is useful as an additive for reducing the vapor pressure of an organic solvent that easily volatilizes. In addition, the substitution degree of each substituent in hydroxypropylmethylacetylcellulose described in Patent Document 3 and Patent Document 4 is, for example, a molar substitution degree (MS) of hydroxypropyl group in a range of about 2 to 8, a substitution degree of methyl group Is in the range of about 0.1 to 1 and the degree of substitution of the acetyl group is in the range of about 0.8 to 2.5.
 また、特許文献6には、アセチルブチルセルロースと合成ゴム等のエラストマーを含むフィルムの例が開示されている。 Patent Document 6 discloses an example of a film containing acetylbutyl cellulose and an elastomer such as synthetic rubber.
日本国特開昭56-55425号公報Japanese Unexamined Patent Publication No. 56-55425 日本国特開2008-24919号公報Japanese Unexamined Patent Publication No. 2008-24919 米国特許第3979179号明細書US Pat. No. 3,979,179 米国特許第3940384号明細書U.S. Pat. No. 3,940,384 国際公開第09/010837号International Publication No. 09/010837 日本国特開平08-309717号公報Japanese Unexamined Patent Publication No. 08-309717
 本発明者らは、カーボンニュートラルな樹脂として、セルロースを使用することに初めて着目した。しかし、セルロースは一般的に熱可塑性を持たないため、加熱等により成形することが困難であるため、成形加工に適さない。また、たとえ熱可塑性を付与できたとしても、耐衝撃性等の強度が大きく衰える問題がある。例えば、上記特許文献3、及び4に記載のセルロース誘導体は水可溶性又は膨潤性であり、強度が不足しており成形材料として好ましくない。また、特許文献5に記載のセルロース誘導体は水難溶性であることが記載されているが、本文中に記載があるのみでその合成方法及び使用形態等については実施例等で具体的に開示されていない。
 更に、特許文献6に記載のセルロース誘導体とエラストマーを含む成形体は粘着性を有するため特定の用途には使用できるが、一般的な成形材料としての使用には適さない。
The present inventors paid attention for the first time to use cellulose as a carbon neutral resin. However, since cellulose generally does not have thermoplasticity, it is difficult to mold by heating or the like, and thus is not suitable for molding. Further, even if thermoplasticity can be imparted, there is a problem that strength such as impact resistance is greatly reduced. For example, the cellulose derivatives described in Patent Documents 3 and 4 are not preferable as a molding material because they are water-soluble or swellable and lack strength. In addition, the cellulose derivative described in Patent Document 5 is described as being poorly water-soluble, but only described in the text, and its synthesis method and usage form are specifically disclosed in Examples and the like. Absent.
Furthermore, since the molded product containing the cellulose derivative and the elastomer described in Patent Document 6 has adhesiveness, it can be used for specific applications, but is not suitable for use as a general molding material.
 本発明の目的は、高い耐熱性(熱変形温度)といった性能と、更に良好な耐衝撃性と滞留後の耐衝撃性(シャルピー衝撃強度)及び高い剛性(曲げ弾性率)を有する成形材料及び成形体を提供することである。また、本発明の別の目的は、該成形材料を成形して得られる成形体、該成形体の製造方法、及び該成形体から構成される電気電子機器用筐体を提供することである。 An object of the present invention is a molding material and molding having performance such as high heat resistance (thermal deformation temperature), better impact resistance, impact resistance after residence (Charpy impact strength) and high rigidity (flexural modulus). Is to provide a body. Another object of the present invention is to provide a molded body obtained by molding the molding material, a method for producing the molded body, and a housing for electric and electronic equipment composed of the molded body.
 本発明者らは、セルロースの分子構造に着目し、セルロースをエーテル構造とエステル構造を有する特定構造のセルロース誘導体とし、該特定構造のセルロース誘導体と、更にゴム粒子とを含有する成形材料により、曲げ強度、熱変形温度、及び成形加工性といった性能を下げずに、耐衝撃性、滞留後の耐衝撃性及び剛性に優れた成形材料及び成形体を提供しうることを見出し、本発明を完成するに至った。
 すなわち、上記課題は以下の手段により達成することができる。
The present inventors pay attention to the molecular structure of cellulose, and convert the cellulose into a cellulose derivative having a specific structure having an ether structure and an ester structure, and bending it by using a molding material containing the cellulose derivative having the specific structure and further rubber particles. The present invention is completed by finding that a molding material and a molded body excellent in impact resistance, impact resistance after staying and rigidity can be provided without lowering the performance such as strength, heat distortion temperature and molding processability. It came to.
That is, the said subject can be achieved by the following means.
〔1〕
 セルロースに含まれる水酸基の水素原子が、
 下記A)で置換された基を少なくとも1つ、及び
 下記B)で置換された基を少なくとも1つ含むセルロース誘導体と、
 ゴム粒子とを含有する成形材料。
 A)炭化水素基:-R
 B)アシル基:-CO-R(Rは炭化水素基を表す。)
〔2〕
 前記セルロース誘導体が、更に、セルロースに含まれる水酸基の水素原子が下記C)で置換された基を少なくとも1つ含む、〔1〕に記載の成形材料。
 C)アルキレンオキシ基:-RC2-O-とアシル基:-CO-RC1とを含む基(RC1は炭化水素基を表し、RC2は炭素数が2~4のアルキレン基を表す。)
〔3〕
 前記C)アルキレンオキシ基とアシル基とを含む基が、下記一般式(3)で表される構造を含む基である、〔2〕に記載の成形材料。
[1]
The hydrogen atom of the hydroxyl group contained in cellulose
A cellulose derivative comprising at least one group substituted in A) below and at least one group substituted in B) below;
A molding material containing rubber particles.
A) Hydrocarbon group: —R A
B) Acyl group: —CO—R B (R B represents a hydrocarbon group.)
[2]
The molding material according to [1], wherein the cellulose derivative further contains at least one group in which a hydrogen atom of a hydroxyl group contained in cellulose is substituted by the following C).
C) a group containing an alkyleneoxy group: —R C2 —O— and an acyl group: —CO—R C1 (R C1 represents a hydrocarbon group, and R C2 represents an alkylene group having 2 to 4 carbon atoms. )
[3]
The molding material according to [2], wherein the group C) containing an alkyleneoxy group and an acyl group is a group containing a structure represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 (式中、RC1は炭化水素基を表し、RC2は炭素数が2~4のアルキレン基を表す。nは1以上の整数を表す。)
〔4〕
 前記Rが炭素数1~4のアルキル基である、〔1〕~〔3〕のいずれか一項に記載の成形材料。
〔5〕
 前記Rがメチル基又はエチル基である、〔1〕~〔4〕のいずれか一項に記載の成形材料。
〔6〕
 前記R及びRC1が、それぞれ独立に、アルキル基又はアリール基である、〔2〕~〔5〕のいずれか一項に記載の成形材料。
〔7〕
 前記R及びRC1が、それぞれ独立に、メチル基、エチル基又はプロピル基である、〔2〕~〔6〕のいずれか一項に記載の成形材料。
〔8〕
 前記Rが、炭素数3~10の分岐構造を有する炭化水素基である、〔1〕~〔6〕のいずれか一項に記載の成形材料。
〔9〕
 前記アルキレンオキシ基が下記式(1)又は(2)で表される基である、〔2〕~〔8〕のいずれか一項に記載の成形材料。
(Wherein R C1 represents a hydrocarbon group, R C2 represents an alkylene group having 2 to 4 carbon atoms, and n represents an integer of 1 or more.)
[4]
The molding material according to any one of [1] to [3], wherein R A is an alkyl group having 1 to 4 carbon atoms.
[5]
The molding material according to any one of [1] to [4], wherein R A is a methyl group or an ethyl group.
[6]
The molding material according to any one of [2] to [5], wherein R B and R C1 are each independently an alkyl group or an aryl group.
[7]
The molding material according to any one of [2] to [6], wherein R B and R C1 are each independently a methyl group, an ethyl group, or a propyl group.
[8]
The molding material according to any one of [1] to [6], wherein R B is a hydrocarbon group having a branched structure having 3 to 10 carbon atoms.
[9]
The molding material according to any one of [2] to [8], wherein the alkyleneoxy group is a group represented by the following formula (1) or (2).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
〔10〕
 前記セルロース誘導体が、カルボキシル基、スルホン酸基及びこれらの塩を実質的に有さない、〔1〕~〔9〕のいずれか一項に記載の成形材料。
〔11〕
 前記セルロース誘導体が水に不溶である、〔1〕~〔10〕のいずれか一項に記載の成形材料。
〔12〕
 前記セルロース誘導体と、前記ゴム粒子との質量組成比が50/50~95/5である〔1〕~〔11〕のいずれか一項に記載の成形材料。
〔13〕
 前記ゴム粒子が、コアシェル構造である〔1〕~〔12〕のいずれか一項に記載の成形材料。
〔14〕
 前記ゴム粒子のゴム成分が、アクリル系ゴム又はシリコーン/アクリル複合ゴムである〔1〕~〔13〕のいずれか一項に記載の成形材料。
〔15〕
 更に、数平均分子量10,000以上の脂肪族ポリエステルエラストマーを含有する〔1〕~〔14〕のいずれか一項に記載の成形材料。
〔16〕
 前記セルロース誘導体、ゴム粒子及び脂肪族ポリエステルエラストマーの総量に対して、セルロース誘導体を40~90質量%、ゴム粒子を5~50質量%及び脂肪族ポリエステルエラストマーを5~50質量%含有する〔15〕に記載の成形材料。
〔17〕
 更に、セルロースエステル樹脂及びセルロースエーテル樹脂の少なくとも一方を含有する〔1〕~〔15〕のいずれか一項に記載の成形材料。
〔18〕
 前記セルロース誘導体、ゴム粒子、脂肪族ポリエステルエラストマー、セルロースエステル樹脂及びセルロースエーテル樹脂の総量に対して、セルロース誘導体を20~80質量%、ゴム粒子を5~40質量%、脂肪族ポリエステルエラストマーを5~40質量%、及びセルロースエステル樹脂及びセルロースエーテル樹脂の合計量として5~50質量%含有する〔17〕に記載の成形材料。
〔19〕
 更に、難燃剤を含有する〔1〕~〔18〕のいずれか一項に記載の成形材料。
〔20〕
 〔1〕~〔19〕のいずれかに記載の成形材料を加熱成形して得られる成形体。
〔21〕
 〔1〕~〔19〕のいずれかに記載の成形材料を加熱し、成形する工程を含む、成形体の製造方法。
〔22〕
 〔20〕に記載の成形体から構成される電気電子機器用筐体。
[10]
The molding material according to any one of [1] to [9], wherein the cellulose derivative has substantially no carboxyl group, sulfonic acid group, or salt thereof.
[11]
The molding material according to any one of [1] to [10], wherein the cellulose derivative is insoluble in water.
[12]
The molding material according to any one of [1] to [11], wherein a mass composition ratio of the cellulose derivative to the rubber particles is 50/50 to 95/5.
[13]
The molding material according to any one of [1] to [12], wherein the rubber particles have a core-shell structure.
[14]
The molding material according to any one of [1] to [13], wherein the rubber component of the rubber particles is an acrylic rubber or a silicone / acrylic composite rubber.
[15]
The molding material according to any one of [1] to [14], further comprising an aliphatic polyester elastomer having a number average molecular weight of 10,000 or more.
[16]
The cellulose derivative is contained in an amount of 40 to 90% by mass, the rubber particles are contained in an amount of 5 to 50% by mass and the aliphatic polyester elastomer is contained in an amount of 5 to 50% by mass with respect to the total amount of the cellulose derivative, rubber particles and aliphatic polyester elastomer [15]. The molding material as described in 2.
[17]
The molding material according to any one of [1] to [15], further comprising at least one of a cellulose ester resin and a cellulose ether resin.
[18]
20 to 80% by mass of cellulose derivative, 5 to 40% by mass of rubber particles, and 5 to 5% of aliphatic polyester elastomer with respect to the total amount of the cellulose derivative, rubber particles, aliphatic polyester elastomer, cellulose ester resin and cellulose ether resin. The molding material according to [17], containing 40% by mass and 5 to 50% by mass as a total amount of cellulose ester resin and cellulose ether resin.
[19]
The molding material according to any one of [1] to [18], further comprising a flame retardant.
[20]
[1] A molded product obtained by thermoforming the molding material according to any one of [19].
[21]
[1] A method for producing a molded body, comprising a step of heating and molding the molding material according to any one of [19].
[22]
[20] A casing for an electric and electronic device comprising the molded article according to [20].
 本発明の成形材料は、優れた熱可塑性を有するため、加熱成形などにより成形することができる。また、本発明の成形材料、及び成形体は、曲げ強度、高い耐熱性(熱変形温度)、及び成形加工性といった性能に優れ、かつ良好な耐衝撃性と滞留後の耐衝撃性、高い剛性を有しており、例えば自動車、家電、電気電子機器等の構成部品、機械部品、住宅・建築用材料等として好適に使用することができる。 Since the molding material of the present invention has excellent thermoplasticity, it can be molded by heat molding or the like. In addition, the molding material and the molded body of the present invention are excellent in performance such as bending strength, high heat resistance (thermal deformation temperature), and molding processability, and have good impact resistance, impact resistance after residence, and high rigidity. For example, it can be suitably used as components such as automobiles, home appliances, electric and electronic devices, machine parts, housing / building materials, and the like.
 本発明は、セルロースに含まれる水酸基の水素原子が、
 下記A)で置換された基を少なくとも1つ、及び
 下記B)で置換された基を少なくとも1つ含むセルロース誘導体と、
 ゴム粒子とを含有する成形材料に関する。
 A)炭化水素基:-R
 B)アシル基:-CO-R(Rは炭化水素基を表す。)
 以下、本発明について詳細に説明する。
In the present invention, the hydrogen atom of the hydroxyl group contained in cellulose is
A cellulose derivative comprising at least one group substituted in A) below and at least one group substituted in B) below;
The present invention relates to a molding material containing rubber particles.
A) Hydrocarbon group: —R A
B) Acyl group: —CO—R B (R B represents a hydrocarbon group.)
Hereinafter, the present invention will be described in detail.
1.セルロース誘導体
 本発明の成形材料に含まれるセルロース誘導体は、セルロースに含まれる水酸基の水素原子が、
 下記A)で置換された基を少なくとも1つ、及び
 下記B)で置換された基を少なくとも1つ含むセルロース誘導体である。
 A)炭化水素基:-R
 B)アシル基:-CO-R(Rは炭化水素基を表す。)
 すなわち、本発明におけるセルロース誘導体は、セルロースエーテルエステルであり、セルロース{(C10}に含まれる水酸基の水素原子の少なくとも一部が、A)炭化水素基:-R、B)アシル基:-CO-R(Rは炭化水素基を表す。)により置換されている。
 より詳細には、本発明におけるセルロース誘導体は、下記一般式(A)で表される繰り返し単位を有する。
1. Cellulose derivative The cellulose derivative contained in the molding material of the present invention has a hydrogen atom of a hydroxyl group contained in cellulose.
A cellulose derivative comprising at least one group substituted with A) below and at least one group substituted with B) below.
A) Hydrocarbon group: —R A
B) Acyl group: —CO—R B (R B represents a hydrocarbon group.)
That is, the cellulose derivative in the present invention is a cellulose ether ester, and at least a part of the hydrogen atoms of the hydroxyl group contained in cellulose {(C 6 H 10 O 5 ) n } is A) a hydrocarbon group: —R A , B) Substituted by an acyl group: —CO—R B (R B represents a hydrocarbon group).
More specifically, the cellulose derivative in the present invention has a repeating unit represented by the following general formula (A).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 上記一般式(A)において、R、R及びRは、それぞれ独立に、水素原子、A)炭化水素基:-R、B)アシル基:-CO-R(Rは炭化水素基を表す。)、又はその他の置換基を表す。ただし、R、R、及びRの少なくとも一部がA)炭化水素基を表し、かつR、R、及びRの少なくとも一部がB)アシル基を表す。 In the general formula (A), R 2 , R 3 and R 6 are each independently a hydrogen atom, A) hydrocarbon group: —R A , B) acyl group: —CO—R B (R B is carbon Represents a hydrogen group) or other substituents. However, at least a part of R 2 , R 3 , and R 6 represents A) a hydrocarbon group, and at least a part of R 2 , R 3 , and R 6 represents B) an acyl group.
 本発明におけるセルロース誘導体は、上記のようにβ-グルコース環の水酸基の少なくとも一部がA)炭化水素基、及びB)アシル基によって、エーテル化、及びエステル化されていることにより、熱可塑性を発現することができ、成形加工に適したものとなる。
 更には、セルロースは完全な植物由来成分であるため、カーボンニュートラルであり、環境に対する負荷を大幅に低減することができる。
As described above, the cellulose derivative in the present invention has thermoplasticity because at least part of the hydroxyl group of the β-glucose ring is etherified and esterified with A) a hydrocarbon group and B) an acyl group. It can be expressed and is suitable for molding.
Furthermore, since cellulose is a completely plant-derived component, it is carbon neutral and can greatly reduce the burden on the environment.
 なお、本発明にいう「セルロース」とは、多数のグルコースがβ-1,4-グリコシド結合によって結合した高分子化合物であって、セルロースのグルコース環における2位、3位、6位の炭素原子に結合している水酸基が無置換であるものを意味する。また、「セルロースに含まれる水酸基」とは、セルロースのグルコース環における2位、3位、6位の炭素原子に結合している水酸基を指す。 The “cellulose” referred to in the present invention is a polymer compound in which a large number of glucoses are bonded by β-1,4-glycosidic bonds, and the carbon atoms at the 2nd, 3rd and 6th positions in the glucose ring of cellulose. Means that the hydroxyl group bonded to is unsubstituted. Further, “hydroxyl group contained in cellulose” refers to a hydroxyl group bonded to carbon atoms at the 2nd, 3rd and 6th positions in the glucose ring of cellulose.
 前記セルロース誘導体は、その全体のいずれかの部分に前記A)炭化水素基、及びB)アシル基とを含んでいればよく、同一の繰り返し単位からなるものであってもよいし、複数の種類の繰り返し単位からなるものであってもよい。また、前記セルロース誘導体は、ひとつの繰り返し単位において前記A)炭化水素基、及びB)アシル基をすべて含有する必要はない。
 より具体的な態様としては、例えば以下の態様が挙げられる。
(1)R、R及びRの少なくとも1つが、A)炭化水素基で置換されている繰り返し単位と、R、R及びRの少なくとも1つが、B)アシル基で置換されている繰り返し単位と、から構成されるセルロース誘導体。
(2)ひとつの繰り返し単位のR、R及びRのいずれか少なくとも1つがA)炭化水素基で置換され、それとは別のいずれか少なくとも1つがB)アシル基で置換されている(すなわち、ひとつの繰り返し単位中に前記A)及びB)の置換基を有する)同種の繰り返し単位から構成されるセルロース誘導体。
(3)置換位置や置換基の種類が異なる繰り返し単位が、ランダムに結合しているセルロース誘導体。
 また、セルロース誘導体には、無置換の繰り返し単位(すなわち、前記一般式(A)において、R、R及びRすべてが水素原子である繰り返し単位)を含んでいてもよい。
 また、セルロース誘導体は、水素原子、A)炭化水素基、及びB)アシル基以外のその他の置換基を有していても良い。
The cellulose derivative only needs to contain the A) hydrocarbon group and B) acyl group in any part of the whole, and may be composed of the same repeating unit, or a plurality of types. It may consist of repeating units. The cellulose derivative does not need to contain all of the A) hydrocarbon group and B) acyl group in one repeating unit.
More specific embodiments include the following embodiments, for example.
(1) At least one of R 2 , R 3 and R 6 is A) a repeating unit substituted with a hydrocarbon group, and at least one of R 2 , R 3 and R 6 is substituted with B) an acyl group A cellulose derivative composed of repeating units.
(2) At least one of R 2 , R 3 and R 6 of one repeating unit is substituted with A) a hydrocarbon group, and at least one of the other is substituted with B) an acyl group ( That is, a cellulose derivative composed of the same type of repeating units having the substituents A) and B) in one repeating unit.
(3) A cellulose derivative in which repeating units having different substitution positions and different types of substituents are bonded at random.
The cellulose derivative may contain an unsubstituted repeating unit (that is, a repeating unit in which R 2 , R 3 and R 6 are all hydrogen atoms in the general formula (A)).
Moreover, the cellulose derivative may have other substituents other than a hydrogen atom, A) a hydrocarbon group, and B) an acyl group.
 A)炭化水素基:-Rは、脂肪族基、及び芳香族基のいずれでもよい。
 Rが脂肪族基である場合は、直鎖、分岐、及び環状のいずれでもよく、不飽和結合を持っていてもよい。脂肪族基としては、例えば、アルキル基、シクロアルキル基、アルケニル基、アルキニル基等が挙げられる。
 Rが芳香族基である場合は、単環、及び縮環のいずれでもよい。Rが芳香族基である場合の好ましい炭素数は6~18であり、より好ましくは6~14、更に好ましくは6~10である。芳香族基としては、例えば、フェニル基、ナフチル基、フェナントリル基、アントリル基等が挙げられる。
 A)炭化水素基は、得られる成形材料(以下「セルロース樹脂組成物」又は「樹脂組成物」と称する場合がある。)の耐衝撃性が優れることから、脂肪族基であることが好ましく、メルトフローレート等の成形加工性が優れることから、より好ましくはアルキル基であり、更に好ましくは炭素数1~4のアルキル基(低級アルキル基)である。具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ペンチル基、ヘキシル基、ヘプチル基、2-エチルヘキシル基、tert-ブチル基、イソヘプチル基等が挙げられ、メチル基又はエチル基が特に好ましい。
A) Hydrocarbon group: —R A may be an aliphatic group or an aromatic group.
When R A is an aliphatic group, it may be linear, branched, or cyclic, and may have an unsaturated bond. Examples of the aliphatic group include an alkyl group, a cycloalkyl group, an alkenyl group, and an alkynyl group.
When R A is an aromatic group, it may be either a single ring or a condensed ring. In the case where R A is an aromatic group, the preferred carbon number is 6 to 18, more preferably 6 to 14, and still more preferably 6 to 10. Examples of the aromatic group include a phenyl group, a naphthyl group, a phenanthryl group, and an anthryl group.
A) The hydrocarbon group is preferably an aliphatic group because the resulting molding material (hereinafter sometimes referred to as “cellulose resin composition” or “resin composition”) has excellent impact resistance. From the viewpoint of excellent moldability such as melt flow rate, an alkyl group is more preferable, and an alkyl group having 1 to 4 carbon atoms (lower alkyl group) is more preferable. Specific examples include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, pentyl group, hexyl group, heptyl group, 2-ethylhexyl group, tert-butyl group, isoheptyl group, and the like. A group or an ethyl group is particularly preferred.
 B)アシル基:-CO-Rにおいて、Rは炭化水素基を表す。Rは、脂肪族基、及び芳香族基のいずれでもよい。
 Rが脂肪族基である場合は、直鎖、分岐、及び環状のいずれでもよく、不飽和結合を持っていてもよい。脂肪族基としては、例えば、アルキル基、シクロアルキル基、アルケニル基、アルキニル基等が挙げられる。
 Rが芳香族基である場合は、単環、及び縮環のいずれでもよい。芳香族基としては、フェニル基、ナフチル基、フェナントリル基、アントリル基等が挙げられる。
 Rは、好ましくはアルキル基又はアリール基である。Rは、より好ましくは炭素数1~12のアルキル基又はアリール基であり、更に好ましくは炭素数1~12のアルキル基であり、特に好ましくは炭素数1~4のアルキル基(好ましくはメチル基、エチル基、プロピル基)であり、最も好ましくは炭素数1又は2のアルキル基(すなわち、メチル基又はエチル基)である。
 また、Rは、炭素数3~10の分岐構造を有する炭化水素基であることも好ましく、炭素数3~10の分岐構造を有するアルキル基であることがより好ましく、炭素数7~9の分岐構造を有するアルキル基であることが更に好ましい。
 Rとしては、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ペンチル基、ヘキシル基、ヘプチル基、3-ヘプチル基、2-エチルヘキシル基、tert-ブチル基、及びイソヘプチル基等が挙げられる。好ましくは、Rはメチル基、エチル基、プロピル基、3-ヘプチル基、又は2-エチルヘキシル基であり、より好ましくはメチル基、エチル基、3-ヘプチル基、又は2-エチルヘキシル基である。
B) Acyl group: In —CO—R B , R B represents a hydrocarbon group. R B is an aliphatic group, and may be any aromatic group.
If R B is an aliphatic group, straight chain, branched, and may be any of circular, it may have an unsaturated bond. Examples of the aliphatic group include an alkyl group, a cycloalkyl group, an alkenyl group, and an alkynyl group.
If R B is an aromatic group may be either monocyclic and condensed. Examples of the aromatic group include a phenyl group, a naphthyl group, a phenanthryl group, and an anthryl group.
R B is preferably an alkyl group or an aryl group. R B is more preferably an alkyl group having 1 to 12 carbon atoms or an aryl group, still more preferably an alkyl group having 1 to 12 carbon atoms, and particularly preferably an alkyl group having 1 to 4 carbon atoms (preferably a methyl group). Group, ethyl group, propyl group), and most preferably an alkyl group having 1 or 2 carbon atoms (that is, a methyl group or an ethyl group).
Also, R B, it is also preferably a hydrocarbon group having a branched structure having 3 to 10 carbon atoms, more preferably an alkyl group having a branched structure having 3 to 10 carbon atoms, having 7-9 carbon atoms More preferably, it is an alkyl group having a branched structure.
The R B, specifically, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a pentyl group, a hexyl group, a heptyl group, 3-heptyl, 2-ethylhexyl group, tert- butyl Group, isoheptyl group, and the like. Preferably, R B is a methyl group, an ethyl group, a propyl group, a 3-heptyl group, or a 2-ethylhexyl group, and more preferably a methyl group, an ethyl group, a 3-heptyl group, or a 2-ethylhexyl group.
 本発明の成形材料におけるセルロース誘導体は、セルロースに含まれる水酸基の水素原子が、前記A)で置換された基を少なくとも1つ、及び前記B)で置換された基を少なくとも1つ含むセルロース誘導体であるが、更に、セルロースに含まれる水酸基の水素原子が下記C)で置換された基を少なくとも1つ含むことが耐衝撃性の観点から好ましい。
 C)アルキレンオキシ基:-RC2-O-とアシル基:-CO-RC1とを含む基(RC1は炭化水素基を表し、RC2は炭素数が2~4のアルキレン基を表す。)
The cellulose derivative in the molding material of the present invention is a cellulose derivative in which the hydrogen atom of the hydroxyl group contained in cellulose contains at least one group substituted with A) and at least one group substituted with B). However, it is preferable from the viewpoint of impact resistance that it further contains at least one group in which the hydrogen atom of the hydroxyl group contained in cellulose is substituted by the following C).
C) a group containing an alkyleneoxy group: —R C2 —O— and an acyl group: —CO—R C1 (R C1 represents a hydrocarbon group, and R C2 represents an alkylene group having 2 to 4 carbon atoms. )
 前記C)に含まれるアシル基(-CO-RC1)において、RC1は炭化水素基を表す。RC1が表す炭化水素基としては、前記Rで挙げたものと同様のものを適用することができる。RC1の好ましい範囲も前記Rと同様である。 In the acyl group (—CO—R C1 ) contained in C), R C1 represents a hydrocarbon group. As the hydrocarbon group represented by R C1, the same groups as those described above for R B can be applied. The preferred range of R C1 is the same as R B.
 前記C)に含まれるアルキレンオキシ基(-RC2-O-)において、RC2は炭素数が2~4のアルキレン基を表す。RC2は、直鎖状、分岐状、又は環状のいずれでもよいが、直鎖状、又は分岐状が好ましく、分岐状がより好ましい。
 アルキレンオキシ基(-RC2-O-)としては、炭素数2又は3のアルキレンオキシ基が好ましい。アルキレンオキシ基としては具体的には下記構造が好ましく挙げられる。
In the alkyleneoxy group (—R C2 —O—) contained in C), R C2 represents an alkylene group having 2 to 4 carbon atoms. R C2 may be linear, branched or cyclic, but is preferably linear or branched, and more preferably branched.
The alkyleneoxy group (—R C2 —O—) is preferably an alkyleneoxy group having 2 or 3 carbon atoms. Specific examples of the alkyleneoxy group preferably include the following structures.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 上記の中でも、得られる樹脂組成物の曲げ弾性率が優れることから、-RC2-O-が分岐状である下記式(1)又は(2)で表される基が好ましい。 Among them, a group represented by the following formula (1) or (2) in which —R C2 —O— is branched is preferable because the obtained resin composition has excellent bending elastic modulus.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 前記C)の基は、アルキレンオキシ基を複数含んでいてもよいし、1つだけ含むものであってもよい。好ましくは、前記C)の基は、下記一般式(3)で表すことができる。 The group of C) may contain a plurality of alkyleneoxy groups or may contain only one. Preferably, the group of C) can be represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 前記一般式(3)中、RC1は炭化水素基を表し、RC2は炭素数が2~4のアルキレン基を表す。RC1及びRC2の好ましい範囲は、前記したものと同様である。nは1以上の整数である。nの上限は特に限定されず、アルキレンオキシ基の導入量等により変わるが、例えば10程度である。nは好ましくは1~5であり、より好ましくは1~3であり、更に好ましくは1である。RC2は複数存在する場合は各々同じでも異なってもよいが、同じであることが好ましい。
 また、本発明におけるセルロース誘導体は、アルキレンオキシ基を1つだけ含む前記C)の基(上記一般式(3)においてnが1である基)と、アルキレンオキシ基を2以上含む前記C)の基(上記一般式(3)においてnが2以上である基)とを含んでいてもよい。
In the general formula (3), R C1 represents a hydrocarbon group, and R C2 represents an alkylene group having 2 to 4 carbon atoms. The preferred ranges of R C1 and R C2 are the same as those described above. n is an integer of 1 or more. The upper limit of n is not particularly limited, and varies depending on the amount of alkyleneoxy group introduced, but is about 10, for example. n is preferably 1 to 5, more preferably 1 to 3, and still more preferably 1. When a plurality of R C2 are present, they may be the same or different, but are preferably the same.
In addition, the cellulose derivative in the present invention is a group of C) containing only one alkyleneoxy group (a group in which n is 1 in the general formula (3)) and C) containing two or more alkyleneoxy groups. And a group (a group in which n is 2 or more in the above general formula (3)).
 また、前記C)の基におけるアルキレンオキシ基のセルロース誘導体に対する結合向きは特に限定されないが、アルキレンオキシ基のアルキレン基部分(RC2)がβ-グルコース環構造側に結合していることが好ましい。 Further, the bonding direction of the alkyleneoxy group to the cellulose derivative in the group C) is not particularly limited, but it is preferable that the alkylene group part (R C2 ) of the alkyleneoxy group is bonded to the β-glucose ring structure side.
 R及びRC1が、それぞれ独立に、アルキル基又はアリール基であることが好ましく、R及びRC1が、それぞれ独立に、メチル基、エチル基又はプロピル基であることがより好ましい。
 前記A)におけるR、前記B)におけるR、前記C)におけるRC1及びRC2は、さらなる置換基を有していてもよいし無置換でもよいが、無置換であることが好ましい。
 前記A)におけるR、前記B)におけるR、前記C)におけるRC1及びRC2がさらなる置換基を有する場合、さらなる置換基としては、例えば、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、ヒドロキシ基、アルコキシ基(アルキル基部分の炭素数は好ましくは1~5)、アルケニル基等が挙げられる。ただし、置換基を含む場合でもRC2の炭素数は2~4である。なお、R、R、及びRC1がアルキル基以外である場合は、アルキル基(好ましくは炭素数1~5)を置換基として有することもできる。
R B and R C1 are preferably each independently an alkyl group or an aryl group, and R B and R C1 are preferably each independently a methyl group, an ethyl group, or a propyl group.
R A in A), R B in B ), R C1 and R C2 in C) may have a further substituent or may be unsubstituted, but are preferably unsubstituted.
R A in the A), R B in the B), in the case where the where R C1 and R C2 in the C) has a further substituent, examples of the further substituent include a halogen atom (e.g. fluorine atom, chlorine atom, bromine Atoms, iodine atoms), hydroxy groups, alkoxy groups (the alkyl group preferably has 1 to 5 carbon atoms), alkenyl groups, and the like. However, even when a substituent is included, R C2 has 2 to 4 carbon atoms. Note that when R A , R B , and R C1 are other than an alkyl group, they may have an alkyl group (preferably having a carbon number of 1 to 5) as a substituent.
 特に、R及びRC1がさらなる置換基を有する場合、カルボキシル基、スルホン酸基、及びこれらの塩等を実質的に有さないことが好ましい。セルロース誘導体がカルボキシル基、スルホン酸基、及びこれらの塩を実質的に有さないことにより、本発明の成形材料を水不溶性とすることができ、成形性を更に向上させることができる。また、セルロース誘導体がカルボキシル基、スルホン酸基、及びこれらの塩を有する場合、化合物安定性を悪化させることが知られており、特に熱分解を促進することがあるため、これらの基を含まないことが好ましい。
 なお、「カルボキシル基、スルホン酸基、及びこれらの塩を実質的に有さない」とは、本発明におけるセルロース誘導体が全くカルボキシル基、スルホン酸基、及びこれらの塩を有さない場合のみならず、本発明におけるセルロース誘導体が水に不溶な範囲で微量のカルボキシル基、スルホン酸基、及びこれらの塩を有する場合を包含するものとする。例えば、原料であるセルロースにカルボキシル基が含まれる場合があり、これを用いて前記A)~C)の置換基を導入したセルロース誘導体はカルボキシル基が含まれる場合があるが、これは「カルボキシル基、スルホン酸基、及びこれらの塩を実質的に有さないセルロース誘導体」に含まれるものとする。
 この場合、カルボキシル基、スルホン酸基、及びこれらの塩の好ましい含有量としては、1質量%以下、より好ましくは0.5質量%以下である。
In particular, when R B and R C1 have a further substituent, it is preferable that they substantially have no carboxyl group, sulfonic acid group, and salts thereof. When the cellulose derivative is substantially free of carboxyl groups, sulfonic acid groups, and salts thereof, the molding material of the present invention can be made water-insoluble and the moldability can be further improved. In addition, when the cellulose derivative has a carboxyl group, a sulfonic acid group, and a salt thereof, it is known that the compound stability is deteriorated, and in particular, thermal decomposition may be promoted. It is preferable.
