WO2011077821A1 - Molded body having cavity thereinside, and production method thereof - Google Patents

Molded body having cavity thereinside, and production method thereof Download PDF

Info

Publication number
WO2011077821A1
WO2011077821A1 PCT/JP2010/068630 JP2010068630W WO2011077821A1 WO 2011077821 A1 WO2011077821 A1 WO 2011077821A1 JP 2010068630 W JP2010068630 W JP 2010068630W WO 2011077821 A1 WO2011077821 A1 WO 2011077821A1
Authority
WO
WIPO (PCT)
Prior art keywords
parison
cavity
acid
stretching
molded body
Prior art date
Application number
PCT/JP2010/068630
Other languages
French (fr)
Japanese (ja)
Inventor
清一 渡辺
徹 小倉
伸輔 高橋
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2011077821A1 publication Critical patent/WO2011077821A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/0005Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor characterised by the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/14Making preforms characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/78Measuring, controlling or regulating
    • B29C49/786Temperature
    • B29C2049/7861Temperature of the preform
    • B29C2049/7862Temperature of the preform characterised by temperature values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/0715Preforms or parisons characterised by their configuration the preform having one end closed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/072Preforms or parisons characterised by their configuration having variable wall thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/073Preforms or parisons characterised by their configuration having variable diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/076Preforms or parisons characterised by their configuration characterised by the shape
    • B29C2949/0761Preforms or parisons characterised by their configuration characterised by the shape characterised by overall the shape
    • B29C2949/0762Conical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/076Preforms or parisons characterised by their configuration characterised by the shape
    • B29C2949/0761Preforms or parisons characterised by their configuration characterised by the shape characterised by overall the shape
    • B29C2949/0767Preforms or parisons characterised by their configuration characterised by the shape characterised by overall the shape the shape allowing stacking or nesting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/076Preforms or parisons characterised by their configuration characterised by the shape
    • B29C2949/0768Preforms or parisons characterised by their configuration characterised by the shape characterised by the shape of specific parts of preform
    • B29C2949/0769Preforms or parisons characterised by their configuration characterised by the shape characterised by the shape of specific parts of preform characterised by the lip, i.e. very top of preform neck
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/076Preforms or parisons characterised by their configuration characterised by the shape
    • B29C2949/0768Preforms or parisons characterised by their configuration characterised by the shape characterised by the shape of specific parts of preform
    • B29C2949/077Preforms or parisons characterised by their configuration characterised by the shape characterised by the shape of specific parts of preform characterised by the neck
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/076Preforms or parisons characterised by their configuration characterised by the shape
    • B29C2949/0768Preforms or parisons characterised by their configuration characterised by the shape characterised by the shape of specific parts of preform
    • B29C2949/077Preforms or parisons characterised by their configuration characterised by the shape characterised by the shape of specific parts of preform characterised by the neck
    • B29C2949/0772Closure retaining means
    • B29C2949/0776Closure retaining means not containing threads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/076Preforms or parisons characterised by their configuration characterised by the shape
    • B29C2949/0768Preforms or parisons characterised by their configuration characterised by the shape characterised by the shape of specific parts of preform
    • B29C2949/078Preforms or parisons characterised by their configuration characterised by the shape characterised by the shape of specific parts of preform characterised by the bottom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • B29C2949/22Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at neck portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • B29C2949/26Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at body portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • B29C2949/28Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at bottom portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3024Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/04Extrusion blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/06Injection blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/071Preforms or parisons characterised by their configuration, e.g. geometry, dimensions or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/08Biaxial stretching during blow-moulding
    • B29C49/10Biaxial stretching during blow-moulding using mechanical means for prestretching
    • B29C49/12Stretching rods

Definitions

  • the present invention relates to a molded body containing a cavity inside and a manufacturing method thereof.
  • a cold parison method in which a parison (preform) molded into a shape having a bottom of a test tube by injection molding is once cooled to room temperature, reheated by a blow molding apparatus, temperature-controlled, and blow molded.
  • a hot parison system in which the molded parison is transferred to a temperature adjustment step without being completely cooled, and then blow-molded (see, for example, Patent Document 1).
  • the hot parison system is also referred to as a one-stage system because parison molding and blow molding are continuously performed by the same molding machine.
  • the cold parison method is also referred to as a two-stage type because parison molding and blow molding are performed by different molding machines.
  • a bottomed cylindrical parison 10 that has been molded in advance is set in the blow molding apparatus 1 (FIG. 1A), and then a mold 20a, The molded body 30 is manufactured by superimposing and heating 20b, supplying air from above, and causing the parison 10 to follow the inner surface shape of the mold 20 (FIG. 1B).
  • the parison 10 is extruded in a molten state in a tube shape (FIG.
  • the blow molding also includes stretch blow molding in which stretching is performed.
  • stretch blow molding in which stretching is performed.
  • methods shown in FIGS. 3A to 3D have been proposed as cold parison type stretch blow molding methods.
  • the parison 10 already made using an injection molding machine is heated to a predetermined temperature by passing between the heating devices 31. At this time, in order to uniformly heat the parison 10, it is generally performed to rotate the parison passing between the heating devices 31 (FIG. 3A).
  • the temperature-controlled parison 10 is set in the molds 20a and 20b and stretched by a support member (also referred to as a stretch rod) 32 (FIG. 3B).
  • the molded body produced by such blow molding is excellent in transparency, impact resistance, hygiene, gas barrier properties, pressure resistance, etc., and for this reason, packaging of various foods, beverages, detergents, cosmetics, etc. It is widely used as a container for use (see, for example, Patent Document 4).
  • a high-temperature or low-temperature substance may be charged or injected into the packaging container, and it is desired to improve the heat insulation of the packaging container.
  • reflecting the sunlight from outside the container is becoming an important requirement for the container from the viewpoint of protecting the contents.
  • the present condition is that the molded object which can exhibit such a function alone, is excellent in mold maintenance and heat insulation, has high brightness, and has a uniform bright surface is not yet provided. .
  • an object of the present invention is to provide a molded article that is excellent in molding maintainability and heat insulation, has high brightness, and has a uniform bright surface, and contains a cavity, and a method for producing the same. .
  • Means for solving the problems are as follows. That is, ⁇ 1> A molding process for forming a parison and manufacturing a molded body, The forming step is a drawing process for drawing a heated parison; A blow treatment for blowing the stretched parison, The parison has an opening and a bottom, and is provided with a neck starting point, and is a method for producing a molded body containing a cavity inside. ⁇ 2> The method for producing a molded article containing cavities in the interior according to ⁇ 1>, wherein the stretching in the stretching treatment is necking stretching.
  • Tg represents the glass transition temperature of resin of a parison.
  • ⁇ 5> The method for producing a molded body in which the thin-walled portion contains a cavity in the interior according to ⁇ 4>, wherein the thin-walled portion is provided symmetrically with respect to the stretching axis of the parison.
  • ⁇ 6> A molded article containing a cavity inside, wherein the molded article is produced by the method for producing a molded article containing a cavity inside according to any one of ⁇ 1> to ⁇ 5>.
  • ⁇ 7> The molded body containing a cavity in the interior according to ⁇ 6>, wherein the light transmittance of at least a part of the molded body with respect to light having a wavelength of 550 nm is less than 70%.
  • FIG. 1A is a diagram for explaining a cold parison system in blow molding (part 1).
  • FIG. 1B is a diagram for explaining a cold parison method in blow molding (part 2).
  • FIG. 2A is a diagram for explaining a hot parison system in blow molding (part 1).
  • FIG. 2B is a diagram for explaining a hot parison system in blow molding (part 2).
  • FIG. 3: A is a figure for demonstrating the cold parison system in stretch blow molding (the 1).
  • FIG. 3B is a diagram for explaining a cold parison system in stretch blow molding (part 2).
  • FIG. 3C is a view for explaining a cold parison system in stretch blow molding (part 3).
  • FIG. 1A is a diagram for explaining a cold parison system in blow molding (part 1).
  • FIG. 1B is a diagram for explaining a cold parison method in blow molding (part 2).
  • FIG. 2A is a diagram for explaining a hot parison
  • FIG. 3D is a view for explaining a cold parison method in stretch blow molding (part 4).
  • FIG. 4 is a schematic cross-sectional view for explaining an example of the shape of a parison.
  • FIG. 5 is a schematic cross-sectional view for explaining another example of the shape of the parison.
  • FIG. 6 is a diagram for explaining necking.
  • FIG. 7 is a schematic diagram of necking and load-elongation curves in a film.
  • FIG. 8 is a diagram for explaining an example of the stretching process.
  • FIG. 9 is a schematic cross-sectional view for explaining the shape of the parison used in Comparative Example 3.
  • the molded product containing cavities in the present invention can be preferably produced by the method for producing a molded product containing cavities in the present invention.
  • the manufacturing method of the molded object which contains a cavity in the inside of this invention includes at least a molding step, and further includes other steps as necessary.
  • the molding step includes at least a stretching process and a blowing process, and further includes other processes as necessary.
  • a parison is molded, and a molded body containing a cavity inside is manufactured.
  • the stretching process is a process of stretching a heated parison. By the stretching treatment, a cavity is formed in at least a part of the stretched parison.
  • the parison has an opening and a bottom, and is provided with a neck starting point.
  • the parison includes at least one of a crystalline polymer and a fine particle-containing polymer, and further includes other components as necessary.
  • the parison is manufactured by cooling the parison and forming cavity-origin particles inside the parison.
  • the parison is made of a crystalline polymer, the parison is crystallized by the cooling to form microcrystals inside the parison, and the microcrystals become cavity starting particles.
  • the parison is made of a fine particle-containing polymer, the fine particles in the fine particle-containing polymer become cavity starting particles.
  • -Crystalline polymer- In general, polymers are classified into crystalline polymers and amorphous (amorphous) polymers, but even crystalline polymers are not 100% crystalline, and long chain molecules are regularly formed in the molecular structure. It includes aligned crystalline regions and non-regularly arranged amorphous (amorphous) regions. Therefore, the crystalline polymer only needs to include at least the crystalline region in the molecular structure, and the crystalline region and the amorphous region may be mixed.
  • polyolefin for example, low density polyethylene, high density polyethylene, polypropylene, etc.
  • PA polyamides
  • POM polyacetals
  • polyesters eg, PET, PEN, PTT, PBT, PPT, PHT, PBN, PES, PBS, etc.
  • SPS syndiotactic polystyrene
  • PPS polyphenylene sulfide
  • PEEK polyether ether ketones
  • polyolefins polyolefins
  • polyesters syndiotactic polystyrene (SPS) and liquid crystal polymers (LCP) are preferable from the viewpoint of durability, mechanical strength, production and cost, and polyolefins (PP, PE, etc.), polyesters Are more preferred, and PET is particularly preferred. Two or more kinds of these polymers may be blended or copolymerized.
  • the crystalline polymer has a functional group having high absorption in the ultraviolet region such as an aromatic ring. It is preferably not included. Therefore, aliphatic polyester is preferable among the polyesters.
  • the melt viscosity of the crystalline polymer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 50 Pa ⁇ s to 700 Pa ⁇ s, more preferably 70 Pa ⁇ s to 500 Pa ⁇ s, and more preferably 80 Pa ⁇ s. Particularly preferred is s to 300 Pa ⁇ s.
  • the melt viscosity of 50 Pa ⁇ s to 700 Pa ⁇ s is preferable in that the properties of the polymer discharged from an extruder or a molding apparatus during melting are stabilized. Further, the melt viscosity of 50 Pa ⁇ s to 700 Pa ⁇ s is preferable in that the viscosity at the time of melting becomes appropriate and the extrusion becomes easy.
  • melt viscosity can be measured by a plate type rheometer (for example, Physica MCR301: manufactured by Anton Paar) or a capillary rheometer (for example, flow tester CFT-500D: manufactured by Shimadzu Corporation).
  • a plate type rheometer for example, Physica MCR301: manufactured by Anton Paar
  • a capillary rheometer for example, flow tester CFT-500D: manufactured by Shimadzu Corporation.
  • the intrinsic viscosity (IV) of the crystalline polymer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.4 to 1.5, more preferably 0.6 to 1.4. 0.7 to 1.3 is particularly preferable.
  • the IV is 0.4 to 1.5, the strength of the molded product containing cavities in the interior is increased, and this is preferable in terms of efficient stretching.
  • the IV can be measured by an Ubbelohde viscometer.
  • the melting point (Tm) of the crystalline polymer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 40 ° C to 350 ° C, more preferably 100 ° C to 300 ° C, and more preferably 100 ° C to 260 ° C. ° C is particularly preferred.
  • the melting point of 40 ° C. to 350 ° C. is preferable in that the shape can be easily maintained in the temperature range expected for normal use.
  • the melting point can be measured by a differential thermal analyzer (DSC).
  • the content of the crystalline polymer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 80% by mass to 99.5% by mass, and 85% by mass to 99% by mass with respect to the parison. % Is more preferable, and 90% by mass to 98% by mass is particularly preferable.
  • the content of the crystalline polymer is less than 80% by mass with respect to the parison, it may be difficult to maintain the shape during processing and handling of the parison.
  • the content exceeds 99.5% by mass, the parison May become brittle.
  • polyester resins mean a general term for polymer compounds having an ester bond as a main bond chain. Therefore, as the polyester resin suitable as the crystalline polymer, the exemplified PET (polyethylene terephthalate), PEN (polyethylene naphthalate), PTT (polytrimethylene terephthalate), PBT (polybutylene terephthalate), PPT (polypenta).
  • the dicarboxylic acid component is not particularly limited and may be appropriately selected depending on the intended purpose.
  • aromatic dicarboxylic acid aliphatic dicarboxylic acid, alicyclic dicarboxylic acid, oxycarboxylic acid, polyfunctional acid, etc. Is mentioned.
  • the aromatic dicarboxylic acid is not particularly limited and may be appropriately selected depending on the intended purpose.
  • terephthalic acid, isophthalic acid, diphenyldicarboxylic acid, and naphthalenedicarboxylic acid are preferable, and terephthalic acid, diphenyldicarboxylic acid, and naphthalenedicarboxylic acid are more preferable.
  • the aliphatic dicarboxylic acid is not particularly limited and may be appropriately selected depending on the intended purpose.
  • cyclohexane dicarboxylic acid etc. are mentioned.
  • the oxycarboxylic acid is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include p-oxybenzoic acid.
  • polyfunctional acid there is no restriction
  • succinic acid in that the molded product containing a cavity inside has a low transmittance (excellent reflection characteristics) in a wide wavelength range including the ultraviolet region, Adipic acid and cyclohexanedicarboxylic acid are preferable, and succinic acid and adipic acid are more preferable.
  • the diol component is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include aliphatic diols, alicyclic diols, aromatic diols, diethylene glycol, and polyalkylene glycols. Among these, aliphatic diols are preferable in that the molded body containing cavities therein has low transmittance (excellent reflection characteristics) in a wide wavelength range including the ultraviolet region.
  • the aliphatic diol is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include ethylene glycol, propanediol, butanediol, pentanediol, hexanediol, neopentyl glycol, and triethylene glycol. Can be mentioned. Of these, propanediol, butanediol, pentanediol, and hexanediol are preferable.
  • propanediol, butanediol, pentanediol, and hexanediol are preferable.
  • limiting in particular as said alicyclic diol According to the objective, it can select suitably, For example, cyclohexane dimethanol etc. are mentioned.
  • aromatic diol According to the objective, it can select suitably, For example, bisphenol A, bisphenol S, etc. are mentioned.
  • the melt viscosity of the polyester resin is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 50 Pa ⁇ s to 700 Pa ⁇ s, more preferably 70 Pa ⁇ s to 500 Pa ⁇ s, and more preferably 80 Pa ⁇ s. ⁇ 300 Pa ⁇ s is particularly preferred.
  • the melt viscosity is higher, voids are more likely to occur during stretching, but when the melt viscosity is 50 Pa ⁇ s to 700 Pa ⁇ s, molding becomes easier and the resin flow becomes stable and retention is less likely to occur. It is preferable in that the quality is stabilized.