Note that “substantially free of carboxyl groups, sulfonic acid groups, and salts thereof” means only when the cellulose derivative in the present invention has no carboxyl groups, sulfonic acid groups, and salts thereof. In addition, the case where the cellulose derivative in the present invention has a trace amount of carboxyl groups, sulfonic acid groups, and salts thereof in a range insoluble in water is included. For example, the cellulose as a raw material may contain a carboxyl group, and the cellulose derivative using the above-described substituents A) to C) introduced therein may contain a carboxyl group. , A sulfonic acid group, and a cellulose derivative substantially free of salts thereof.
In this case, the preferred content of the carboxyl group, sulfonic acid group, and salts thereof is 1% by mass or less, more preferably 0.5% by mass or less.
 また、本発明におけるセルロース誘導体は、水に不溶であることが好ましい。ここで、「水に不溶である」とは、25℃の水100質量部への溶解度が5質量部以下であることとする。 In addition, the cellulose derivative in the present invention is preferably insoluble in water. Here, “being insoluble in water” means that the solubility in 100 parts by mass of water at 25 ° C. is 5 parts by mass or less.
 本発明におけるセルロース誘導体の具体例としては、 As specific examples of the cellulose derivative in the present invention,
アセチルメチルセルロース、アセチルエチルセルロース、アセチルプロピルセルロース、アセチルブチルセルロース、アセチルペンチルセルロース、アセチルヘキシルセルロース、アセチルシクロヘキシルセルロース、アセチルフェニルセルロース、アセチルナフチルセルロース、 Acetyl methyl cellulose, acetyl ethyl cellulose, acetyl propyl cellulose, acetyl butyl cellulose, acetyl pentyl cellulose, acetyl hexyl cellulose, acetyl cyclohexyl cellulose, acetyl phenyl cellulose, acetyl naphthyl cellulose,
プロピオニルメチルセルロース、プロピオニルエチルセルロース、プロピオニルプロピルセルロース、プロピオニルブチルセルロース、プロピオニルペンチルセルロース、プロピオニルヘキシルセルロース、プロピオニルシクロヘキシルセルロース、プロピオニルフェニルセルロース、プロピオニルナフチルセルロース、 Propionylmethylcellulose, propionylethylcellulose, propionylpropylcellulose, propionylbutylcellulose, propionylpentylcellulose, propionylhexylcellulose, propionylcyclohexylcellulose, propionylphenylcellulose, propionylnaphthylcellulose,
ブチリルメチルセルロース、ブチリルエチルセルロース、ブチリルプロピルセルロース、ブチリルブチルセルロース、ブチリルペンチルセルロース、ブチリルヘキシルセルロース、ブチリルシクロヘキシルセルロース、ブチリルフェニルセルロース、ブチリルナフチルセルロース、 Butyrylmethylcellulose, butyrylethylcellulose, butyrylpropylcellulose, butyrylbutylcellulose, butyrylpentylcellulose, butyrylhexylcellulose, butyrylcyclohexylcellulose, butyrylphenylcellulose, butyrylnaphthylcellulose,
メチルセルロース-2-エチルヘキサノエート、エチルセルロース-2-エチルヘキサノエート、プロピルセルロース-2-エチルヘキサノエート、ブチルセルロース-2-エチルヘキサノエート、ペンチルセルロース-2-エチルヘキサノエート、ヘキシルセルロース-2-エチルヘキサノエート、シクロヘキシルセルロース-2-エチルヘキサノエート、フェニルセルロース-2-エチルヘキサノエート、ナフチルセルロース-2-エチルヘキサノエート、 Methylcellulose-2-ethylhexanoate, ethylcellulose-2-ethylhexanoate, propylcellulose-2-ethylhexanoate, butylcellulose-2-ethylhexanoate, pentylcellulose-2-ethylhexanoate, hexylcellulose -2-ethylhexanoate, cyclohexylcellulose-2-ethylhexanoate, phenylcellulose-2-ethylhexanoate, naphthylcellulose-2-ethylhexanoate,
アセトキシエチルメチルアセチルセルロース、アセトキシエチルエチルアセチルセルロース、アセトキシエチルプロピルアセチルセルロース、アセトキシエチルブチルアセチルセルロース、アセトキシエチルペンチルアセチルセルロース、アセトキシエチルヘキシルアセチルセルロース、アセトキシエチルシクロヘキシルアセチルセルロース、アセトキシエチルフェニルアセチルセルロース、アセトキシエチルナフチルアセチルセルロース、 Acetoxyethylmethylacetylcellulose, acetoxyethylethylacetylcellulose, acetoxyethylpropylacetylcellulose, acetoxyethylbutylacetylcellulose, acetoxyethylpentylacetylcellulose, acetoxyethylhexylacetylcellulose, acetoxyethylcyclohexylacetylcellulose, acetoxyethylphenylacetylcellulose, acetoxyethylnaphthyl Acetylcellulose,
アセトキシエチルメチルプロピオニルセルロース、アセトキシエチルエチルプロピオニルセルロース、アセトキシエチルプロピルプロピオニルセルロース、アセトキシエチルブチルプロピオニルセルロース、アセトキシエチルペンチルプロピオニルセルロース、アセトキシエチルヘキシルプロピオニルセルロース、アセトキシエチルシクロヘキシルプロピオニルセルロース、アセトキシエチルフェニルプロピオニルセルロース、アセトキシエチルナフチルプロピオニルセルロース、 Acetoxyethylmethylpropionylcellulose, acetoxyethylethylpropionylcellulose, acetoxyethylpropylpropionylcellulose, acetoxyethylbutylpropionylcellulose, acetoxyethylpentylpropionylcellulose, acetoxyethylhexylpropionylcellulose, acetoxyethylcyclohexylpropionylcellulose, acetoxyethylphenylpropionylcellulose, acetoxyethylnaphthyl Propionyl cellulose,
アセトキシエチルメチルセルロース-2-エチルヘキサノエート、アセトキシエチルエチルセルロース-2-エチルヘキサノエート、アセトキシエチルプロピルセルロース-2-エチルヘキサノエート、アセトキシエチルブチルセルロース-2-エチルヘキサノエート、アセトキシエチルペンチルセルロース-2-エチルヘキサノエート、アセトキシエチルヘキシルセルロース-2-エチルヘキサノエート、アセトキシエチルシクロヘキシルセルロース-2-エチルヘキサノエート、アセトキシエチルフェニルセルロース-2-エチルヘキサノエート、アセトキシエチルナフチルセルロース-2-エチルヘキサノエート、 Acetoxyethylmethylcellulose-2-ethylhexanoate, acetoxyethylethylcellulose-2-ethylhexanoate, acetoxyethylpropylcellulose-2-ethylhexanoate, acetoxyethylbutylcellulose-2-ethylhexanoate, acetoxyethylpentylcellulose -2-ethylhexanoate, acetoxyethylhexylcellulose-2-ethylhexanoate, acetoxyethylcyclohexylcellulose-2-ethylhexanoate, acetoxyethylphenylcellulose-2-ethylhexanoate, acetoxyethylnaphthylcellulose-2- Ethyl hexanoate,
プロピオニルオキシエチルメチルアセチルセルロース、プロピオニルオキシエチルエチルアセチルセルロース、プロピオニルオキシエチルプロピルアセチルセルロース、プロピオニルオキシエチルブチルアセチルセルロース、プロピオニルオキシエチルペンチルアセチルセルロース、プロピオニルオキシエチルヘキシルアセチルセルロース、プロピオニルオキシエチルシクロヘキシルアセチルセルロース、プロピオニルオキシエチルフェニルアセチルセルロース、プロピオニルオキシエチルナフチルアセチルセルロース、 Propionyloxyethyl methyl acetylcellulose, propionyloxyethyl ethyl acetylcellulose, propionyloxyethylpropyl acetylcellulose, propionyloxyethyl butylacetylcellulose, propionyloxyethylpentylacetylcellulose, propionyloxyethylhexylacetylcellulose, propionyloxyethylcyclohexylacetylcellulose, propionyloxy Ethylphenylacetylcellulose, propionyloxyethylnaphthylacetylcellulose,
プロピオニルオキシエチルメチルプロピオニルセルロース、プロピオニルオキシエチルエチルプロピオニルセルロース、プロピオニルオキシエチルプロピルプロピオニルセルロース、プロピオニルオキシエチルブチルプロピオニルセルロース、プロピオニルオキシエチルペンチルプロピオニルセルロース、プロピオニルオキシエチルヘキシルプロピオニルセルロース、プロピオニルオキシエチルシクロヘキシルプロピオニルセルロース、プロピオニルオキシエチルフェニルプロピオニルセルロース、プロピオニルオキシエチルナフチルプロピオニルセルロース、 Propionyloxyethylmethylpropionylcellulose, propionyloxyethylethylpropionylcellulose, propionyloxyethylpropylpropionylcellulose, propionyloxyethylbutylpropionylcellulose, propionyloxyethylpentylpropionylcellulose, propionyloxyethylhexylpropionylcellulose, propionyloxyethylcyclohexylpropionylcellulose, Ethylphenylpropionylcellulose, propionyloxyethylnaphthylpropionylcellulose,
プロピオニルオキシエチルメチルセルロース-2-エチルヘキサノエート、プロピオニルオキシエチルエチルセルロース-2-エチルヘキサノエート、プロピオニルオキシエチルプロピルセルロース-2-エチルヘキサノエート、プロピオニルオキシエチルブチルセルロース-2-エチルヘキサノエート、プロピオニルオキシエチルペンチルセルロース-2-エチルヘキサノエート、プロピオニルオキシエチルヘキシルセルロース-2-エチルヘキサノエート、プロピオニルオキシエチルシクロヘキシルセルロース-2-エチルヘキサノエート、プロピオニルオキシエチルフェニルセルロース-2-エチルヘキサノエート、プロピオニルオキシエチルナフチルセルロース-2-エチルヘキサノエート、 Propionyloxyethyl methylcellulose-2-ethylhexanoate, propionyloxyethylethylcellulose-2-ethylhexanoate, propionyloxyethylpropylcellulose-2-ethylhexanoate, propionyloxyethylbutylcellulose-2-ethylhexanoate, Propionyloxyethylpentylcellulose-2-ethylhexanoate, propionyloxyethylhexylcellulose-2-ethylhexanoate, propionyloxyethylcyclohexylcellulose-2-ethylhexanoate, propionyloxyethylphenylcellulose-2-ethylhexanoate Propionyloxyethyl naphthylcellulose-2-ethylhexanoate,
アセトキシプロピルメチルアセチルセルロース、アセトキシプロピルエチルアセチルセルロース、アセトキシプロピルプロピルアセチルセルロース、アセトキシプロピルブチルアセチルセルロース、アセトキシプロピルペンチルアセチルセルロース、アセトキシプロピルヘキシルアセチルセルロース、アセトキシプロピルシクロヘキシルアセチルセルロース、アセトキシプロピルフェニルアセチルセルロース、アセトキシプロピルナフチルアセチルセルロース、 Acetoxypropylmethylacetylcellulose, acetoxypropylethylacetylcellulose, acetoxypropylpropylacetylcellulose, acetoxypropylbutylacetylcellulose, acetoxypropylpentylacetylcellulose, acetoxypropylhexylacetylcellulose, acetoxypropylcyclohexylacetylcellulose, acetoxypropylphenylacetylcellulose, acetoxypropyl Naphthylacetylcellulose,
プロピオニルオキシプロピルメチルアセチルセルロース、プロピオニルオキシプロピルエチルアセチルセルロース、プロピオニルオキシプロピルプロピルアセチルセルロース、プロピオニルオキシプロピルブチルアセチルセルロース、プロピオニルオキシプロピルペンチルアセチルセルロース、プロピオニルオキシプロピルヘキシルアセチルセルロース、プロピオニルオキシプロピルシクロヘキシルアセチルセルロース、プロピオニルオキシプロピルフェニルアセチルセルロース、プロピオニルオキシプロピルナフチルアセチルセルロース、 Propionyloxypropylmethylacetylcellulose, propionyloxypropylethylacetylcellulose, propionyloxypropylpropylacetylcellulose, propionyloxypropylbutylacetylcellulose, propionyloxypropylpentylacetylcellulose, propionyloxypropylhexylacetylcellulose, propionyloxypropylcyclohexylacetylcellulose, propionyl Oxypropylphenylacetylcellulose, propionyloxypropylnaphthylacetylcellulose,
バレロキシプロピルメチルバレロイルセルロース、バレロキシブチルメチルバレロイルセルロースなどが挙げられる。 Examples include valeroxypropylmethyl valeroyl cellulose and valeroxybutyl methyl valeroyl cellulose.
 本発明の成形材料は、前記特定のセルロース誘導体を1種のみ含んでもよいし、2種以上を含んでもよい。 The molding material of the present invention may contain only one kind of the specific cellulose derivative or two or more kinds.
 本発明におけるセルロース誘導体中のA)炭化水素基:-R、B)アシル基:-CO-R、及びC)アルキレンオキシ基:-RC2-O-とアシル基:-CO-RC1とを含む基の置換位置、並びにβ-グルコース環単位当たりの各置換基の数(置換度)は特に限定されない。 In the cellulose derivative of the present invention, A) hydrocarbon group: —R A , B) acyl group: —CO—R B , and C) alkyleneoxy group: —R C2 —O— and acyl group: —CO—R C1 And the number of substitution groups per each β-glucose ring unit (substitution degree) are not particularly limited.
 例えば、A)炭化水素基:-Rの置換度DS(繰り返し単位中、β-グルコース環の2位、3位及び6位の水酸基に対するRの数)は、1.0<DSであることが好ましく、1.0<DS<2.5がより好ましい。また、DSは1.1以上であることが好ましい。
 B)アシル基(-CO-R)の置換度DS(繰り返し単位中、β-グルコース環のセルロース構造の2位、3位及び6位の水酸基に対する-CO-Rの数)は、0.1<DSであることが好ましく、0.1<DS<2.0であることがより好ましい。
 C)アルキレンオキシ基:-RC2-O-とアシル基:-CO-RC1とを含む基の置換度DS(繰り返し単位中、β-グルコース環のセルロース構造の2位、3位及び6位の水酸基に対するC)アルキレンオキシ基:-RC2-O-とアシル基:-CO-RC1とを含む基の数)は、0<DSであることが好ましく、0<DS<1.0であることがより好ましい。0<DSであることにより、セルロース誘導体の溶融開始温度を低くできるので、熱成形をより容易に行うことができる。
 上記のような範囲の置換度とすることにより、機械強度及び成形性等を向上させることができる。
For example, A) hydrocarbon group: the degree of substitution DS A of —R A (the number of RA for the hydroxyl groups at the 2nd, 3rd and 6th positions of the β-glucose ring in the repeating unit) is 1.0 <DS A It is preferable that 1.0 <DS A <2.5. Further, DS A is preferably 1.1 or more.
B) Degree of substitution DS B of acyl group (—CO—R B ) (the number of —CO—R B with respect to hydroxyl groups at the 2nd, 3rd and 6th positions of the cellulose structure of the β-glucose ring in the repeating unit) 0.1 <DS B is preferable, and 0.1 <DS B <2.0 is more preferable.
C) Degree of substitution DS C of a group containing an alkyleneoxy group: —R C2 —O— and an acyl group: —CO—R C1 (in the repeating unit, the 2nd, 3rd and 6th positions of the cellulose structure of the β-glucose ring) position of C to the hydroxyl group) alkyleneoxy group: -R C2 -O- acyl group: the number of groups containing a -CO-R C1) is preferably 0 <DS C, 0 <DS C <1 0.0 is more preferable. 0 <By a DS C, it is possible to lower the melting initiation temperature of the cellulose derivative can be performed thermoforming easier.
By setting the degree of substitution within the above range, mechanical strength, moldability, and the like can be improved.
 また、セルロース誘導体中に存在する無置換の水酸基の数も特に限定されない。水素原子の置換度DS(繰り返し単位中、2位、3位及び6位の水酸基が無置換である割合)は0~1.5の範囲とすることができ、好ましくは0~0.6とすればよい。DSを0.6以下とすることにより、成形材料の流動性を向上させたり、熱分解の加速・成形時の成形材料の吸水による発泡等を抑制させたりできる。 Further, the number of unsubstituted hydroxyl groups present in the cellulose derivative is not particularly limited. The degree of substitution DS H of hydrogen atoms (ratio in which the hydroxyl groups at the 2nd, 3rd and 6th positions in the repeating unit are unsubstituted) can be in the range of 0 to 1.5, preferably 0 to 0.6. And it is sufficient. By the DS H and 0.6 or less, or to improve the fluidity of the molding material, the foaming and the like due to water absorption of the molding material during acceleration and molding of the pyrolysis can or is suppressed.
 また、本発明におけるセルロース誘導体は、A)炭化水素基、B)アシル基、及びC)アルキレンオキシ基とアシル基とを含む基以外の置換基を有しても良い。有してもよい置換基の例としては、例えばヒドロキシエチル基、ヒドロキシプロピル基、ヒドロキシエトキシエチル基、ヒドロキシプロポキシプロピル基、ヒドロキシエトキシエトキシエチル基、ヒドロキシプロポキシプロポキシプロピル基が挙げられる。よって、セルロース誘導体が有するすべての置換基の各置換度の総和は3であるが、(DS+DS+DS+DS)は3以下である。 In addition, the cellulose derivative in the present invention may have a substituent other than A) a hydrocarbon group, B) an acyl group, and C) a group containing an alkyleneoxy group and an acyl group. Examples of the substituent that may be included include a hydroxyethyl group, a hydroxypropyl group, a hydroxyethoxyethyl group, a hydroxypropoxypropyl group, a hydroxyethoxyethoxyethyl group, and a hydroxypropoxypropoxypropyl group. Therefore, the sum of the degree of substitution of all the substituents of the cellulose derivative is 3, but (DS A + DS B + DS C + DS H ) is 3 or less.
 また、前記C)の基におけるアルキレンオキシ基の導入量はモル置換度(MS:グルコース残基あたりの置換基の導入モル数)で表される(セルロース学会編集、セルロース辞典P142)。アルキレンオキシ基のモル置換度MSは、0<MSであることが好ましく、0<MS≦1.5であることがより好ましく、0<MS<1.0であることが更に好ましい。MSが1.5以下(MS≦1.5)であることにより、耐熱性・成形性等を向上させることができ、成形材料に好適なセルロース誘導体が得られる。 The amount of alkyleneoxy group introduced in the group C) is expressed in terms of molar substitution (MS: number of moles of substituent introduced per glucose residue) (edited by Cellulose Society, Cellulose Dictionary P142). The molar substitution degree MS of the alkyleneoxy group is preferably 0 <MS, more preferably 0 <MS ≦ 1.5, and still more preferably 0 <MS <1.0. When MS is 1.5 or less (MS ≦ 1.5), heat resistance, moldability and the like can be improved, and a cellulose derivative suitable for a molding material can be obtained.
 本発明の成形材料におけるセルロース誘導体は、セルロースに含まれる水酸基の水素原子が、前記A)で置換された基を少なくとも1つ、及び前記B)で置換された基を少なくとも1つ含むセルロース誘導体であるが、セルロースに含まれる水酸基の水素原子が置換される場合は、成形性の観点から、前記A)及び前記B)のみで置換されているか、又は前記A)、前記B)、及び前記C)のみで置換されている場合が好ましい。すなわち本発明におけるセルロース誘導体は、セルロースに含まれる水酸基の水素原子が前記A)、前記B)、及び前記C)以外の基により置換されていないことが好ましい。 The cellulose derivative in the molding material of the present invention is a cellulose derivative in which the hydrogen atom of the hydroxyl group contained in cellulose contains at least one group substituted with A) and at least one group substituted with B). However, when a hydrogen atom of a hydroxyl group contained in cellulose is substituted, from the viewpoint of moldability, it is substituted only by A) and B) or A), B), and C. ) Is preferred. That is, in the cellulose derivative in the present invention, it is preferable that the hydrogen atom of the hydroxyl group contained in the cellulose is not substituted with a group other than the above A), B), and C).
 本発明におけるセルロース誘導体の分子量は、数平均分子量(Mn)が5×10~1000×10の範囲が好ましく、10×10~500×10の範囲が更に好ましく、10×10~200×10の範囲が最も好ましい。また、質量平均分子量(Mw)は、7×10~10000×10の範囲が好ましく、15×10~5000×10の範囲が更に好ましく、100×10~3000×10の範囲が最も好ましい。この範囲の平均分子量とすることにより、成形体の成形性、力学強度等を向上させることができる。
 分子量分布(MWD)は1.1~10.0の範囲が好ましく、1.5~8.0の範囲が更に好ましい。この範囲の分子量分布とすることにより、成形性等を向上させることができる。
 本発明における、数平均分子量(Mn)、質量平均分子量(Mw)及び分子量分布(MWD)の測定は、ゲル・パーミエーション・クロマトグラフィー(GPC)を用いて行うことができる。具体的には、N-メチルピロリドンを溶媒とし、ポリスチレンゲルを使用し、標準単分散ポリスチレンの構成曲線から予め求められた換算分子量較正曲線を用いて求めることができる。
The molecular weight of the cellulose derivative in the present invention is preferably such that the number average molecular weight (Mn) is in the range of 5 × 10 3 to 1000 × 10 3 , more preferably in the range of 10 × 10 3 to 500 × 10 3 , and 10 × 10 3 to A range of 200 × 10 3 is most preferred. The mass average molecular weight (Mw) is preferably in the range of 7 × 10 3 to 10000 × 10 3 , more preferably in the range of 15 × 10 3 to 5000 × 10 3 , and in the range of 100 × 10 3 to 3000 × 10 3 . Is most preferred. By setting the average molecular weight within this range, it is possible to improve the moldability and mechanical strength of the molded body.
The molecular weight distribution (MWD) is preferably in the range of 1.1 to 10.0, and more preferably in the range of 1.5 to 8.0. By setting the molecular weight distribution within this range, moldability and the like can be improved.
In the present invention, the number average molecular weight (Mn), mass average molecular weight (Mw) and molecular weight distribution (MWD) can be measured using gel permeation chromatography (GPC). Specifically, N-methylpyrrolidone is used as a solvent, a polystyrene gel is used, and the molecular weight can be determined using a conversion molecular weight calibration curve obtained in advance from a standard monodisperse polystyrene constituent curve.
2.セルロース誘導体の製造方法
 本発明におけるセルロース誘導体の製造方法は特に限定されず、セルロースを原料とし、セルロースに対しエーテル化及びエステル化することにより本発明におけるセルロース誘導体を製造することができる。セルロースの原料としては限定的でなく、例えば、綿、リンター、パルプ等が挙げられる。
2. Method for Producing Cellulose Derivative The method for producing a cellulose derivative in the present invention is not particularly limited, and the cellulose derivative in the present invention can be produced by using cellulose as a raw material and etherifying and esterifying cellulose. The raw material for cellulose is not limited, and examples thereof include cotton, linter, and pulp.
 前記A)炭化水素基:-R、及びB)アシル基:-CO-R(Rは炭化水素基を表す。)を有するセルロース誘導体の好ましい製造方法の態様は、セルロースエーテルに、塩基存在下、酸クロリド又は酸無水物等を反応させることにより、エステル化する工程を含むものである。
 前記セルロースエーテルとしては、例えば、セルロースに含まれるβ-グルコース環の2位、3位、及び6位の水酸基の水素原子の少なくとも一部が、炭化水素基に置換されたものを用いることができ、具体的には、メチルセルロース、エチルセルロース、プロピルセルロース、ブチルセルロース、アリルセルロース、ベンジルセルロース等が挙げられる。
A preferred embodiment of a method for producing a cellulose derivative having the above A) hydrocarbon group: —R A and B) acyl group: —CO—R B (R B represents a hydrocarbon group) includes cellulose ether, base It includes a step of esterification by reacting acid chloride or acid anhydride in the presence.
As the cellulose ether, for example, those in which at least a part of the hydrogen atoms of the hydroxyl groups at the 2nd, 3rd and 6th positions of the β-glucose ring contained in cellulose are substituted with hydrocarbon groups can be used. Specific examples include methyl cellulose, ethyl cellulose, propyl cellulose, butyl cellulose, allyl cellulose, and benzyl cellulose.
 前記A)炭化水素基:-R、B)アシル基:-CO-R(Rは炭化水素基を表す。)、及びC)アルキレンオキシ基:-RC2-O-とアシル基:-CO-RC1とを含む基(RC1は炭化水素基を表し、RC2は炭素数が2~4のアルキレン基を表す。)を有するセルロース誘導体の好ましい製造方法の態様は、炭化水素基とヒドロキシプロピル基を有するヒドロキシプロピルセルロースエーテルに酸クロライド又は酸無水物等を反応させることにより、エステル化(アシル化)する工程を含む方法によって行うものである。
 また、別の態様として、例えばメチルセルロース、エチルセルロース等のセルロースエーテルにプロピレンオキサイド等によりエーテル化するか、又はセルロースにメチルクロライド、エチルクロライド等のアルキルクロライド/炭素数3のアルキレンオキサイド等を作用させた後、更に酸クロライド又は酸無水物等を反応させることにより、エステル化する工程を含む方法も挙げられる。
 酸クロライドを反応させる方法としては、例えばCellulose 10;283-296,2003に記載の方法を用いることができる。
 炭化水素基とヒドロキシプロピル基を有するセルロースエーテルとしては、具体的には、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルエチルセルロース、ヒドロキシプロピルプロピルセルロース、ヒドロキシプロピルアリルセルロース、ヒドロキシプロピルベンジルセルロース等が挙げられる。好ましくは、ヒドロキシプロピルメチルセルロース、ヒドロキシプロピルエチルセルロースである。
A) hydrocarbon group: —R A , B) acyl group: —CO—R B (R B represents a hydrocarbon group), and C) alkyleneoxy group: —R C2 —O— and an acyl group: A preferred embodiment of a method for producing a cellulose derivative having a group containing —CO—R C1 (R C1 represents a hydrocarbon group and R C2 represents an alkylene group having 2 to 4 carbon atoms) is a hydrocarbon group. And a hydroxypropyl cellulose ether having a hydroxypropyl group are reacted with an acid chloride or an acid anhydride, to thereby carry out esterification (acylation).
Further, as another embodiment, for example, after etherification with cellulose ether such as methyl cellulose or ethyl cellulose with propylene oxide or the like, alkyl chloride such as methyl chloride or ethyl chloride / alkylene oxide having 3 carbon atoms or the like is allowed to act on cellulose. Furthermore, a method including a step of esterification by reacting an acid chloride or an acid anhydride is also included.
As a method for reacting acid chloride, for example, the method described in Cellulose 10; 283-296, 2003 can be used.
Specific examples of the cellulose ether having a hydrocarbon group and a hydroxypropyl group include hydroxypropylmethylcellulose, hydroxypropylethylcellulose, hydroxypropylpropylcellulose, hydroxypropylallylcellulose, hydroxypropylbenzylcellulose, and the like. Preferred are hydroxypropylmethylcellulose and hydroxypropylethylcellulose.
 酸クロリドとしては、前記B)アシル基、及びC)に含まれるアシル基に対応したカルボン酸クロライドを使用することができる。カルボン酸クロリドとしては、例えば、アセチルクロライド、プロピオニルクロライド、ブチリルクロリド、イソブチリルクロリド、ペンタノイルクロリド、2-メチルブタノイルクロリド、3-メチルブタノイルクロリド、ピバロイルクロリド、ヘキサノイルクロリド、2-メチルペンタノイルクロリド、3-メチルペンタノイルクロリド、4-メチルペンタノイルクロリド、2,2-ジメチルブタノイルクロリド、2,3-ジメチルブタノイルクロリド、3,3-ジメチルブタノイルクロリド、2-エチルブタノイルクロリド、ヘプタノイルクロリド、2-メチルヘキサノイルクロリド、3-メチルヘキサノイルクロリド、4-メチルヘキサノイルクロリド、5-メチルヘキサノイルクロリド、2,2-ジメチルペンタノイルクロリド、2,3-ジメチルペンタノイルクロリド、3,3-ジメチルペンタノイルクロリド、2-エチルペンタノイルクロリド、シクロヘキサノイルクロリド、オクタノイルクロリド、2-メチルヘプタノイルクロリド、3-メチルヘプタノイルクロリド、4-メチルヘプタノイルクロリド、5-メチルヘプタノイルクロリド、6-メチルヘプタノイルクロリド、2,2-ジメチルヘキサノイルクロリド、2,3-ジメチルヘキサノイルクロリド、3,3-ジメチルヘキサノイルクロリド、2-エチルヘキサノイルクロリド、2-プロピルペンタノイルクロリド、ノナノイルクロリド、2-メチルオクタノイルクロリド、3-メチルオクタノイルクロリド、4-メチルオクタノイルクロリド、5-メチルオクタノイルクロリド、6-メチルオクタノイルクロリド、2,2-ジメチルヘプタノイルクロリド、2,3-ジメチルヘプタノイルクロリド、3,3-ジメチルヘプタノイルクロリド、2-エチルヘプタノイルクロリド、2-プロピルヘキサノイルクロリド、2-ブチルペンタノイルクロリド、デカノイルクロリド、2-メチルノナノイルクロリド、3-メチルノナノイルクロリド、4-メチルノナノイルクロリド、5-メチルノナノイルクロリド、6-メチルノナノイルクロリド、7-メチルノナノイルクロリド、2,2-ジメチルオクタノイルクロリド、2,3-ジメチルオクタノイルクロリド、3,3-ジメチルオクタノイルクロリド、2-エチルオクタノイルクロリド、2-プロピルヘプタノイルクロリド、2-ブチルヘキサノイルクロリド等が挙げられる。 As the acid chloride, B) acyl group and carboxylic acid chloride corresponding to the acyl group contained in C) can be used. Examples of the carboxylic acid chloride include acetyl chloride, propionyl chloride, butyryl chloride, isobutyryl chloride, pentanoyl chloride, 2-methylbutanoyl chloride, 3-methylbutanoyl chloride, pivaloyl chloride, hexanoyl chloride, 2-methylpentanoyl chloride, 3-methylpentanoyl chloride, 4-methylpentanoyl chloride, 2,2-dimethylbutanoyl chloride, 2,3-dimethylbutanoyl chloride, 3,3-dimethylbutanoyl chloride, 2- Ethylbutanoyl chloride, heptanoyl chloride, 2-methylhexanoyl chloride, 3-methylhexanoyl chloride, 4-methylhexanoyl chloride, 5-methylhexanoyl chloride, 2,2-dimethylpentanoyl chloride, , 3-dimethylpentanoyl chloride, 3,3-dimethylpentanoyl chloride, 2-ethylpentanoyl chloride, cyclohexanoyl chloride, octanoyl chloride, 2-methylheptanoyl chloride, 3-methylheptanoyl chloride, 4-methyl Heptanoyl chloride, 5-methylheptanoyl chloride, 6-methylheptanoyl chloride, 2,2-dimethylhexanoyl chloride, 2,3-dimethylhexanoyl chloride, 3,3-dimethylhexanoyl chloride, 2-ethylhexanoyl Chloride, 2-propylpentanoyl chloride, nonanoyl chloride, 2-methyloctanoyl chloride, 3-methyloctanoyl chloride, 4-methyloctanoyl chloride, 5-methyloctanoyl chloride, 6-methyloctanoy Chloride, 2,2-dimethylheptanoyl chloride, 2,3-dimethylheptanoyl chloride, 3,3-dimethylheptanoyl chloride, 2-ethylheptanoyl chloride, 2-propylhexanoyl chloride, 2-butylpentanoyl chloride, Decanoyl chloride, 2-methylnonanoyl chloride, 3-methylnonanoyl chloride, 4-methylnonanoyl chloride, 5-methylnonanoyl chloride, 6-methylnonanoyl chloride, 7-methylnonanoyl chloride, 2,2- Examples thereof include dimethyloctanoyl chloride, 2,3-dimethyloctanoyl chloride, 3,3-dimethyloctanoyl chloride, 2-ethyloctanoyl chloride, 2-propylheptanoyl chloride, 2-butylhexanoyl chloride and the like.
 酸無水物としては、例えば前記B)アシル基、及びC)に含まれるアシル基に対応したカルボン酸無水物を使用することができる。このようなカルボン酸無水物としては、例えば、酢酸無水物、プロピオン酸無水物、酪酸無水物、吉草酸無水物、ヘキサン酸無水物、ヘプタン酸無水物、オクタン酸無水物、2-エチルヘキサン酸無水物、ノナン酸無水物等が挙げられる。
 なお、前述したとおり、本発明におけるセルロース誘導体は置換基としてカルボン酸を有さないことが好ましいため、例えば無水フタル酸、無水マレイン酸等のジカルボン酸等、セルロースと反応させてカルボキシル基が生じる化合物を用いないことが好ましい。
As the acid anhydride, for example, carboxylic acid anhydrides corresponding to the acyl group contained in the above B) acyl group and C) can be used. Examples of such carboxylic anhydrides include acetic anhydride, propionic anhydride, butyric anhydride, valeric anhydride, hexanoic anhydride, heptanoic anhydride, octanoic anhydride, 2-ethylhexanoic acid. An anhydride, nonanoic acid anhydride, etc. are mentioned.
As described above, since the cellulose derivative in the present invention preferably has no carboxylic acid as a substituent, for example, a dicarboxylic acid such as phthalic anhydride, maleic anhydride, or the like, and a compound that generates a carboxyl group by reacting with cellulose. It is preferable not to use.
 そのほかの具体的な製造条件等は、常法に従うことができる。例えば、「セルロースの事典」131頁~164頁(朝倉書店、2000年)等に記載の方法を参考にすることができる。 Other specific manufacturing conditions can follow the usual method. For example, the method described in “Encyclopedia of Cellulose” pages 131 to 164 (Asakura Shoten, 2000) can be referred to.
3.ゴム粒子
 本発明の成形材料はゴム粒子を含有する。ゴム粒子は、重合体成分から構成され、ゴム弾性を有するものであればよい。ゴム成分としては、例えば、スチレンブタジエンゴム、アクリロニトリルブタジエンゴム、ブタジエンゴム、イソプレンゴム、クロロプレンゴム、エチレンプロピレンゴム、エチレンプロピレンジエン共重合ゴム(DPDM)、エチレンブテンゴム、エチレンオクテンゴム、ブチルゴム、アクリルゴム、シリコーンゴム、塩素化ポリエチレン等の化学的に合成された合成ゴムを挙げることができる。後に詳述するが、これらを単独でも用いても、2種以上を組み合わせて用いても良い。
3. Rubber particles The molding material of the present invention contains rubber particles. The rubber particles may be composed of a polymer component and have rubber elasticity. Examples of rubber components include styrene butadiene rubber, acrylonitrile butadiene rubber, butadiene rubber, isoprene rubber, chloroprene rubber, ethylene propylene rubber, ethylene propylene diene copolymer rubber (DPDM), ethylene butene rubber, ethylene octene rubber, butyl rubber, and acrylic rubber. And chemically synthesized synthetic rubbers such as silicone rubber and chlorinated polyethylene. As will be described in detail later, these may be used alone or in combination of two or more.
 ゴム粒子を本発明における特定のセルロース誘導体に混合させることにより、曲げ弾性率、曲げ強度、熱変形温度、及び成形加工性といった材料性能を極力低下させることなく、特定のセルロース誘導体を単独で用いた場合よりも、耐衝撃性、滞留後の耐衝撃性を、剛性を著しく低下させることなく向上させることができる。これは、ゴム粒子の有する顕著な弾性に由来するものである。
 更に、ゴム粒子は、形状が粒子状のため、本発明における特定のセルロース誘導体と混合する際に、物理的に均一に拡散するので、特定のセルロース誘導体を単独で用いた場合に比しても曲げ弾性率、強度、熱変形温度、及び成形加工性といった性能を著しく低下することがない。
By mixing the rubber particles with the specific cellulose derivative in the present invention, the specific cellulose derivative was used alone without reducing the material performance such as flexural modulus, bending strength, heat distortion temperature, and moldability as much as possible. As compared with the case, the impact resistance and the impact resistance after staying can be improved without significantly reducing the rigidity. This is derived from the remarkable elasticity of the rubber particles.
Further, since the rubber particles are in the form of particles, they are physically and uniformly diffused when mixed with the specific cellulose derivative in the present invention, so that even when the specific cellulose derivative is used alone, Performances such as flexural modulus, strength, heat distortion temperature, and moldability are not significantly reduced.
 本発明におけるゴム粒子の形状は、特に限定はされないが、実質的に球形状であることが好ましい。球形状が好ましい理由は、例えば、成形材料の作製時において、ゴム粒子をセルロース誘導体に混合した場合、ゴム粒子の分散性が良く耐衝撃性が向上しやすく、また、その形状が球形状ではなく不定形状では得られる樹脂組成物の溶融粘度が大きく上昇し、成形加工時の流動性が低下する可能性があるからである。ここで球形状としては、ゴムの単一粒子であるばかりでなく、単一又は複数ゴムが凝集した形態、他のポリマーを包含したものであっても全く問題は無い。 The shape of the rubber particles in the present invention is not particularly limited, but is preferably substantially spherical. The reason why the spherical shape is preferable is, for example, when rubber particles are mixed with a cellulose derivative in the production of a molding material, the dispersibility of the rubber particles is good and the impact resistance is easily improved, and the shape is not spherical. This is because the melt viscosity of the obtained resin composition is greatly increased in an indefinite shape, and the fluidity at the time of molding may be lowered. Here, the spherical shape is not limited to a single particle of rubber, and there is no problem at all even if the single or plural rubbers are aggregated or include other polymers.
 ここで球形状とは、透過型電子顕微鏡(TEM)で任意の50個の粒子についてそれぞれ最大直径と最小直径とを測定し、その比(最大直径/最小直径)の50個の平均が1~2の範囲にあることとすることができる。この比の平均は1~1.5であることが好ましく、1~1.3であることがより好ましく、1~1.1であることが更に好ましい。 Here, the spherical shape means that the maximum diameter and the minimum diameter are measured for each of 50 arbitrary particles with a transmission electron microscope (TEM), and the average of the 50 ratios (maximum diameter / minimum diameter) is 1 to 1. It can be in the range of 2. The average of this ratio is preferably 1 to 1.5, more preferably 1 to 1.3, and still more preferably 1 to 1.1.
 なお、本発明におけるゴム粒子の粒子径は特に制限されないが、平均粒子径が10~1000nm、好ましくは30~500nm、特に好ましくは40~350nmのものが、セルロース誘導体への分散性や、耐衝撃性、剛性の改良の観点から好ましい。 ここで、ゴム粒子の粒子径の測定方法は、ゴム状重合体ラテックスの平均粒子径を、MATEC APPLIED SCIENCES 製サブミクロン粒度分布測定器CHDF-2000を用いて測定することができる。 The particle size of the rubber particles in the present invention is not particularly limited, but those having an average particle size of 10 to 1000 nm, preferably 30 to 500 nm, and particularly preferably 40 to 350 nm are those having good dispersibility in cellulose derivatives and impact resistance. From the viewpoint of improving the properties and rigidity. Here, as a method for measuring the particle diameter of the rubber particles, the average particle diameter of the rubber-like polymer latex can be measured using a submicron particle size distribution measuring instrument CHDF-2000 manufactured by MATEC APPLIED SCIENCES.
 本発明におけるゴム粒子の構造は、単一層で形成された構造であってもよいし、ゴム弾性体の相を含む多相構造であってもよい。単一相構造のゴム粒子としては、例えば、架橋ゴム粒子や複合ゴム粒子を挙げることができ、複層構造のゴム粒子としては、例えばコアシェルゴム粒子を挙げることができる。 The structure of the rubber particles in the present invention may be a structure formed of a single layer or a multiphase structure including a phase of a rubber elastic body. Examples of the rubber particles having a single phase structure include crosslinked rubber particles and composite rubber particles, and examples of the rubber particles having a multilayer structure include core-shell rubber particles.
 ゴム粒子はそのゴム弾性による耐衝撃性の発現と材料のクリープ特性に優れることから、架橋していることが好ましい。この様な架橋ゴム粒子としては、例えば、単独のあるいは複数の不飽和化合物と、架橋性モノマーを共重合して得られる粒子を使用することができる。
 不飽和化合物としては、エチレン、プロピレンなどの脂肪族オレフィン、スチレン、メチルスチレン等の芳香族ビニル化合物、ブタジエン、ジメチルブタジエン、イソプレン、クロロプレンなどの共役ジエン化合物、アクリル酸メチル、アクリル酸プロピル、アクリル酸ブチル、メタクリル酸メチル、メタクリル酸プロピル、メタクリル酸ブチルなどの不飽和カルボン酸エステル、アクリロニトリルなどのシアン化ビニルなどを使用することができる。
The rubber particles are preferably cross-linked from the viewpoint of the development of impact resistance due to rubber elasticity and the excellent creep characteristics of the material. As such crosslinked rubber particles, for example, particles obtained by copolymerizing a single or plural unsaturated compounds and a crosslinkable monomer can be used.
Examples of unsaturated compounds include aliphatic olefins such as ethylene and propylene, aromatic vinyl compounds such as styrene and methylstyrene, conjugated diene compounds such as butadiene, dimethylbutadiene, isoprene, and chloroprene, methyl acrylate, propyl acrylate, and acrylic acid. Unsaturated carboxylic acid esters such as butyl, methyl methacrylate, propyl methacrylate and butyl methacrylate, vinyl cyanide such as acrylonitrile, and the like can be used.
 更に不飽和化合物して、例えば、カルボキシル基、エポキシ基、水酸基及びアミノ基、アミド基などのエポキシ樹脂あるいは硬化剤と反応性を有する官能基を有する化合物を用いることもできる。例としては、アクリル酸、グリシジルメタクリレート、ビニルフェノール、ビニルアニリン、アクリルアミドなどを使用することができる。 Furthermore, as the unsaturated compound, for example, an epoxy resin such as a carboxyl group, an epoxy group, a hydroxyl group and an amino group, an amide group, or a compound having a functional group reactive with a curing agent can be used. As examples, acrylic acid, glycidyl methacrylate, vinylphenol, vinylaniline, acrylamide and the like can be used.
 架橋性モノマーの例としては、ジビニルベンゼン、ジアリルフタレート、エチレングリコールジメタアクリレート、アリルメタクリレート、1,3-ブチレングリコールジメタクリレートなどの分子内に重合性二重結合を複数個有する化合物を使用することができる。 Examples of crosslinkable monomers include compounds having a plurality of polymerizable double bonds in the molecule such as divinylbenzene, diallyl phthalate, ethylene glycol dimethacrylate, allyl methacrylate, 1,3-butylene glycol dimethacrylate. Can do.
 これらの粒子は、例えば乳化重合法、懸濁重合法などの従来公知の各種重合方法により製造することができる。代表的な乳化重合法は、不飽和化合物及び架橋性モノマーをクメンハイドロパーオキサイドやtert-ブチルヒドロパーオキサイド等の過酸化物などのラジカル重合開始剤、tert-ドデシルメルカプタンやn-オクチルメルカプタン等のメルカプタン類やハロゲン化炭化水素などの分子量調整剤、デキストローズやロンガリット等の還元剤、ピロリン酸ナトリウムやEDTA(エチレンジアミン四酢酸)・2Na等のキレート剤、鉄や銅等の金属触媒、そして各種公知の乳化剤の存在下で乳化重合を行い、所定の重合転化率に達した後、反応停止剤を添加して重合反応を停止させ、次いで重合系の未反応モノマーを水蒸気蒸留などで除去することによって共重合体のラテックスを得る方法である。乳化重合法で得られたラテックスから水を除去して架橋ゴム粒子が得られる。また、市販品も使用することができる。 These particles can be produced by various conventionally known polymerization methods such as an emulsion polymerization method and a suspension polymerization method. Typical emulsion polymerization methods include unsaturated compounds and crosslinkable monomers such as radical polymerization initiators such as cumene hydroperoxide and peroxides such as tert-butyl hydroperoxide, tert-dodecyl mercaptan, n-octyl mercaptan and the like. Molecular weight regulators such as mercaptans and halogenated hydrocarbons, reducing agents such as dextrose and Rongalite, chelating agents such as sodium pyrophosphate and EDTA (ethylenediaminetetraacetic acid) and 2Na, metal catalysts such as iron and copper, and various known types The emulsion polymerization is carried out in the presence of the emulsifier, and after reaching a predetermined polymerization conversion rate, a polymerization stopper is added to stop the polymerization reaction, and then the unreacted monomer in the polymerization system is removed by steam distillation or the like. This is a method for obtaining a latex of a copolymer. Water is removed from the latex obtained by the emulsion polymerization method to obtain crosslinked rubber particles. Commercial products can also be used.
 また、ゴム粒子としては、二種以上のゴム成分が共存した複合ゴム粒子であっても良い。この様な複合ゴム粒子の例としては、ジエン系ゴム、アクリル系ゴム、シリコーン系ゴム、ポリオレフィン系ゴムなどを2種類以上用いた複合ゴムを挙げることができ、好ましくはジエン/アクリル複合ゴム、シリコーン/アクリル複合ゴムであり、特に好ましくはシリコーン/アクリル複合ゴムである。シリコーン/アクリル複合ゴムは、ポリオルガノシロキサンとポリアルキル(メタ)アクリレートとが互いに分離できないように絡み合った構造を有するものである。 The rubber particles may be composite rubber particles in which two or more kinds of rubber components coexist. Examples of such composite rubber particles include composite rubber using two or more kinds of diene rubber, acrylic rubber, silicone rubber, polyolefin rubber, etc., preferably diene / acrylic composite rubber, silicone. / Acrylic composite rubber, particularly preferably silicone / acrylic composite rubber. The silicone / acrylic composite rubber has a structure in which polyorganosiloxane and polyalkyl (meth) acrylate are intertwined so that they cannot be separated from each other.
 シリコーン/アクリル複合ゴムを構成するポリオルガノシロキサンは、ジメチルシロキサン単位を構成単位として含有する重合体である。ポリオルガノシロキサンを構成するジメチルシロキサンとしては、3員環以上のジメチルシロキサン系環状体が挙げられ、3~7員環のものが好ましい。具体的にはヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ドデカメチルシクロヘキサシロキサン等が挙げられる。これらは単独で又は2種以上混合して用いられる。これらの中でも、粒子径分布を制御しやすいことから、主成分がオクタメチルシクロテトラシロキサンであることが好ましい。
 ポリオルガノシロキサンとしては特に制限はないが、ビニル重合性官能基を有するポリオルガノシロキサンが好ましい。この様なビニル重合性官能基含有シロキサンとしては、ビニル重合性官能基を含有し、かつ、ジメチルシロキサンとシロキサン結合を介して結合しうるものであれば制限されないが、ジメチルシロキサンとの反応性を考慮すると、ビニル重合性官能基を含有する各種アルコキシシラン化合物が好ましい。
The polyorganosiloxane constituting the silicone / acrylic composite rubber is a polymer containing dimethylsiloxane units as constituent units. Examples of the dimethylsiloxane constituting the polyorganosiloxane include a dimethylsiloxane-based cyclic body having a 3-membered ring or more, and a 3- to 7-membered ring is preferable. Specific examples include hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, and dodecamethylcyclohexasiloxane. These may be used alone or in combination of two or more. Among these, the main component is preferably octamethylcyclotetrasiloxane because the particle size distribution can be easily controlled.
Although there is no restriction | limiting in particular as polyorganosiloxane, Polyorganosiloxane which has a vinyl polymerizable functional group is preferable. Such a vinyl polymerizable functional group-containing siloxane is not limited as long as it contains a vinyl polymerizable functional group and can be bonded to dimethylsiloxane via a siloxane bond, but the reactivity with dimethylsiloxane is not limited. In consideration, various alkoxysilane compounds containing a vinyl polymerizable functional group are preferable.
 具体的には、β-メタクリロイルオキシエチルジメトキシメチルシラン、γ-メタクリロイルオキシプロピルジメトキシメチルシラン、γ-メタクリロイルオキシプロピルメトキシジメチルシラン、γ-メタクリロイルオキシプロピルトリメトキシシラン、γ-メタクリロイルオキシプロピルエトキシジエチルシラン、γ-メタクリロイルオキシプロピルジエトキシメチルシラン及び∂-メタクリロイルオキシブチルジエトキシメチルシラン等のメタクリロイルオキシシロキサン、テトラメチルテトラビニルシクロテトラシロキサン等のビニルシロキサン、p-ビニルフエニルジメトキシメチルシラン更にγ-メルカプトプロピルジメトキシメチルシラン、γ-メルカプトプロピルトリメトキシシラン等のメルカプトシロキサンが挙げられる。これらビニル重合性官能基含有シロキサンは、単独で使用又は2種以上を併用できる。 Specifically, β-methacryloyloxyethyldimethoxymethylsilane, γ-methacryloyloxypropyldimethoxymethylsilane, γ-methacryloyloxypropylmethoxydimethylsilane, γ-methacryloyloxypropyltrimethoxysilane, γ-methacryloyloxypropylethoxydiethylsilane, methacryloyloxysiloxanes such as γ-methacryloyloxypropyldiethoxymethylsilane and ∂-methacryloyloxybutyldiethoxymethylsilane, vinylsiloxanes such as tetramethyltetravinylcyclotetrasiloxane, p-vinylphenyldimethoxymethylsilane and γ-mercaptopropyl Examples include mercaptosiloxane such as dimethoxymethylsilane and γ-mercaptopropyltrimethoxysilane. These vinyl polymerizable functional group-containing siloxanes can be used alone or in combination of two or more.
 ポリオルガノシロキサンを製造するには、まず、ジメチルシロキサンとビニル重合性官能基を有するシロキサンとからなるシロキサン混合物に、必要に応じてシロキサン系架橋剤を添加し、次いで、乳化剤及び水によって乳化させてシロキサン混合物ラテックスを得る。次いで、高速回転による剪断力で微粒子化するホモミキサーや、高圧発生機による噴出力で微粒子化するホモジナイザー等を使用して、シロキサン混合物ラテックスを微粒子化させる。ここで、ホモジナイザー等の高圧乳化装置を使用すると、ポリオルガノシロキサンラテックスの粒子径の分布が小さくなるので好ましい。 
 次いで、微粒子化したシロキサン混合物ラテックスを、酸触媒を含む酸水溶液中に添加して高温下で重合させる。そして、反応液を冷却し、更に苛性ソーダ、苛性カリ、炭酸ナトリウムなどのアルカリ性物質で中和することで重合を停止させて、ポリオルガノシロキサンを得る。
In order to produce a polyorganosiloxane, first, a siloxane-based crosslinking agent is added to a siloxane mixture comprising dimethylsiloxane and a siloxane having a vinyl polymerizable functional group, if necessary, and then emulsified with an emulsifier and water. A siloxane mixture latex is obtained. Next, the siloxane mixture latex is made into fine particles by using a homomixer that makes fine particles by a shearing force generated by high-speed rotation, a homogenizer that makes fine particles by jetting power from a high-pressure generator, or the like. Here, it is preferable to use a high-pressure emulsifier such as a homogenizer because the particle size distribution of the polyorganosiloxane latex becomes small.
Next, the finely divided siloxane mixture latex is added to an acid aqueous solution containing an acid catalyst and polymerized at a high temperature. Then, the reaction solution is cooled and further neutralized with an alkaline substance such as caustic soda, caustic potash or sodium carbonate to stop the polymerization, thereby obtaining a polyorganosiloxane.
 上記ポリオルガノシロキサンの製造において、乳化剤としては、アニオン系乳化剤が好ましい。アニオン系乳化剤としては、例えば、アルキルベンゼンスルホン酸ナトリウム、ポリオキシエチレンノニルフェニルエーテル硫酸エステルナトリウムなどが挙げられる。これらの中でも、特にアルキルベンゼンスルホン酸ナトリウム、ラウリルスルホン酸ナトリウムなどのスルホン酸系の乳化剤が好ましい。これらの乳化剤は、シロキサン混合物100質量部に対して、0.05質量部~5質量部程度の範囲で使用される。
 ポリオルガノシロキサン重合に用いられる酸触媒としては、脂肪族スルホン酸、脂肪族置換ベンゼンスルホン酸、脂肪族置換ナフタレンスルホン酸などのスルホン酸類及び硫酸、塩酸、硝酸などの鉱酸類が挙げられる。これらの酸触媒は、1種で又は2種以上を組み合わせて用いられる。また、これらの中でも、ポリオルガノシロキサンラテックスの安定化作用に優れているため、脂肪族置換ベンゼンスルホン酸が好ましく、n-ドデシルベンゼンスルホン酸が特に好ましい。
In the production of the polyorganosiloxane, the emulsifier is preferably an anionic emulsifier. Examples of the anionic emulsifier include sodium alkylbenzene sulfonate and sodium polyoxyethylene nonylphenyl ether sulfate. Among these, sulfonic acid-based emulsifiers such as sodium alkylbenzene sulfonate and sodium lauryl sulfonate are particularly preferable. These emulsifiers are used in the range of about 0.05 to 5 parts by mass with respect to 100 parts by mass of the siloxane mixture.
Examples of the acid catalyst used for polyorganosiloxane polymerization include sulfonic acids such as aliphatic sulfonic acid, aliphatic substituted benzenesulfonic acid, and aliphatic substituted naphthalenesulfonic acid, and mineral acids such as sulfuric acid, hydrochloric acid, and nitric acid. These acid catalysts are used alone or in combination of two or more. Of these, aliphatic substituted benzene sulfonic acid is preferable and n-dodecyl benzene sulfonic acid is particularly preferable because of its excellent stabilizing effect of polyorganosiloxane latex.
 ポリオルガノシロキサンは、得られる成形材料の顔料着色性が優れることから、その平均粒子径が100nm未満であることが好ましい。また、更に好ましくは90nm未満、特に好ましくは80nm未満である。一方、平均粒子径の下限は、製造する際のラテックス粘度上昇や凝塊物(コアギュラム)発生を防止できることから、好ましくは10nmであり、より好ましくは20nm、更に好ましくは30nmである。 
 なお、ポリオルガノシロキサンの粒子径を制御する方法としては、例えば、特開平5-279434号公報に記載された方法を採用できる。
The polyorganosiloxane preferably has an average particle diameter of less than 100 nm because the pigment colorability of the resulting molding material is excellent. Further, it is more preferably less than 90 nm, particularly preferably less than 80 nm. On the other hand, the lower limit of the average particle diameter is preferably 10 nm, more preferably 20 nm, and still more preferably 30 nm because it can prevent the increase in latex viscosity and the generation of coagulum (coagulum) during production.
As a method for controlling the particle diameter of the polyorganosiloxane, for example, a method described in JP-A-5-279434 can be employed.
 シリコーン/アクリル複合ゴムを構成するポリアルキル(メタ)アクリレートは、アルキル(メタ)アクリレート単位と多官能性アルキル(メタ)アクリレート単位とを構成成分として含有する重合体である。 The polyalkyl (meth) acrylate constituting the silicone / acrylic composite rubber is a polymer containing an alkyl (meth) acrylate unit and a polyfunctional alkyl (meth) acrylate unit as constituent components.
 アルキル(メタ)アクリレートとしては、例えば、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、n-ブチルアクリレート、2-エチルヘキシルアクリレート等のアルキルアクリレート及びヘキシルメタクリレート、2-エチルヘキシルメタクリレート、n-ラウリルメタクリレート等のアルキルメタクリレートが挙げられ、これらを単独で又は2種以上併用できる。 Examples of the alkyl (meth) acrylate include alkyl acrylates such as methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, and 2-ethylhexyl acrylate, and alkyls such as hexyl methacrylate, 2-ethylhexyl methacrylate, and n-lauryl methacrylate. A methacrylate is mentioned, These can be used individually or in combination of 2 or more types.
 多相構造のゴム粒子としては、例えば、コアシェル構造粒子やサラミ構造粒子を挙げることができる。本願発明においては、耐衝撃性、滞留後の耐衝撃性及び剛性の向上の観点から、コアシェル構造を有するゴム粒子が好ましい。 Examples of multiphase rubber particles include core-shell structured particles and salami structured particles. In the present invention, rubber particles having a core-shell structure are preferable from the viewpoints of impact resistance, impact resistance after residence, and rigidity.
 コアシェル構造のゴム粒子は、中心部と表層部が異なるポリマーからなる球状ポリマー粒子で、単にコア相と単一のシェル相の二相構造からなるもの、あるいは例えば内側からソフトコア、ハードシェル、ソフトシェル及びハードシェルとなる構造のように複数のシェル相を有する多相重構造からなるマルチコアシェルゴム粒子などが知られている。ここでソフトとは、ゴム相(ガラス転移温度Tgが室温以下であるもの)であること、ハードとは、ゴムではない樹脂相(ガラス転移温度Tgが室温を超えるもの)であることを意味する。 The core-shell rubber particles are spherical polymer particles consisting of a polymer whose center and surface layers are different, and are simply composed of a two-phase structure of a core phase and a single shell phase, or, for example, soft core, hard shell, soft There are known multi-core shell rubber particles having a multi-phase multi-layer structure having a plurality of shell phases such as a shell and a hard shell. Here, “soft” means a rubber phase (having a glass transition temperature Tg of room temperature or lower), and “hard” means a resin phase that is not rubber (having a glass transition temperature Tg exceeding room temperature). .
 ソフトコア/ハードシェル構造からなるコアシェルゴム粒子のコアを形成するゴム成分としては、上に記載した架橋ゴム粒子や複合ゴム粒子を用いることができる。また本発明におけるコアシェルゴム粒子のゴム成分としては、得られる樹脂組成物の耐衝撃性、滞留後の耐衝撃性に優れることから、ジエン系ゴム、アクリル系ゴムと、シリコーン/アクリル複合ゴムが好ましく、アクリル系ゴム、シリコーン/アクリル複合ゴムが特に好ましい。い。 As the rubber component forming the core of the core-shell rubber particles having a soft core / hard shell structure, the above-described crosslinked rubber particles and composite rubber particles can be used. The rubber component of the core-shell rubber particles in the present invention is preferably a diene rubber, an acrylic rubber, and a silicone / acrylic composite rubber because the resulting resin composition is excellent in impact resistance and impact resistance after residence. Acrylic rubber and silicone / acrylic composite rubber are particularly preferred. Yes.
 シェル成分としては、ガラス転移温度が室温以上のポリマー、例えば、ポリスチレン、アクリロニトリル、アクリル酸メチル、メタクリル酸メチルなどのホモポリマー、アクリロニトリル/スチレン、メタクリル酸メチル/スチレン、メタクリル酸メチル/アクリル酸アルキルエステル、メタクリル酸/アクリル酸などのコポリマーあるいはスチレン/アクリロニトリル/メタクリル酸メチルなどのターポリマーが用いられる。カルボキシル基、エポキシ基、水酸基及びアミノ基、アミド基などのエポキシ樹脂あるいは硬化剤と反応性を有する官能基をもつアクリル酸、メタクリル酸、イタコン酸、グリシジルメタクリル酸、ヒドロキシエチルメタクリル酸、ジメチルアミノメチルメタクリル酸、メタアクリルアミドなどの不飽和化合物を共重合することも可能である。
 シェル成分としては、上記のようなビニル系重合体が好ましい。
Examples of the shell component include polymers having a glass transition temperature of room temperature or higher, for example, homopolymers such as polystyrene, acrylonitrile, methyl acrylate, methyl methacrylate, acrylonitrile / styrene, methyl methacrylate / styrene, methyl methacrylate / alkyl acrylate ester. Copolymers such as methacrylic acid / acrylic acid or terpolymers such as styrene / acrylonitrile / methyl methacrylate are used. Acrylic acid, methacrylic acid, itaconic acid, glycidyl methacrylic acid, hydroxyethyl methacrylic acid, dimethylaminomethyl having functional groups reactive with epoxy resins such as carboxyl groups, epoxy groups, hydroxyl groups and amino groups, amide groups, or curing agents It is also possible to copolymerize unsaturated compounds such as methacrylic acid and methacrylamide.
As the shell component, the vinyl polymer as described above is preferable.
 コアシェルゴム粒子においては、コア成分の含有量が10~95質量%で、シェル成分の含有量が90~5質量%の範囲にあることが好ましい。コア成分の含有量10質量%以上であれば十分な耐衝撃性の改良効果が得られ、95質量%以下であればコアをシェルで十分に被覆することができ、セルロース誘導体への分散性に優れるため好ましい。 In the core-shell rubber particles, the core component content is preferably 10 to 95% by mass and the shell component content is preferably in the range of 90 to 5% by mass. If the content of the core component is 10% by mass or more, a sufficient impact resistance improvement effect can be obtained, and if it is 95% by mass or less, the core can be sufficiently covered with the shell, and the dispersibility into the cellulose derivative can be improved. It is preferable because it is excellent.
 コアシェルゴム粒子は、公知の方法、例えば米国特許第4,419,496号公報、ヨーロッパ特許45,357号公報、特開昭55-94917号公報などに開示された方法により製造することができる。また、市販品も使用することができる。市販のソフトコア/ハードシェル構造からなるコアシェルゴム粒子としては、例えば、ブタジエン・メタクリル酸アルキル・スチレン共重合物からなる「パラロイド(商標)EXL-2655」(呉羽化学工業社製)、「メタブレンC-323A」(三菱レイヨン社製)、アクリル酸エステル・メタクリル酸エステル共重合体からなる「スタフィロイド(商標)AC-3355、TR-2122」(武田薬品工業社製)、アクリル酸ブチル・メタクリル酸メチル共重合物からなる「PARALOID(商標)EXL-2611、EXL-3387」(Rohm&Haas社製)、「メタブレンW-529」(三菱レイヨン社製)などを使用することができる。これらのうち、コアが、アクリル系ゴム又はシリコーン/アクリル複合ゴムであり、シェル成分がビニル系重合体であるゴム粒子が好ましく、例えば、三菱レイヨン社製「メタブレンW529」(アクリル系ゴムにメタクリル酸メチルをグラフトした重合体)、三菱レイヨン社製「メタブレンS2001、S2006、S2100、S2030、SX005、SX006、SRK200」(シリコーン/アクリル複合ゴムにメタクリル酸メチルをグラフトした重合体)などを挙げることができる。 The core-shell rubber particles can be produced by a known method, for example, a method disclosed in US Pat. No. 4,419,496, European Patent 45,357, Japanese Patent Laid-Open No. 55-94917. Commercial products can also be used. Examples of commercially available core-shell rubber particles having a soft core / hard shell structure include “Paraloid (trademark) EXL-2655” (manufactured by Kureha Chemical Industry Co., Ltd.), -323A "(manufactured by Mitsubishi Rayon Co., Ltd.)," Staffyroid (trademark) AC-3355, TR-2122 "(manufactured by Takeda Pharmaceutical Company Limited) consisting of an acrylic ester / methacrylic ester copolymer, butyl acrylate / methacrylic acid “PARALOID (trademark) EXL-2611, EXL-3387” (manufactured by Rohm & Haas), “methabrene W-529” (manufactured by Mitsubishi Rayon Co., Ltd.) and the like made of a methyl copolymer can be used. Among these, rubber particles in which the core is an acrylic rubber or silicone / acrylic composite rubber and the shell component is a vinyl polymer are preferable. For example, “Methbrene W529” (manufactured by Mitsubishi Rayon Co., Ltd.) Polymers obtained by grafting methyl), “Metablene S2001, S2006, S2100, S2030, SX005, SX006, SRK200” (polymer obtained by grafting methyl methacrylate on a silicone / acrylic composite rubber), etc. .
4.脂肪族ポリエステルエラストマー
 本発明の成形材料は分子量が10,000以上の脂肪族ポリエステルエラストマー(以下、「脂肪族ポリエステルエラストマー」ともいう)を含有することができる。脂肪族ポリエステルエラストマーは、ガラス転移温度が低く、軟質で延性が高いという性質を有するため、本発明における特定のセルロース誘導体と混ぜて成形材料とすることで、特定のセルロース誘導体を単独で用いた場合よりも、低温(-50℃~0℃程度)での耐衝撃性を向上させることができる。更に、本発明における特定のセルロース誘導体は、エーテル構造とエステル構造を含むため、従来のセルロースエステルなどよりも、主鎖周りにより自由度の高いエーテル結合を有するためであるため脂肪族ポリエステルエラストマーとの親和性に優れる。そのため、脂肪族ポリエステルエラストマーは、本発明における特定のセルロース誘導体に対する分散性に優れ、両者は良好に混ざり合うため、特定のセルロース誘導体を単独で用いた場合に対して耐衝撃性、及び成形性が更に向上する。また、剛性、曲げ強度、及び耐熱性といった性能にも優れる。
4). Aliphatic polyester elastomer The molding material of the present invention can contain an aliphatic polyester elastomer having a molecular weight of 10,000 or more (hereinafter also referred to as “aliphatic polyester elastomer”). Aliphatic polyester elastomers have the properties of low glass transition temperature, softness and high ductility, so when mixed with the specific cellulose derivative in the present invention to form a molding material, when a specific cellulose derivative is used alone In addition, impact resistance at low temperatures (about −50 ° C. to 0 ° C.) can be improved. Furthermore, since the specific cellulose derivative in the present invention includes an ether structure and an ester structure, it has an ether bond having a higher degree of freedom around the main chain than a conventional cellulose ester and the like. Excellent affinity. Therefore, the aliphatic polyester elastomer is excellent in dispersibility with respect to the specific cellulose derivative in the present invention, and both are mixed well, so that the impact resistance and moldability are higher than when the specific cellulose derivative is used alone. Further improvement. Moreover, it is excellent also in performance, such as rigidity, bending strength, and heat resistance.
 本発明でいう脂肪族ポリエステルエラストマーは、分子量が10,000以上の脂肪族ポリエステルエラストマーであれば特に限定されない。
 本発明における脂肪族ポリエステルエラストマーは、脂肪族多価アルコールと脂肪族多塩基酸との縮合反応により得られるポリエステル、又は環状エステルの開環重合により得られる脂肪族ポリエステルであることが好ましく、脂肪族多価アルコールと脂肪族多塩基酸との縮合反応により得られるポリエステルが更に好ましく、この様なものとしては、ポリエチレンアジペート、ポリエチレンサクシネート、ポリブチレンアジペート又はポリブチレンサクシネート、ポリブチレンサクシネートアジペートなどが例示される。最も好ましくはポリブチレンサクシネートである。
The aliphatic polyester elastomer referred to in the present invention is not particularly limited as long as it is an aliphatic polyester elastomer having a molecular weight of 10,000 or more.
The aliphatic polyester elastomer in the present invention is preferably a polyester obtained by a condensation reaction of an aliphatic polyhydric alcohol and an aliphatic polybasic acid, or an aliphatic polyester obtained by ring-opening polymerization of a cyclic ester. Polyesters obtained by condensation reaction of polyhydric alcohols and aliphatic polybasic acids are more preferable. Examples of such polyesters include polyethylene adipate, polyethylene succinate, polybutylene adipate, polybutylene succinate, polybutylene succinate adipate, and the like. Is exemplified. Most preferred is polybutylene succinate.
 脂肪族多価アルコールと脂肪族多塩基酸(あるいはそのエステル)との縮合反応で用いられる脂肪族多塩基酸としては、例えばコハク酸、シュウ酸、マロン酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、セバシン酸、アゼライン酸、デカンジカルボン酸、オクタデカンジカルボン酸、シクロヘキサンジカルボン酸、ダイマー酸ウンデカン二酸、ドデカン二酸、及びこれらの無水物、あるいはこれらのエステル等が挙げられ、脂肪族多価アルコールとしては、例えばエチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、3-メチル-1,5-ペンタンジオール、1,3-プロパンジオール、1,4ーブタンジオール、1,9-ノナンジオール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、デカメチレングリコール、シクロヘキサンジメタノール、ポリテトラメチレングリコール1,4-シクロヘキサンジメタノール、及び等が挙げられる。また、脂肪族多価アルコールの一部としてポリオキシアルキレングリコールを使用することも可能であり、例えばポリオキシエチレングリコール、ポリオキシプロピレングリコール、ポリオキシテトラメチレングリコール及びこれらの共重合体が例示される。
 脂肪族ポリエステルエラストマーは、単独ないし2種以上を用いることができる。また、これらに光学異性体が存在する場合には、D体、L体、又はラセミ体のいずれでもよく、形態としては固体、液体、又は水溶液のいずれであってもよい。
 これらのうちで、前記脂肪族多価アルコールが、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,9-ノナンジオール、ネオペンチルグリコール、ポリテトラメチレングリコール1,4-シクロヘキサンジメタノール、及びから選ばれる少なくとも一種であり、前記脂肪族多塩基酸が、コハク酸、シュウ酸、マロン酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、及びこれらの無水物から選ばれる少なくとも一種の脂肪族多塩基酸であることが好ましい。
Examples of the aliphatic polybasic acid used in the condensation reaction of an aliphatic polyhydric alcohol and an aliphatic polybasic acid (or an ester thereof) include succinic acid, oxalic acid, malonic acid, glutaric acid, adipic acid, pimelic acid, Suberic acid, sebacic acid, azelaic acid, decanedicarboxylic acid, octadecanedicarboxylic acid, cyclohexanedicarboxylic acid, dimer acid undecanedioic acid, dodecanedioic acid, and their anhydrides, or esters thereof are listed. Examples of the alcohol include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, 3-methyl-1,5-pentanediol, 1,3-propanediol, 1,4-butanediol, 1,9 -Nonanji Lumpur, neopentyl glycol, 1,5-pentanediol, 1,6-hexanediol, decamethylene glycol, cyclohexane dimethanol, polytetramethylene glycol 1,4-cyclohexane dimethanol, and the like. Moreover, it is also possible to use polyoxyalkylene glycol as a part of the aliphatic polyhydric alcohol, and examples thereof include polyoxyethylene glycol, polyoxypropylene glycol, polyoxytetramethylene glycol, and copolymers thereof. .
The aliphatic polyester elastomer may be used alone or in combination of two or more. In addition, when optical isomers exist in these, any of D-form, L-form, and racemate may be used, and the form may be any of solid, liquid, or aqueous solution.
Among these, the aliphatic polyhydric alcohol is ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, 1,3-butanediol, 1,4-butanediol, 3-methyl- At least one selected from 1,5-pentanediol, 1,6-hexanediol, 1,9-nonanediol, neopentyl glycol, polytetramethylene glycol 1,4-cyclohexanedimethanol, The basic acid is at least one selected from succinic acid, oxalic acid, malonic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, and anhydrides thereof. This is an aliphatic polybasic acid It is preferred.
 また、前記脂肪族多価アルコールが、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、ネオペンチルグリコール、及びから選ばれる少なくとも一種であり、前記脂肪族多塩基酸が、コハク酸、シュウ酸、マロン酸、グルタル酸、アジピン酸、セバシン酸、ドデカン二酸、及びこれらの無水物から選ばれる少なくとも一種の脂肪族多塩基酸であることがより好ましい。 The aliphatic polyhydric alcohol is at least one selected from diethylene glycol, triethylene glycol, polyethylene glycol, propylene glycol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, and More preferably, the aliphatic polybasic acid is at least one aliphatic polybasic acid selected from succinic acid, oxalic acid, malonic acid, glutaric acid, adipic acid, sebacic acid, dodecanedioic acid, and anhydrides thereof. preferable.
 脂肪族ポリエステルエラストマーの製造に際しては脂肪族多塩基酸(あるいはそのエステル)成分及び脂肪族多価アルコール成分の全量を初期混合し反応させてもよく、又は反応の進行にともなって分割して添加してもさしつかえない。重縮合反応としては通常のエステル交換法又はエステル化法更には両方の併用によっても可能であり、また必要により反応容器内を加圧又は減圧にすることにより重合度を上げることができる。 In the production of the aliphatic polyester elastomer, the total amount of the aliphatic polybasic acid (or its ester) component and the aliphatic polyhydric alcohol component may be initially mixed and reacted, or added in portions as the reaction proceeds. It doesn't matter. The polycondensation reaction can be carried out by a common transesterification method or esterification method, or a combination of both. If necessary, the degree of polymerization can be increased by increasing or decreasing the pressure in the reaction vessel.
 環状エステルを開環重合する方法で用いられる環状エステルとしては、例えばβ-プロピオラクトン、β-メチル-β-プロピオラクトン、δ-バレロラクトン、ε-カプロラクトン、などが挙げられる。これらのうち、ε-カプロラクトンが特に好ましい。開環重合は公知の開環重合触媒を用い、溶媒中での重合や塊状重合等の方法により行うことができる。 Examples of the cyclic ester used in the method for ring-opening polymerization of a cyclic ester include β-propiolactone, β-methyl-β-propiolactone, δ-valerolactone, and ε-caprolactone. Of these, ε-caprolactone is particularly preferred. The ring-opening polymerization can be carried out by a method such as polymerization in a solvent or bulk polymerization using a known ring-opening polymerization catalyst.
 縮合反応、及び重合反応はいずれも縦型反応器、回分式反応器、横型反応器、二軸押出し機などが用いられ、バルク状、あるいは溶液中での反応が実施されることが好ましい。 For the condensation reaction and the polymerization reaction, a vertical reactor, a batch reactor, a horizontal reactor, a twin screw extruder or the like is used, and the reaction is preferably carried out in bulk or in solution.
 縮合反応、及び重合反応におけるエステル化触媒、開環重合触媒及び脱グリコール触媒としてはリチウム、ナトリウム、カリウム、セシウム、マグネシウム、カルシウム、バリウム、ストロンチウム、亜鉛、アルミニウム、チタン、コバルト、ゲルマニウム、錫、鉛、アンチモン、カドミウム、マンガン、鉄、ジルコニウム、バナジウム、イリジウム、ランタン、セレンなどの金属、及びこれらの有機金属化合物、有機酸の塩、金属アルコキシド、金属酸化物などが挙げられ、必要に応じてリン酸等の助触媒と併用することも可能である。これらの触媒は、1種単独で又は2種以上組み合わせて用いることができ、添加量は全ジカルボン酸100モルに対して0.1モル以下が好ましく、より好ましくは0.8モル以下、更に好ましくは0.6モル以下である。 Lithium, sodium, potassium, cesium, magnesium, calcium, barium, strontium, zinc, aluminum, titanium, cobalt, germanium, tin, lead as esterification catalysts, ring-opening polymerization catalysts, and deglycolization catalysts in condensation reactions and polymerization reactions Metals such as antimony, cadmium, manganese, iron, zirconium, vanadium, iridium, lanthanum, selenium, and organic metal compounds thereof, salts of organic acids, metal alkoxides, metal oxides, etc. It can also be used in combination with a promoter such as an acid. These catalysts can be used singly or in combination of two or more, and the addition amount is preferably 0.1 mol or less, more preferably 0.8 mol or less, still more preferably with respect to 100 mol of all dicarboxylic acids. Is 0.6 mol or less.