  • the melt viscosity of 50 Pa ⁇ s to 700 Pa ⁇ s is preferable in that the drawing tension is appropriately maintained at the time of drawing, and it becomes easy to draw uniformly and is difficult to break. Further, when the melt viscosity is 50 Pa ⁇ s to 700 Pa ⁇ s or more, it becomes easy to maintain the form of the discharged material discharged from the die head, and it can be stably molded, and the product is not easily damaged. , Which is preferable in terms of enhancing physical properties.
  • the intrinsic viscosity (IV) of the polyester resin is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.4 to 1.5, more preferably 0.6 to 1.3, Particularly preferred is 0.7 to 1.2. If the IV is larger, voids are more likely to be generated during stretching. However, if the IV is 0.4 to 1.5, molding becomes easier and the resin flow is more stable, and it is difficult for stagnation to occur. Is preferable in that it is stabilized. Further, when the IV is 0.4 to 1.5, the stretching tension is appropriately maintained at the time of stretching, so that it is easy to stretch uniformly and it is preferable in that the load is not easily applied to the apparatus. In addition, when the IV is 0.4 to 1.5, it is preferable in that the product is hardly damaged and the physical properties are increased.
  • the melting point of the polyester resin is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 70 ° C. to 300 ° C., more preferably 90 ° C. to 270 ° C. from the viewpoint of heat resistance.
  • the said dicarboxylic acid component and the said diol component may respectively superpose
  • a polymer may be formed by copolymerization.
  • two or more kinds of polymers may be blended and used.
  • the polymer added to the main polymer has a melt viscosity and an intrinsic viscosity that are close to those of the main polymer, and the addition amount is smaller, and the physical properties at the time of melt extrusion are smaller. It is preferable in terms of increasing and facilitating extrusion.
  • a resin other than polyester may be added to the polyester resin.
  • the fine particle-containing polymer is not particularly limited as long as it contains fine particles, and can be appropriately selected according to the purpose.
  • Fine particles-- The fine particles are not particularly limited as long as they can serve as cavity starting particles, and can be appropriately selected according to the purpose.
  • examples thereof include fillers and resin fine particles.
  • the filler is not particularly limited and may be appropriately selected depending on the intended purpose.
  • examples thereof include organic fillers such as salts, hydroxystearic acid amide, and ricinoleic acid amide, inorganic fillers such as talc, silica, kaolin, clay, smectite, and vermiculite.
  • the resin fine particles are not particularly limited as long as they are incompatible with the fine particle-containing polymer, and can be appropriately selected according to the purpose. Examples thereof include PTFE (polytetrafluoroethylene).
  • the content of the fine particles is not particularly limited and may be appropriately selected depending on the intended purpose. It is preferably 0.05% by mass to 5% by mass and preferably 0.1% by mass to 2% by mass with respect to the parison. % Is more preferable, and 0.2% by mass to 0.5% by mass is particularly preferable. If the content of the fine particles is less than 0.05% with respect to the parison, sufficient crystallization may not be promoted, and if it exceeds 5 mass%, the parison may become brittle.
  • the volume average particle diameter of the fine particles is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.01 ⁇ m to 10 ⁇ m, more preferably 0.02 ⁇ m to 5 ⁇ m, and more preferably 0.05 ⁇ m to 1 ⁇ m. Particularly preferred. If the volume average particle size of the fine particles is less than 0.01 ⁇ m, sufficient crystallization may not be promoted, and if it exceeds 10 ⁇ m, the parison may become brittle.
  • Crystal nucleating agent-- The crystal nucleating agent is not particularly limited as long as it promotes microcrystal formation inside the crystalline polymer, and can be appropriately selected according to the purpose. i) simple substances, metal compounds including complex oxides, (ii) low molecular compounds having a metal salt of a carboxyl group, (iii) high molecular organic compounds, (iv) phosphoric acid, phosphorous acid, or metal salts thereof ( v) sorbitol derivatives, (vi) quaternary ammonium compounds, (vii) other compounds, and the like. Moreover, the said crystal nucleating agent may use 1 type or 2 types or more simultaneously.
  • the metal compound containing (i) simple substance and complex oxide is not particularly limited and may be appropriately selected depending on the purpose.
  • calcium carbonate, synthetic silicic acid and silicate, silica, zinc white high examples include cytoclay, kaolin, basic magnesium carbonate, mica, talc, quartz powder, diatomaceous earth, dolomite powder, titanium oxide, zinc oxide, antimony oxide, barium sulfate, calcium sulfate, alumina, calcium silicate, and boron nitride.
  • Examples of the low molecular compound having a metal salt of (ii) carboxyl group include octylic acid, toluic acid, heptanoic acid, pelargonic acid, lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, serotic acid, montanic acid, Melicic acid, benzoic acid, p-tert-butylbenzoic acid, terephthalic acid, terephthalic acid monomethyl ester, isophthalic acid, isophthalic acid monomethyl ester, camphoric acid, citronellic acid, hinokiic acid, abitienic acid, rosin acid, hydrogenated rosin acid, etc.
  • the metal salt is mentioned.
  • the (iii) polymer organic compound is not particularly limited and may be appropriately selected depending on the intended purpose.
  • 3,3-dimethylbutene-1, 3-methylpentene-1, 3-methylbutene-1 , 3-methylhexene-1, 3,5,5-trimethylhexene-1, etc. and 3-position branched ⁇ -olefins having 5 or more carbon atoms
  • vinylcycloalkanes such as vinylcyclopentane, vinylcyclohexane, and vinylnorbornane.
  • polyalkylene glycols such as polyethylene glycol and polypropylene glycol, polyglycolic acid, cellulose, cellulose ester, cellulose ether, polyvinyl alcohol, chitin, chitosan, nylon 6, nylon 66, nylon 610, nylon 612 and other aliphatic polyamides Compound, tele Wholly aromatic polyester fine powder to the barrel acid and resorcinol as main constitutional units, polyhydroxyalkanoates, and the like.
  • the (iv) phosphoric acid, phosphorous acid, or a metal salt thereof is not particularly limited and may be appropriately selected depending on the intended purpose.
  • diphenyl phosphate diphenyl phosphite, bis (4-tert-butyl phosphate) Phenyl) sodium, methylene phosphate (2,4-tert-butylphenyl) sodium, and the like.
  • the (v) sorbitol derivative is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include bis (p-methylbenzylidene) sorbitol and bis (p-ethylbenzylidene) sorbitol.
  • the (vi) quaternary ammonium compound is not particularly limited and may be appropriately selected depending on the intended purpose.
  • Examples thereof include tetraethylammonium chloride, tetran-propylammonium chloride, tetran-butylammonium chloride, tetraethylammonium bromide. Tetra n-propylammonium bromide, tetra n-butylammonium bromide, tetraethylammonium silicate, tetra n-butylammonium silicate, and the like.
  • the (vii) other compound is not particularly limited and may be appropriately selected depending on the intended purpose.
  • crystal nucleating agent examples thereof include thioglycolic anhydride, p-toluenesulfonic acid, and metal salts thereof, dibasic acid bis (benzoic acid) Acid hydrazide) compounds, isocyanurate compounds, compounds having a barbituric acid structure, and the like.
  • the content of the crystal nucleating agent is not particularly limited and may be appropriately selected depending on the intended purpose. It is preferably 0.01% by mass to 15% by mass with respect to the parison, and 0.05% by mass. Is more preferably 10% by mass, and particularly preferably 0.1% by mass to 3% by mass.
  • the volume average particle size of the crystal nucleating agent is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.01 ⁇ m to 20 ⁇ m, more preferably 0.1 ⁇ m to 10 ⁇ m, and more preferably 0.2 ⁇ m. Particularly preferred is ⁇ 3 ⁇ m. If the volume average particle size of the crystal nucleating agent is less than 0.01 ⁇ m, the effect may not be sufficiently obtained, and if it exceeds 20 ⁇ m, the parison may become brittle.
  • cooling temperature there is no restriction
  • the cooling rate is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5 ° C / sec to 200 ° C / sec, more preferably 10 ° C / sec to 100 ° C / sec, It is particularly preferably from °C / sec to 60 °C / sec.
  • the cooling rate is less than 5 ° C./sec, crystallization may proceed excessively, and when it exceeds 200 ° C./sec, crystallization may be insufficient.
  • the shape of the parison is not particularly limited as long as it has an opening and a bottom and a neck starting portion is provided, and can be appropriately selected according to the purpose. Shape, tube shape, and the like.
  • molding method of the said parison According to the objective, it can select suitably, For example, extrusion molding, injection molding, etc. are mentioned.
  • molding of the said parison According to the objective, it can select suitably, For example, a horizontal hydraulic injection molding apparatus, a vertical electric injection molding apparatus, etc. are mentioned.
  • the neck starting portion refers to a portion that becomes a starting point of necking stretching described later.
  • the neck starting portion is not particularly limited and can be appropriately selected according to the purpose.For example, a thin portion provided near the bottom of the cup-shaped preform, the center of the side, the vicinity of the opening, etc. Is mentioned. Among these, it is preferable that the thin-walled portion of the parison is provided symmetrically with respect to the stretching axis of the parison, because voids are easily generated uniformly. Further, the necking start position may be adjusted by making the temperature of the preform at the neck starting portion higher than that at other portions, or by making the thickness of the preform at the neck starting portion thinner than other portions.
  • FIG. 4 is a cross-sectional view in a direction parallel to the extending direction of the parison 10.
  • the parison 10 has an opening 42 and a bottom 43, and is provided with a neck starting point.
  • the neck starting point portion is a thin wall portion in the parison, and is provided symmetrically with respect to the stretching axis 41 of the parison.
  • reference numeral 44 indicates a side portion
  • reference numeral 45 indicates a portion that is gripped by the pressing metal (hereinafter, may be referred to as “gripping portion”).
  • FIG. 5 is a cross-sectional view in a direction parallel to the extending direction of the parison 10.
  • the parison 10 has an opening 42 and a bottom 43, and is provided with a neck starting point.
  • the neck starting point portion is a thin wall portion in the parison, and is provided symmetrically with respect to the stretching axis 41 of the parison.
  • reference numeral 44 indicates a side portion
  • reference numeral 45 indicates a portion that is gripped by the presser fitting (hereinafter may be referred to as “gripping portion”).
  • a neck starting point portion is provided by making a notch (a portion where the thickness of the preform suddenly decreases) in the side portion 44 of the parison.
  • the neck starting point may be a notch or a relatively long thin region.
  • region Although it can select suitably according to the objective, 50 mm or less is preferable, 30 mm or less is more preferable, and 15 mm or less is especially preferable.
  • the length of the thin region exceeds 50 mm, the stretching start point becomes uneven in the outer peripheral direction, and unevenness may occur in the formation of the cavity.
  • the length of the thin-walled region is within the particularly preferable range, it is advantageous in terms of uniform cavity formation and stable production of a molded shape.
  • the thickness of the thin portion is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 99% to 50% with respect to the thickness of the side portion 44 of the parison, and 95 % To 70% is more preferable, and 95% to 80% is particularly preferable. If the thickness of the thin portion is less than 50% of the side of the parison, the parison may tear from the notch portion during stretching, and if it exceeds 99%, stretching starts from a portion other than the notch and is uniform. May not be generated. On the other hand, when the thickness of the thin-walled portion is within the particularly preferable range, it is advantageous in that it is stretched and blown with a uniform thickness on the whole, and unevenness in void expression is reduced. Although the starting point of necking can be stably generated even with a notch, it is possible to stably develop necking stretching from a relatively long thin region by heating the preform with high accuracy.
  • the thickness of the side portion is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 100 ⁇ m to 1 mm, more preferably 200 ⁇ m to 800 ⁇ m, and particularly preferably 300 ⁇ m to 500 ⁇ m.
  • the side portion has a thickness of less than 100 ⁇ m, in the case of generation of voids starting from microcrystals, the microcrystal size is too small, so that the voids may not be sufficiently developed, and particles are added. Even in the method, the crystallization of the resin does not proceed sufficiently, and it is difficult for the discontinuation of the interface to peel off. May become hard and brittle, making stretching blow difficult.
  • the thickness of the side portion is within the particularly preferable range, it is advantageous in that stretch blow is easily performed and unevenness of voids is reduced.
  • the thickness of the bottom is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 2 mm to 5 mm, more preferably 2 mm to 4 mm, and particularly preferably 2 mm to 3 mm. If the thickness of the bottom is less than 2 mm, the bottom may be broken at the time of stretching, and if it exceeds 5 mm, the amount of resin used increases, resulting in additional transportation costs, resin material costs, etc. Is also not preferred. On the other hand, if the thickness of the bottom is within the particularly preferred range, it is advantageous in that it does not break even when pressed by a stretching rod, and waste of resin can be suppressed to a minimum.
  • the thickness of the grip portion is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.5 mm to 2 mm, more preferably 0.5 mm to 1.5 mm, and 0.7 mm to 1.mm. 0 mm is particularly preferable. If the thickness of the gripping part is less than 0.5 mm, it may not be able to be gripped sufficiently when mounted on a mold and gripped, and it may slip off at the time of stretch blow or break at a corner part. If it exceeds, the amount of resin used increases, which is not economically preferable, such as transportation costs and resin material costs. On the other hand, when the thickness of the grip portion is within the particularly preferable range, even if the amount of resin used is small, a lightweight and durable molded body is obtained, which is advantageous in terms of economy.
  • the heating temperature (Tp) of the parison is not particularly limited and may be appropriately selected according to the purpose.
  • Tg glass transition temperature of the parison resin
  • Tg-30 ° C. ⁇ Tp ⁇ (Tg + 70) ° C.
  • formula (1) is preferable
  • Tg ⁇ 30 ° C. ⁇ Tp ⁇ (Tg + 60) ° C.
  • Tg ⁇ 30 ° C. ⁇ Tp ⁇ (Tg + 40) ° C. is particularly preferable.
  • the heating temperature (Tp) of the parison is less than (Tg-30) ° C., the parison may not be fully stretched, and if it exceeds (Tg + 70) ° C., voids may not be stably formed.
  • the heating temperature (Tp) of the parison is within the particularly preferable range, it is advantageous in that uniform voids are generated in the container by stretch blow.
  • a far-infrared heater, a quartz heater, a hot air generator, a carbon dioxide laser, etc. are mentioned.
  • the stretching is not particularly limited as long as a cavity is formed in at least a part of the stretched parison, and can be appropriately selected according to the purpose, but necking stretching is possible in that the cavity can be stably formed. Is preferred.
  • the stretching is performed by, for example, necking stretching a parison formed by injection molding with a support member and stretching the parison in which the cavity starting particles are formed, thereby forming a cavity inside the parison.
  • necking stretching There is no restriction
  • necking stretching-- The necking stretching refers to stretching so that “necking” occurs when the parison is stretched.
  • the necking is defined as follows in “Introduction to Polymers” (December 20, 1982, 9th printing, Masamichi Katayama Nikkan Kogyo Shimbun). “When various film-like or fiber-like polymers are pulled at room temperature, there are those that can“ neck ”as shown in FIG. This “constricted part” moves in the direction of the hand while it is stretched. The cross-sectional area of the “necked portion” is constant, and is clearly distinguished from the unstretched portion by a shoulder-like portion (shoulder).
  • FIG. 7 is a schematic diagram of the necking and load-elongation curve in the film.
  • the reason why the cavity is formed inside the parison by the necking stretching is considered to be that the parison is finely broken inside the parison due to necking stretching, and this serves as a cavity forming source to form a cavity.
  • the stretching speed of the parison in the stretching process is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 10 mm / min to 40,000 mm / min, more preferably 500 mm / min to 20,000 mm / min. More preferred is 1,000 mm / min to 10,000 mm / min. If the stretching speed is less than 10 mm / min, voids may not be formed, and if it exceeds 40,000 mm / min, the parison may be easily broken during stretching.
  • the stretching can be performed, for example, as shown in FIG. That is, it can be performed by holding the parison 10 with the presser fitting 81, using a stretch rod as the support member 82, and extending the parison in the direction of the arrow.