 更に必要に応じて鎖延長剤を用いて高分子量化することもできる。鎖延長剤としては、2官能以上のイソシアネート化合物、エポキシ化合物、アジリジン化合物、オキサゾリン化合物、並びに多価金属化合物、多官能酸無水物、リン酸エステル、亜リン酸エステル等が挙げられ、1種、又は2種以上を組み合わせてもよい。 Further, if necessary, the molecular weight can be increased using a chain extender. Examples of the chain extender include bifunctional or higher functional isocyanate compounds, epoxy compounds, aziridine compounds, oxazoline compounds, polyvalent metal compounds, polyfunctional acid anhydrides, phosphate esters, phosphites, and the like. Or you may combine 2 or more types.
 本発明における脂肪族ポリエステルエラストマーの弾性率は、0.01GPa以上1GPa以下であることが好ましく、0.1GPa以上0.5GPa以下であることがより好ましい。 The elastic modulus of the aliphatic polyester elastomer in the present invention is preferably 0.01 GPa or more and 1 GPa or less, and more preferably 0.1 GPa or more and 0.5 GPa or less.
 本発明における脂肪族ポリエステルエラストマーは分子量が10,000以上である。ここで、分子量はゲル・パーミエーション・クロマトグラフィー(GPC)により測定された数平均分子量である。より詳細には、N-メチルピロリドンを溶媒とし、ポリスチレンゲルを使用し、標準単分散ポリスチレンの構成曲線から予め求められた換算分子量較正曲線を用いて求められる。GPC装置は、HLC-8220GPC(東ソー社製)を使用できる。
 脂肪族ポリエステルエラストマーは分子量が10,000未満の場合、ブリードアウトする、また、混合する樹脂に対して可塑剤として作用し、樹脂の剛性と耐熱性を著しく損なうという理由から好ましくない。
 脂肪族ポリエステルエラストマーの数平均分子量は10,000~500,000が好ましく、15,000~300,000がより好ましく、20,000~200,000が更に好ましい。
 本発明における脂肪族ポリエステルエラストマーは市販品を用いてもよく、ポリブチレンサクシネートとして、ビオノーレ#1001(Mn=70,000、昭和高分子(株)社製)やGSPla AD92W(Mn=40000、三菱化学(株)社製)、ポリブチレンサクシネートアジペートとしてビオノーレ#3001(Mn=34000、昭和高分子(株)社製)、ポリカプロラクトンとしてPH7(Mn=45,000、ダイセル(株)社製)などが挙げられる。
The aliphatic polyester elastomer in the present invention has a molecular weight of 10,000 or more. Here, the molecular weight is a number average molecular weight measured by gel permeation chromatography (GPC). More specifically, N-methylpyrrolidone is used as a solvent, a polystyrene gel is used, and the molecular weight is obtained using a conversion molecular weight calibration curve obtained in advance from a standard monodisperse polystyrene constituent curve. As the GPC apparatus, HLC-8220 GPC (manufactured by Tosoh Corporation) can be used.
When the molecular weight is less than 10,000, the aliphatic polyester elastomer is not preferable because it bleeds out, acts as a plasticizer for the resin to be mixed, and remarkably impairs the rigidity and heat resistance of the resin.
The number average molecular weight of the aliphatic polyester elastomer is preferably 10,000 to 500,000, more preferably 15,000 to 300,000, still more preferably 20,000 to 200,000.
A commercially available product may be used as the aliphatic polyester elastomer in the present invention. As polybutylene succinate, Bionore # 1001 (Mn = 70,000, manufactured by Showa Polymer Co., Ltd.) or GSPla AD92W (Mn = 40000, Mitsubishi) Chemical Co., Ltd.), Bionore # 3001 as polybutylene succinate adipate (Mn = 34000, Showa Polymer Co., Ltd.), PH7 as polycaprolactone (Mn = 45,000, manufactured by Daicel Corporation) Etc.
 本発明の成形材料は、セルロース誘導体、ゴム粒子、脂肪族ポリエステルエラストマーの合計100質量部に対して、セルロース誘導体が40~90質量%、ゴム粒子が5~50質量%、脂肪族ポリエステルエラストマーが5~50質量%であることが好ましく、セルロース誘導体が50~85質量%、ゴム粒子が10~40質量%、脂肪族ポリエステルエラストマーが5~30質量%であることがより好ましい。更に好ましくはセルロース誘導体が60~80質量%、ゴム粒子が10~30質量%、脂肪族ポリエステルエラストマーが5~20質量%であり、最も好ましくはセルロース誘導体が65~75質量%、ゴム粒子が15~25質量%、脂肪族ポリエステルエラストマーが5~15質量%である。 The molding material of the present invention comprises 40 to 90% by mass of cellulose derivative, 5 to 50% by mass of rubber particles, and 5 of aliphatic polyester elastomer with respect to 100 parts by mass in total of the cellulose derivative, rubber particles and aliphatic polyester elastomer. The content is preferably 50 to 50% by mass, more preferably 50 to 85% by mass of the cellulose derivative, 10 to 40% by mass of the rubber particles, and 5 to 30% by mass of the aliphatic polyester elastomer. More preferably, the cellulose derivative is 60 to 80% by mass, the rubber particles are 10 to 30% by mass, the aliphatic polyester elastomer is 5 to 20% by mass, most preferably the cellulose derivative is 65 to 75% by mass, and the rubber particles are 15%. -25% by mass, aliphatic polyester elastomer 5-15% by mass.
 セルロース誘導体、ゴム粒子、脂肪族ポリエステルエラストマーをこの範囲にすることによって、より、剛性、曲げ強度、耐衝撃性、成形性や滞留前後のシャルピー衝撃強度などを程よく向上させ、更に、落球衝撃強度やビカット軟化点温度が良好となり、成形材料として物性のバランスが良くなる。 By making cellulose derivatives, rubber particles, and aliphatic polyester elastomers within this range, the rigidity, bending strength, impact resistance, moldability, Charpy impact strength before and after residence, etc. are moderately improved. The Vicat softening point temperature is improved and the balance of physical properties as a molding material is improved.
5.セルロースエステル樹脂及びセルロースエーテル樹脂
 本発明の成形材料には前記セルロース誘導体に加えて、更にセルロースエステル樹脂及びセルロースエーテル樹脂の少なくとも一方を含有することができる。前記セルロース誘導体はセルロースエーテルエステルであり、該セルロースエステル樹脂及びセルロースエーテル樹脂とは構造が異なる。即ち、セルロースエステル樹脂及びセルロースエーテル樹脂の両者を含んでもよい。
5. Cellulose ester resin and cellulose ether resin In addition to the cellulose derivative, the molding material of the present invention may further contain at least one of a cellulose ester resin and a cellulose ether resin. The cellulose derivative is a cellulose ether ester and has a structure different from that of the cellulose ester resin and the cellulose ether resin. That is, both cellulose ester resin and cellulose ether resin may be included.
 本発明におけるセルロースエステル樹脂及びセルロースエーテル樹脂としては、特に限定はない。セルロースエステル樹脂は、通常、木材パルプ(針葉樹パルプ、広葉樹パルプ)、コットンリンターパルプ等のセルロースをエステル化若しくはエーテル化して製造されている。
 セルロースエステル樹脂は主鎖骨格としてグルコピラノース環を有し、側鎖として極性が高く嵩高いエステル基を有する剛性の高いポリマーであるため、本発明における特定のセルロース誘導体と混ぜることで、特定のセルロース誘導体を単独で用いた場合よりも、耐衝撃性及び繰り返し衝撃特性を向上させることができる。更に、本発明における特定のセルロース誘導体とセルロースエステル樹脂は、主鎖構造が同じであるため、親和性が高く、分散性に優れる。そのため、剛性、曲げ強度、耐熱性、及び成形加工性といった性能にも優れる。
 セルロースエステル樹脂は、セルロースをアシル化剤と反応させる慣用のエステル化方法により生成でき、必要に応じてケン化又は熟成工程を経て製造できる。セルロースエステル樹脂は、通常、パルプ(セルロース)を活性化剤により活性化処理(活性化工程)した後、硫酸などの触媒を用いてアシル化剤によりエステル(トリエステルなど)を調製し(アシル化工程)、ケン化(加水分解)・熟成によりエステル化度を調整する(ケン化・熟成工程)ことにより製造できる。セルロースアセテートの場合は、例えば、硫酸触媒法、酢酸法、メチレンクロライド法等の慣用の方法で製造できる。
The cellulose ester resin and the cellulose ether resin in the present invention are not particularly limited. Cellulose ester resins are usually produced by esterifying or etherifying cellulose such as wood pulp (conifer pulp, hardwood pulp) and cotton linter pulp.
Since the cellulose ester resin has a glucopyranose ring as a main chain skeleton and has a highly polar and bulky ester group as a side chain, it can be mixed with a specific cellulose derivative in the present invention. The impact resistance and repeated impact characteristics can be improved as compared with the case where the derivative is used alone. Furthermore, since the specific cellulose derivative and cellulose ester resin in the present invention have the same main chain structure, the affinity is high and the dispersibility is excellent. Therefore, it is excellent also in performance, such as rigidity, bending strength, heat resistance, and moldability.
The cellulose ester resin can be produced by a conventional esterification method in which cellulose is reacted with an acylating agent, and can be produced through a saponification or aging step as necessary. Cellulose ester resins are usually prepared by activating pulp (cellulose) with an activating agent (activation step), and then preparing an ester (such as a triester) with an acylating agent using a catalyst such as sulfuric acid (acylation) Step), and the degree of esterification can be adjusted by saponification (hydrolysis) / aging (saponification / aging process). In the case of cellulose acetate, it can be produced by a conventional method such as a sulfuric acid catalyst method, an acetic acid method, or a methylene chloride method.
 アシル化工程におけるアシル化剤の割合は、所望のアシル化度(酢化度など)となる範囲で選択でき、例えば、パルプ(セルロース)100質量部に対して230~300質量部、好ましくは240~290質量部、更に好ましくは250~280質量部程度である。なお、セルロースアセテートの場合、アシル化剤としては、例えば、無水酢酸などが使用できる。
 アシル化又は熟成触媒としては、通常、硫酸が使用される。硫酸の使用量は、通常、セルロース100質量部に対して、0.5~15質量部、好ましくは5~15質量部、更に好ましくは5~10質量部程度である。また、ケン化・熟成の温度は、40~160℃の範囲から選択でき、例えば、50~70℃程度である。
 更に、残留した硫酸を中和するために、アルカリで処理してもよい。
The ratio of the acylating agent in the acylation step can be selected within a range that provides a desired degree of acylation (eg, degree of acetylation). For example, 230 to 300 parts by mass, preferably 240 parts per 100 parts by mass of pulp (cellulose). The amount is about 290 parts by mass, more preferably about 250-280 parts by mass. In the case of cellulose acetate, for example, acetic anhydride can be used as the acylating agent.
As the acylation or aging catalyst, sulfuric acid is usually used. The amount of sulfuric acid used is usually about 0.5 to 15 parts by mass, preferably about 5 to 15 parts by mass, and more preferably about 5 to 10 parts by mass with respect to 100 parts by mass of cellulose. The saponification / ripening temperature can be selected from the range of 40 to 160 ° C., for example, about 50 to 70 ° C.
Furthermore, in order to neutralize the remaining sulfuric acid, it may be treated with an alkali.
 セルロースエステル樹脂としては、例えば、有機酸エステル[セルロースアセテート(酢酸セルロース)、セルロースプロピオネート、セルロースブチレート等のセルロースC2-6カルボン酸エステルなど]、混合エステル(セルロースアセテートプロピオネート、セルロースアセテートブチレート等のセルロースジC2-6カルボン酸エステルなど)、グラフト体(ポリカプロラクトングラフト化セルロースアセテートなど)、、無機酸エステル(硝酸セルロース、硫酸セルロース、リン酸セルロース等)、有機酸・無機酸混合エステル(硝酸酢酸セルロースなど)等が例示される。 Examples of the cellulose ester resin include organic acid esters [cellulose C2-6 carboxylic acid esters such as cellulose acetate (cellulose acetate), cellulose propionate, cellulose butyrate, etc.], mixed esters (cellulose acetate propionate, cellulose acetate, etc.). Cellulose di-C2-6 carboxylates such as butyrate), grafts (polycaprolactone grafted cellulose acetate, etc.), inorganic acid esters (cellulose nitrate, cellulose sulfate, cellulose phosphate, etc.), mixed organic and inorganic acids Examples include esters (such as cellulose nitrate acetate).
 本発明においては、これらのセルロースエステル樹脂のうち、有機酸で修飾されたセルロース有機酸エステルが好ましく、炭素数2~12の有機酸で修飾されたセルロース有機酸エステルがより好ましい。具体的には、セルロースジアセテート、セルローストリアセテート、セルロースプロピオネート、セルロースアセテートプロピオネート、セルロースブチレート、セルロースアセテートブチレート、セルロースプロピオネートブチレートなどが好ましく、セルロースジアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレートがより好ましい。
 セルロースエステル樹脂のアシル基の平均置換度は、1~3、好ましくは1.5~3(例えば、1.7~3)、更に好ましくは1.8~3(例えば、2~3)程度である。セルロースアセテートの場合、平均酢化度30~62.5%程度の範囲から選択でき、通常、平均酢化度43.7~62.5%(アセチル基の平均置換度1.7~3)、好ましくは45~62.5%(平均置換度1.8~3)、更に好ましくは48~62.5%(平均置換度2~3)程度である。
In the present invention, among these cellulose ester resins, a cellulose organic acid ester modified with an organic acid is preferable, and a cellulose organic acid ester modified with an organic acid having 2 to 12 carbon atoms is more preferable. Specifically, cellulose diacetate, cellulose triacetate, cellulose propionate, cellulose acetate propionate, cellulose butyrate, cellulose acetate butyrate, cellulose propionate butyrate and the like are preferable, and cellulose diacetate and cellulose acetate propionate are preferable. Nate and cellulose acetate butyrate are more preferable.
The average substitution degree of the acyl group of the cellulose ester resin is 1 to 3, preferably 1.5 to 3 (for example, 1.7 to 3), more preferably about 1.8 to 3 (for example, 2 to 3). is there. In the case of cellulose acetate, it can be selected from the range of an average degree of acetylation of about 30 to 62.5%. It is preferably 45 to 62.5% (average substitution degree 1.8 to 3), more preferably 48 to 62.5% (average substitution degree 2 to 3).
 セルロースエーテル樹脂としては、例えば、セルロースに含まれる水酸基が炭化水素基(他の基で置換されていても良い)で置換されたセルロースエーテル樹脂を用いることができる。 具体的には、メチルセルロース、エチルセルロース、プロピルセルロース、ブチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルセルロース、アリルセルロース、ベンジルセルロース等が例示される。
 本発明においては、これらのセルロースエーテル樹脂のうち、メチルセルロース、エチルセルロース、プロピルセルロースなどが好ましく、特にエチルセルロースがより好ましい。セルロースエーテル樹脂として、例えば、エトセル100(ダウケミカル社製)を挙げることができる。
 セルロースエーテル樹脂のエーテル基の平均置換度は、1~3、好ましくは1.7~3、更に好ましくは2.0~3程度である。
 セルロースエステル樹脂及びセルロースエーテル樹脂の重合度は、特に制限されず、粘度平均重合度として、例えば、200~400、好ましくは250~400、更に好ましくは270~350程度である。
As the cellulose ether resin, for example, a cellulose ether resin in which a hydroxyl group contained in cellulose is substituted with a hydrocarbon group (which may be substituted with another group) can be used. Specific examples include methyl cellulose, ethyl cellulose, propyl cellulose, butyl cellulose, hydroxypropyl cellulose, carboxymethyl cellulose, allyl cellulose, benzyl cellulose and the like.
In the present invention, among these cellulose ether resins, methyl cellulose, ethyl cellulose, propyl cellulose and the like are preferable, and ethyl cellulose is more preferable. Examples of the cellulose ether resin include Etocel 100 (manufactured by Dow Chemical Company).
The average substitution degree of the ether group of the cellulose ether resin is 1 to 3, preferably 1.7 to 3, and more preferably about 2.0 to 3.
The polymerization degree of the cellulose ester resin and the cellulose ether resin is not particularly limited, and the viscosity average polymerization degree is, for example, about 200 to 400, preferably about 250 to 400, and more preferably about 270 to 350.
 セルロースエステル樹脂あるいはセルロースエーテル樹脂を含む場合に本発明の成形材料は、前記セルロース誘導体、ゴム粒子、脂肪族ポリエステルエラストマー、セルロースエステル樹脂及びセルロースエーテル樹脂の総量に対して、セルロース誘導体を20~80質量%、ゴム粒子を5~40質量%、脂肪族ポリエステルエラストマーを5~40質量%、セルロースエステル樹脂及びセルロースエーテル樹脂の合計量を5~50質量%含有することが好ましく、セルロース誘導体が20~70質量%、ゴム粒子が10~35質量%、脂肪族ポリエステルエラストマーが5~30質量%、セルロースエステル樹脂及びセルロースエーテル樹脂の合計量が10~45質量%であることがより好ましい。更に好ましくはセルロース誘導体が20~60質量%、ゴム粒子が10~30質量%、脂肪族ポリエステルエラストマーが5~20質量%、セルロースエステル樹脂及びセルロースエーテル樹脂の合計量が15~40質量%であり、最も好ましくはセルロース誘導体が30~50質量%、ゴム粒子が15~25質量%、脂肪族ポリエステルエラストマーが5~15質量%、セルロースエステル樹脂及びセルロースエーテル樹脂の合計量が20~40質量%である。 When the cellulose ester resin or cellulose ether resin is contained, the molding material of the present invention contains 20 to 80 mass of cellulose derivative with respect to the total amount of the cellulose derivative, rubber particles, aliphatic polyester elastomer, cellulose ester resin and cellulose ether resin. %, Rubber particles are contained in an amount of 5 to 40% by mass, aliphatic polyester elastomer is contained in an amount of 5 to 40% by mass, and the total amount of cellulose ester resin and cellulose ether resin is preferably contained in an amount of 5 to 50% by mass. More preferably, the rubber particles are 10% to 35% by weight, the aliphatic polyester elastomer is 5% to 30% by weight, and the total amount of the cellulose ester resin and the cellulose ether resin is 10% to 45% by weight. More preferably, the cellulose derivative is 20 to 60% by mass, the rubber particles are 10 to 30% by mass, the aliphatic polyester elastomer is 5 to 20% by mass, and the total amount of the cellulose ester resin and the cellulose ether resin is 15 to 40% by mass. Most preferably, the cellulose derivative is 30 to 50% by mass, the rubber particles are 15 to 25% by mass, the aliphatic polyester elastomer is 5 to 15% by mass, and the total amount of the cellulose ester resin and the cellulose ether resin is 20 to 40% by mass. is there.
 セルロース誘導体、脂肪族ポリエステルエラストマー、ゴム粒子、セルロースエステル樹脂及びセルロースエーテル樹脂の少なくとも一方の樹脂をこの範囲にすることによって、高い曲げ弾性率と高いビカット軟化点温度を発現しつつ、落球衝撃強度を向上させることができる。 By making at least one of cellulose derivatives, aliphatic polyester elastomers, rubber particles, cellulose ester resins, and cellulose ether resins within this range, a high flexural modulus and a high Vicat softening point temperature are achieved, while falling ball impact strength is improved. Can be improved.
6.難燃剤
 本発明の成形材料は、更に難燃剤を含有することが好ましい。これによって、その燃焼速度の低下又は抑制といった難燃効果を向上させることができる。
 難燃剤は、特に限定されず、常用のものを用いることができる。例えば、臭素系難燃剤、塩素系難燃剤、リン含有難燃剤、ケイ素含有難燃剤、窒素化合物系難燃剤、無機系難燃剤等が挙げられる。これらの中でも、樹脂との複合時や成形加工時に熱分解してハロゲン化水素が発生して加工機械や金型を腐食させたり、作業環境を悪化させたりすることがなく、また、焼却廃棄時にハロゲンが気散したり、分解してダイオキシン類等の有害物質の発生等によって環境に悪影響を与える可能性が少ないことから、リン含有難燃剤及びケイ素含有難燃剤が好ましい。
 臭素系難燃材としては、特に限定されることはなく、常用のものを用いることができるが、例えば、デカブロモジフェニルエーテル、エチレンビステトラブロモフタルイミド、1,2-ビスペンタブロモフェニルエタン、テトラブロモビスフェノールA、ブロモ化エポキシ樹脂オリゴマー、トリス(トリブロモフェニル)フォスフェートなどが挙げられる。
6). Flame retardant The molding material of the present invention preferably further contains a flame retardant. Thereby, the flame retarding effect such as reduction or suppression of the burning rate can be improved.
The flame retardant is not particularly limited, and a conventional flame retardant can be used. For example, brominated flame retardants, chlorine-based flame retardants, phosphorus-containing flame retardants, silicon-containing flame retardants, nitrogen compound-based flame retardants, inorganic flame retardants and the like can be mentioned. Among these, hydrogen halides are not generated by thermal decomposition during resin compounding or molding, and do not corrode processing machines or molds or deteriorate the working environment. Phosphorus-containing flame retardants and silicon-containing flame retardants are preferred because they are less likely to adversely affect the environment through the generation of harmful substances such as dioxins when they are diffused or decomposed.
There are no particular limitations on the brominated flame retardant, and conventional ones can be used. For example, decabromodiphenyl ether, ethylenebistetrabromophthalimide, 1,2-bispentabromophenylethane, tetrabromo Examples thereof include bisphenol A, brominated epoxy resin oligomer, and tris (tribromophenyl) phosphate.
 リン含有難燃剤としては、特に限定されることはなく、常用のものを用いることができる。例えば、リン酸エステル、リン酸縮合エステル、ポリリン酸塩などの有機リン系化合物が挙げられる。 The phosphorus-containing flame retardant is not particularly limited, and a commonly used one can be used. Examples thereof include organic phosphorus compounds such as phosphate esters, phosphate condensation esters, and polyphosphates.
 リン酸エステルの具体例としては、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリ(2-エチルヘキシル)ホスフェート、トリブトキシエチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、トリス(イソプロピルフェニル)ホスフェート、トリス(フェニルフェニル)ホスフェート、トリナフチルホスフェート、クレジルジフェニルホスフェート、キシレニルジフェニルホスフェート、ジフェニル(2-エチルヘキシル)ホスフェート、ジ(イソプロピルフェニル)フェニルホスフェート、モノイソデシルホスフェート、2-アクリロイルオキシエチルアシッドホスフェート、2-メタクリロイルオキシエチルアシッドホスフェート、ジフェニル-2-アクリロイルオキシエチルホスフェート、ジフェニル-2-メタクリロイルオキシエチルホスフェート、メラミンホスフェート、ジメラミンホスフェート、メラミンピロホスフェート、トリフェニルホスフィンオキサイド、トリクレジルホスフィンオキサイド、メタンホスホン酸ジフェニル、フェニルホスホン酸ジエチルなどを挙げることができる。 Specific examples of phosphate esters include trimethyl phosphate, triethyl phosphate, tributyl phosphate, tri (2-ethylhexyl) phosphate, tributoxyethyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, tris (isopropylphenyl) Phosphate, tris (phenylphenyl) phosphate, trinaphthyl phosphate, cresyl diphenyl phosphate, xylenyl diphenyl phosphate, diphenyl (2-ethylhexyl) phosphate, di (isopropylphenyl) phenyl phosphate, monoisodecyl phosphate, 2-acryloyloxyethyl Acid phosphate, 2-methacryloyloxyethyl acid phosphate, diphenyl -2-acryloyloxyethyl phosphate, diphenyl-2-methacryloyloxyethyl phosphate, melamine phosphate, dimelamine phosphate, melamine pyrophosphate, triphenylphosphine oxide, tricresylphosphine oxide, diphenyl methanephosphonate, diethyl phenylphosphonate Can be mentioned.
 リン酸縮合エステルとしては、例えば、レゾルシノールポリフェニルホスフェート、レゾルシノールポリ(ジ-2,6-キシリル)ホスフェート、ビスフェノールAポリクレジルホスフェート、ハイドロキノンポリ(2,6-キシリル)ホスフェート並びにこれらの縮合物などの芳香族リン酸縮合エステル等を挙げることができる。 Examples of the phosphoric acid condensed ester include resorcinol polyphenyl phosphate, resorcinol poly (di-2,6-xylyl) phosphate, bisphenol A polycresyl phosphate, hydroquinone poly (2,6-xylyl) phosphate, and condensates thereof. Aromatic phosphoric acid condensed ester and the like.
 また、リン酸、ポリリン酸と周期律表1族~14族の金属、アンモニア、脂肪族アミン、芳香族アミンとの塩からなるポリリン酸塩を挙げることもできる。ポリリン酸塩の代表的な塩として、金属塩としてリチウム塩、ナトリウム塩、カルシウム塩、バリウム塩、鉄(II)塩、鉄(III)塩、アルミニウム塩など、脂肪族アミン塩としてメチルアミン塩、エチルアミン塩、ジエチルアミン塩、トリエチルアミン塩、エチレンジアミン塩、ピペラジン塩などがあり、芳香族アミン塩としてはピリジン塩、トリアジン等が挙げられる。 In addition, polyphosphates composed of salts of phosphoric acid, polyphosphoric acid and metals of Groups 1 to 14 of the periodic table, ammonia, aliphatic amines, and aromatic amines can also be mentioned. As typical salts of polyphosphates, lithium salts, sodium salts, calcium salts, barium salts, iron (II) salts, iron (III) salts, aluminum salts and the like as metal salts, methylamine salts as aliphatic amine salts, Examples include ethylamine salts, diethylamine salts, triethylamine salts, ethylenediamine salts, piperazine salts, and examples of aromatic amine salts include pyridine salts and triazines.
 また、前記以外にも、トリスクロロエチルホスフェート、トリスジクロロプロピルホスフェート、トリス(β-クロロプロピル)ホスフェート)などの含ハロゲンリン酸エステル、また、リン原子と窒素原子が二重結合で結ばれた構造を有するホスファゼン化合物、リン酸エステルアミドを挙げることができる。
 これらのリン含有難燃剤は、1種単独でも2種以上を組み合わせて用いてもよい。
In addition to the above, halogen-containing phosphate esters such as trischloroethyl phosphate, trisdichloropropyl phosphate, tris (β-chloropropyl) phosphate), and structures in which a phosphorus atom and a nitrogen atom are connected by a double bond Phosphazene compounds having phosphoric acid and phosphoric ester amides.
These phosphorus-containing flame retardants may be used singly or in combination of two or more.
 ケイ素含有難燃剤としては、二次元又は三次元構造の有機ケイ素化合物、ポリジメチルシロキサン、又はポリジメチルシロキサンの側鎖又は末端のメチル基が、水素原子、置換又は非置換の脂肪族炭化水素基、芳香族炭化水素基で置換又は修飾されたもの、いわゆるシリコーンオイル、又は変性シリコーンオイルが挙げられる。 Examples of the silicon-containing flame retardant include an organic silicon compound having a two-dimensional or three-dimensional structure, polydimethylsiloxane, or a methyl group at a side chain or a terminal of polydimethylsiloxane, a hydrogen atom, a substituted or unsubstituted aliphatic hydrocarbon group, Examples thereof include those substituted or modified with an aromatic hydrocarbon group, so-called silicone oils, or modified silicone oils.
 置換又は非置換の脂肪族炭化水素基、芳香族炭化水素基としては、例えば、アルキル基、シクロアルキル基、フェニル基、ベンジル基、アミノ基、エポキシ基、ポリエーテル基、カルボキシル基、メルカプト基、クロロアルキル基、アルキル高級アルコールエステル基、アルコール基、アラルキル基、ビニル基、又はトリフロロメチル基等が挙げられる。
 これらのケイ素含有難燃剤は1種単独でも2種以上を組み合わせて用いてもよい。
Examples of the substituted or unsubstituted aliphatic hydrocarbon group and aromatic hydrocarbon group include an alkyl group, a cycloalkyl group, a phenyl group, a benzyl group, an amino group, an epoxy group, a polyether group, a carboxyl group, a mercapto group, Examples include a chloroalkyl group, an alkyl higher alcohol ester group, an alcohol group, an aralkyl group, a vinyl group, or a trifluoromethyl group.
These silicon-containing flame retardants may be used alone or in combination of two or more.
 また、前記リン含有難燃剤又はケイ素含有難燃剤以外の難燃剤としては、例えば、水酸化マグネシウム、水酸化アルミニウム、三酸化アンチモン、五酸化アンチモン、アンチモン酸ソーダ、ヒドロキシスズ酸亜鉛、スズ酸亜鉛、メタスズ酸、酸化スズ、酸化スズ塩、硫酸亜鉛、酸化亜鉛、酸化第一鉄、酸化第二鉄、酸化第一錫、酸化第二スズ、ホウ酸亜鉛、ホウ酸アンモニウム、オクタモリブデン酸アンモニウム、タングステン酸の金属塩、タングステンとメタロイドとの複合酸化物、スルファミン酸アンモニウム、臭化アンモニウム、ジルコニウム系化合物、グアニジン系化合物、フッ素系化合物、黒鉛、膨潤性黒鉛等の無機系難燃剤、塩素化ポリエチレン、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、テトラフルオロエチレン/ヘキサプロピレン共重合体、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン/エチレン共重合体、ヘキサフルオロプロピレン/プロピレン共重合体、ポリビニリデンフルオライド、ビニリデンフルオライド/エチレン共重合体等のハロゲン系重合体を用いることができる。これらの他の難燃剤は、1種単独で用いても、2種以上を併用して用いてもよい。 Examples of the flame retardant other than the phosphorus-containing flame retardant or the silicon-containing flame retardant include, for example, magnesium hydroxide, aluminum hydroxide, antimony trioxide, antimony pentoxide, sodium antimonate, zinc hydroxystannate, zinc stannate, Metastannic acid, tin oxide, tin oxide salt, zinc sulfate, zinc oxide, ferrous oxide, ferric oxide, stannous oxide, stannic oxide, zinc borate, ammonium borate, ammonium octamolybdate, tungsten Metal salts of acids, complex oxides of tungsten and metalloid, ammonium sulfamate, ammonium bromide, zirconium compounds, guanidine compounds, fluorine compounds, graphite, swellable graphite and other inorganic flame retardants, chlorinated polyethylene, Polytetrafluoroethylene, polyhexafluoropropylene, tetrafluoro Ethylene / hexapropylene copolymer, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene / ethylene copolymer, hexafluoropropylene / propylene copolymer, polyvinylidene fluoride, vinylidene fluoride / ethylene copolymer Halogen polymers such as coalescence can be used. These other flame retardants may be used alone or in combination of two or more.
7.成形材料、及び成形体
 本発明の成形材料は、上記で説明したセルロース誘導体とゴム粒子とを含有しており、更に、難燃剤を含有することが好ましい。また必要に応じてその他の添加剤を含有することができる。
 本発明の成形材料に含まれる成分の含有割合は、特に限定されない。好ましくはセルロース誘導体を50質量%以上、より好ましくは70質量%以上、更に好ましくは80質量%以上、特に好ましくは85~98質量%含有する。
 本発明の成形材料に含まれる成分の含有割合は、特に限定されないが、ゴム粒子の含有量は、耐衝撃性向上の観点から、セルロース誘導体とゴム粒子との質量組成比が、50/50~95/5であることが好ましく、より好ましくは60/40~90/10、更に好ましくは、70/30~90/10である。
7). Molding material and molded body The molding material of the present invention contains the cellulose derivative and rubber particles described above, and preferably further contains a flame retardant. Moreover, another additive can be contained as needed.
The content rate of the component contained in the molding material of this invention is not specifically limited. The cellulose derivative is preferably contained in an amount of 50% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more, and particularly preferably 85 to 98% by mass.
The content ratio of the components contained in the molding material of the present invention is not particularly limited, but the content of the rubber particles is such that the mass composition ratio of the cellulose derivative and the rubber particles is from 50/50 to 50% from the viewpoint of improving impact resistance. It is preferably 95/5, more preferably 60/40 to 90/10, and still more preferably 70/30 to 90/10.
 本発明の成形材料が難燃剤を含有する場合、その含有量は限定的でないが、成形材料中、通常50質量%以下、好ましくは5~30質量%とすればよい。この範囲とすることにより、十分な難燃性の向上効果を得ることができる。 When the molding material of the present invention contains a flame retardant, the content thereof is not limited, but is usually 50% by mass or less, preferably 5 to 30% by mass in the molding material. By setting it within this range, it is possible to obtain a sufficient effect of improving flame retardancy.
 本発明の成形材料は、セルロース誘導体、及びゴム粒子のほか、必要に応じて、フィラー(強化材)や可塑剤等の種々の添加剤を含有していてもよい。 The molding material of the present invention may contain various additives such as a filler (reinforcing material) and a plasticizer, if necessary, in addition to the cellulose derivative and the rubber particles.
 本発明の成形材料は、フィラーを含有することにより、成形材料によって形成される成形体の機械的特性を強化することができる。
 フィラーとしては、公知のものを使用できる。フィラーの形状は、繊維状、板状、粒状、粉末状等いずれでもよい。また、無機物でも有機物でもよい。
 具体的には、無機フィラーとしては、ガラス繊維、炭素繊維、グラファイト繊維、金属繊維、チタン酸カリウムウイスカー、ホウ酸アルミニウムウイスカー、マグネシウム系ウイスカー、珪素系ウイスカー、ワラステナイト、セピオライト、スラグ繊維、ゾノライト、エレスタダイト、石膏繊維、シリカ繊維、シリカ・アルミナ繊維、ジルコニア繊維、窒化硼素繊維、窒化硅素繊維及び硼素繊維等の繊維状の無機フィラーや;ガラスフレーク、非膨潤性雲母、カーボンブラック、グラファイト、金属箔、セラミックビーズ、タルク、クレー、マイカ、セリサイト、ゼオライト、ベントナイト、ドロマイト、カオリン、微粉ケイ酸、長石粉、チタン酸カリウム、シラスバルーン、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、酸化カルシウム、酸化アルミニウム、酸化チタン、酸化マグネシウム、ケイ酸アルミニウム、酸化ケイ素、水酸化アルミニウム、水酸化マグネシウム、石膏、ノバキュライト、ドーソナイト、白土等の板状や粒状の無機フィラーが挙げられる。
By containing the filler, the molding material of the present invention can reinforce the mechanical properties of the molded body formed of the molding material.
A well-known thing can be used as a filler. The shape of the filler may be any of fibrous, plate-like, granular, powdery and the like. Further, it may be inorganic or organic.
Specifically, as the inorganic filler, glass fiber, carbon fiber, graphite fiber, metal fiber, potassium titanate whisker, aluminum borate whisker, magnesium whisker, silicon whisker, wollastonite, sepiolite, slag fiber, zonolite, Elastadite, gypsum fiber, silica fiber, silica-alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber and boron fiber, and other inorganic fillers; glass flakes, non-swellable mica, carbon black, graphite, metal foil , Ceramic beads, talc, clay, mica, sericite, zeolite, bentonite, dolomite, kaolin, fine silicate, feldspar, potassium titanate, shirasu balloon, calcium carbonate, magnesium carbonate, barium sulfate, calcium oxide Beam, aluminum oxide, titanium oxide, magnesium oxide, aluminum silicate, silicon oxide, aluminum hydroxide, magnesium hydroxide, gypsum, novaculite, dawsonite, and a plate-like or granular inorganic fillers of clay or the like.
 有機フィラーとしては、ポリエステル繊維、ナイロン繊維、アクリル繊維、再生セルロース繊維、アセテート繊維等の合成繊維、ケナフ、ラミー、木綿、ジュート、麻、サイザル、マニラ麻、亜麻、リネン、絹、ウール等の天然繊維、微結晶セルロース、さとうきび、木材パルプ、紙屑、古紙等から得られる繊維状の有機フィラーや、有機顔料等の粒状の有機フィラーが挙げられる。 Organic fillers include synthetic fibers such as polyester fiber, nylon fiber, acrylic fiber, regenerated cellulose fiber, and acetate fiber, and natural fibers such as kenaf, ramie, cotton, jute, hemp, sisal, Manila hemp, flax, linen, silk, and wool. Examples thereof include fibrous organic fillers obtained from microcrystalline cellulose, sugar cane, wood pulp, paper waste, waste paper and the like, and granular organic fillers such as organic pigments.
 本発明の成形材料がフィラーを含有する場合、その含有量は限定的でないが、セルロース誘導体100質量部に対して、通常30質量部以下、好ましくは5~10質量部とすればよい。 When the molding material of the present invention contains a filler, the content thereof is not limited, but is usually 30 parts by mass or less, preferably 5 to 10 parts by mass with respect to 100 parts by mass of the cellulose derivative.
 本発明の成形材料は、更に酸化防止剤を含有することが好ましい。これによって、特定のセルロース誘導体が有する耐衝撃性、成形性、剛性、曲げ強度、耐熱性等の低下を抑え、寸法安定性、導電性及び熱伝導性を付与することができる。 The molding material of the present invention preferably further contains an antioxidant. As a result, the impact resistance, moldability, rigidity, bending strength, heat resistance and the like of the specific cellulose derivative can be suppressed, and dimensional stability, conductivity, and thermal conductivity can be imparted.
 本発明における酸化防止剤は、低分子化合物であっても、高分子化合物であってもよく、例えば、ヒンダードフェノール系酸化防止剤、リン系酸化防止剤、アミン系酸化防止剤、イオウ系酸化防止剤を用いることができる。 The antioxidant in the present invention may be a low molecular compound or a high molecular compound, for example, a hindered phenol antioxidant, a phosphorus antioxidant, an amine antioxidant, a sulfur oxidation. An inhibitor can be used.
 ヒンダードフェノール系酸化防止剤の具体例としては、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル) プロピオネート]、ペンタエリスリチル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、1.6-ヘキサンジオール-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、オクタドデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド、3,5-ジ-t-ブチル-4-ヒドロキシ-ベンジルフォスフォネート-ジエチルエステル及び1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼンなどが挙げられる。 Specific examples of the hindered phenol antioxidant include triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], pentaerythrityl-tetrakis [3- (3 , 5-di-tert-butyl-4-hydroxyphenyl) propionate], 1.6-hexanediol-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, octadodecyl-3 -(3,5-di-tert-butyl-4-hydroxyphenyl) propionate, N, N'-hexamethylenebis (3,5-di-tert-butyl-4-hydroxy-hydrocinnamamide, 3,5 -Di-t-butyl-4-hydroxy-benzylphosphonate-diethyl ester and 1,3,5-trimethyl-2,4,6-to Scan (3,5-di -t- butyl-4-hydroxybenzyl) benzene, and the like.
 リン系酸化防止剤としては、次亜リン酸カルシウム、2,6-ジ-t-ブチル-4-メチルフェノール、テトラキス(メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート)メタン、トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジン)イソシアヌレート等のフェノール系化合物、ジラウリル-3,3’-チオジプロピオネート、ジミリスチル-3,3’-チオジプロピオネート等のイオウ化合物、トリスノニルフェニルホスファイト、ジステアリルペンタエリスリトールジホスファイト等のリン系化合物などが挙げられるが、中でも次亜リン酸カルシウムが好ましい。 Phosphorous antioxidants include calcium hypophosphite, 2,6-di-t-butyl-4-methylphenol, tetrakis (methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate ) Phenol compounds such as methane, tris (3,5-di-t-butyl-4-hydroxybenzidine) isocyanurate, dilauryl-3,3′-thiodipropionate, dimyristyl-3,3′-thiodipropio Examples thereof include sulfur compounds such as nates, phosphorus compounds such as trisnonylphenyl phosphite and distearyl pentaerythritol diphosphite, among which calcium hypophosphite is preferable.
 アミン系酸化防止剤としては、4-アセトキシ-2,2,6,6-テトラメチルピペリジン、4-ステアロイルオキシ-2,2,6,6-テトラメチルピペリジン、4-アクリロイルオキシ-2,2,6,6-テトラメチルピペリジン、4-メトキシ-2,2,6,6-テトラメチルピペリジン、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン、4-シクロヘキシルオキシ-2,2,6,6-テトラメチルピペリジン、4-フェノキシ-2,2,6,6-テトラメチルピペリジン、4-ベンジルオキシ-2,2,6,6-テトラメチルピペリジン、4-(フェニルカルバモイルオキシ)-2,2,6,6-テトラメチルピペリジン、ビス(2,2,6,6-テトラメチル-4-ピペリジル)オキザレート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)マロネート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)アジペート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)アジペート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)テレフタレート、1,2-ビス(2,2,6,6-テトラメチル-4-ピペリジルオキシ)エタン、ビス(2,2,6,6-テトラメチル-4-ピペリジル)ヘキサメチレン-1,6-ジカルバメート、トリス(2,2,6,6-テトラメチル-4-ピペリジル)ベンゼン-1,3,5-トリカルボキシレート、フェニル-α-ナフチルアミン、フェニル-β-ナフチルアミン、N,N′-ジフェニル-p-フェニレンジアミン、N-フェニル-N′-シクロヘキシル-p-フェニレンジアミン、N-イソプロピル-N′-フェニル-p-フェニレンジアミンなどが挙げられる。 Examples of amine-based antioxidants include 4-acetoxy-2,2,6,6-tetramethylpiperidine, 4-stearoyloxy-2,2,6,6-tetramethylpiperidine, 4-acryloyloxy-2,2, 6,6-tetramethylpiperidine, 4-methoxy-2,2,6,6-tetramethylpiperidine, 4-benzoyloxy-2,2,6,6-tetramethylpiperidine, 4-cyclohexyloxy-2,2, 6,6-tetramethylpiperidine, 4-phenoxy-2,2,6,6-tetramethylpiperidine, 4-benzyloxy-2,2,6,6-tetramethylpiperidine, 4- (phenylcarbamoyloxy) -2 , 2,6,6-tetramethylpiperidine, bis (2,2,6,6-tetramethyl-4-piperidyl) oxalate, bis (2,2 6,6-tetramethyl-4-piperidyl) malonate, bis (2,2,6,6-tetramethyl-4-piperidyl) adipate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate Bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) adipate, bis (2,2,6,6) -Tetramethyl-4-piperidyl) terephthalate, 1,2-bis (2,2,6,6-tetramethyl-4-piperidyloxy) ethane, bis (2,2,6,6-tetramethyl-4-piperidyl) ) Hexamethylene-1,6-dicarbamate, tris (2,2,6,6-tetramethyl-4-piperidyl) benzene-1,3,5-tricarboxylate, phenyl-α-naphthy Ruamine, phenyl-β-naphthylamine, N, N'-diphenyl-p-phenylenediamine, N-phenyl-N'-cyclohexyl-p-phenylenediamine, N-isopropyl-N'-phenyl-p-phenylenediamine, etc. It is done.
 イオウ系酸化防止剤の具体例としては、チオエーテル系、ジチオカルバミン酸ニッケルなどのジチオ酸塩系、メルカプトベンズイミダゾール系、チオカルバニリド系、及びチオジプロピオンエステル系などのイオウを含む化合物を挙げることができる。これらの中でも、特にチオジプロピオンエステル系化合物の使用が好ましい。 Specific examples of sulfur antioxidants include sulfur-containing compounds such as thioethers, dithioacid salts such as nickel dithiocarbamate, mercaptobenzimidazole, thiocarbanilide, and thiodipropion ester. Among these, the use of a thiodipropion ester-based compound is particularly preferable.
 本発明における酸化防止剤としては、ヒンダードフェノール系酸化防止剤(例えば、チバ・スペシャリティ・ケミカルズ社製「イルガノックス1010」、同「イルガノックス1076」、川口化学工業「アンテージW-300」、同「アンテージクリスタル」、エーピーアイコーポレーション「ヨシノックスBHT」、同「ヨシノックスBB」、同「トミノックスSS」等)を用いることが好ましい。
 本発明の成形材料が酸化防止剤を含有する場合、その含有量は限定的でないが、成形材料に対して、通常5質量%以下、好ましくは0.05~3質量%とすればよい。この範囲とすることにより、セルロース誘導体の熱劣化や熱分解を抑制できるため十分な滞留劣化性の向上効果を得ることができ好ましい。
Examples of the antioxidant in the present invention include hindered phenolic antioxidants (for example, “Irganox 1010”, “Irganox 1076” manufactured by Ciba Specialty Chemicals, Kawaguchi Chemical Industries “Antage W-300”, It is preferable to use “ANTAGE CRYSTAL”, API Corporation “YOSHINOX BHT”, “YOSHINOX BB”, “TOMINOX SS” and the like.
When the molding material of the present invention contains an antioxidant, the content thereof is not limited, but is usually 5% by mass or less, preferably 0.05 to 3% by mass with respect to the molding material. By setting it as this range, since the thermal deterioration and thermal decomposition of a cellulose derivative can be suppressed, the sufficient improvement effect of residence deterioration property can be acquired and it is preferable.
 本発明の成形材料は、本発明の目的を阻害しない範囲で、成形性・難燃性等の各種特性をより一層改善する目的で他の成分を含んでいてもよい。
 他の成分としては、例えば、前記セルロース誘導体及び前記ゴム粒子以外のポリマー、可塑剤、安定剤(紫外線吸収剤など)、離型剤(脂肪酸、脂肪酸金属塩、オキシ脂肪酸、脂肪酸エステル、脂肪族部分鹸化エステル、パラフィン、低分子量ポリオレフィン、脂肪酸アミド、アルキレンビス脂肪酸アミド、脂肪族ケトン、脂肪酸低級アルコールエステル、脂肪酸多価アルコールエステル、脂肪酸ポリグリコールエステル、変成シリコーン)、帯電防止剤、難燃助剤、加工助剤、ドリップ防止剤、抗菌剤、防カビ剤等が挙げられる。更に、染料や顔料を含む着色剤などを添加することもできる。
The molding material of the present invention may contain other components for the purpose of further improving various properties such as moldability and flame retardancy, as long as the object of the present invention is not impaired.
Other components include, for example, polymers other than the cellulose derivatives and the rubber particles, plasticizers, stabilizers (ultraviolet absorbers, etc.), mold release agents (fatty acids, fatty acid metal salts, oxy fatty acids, fatty acid esters, aliphatic moieties. Saponified ester, paraffin, low molecular weight polyolefin, fatty acid amide, alkylene bis fatty acid amide, aliphatic ketone, fatty acid lower alcohol ester, fatty acid polyhydric alcohol ester, fatty acid polyglycol ester, modified silicone), antistatic agent, flame retardant aid, Examples include processing aids, anti-drip agents, antibacterial agents, and antifungal agents. Further, a coloring agent containing a dye or a pigment can be added.
 前記セルロース誘導体及び前記ゴム粒子以外のポリマーとしては、熱可塑性ポリマー、熱硬化性ポリマーのいずれも用い得るが、成形性の点から熱可塑性ポリマーが好ましい。セルロース誘導体以外のポリマーの具体例としては、低密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、エチレン-プロピレン-非共役ジエン共重合体、エチレン-ブテン-1共重合体、ポリプロピレンホモポリマー、ポリプロピレンコポリマー(エチレン-プロピレンブロックコポリマーなど)、ポリブテン-1及びポリ-4-メチルペンテン-1等のポリオレフィン、ポリブチレンテレフタレート、ポリエチレンテレフタレート及びその他の芳香族ポリエステル等のポリエステル、ナイロン6、ナイロン46、ナイロン66、ナイロン610、ナイロン612、ナイロン6T、ナイロン12等のポリアミド、ポリスチレン、ハイインパクトポリスチレン、ポリアセタール(ホモポリマー及び共重合体を含む)、ポリウレタン、芳香族及び脂肪族ポリケトン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、熱可塑性澱粉樹脂、ポリメタクリル酸メチルやメタクリル酸エステル-アクリル酸エステル共重合体などのアクリル樹脂、AS樹脂(アクリロニトリル-スチレン共重合体)、ポリ塩化ビニル、ポリ塩化ビニリデン、ビニルエステル系樹脂、無水マレイン酸-スチレン共重合体、MS樹脂(メタクリル酸メチル-スチレン共重合体)、ポリカーボネート、ポリアリレート、ポリスルホン、ポリエーテルスルホン、フェノキシ樹脂、ポリフェニレンエーテル、変性ポリフェニレンエーテル、ポリエーテルイミド等の熱可塑性ポリイミド、ポリテトラフルオロエチレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-エチレン共重合体、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン、テトラフルオロエチレン-ヘキサフルオロプロピレン-パーフルオロアルキルビニルエーテル共重合体などのフッ素系ポリマー、酢酸セルロース、ポリビニルアルコール、不飽和ポリエステル、メラミン樹脂、フェノール樹脂、尿素樹脂、ポリイミドなどを挙げることができる。
 また、各種アクリルゴム、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸共重合体及びそのアルカリ金属塩(いわゆるアイオノマー)、エチレン-アクリル酸アルキルエステル共重合体(例えば、エチレン-アクリル酸エチル共重合体、エチレン-アクリル酸ブチル共重合体)、ジエン系ゴム(例えば、1,4-ポリブタジエン、1,2-ポリブタジエン、ポリイソプレン、ポリクロロプレン)、ジエンとビニル単量体との共重合体(例えば、スチレン-ブタジエンランダム共重合体、スチレン-ブタジエンブロック共重合体、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-イソプレンランダム共重合体、スチレン-イソプレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体、ポリブタジエンにスチレンをグラフト共重合させたもの、ブタジエン-アクリロニトリル共重合体)、ポリイソブチレン、イソブチレンとブタジエン又はイソプレンとの共重合体、ブチルゴム、天然ゴム、チオコールゴム、多硫化ゴム、アクリルゴム、ニトリルゴム、ポリエーテルゴム、エピクロロヒドリンゴム、フッ素ゴム、シリコーンゴム、その他ポリウレタン系やポリエステル系、ポリアミド系などの熱可塑性エラストマー等が挙げられる。
As the polymer other than the cellulose derivative and the rubber particles, any of a thermoplastic polymer and a thermosetting polymer can be used, but a thermoplastic polymer is preferable from the viewpoint of moldability. Specific examples of polymers other than cellulose derivatives include low density polyethylene, linear low density polyethylene, high density polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-propylene-nonconjugated diene copolymer, ethylene-butene- 1 copolymer, polypropylene homopolymer, polypropylene copolymer (such as ethylene-propylene block copolymer), polyolefins such as polybutene-1 and poly-4-methylpentene-1, polybutylene terephthalate, polyethylene terephthalate and other aromatic polyesters, etc. Polyamide such as polyester, nylon 6, nylon 46, nylon 66, nylon 610, nylon 612, nylon 6T, nylon 12, etc., polystyrene, high impact polystyrene, polyacetate (Including homopolymers and copolymers), polyurethanes, aromatic and aliphatic polyketones, polyphenylene sulfide, polyetheretherketone, thermoplastic starch resins, polymethyl methacrylate and methacrylate-acrylate copolymers Acrylic resins such as AS resin (acrylonitrile-styrene copolymer), polyvinyl chloride, polyvinylidene chloride, vinyl ester resin, maleic anhydride-styrene copolymer, MS resin (methyl methacrylate-styrene copolymer) , Polycarbonate, polyarylate, polysulfone, polyethersulfone, phenoxy resin, polyphenylene ether, modified polyphenylene ether, thermoplastic polyimide such as polyetherimide, polytetrafluoroethylene, tetrafluoroethylene -Hexafluoropropylene copolymer, tetrafluoroethylene-ethylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, polychlorotrifluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene-perfluoro Fluoropolymers such as alkyl vinyl ether copolymers, cellulose acetate, polyvinyl alcohol, unsaturated polyester, melamine resin, phenol resin, urea resin, polyimide and the like can be mentioned.
Various acrylic rubbers, ethylene-vinyl acetate copolymers, ethylene-acrylic acid copolymers and alkali metal salts thereof (so-called ionomers), ethylene-acrylic acid alkyl ester copolymers (for example, ethylene-ethyl acrylate copolymer) Copolymer, ethylene-butyl acrylate copolymer), diene rubber (for example, 1,4-polybutadiene, 1,2-polybutadiene, polyisoprene, polychloroprene), copolymer of diene and vinyl monomer (for example, Styrene-butadiene random copolymer, styrene-butadiene block copolymer, styrene-butadiene-styrene block copolymer, styrene-isoprene random copolymer, styrene-isoprene block copolymer, styrene-isoprene-styrene block copolymer Polymer, polybutadiene Styrene-grafted styrene, butadiene-acrylonitrile copolymer), polyisobutylene, copolymer of isobutylene and butadiene or isoprene, butyl rubber, natural rubber, thiocol rubber, polysulfide rubber, acrylic rubber, nitrile rubber, poly Examples include ether rubber, epichlorohydrin rubber, fluoro rubber, silicone rubber, and other thermoplastic elastomers such as polyurethane, polyester, and polyamide.
 更に、各種の架橋度を有するものや、各種のミクロ構造、例えばシス構造、トランス構造等を有するもの、ビニル基などを有するもの、あるいは各種の平均粒径を有するものも使用することができる。
 これらのポリマーは、1種単独で用いても、2種以上を併用してもよい。
Further, those having various degrees of crosslinking, those having various microstructures such as cis structure and trans structure, those having vinyl groups, and those having various average particle diameters can be used.
These polymers may be used alone or in combination of two or more.
 本発明の成形材料がセルロース誘導体及び前記ゴム粒子以外のポリマーを含有する場合、その含有量は、セルロース誘導体100質量部に対して30質量部以下が好ましく、2~10質量部がより好ましい。 When the molding material of the present invention contains a polymer other than the cellulose derivative and the rubber particles, its content is preferably 30 parts by mass or less, more preferably 2 to 10 parts by mass with respect to 100 parts by mass of the cellulose derivative.
 本発明の成形材料は、可塑剤を含有してもよい。これにより、難燃性及び成形性をより一層向上させることができる。可塑剤としては、ポリマーの成形に常用されるものを用いることができる。例えば、ポリエステル系可塑剤、グリセリン系可塑剤、多価カルボン酸エステル系可塑剤、ポリアルキレングリコール系可塑剤及びエポキシ系可塑剤等が挙げられる。 The molding material of the present invention may contain a plasticizer. Thereby, a flame retardance and a moldability can be improved further. As the plasticizer, those commonly used for polymer molding can be used. Examples thereof include polyester plasticizers, glycerin plasticizers, polycarboxylic acid ester plasticizers, polyalkylene glycol plasticizers, and epoxy plasticizers.
 ポリエステル系可塑剤の具体例としては、アジピン酸、セバチン酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、ジフェニルジカルボン酸、ロジンなどの酸成分と、プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、エチレングリコール、ジエチレングリコールなどのジオール成分からなるポリエステルや、ポリカプロラクトンなどのヒドロキシカルボン酸からなるポリエステル等が挙げられる。これらのポリエステルは単官能カルボン酸若しくは単官能アルコールで末端封鎖されていてもよく、またエポキシ化合物などで末端封鎖されていてもよい。 Specific examples of the polyester plasticizer include acid components such as adipic acid, sebacic acid, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, diphenyldicarboxylic acid, rosin, propylene glycol, 1,3-butanediol, 1,4 -Polyesters composed of diol components such as butanediol, 1,6-hexanediol, ethylene glycol and diethylene glycol, and polyesters composed of hydroxycarboxylic acids such as polycaprolactone. These polyesters may be end-capped with a monofunctional carboxylic acid or monofunctional alcohol, or may be end-capped with an epoxy compound or the like.
 グリセリン系可塑剤の具体例としては、グリセリンモノアセトモノラウレート、グリセリンジアセトモノラウレート、グリセリンモノアセトモノステアレート、グリセリンジアセトモノオレート及びグリセリンモノアセトモノモンタネート等が挙げられる。 Specific examples of the glycerin plasticizer include glycerin monoacetomonolaurate, glycerin diacetomonolaurate, glycerin monoacetomonostearate, glycerin diacetomonooleate, and glycerin monoacetomonomontanate.
 多価カルボン酸系可塑剤の具体例としては、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジブチル、フタル酸ジオクチル、フタル酸ジヘプチル、フタル酸ジベンジル、フタル酸ブチルベンジルなどのフタル酸エステル、トリメリット酸トリブチル、トリメリット酸トリオクチル、トリメリット酸トリヘキシルなどのトリメリット酸エステル、アジピン酸ジイソデシル、アジピン酸n-オクチル-n-デシル、アジピン酸メチルジグリコールブチルジグリコール、アジピン酸ベンジルメチルジグリコール、アジピン酸ベンジルブチルジグリコールなどのアジピン酸エステル、アセチルクエン酸トリエチル、アセチルクエン酸トリブチルなどのクエン酸エステル、アゼライン酸ジ-2-エチルヘキシルなどのアゼライン酸エステル、セバシン酸ジブチル、及びセバシン酸ジ-2-エチルヘキシル等が挙げられる。 Specific examples of polycarboxylic acid plasticizers include phthalates such as dimethyl phthalate, diethyl phthalate, dibutyl phthalate, dioctyl phthalate, diheptyl phthalate, dibenzyl phthalate, butyl benzyl phthalate, and trimellitic acid. Trimellitic acid esters such as tributyl, trioctyl trimellitic acid, trihexyl trimellitic acid, diisodecyl adipate, n-octyl-n-decyl adipate, methyl diglycol butyl diglycol adipate, benzyl methyl diglycol adipate, adipic acid Adipic acid esters such as benzylbutyl diglycol, citrate esters such as triethyl acetylcitrate and tributyl acetylcitrate, azelaic acid esters such as di-2-ethylhexyl azelate, sebashi Dibutyl, and include di-2-ethylhexyl sebacate and the like.
 ポリアルキレングリコール系可塑剤の具体例としては、ポリエチレングリコール、ポリプロピレングリコール、ポリ(エチレンオキサイド・プロピレンオキサイド)ブロック及び/又はランダム共重合体、ポリテトラメチレングリコール、ビスフェノール類のエチレンオキシド付加重合体、ビスフェノール類のプロピレンオキシド付加重合体、ビスフェノール類のテトラヒドロフラン付加重合体などのポリアルキレングリコールあるいはその末端エポキシ変性化合物、末端エステル変性化合物、及び末端エーテル変性化合物等が挙げられる。 Specific examples of the polyalkylene glycol plasticizer include polyethylene glycol, polypropylene glycol, poly (ethylene oxide / propylene oxide) block and / or random copolymer, polytetramethylene glycol, ethylene oxide addition polymer of bisphenols, and bisphenols. And a polyalkylene glycol such as a propylene oxide addition polymer, a tetrahydrofuran addition polymer of bisphenol, or a terminal epoxy-modified compound thereof, a terminal ester-modified compound, a terminal ether-modified compound, and the like.
 エポキシ系可塑剤とは、一般にはエポキシステアリン酸アルキルと大豆油とからなるエポキシトリグリセリドなどを指すが、その他にも、主にビスフェノールAとエピクロロヒドリンを原料とするような、いわゆるエポキシ樹脂も使用することができる。 The epoxy plasticizer generally refers to an epoxy triglyceride composed of an alkyl epoxy stearate and soybean oil, but there are also so-called epoxy resins mainly made of bisphenol A and epichlorohydrin. Can be used.
 その他の可塑剤の具体例としては、ネオペンチルグリコールジベンゾエート、ジエチレングリコールジベンゾエート、トリエチレングリコールジ-2-エチルブチレートなどの脂肪族ポリオールの安息香酸エステル、ステアリン酸アミドなどの脂肪酸アミド、オレイン酸ブチルなどの脂肪族カルボン酸エステル、アセチルリシノール酸メチル、アセチルリシノール酸ブチルなどのオキシ酸エステル、ペンタエリスリトール、各種ソルビトール等が挙げられる。 Specific examples of other plasticizers include benzoate esters of aliphatic polyols such as neopentyl glycol dibenzoate, diethylene glycol dibenzoate, triethylene glycol di-2-ethylbutyrate, fatty acid amides such as stearamide, oleic acid Examples thereof include aliphatic carboxylic acid esters such as butyl, oxy acid esters such as methyl acetylricinoleate and butyl acetylricinoleate, pentaerythritol, and various sorbitols.
 本発明の成形材料が可塑剤を含有する場合、その含有量は、セルロース誘導体100質量部に対して通常5質量部以下であり、0.005~5質量部が好ましく、より好ましくは0.01~1質量部である。 When the molding material of the present invention contains a plasticizer, the content thereof is usually 5 parts by mass or less, preferably 0.005 to 5 parts by mass, more preferably 0.01 to 100 parts by mass of the cellulose derivative. Is 1 part by mass.
 本発明の成形体は、前記セルロース誘導体とゴム粒子を含む成形材料を成形することにより得られる。より具体的には、前記セルロース誘導体とゴム粒子、又は、前記セルロース誘導体とゴム粒子及び必要に応じて各種添加剤等を含む成形材料を加熱し、各種の成形方法により成形する工程を含む製造方法によって得られる。
 本発明の成形体の製造方法は、前記成形材料を加熱し、成形する工程を含む。
 成形方法としては、例えば、射出成形、押し出し成形、ブロー成形等が挙げられる。
 加熱温度は、通常160~300℃であり、好ましくは180~260℃である。
The molded body of the present invention can be obtained by molding a molding material containing the cellulose derivative and rubber particles. More specifically, a manufacturing method including a step of heating the cellulose derivative and rubber particles, or a molding material containing the cellulose derivative and rubber particles and various additives as necessary, and molding them by various molding methods. Obtained by.
The method for producing a molded body of the present invention includes a step of heating and molding the molding material.
Examples of the molding method include injection molding, extrusion molding, blow molding and the like.
The heating temperature is usually 160 to 300 ° C, preferably 180 to 260 ° C.
 本発明の成形体の用途は、とくに限定されるものではないが、例えば、電気電子機器(家電、OA・メディア関連機器、光学用機器及び通信機器等)の内装又は外装部品、自動車、機械部品、住宅・建築用材料等が挙げられる。これらの中でも、優れた耐熱性及び耐衝撃性を有しており、環境への負荷が小さい観点から、例えば、コピー機、プリンター、パソコン、テレビ等といった電気電子機器用の外装部品(特に筐体)として好適に使用することができる。 The use of the molded product of the present invention is not particularly limited. For example, interior or exterior parts of electrical and electronic equipment (home appliances, OA / media related equipment, optical equipment, communication equipment, etc.), automobiles, mechanical parts, etc. And materials for housing and construction. Among these, from the viewpoint of having excellent heat resistance and impact resistance and low environmental load, for example, exterior parts for electric and electronic devices such as copiers, printers, personal computers, televisions (especially casings) ) Can be suitably used.
 以下、本発明に係る実施例及び比較例及びこれらを用いた評価試験の結果を示し、本発明を更に詳細に説明する。なお、本発明はこれら実施例に限定されるものではない。 Hereinafter, examples and comparative examples according to the present invention and results of evaluation tests using these will be described, and the present invention will be described in more detail. The present invention is not limited to these examples.
<合成例1:アセトキシプロピルメチルアセチルセルロース(C-1)の合成>
 メカニカルスターラー、温度計、冷却管、滴下ロートをつけた5Lの三ツ口フラスコにヒドロキシプロピルメチルセルロース(商品名メトローズ90SH-100;信越化学製)60g、N,N-ジメチルアセトアミド2100mLを量り取り、室温で攪拌した。反応系が透明になり完溶したことを確認した後、アセチルクロライド101mLをゆっくりと滴下し、系の温度を80℃~90℃に昇温した。このまま3時間攪拌した後、反応系の温度を室温まで冷却した。反応溶液を水10Lへ激しく攪拌しながら投入すると、白色固体が析出した。白色固体を吸引ろ過によりろ別し、大量の水で3回洗浄を行った。得られた白色固体を100℃で6時間真空乾燥することにより目的のセルロース誘導体(C-1)(アセトキシプロピルメチルアセチルセルロース)を白色粉体として得た。このセルロース誘導体(C-1)の25℃での水への溶解度は0.1質量%未満であった(不溶)。
<Synthesis Example 1: Synthesis of acetoxypropylmethylacetylcellulose (C-1)>
In a 5 L three-necked flask equipped with a mechanical stirrer, thermometer, condenser, and dropping funnel, weigh 60 g of hydroxypropyl methylcellulose (trade name Metroze 90SH-100; manufactured by Shin-Etsu Chemical) and 2100 mL of N, N-dimethylacetamide and stir at room temperature. did. After confirming that the reaction system became transparent and completely dissolved, 101 mL of acetyl chloride was slowly added dropwise to raise the temperature of the system to 80 ° C. to 90 ° C. After stirring for 3 hours, the temperature of the reaction system was cooled to room temperature. When the reaction solution was added to 10 L of water with vigorous stirring, a white solid was precipitated. The white solid was filtered off by suction filtration and washed with a large amount of water three times. The obtained white solid was vacuum-dried at 100 ° C. for 6 hours to obtain the objective cellulose derivative (C-1) (acetoxypropylmethylacetylcellulose) as a white powder. The solubility of this cellulose derivative (C-1) in water at 25 ° C. was less than 0.1% by mass (insoluble).
<合成例2、3、4:アセトキシエチルメチルアセチルセルロース(C-2)、メチルアセチルセルロース(C-3)、エチルアセチルセルロース(C-4)の合成>
 合成例1におけるヒドロキシプロピルメチルセルロース(商品名メトローズ90SH-100;信越化学製)をヒドロキシエチルメチルセルロース(商品名マーポローズME-250T;松本油脂製)、メチルセルロース(商品名マーポローズM-4000:松本油脂製株式会社製)、エチルセルロース(商品名エトセル300CP:ダウケミカル製)に変更した以外は合成例1と同様にしてアセトキシエチルメチルアセチルセルロース(C-2)、メチルアセチルセルロース(C-3)、エチルアセチルセルロース(C-4)を得た。これらのセルロース誘導体(C-2)、(C-3)、(C-4)の25℃での水への溶解度はいずれも0.1質量%未満であった(不溶)。
<Synthesis Examples 2, 3, and 4: Synthesis of acetoxyethyl methyl acetyl cellulose (C-2), methyl acetyl cellulose (C-3), and ethyl acetyl cellulose (C-4)>
Hydroxypropyl methylcellulose (trade name Metrolose 90SH-100; manufactured by Shin-Etsu Chemical Co., Ltd.) in Synthesis Example 1 was replaced with hydroxyethylmethylcellulose (trade name Marporose ME-250T; manufactured by Matsumoto Yushi), methylcellulose (trade name Marporose M-4000: Matsumoto Yushi Co., Ltd.) And acetoxyethyl methyl acetyl cellulose (C-2), methyl acetyl cellulose (C-3), ethyl acetyl cellulose (C-3) in the same manner as in Synthesis Example 1 except that it was changed to ethyl cellulose (trade name Etcel 300CP: manufactured by Dow Chemical). C-4) was obtained. The solubility of these cellulose derivatives (C-2), (C-3), and (C-4) in water at 25 ° C. was less than 0.1% by mass (insoluble).
<合成例5:メチルセルロース-2-エチルヘキサノエート(C-5)の合成>
 メカニカルスターラー、温度計、冷却管、滴下ロートをつけた3Lの三ツ口フラスコにメチルセルロース(和光純薬製:メチル置換度1.8)80g、ピリジン1500mLを量り取り、室温で攪拌した。ここに水冷下、2-エチルヘキサノイルクロリド173mLをゆっくりと滴下し、更に60℃で6時間攪拌した。反応後、室温に戻し、氷冷下、メタノール200mLを加えてクエンチした。反応溶液を水12Lへ激しく攪拌しながら投入すると、白色固体が析出した。白色固体を吸引ろ過によりろ別し、大量のメタノール溶媒で3回洗浄を行った。得られた白色固体を100℃で6時間真空乾燥することによりメチルセルロース-2-エチルヘキサノエート(C-5)を得た。このセルロース誘導体(C-5)の25℃での水への溶解度は0.1質量%未満であった(不溶)。
<Synthesis Example 5: Synthesis of methylcellulose-2-ethylhexanoate (C-5)>
In a 3 L three-necked flask equipped with a mechanical stirrer, thermometer, condenser, and dropping funnel, 80 g of methylcellulose (manufactured by Wako Pure Chemical Industries, Ltd .: methyl substitution degree 1.8) and 1500 mL of pyridine were weighed and stirred at room temperature. Under water cooling, 173 mL of 2-ethylhexanoyl chloride was slowly added dropwise thereto, and the mixture was further stirred at 60 ° C. for 6 hours. After the reaction, the reaction solution was returned to room temperature and quenched by adding 200 mL of methanol under ice cooling. When the reaction solution was added to 12 L of water with vigorous stirring, a white solid was precipitated. The white solid was filtered off by suction filtration and washed 3 times with a large amount of methanol solvent. The resulting white solid was vacuum-dried at 100 ° C. for 6 hours to obtain methylcellulose-2-ethylhexanoate (C-5). The solubility of this cellulose derivative (C-5) in water at 25 ° C. was less than 0.1% by mass (insoluble).
<合成例6:バレロキシプロピルメチルバレロイルセルロース(C-6)の合成>
 合成例5におけるメチルセルロース(和光純薬製:メチル置換度1.8)に変えて、ヒドロキシプロピルメチルセルロース(商品名メトローズ90SH-100;信越化学製)、及び2-エチルヘキサノイルクロリドに変えてバレロイルクロライドを用いた以外、合成例5と同様にして、バレロキシプロピルメチルバレロイルセルロース(C-6)を得た。このセルロース誘導体(C-6)の25℃での水への溶解度は0.1質量%未満であった(不溶)。
<Synthesis Example 6: Synthesis of valeroxypropyl methyl valeroyl cellulose (C-6)>
In place of methyl cellulose in Synthesis Example 5 (manufactured by Wako Pure Chemical Industries, Ltd .: methyl substitution degree 1.8), hydroxypropylmethyl cellulose (trade name Metroze 90SH-100; manufactured by Shin-Etsu Chemical Co., Ltd.) and valeroyl in place of 2-ethylhexanoyl chloride Valeroxypropylmethylvaleroylcellulose (C-6) was obtained in the same manner as in Synthesis Example 5 except that chloride was used. The solubility of this cellulose derivative (C-6) in water at 25 ° C. was less than 0.1% by mass (insoluble).
<合成例7:バレロキシブチルメチルバレロイルセルロース(C-7)の合成>
 合成例6におけるヒドロキシプロピルメチルセルロース(商品名メトローズ90SH-100;信越化学製)をヒドロキシブチルメチルセルロースを用いた以外、合成例6と同様にしてバレロキシブチルメチルバレロイルセルロース(C-7)を得た。このセルロース誘導体(C-7)の25℃での水への溶解度は0.1質量%未満であった(不溶)。
<Synthesis Example 7: Synthesis of valeroxybutyl methyl valeroyl cellulose (C-7)>
Valeroxybutylmethylvaleroylcellulose (C-7) was obtained in the same manner as in Synthesis Example 6 except that hydroxybutylmethylcellulose was used as the hydroxypropylmethylcellulose (trade name Metroze 90SH-100; manufactured by Shin-Etsu Chemical) in Synthesis Example 6. . The solubility of this cellulose derivative (C-7) in water at 25 ° C. was less than 0.1% by mass (insoluble).