  • the blow process is a process of blowing the stretched parison.
  • the molded body is processed into a desired shape by the blowing process.
  • the blow process is not particularly limited as long as the gas is supplied to the hollow part of the parison, and can be appropriately selected according to the purpose.For example, extrusion blow process, injection blow process, stretch blow process, multilayer blow process, Multidimensional blow processing, etc. are mentioned.
  • the stretch blow process is to supply gas after the parison is stretched. By the blowing process, the molded body in which the cavity is formed by the stretching process is expanded to give a desired shape.
  • limiting in particular as said gas used for a blow process According to the objective, it can select suitably, For example, air, nitrogen, etc. are mentioned.
  • the gas supply pressure is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.2 Mpa to 20 Mpa, more preferably 0.4 Mpa to 10 Mpa, and particularly preferably 0.5 Mpa to 5 Mpa. . If the gas supply pressure is less than 0.2 Mpa, blow may not be possible at a sufficient speed, and if it exceeds 20 Mpa, the parison may break during blowing.
  • the plane stretching ratio (longitudinal stretching ratio ⁇ lateral stretching ratio) of the parison in the blow treatment is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5 to 100 times, and 10 to 50 times. Is more preferably 15 times to 30 times. If the plane stretch ratio is less than 5 times, uneven thickness of the parison may not be eliminated, and if it exceeds 100 times, the parison may be easily broken during blowing.
  • the transfer process is a process of blow molding a parison in a mold and transferring the inner surface shape of the mold to the parison.
  • the said transfer process is performed by the blow process same as the blow process of the said formation process.
  • the mold is not particularly limited as long as it has an inner surface, and can be appropriately selected according to the purpose. Examples thereof include a mold 20 shown in FIGS. 1A to 2B.
  • the transfer is performed by supplying gas and bringing the parison into close contact (following) with the inner surface of the mold.
  • gas There is no restriction
  • the gas supply pressure is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.2 Mpa to 20 Mpa, more preferably 0.4 Mpa to 10 Mpa, and particularly preferably 0.5 Mpa to 5 Mpa. .
  • the gas supply pressure is less than 0.2 Mpa, the parison may not adhere (follow) the inner surface of the mold, and when it exceeds 20 Mpa, the parison may burst without being uniformly stretched.
  • the temperature of the mold is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably a parison softening point to (melting point + 60 ° C.), more preferably a softening point to (melting point + 50 ° C.), A softening point to a melting point are particularly preferred.
  • the temperature of the mold is lower than the softening point of the parison, the parison may not adhere (follow) to the inner surface of the mold, and when the temperature exceeds the (melting point + 60 ° C.) of the parison, It may not be maintained.
  • the heat treatment is a treatment for heating the parison in the mold.
  • the heating can be performed by a heating mechanism or the like provided in the mold.
  • the heating temperature in the heat treatment is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the glass transition temperature of the parison to (melting point + 60) ° C. is preferable, and the glass transition temperature to (melting point + 30) ° C.
  • a glass transition temperature to (melting point + 20) ° C. is particularly preferable.
  • the rate of temperature increase in the heat treatment is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 ° C / min to 300 ° C / min, more preferably 2 ° C / min to 250 ° C / min. 5 ° C./min to 200 ° C./min is particularly preferable.
  • the molded body containing a cavity in the inside can be produced by the method for producing a molded body containing a cavity inside the present invention.
  • the side surface, bottom face, etc. of a container are mentioned.
  • the side surface of the container is preferable in terms of expressing a uniform cavity.
  • the fact that the molded body contains cavities can be confirmed, for example, by embedding a sample with a resin, cutting out a cut surface with a microtome, and using an electron microscope or the like.
  • the light transmittance of at least a part of the molded body is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the light transmittance with respect to light having a wavelength of 550 nm is preferably less than 70%, and 50% or less. Is more preferable, and 40% or less is particularly preferable.
  • the light transmittance is 70% or more, the physical properties of the cavity-containing container may not be sufficiently exhibited.
  • the light transmittance is within the particularly preferable range, it is advantageous in that the physical properties of the cavity-containing container can be sufficiently exhibited.
  • the light transmittance can be measured with, for example, a spectrophotometer (U-4100, manufactured by Hitachi, Ltd.).
  • the light transmittance may be a light transmittance of a part of the molded body containing the cavity inside, or may be a total light transmittance.
  • the parison was set in a mold of a biaxial blow stretching apparatus. After deformation in the depth direction of the container with a stretch rod (stretching treatment: necking stretching), by introducing compressed air (blowing treatment), molding was performed in close contact with the inner surface of the mold.
  • the temperature setting of the parison was 90 ° C.
  • the speed of the stretch rod was 800 mm / sec
  • the final draw ratio was 4.3 times.
  • the shape was imparted by closely contacting the mold by introducing 1.5 Mpa of compressed air 15 mm before the bottom of the container (the bottom of the parison) reached the mold by expansion and contraction of the stretch rod. Thereafter, the molded body was solidified and cooled to 70 ° C.
  • Example 2 In the production of the parison of Example 1, a container with a capacity of 500 mL was produced in the same manner as in Example 1 except that the shape of the parison was changed to the shape of FIG. -Parison shape- Shape: Fig. 5
  • Neck start point position Height 8mm from the opening (axisymmetric with respect to the stretching axis)
  • Neck origin thickness 0.5mm Width of opening: 62mm
  • Side thickness 1.5mm
  • Side length 15mm
  • Bottom thickness 2mm
  • Bottom width 30mm
  • Gripping part thickness 3mm
  • Example 2 the cavity starting particles were formed when the parison was cooled, and it was confirmed that the parison subjected to the stretching treatment had a cavity formed therein. Moreover, the formation position of the cavity in the container after the molding process was the same as that in Example 1.
  • Example 3 In the molding process of Example 1, the point where the temperature setting of the parison was 90 ° C. was changed to 40 ° C., and a container having a capacity of 500 mL was produced in the same manner as Example 1 except that the cooling treatment was not performed. . The formation position of the cavity in the container produced in Example 3 was the same as in Example 1.
  • Example 4 A container with a capacity of 500 mL was produced in the same manner as in Example 1 except that the temperature setting of the parison was 90 ° C. in the molding step of Example 1 was changed to 130 ° C. The formation position of the cavity in the container produced in Example 4 was the same as in Example 1.
  • Example 5 A container with a capacity of 500 mL was produced in the same manner as in Example 1, except that the temperature setting of the parison was 90 ° C. in the molding step of Example 1 was changed to 150 ° C. The formation position of the cavity in the container produced in Example 5 was the same as in Example 1.
  • Example 6 In the molding step of Example 1, the point where the temperature setting of the parison was 90 ° C. was changed to 25 ° C., and a container having a capacity of 500 mL was produced in the same manner as in Example 1 except that the cooling treatment was not performed. . The formation position of the cavity in the container produced in Example 6 was the same as in Example 1.
  • Comparative Example 1 A container having a capacity of 500 mL was produced in the same manner as in Example 1 except that the stretching process was not performed in the molding step of Example 1. In Comparative Example 1, the cavity starting particles were formed when the parison was cooled, but no cavity was formed in the container after the molding process.
  • Comparative Example 2 In the molding step of Example 2, a container having a capacity of 500 mL was produced in the same manner as Example 2 except that the stretching treatment was not performed. In Comparative Example 2, the cavity starting particles were formed when the parison was cooled, but the cavity was not formed in the container after the molding process.
  • Example 1 a container having a capacity of 500 mL was produced in the same manner as in Example 1 except that the stretching process was not performed and the temperature setting of the parison was 90 ° C., which was 180 ° C.
  • Comparative Example 3 the cavity starting particles were formed when the parison was cooled, but the cavity was not formed in the container after the molding process.
  • the temperature setting of the parison was set to 90 ° C. as in Example 1, the parison could not be stretched and a container could not be produced.
  • ⁇ High brightness evaluation> A relatively flat portion centered at a height of 10 cm from the bottom of the container on the side surface of the container obtained in Examples 1 to 6 and Comparative Examples 1 to 3 was cut into a 2 cm ⁇ 2 cm rectangle, and this sample was cut. The light transmittance at a wavelength of 550 nm was measured.
  • the evaluation criteria were as follows. -Evaluation criteria- A: Light transmittance is less than 50%. ⁇ : The light transmittance is 50% or more and less than 60%. ⁇ : Light transmittance is 60% or more and less than 70%. X: Light transmittance is 70% or more.
  • -Evaluation criteria- Double-circle: The uniform luminescent surface is formed in the whole cavity formation position of a container.
  • No problem in practical use, but when held over light, unevenness is recognized at the cavity forming position of the container.
  • X There is unevenness in the cavity forming position of the container visually.
  • the method for producing a molded body containing cavities in the present invention is excellent in molding maintenance and heat insulation, and has high brightness and a uniform bright surface is formed. As a method, it can use suitably.
  • the molded body containing a cavity in the present invention is excellent in heat insulation, high brightness, brightness unevenness, and molding maintainability, for example, high heat insulation and high brightness, and container contents It can be suitably used as a bottle container that requires protection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)

Abstract

A method for producing a molded body having a cavity thereinside, wherein the method comprises a molding step for molding a parison and producing a molded body, the molding step comprises a stretching process for stretching a heated parison and a blowing process for blowing the stretched parison, and the parison has an opening portion and a bottom and is provided with a neck starting point.

Description

内部に空洞を含有する成形体、及びその製造方法Molded body containing cavities inside and method for producing the same
 本発明は、内部に空洞を含有する成形体、及びその製造方法に関する。 The present invention relates to a molded body containing a cavity inside and a manufacturing method thereof.
 ブロー成形には、例えば、射出成形によって試験管状の底を有する形状に成形したパリソン(プリフォーム)を一度室温まで冷却し、ブロー成形装置で再加熱して調温し、ブロー成形するコールドパリソン方式と、成形したパリソンを、完全に冷却しない状態で調温工程に移し、その後ブロー成形するホットパリソン方式と、がある(例えば、特許文献1参照)。前記ホットパリソン方式は、パリソンの成形とブロー成形が連続的に同じ成形機で行われるので、1ステージ式とも称される。他方、コールドパリソン方式は、パリソンの成形と、ブロー成形が別の成形機で行われるため、2ステージ式とも称される。 For blow molding, for example, a cold parison method in which a parison (preform) molded into a shape having a bottom of a test tube by injection molding is once cooled to room temperature, reheated by a blow molding apparatus, temperature-controlled, and blow molded. And a hot parison system in which the molded parison is transferred to a temperature adjustment step without being completely cooled, and then blow-molded (see, for example, Patent Document 1). The hot parison system is also referred to as a one-stage system because parison molding and blow molding are continuously performed by the same molding machine. On the other hand, the cold parison method is also referred to as a two-stage type because parison molding and blow molding are performed by different molding machines.
 前記コールドパリソン方式では、例えば、図1A及び図1Bに示すように、予め成形しておいた有底筒状のパリソン10をブロー成形装置1にセットし(図1A)、その後、金型20a、20bを重ね合わせ、加熱し、上方からエアーを供給し、パリソン10を金型20の内表面形状に追従させて、成形体30が製造される(図1B)。
 前記ホットパリソン方式は、例えば、図2A及び図2Bに示すように、パリソン10をチューブ状に溶融状態で押し出し(図2A)、その後、金型20a、20bを重ね合わせ、パリソン10が完全に冷却しない状態で、下方からエアーを供給し、パリソン10を金型20の内表面形状に追従させて、成形体30が製造される(図2B)。
In the cold parison method, for example, as shown in FIGS. 1A and 1B, a bottomed cylindrical parison 10 that has been molded in advance is set in the blow molding apparatus 1 (FIG. 1A), and then a mold 20a, The molded body 30 is manufactured by superimposing and heating 20b, supplying air from above, and causing the parison 10 to follow the inner surface shape of the mold 20 (FIG. 1B).
In the hot parison method, for example, as shown in FIGS. 2A and 2B, the parison 10 is extruded in a molten state in a tube shape (FIG. 2A), and then the molds 20a and 20b are overlapped so that the parison 10 is completely cooled In the state which does not carry out, air is supplied from the downward direction and the parison 10 is made to follow the inner surface shape of the metal mold | die 20, and the molded object 30 is manufactured (FIG. 2B).
 また、前記ブロー成形では、延伸を行う延伸ブロー成形もある。例えば、コールドパリソン方式の延伸ブロー成形の方法として、図3Aから図3Dに示すような方法が提案されている。
 既に射出成形機を用いて作られたパリソン10は、加熱装置31の間を通過することによって所定の温度に加熱される。この際にパリソン10を均一に加熱するために、加熱装置31の間を通過するパリソンを回転させることが一般的に行われている(図3A)。次に、温調されたパリソン10は金型20a、20b内にセットされて、支持部材(ストレッチロッドとも称する)32により延伸される(図3B)。その後、延伸したパリソン10内に気体を圧入し、パリソン10を押し広げて金型20a、20b内面に押し付けて、金型内面を転写し(図3C)、取り出して成形体30が製造される(図3D)。
 このような延伸ブロー成形によるプラスチックボトルの成形方法として、例えば、特許文献2及び3の方法も提案されている。
The blow molding also includes stretch blow molding in which stretching is performed. For example, methods shown in FIGS. 3A to 3D have been proposed as cold parison type stretch blow molding methods.
The parison 10 already made using an injection molding machine is heated to a predetermined temperature by passing between the heating devices 31. At this time, in order to uniformly heat the parison 10, it is generally performed to rotate the parison passing between the heating devices 31 (FIG. 3A). Next, the temperature-controlled parison 10 is set in the molds 20a and 20b and stretched by a support member (also referred to as a stretch rod) 32 (FIG. 3B). Thereafter, gas is injected into the stretched parison 10, the parison 10 is spread and pressed against the inner surfaces of the molds 20a and 20b, the inner surfaces of the molds are transferred (FIG. 3C), and taken out to produce a molded body 30 ( FIG. 3D).
As a method for forming a plastic bottle by such stretch blow molding, for example, methods of Patent Documents 2 and 3 have also been proposed.
 このようなブロー成形により製造された成形体は、透明性、耐衝撃性、衛生性、ガスバリア性、耐圧性、などに優れており、このために各種の食品、飲料、洗剤、化粧品等の包装用容器として広く使用されている(例えば、特許文献4参照)。
 前記包装用容器には、高温や低温の物質が投入乃至注入されることもあり、前記包装用容器の断熱性を向上することが望まれている。また、審美的観点などから、包装用容器の高輝度化についても望まれている。更には内容物の保護の観点で、容器外からの太陽光などを反射することも容器の重要な要件になりつつある。
 しかしながら、このような機能を単独で発揮できる、成形維持性、及び断熱性に優れ、高輝度であり、均一な光輝面が形成されている成形体は、未だ提供されていないのが現状である。
The molded body produced by such blow molding is excellent in transparency, impact resistance, hygiene, gas barrier properties, pressure resistance, etc., and for this reason, packaging of various foods, beverages, detergents, cosmetics, etc. It is widely used as a container for use (see, for example, Patent Document 4).
A high-temperature or low-temperature substance may be charged or injected into the packaging container, and it is desired to improve the heat insulation of the packaging container. In addition, from the viewpoint of aesthetics, it is also desired to increase the brightness of packaging containers. Furthermore, reflecting the sunlight from outside the container is becoming an important requirement for the container from the viewpoint of protecting the contents.
However, the present condition is that the molded object which can exhibit such a function alone, is excellent in mold maintenance and heat insulation, has high brightness, and has a uniform bright surface is not yet provided. .
国際公開第00/23252号パンフレットInternational Publication No. 00/23252 Pamphlet 特開平9-39077号公報Japanese Patent Laid-Open No. 9-39077 特開平11-348100号公報JP 11-348100 A 特開平7-257534号公報JP-A-7-257534
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、成形維持性、及び断熱性に優れ、高輝度であり、均一な光輝面が形成されている内部に空洞を含有する成形体及びその製造方法を提供することを目的とする。 This invention makes it a subject to solve the said various problems in the past and to achieve the following objectives. That is, an object of the present invention is to provide a molded article that is excellent in molding maintainability and heat insulation, has high brightness, and has a uniform bright surface, and contains a cavity, and a method for producing the same. .