 なお、以上で得られたセルロース誘導体について、セルロースに含まれる炭化水素基の種類及び置換度、アルキレンオキシ基種類及びモル置換度、水酸基(R、R及びR)に置換された官能基の種類及びアシル化度は、Cellulose Communication 6,73-79(1999)に記載の方法を利用して、H-NMRにより、観測及び決定した。なお、炭化水素基の置換度とはグルコース環ユニットに置換した炭化水素基のモル数であり、0以上3未満の値をとる。アルキレンオキシ基のモル置換度とは、グルコース環ユニットに置換したアルキレンオキシ基のモル数であり、0以上の値をとる。また、アシル化度とは、セルロースのグルコース環又はエーテル置換基に存在する水酸基をエステル化することによりアシル基で置換した程度を示し、0以上100で示す。なお、セルロースのグルコース環の水酸基に対するアシル基の反応性と、アルキレンオキシ基に由来する水酸基に対するアシル基の反応性とは殆ど差が無いので、C)アルキレンオキシ基とアシル基とを含む基のモル置換度は、アルキレンオキシ基のモル置換度とアシル化度とを掛け合わせることにより求めることができる。 In addition, about the cellulose derivative obtained above, the functional group substituted by the kind and substitution degree of a hydrocarbon group contained in cellulose, the kind and alkylene substitution degree of an alkyleneoxy group, and a hydroxyl group (R < 2 >, R < 3 > and R < 6 >). The type and degree of acylation were observed and determined by 1 H-NMR using the method described in Cellulose Communication 6, 73-79 (1999). The degree of substitution of the hydrocarbon group is the number of moles of the hydrocarbon group substituted on the glucose ring unit, and takes a value of 0 or more and less than 3. The molar substitution degree of the alkyleneoxy group is the number of moles of the alkyleneoxy group substituted on the glucose ring unit, and takes a value of 0 or more. The degree of acylation indicates the degree of substitution with an acyl group by esterifying a hydroxyl group present in the glucose ring or ether substituent of cellulose, and is represented by 0 or more and 100. In addition, since there is almost no difference between the reactivity of the acyl group with respect to the hydroxyl group of the glucose ring of cellulose and the reactivity of the acyl group with respect to the hydroxyl group derived from the alkyleneoxy group, C) of the group containing an alkyleneoxy group and an acyl group The molar substitution degree can be determined by multiplying the alkylene oxygen group molar substitution degree and the acylation degree.
<セルロース誘導体の分子量測定>
 得られたセルロース誘導体について、数平均分子量(Mn)、平均分子量(Mw)、を測定した。これらの測定方法は以下の通りである。
[分子量及び分子量分布]
 数平均分子量(Mn)、質量平均分子量(Mw)の測定は、ゲル・パーミエーション・クロマトグラフィー(GPC)を用いた。具体的には、N-メチルピロリドンを溶媒とし、ポリスチレンゲルを使用し、標準単分散ポリスチレンの構成曲線から予め求められた換算分子量較正曲線を用いて求めた。GPC装置は、HLC-8220GPC(東ソー社製)を使用した。
<Measurement of molecular weight of cellulose derivative>
About the obtained cellulose derivative, the number average molecular weight (Mn) and the average molecular weight (Mw) were measured. These measuring methods are as follows.
[Molecular weight and molecular weight distribution]
For the measurement of the number average molecular weight (Mn) and the mass average molecular weight (Mw), gel permeation chromatography (GPC) was used. Specifically, N-methylpyrrolidone was used as a solvent, a polystyrene gel was used, and a molecular weight calibration curve obtained in advance from a constituent curve of standard monodisperse polystyrene was used. As the GPC apparatus, HLC-8220 GPC (manufactured by Tosoh Corporation) was used.
 なお、以上で得られたセルロース誘導体が有する炭化水素基の種類及び置換度、アルキレンオキシ基の種類及びモル置換度、アシル基の種類及びアシル化度は、Cellulose Communication 6,73-79(1999)に記載の方法を利用して、1H-NMRにより、観測及び決定した。なお、炭化水素基の置換度とはグルコース環ユニットに置換した炭化水素基のモル数であり、0以上3未満の値をとる。アルキレンオキシ基のモル置換度とは、グルコース環ユニットに置換したアルキレンオキシ基のモル数であり、0以上の値をとる。また、アシル化度とは、セルロースのグルコース環又はエーテル置換基に存在する水酸基をエステル化することによりアシル基で置換した程度を示し、0以上100以下で示す。なお、セルロースのグルコース環の水酸基に対するアシル基の反応性と、アルキレンオキシ基に由来する水酸基に対するアシル基の反応性とは殆ど差が無いので、C)アルキレンオキシ基とアシル基とを含む基のモル置換度は、アルキレンオキシ基のモル置換度とアシル化度とを掛け合わせることにより求めることができる。
 また、コロイド滴定法を行い、上記セルロース誘導体(C-1)~(C-7)におけるカルボキシル基又はスルホン酸基の置換度が0.02未満(すなわち、カルボキシル基又はスルホン酸基の含有量がセルロース誘導体に対して0.5質量%未満)であることを確認した。
Note that the types and substitution degrees of hydrocarbon groups, the types and molar substitutions of alkyleneoxy groups, the types of acyl groups, and the degrees of acylation of the cellulose derivatives obtained above are described in Cellulose Communication 6, 73-79 (1999). Were observed and determined by 1H-NMR using the method described in 1). The degree of substitution of the hydrocarbon group is the number of moles of the hydrocarbon group substituted on the glucose ring unit, and takes a value of 0 or more and less than 3. The molar substitution degree of the alkyleneoxy group is the number of moles of the alkyleneoxy group substituted on the glucose ring unit, and takes a value of 0 or more. The degree of acylation indicates the degree of substitution with an acyl group by esterifying a hydroxyl group present in the glucose ring or ether substituent of cellulose, and is represented by 0 or more and 100 or less. In addition, since there is almost no difference between the reactivity of the acyl group with respect to the hydroxyl group of the glucose ring of cellulose and the reactivity of the acyl group with respect to the hydroxyl group derived from the alkyleneoxy group, C) of the group containing an alkyleneoxy group and an acyl group The molar substitution degree can be determined by multiplying the alkylene oxygen group molar substitution degree and the acylation degree.
Further, a colloid titration method is performed, and the degree of substitution of carboxyl groups or sulfonic acid groups in the cellulose derivatives (C-1) to (C-7) is less than 0.02 (that is, the content of carboxyl groups or sulfonic acid groups is It was confirmed that it was less than 0.5% by mass with respect to the cellulose derivative.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
<合成例8:ゴム質重合体(R-1)の調製>
 攪拌機及び加熱装置付きガラス製反応器に、ポリブタジエンゴムラテックス50質量部(固形分、平均粒子径300nm、ゲル分80%、)、ロジン酸カリウム0.5質量部(固形分)、デキストローズ0.2質量部、イオン交換水(以下、水と略記。ゴムラテックス、ロジン酸カリウム中の水を含む)145質量部を入れ、窒素気流及び攪拌下で60℃に昇温した。これに、硫酸第一鉄0.003質量部及びピロリン酸ナトリウム0.1質量部、イオン交換水5質量部からなる混合物を入れ、引き続きアクリロニトリル15質量部、スチレンモノマー35質量部、tert-ドデシルメルカプタン0.5質量部、クメンハイドロパーオキサイド0.5質量部からなる混合物を3時間かけて滴下し、その間、内温が70℃を超えない様にコントロールしグラフト重合を行い、更にクメンハイドロパーオキサイド0.1質量部を追加して70℃で更に1時間保持した後に冷却した。
 得られたラテックスを、ラテックスの1.2倍量の0.5%硫酸水溶液で凝固、水洗、乾燥を行い、ポリブタジエンをコアとするゴム質重合体(R-1)を白色粉体として得た。
<Synthesis Example 8: Preparation of rubbery polymer (R-1)>
In a glass reactor equipped with a stirrer and a heating device, 50 parts by mass of polybutadiene rubber latex (solid content, average particle size 300 nm, gel content 80%), 0.5 parts by mass of potassium rosinate (solid content), dextrose 2 parts by mass and 145 parts by mass of ion-exchanged water (hereinafter abbreviated as water; including rubber latex and water in potassium rosinate) were added, and the temperature was raised to 60 ° C. under a nitrogen stream and stirring. A mixture comprising 0.003 parts by mass of ferrous sulfate, 0.1 parts by mass of sodium pyrophosphate and 5 parts by mass of ion-exchanged water was added thereto, followed by 15 parts by mass of acrylonitrile, 35 parts by mass of styrene monomer, and tert-dodecyl mercaptan. A mixture consisting of 0.5 parts by mass and 0.5 parts by mass of cumene hydroperoxide was added dropwise over 3 hours, during which time the internal temperature was controlled so as not to exceed 70 ° C., and graft polymerization was carried out. Further, cumene hydroperoxide An additional 0.1 parts by mass was added and maintained at 70 ° C. for an additional hour before cooling.
The obtained latex was coagulated, washed with water and dried with a 0.5% sulfuric acid aqueous solution 1.2 times the amount of latex to obtain a rubber polymer (R-1) having polybutadiene as a core as a white powder. .
<合成例9:ゴム質重合体(R-2)の調製>
 攪拌機及び加熱装置付きガラス製反応器に、アルケニルコハク酸ジカリウム0.5質量部(固形分)、水175質量部(アルケニルコハク酸ジカリウム中の水を含む)、ロンガリット(三菱ガス化学社製スーパーライトSFS)0.2質量部、n-ブチルアクリレート50質量部、アリルメタクリレート0.2質量部、1,3-ブチレングリコールジメタクリレート0.1質量部及びtert-ブチルヒドロパーオキサイド0.1質量部を添加、攪拌下で雰囲気の窒素置換を行い、内温を60℃に昇温した。その後、EDTA(エチレンジアミン四酢酸二ナトリウム)0.0009質量部、硫酸第一鉄0.0003質量部、水5質量部からなる混合物を添加してn-ブチルアクリレートの重合を開始して内温が83℃に到達し、n-ブチルアクリレートの重合を終了し、ポリn-ブチルアクリレートのゴムラテックスを得た。この平均粒子径は200nmであった。平均粒子径は「Rubber Age,Vol.88,p.484-490(1960),by E.Schmidt,P.H.Biddison」に記載のアルギン酸ナトリウム法により測定した。
 引き続き内温を70℃にまで冷却し、アルケニルコハク酸ジカリウム0.5質量部、アクリロニトリル15質量部、スチレンモノマー35質量部、n-オクチルメルカプタン0.02質量部、tert-ブチルヒドロパーオキサイド0.1質量部からなる混合物を3時間かけて供給してグラフト重合を行い、その間、内温が80℃を超えない様にコントロールした。滴下終了後、更にtert-ブチルヒドロパーオキサイド0.05質量部を追加して80℃で更に1時間保持した後に冷却した。
 得られたラテックスを、ラテックスの1.4倍量の0.6%硫酸水溶液で凝固、水洗、乾燥を行い、ポリn-ブチルアクリレートをコアとするゴム質重合体(R-2)を白色粉体として得た。
<Synthesis Example 9: Preparation of rubbery polymer (R-2)>
In a glass reactor equipped with a stirrer and a heating device, 0.5 parts by mass of dipotassium alkenyl succinate (solid content), 175 parts by mass of water (including water in dipotassium alkenyl succinate), Rongalite (Mitsubishi Gas Chemical Superlite) SFS) 0.2 parts by mass, n-butyl acrylate 50 parts by mass, allyl methacrylate 0.2 parts by mass, 1,3-butylene glycol dimethacrylate 0.1 parts by mass and tert-butyl hydroperoxide 0.1 parts by mass. The atmosphere was replaced with nitrogen under addition and stirring, and the internal temperature was raised to 60 ° C. Thereafter, a mixture of 0.0009 parts by mass of EDTA (disodium ethylenediaminetetraacetate), 0.0003 parts by mass of ferrous sulfate and 5 parts by mass of water was added to initiate polymerization of n-butyl acrylate, and the internal temperature was increased. The temperature reached 83 ° C., and the polymerization of n-butyl acrylate was terminated to obtain a poly n-butyl acrylate rubber latex. The average particle size was 200 nm. The average particle size was measured by the sodium alginate method described in “Rubber Age, Vol. 88, p.484-490 (1960), by E. Schmidt, PH Biddison”.
Subsequently, the internal temperature was cooled to 70 ° C., 0.5 parts by mass of dipotassium alkenyl succinate, 15 parts by mass of acrylonitrile, 35 parts by mass of styrene monomer, 0.02 parts by mass of n-octyl mercaptan, tert-butyl hydroperoxide 0. Graft polymerization was carried out by supplying a mixture of 1 part by mass over 3 hours, and the internal temperature was controlled not to exceed 80 ° C. during that time. After completion of the dropwise addition, 0.05 part by mass of tert-butyl hydroperoxide was further added, and the mixture was further maintained at 80 ° C. for 1 hour, and then cooled.
The obtained latex was coagulated with 0.6% sulfuric acid aqueous solution 1.4 times the amount of latex, washed with water, and dried to give a rubber polymer (R-2) having poly n-butyl acrylate as a white powder. Got as a body.
<合成例10:ゴム質重合体(R-3)の調製>
 オクタメチルシクロテトラシロキサン98質量部、γ-メタクリロイルオキシプロピルジメトキシメチルシラン2質量部、を混合してシロキサン系混合物100質量部を得た。これに、ドデシルベンゼンスルホン酸ナトリウム 0.67質量部、水300質量部、からなる水溶液を添加し、ホモミキサーにて10000回転/分で2分間攪拌した後、ホモジナイザーに20MPaの圧力で1回通し、安定な予備混合オルガノシロキサンラテックスを得た。
 一方、試薬注入容器、冷却管、ジャケット加熱機及び攪拌装置を備えた反応器内に、ドデシルベンゼンスルホン酸 10質量部、水90質量部を投入し、10%のドデシルベンゼンスルホン酸水溶液を調製した。この水溶液を85℃に加熱した状態で、予備混合したオルガノシロキサンラテックスを4時間に亘って滴下し、滴下終了後1時間温度を維持し、冷却した。次いでこの反応物を苛性ソーダ水溶液で中和した。このようにして得られたポリオルガノシロキサンラテックスを170℃で30分間乾燥して固形分を求めたところ、17.7%であった。また、ラテックス中のポリオルガノシロキサンの平均粒子径は50nmであった。
<Synthesis Example 10: Preparation of rubbery polymer (R-3)>
98 parts by mass of octamethylcyclotetrasiloxane and 2 parts by mass of γ-methacryloyloxypropyldimethoxymethylsilane were mixed to obtain 100 parts by mass of a siloxane-based mixture. An aqueous solution consisting of 0.67 parts by mass of sodium dodecylbenzenesulfonate and 300 parts by mass of water was added thereto, and the mixture was stirred at 10000 rpm for 2 minutes with a homomixer, and then passed once through the homogenizer at a pressure of 20 MPa. A stable premixed organosiloxane latex was obtained.
On the other hand, 10 parts by weight of dodecylbenzenesulfonic acid and 90 parts by weight of water were charged into a reactor equipped with a reagent injection container, a cooling tube, a jacket heater and a stirrer to prepare a 10% aqueous solution of dodecylbenzenesulfonic acid. . While this aqueous solution was heated to 85 ° C., the premixed organosiloxane latex was added dropwise over 4 hours, and the temperature was maintained for 1 hour after the completion of the dropwise addition, followed by cooling. The reaction was then neutralized with an aqueous caustic soda solution. The polyorganosiloxane latex thus obtained was dried at 170 ° C. for 30 minutes and the solid content was determined to be 17.7%. Moreover, the average particle diameter of the polyorganosiloxane in latex was 50 nm.
 試薬注入容器、冷却管、ジャケット加熱機、温度計及び攪拌装置を備えたガラス製反応器内に、上記ポリオルガノシロキサン(固形分)15質量部、アルケニルコハク酸ジカリウム(固形分)0.2質量部、水(ポリオルガノシロキサン中の水を含む)410質量部を仕込み、これに室温、攪拌下でn-ブチルアクリレート85質量部、メタクリル酸アリル 0.3質量部、1,3-ブチレングリコールジメタクリレート0.15質量部、tert-ブチルヒドロパーオキサイド0.2質量部からなる混合物を添加した。この反応器に窒素気流を通じることによって、雰囲気の窒素置換を行い、ジャケットを60℃まで昇温した。内部の液温が50℃となった時点で、硫酸第一鉄七水塩 0.00015質量部、エチレンジアミン四酢酸二ナトリウム塩 0.00044質量部、ロンガリット 0.4質量部、水10質量部からなる水溶液を添加し、ラジカル重合を開始させ、内温を75℃に上昇させた。1時間この状態を維持しn-ブチルアクリレートの重合を完結させ、複合ゴム状重合体ラテックスを得た。この平均粒子径は60nmであった。 In a glass reactor equipped with a reagent injection container, a cooling tube, a jacket heater, a thermometer, and a stirrer, 15 parts by mass of the above polyorganosiloxane (solid content), dipotassium alkenyl succinate (solid content) 0.2 mass And 410 parts by weight of water (including water in the polyorganosiloxane) were added to this, and at room temperature, with stirring, 85 parts by weight of n-butyl acrylate, 0.3 parts by weight of allyl methacrylate, 1,3-butylene glycol diester A mixture consisting of 0.15 parts by weight of methacrylate and 0.2 parts by weight of tert-butyl hydroperoxide was added. The atmosphere was replaced with nitrogen by passing a nitrogen stream through the reactor, and the jacket was heated to 60 ° C. When the internal liquid temperature reaches 50 ° C., from 0.00015 parts by mass of ferrous sulfate heptahydrate, 0.00044 parts by mass of disodium ethylenediaminetetraacetate, 0.4 parts by mass of Rongalite, and 10 parts by mass of water The resulting aqueous solution was added to initiate radical polymerization, and the internal temperature was raised to 75 ° C. This state was maintained for 1 hour to complete the polymerization of n-butyl acrylate to obtain a composite rubbery polymer latex. The average particle size was 60 nm.
 引き続き、試薬注入容器、冷却管、ジャケット加熱機、温度計及び攪拌装置を備えたガラス製反応器内に、上記複合ゴム状重合体ラテックス(固形分)50質量部、水(複合ゴム状重合体ラテックス中の水を含む)210質量部、アルケニルコハク酸ジカリウム0.7質量部、ロンガリット0.15質量部を攪拌下にて混合し、内温を70℃に昇温した。その後、アクリロニトリル3質量部、スチレン 9質量部、tert-ブチルヒドロパーオキサイド0.1質量部からなる混合物を30分間かけて滴下供給させ重合せしめた。15分間保持後、ロンガリット 0.15質量部、硫酸第一鉄七水塩 0.001質量部、エチレンジアミン四酢酸二ナトリウム塩 0.003質量部、水5部質量からなる水溶液を添加し、続けて、アクリロニトリル9.5質量部、スチレン28.5質量部、tert-ブチルハイドロパーオキサイド0.3質量部からなる混合物を120分かけて滴下供給して重合せしめ、70℃のまま30分間保持した後内容物を冷却した。得られたグラフト共重合体ラテックスを、その50℃である1.5倍量の1%硫酸アルミニウム水溶液中に捜拝下で投入し、更に70℃に昇温して5分間保持し、更に90℃に昇温して更に5分間保持した。脱水、洗浄を繰り返して最後は気流下にて一昼夜乾燥させ、シリコーン/アクリル複合ゴムをコアとする白色粉末状であるゴム質重合体(R-3)を得た。 Subsequently, in a glass reactor equipped with a reagent injection container, a cooling tube, a jacket heater, a thermometer, and a stirring device, 50 parts by mass of the composite rubber-like polymer latex (solid content), water (composite rubber-like polymer) 210 parts by mass (including water in the latex), 0.7 parts by mass of dipotassium alkenyl succinate and 0.15 parts by mass of Rongalite were mixed with stirring, and the internal temperature was raised to 70 ° C. Thereafter, a mixture of 3 parts by mass of acrylonitrile, 9 parts by mass of styrene and 0.1 part by mass of tert-butyl hydroperoxide was supplied dropwise over 30 minutes for polymerization. After holding for 15 minutes, add an aqueous solution consisting of 0.15 parts by weight of Rongalite 、, 0.001 parts by weight of ferrous sulfate heptahydrate, 0.003 parts by weight of disodium salt of ethylenediaminetetraacetic acid, 5 parts by weight of water, A mixture of 9.5 parts by weight of acrylonitrile, 28.5 parts by weight of styrene, and 0.3 parts by weight of tert-butyl hydroperoxide was dropped and polymerized over 120 minutes, and the mixture was kept at 70 ° C. for 30 minutes. The contents were cooled. The obtained graft copolymer latex was poured into a 1.5-fold 1% aluminum sulfate aqueous solution at 50 ° C. under examination, further heated to 70 ° C. and held for 5 minutes, and further 90 The temperature was raised to 0 ° C. and held for another 5 minutes. Dehydration and washing were repeated, and finally, it was dried overnight under an air stream to obtain a rubbery polymer (R-3) in the form of a white powder having a silicone / acrylic composite rubber as a core.
 その他、以下のゴム質重合体を準備した。
(R-4):三菱レイヨン社製「メタブレンC-323A」(MBS樹脂)
(R-5):呉羽化学(株)製「パラロイドEXL-2602」(MBS樹脂)
(R-6):三菱レイヨン社製「メタブレンW-529」(アクリル系ゴムにメタクリル酸メチルをグラフトした重合体)
(R-7):三菱レイヨン社製「メタブレンS-2001」(シリコーン/アクリル複合ゴムにメタクリル酸メチルをグラフトした重合体)
In addition, the following rubbery polymers were prepared.
(R-4): “Metabrene C-323A” manufactured by Mitsubishi Rayon Co., Ltd. (MBS resin)
(R-5): “Paraloid EXL-2602” (MBS resin) manufactured by Kureha Chemical Co., Ltd.
(R-6): “Methbrene W-529” manufactured by Mitsubishi Rayon Co., Ltd. (polymer obtained by grafting methyl methacrylate onto acrylic rubber)
(R-7) “Metbrene S-2001” (polymer obtained by grafting methyl methacrylate onto a silicone / acrylic composite rubber) manufactured by Mitsubishi Rayon Co., Ltd.
 以下、脂肪族ポリエステルエラストマーを準備した。
 脂肪族ポリエステルエラストマーは以下のものを準備した。
 (S-1)ポリブチレンサクシネート(PBS):GSPla AD92W(Mn=40000)、三菱化学(株)社製
 (S-2)ポリブチレンサクシネートアジペート(PBSA):ビオノーレ#3001(Mn=34000)、昭和高分子(株)社製
 (S-3)ポリカプロラクトン(PCL):PH7(Mn=45000)、ダイセル(株)社製
Hereinafter, an aliphatic polyester elastomer was prepared.
The following aliphatic polyester elastomer was prepared.
(S-1) Polybutylene succinate (PBS): GSPla AD92W (Mn = 40000), manufactured by Mitsubishi Chemical Corporation (S-2) Polybutylene succinate adipate (PBSA): Bionore # 3001 (Mn = 34000) Manufactured by Showa Polymer Co., Ltd. (S-3) Polycaprolactone (PCL): PH7 (Mn = 45000), manufactured by Daicel Corporation
 また、以下の難燃剤を準備した。
(P-1):大八化学社製「PX-202」
(P-2):大八化学社製「PX-200」
(P-3):アデカ社製「FP-600」
(P-4):デカブロモジフェニルエーテル/三酸化アンチモン=4/1(質量比)の混合物
(P-5):テトラブロモビスフェノールA/三酸化アンチモン=4/1(質量比)の混合物
Moreover, the following flame retardants were prepared.
(P-1): “PX-202” manufactured by Daihachi Chemical Co., Ltd.
(P-2): “PX-200” manufactured by Daihachi Chemical Co., Ltd.
(P-3): “FP-600” manufactured by Adeka
(P-4): Decabromodiphenyl ether / antimony trioxide = 4/1 (mass ratio) mixture (P-5): Tetrabromobisphenol A / antimony trioxide = 4/1 (mass ratio) mixture
[成形体の作製1]
 セルロース誘導体〔(C-1)~(C-7)、(H-1)〕、ゴム質重合体〔(R-1)~(R-7)〕、難燃剤〔(P-1)~(P-5)〕を表2及び表3に示す配合割合(質量部%)で配合し、更に酸化防止剤(チバ・スペシャリティ・ケミカルズ社製「イルガノックス1010」)0.5質量部を添加後、ヘンシェルミキサーで混合して成形材料を作製した。この成形材料をバレル温度220℃に設定した二軸混練押出機(テクノベル(株)製、Ultranano)に供給しペレットを作製した。続いて、得られたペレットをシリンダー温度210℃に設定した射出成形機(ファナック(株)Roboshot S-2000i、自動射出成形機)に供給して、4mm×10mm×80mmの多目的試験片(衝撃試験片及び曲げ試験片)及び3.1mm×13mm×127mmの難燃性試験用試験片を成形した。
[Production of molded body 1]
Cellulose derivatives [(C-1) to (C-7), (H-1)], rubbery polymers [(R-1) to (R-7)], flame retardants [(P-1) to ( P-5)] is blended in the blending proportions (parts by mass) shown in Tables 2 and 3, and 0.5 parts by mass of an antioxidant (“Irganox 1010” manufactured by Ciba Specialty Chemicals) is added. Then, a molding material was prepared by mixing with a Henschel mixer. This molding material was supplied to a twin-screw kneading extruder set at a barrel temperature of 220 ° C. (manufactured by Technobel Co., Ltd., Ultrano) to produce pellets. Subsequently, the obtained pellets were supplied to an injection molding machine (FANUC ROBOSHOT S-2000i, automatic injection molding machine) set at a cylinder temperature of 210 ° C., and a 4 mm × 10 mm × 80 mm multipurpose test piece (impact test) Piece and bending test piece) and a test piece for flame resistance test of 3.1 mm × 13 mm × 127 mm were molded.
[評価]
 得られた試験片を用いて、以下の項目について評価した。評価結果等を表2、3に示す。
[Evaluation]
The following items were evaluated using the obtained test pieces. The evaluation results are shown in Tables 2 and 3.
(シャルピー衝撃強度)
 ISO179に準拠して、射出成形にて成形した試験片に入射角45±0.5°、先端0.25±0.05mmのノッチを形成し、23℃±2℃、50%±5%RHで48時間以上静置した後、シャルピー衝撃試験機((株)東洋精機製作所製)によってエッジワイズにて衝撃強度(kJ・m)を測定した。測定は3回測定の平均値である。結果を表2及び表3に示す。
(Charpy impact strength)
In accordance with ISO 179, a notch having an incident angle of 45 ± 0.5 ° and a tip of 0.25 ± 0.05 mm is formed on a test piece molded by injection molding, 23 ° C. ± 2 ° C., 50% ± 5% RH The impact strength (kJ · m 2 ) was measured edgewise with a Charpy impact tester (manufactured by Toyo Seiki Seisakusho). The measurement is an average of three measurements. The results are shown in Tables 2 and 3.
(滞留後のシャルピー衝撃強度)
 上記の射出成形において、ペレットをシリンダー内に充填した後に10分間保持し、成形を開始して、連続3回成形した試験片について、上記の条件にて衝撃強度を測定した。結果を表2及び表3に示す。なお、評価結果については、滞留後のシャルピー衝撃強度の変化率が50%以上を良好、それ未満を不良と判断した。
(Charpy impact strength after retention)
In the above injection molding, after the pellets were filled in the cylinder, the pellets were held for 10 minutes, the molding was started, and the impact strength of the test pieces molded three times continuously was measured under the above conditions. The results are shown in Tables 2 and 3. In addition, about the evaluation result, the change rate of the Charpy impact strength after a stay was judged to be 50% or more as good and less than that as bad.
(曲げ弾性率)
 ISO178に準拠して、射出成形にて成形した試験片を23℃±2℃、50%±5%RHで48時間以上調製した後、インストロン(東洋精機製、ストログラフV50)によって支点間距離64mm、試験速度2mm/minで測定した。測定は3回測定の平均値である。結果を表2及び表3に示す。なお、評価結果については、1GPa以上を良好と判断した。
(Flexural modulus)
In accordance with ISO178, after preparing a test piece molded by injection molding at 23 ° C. ± 2 ° C. and 50% ± 5% RH for 48 hours or more, the distance between fulcrums by Instron (Toyo Seiki, Strograph V50) The measurement was performed at 64 mm and a test speed of 2 mm / min. The measurement is an average of three measurements. The results are shown in Tables 2 and 3. In addition, about the evaluation result, 1 GPa or more was judged favorable.
(難燃時間)
 上記試片を用いて、UL94に準拠した垂直燃焼試験をおこなった。試験本数は5本である。接炎は2回行い、燃焼時間を1回目接炎と2回目接炎の合計燃焼時間とした。結果を表3に示す。なお、評価結果については、燃焼時間が60秒以内を良好と判断した。
(Flame retardant time)
A vertical combustion test based on UL94 was performed using the above specimen. The number of tests is five. The flame contact was performed twice, and the combustion time was defined as the total combustion time of the first flame contact and the second flame contact. The results are shown in Table 3. In addition, about the evaluation result, the combustion time was judged to be good within 60 seconds.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表2及び表3より、本発明のセルロース誘導体C-1~C-7にゴム粒子を配合することによって、滞留前後のシャルピー衝撃強度が大きく向上し、高い曲げ弾性率を有することが明らかである。特に、ゴム粒子については、アクリル/シリコーン系が最も効果が高く、次いで、アクリル系、ブタジエン系の順に良好である。また、表3より、難燃剤を配合した際にも同様の効果を奏しつつ、難燃性を示すことが確認された。 From Tables 2 and 3, it is clear that by blending rubber particles with the cellulose derivatives C-1 to C-7 of the present invention, the Charpy impact strength before and after the residence is greatly improved and has a high flexural modulus. . In particular, for rubber particles, acrylic / silicone system is the most effective, followed by acrylic and butadiene. Moreover, it was confirmed from Table 3 that the flame retardant was exhibited while exhibiting the same effect when the flame retardant was blended.
[成形体の作製2]
 セルロース誘導体〔(C-1)~(C-7)、(H-1)〕、ゴム質重合体〔(R-1)~(R-7)〕、脂肪族ポリエステルエラストマー〔(S-1)~(S-3)〕、セルロースエステル樹脂〔表1に示す(H-1)〕を表4に示す配合割合(質量%)で配合し、更に酸化防止剤(チバ・スペシャリティ・ケミカルズ社製「イルガノックス1010」)0.5質量部を添加後、ヘンシェルミキサーで混合して成形材料用混合物を作製した。この混合物をバレル温度210℃に設定した二軸混練押出機(テクノベル(株)製、Ultranano)に供給しペレットを作製した。続いて、得られたペレットをシリンダー温度210℃に設定した小型射出成形機(ファナック(株)Roboshot S-2000i、自動射出成形機)に供給して、4mm×10mm×80mmの多目的試験片(衝撃試験片及び曲げ試験片)及び8cm×5cm×2mmの板状試験片、10mm×10mm×4mmのビカット軟化点温度測定用試片を成形した。
[Production of molded body 2]
Cellulose derivatives [(C-1) to (C-7), (H-1)], rubbery polymers [(R-1) to (R-7)], aliphatic polyester elastomers [(S-1) To (S-3)], a cellulose ester resin ((H-1) shown in Table 1) at a blending ratio (mass%) shown in Table 4, and an antioxidant (Ciba Specialty Chemicals “ Irganox 1010 ") 0.5 parts by mass was added and mixed with a Henschel mixer to prepare a mixture for molding material. This mixture was supplied to a twin-screw kneading extruder (manufactured by Technobel Co., Ltd., Ultrano) set at a barrel temperature of 210 ° C. to produce pellets. Subsequently, the obtained pellets were supplied to a small injection molding machine (FANUC ROBOSHOT S-2000i, automatic injection molding machine) set at a cylinder temperature of 210 ° C., and a 4 mm × 10 mm × 80 mm multipurpose test piece (impact Test pieces and bending test pieces) and 8 cm × 5 cm × 2 mm plate-like test pieces, 10 mm × 10 mm × 4 mm Vicat softening point temperature measurement specimens were molded.
[評価]
 得られた試験片を用いて、以下の項目について評価した。評価結果等を表4に示す。
[Evaluation]
The following items were evaluated using the obtained test pieces. Table 4 shows the evaluation results.
(落球衝撃試験)
 JIS k7211-1に準じて、板状試験片の両端(幅8cmのうち、各1cm)を固定し、筒状ガイドを使用して500g鋼球(高さが2.5mを超える場合には鋼球を1,000gに変更)を試験片の中心に落下させ、試験片にクラックが貫通する確率50%高さを求めた。その結果から、50%破壊エネルギー(単位J)を求めた。試験は23℃にて行った。
(Falling ball impact test)
According to JIS k7211-1, both ends of the plate-like test piece (1 cm each in width 8 cm) are fixed, and a 500 g steel ball (if the height exceeds 2.5 m, steel using a cylindrical guide) The ball was changed to 1,000 g) and dropped at the center of the test piece, and the height of 50% probability that a crack penetrated the test piece was determined. From the results, 50% fracture energy (unit J) was determined. The test was conducted at 23 ° C.
(曲げ弾性率)
 前記成形体の作製1における曲げ弾性率の評価と同様の方法、条件及び基準でISO178に準拠して、射出成形にて成形した試験片を評価した。結果を表4に示す。
(Flexural modulus)
A test piece molded by injection molding was evaluated according to ISO 178 according to the same method, conditions and criteria as the evaluation of the flexural modulus in the production 1 of the molded body. The results are shown in Table 4.
(ビカット軟化温度)
 上記試験片及び、安田精機製作所社製ヒートデストーションテスターを用い、ISO306に準拠して50℃/hの昇温速度にて測定した。
(Vicat softening temperature)
Using the above test piece and a heat distortion tester manufactured by Yasuda Seiki Seisakusho Co., Ltd., measurement was performed at a temperature increase rate of 50 ° C./h in accordance with ISO306.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表4において、本発明のセルロース誘導体、ゴム粒子を配合することによって、滞留前後のシャルピー衝撃強度、曲げ弾性率、低温でのシャルピー衝撃強度が向上することがわかった。
 また、表4において、本発明のセルロース誘導体、ゴム粒子及び脂肪族ポリエステルエラストマーを配合することによって、高い曲げ弾性率と高いビカット軟化点温度を発現しつつ、落球衝撃強度が向上することがわかる。また、表4より、更にセルロースエステル樹脂を配合することによって、曲げ弾性率とビカット軟化点温度を低下させることなく、落球衝撃強度をより高められることが確認された。
In Table 4, it was found that by blending the cellulose derivative and rubber particles of the present invention, the Charpy impact strength before and after the residence, the flexural modulus, and the Charpy impact strength at low temperature were improved.
In Table 4, it can be seen that by adding the cellulose derivative, rubber particles and aliphatic polyester elastomer of the present invention, the falling ball impact strength is improved while expressing a high flexural modulus and a high Vicat softening point temperature. Moreover, it was confirmed from Table 4 that the falling ball impact strength can be further increased by further blending the cellulose ester resin without lowering the flexural modulus and Vicat softening point temperature.
 本発明の成形材料は、優れた熱可塑性を有するため、加熱成形などにより成形することができる。また、本発明の成形材料、及び成形体は、曲げ強度、高い耐熱性(熱変形温度)、及び成形加工性といった性能に優れ、かつ良好な耐衝撃性と滞留後の耐衝撃性、高い剛性を有しており、例えば自動車、家電、電気電子機器等の構成部品、機械部品、住宅・建築用材料等として好適に使用することができる。 Since the molding material of the present invention has excellent thermoplasticity, it can be molded by heat molding or the like. In addition, the molding material and the molded body of the present invention are excellent in performance such as bending strength, high heat resistance (thermal deformation temperature), and molding processability, and have good impact resistance, impact resistance after residence, and high rigidity. For example, it can be suitably used as components such as automobiles, home appliances, electric and electronic devices, machine parts, housing / building materials, and the like.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2009年12月25日出願の日本特許出願(特願2009-295090)及び2010年9月29日出願の日本特許出願(特願2010-220082)に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on December 25, 2009 (Japanese Patent Application No. 2009-295090) and a Japanese patent application filed on September 29, 2010 (Japanese Patent Application No. 2010-220082). Incorporated herein by reference.

Claims (22)

  1.  セルロースに含まれる水酸基の水素原子が、
     下記A)で置換された基を少なくとも1つ、及び
     下記B)で置換された基を少なくとも1つ含むセルロース誘導体と、
     ゴム粒子とを含有する成形材料。
     A)炭化水素基:-R
     B)アシル基:-CO-R(Rは炭化水素基を表す。)
    The hydrogen atom of the hydroxyl group contained in cellulose
    A cellulose derivative comprising at least one group substituted in A) below and at least one group substituted in B) below;
    A molding material containing rubber particles.
    A) Hydrocarbon group: —R A
    B) Acyl group: —CO—R B (R B represents a hydrocarbon group.)
  2.  前記セルロース誘導体が、更に、セルロースに含まれる水酸基の水素原子が下記C)で置換された基を少なくとも1つ含む、請求項1に記載の成形材料。
     C)アルキレンオキシ基:-RC2-O-とアシル基:-CO-RC1とを含む基(RC1は炭化水素基を表し、RC2は炭素数が2~4のアルキレン基を表す。)
    The molding material according to claim 1, wherein the cellulose derivative further comprises at least one group in which a hydrogen atom of a hydroxyl group contained in cellulose is substituted by the following C).
    C) a group containing an alkyleneoxy group: —R C2 —O— and an acyl group: —CO—R C1 (R C1 represents a hydrocarbon group, and R C2 represents an alkylene group having 2 to 4 carbon atoms. )
  3.  前記C)アルキレンオキシ基とアシル基とを含む基が、下記一般式(3)で表される構造を含む基である、請求項2に記載の成形材料。
    Figure JPOXMLDOC01-appb-C000001
    (式中、RC1は炭化水素基を表し、RC2は炭素数が2~4のアルキレン基を表す。nは1以上の整数を表す。)
    The molding material according to claim 2, wherein the C) group containing an alkyleneoxy group and an acyl group is a group containing a structure represented by the following general formula (3).
    Figure JPOXMLDOC01-appb-C000001
    (Wherein R C1 represents a hydrocarbon group, R C2 represents an alkylene group having 2 to 4 carbon atoms, and n represents an integer of 1 or more.)
  4.  前記Rが炭素数1~4のアルキル基である、請求項1~3のいずれか一項に記載の成形材料。 The molding material according to any one of claims 1 to 3, wherein R A is an alkyl group having 1 to 4 carbon atoms.
  5.  前記Rがメチル基又はエチル基である、請求項1~4のいずれか一項に記載の成形材料。 The molding material according to any one of claims 1 to 4, wherein R A is a methyl group or an ethyl group.
  6.  前記R及びRC1が、それぞれ独立に、アルキル基又はアリール基である、請求項2~5のいずれか一項に記載の成形材料。 The molding material according to any one of claims 2 to 5, wherein R B and R C1 are each independently an alkyl group or an aryl group.
  7.  前記R及びRC1が、それぞれ独立に、メチル基、エチル基又はプロピル基である、請求項2~6のいずれか一項に記載の成形材料。 The molding material according to any one of claims 2 to 6, wherein R B and R C1 are each independently a methyl group, an ethyl group, or a propyl group.
  8.  前記Rが、炭素数3~10の分岐構造を有する炭化水素基である、請求項1~6のいずれか一項に記載の成形材料。 The molding material according to any one of claims 1 to 6, wherein R B is a hydrocarbon group having a branched structure having 3 to 10 carbon atoms.
  9.  前記アルキレンオキシ基が下記式(1)又は(2)で表される基である、請求項2~8のいずれか一項に記載の成形材料。
    Figure JPOXMLDOC01-appb-C000002
    The molding material according to any one of claims 2 to 8, wherein the alkyleneoxy group is a group represented by the following formula (1) or (2).
    Figure JPOXMLDOC01-appb-C000002
  10.  前記セルロース誘導体が、カルボキシル基、スルホン酸基及びこれらの塩を実質的に有さない、請求項1~9のいずれか一項に記載の成形材料。 The molding material according to any one of claims 1 to 9, wherein the cellulose derivative has substantially no carboxyl group, sulfonic acid group and salts thereof.
  11.  前記セルロース誘導体が水に不溶である、請求項1~10のいずれか一項に記載の成形材料。 The molding material according to any one of claims 1 to 10, wherein the cellulose derivative is insoluble in water.
  12.  前記セルロース誘導体と、前記ゴム粒子との質量組成比が50/50~95/5である請求項1~11のいずれか一項に記載の成形材料。 The molding material according to any one of claims 1 to 11, wherein a mass composition ratio between the cellulose derivative and the rubber particles is 50/50 to 95/5.
  13.  前記ゴム粒子が、コアシェル構造である請求項1~12のいずれか一項に記載の成形材料。 The molding material according to any one of claims 1 to 12, wherein the rubber particles have a core-shell structure.
  14.  前記ゴム粒子のゴム成分が、アクリル系ゴム又はシリコーン/アクリル複合ゴムである請求項1~13のいずれか一項に記載の成形材料。 The molding material according to any one of claims 1 to 13, wherein the rubber component of the rubber particles is an acrylic rubber or a silicone / acrylic composite rubber.
  15.  更に、数平均分子量10,000以上の脂肪族ポリエステルエラストマーを含有する請求項1~14のいずれか一項に記載の成形材料。 The molding material according to any one of claims 1 to 14, further comprising an aliphatic polyester elastomer having a number average molecular weight of 10,000 or more.
  16.  前記セルロース誘導体、ゴム粒子及び脂肪族ポリエステルエラストマーの総量に対して、セルロース誘導体を40~90質量%、ゴム粒子を5~50質量%及び脂肪族ポリエステルエラストマーを5~50質量%含有する請求項15に記載の成形材料。 The cellulose derivative, the rubber particles and the aliphatic polyester elastomer are contained in an amount of 40 to 90% by mass, the rubber particles are contained in an amount of 5 to 50% by mass and the aliphatic polyester elastomer is contained in an amount of 5 to 50% by mass with respect to the total amount of the cellulose derivative, rubber particles and aliphatic polyester elastomer. The molding material as described in 2.
  17.  更に、セルロースエステル樹脂及びセルロースエーテル樹脂の少なくとも一方を含有する請求項1~15のいずれか一項に記載の成形材料。 The molding material according to any one of claims 1 to 15, further comprising at least one of a cellulose ester resin and a cellulose ether resin.
  18.  前記セルロース誘導体、ゴム粒子、脂肪族ポリエステルエラストマー、セルロースエステル樹脂及びセルロースエーテル樹脂の総量に対して、セルロース誘導体を20~80質量%、ゴム粒子を5~40質量%、脂肪族ポリエステルエラストマーを5~40質量%、及びセルロースエステル樹脂及びセルロースエーテル樹脂の合計量として5~50質量%含有する請求項17に記載の成形材料。 20 to 80% by mass of cellulose derivative, 5 to 40% by mass of rubber particles, and 5 to 5% of aliphatic polyester elastomer with respect to the total amount of the cellulose derivative, rubber particles, aliphatic polyester elastomer, cellulose ester resin and cellulose ether resin. The molding material according to claim 17, containing 40% by mass and 5 to 50% by mass as a total amount of the cellulose ester resin and the cellulose ether resin.
  19.  更に、難燃剤を含有する請求項1~18のいずれか一項に記載の成形材料。 The molding material according to any one of claims 1 to 18, further comprising a flame retardant.
  20.  請求項1~19のいずれか一項に記載の成形材料を加熱成形して得られる成形体。 A molded body obtained by thermoforming the molding material according to any one of claims 1 to 19.
  21.  請求項1~19のいずれか一項に記載の成形材料を加熱し、成形する工程を含む、成形体の製造方法。 A method for producing a molded body, comprising a step of heating and molding the molding material according to any one of claims 1 to 19.
  22.  請求項20に記載の成形体から構成される電気電子機器用筐体。 A casing for electrical and electronic equipment comprising the molded body according to claim 20.
PCT/JP2010/073241 2009-12-25 2010-12-22 Molding material, molded article and process for production thereof, and housing for electric/electronic device WO2011078286A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009295090 2009-12-25
JP2009-295090 2009-12-25
JP2010220082A JP2011148975A (en) 2009-12-25 2010-09-29 Molding material, molded article, method for producing the same, and housing for electric and electronic equipment
JP2010-220082 2010-09-29