 前記課題を解決するための手段としては、以下の通りである。即ち、
<1> パリソンを成形し、成形体を製造する成形工程を含み、
 前記成形工程が、加熱したパリソンを延伸する延伸処理と、
 前記延伸したパリソンをブローするブロー処理とを含み、
 前記パリソンが、開口部と、底とを有し、かつ、ネック起点部を設けたことを特徴とする内部に空洞を含有する成形体の製造方法である。
<2> 延伸処理における延伸が、ネッキング延伸である前記<1>に記載の内部に空洞を含有する成形体の製造方法である。
<3> パリソンの加熱温度(Tp)が、下記式(1)を満たす前記<1>から<2>のいずれかに記載の内部に空洞を含有する成形体の製造方法である。
 (Tg-30)℃<Tp<(Tg+70)℃   ・・・ (1)
 ただし、式(1)中、Tgはパリソンの樹脂のガラス転移温度を表す。
<4> ネック起点部が、パリソンの薄肉部である前記<1>から<3>のいずれかに記載の内部に空洞を含有する成形体の製造方法である。
<5> 薄肉部が、パリソンの延伸軸に対して、軸対称に設けられている前記<4>に記載の内部に空洞を含有する成形体の製造方法である。
<6> 前記<1>から<5>のいずれかに記載の内部に空洞を含有する成形体の製造方法により製造されたことを特徴とする内部に空洞を含有する成形体である。
<7> 成形体の少なくとも一部の波長550nmの光に対する光線透過率が、70%未満である前記<6>に記載の内部に空洞を含有する成形体である。
Means for solving the problems are as follows. That is,
<1> A molding process for forming a parison and manufacturing a molded body,
The forming step is a drawing process for drawing a heated parison;
A blow treatment for blowing the stretched parison,
The parison has an opening and a bottom, and is provided with a neck starting point, and is a method for producing a molded body containing a cavity inside.
<2> The method for producing a molded article containing cavities in the interior according to <1>, wherein the stretching in the stretching treatment is necking stretching.
<3> The method for producing a molded body containing a cavity in the interior according to any one of <1> to <2>, wherein the heating temperature (Tp) of the parison satisfies the following formula (1).
(Tg-30) ° C. <Tp <(Tg + 70) ° C. (1)
However, in Formula (1), Tg represents the glass transition temperature of resin of a parison.
<4> The method for producing a molded article containing a cavity in the interior according to any one of <1> to <3>, wherein the neck starting portion is a thin wall portion of a parison.
<5> The method for producing a molded body in which the thin-walled portion contains a cavity in the interior according to <4>, wherein the thin-walled portion is provided symmetrically with respect to the stretching axis of the parison.
<6> A molded article containing a cavity inside, wherein the molded article is produced by the method for producing a molded article containing a cavity inside according to any one of <1> to <5>.
<7> The molded body containing a cavity in the interior according to <6>, wherein the light transmittance of at least a part of the molded body with respect to light having a wavelength of 550 nm is less than 70%.
 本発明によると、従来における諸問題を解決することができ、成形維持性、及び断熱性に優れ、高輝度であり、均一な光輝面が形成されている内部に空洞を含有する成形体及びその製造方法を提供することができる。 According to the present invention, various problems in the prior art can be solved, excellent in mold maintenance and heat insulation, high brightness, and a molded body containing cavities in the interior where a uniform bright surface is formed, and its A manufacturing method can be provided.
図1Aは、ブロー成形におけるコールドパリソン方式を説明するための図である(その1)。FIG. 1A is a diagram for explaining a cold parison system in blow molding (part 1). 図1Bは、ブロー成形におけるコールドパリソン方式を説明するための図である(その2)。FIG. 1B is a diagram for explaining a cold parison method in blow molding (part 2). 図2Aは、ブロー成形におけるホットパリソン方式を説明するための図である(その1)。FIG. 2A is a diagram for explaining a hot parison system in blow molding (part 1). 図2Bは、ブロー成形におけるホットパリソン方式を説明するための図である(その2)。FIG. 2B is a diagram for explaining a hot parison system in blow molding (part 2). 図3Aは、延伸ブロー成形におけるコールドパリソン方式を説明するための図である(その1)。FIG. 3: A is a figure for demonstrating the cold parison system in stretch blow molding (the 1). 図3Bは、延伸ブロー成形におけるコールドパリソン方式を説明するための図である(その2)。FIG. 3B is a diagram for explaining a cold parison system in stretch blow molding (part 2). 図3Cは、延伸ブロー成形におけるコールドパリソン方式を説明するための図である(その3)。FIG. 3C is a view for explaining a cold parison system in stretch blow molding (part 3). 図3Dは、延伸ブロー成形におけるコールドパリソン方式を説明するための図である(その4)。FIG. 3D is a view for explaining a cold parison method in stretch blow molding (part 4). 図4は、パリソンの形状の一例を説明するための断面模式図である。FIG. 4 is a schematic cross-sectional view for explaining an example of the shape of a parison. 図5は、パリソンの形状の他の一例を説明するための断面模式図である。FIG. 5 is a schematic cross-sectional view for explaining another example of the shape of the parison. 図6は、ネッキングを説明するための図である。FIG. 6 is a diagram for explaining necking. 図7は、フィルムにおけるネッキングと荷重-伸長曲線の模式図である。FIG. 7 is a schematic diagram of necking and load-elongation curves in a film. 図8は、延伸処理の一例を説明するための図である。FIG. 8 is a diagram for explaining an example of the stretching process. 図9は、比較例3で使用したパリソンの形状を説明するための断面模式図である。FIG. 9 is a schematic cross-sectional view for explaining the shape of the parison used in Comparative Example 3.
(内部に空洞を含有する成形体の製造方法、及び内部に空洞を含有する成形体)
 本発明の内部に空洞を含有する成形体は、本発明の内部に空洞を含有する成形体の製造方法により、好適に製造することができる。以下、本発明の内部に空洞を含有する成形体の製造方法と併せて、本発明の内部に空洞を含有する成形体を説明する。
 本発明の内部に空洞を含有する成形体の製造方法は、成形工程を少なくとも含み、更に必要に応じて、その他の工程を含んでなる。
(Method for producing molded product containing voids inside and molded product containing voids inside)
The molded product containing cavities in the present invention can be preferably produced by the method for producing a molded product containing cavities in the present invention. Hereinafter, together with the manufacturing method of the molded object which contains a cavity in the inside of this invention, the molded object which contains a cavity in the inside of this invention is demonstrated.
The manufacturing method of the molded object which contains a cavity inside the present invention includes at least a molding step, and further includes other steps as necessary.
(成形工程)
 前記成形工程は、延伸処理と、ブロー処理とを少なくとも含み、更に必要に応じて、その他の処理を含んでなる。
 前記成形工程では、パリソンを成形し、内部に空洞を含有する成形体が製造される。
(Molding process)
The molding step includes at least a stretching process and a blowing process, and further includes other processes as necessary.
In the molding step, a parison is molded, and a molded body containing a cavity inside is manufactured.
<延伸処理>
 前記延伸処理は、加熱したパリソンを延伸する処理である。前記延伸処理により、延伸されたパリソンの少なくとも一部に空洞が形成される。
<Extension process>
The stretching process is a process of stretching a heated parison. By the stretching treatment, a cavity is formed in at least a part of the stretched parison.
<<パリソン>>
 前記パリソンの形状は、開口部と、底とを有し、かつ、ネック起点部が設けられている。
 前記パリソンは、結晶性ポリマー及び微粒子含有ポリマーの少なくともいずれかを含み、さらに必要に応じてその他の成分を含む。
 前記パリソンは、パリソンを冷却して、前記パリソン内部に空洞起点粒子が形成することにより製造される。
 前記パリソンが結晶性ポリマーからなる場合は、前記冷却によりパリソンが結晶化し、パリソン内部に微結晶が形成され、該微結晶が空洞起点粒子となる。
 前記パリソンが微粒子含有ポリマーからなる場合は、微粒子含有ポリマーにおける微粒子が空洞起点粒子となる。
 前記パリソンの構造としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、単層構造、複層構造、などが挙げられる。
 前記パリソンの大きさとしては、特に制限はなく、目的に応じて適宜選択することができる。
<< Parison >>
The parison has an opening and a bottom, and is provided with a neck starting point.
The parison includes at least one of a crystalline polymer and a fine particle-containing polymer, and further includes other components as necessary.
The parison is manufactured by cooling the parison and forming cavity-origin particles inside the parison.
When the parison is made of a crystalline polymer, the parison is crystallized by the cooling to form microcrystals inside the parison, and the microcrystals become cavity starting particles.
When the parison is made of a fine particle-containing polymer, the fine particles in the fine particle-containing polymer become cavity starting particles.
There is no restriction | limiting in particular as a structure of the said parison, According to the objective, it can select suitably, For example, a single layer structure, a multilayer structure, etc. are mentioned.
There is no restriction | limiting in particular as a magnitude | size of the said parison, According to the objective, it can select suitably.
-結晶性ポリマー-
 一般に、ポリマーは、結晶性ポリマーと非晶性(アモルファス)ポリマーとに分けられるが、結晶性ポリマーといえども100%結晶ということはなく、分子構造の中に長い鎖状の分子が規則的に並んだ結晶性領域と、規則的に並んでいない非結晶(アモルファス)領域とを含んでいる。
 したがって、前記結晶性ポリマーとしては、分子構造の中に少なくとも前記結晶性領域を含んでいればよく、結晶性領域と非結晶領域とが混在していてもよい。
-Crystalline polymer-
In general, polymers are classified into crystalline polymers and amorphous (amorphous) polymers, but even crystalline polymers are not 100% crystalline, and long chain molecules are regularly formed in the molecular structure. It includes aligned crystalline regions and non-regularly arranged amorphous (amorphous) regions.
Therefore, the crystalline polymer only needs to include at least the crystalline region in the molecular structure, and the crystalline region and the amorphous region may be mixed.
 前記結晶性ポリマーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリオレフィン類(例えば、低密度ポリエチレン、高密度ポリエチレン、ポリプロピレンなど)、ポリアミド類(PA)(例えば、ナイロン-6など)、ポリアセタール類(POM)、ポリエステル類(例えば、PET、PEN、PTT、PBT、PPT、PHT、PBN、PES、PBSなど)、シンジオタクチック・ポリスチレン(SPS)、ポリフェニレンサルファイド類(PPS)、ポリエーテルエーテルケトン類(PEEK)、液晶ポリマー類(LCP)、フッ素樹脂、アイソタクティックポリプロピレン(isoPP)、などが挙げられる。その中でも、耐久性、力学強度、製造およびコストの観点から、ポリオレフィン類、ポリエステル類、シンジオタクチック・ポリスチレン(SPS)、液晶ポリマー類(LCP)が好ましく、ポリオレフィン類(PP、PE等)、ポリエステル類がより好ましく、PETが特に好ましい。また、これらのうち2種以上のポリマーをブレンドしたり、共重合させたりして使用してもよい。 There is no restriction | limiting in particular as said crystalline polymer, According to the objective, it can select suitably, For example, polyolefin (for example, low density polyethylene, high density polyethylene, polypropylene, etc.), polyamides (PA) (for example, Nylon-6, etc.), polyacetals (POM), polyesters (eg, PET, PEN, PTT, PBT, PPT, PHT, PBN, PES, PBS, etc.), syndiotactic polystyrene (SPS), polyphenylene sulfide ( PPS), polyether ether ketones (PEEK), liquid crystal polymers (LCP), fluororesin, isotactic polypropylene (isoPP), and the like. Among them, polyolefins, polyesters, syndiotactic polystyrene (SPS) and liquid crystal polymers (LCP) are preferable from the viewpoint of durability, mechanical strength, production and cost, and polyolefins (PP, PE, etc.), polyesters Are more preferred, and PET is particularly preferred. Two or more kinds of these polymers may be blended or copolymerized.
 前記結晶性ポリマーは、内部に空洞を含有する成形体の紫外領域における光透過率を低くする(反射特性を高める)ためには、例えば、芳香環などの、紫外領域において吸収が高い官能基を含まないことが好ましい。したがって、前記ポリエステル類の中でも、脂肪族ポリエステルが好ましい。 In order to reduce the light transmittance in the ultraviolet region of the molded product containing cavities inside (increase the reflection characteristics), the crystalline polymer has a functional group having high absorption in the ultraviolet region such as an aromatic ring. It is preferably not included. Therefore, aliphatic polyester is preferable among the polyesters.
 前記結晶性ポリマーの溶融粘度としては、特に制限はなく、目的に応じて適宜選択することができるが、50Pa・s~700Pa・sが好ましく、70Pa・s~500Pa・sがより好ましく、80Pa・s~300Pa・sが特に好ましい。前記溶融粘度が50Pa・s~700Pa・sであると、溶融時に押出し機や成型装置から吐出されるポリマーの性状が安定する点で好ましい。また、前記溶融粘度が50Pa・s~700Pa・sであると、溶融時の粘度が適切になって押出ししやすくなる点で好ましい。
 ここで、前記溶融粘度は、プレートタイプのレオメーター(例えば、Physica MCR301:Anton Paar製)やキャピラリーレオメーター(例えば、フローテスターCFT-500D:島津製作所製)により測定することができる。
The melt viscosity of the crystalline polymer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 50 Pa · s to 700 Pa · s, more preferably 70 Pa · s to 500 Pa · s, and more preferably 80 Pa · s. Particularly preferred is s to 300 Pa · s. The melt viscosity of 50 Pa · s to 700 Pa · s is preferable in that the properties of the polymer discharged from an extruder or a molding apparatus during melting are stabilized. Further, the melt viscosity of 50 Pa · s to 700 Pa · s is preferable in that the viscosity at the time of melting becomes appropriate and the extrusion becomes easy.
Here, the melt viscosity can be measured by a plate type rheometer (for example, Physica MCR301: manufactured by Anton Paar) or a capillary rheometer (for example, flow tester CFT-500D: manufactured by Shimadzu Corporation).
 前記結晶性ポリマーの極限粘度(IV)としては、特に制限はなく、目的に応じて適宜選択することができるが、0.4~1.5が好ましく、0.6~1.4がより好ましく、0.7~1.3が特に好ましい。前記IVが0.4~1.5であると、内部に空洞を含有する成形体の強度が高くなり、効率よく延伸することができる点で好ましい。
 ここで、前記IVは、ウベローデ型粘度計により測定することができる。
The intrinsic viscosity (IV) of the crystalline polymer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.4 to 1.5, more preferably 0.6 to 1.4. 0.7 to 1.3 is particularly preferable. When the IV is 0.4 to 1.5, the strength of the molded product containing cavities in the interior is increased, and this is preferable in terms of efficient stretching.
Here, the IV can be measured by an Ubbelohde viscometer.
 前記結晶性ポリマーの融点(Tm)としては、特に制限はなく、目的に応じて適宜選択することができるが、40℃~350℃が好ましく、100℃~300℃がより好ましく、100℃~260℃が特に好ましい。前記融点が40℃~350℃であると、通常の使用で予想される温度範囲で形を保ちやすくなる点で好ましい。
 ここで、前記融点は、示差熱分析装置(DSC)により測定することができる。
The melting point (Tm) of the crystalline polymer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 40 ° C to 350 ° C, more preferably 100 ° C to 300 ° C, and more preferably 100 ° C to 260 ° C. ° C is particularly preferred. The melting point of 40 ° C. to 350 ° C. is preferable in that the shape can be easily maintained in the temperature range expected for normal use.
Here, the melting point can be measured by a differential thermal analyzer (DSC).
 前記結晶性ポリマーの含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、パリソンに対して、80質量%~99.5質量%が好ましく、85質量%~99質量%がより好ましく、90質量%~98質量%が特に好ましい。
 前記結晶性ポリマーの含有量が、パリソンに対して、80質量%未満であると、パリソンの加工時及びハンドリング時に形状の維持が困難になることがあり、99.5質量%を超えると、パリソンが脆くなることがある。
The content of the crystalline polymer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 80% by mass to 99.5% by mass, and 85% by mass to 99% by mass with respect to the parison. % Is more preferable, and 90% by mass to 98% by mass is particularly preferable.
When the content of the crystalline polymer is less than 80% by mass with respect to the parison, it may be difficult to maintain the shape during processing and handling of the parison. When the content exceeds 99.5% by mass, the parison May become brittle.
--ポリエステル樹脂--
 前記ポリエステル類(以下、「ポリエステル樹脂」と称する。)は、エステル結合を主鎖の主要な結合鎖とする高分子化合物の総称を意味する。したがって、前記結晶性ポリマーとして好適な前記ポリエステル樹脂としては、前記例示したPET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)、PTT(ポリトリメチレンテレフタレート)、PBT(ポリブチレンテレフタレート)、PPT(ポリペンタメチレンテレフタレート)、PHT(ポリヘキサメチレンテレフタレート)、PBN(ポリブチレンナフタレート)、PES(ポリエチレンサクシネート)、PBS(ポリブチレンサクシネート)だけでなく、ジカルボン酸成分とジオール成分との重縮合反応によって得られる高分子化合物が全て含まれる。
--- Polyester resin--
The polyesters (hereinafter referred to as “polyester resins”) mean a general term for polymer compounds having an ester bond as a main bond chain. Therefore, as the polyester resin suitable as the crystalline polymer, the exemplified PET (polyethylene terephthalate), PEN (polyethylene naphthalate), PTT (polytrimethylene terephthalate), PBT (polybutylene terephthalate), PPT (polypenta). Methylene terephthalate), PHT (polyhexamethylene terephthalate), PBN (polybutylene naphthalate), PES (polyethylene succinate), PBS (polybutylene succinate), as well as by polycondensation reaction of dicarboxylic acid component and diol component All the polymer compounds obtained are included.
 前記ジカルボン酸成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、芳香族ジカルボン酸、脂肪族ジカルボン酸、脂環族ジカルボン酸、オキシカルボン酸、多官能酸、などが挙げられる。 The dicarboxylic acid component is not particularly limited and may be appropriately selected depending on the intended purpose. For example, aromatic dicarboxylic acid, aliphatic dicarboxylic acid, alicyclic dicarboxylic acid, oxycarboxylic acid, polyfunctional acid, etc. Is mentioned.
 前記芳香族ジカルボン酸としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、テレフタル酸、イソフタル酸、ジフェニルジカルボン酸、ジフェニルスルホンジカルボン酸、ナフタレンジカルボン酸、ジフェノキシエタンジカルボン酸、5-ナトリウムスルホイソフタル酸、などが挙げられる。中でも、テレフタル酸、イソフタル酸、ジフェニルジカルボン酸、ナフタレンジカルボン酸が好ましく、テレフタル酸、ジフェニルジカルボン酸、ナフタレンジカルボン酸がより好ましい。 The aromatic dicarboxylic acid is not particularly limited and may be appropriately selected depending on the intended purpose. For example, terephthalic acid, isophthalic acid, diphenyldicarboxylic acid, diphenylsulfone dicarboxylic acid, naphthalenedicarboxylic acid, diphenoxyethanedicarboxylic acid , 5-sodium sulfoisophthalic acid, and the like. Among these, terephthalic acid, isophthalic acid, diphenyldicarboxylic acid, and naphthalenedicarboxylic acid are preferable, and terephthalic acid, diphenyldicarboxylic acid, and naphthalenedicarboxylic acid are more preferable.
 前記脂肪族ジカルボン酸としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、シュウ酸、コハク酸、エイコ酸、アジピン酸、セバシン酸、ダイマー酸、ドデカンジオン酸、マレイン酸、フマル酸、などが挙げられる。前記脂環族ジカルボン酸としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、シクロヘキサンジカルボン酸、などが挙げられる。前記オキシカルボン酸としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、p-オキシ安息香酸、などが挙げられる。前記多官能酸としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、トリメリット酸、ピロメリット酸、などが挙げられる。前記脂肪族ジカルボン酸及び脂環族ジカルボン酸の中では、前記内部に空洞を含有する成形体が紫外領域を含む広い波長範囲において低い透過率(優れた反射特性)を有する点で、コハク酸、アジピン酸、シクロヘキサンジカルボン酸が好ましく、コハク酸、アジピン酸がより好ましい。 The aliphatic dicarboxylic acid is not particularly limited and may be appropriately selected depending on the intended purpose. For example, oxalic acid, succinic acid, eicoic acid, adipic acid, sebacic acid, dimer acid, dodecanedioic acid, maleic acid , Fumaric acid, and the like. There is no restriction | limiting in particular as said alicyclic dicarboxylic acid, According to the objective, it can select suitably, For example, cyclohexane dicarboxylic acid etc. are mentioned. The oxycarboxylic acid is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include p-oxybenzoic acid. There is no restriction | limiting in particular as said polyfunctional acid, According to the objective, it can select suitably, For example, trimellitic acid, pyromellitic acid, etc. are mentioned. Among the aliphatic dicarboxylic acid and alicyclic dicarboxylic acid, succinic acid, in that the molded product containing a cavity inside has a low transmittance (excellent reflection characteristics) in a wide wavelength range including the ultraviolet region, Adipic acid and cyclohexanedicarboxylic acid are preferable, and succinic acid and adipic acid are more preferable.
 前記ジオール成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、脂肪族ジオール、脂環族ジオール、芳香族ジオール、ジエチレングリコール、ポリアルキレングリコール、などが挙げられる。中でも、前記内部に空洞を含有する成形体が紫外領域を含む広い波長範囲において低い透過率(優れた反射特性)を有する点で、脂肪族ジオールが好ましい。 The diol component is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include aliphatic diols, alicyclic diols, aromatic diols, diethylene glycol, and polyalkylene glycols. Among these, aliphatic diols are preferable in that the molded body containing cavities therein has low transmittance (excellent reflection characteristics) in a wide wavelength range including the ultraviolet region.
 前記脂肪族ジオールとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、エチレングリコール、プロパンジオール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ネオペンチルグリコール、トリエチレングリコール、などが挙げられる。中でも、プロパンジオール、ブタンジオール、ペンタンジオール、ヘキサンジオールが好ましい。前記脂環族ジオールとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、シクロヘキサンジメタノール、などが挙げられる。前記芳香族ジオールとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ビスフェノールA、ビスフェノールS、などが挙げられる。 The aliphatic diol is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include ethylene glycol, propanediol, butanediol, pentanediol, hexanediol, neopentyl glycol, and triethylene glycol. Can be mentioned. Of these, propanediol, butanediol, pentanediol, and hexanediol are preferable. There is no restriction | limiting in particular as said alicyclic diol, According to the objective, it can select suitably, For example, cyclohexane dimethanol etc. are mentioned. There is no restriction | limiting in particular as said aromatic diol, According to the objective, it can select suitably, For example, bisphenol A, bisphenol S, etc. are mentioned.
 前記ポリエステル樹脂の溶融粘度としては、特に制限はなく、目的に応じて適宜選択することができるが、50Pa・s~700Pa・sが好ましく、70Pa・s~500Pa・sがより好ましく、80Pa・s~300Pa・sが特に好ましい。前記溶融粘度が大きいほうが延伸時にボイドを発現しやすいが、前記溶融粘度が50Pa・s~700Pa・sであると、成形がしやすくなったり、樹脂の流れが安定して滞留が発生しづらくなり、品質が安定したりする点で好ましい。また、前記溶融粘度が50Pa・s~700Pa・sであると、延伸時に延伸張力が適切に保たれるために、均一に延伸しやすくなり、破断しづらくなる点で好ましい。また、前記溶融粘度が50Pa・s~700Pa・s以上であると、ダイヘッドから吐出される吐出物の形態が維持しやすくなって、安定的に成形できたり、製品が破損しにくくなったりするなど、物性が高まる点で好ましい。 The melt viscosity of the polyester resin is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 50 Pa · s to 700 Pa · s, more preferably 70 Pa · s to 500 Pa · s, and more preferably 80 Pa · s. ˜300 Pa · s is particularly preferred. When the melt viscosity is higher, voids are more likely to occur during stretching, but when the melt viscosity is 50 Pa · s to 700 Pa · s, molding becomes easier and the resin flow becomes stable and retention is less likely to occur. It is preferable in that the quality is stabilized. Further, the melt viscosity of 50 Pa · s to 700 Pa · s is preferable in that the drawing tension is appropriately maintained at the time of drawing, and it becomes easy to draw uniformly and is difficult to break. Further, when the melt viscosity is 50 Pa · s to 700 Pa · s or more, it becomes easy to maintain the form of the discharged material discharged from the die head, and it can be stably molded, and the product is not easily damaged. , Which is preferable in terms of enhancing physical properties.
 前記ポリエステル樹脂の極限粘度(IV)としては、特に制限はなく、目的に応じて適宜選択することができるが、0.4~1.5が好ましく、0.6~1.3がより好ましく、0.7~1.2が特に好ましい。前記IVが大きいほうが延伸時にボイドを発現しやすいが、前記IVが0.4~1.5であると、成形がしやすくなったり、樹脂の流れが安定して滞留が発生しづらくなり、品質が安定したりする点で好ましい。さらに、前記IVが0.4~1.5であると、延伸時に延伸張力が適切に保たれるために、均一に延伸しやすくなり、装置に負荷がかかりにくい点で好ましい。加えて、前記IVが0.4~1.5であると、製品が破損しにくくなって、物性が高まる点で好ましい。 The intrinsic viscosity (IV) of the polyester resin is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.4 to 1.5, more preferably 0.6 to 1.3, Particularly preferred is 0.7 to 1.2. If the IV is larger, voids are more likely to be generated during stretching. However, if the IV is 0.4 to 1.5, molding becomes easier and the resin flow is more stable, and it is difficult for stagnation to occur. Is preferable in that it is stabilized. Further, when the IV is 0.4 to 1.5, the stretching tension is appropriately maintained at the time of stretching, so that it is easy to stretch uniformly and it is preferable in that the load is not easily applied to the apparatus. In addition, when the IV is 0.4 to 1.5, it is preferable in that the product is hardly damaged and the physical properties are increased.
 前記ポリエステル樹脂の融点としては、特に制限はなく、目的に応じて適宜選択することができるが、耐熱性などの観点から、70℃~300℃が好ましく、90℃~270℃がより好ましい。 The melting point of the polyester resin is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 70 ° C. to 300 ° C., more preferably 90 ° C. to 270 ° C. from the viewpoint of heat resistance.
 なお、前記ポリエステル樹脂として、前記ジカルボン酸成分と前記ジオール成分とが、それぞれ1種で重合してポリマーを形成していてもよく、前記ジカルボン酸成分及び/又は前記ジオール成分が、2種以上で共重合してポリマーを形成していてもよい。また、前記ポリエステル樹脂として、2種以上のポリマーをブレンドして使用してもよい。 In addition, as said polyester resin, the said dicarboxylic acid component and the said diol component may respectively superpose | polymerize with 1 type, and may form the polymer, and the said dicarboxylic acid component and / or the said diol component are 2 or more types. A polymer may be formed by copolymerization. Further, as the polyester resin, two or more kinds of polymers may be blended and used.
 前記2種以上でのポリマーのブレンドにおいて、主たるポリマーに対して添加されるポリマーは、前記主たるポリマーに対して、溶融粘度及び極限粘度が近く、添加量が少量であるほうが、溶融押出し時に物性が高まり、押出ししやすくなる点で好ましい。 In the blend of two or more polymers, the polymer added to the main polymer has a melt viscosity and an intrinsic viscosity that are close to those of the main polymer, and the addition amount is smaller, and the physical properties at the time of melt extrusion are smaller. It is preferable in terms of increasing and facilitating extrusion.
 また、前記ポリエステル樹脂の流動特性の改良、光線透過性の制御、塗布液との密着性の向上などを目的として、前記ポリエステル樹脂に対してポリエステル系以外の樹脂を添加してもよい。 In addition, for the purpose of improving the flow characteristics of the polyester resin, controlling light transmittance, and improving the adhesion with the coating solution, a resin other than polyester may be added to the polyester resin.
-微粒子含有ポリマー-
 前記微粒子含有ポリマーとしては、微粒子を含有する限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、前述した結晶性ポリマー、ポリ塩化ビニル、アタクチックのポリスチレン、ポリメタクリル酸メチル等の非晶性ポリマー、などが挙げられる。
-Fine particle-containing polymer-
The fine particle-containing polymer is not particularly limited as long as it contains fine particles, and can be appropriately selected according to the purpose. For example, the above-described crystalline polymer, polyvinyl chloride, atactic polystyrene, polymethyl methacrylate, etc. Non-crystalline polymer, and the like.
--微粒子--
 前記微粒子としては、空洞起点粒子となり得るものであれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、フィラー、樹脂微粒子、などが挙げられる。
 前記フィラーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ステアリン酸ナトリウム塩、モンタン酸ナトリウム塩、安息香酸アルミニウム塩、アジピン酸ナトリウム、p-t-ブチル安息香酸アルミニウム塩、ヒドロキシステアリン酸アミド、リシノレイン酸アミド等の有機フィラー、タルク、シリカ、カオリン、クレー、スメクタイト、バーミキュライト等の無機フィラー、などが挙げられる。
 前記樹脂微粒子としては、前記微粒子含有ポリマーと非相溶である限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、PTFE(ポリテトラフルオロエチレン)などが挙げられる。
 前記微粒子の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、パリソンに対して、0.05質量%~5質量%が好ましく、0.1質量%~2質量%がより好ましく、0.2質量%~0.5質量%が特に好ましい。
 前記微粒子の含有量が、パリソンに対して、0.05%未満であると充分な結晶化が促進されないことがあり、5質量%を超えると、パリソンが脆くなることがある。
 前記微粒子の体積平均粒径としては、特に制限はなく、目的に応じて適宜選択することができるが、0.01μm~10μmが好ましく、0.02μm~5μmがより好ましく、0.05μm~1μmが特に好ましい。
 前記微粒子の体積平均粒径が、0.01μm未満であると、充分な結晶化が促進されないことがあり、10μmを超えると、パリソンが脆くなることがある。
--- Fine particles--
The fine particles are not particularly limited as long as they can serve as cavity starting particles, and can be appropriately selected according to the purpose. Examples thereof include fillers and resin fine particles.
The filler is not particularly limited and may be appropriately selected depending on the intended purpose. For example, sodium stearate salt, sodium montanate salt, aluminum benzoate salt, sodium adipate, pt-butyl aluminum benzoate Examples thereof include organic fillers such as salts, hydroxystearic acid amide, and ricinoleic acid amide, inorganic fillers such as talc, silica, kaolin, clay, smectite, and vermiculite.
The resin fine particles are not particularly limited as long as they are incompatible with the fine particle-containing polymer, and can be appropriately selected according to the purpose. Examples thereof include PTFE (polytetrafluoroethylene).
The content of the fine particles is not particularly limited and may be appropriately selected depending on the intended purpose. It is preferably 0.05% by mass to 5% by mass and preferably 0.1% by mass to 2% by mass with respect to the parison. % Is more preferable, and 0.2% by mass to 0.5% by mass is particularly preferable.
If the content of the fine particles is less than 0.05% with respect to the parison, sufficient crystallization may not be promoted, and if it exceeds 5 mass%, the parison may become brittle.
The volume average particle diameter of the fine particles is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.01 μm to 10 μm, more preferably 0.02 μm to 5 μm, and more preferably 0.05 μm to 1 μm. Particularly preferred.
If the volume average particle size of the fine particles is less than 0.01 μm, sufficient crystallization may not be promoted, and if it exceeds 10 μm, the parison may become brittle.
-その他の成分-
 前記その他の成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、結晶造核剤、などが挙げられる。
-Other ingredients-
There is no restriction | limiting in particular as said other component, According to the objective, it can select suitably, For example, a crystal nucleating agent etc. are mentioned.