Publications (1)

Publication Number Publication Date
WO2011078286A1 true WO2011078286A1 (en) 2011-06-30

Family

ID=44195812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073241 WO2011078286A1 (en) 2009-12-25 2010-12-22 Molding material, molded article and process for production thereof, and housing for electric/electronic device

Country Status (2)

Country Link
JP (1) JP2011148975A (en)
WO (1) WO2011078286A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2952540A4 (en) * 2013-01-30 2016-07-06 Nec Corp Cellulose-type resin composition, molding material, and molded article
JP2019534367A (en) * 2016-11-11 2019-11-28 イーストマン ケミカル カンパニー Polymer-based resin compositions derived from cellulose and articles made using these compositions
JP2019535870A (en) * 2016-11-11 2019-12-12 イーストマン ケミカル カンパニー Compositions of cellulose esters and impact modifiers and articles produced using these compositions
JP2020037611A (en) * 2018-08-31 2020-03-12 富士ゼロックス株式会社 Resin composition and resin molding
US20240043678A1 (en) * 2021-03-31 2024-02-08 Techno-Umg Co., Ltd. Thermoplastic resin composition and molded article

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6029925B2 (en) * 2012-10-22 2016-11-24 ダイセルポリマー株式会社 Cellulose ester composition
JP2014162804A (en) * 2013-02-21 2014-09-08 Nec Corp Cellulose-based resin composition

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005283997A (en) * 2004-03-30 2005-10-13 Daicel Chem Ind Ltd Cellulose ether acetate optical film
JP2005320409A (en) * 2004-05-07 2005-11-17 Mitsubishi Rayon Co Ltd Impact-resistant thermoplastic resin composition
JP2006111858A (en) * 2004-09-17 2006-04-27 Toray Ind Inc Resin composition and molding comprising the same
JP2007091872A (en) * 2005-09-28 2007-04-12 Toray Ind Inc Flexible resin composition and molded product made therefrom
JP2007177213A (en) * 2005-11-29 2007-07-12 Toray Ind Inc Resin composition and molded article consisting of the same
JP2009007520A (en) * 2007-06-29 2009-01-15 Toray Ind Inc Resin composition and molded product made therefrom
JP2009179731A (en) * 2008-01-31 2009-08-13 Konica Minolta Opto Inc Acrylic resin-containing film, and polarizing plate and display device produced by using the same
JP2009299075A (en) * 2007-10-13 2009-12-24 Konica Minolta Opto Inc Optical film

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005283997A (en) * 2004-03-30 2005-10-13 Daicel Chem Ind Ltd Cellulose ether acetate optical film
JP2005320409A (en) * 2004-05-07 2005-11-17 Mitsubishi Rayon Co Ltd Impact-resistant thermoplastic resin composition
JP2006111858A (en) * 2004-09-17 2006-04-27 Toray Ind Inc Resin composition and molding comprising the same
JP2007091872A (en) * 2005-09-28 2007-04-12 Toray Ind Inc Flexible resin composition and molded product made therefrom
JP2007177213A (en) * 2005-11-29 2007-07-12 Toray Ind Inc Resin composition and molded article consisting of the same
JP2009007520A (en) * 2007-06-29 2009-01-15 Toray Ind Inc Resin composition and molded product made therefrom
JP2009299075A (en) * 2007-10-13 2009-12-24 Konica Minolta Opto Inc Optical film
JP2009179731A (en) * 2008-01-31 2009-08-13 Konica Minolta Opto Inc Acrylic resin-containing film, and polarizing plate and display device produced by using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2952540A4 (en) * 2013-01-30 2016-07-06 Nec Corp Cellulose-type resin composition, molding material, and molded article
JP2019534367A (en) * 2016-11-11 2019-11-28 イーストマン ケミカル カンパニー Polymer-based resin compositions derived from cellulose and articles made using these compositions
JP2019535870A (en) * 2016-11-11 2019-12-12 イーストマン ケミカル カンパニー Compositions of cellulose esters and impact modifiers and articles produced using these compositions
US11905394B2 (en) 2016-11-11 2024-02-20 Eastman Chemical Company Cellulose ester and impact modifier compositions and articles made using these compositions
JP2020037611A (en) * 2018-08-31 2020-03-12 富士ゼロックス株式会社 Resin composition and resin molding
JP7311251B2 (en) 2018-08-31 2023-07-19 イーストマン ケミカル カンパニー Resin composition and resin molding
US20240043678A1 (en) * 2021-03-31 2024-02-08 Techno-Umg Co., Ltd. Thermoplastic resin composition and molded article
US11976189B2 (en) * 2021-03-31 2024-05-07 Techno-Umg Co., Ltd. Thermoplastic resin composition and molded article

Also Published As

Publication number Publication date
JP2011148975A (en) 2011-08-04

Similar Documents

Publication Publication Date Title
WO2011078286A1 (en) Molding material, molded article and process for production thereof, and housing for electric/electronic device
WO2011078272A1 (en) Molding material, molded body, manufacturing method thereof, and casing for electrical or electronic equipment
WO2011078275A1 (en) Molding material, molded body, manufacturing method thereof, and casing for electrical or electronic equipment
JP5486919B2 (en) MOLDING MATERIAL, MOLDED BODY, MANUFACTURING METHOD THEREOF, AND CASE FOR ELECTRIC AND ELECTRONIC DEVICE
JP5639863B2 (en) MOLDING MATERIAL, MOLDED BODY, MANUFACTURING METHOD THEREOF, AND CASE FOR ELECTRIC AND ELECTRONIC DEVICE
JP2011132448A (en) Molding material, molded article, manufacturing method therefor, vessel, and film
JP5486918B2 (en) MOLDING MATERIAL, MOLDED BODY, MANUFACTURING METHOD THEREOF, AND CASE FOR ELECTRIC AND ELECTRONIC DEVICE
JP2011132459A (en) Molding material, molded article, and method for producing the same, and housing for electric electronic equipment
JP5470031B2 (en) MOLDING MATERIAL, MOLDED BODY, MANUFACTURING METHOD THEREOF, AND CASE FOR ELECTRIC AND ELECTRONIC DEVICE
WO2011078278A1 (en) Molding material, molded article and process for production thereof, and housing for electric/electronic device
WO2011078282A1 (en) Molding material, molded article and process for production thereof, and housing for electric/electronic device
WO2011078283A1 (en) Molding material, molded article and process for production thereof, and housing for electric/electronic device
JP5639862B2 (en) MOLDING MATERIAL, MOLDED BODY, MANUFACTURING METHOD THEREOF, AND CASE FOR ELECTRIC AND ELECTRONIC DEVICE
JP5486917B2 (en) MOLDING MATERIAL, MOLDED BODY, MANUFACTURING METHOD THEREOF, AND CASE FOR ELECTRIC AND ELECTRONIC DEVICE
JP5481183B2 (en) MOLDING MATERIAL, MOLDED BODY, MANUFACTURING METHOD THEREOF, AND CASE FOR ELECTRIC AND ELECTRONIC DEVICE
WO2011078287A1 (en) Molding material, molded article and process for production thereof, and housing for electric/electronic device
JP2011149005A (en) Molding material, molding, method for producing the same, and housing for electric and electronic equipment
WO2011078277A1 (en) Molding material, molded article and process for production thereof, and housing for electric/electronic device
WO2011078271A1 (en) Molding material, molded body, manufacturing method thereof, and casing for electrical or electronic equipment
JP2011132451A (en) Molding material, molding, and method for producing the same, and housing for electric and electronic equipment
JP2011132462A (en) Molding material, molded article, and method for producing the same, and housing for electric electronic equipment
JP2011132432A (en) Molding material, molded body and method for producing the same, and housing for electrical and electronic equipment
JP2011132435A (en) Molding material, molded article, manufacturing method therefor, and housing for electric/electronic equipment
WO2011078276A1 (en) Molding material, molded article and process for production thereof, and housing for electric/electronic device
JP2011132455A (en) Molding material, molding, and method for producing the same, and housing for electric and electronic equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839516

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10839516

Country of ref document: EP

Kind code of ref document: A1