--結晶造核剤--
 前記結晶造核剤としては、結晶性ポリマー内部の微結晶形成を促進するものであれば、無機物、有機物を問わず、特に制限はなく、目的に応じて適宜選択することができ、例えば、(i)単体、複合酸化物を含む金属化合物類、(ii)カルボキシル基の金属塩を有する低分子化合物、(iii)高分子有機化合物、(iv)燐酸、亜燐酸、又はそれらの金属塩、(v)ソルビトール誘導体、(vi)4級アンモニウム化合物、(vii)他の化合物、などが挙げられる。また、前記結晶造核剤は、1種類又は2種類以上を同時に用いてもよい。
 前記(i)単体、複合酸化物を含む金属化合物類としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、炭酸カルシウム、合成珪酸及び珪酸塩、シリカ、亜鉛華、ハイサイトクレー、カオリン、塩基性炭酸マグネシウム、マイカ、タルク、石英粉、珪藻土、ドロマイト粉、酸化チタン、酸化亜鉛、酸化アンチモン、硫酸バリウム、硫酸カルシウム、アルミナ、珪酸カルシウム、窒化ホウ素、などが挙げられる。
 前記(ii)カルボキシル基の金属塩を有する低分子化合物としては、オクチル酸、トルイル酸、ヘプタン酸、ペラルゴン酸、ラウリン酸、ミリスチン酸、パルチミン酸、ステアリン酸、ベヘニン酸、セロチン酸、モンタン酸、メリシン酸、安息香酸、p-tert-ブチル安息香酸、テレフタル酸、テレフタル酸モノメチルエステル、イソフタル酸、イソフタル酸モノメチルエステル、ショウノウ酸、シトロネル酸、ヒノキ酸、アビチエン酸、ロジン酸、水素化ロジン酸などの金属塩が挙げられる。
 前記(iii)高分子有機化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、3,3-ジメチルブテン-1、3-メチルペンテン-1、3-メチルブテン-1、3-メチルヘキセン-1、3,5,5-トリメチルヘキセン-1、などの炭素数5以上の3位分岐α-オレフィン、並びに、ビニルシクロペンタン、ビニルシクロヘキサン、ビニルノルボルナンなどのビニルシクロアルカンの重合体、ポリエチレングリコール、ポリプロピレングリコールなどのポリアルキレングリコール、ポリグリコール酸、セルロース、セルロースエステル、セルロースエーテル、ポリビニルアルコール、キチン、キトサン、ナイロン6、ナイロン66、ナイロン610、ナイロン612などの脂肪族系ポリアミド化合物、テレフタル酸とレゾルシンを主な構成単位とする全芳香族ポリエステル微粉末、ポリヒドロキシアルカノエート類、などが挙げられる。
 前記(iv)燐酸、亜燐酸、又はそれらの金属塩としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、燐酸ジフェニル、亜燐酸ジフェニル、燐酸ビス(4-tert-ブチルフェニル)ナトリウム、燐酸メチレン(2,4-tert-ブチルフェニル)ナトリウム、などが挙げられる。
 前記(v)ソルビトール誘導体としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ビス(p-メチルベンジリデン)ソルビトール、ビス(p-エチルベンジリデン)ソルビトール、などが挙げられる。
 前記(vi)4級アンモニウム化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、テトラエチルアンモニウムクロリド、テトラn-プロピルアンモニウムクロリド、テトラn-ブチルアンモニウムクロリド、テトラエチルアンモニウムブロミド、テトラn-プロピルアンモニウムブロミド、テトラn-ブチルアンモニウムブロミド、テトラエチルアンモニウムシリケート、テトラn-ブチルアンモニウムシリケート、などが挙げられる。
 前記(vii)他の化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、無水チオグリコール酸、パラトルエンスルフォン酸、及びそれらの金属塩、二塩基酸ビス(安息香酸ヒドラジド)化合物、イソシアヌレート化合物、バルビツル酸構造を有する化合物、などが挙げられる。
 前記結晶造核剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、パリソンに対して、0.01質量%~15質量%が好ましく、0.05質量%~10質量%がより好ましく、0.1質量%~3質量%が特に好ましい。
 前記結晶造核剤の含有量が、パリソンに対して、0.01質量%未満であると、その効果が充分に得られにくいことがあり、15質量%を超えると、パリソンが脆くなることがある。
 前記結晶造核剤の体積平均粒径としては、特に制限はなく、目的に応じて適宜選択することができるが、0.01μm~20μmが好ましく、0.1μm~10μmがより好ましく、0.2μm~3μmが特に好ましい。
 前記結晶造核剤の体積平均粒径が、0.01μm未満であると、その効果が充分に得られにくいことがあり、20μmを超えると、パリソンが脆くなることがある。
--- Crystal nucleating agent--
The crystal nucleating agent is not particularly limited as long as it promotes microcrystal formation inside the crystalline polymer, and can be appropriately selected according to the purpose. i) simple substances, metal compounds including complex oxides, (ii) low molecular compounds having a metal salt of a carboxyl group, (iii) high molecular organic compounds, (iv) phosphoric acid, phosphorous acid, or metal salts thereof ( v) sorbitol derivatives, (vi) quaternary ammonium compounds, (vii) other compounds, and the like. Moreover, the said crystal nucleating agent may use 1 type or 2 types or more simultaneously.
The metal compound containing (i) simple substance and complex oxide is not particularly limited and may be appropriately selected depending on the purpose. For example, calcium carbonate, synthetic silicic acid and silicate, silica, zinc white, high Examples include cytoclay, kaolin, basic magnesium carbonate, mica, talc, quartz powder, diatomaceous earth, dolomite powder, titanium oxide, zinc oxide, antimony oxide, barium sulfate, calcium sulfate, alumina, calcium silicate, and boron nitride.
Examples of the low molecular compound having a metal salt of (ii) carboxyl group include octylic acid, toluic acid, heptanoic acid, pelargonic acid, lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid, serotic acid, montanic acid, Melicic acid, benzoic acid, p-tert-butylbenzoic acid, terephthalic acid, terephthalic acid monomethyl ester, isophthalic acid, isophthalic acid monomethyl ester, camphoric acid, citronellic acid, hinokiic acid, abitienic acid, rosin acid, hydrogenated rosin acid, etc. The metal salt is mentioned.
The (iii) polymer organic compound is not particularly limited and may be appropriately selected depending on the intended purpose. For example, 3,3-dimethylbutene-1, 3-methylpentene-1, 3-methylbutene-1 , 3-methylhexene-1, 3,5,5-trimethylhexene-1, etc., and 3-position branched α-olefins having 5 or more carbon atoms, and vinylcycloalkanes such as vinylcyclopentane, vinylcyclohexane, and vinylnorbornane. Polymers, polyalkylene glycols such as polyethylene glycol and polypropylene glycol, polyglycolic acid, cellulose, cellulose ester, cellulose ether, polyvinyl alcohol, chitin, chitosan, nylon 6, nylon 66, nylon 610, nylon 612 and other aliphatic polyamides Compound, tele Wholly aromatic polyester fine powder to the barrel acid and resorcinol as main constitutional units, polyhydroxyalkanoates, and the like.
The (iv) phosphoric acid, phosphorous acid, or a metal salt thereof is not particularly limited and may be appropriately selected depending on the intended purpose. For example, diphenyl phosphate, diphenyl phosphite, bis (4-tert-butyl phosphate) Phenyl) sodium, methylene phosphate (2,4-tert-butylphenyl) sodium, and the like.
The (v) sorbitol derivative is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include bis (p-methylbenzylidene) sorbitol and bis (p-ethylbenzylidene) sorbitol.
The (vi) quaternary ammonium compound is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include tetraethylammonium chloride, tetran-propylammonium chloride, tetran-butylammonium chloride, tetraethylammonium bromide. Tetra n-propylammonium bromide, tetra n-butylammonium bromide, tetraethylammonium silicate, tetra n-butylammonium silicate, and the like.
The (vii) other compound is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include thioglycolic anhydride, p-toluenesulfonic acid, and metal salts thereof, dibasic acid bis (benzoic acid) Acid hydrazide) compounds, isocyanurate compounds, compounds having a barbituric acid structure, and the like.
The content of the crystal nucleating agent is not particularly limited and may be appropriately selected depending on the intended purpose. It is preferably 0.01% by mass to 15% by mass with respect to the parison, and 0.05% by mass. Is more preferably 10% by mass, and particularly preferably 0.1% by mass to 3% by mass.
If the content of the crystal nucleating agent is less than 0.01% by mass relative to the parison, the effect may not be obtained sufficiently, and if it exceeds 15% by mass, the parison may become brittle. is there.
The volume average particle size of the crystal nucleating agent is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.01 μm to 20 μm, more preferably 0.1 μm to 10 μm, and more preferably 0.2 μm. Particularly preferred is ˜3 μm.
If the volume average particle size of the crystal nucleating agent is less than 0.01 μm, the effect may not be sufficiently obtained, and if it exceeds 20 μm, the parison may become brittle.
-冷却-
 前記冷却の温度としては、特に制限はなく、目的に応じて適宜選択することができるが、パリソンのガラス転移温度よりも20℃高い温度以下であることが好ましく、パリソンのガラス転移温度未満であることがより好ましく、また、ブロー成形維持性の観点から、ガラス転移温度より30℃低い温度以上であることが好ましい。パリソンのガラス転移温度よりも20℃高い温度を超えると、前記パリソン内部に空洞起点粒子が形成されないことがある。また、パリソンのガラス転移温度よりも20℃高い温度を超えても、前記パリソン内部に空洞起点粒子が形成される場合は、パリソンのガラス転移温度よりも20℃高い温度を超える温度まで冷却すればよい。
 前記冷却の速度としては、特に制限はなく、目的に応じて適宜選択することができるが、5℃/sec~200℃/secが好ましく、10℃/sec~100℃/secがより好ましく、30℃/sec~60℃/secが特に好ましい。
 前記冷却の速度が、5℃/sec未満であると、結晶化が進みすぎることがあり、200℃/secを超えると、結晶化が不足することがある。
-cooling-
There is no restriction | limiting in particular as said cooling temperature, Although it can select suitably according to the objective, It is preferable that it is 20 degrees C or less higher than the glass transition temperature of a parison, and is less than the glass transition temperature of a parison. More preferably, from the viewpoint of blow molding maintainability, the temperature is preferably 30 ° C. lower than the glass transition temperature. When the temperature exceeds 20 ° C. higher than the glass transition temperature of the parison, the cavity starting particles may not be formed inside the parison. Moreover, even if it exceeds 20 degreeC higher than the glass transition temperature of a parison, when a cavity origin particle | grain is formed inside the said parison, if it cools to the temperature exceeding 20 degreeC higher than the glass transition temperature of a parison, Good.
The cooling rate is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5 ° C / sec to 200 ° C / sec, more preferably 10 ° C / sec to 100 ° C / sec, It is particularly preferably from ℃ / sec to 60 ℃ / sec.
When the cooling rate is less than 5 ° C./sec, crystallization may proceed excessively, and when it exceeds 200 ° C./sec, crystallization may be insufficient.
-形状-
 前記パリソンの形状としては、開口部と、底とを有し、かつ、ネック起点部が設けられていれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、有底筒状、チューブ状、などが挙げられる。
 前記パリソンの成形方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、押出成形、射出成形、などが挙げられる。
 前記パリソンの成形に用いる装置としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、横型の油圧式射出成形装置、縦型の電動式射出成形装置、などが挙げられる。
-shape-
The shape of the parison is not particularly limited as long as it has an opening and a bottom and a neck starting portion is provided, and can be appropriately selected according to the purpose. Shape, tube shape, and the like.
There is no restriction | limiting in particular as a shaping | molding method of the said parison, According to the objective, it can select suitably, For example, extrusion molding, injection molding, etc. are mentioned.
There is no restriction | limiting in particular as an apparatus used for shaping | molding of the said parison, According to the objective, it can select suitably, For example, a horizontal hydraulic injection molding apparatus, a vertical electric injection molding apparatus, etc. are mentioned.
--ネック起点部--
 前記ネック起点部は、後述するネッキング延伸の起点となる部位をいう。
 前記ネック起点部としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、カップ形状のプリフォームの底部近傍、側面中央部、開口部近傍、などに設けた薄肉部、などが挙げられる。これらの中でも、パリソンの薄肉部がパリソンの延伸軸に対して、軸対称に設けられていることが、ボイドが均一に発生しやすくなる点で、好ましい。また、ネック起点部分のプリフォームの温度を他の部分より高くしたり、ネック起点部のプリフォームの厚みを他の部分より薄くして、ネッキング開始位置を調整してもよい。
--Neck start point--
The neck starting portion refers to a portion that becomes a starting point of necking stretching described later.
The neck starting portion is not particularly limited and can be appropriately selected according to the purpose.For example, a thin portion provided near the bottom of the cup-shaped preform, the center of the side, the vicinity of the opening, etc. Is mentioned. Among these, it is preferable that the thin-walled portion of the parison is provided symmetrically with respect to the stretching axis of the parison, because voids are easily generated uniformly. Further, the necking start position may be adjusted by making the temperature of the preform at the neck starting portion higher than that at other portions, or by making the thickness of the preform at the neck starting portion thinner than other portions.
 前記パリソンの形状の一例としては、図4に記載の形状が挙げられる。
 図4は、パリソン10の延伸方向に対して平行方向の断面図である。パリソン10は、開口部42と、底43とを有し、かつネック起点部が設けられている。前記ネック起点部は、パリソンにおける薄肉部であり、パリソンの延伸軸41に対して、軸対称に設けられている。図4中、符号44は側部を示し、符号45は押さえ金具で把持される部位(以下、「把持部位」と称することがある)を示す。
An example of the shape of the parison is the shape shown in FIG.
FIG. 4 is a cross-sectional view in a direction parallel to the extending direction of the parison 10. The parison 10 has an opening 42 and a bottom 43, and is provided with a neck starting point. The neck starting point portion is a thin wall portion in the parison, and is provided symmetrically with respect to the stretching axis 41 of the parison. In FIG. 4, reference numeral 44 indicates a side portion, and reference numeral 45 indicates a portion that is gripped by the pressing metal (hereinafter, may be referred to as “gripping portion”).
 また、前記パリソンの形状の他の一例としては、図5に記載の形状が挙げられる。
 図5は、パリソン10の延伸方向に対して平行方向の断面図である。パリソン10は、開口部42と、底43とを有し、かつネック起点部が設けられている。前記ネック起点部は、パリソンにおける薄肉部であり、パリソンの延伸軸41に対して、軸対称に設けられている。図5中、符号44は側部を示し、符号45は押さえ金具で把持される部位(以下、「把持部位」と称することがある)を示す。
 図5では、パリソンの側部44にノッチ(プリフォームの肉厚が急に減ずる部分)を入れることにより、ネック起点部が設けられている。
Another example of the shape of the parison is the shape shown in FIG.
FIG. 5 is a cross-sectional view in a direction parallel to the extending direction of the parison 10. The parison 10 has an opening 42 and a bottom 43, and is provided with a neck starting point. The neck starting point portion is a thin wall portion in the parison, and is provided symmetrically with respect to the stretching axis 41 of the parison. In FIG. 5, reference numeral 44 indicates a side portion, and reference numeral 45 indicates a portion that is gripped by the presser fitting (hereinafter may be referred to as “gripping portion”).
In FIG. 5, a neck starting point portion is provided by making a notch (a portion where the thickness of the preform suddenly decreases) in the side portion 44 of the parison.
 前記ネック起点部は、ノッチであってもよいし、比較的長い薄肉領域であってもよい。
 前記薄肉領域の長さとしては、特に制限はなく、目的に応じて適宜選択することができるが、50mm以下が好ましく、30mm以下がより好ましく、15mm以下が特に好ましい。前記薄肉領域の長さが、50mmを超えると、延伸開始点が外周方向に不均一になり、空洞の形成にムラが発生することがある。一方、前記薄肉領域の長さが前記特に好ましい範囲内であると、均一な空洞の発現、成形形状の安定製造の点で、有利である。
The neck starting point may be a notch or a relatively long thin region.
There is no restriction | limiting in particular as length of the said thin area | region, Although it can select suitably according to the objective, 50 mm or less is preferable, 30 mm or less is more preferable, and 15 mm or less is especially preferable. When the length of the thin region exceeds 50 mm, the stretching start point becomes uneven in the outer peripheral direction, and unevenness may occur in the formation of the cavity. On the other hand, when the length of the thin-walled region is within the particularly preferable range, it is advantageous in terms of uniform cavity formation and stable production of a molded shape.
 前記薄肉部(ネック起点部)の厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、パリソンの側部44の厚みに対して、99%~50%が好ましく、95%~70%がより好ましく、95%~80%が特に好ましい。前記薄肉部の厚みが、パリソンの側部に対して、50%未満であると、延伸時にノッチ部分からパリソンが裂けることがあり、99%を超えると、ノッチ以外の部位からも延伸が始まり均一なボイド発生が出来ないことがある。一方、前記薄肉部の厚みが前記特に好ましい範囲内であると、全体に均一な厚みで延伸ブローされ、ボイド発現のムラも少なくなる点で、有利である。
 ネッキングの起点はノッチでも、安定的に発生させることが出来るが、プリフォームの加熱を高精度に行うことにより、比較的長い薄肉領域から安定的にネッキング延伸を発現することも出来る。
The thickness of the thin portion (neck starting portion) is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 99% to 50% with respect to the thickness of the side portion 44 of the parison, and 95 % To 70% is more preferable, and 95% to 80% is particularly preferable. If the thickness of the thin portion is less than 50% of the side of the parison, the parison may tear from the notch portion during stretching, and if it exceeds 99%, stretching starts from a portion other than the notch and is uniform. May not be generated. On the other hand, when the thickness of the thin-walled portion is within the particularly preferable range, it is advantageous in that it is stretched and blown with a uniform thickness on the whole, and unevenness in void expression is reduced.
Although the starting point of necking can be stably generated even with a notch, it is possible to stably develop necking stretching from a relatively long thin region by heating the preform with high accuracy.
 前記側部の厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、100μm~1mmが好ましく、200μm~800μmがより好ましく、300μm~500μmが特に好ましい。前記側部の厚みが、100μm未満であると、微結晶を起点とするボイド発生の場合には、微結晶サイズが小さすぎるためにボイドが充分に発現しないことがあり、また、粒子を添加する方法においても、樹脂の結晶化が充分に進まず、中止界面の剥離が起こりにくいことがあり、1mmを超えると、樹脂内部の冷却速度が遅くなるためにパリソンの結晶化が進みすぎて、パリソンが硬く脆くなって、延伸ブローが困難になることがある。一方、前記側部の厚みが前記特に好ましい範囲内であると、延伸ブローが均一に行われ易くボイド発現のムラも少なくなる点で、有利である。 The thickness of the side portion is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 100 μm to 1 mm, more preferably 200 μm to 800 μm, and particularly preferably 300 μm to 500 μm. When the side portion has a thickness of less than 100 μm, in the case of generation of voids starting from microcrystals, the microcrystal size is too small, so that the voids may not be sufficiently developed, and particles are added. Even in the method, the crystallization of the resin does not proceed sufficiently, and it is difficult for the discontinuation of the interface to peel off. May become hard and brittle, making stretching blow difficult. On the other hand, when the thickness of the side portion is within the particularly preferable range, it is advantageous in that stretch blow is easily performed and unevenness of voids is reduced.
 前記底の厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、2mm~5mmが好ましく、2mm~4mmがより好ましく、2mm~3mmが特に好ましい。前記底の厚みが、2mm未満であると、延伸時に底が破れてしまうことがあり、5mmを超えると、樹脂の使用量が増えて輸送コストや樹脂材料費などが余計にかかり、経済的にも好ましくない。一方、前記底の厚みが前記特に好ましい範囲内であると、延伸ロッドにより押されても破れず、かつ、樹脂の無駄も最小限に抑制できる点で、有利である。 The thickness of the bottom is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 2 mm to 5 mm, more preferably 2 mm to 4 mm, and particularly preferably 2 mm to 3 mm. If the thickness of the bottom is less than 2 mm, the bottom may be broken at the time of stretching, and if it exceeds 5 mm, the amount of resin used increases, resulting in additional transportation costs, resin material costs, etc. Is also not preferred. On the other hand, if the thickness of the bottom is within the particularly preferred range, it is advantageous in that it does not break even when pressed by a stretching rod, and waste of resin can be suppressed to a minimum.
 前記把持部位の厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、0.5mm~2mmが好ましく、0.5mm~1.5mmがより好ましく、0.7mm~1.0mmが特に好ましい。前記把持部位の厚みが、0.5mm未満であると、金型に装着して把持する際に充分に把持出来ずに延伸ブロー時に滑って抜けたり角の部分で割れてしまうことがあり、2mmを超えると、樹脂の使用量が増えて輸送コストや樹脂材料費など経済的にも好ましくない。一方、前記把持部位の厚みが前記特に好ましい範囲内であると、樹脂の使用量が少なくても、軽量で丈夫な成形体となり、経済的である点で、有利である。 The thickness of the grip portion is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.5 mm to 2 mm, more preferably 0.5 mm to 1.5 mm, and 0.7 mm to 1.mm. 0 mm is particularly preferable. If the thickness of the gripping part is less than 0.5 mm, it may not be able to be gripped sufficiently when mounted on a mold and gripped, and it may slip off at the time of stretch blow or break at a corner part. If it exceeds, the amount of resin used increases, which is not economically preferable, such as transportation costs and resin material costs. On the other hand, when the thickness of the grip portion is within the particularly preferable range, even if the amount of resin used is small, a lightweight and durable molded body is obtained, which is advantageous in terms of economy.
-加熱-
 前記パリソンの加熱温度(Tp)としては、特に制限はなく、目的に応じて適宜選択することができるが、パリソンの樹脂のガラス転移温度をTgとしたとき、(Tg-30)℃<Tp<(Tg+70)℃(式(1))が好ましく、(Tg-30)℃<Tp<(Tg+60)℃がより好ましく、(Tg-30)℃<Tp<(Tg+40)℃が特に好ましい。前記パリソンの加熱温度(Tp)が、(Tg-30)℃未満であると、パリソンが延伸しきれないことがあり、(Tg+70)℃を超えると、ボイドが安定して形成できないことがある。一方、前記パリソンの加熱温度(Tp)が前記特に好ましい範囲内であると、延伸ブローにより容器に均一なボイドが発生する点で、有利である。
 前記パリソンを加熱する手段としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、遠赤外線ヒーター、石英ヒーター、熱風発生装置、炭酸ガスレーザー、などが挙げられる。
-heating-
The heating temperature (Tp) of the parison is not particularly limited and may be appropriately selected according to the purpose. When the glass transition temperature of the parison resin is Tg, (Tg-30) ° C. <Tp < (Tg + 70) ° C. (formula (1)) is preferable, (Tg−30) ° C. <Tp <(Tg + 60) ° C. is more preferable, and (Tg−30) ° C. <Tp <(Tg + 40) ° C. is particularly preferable. If the heating temperature (Tp) of the parison is less than (Tg-30) ° C., the parison may not be fully stretched, and if it exceeds (Tg + 70) ° C., voids may not be stably formed. On the other hand, when the heating temperature (Tp) of the parison is within the particularly preferable range, it is advantageous in that uniform voids are generated in the container by stretch blow.
There is no restriction | limiting in particular as a means to heat the said parison, According to the objective, it can select suitably, For example, a far-infrared heater, a quartz heater, a hot air generator, a carbon dioxide laser, etc. are mentioned.
-延伸-
 前記延伸としては、延伸されたパリソンの少なくとも一部に空洞が形成されれば、特に制限はなく、目的に応じて適宜選択することができるが、空洞が安定して形成できる点で、ネッキング延伸が好ましい。
 前記延伸は、例えば、射出成形によって成形したパリソンを支持部材によりネッキング延伸させ、空洞起点粒子が形成されたパリソンを引き伸ばすことにより行われ、パリソンの内部に空洞を形成する。
 前記ネッキング延伸の手段としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ストレッチロッド(支持部材)などが挙げられる。
-Stretching-
The stretching is not particularly limited as long as a cavity is formed in at least a part of the stretched parison, and can be appropriately selected according to the purpose, but necking stretching is possible in that the cavity can be stably formed. Is preferred.
The stretching is performed by, for example, necking stretching a parison formed by injection molding with a support member and stretching the parison in which the cavity starting particles are formed, thereby forming a cavity inside the parison.
There is no restriction | limiting in particular as said means of necking extending | stretching, According to the objective, it can select suitably, For example, a stretch rod (support member) etc. are mentioned.
--ネッキング延伸--
 前記ネッキング延伸とは、前記パリソンを延伸した際に「くびれ(ネッキング)」が生じるように延伸することをいう。
 前記ネッキングについては、「高分子概論(昭和57年12月20日 9刷 片山将道 日刊工業新聞社)で、次のように定義されている。
 『いろいろのフィルム状あるいは繊維状のポリマーを常温で引っ張ると、なかには図6のような「くびれ」のできるものがある。
 この「くびれた部分」は、引伸ばしている間は手の方向に移動してくる。
 「くびれた部分」の断面積は一定であって、延伸されていない部分とは肩状の部分(ショルダー、shoulder)によってはっきり区別されている。
 このような「くびれ」ができる現象をネッキング(necking)といい、ナイロン、アイソタクチックポリプロピレン、低圧法ポリエチレンなどのような、硬くて粘い結晶性ポリマーに認められる。』
 本発明においては、このように「くびれ」が発現するパリソンの伸長挙動をネッキングと定義する。
 なお、図7は、フィルムにおけるネッキングと荷重-伸長曲線の模式図である。
--- Necking stretching--
The necking stretching refers to stretching so that “necking” occurs when the parison is stretched.
The necking is defined as follows in “Introduction to Polymers” (December 20, 1982, 9th printing, Masamichi Katayama Nikkan Kogyo Shimbun).
“When various film-like or fiber-like polymers are pulled at room temperature, there are those that can“ neck ”as shown in FIG.
This “constricted part” moves in the direction of the hand while it is stretched.
The cross-sectional area of the “necked portion” is constant, and is clearly distinguished from the unstretched portion by a shoulder-like portion (shoulder).
This phenomenon of “necking” is called necking, and is observed in hard and viscous crystalline polymers such as nylon, isotactic polypropylene, low pressure polyethylene and the like. ]
In the present invention, the extension behavior of a parison in which a “neck” develops is defined as necking.
FIG. 7 is a schematic diagram of the necking and load-elongation curve in the film.
 前記ネッキング延伸により、パリソン内部に空洞が形成される理由としては、パリソンがネッキング延伸により、パリソン内部に微細な破壊が生じ、これが空洞形成源となって空洞が形成されるものと考えられる。 The reason why the cavity is formed inside the parison by the necking stretching is considered to be that the parison is finely broken inside the parison due to necking stretching, and this serves as a cavity forming source to form a cavity.
 前記延伸処理におけるパリソンの延伸速度としては、特に制限はなく、目的に応じて適宜選択することができるが、10mm/min~40,000mm/minが好ましく、500mm/min~20,000mm/minがより好ましく、1,000mm/min~10,000mm/minが特に好ましい。
 前記延伸速度が、10mm/min未満であると、空洞(ボイド)ができないことがあり、40,000mm/minを超えると、延伸時にパリソンが破断しやすくなることがある。
The stretching speed of the parison in the stretching process is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 10 mm / min to 40,000 mm / min, more preferably 500 mm / min to 20,000 mm / min. More preferred is 1,000 mm / min to 10,000 mm / min.
If the stretching speed is less than 10 mm / min, voids may not be formed, and if it exceeds 40,000 mm / min, the parison may be easily broken during stretching.
 前記延伸は、例えば、図8のようにして行うことができる。
 即ち、パリソン10を押さえ金具81で把持し、支持部材82としてストレッチロッドを用い、パリソンを矢印方向に延伸することにより行うことができる。
The stretching can be performed, for example, as shown in FIG.
That is, it can be performed by holding the parison 10 with the presser fitting 81, using a stretch rod as the support member 82, and extending the parison in the direction of the arrow.
<ブロー処理>
 前記ブロー処理は、前記延伸したパリソンをブローする処理である。前記ブロー処理により、所望の形状に成形体を加工する。
<Blow processing>
The blow process is a process of blowing the stretched parison. The molded body is processed into a desired shape by the blowing process.
 前記ブロー処理は、パリソンの中空部に気体を供給する限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、押出ブロー処理、射出ブロー処理、延伸ブロー処理、多層ブロー処理、多次元ブロー処理、などが挙げられる。
 前記延伸ブロー処理は、パリソンを延伸した後に、気体を供給するものである。
 前記ブロー処理により、前記延伸処理で内部に空洞が形成された成形体が押し広げられて所望の形状が付与される。
 ブロー処理に用いる前記気体としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、空気、窒素、などが挙げられる。
 前記気体の供給圧としては、特に制限はなく、目的に応じて適宜選択することができるが、0.2Mpa~20Mpaが好ましく、0.4Mpa~10Mpaがより好ましく、0.5Mpa~5Mpaが特に好ましい。
 前記気体の供給圧が、0.2Mpa未満であると、充分な速度でブローしきれないことがあり、20Mpaを超えると、ブロー中にパリソンが破けることがある。
The blow process is not particularly limited as long as the gas is supplied to the hollow part of the parison, and can be appropriately selected according to the purpose.For example, extrusion blow process, injection blow process, stretch blow process, multilayer blow process, Multidimensional blow processing, etc. are mentioned.
The stretch blow process is to supply gas after the parison is stretched.
By the blowing process, the molded body in which the cavity is formed by the stretching process is expanded to give a desired shape.
There is no restriction | limiting in particular as said gas used for a blow process, According to the objective, it can select suitably, For example, air, nitrogen, etc. are mentioned.
The gas supply pressure is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.2 Mpa to 20 Mpa, more preferably 0.4 Mpa to 10 Mpa, and particularly preferably 0.5 Mpa to 5 Mpa. .
If the gas supply pressure is less than 0.2 Mpa, blow may not be possible at a sufficient speed, and if it exceeds 20 Mpa, the parison may break during blowing.
 前記ブロー処理におけるパリソンの平面延伸倍率(縦延伸倍率×横延伸倍率)としては、特に制限はなく、目的に応じて適宜選択することができるが、5倍~100倍が好ましく、10倍~50倍がより好ましく、15倍~30倍が特に好ましい。前記平面延伸倍率が、5倍未満であると、パリソンの厚みムラが解消できないことがあり、100倍を超えると、ブロー時にパリソンが破断しやすくなることがある。 The plane stretching ratio (longitudinal stretching ratio × lateral stretching ratio) of the parison in the blow treatment is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 5 to 100 times, and 10 to 50 times. Is more preferably 15 times to 30 times. If the plane stretch ratio is less than 5 times, uneven thickness of the parison may not be eliminated, and if it exceeds 100 times, the parison may be easily broken during blowing.
<その他の処理>
 前記その他の処理としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、転写処理、加熱処理、などが挙げられる。
<Other processing>
There is no restriction | limiting in particular as said other process, According to the objective, it can select suitably, For example, a transfer process, heat processing, etc. are mentioned.
<<転写処理>>
 前記転写処理は、パリソンを金型内でブロー成形して、前記金型の内表面形状を前記パリソンに転写する処理である。なお、前記転写処理は、前記成形工程のブロー処理と同一のブロー処理により行われることが好ましい。
<< Transfer process >>
The transfer process is a process of blow molding a parison in a mold and transferring the inner surface shape of the mold to the parison. In addition, it is preferable that the said transfer process is performed by the blow process same as the blow process of the said formation process.
-金型-
 前記金型としては、内表面を有するものであれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、図1A~図2Bに示す金型20、などが挙げられる。
-Mold-
The mold is not particularly limited as long as it has an inner surface, and can be appropriately selected according to the purpose. Examples thereof include a mold 20 shown in FIGS. 1A to 2B.
-転写-
 前記転写は、気体を供給して、パリソンを金型の内表面に密着(追従)させることにより、行われる。
 前記気体としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、空気、窒素、などが挙げられる。
 前記気体の供給圧としては、特に制限はなく、目的に応じて適宜選択することができるが、0.2Mpa~20Mpaが好ましく、0.4Mpa~10Mpaがより好ましく、0.5Mpa~5Mpaが特に好ましい。
 前記気体の供給圧が、0.2Mpa未満であると、パリソンが金型の内表面に密着(追従)しないことがあり、20Mpaを超えると、パリソンが均一に伸びずに破裂することがある。
 前記金型の温度としては、特に制限はなく、目的に応じて適宜選択することができるが、パリソンの軟化点~(融点+60℃)が好ましく、軟化点~(融点+50℃)がより好ましく、軟化点~融点が特に好ましい。
 前記金型の温度が、パリソンの軟化点未満であると、パリソンが金型の内表面に密着(追従)しないことがあり、パリソンの(融点+60℃)を超えると、パリソンの転写及び形状を維持できないことがある。
-Transcription-
The transfer is performed by supplying gas and bringing the parison into close contact (following) with the inner surface of the mold.
There is no restriction | limiting in particular as said gas, According to the objective, it can select suitably, For example, air, nitrogen, etc. are mentioned.
The gas supply pressure is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.2 Mpa to 20 Mpa, more preferably 0.4 Mpa to 10 Mpa, and particularly preferably 0.5 Mpa to 5 Mpa. .
When the gas supply pressure is less than 0.2 Mpa, the parison may not adhere (follow) the inner surface of the mold, and when it exceeds 20 Mpa, the parison may burst without being uniformly stretched.
The temperature of the mold is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably a parison softening point to (melting point + 60 ° C.), more preferably a softening point to (melting point + 50 ° C.), A softening point to a melting point are particularly preferred.
When the temperature of the mold is lower than the softening point of the parison, the parison may not adhere (follow) to the inner surface of the mold, and when the temperature exceeds the (melting point + 60 ° C.) of the parison, It may not be maintained.
<<加熱処理>>
 前記加熱処理は、金型内のパリソンを加熱する処理である。
 該加熱により、金型内のパリソンの温度を上げることができ、もってパリソンを金型の内表面に密着(追従)させることができる。例えば、金型に設けられた加熱機構などにより、前記加熱を行うことができる。
 前記加熱処理における加熱温度としては、特に制限はなく、目的に応じて適宜選択することができるが、パリソンのガラス転移温度~(融点+60)℃が好ましく、ガラス転移温度~(融点+30)℃がより好ましく、ガラス転移温度~(融点+20)℃が特に好ましい。
 前記加熱温度が、パリソンのガラス転移温度未満であると、パリソンが金型の内表面に密着(追従)しないことがあり、パリソンの(融点+60)℃を超えると、樹脂が流れてしまうことがある。
 前記加熱処理における昇温速度としては、特に制限はなく、目的に応じて適宜選択することができるが、1℃/min~300℃/minが好ましく、2℃/min~250℃/minがより好ましく、5℃/min~200℃/minが特に好ましい。
 前記昇温速度が、1℃/min未満であると、昇温時に過度に結晶化が進んでしまうことがあり、300℃/minを超えると、加熱装置の加熱能力が大きくなるため、加熱装置が大型化し、一連のブロー成形システム中に、加熱装置を組み込むことが困難になるほか、高精度の温調(制御系)が必要になるなど高コストになることがある。
<< Heat treatment >>
The heat treatment is a treatment for heating the parison in the mold.
By this heating, the temperature of the parison in the mold can be raised, and the parison can be brought into close contact (following) with the inner surface of the mold. For example, the heating can be performed by a heating mechanism or the like provided in the mold.
The heating temperature in the heat treatment is not particularly limited and may be appropriately selected depending on the intended purpose. The glass transition temperature of the parison to (melting point + 60) ° C. is preferable, and the glass transition temperature to (melting point + 30) ° C. A glass transition temperature to (melting point + 20) ° C. is particularly preferable.
When the heating temperature is lower than the glass transition temperature of the parison, the parison may not adhere (follow) to the inner surface of the mold, and when it exceeds the (melting point + 60) ° C. of the parison, the resin may flow. is there.
The rate of temperature increase in the heat treatment is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 ° C / min to 300 ° C / min, more preferably 2 ° C / min to 250 ° C / min. 5 ° C./min to 200 ° C./min is particularly preferable.
If the rate of temperature increase is less than 1 ° C./min, crystallization may proceed excessively at the time of temperature increase, and if it exceeds 300 ° C./min, the heating capability of the heating device increases. However, it may be difficult to incorporate a heating device into a series of blow molding systems, and it may be costly due to the need for highly accurate temperature control (control system).
(その他の工程)
 前記その他の工程としては、特に制限はなく、目的に応じて適宜選択することができる。
(Other processes)
There is no restriction | limiting in particular as said other process, According to the objective, it can select suitably.
<内部に空洞を含有する成形体>
 前記内部に空洞を含有する成形体は、本発明の内部に空洞を含有する成形体の製造方法により製造することができる。
<Molded body containing cavities inside>
The molded body containing a cavity in the inside can be produced by the method for producing a molded body containing a cavity inside the present invention.
 前記内部に空洞を含有する成形体における空洞が形成される位置としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、容器の側面、底面、などが挙げられる。これらの中でも、容器の側面が、均一な空洞を発現させる点で、好ましい。
 前記成形体が、内部に空洞を含有していることは、例えば、サンプルを樹脂包埋した後、ミクロトームで切断面を切出し、電子顕微鏡などにより確認することができる。
There is no restriction | limiting in particular as a position in which the cavity in the molded object containing a cavity is formed, According to the objective, it can select suitably, For example, the side surface, bottom face, etc. of a container are mentioned. Among these, the side surface of the container is preferable in terms of expressing a uniform cavity.
The fact that the molded body contains cavities can be confirmed, for example, by embedding a sample with a resin, cutting out a cut surface with a microtome, and using an electron microscope or the like.
 前記成形体の少なくとも一部の光線透過率としては、特に制限はなく、目的に応じて適宜選択することができるが、波長550nmの光に対する光線透過率として、70%未満が好ましく、50%以下がより好ましく、40%以下が特に好ましい。前記光線透過率が、70%以上であると、空洞含有容器の物性が充分発現できないことがある。一方、前記光線透過率が前記特に好ましい範囲内であると、空洞含有容器の物性が充分発揮できる点で、有利である。
 前記光線透過率は、例えば、分光光度計(日立製作所製 U-4100)などにより、測定することができる。
 前記光線透過率は、前記内部に空洞を含有する成形体の一部の光線透過率であってもよいし、全体の光線透過率であってもよい。
The light transmittance of at least a part of the molded body is not particularly limited and may be appropriately selected depending on the intended purpose. However, the light transmittance with respect to light having a wavelength of 550 nm is preferably less than 70%, and 50% or less. Is more preferable, and 40% or less is particularly preferable. When the light transmittance is 70% or more, the physical properties of the cavity-containing container may not be sufficiently exhibited. On the other hand, when the light transmittance is within the particularly preferable range, it is advantageous in that the physical properties of the cavity-containing container can be sufficiently exhibited.
The light transmittance can be measured with, for example, a spectrophotometer (U-4100, manufactured by Hitachi, Ltd.).
The light transmittance may be a light transmittance of a part of the molded body containing the cavity inside, or may be a total light transmittance.
 以下、実施例を挙げて本発明を更に詳細に説明するが、下記実施例は本発明を制限するものではなく、前・後記の趣旨を逸脱しない範囲で変更実施することは全ての本発明の技術的範囲に包含される。 EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples are not intended to limit the present invention, and modifications may be made without departing from the spirit described above and below. Included in the technical scope.
(実施例1)
<パリソンの製造>
 ポリエチレンテレフタレート樹脂ペレット(富士フイルム社内製固相重合品、極限粘度(IV)=0.91、ガラス転移温度=68℃)を除湿乾燥エア乾燥機により165℃で5時間乾燥した後、射出シリンダー温度を270℃~300℃に設定した射出成形機より、76℃に温調したパリソン用金型内に射出して(パリソンの冷却温度を76℃として)、成形サイクル35秒で、下記の形状のパリソンを作製した。得られたパリソンの開口部分(端部)を赤外線ヒータにて加熱し、結晶化させて耐熱性を付与した。なお、電子顕微鏡を用いた断面観察(サンプルをエポキシ樹脂に樹脂包埋したのち、LEICA ULTRACUT UCT(ライカ製)により切出し、薄片とし、電子顕微鏡JEM-2010(日本電子(株)製)にて観察)により、パリソンの冷却時に空洞起点粒子が形成されていたことがわかった。
-パリソンの形状-
 形状:図4
 ネック起点部の位置:開口部から高さ8mm(延伸軸に対して軸対称)
 ネック起点部の厚み:0.5mm
 開口部の幅:62mm
 側部の厚み:0.5mm
 側部の長さ:45mm
 底の厚み:2mm
 底の幅:30mm
 把持部位の厚み:3mm
Example 1
<Manufacture of parison>
Polyethylene terephthalate resin pellets (Fujifilm in-house solid phase polymerized product, intrinsic viscosity (IV) = 0.91, glass transition temperature = 68 ° C.) are dried at 165 ° C. for 5 hours with a dehumidifying drying air dryer, and then the injection cylinder temperature Was injected into a parison mold temperature-controlled at 76 ° C. from an injection molding machine set at 270 ° C. to 300 ° C. (with the parison cooling temperature set to 76 ° C.). A parison was made. The opening part (end part) of the obtained parison was heated with an infrared heater and crystallized to impart heat resistance. Cross-sectional observation using an electron microscope (the sample was embedded in an epoxy resin and then cut out with LEICA ULTRACUT UCT (manufactured by Leica), cut into thin pieces, and observed with an electron microscope JEM-2010 (manufactured by JEOL Ltd.) ), It was found that the cavity starting particles were formed when the parison was cooled.
-Parison shape-
Shape: Fig. 4
Neck start point position: Height 8mm from the opening (axisymmetric with respect to the stretching axis)
Neck origin thickness: 0.5mm
Width of opening: 62mm
Side thickness: 0.5mm
Side length: 45mm
Bottom thickness: 2mm
Bottom width: 30mm
Gripping part thickness: 3mm
<成形工程>
 前記パリソンを2軸ブロー延伸装置の金型にセットした。
 ストレッチロッドにより、容器深さ方向に変形をさせた(延伸処理:ネッキング延伸)後、圧縮空気を導入(ブロー処理)することにより、金型内面に密着させて成形を行った。
 パリソンの温度設定は90℃、ストレッチロッドの速度は800mm/sec、最終延伸倍率は4.3倍とした。ストレッチロッドの伸縮により容器底部(パリソンの底部)が金型に到達する15mm前に1.5Mpaの圧縮空気を導入することで金型に密着させて形状を付与した。その後、成形体が固化して、ハンドリングが可能な70℃まで冷却(冷却処理)して、成形体(容器)を取り出した。
 上記のストレッチロッドによるネッキング延伸に引き続きブロー成形を行うことにより、容量500mLのカップ形状の容器(成形体)を作製した。前記容器は、容器周囲部位に空洞が発生し、銀色の外観となっていた。
 なお、実験的にストレッチロッドの動作のみを行い、圧縮空気を導入せずにサンプル作成を行ったところ、延伸したパリソンの側面部に空洞が形成されていること確認した。
<Molding process>
The parison was set in a mold of a biaxial blow stretching apparatus.
After deformation in the depth direction of the container with a stretch rod (stretching treatment: necking stretching), by introducing compressed air (blowing treatment), molding was performed in close contact with the inner surface of the mold.
The temperature setting of the parison was 90 ° C., the speed of the stretch rod was 800 mm / sec, and the final draw ratio was 4.3 times. The shape was imparted by closely contacting the mold by introducing 1.5 Mpa of compressed air 15 mm before the bottom of the container (the bottom of the parison) reached the mold by expansion and contraction of the stretch rod. Thereafter, the molded body was solidified and cooled to 70 ° C. where handling was possible (cooling treatment), and the molded body (container) was taken out.
Blow molding was performed subsequent to necking stretching with the stretch rod described above to produce a cup-shaped container (molded body) having a capacity of 500 mL. The container had a silver appearance with a cavity generated around the container.
In addition, when only the operation of the stretch rod was experimentally performed and a sample was prepared without introducing compressed air, it was confirmed that a cavity was formed in the side surface of the stretched parison.
(実施例2)
 実施例1のパリソンの製造において、パリソンの形状を図5の形状に変えた以外は、実施例1と同様にして、容量500mLの容器を作製した。
-パリソンの形状-
 形状:図5
 ネック起点部の位置:開口部から高さ8mm(延伸軸に対して軸対称)
 ネック起点部の厚み:0.5mm
 開口部の幅:62mm
 側部の厚み:1.5mm
 側部の長さ:15mm
 底の厚み:2mm
 底の幅:30mm
 把持部位の厚み:3mm
(Example 2)
In the production of the parison of Example 1, a container with a capacity of 500 mL was produced in the same manner as in Example 1 except that the shape of the parison was changed to the shape of FIG.
-Parison shape-
Shape: Fig. 5
Neck start point position: Height 8mm from the opening (axisymmetric with respect to the stretching axis)
Neck origin thickness: 0.5mm
Width of opening: 62mm
Side thickness: 1.5mm
Side length: 15mm
Bottom thickness: 2mm
Bottom width: 30mm
Gripping part thickness: 3mm
 実施例2においても、パリソンの冷却時に空洞起点粒子が形成されており、延伸処理を行ったパリソンは、内部に空洞が形成されていることが確認された。また、成形工程後の容器における空洞の形成位置も実施例1と同様であった。 Also in Example 2, the cavity starting particles were formed when the parison was cooled, and it was confirmed that the parison subjected to the stretching treatment had a cavity formed therein. Moreover, the formation position of the cavity in the container after the molding process was the same as that in Example 1.
(実施例3)
 実施例1の成形工程において、パリソンの温度設定が90℃であった点を、40℃に変え、冷却処理を行わなかった以外は、実施例1と同様にして、容量500mLの容器を作製した。
 前記実施例3で作製した容器における空洞の形成位置は、実施例1と同様であった。
(Example 3)
In the molding process of Example 1, the point where the temperature setting of the parison was 90 ° C. was changed to 40 ° C., and a container having a capacity of 500 mL was produced in the same manner as Example 1 except that the cooling treatment was not performed. .
The formation position of the cavity in the container produced in Example 3 was the same as in Example 1.
(実施例4)
 実施例1の成形工程において、パリソンの温度設定が90℃であった点を、130℃に変えた以外は、実施例1と同様にして、容量500mLの容器を作製した。
 前記実施例4で作製した容器における空洞の形成位置は、実施例1と同様であった。
Example 4
A container with a capacity of 500 mL was produced in the same manner as in Example 1 except that the temperature setting of the parison was 90 ° C. in the molding step of Example 1 was changed to 130 ° C.
The formation position of the cavity in the container produced in Example 4 was the same as in Example 1.
(実施例5)
 実施例1の成形工程において、パリソンの温度設定が90℃であった点を、150℃に変えた以外は、実施例1と同様にして、容量500mLの容器を作製した。
 前記実施例5で作製した容器における空洞の形成位置は、実施例1と同様であった。
(Example 5)
A container with a capacity of 500 mL was produced in the same manner as in Example 1, except that the temperature setting of the parison was 90 ° C. in the molding step of Example 1 was changed to 150 ° C.
The formation position of the cavity in the container produced in Example 5 was the same as in Example 1.
(実施例6)
 実施例1の成形工程において、パリソンの温度設定が90℃であった点を、25℃に変え、冷却処理を行わなかった以外は、実施例1と同様にして、容量500mLの容器を作製した。
 前記実施例6で作製した容器における空洞の形成位置は、実施例1と同様であった。
(Example 6)
In the molding step of Example 1, the point where the temperature setting of the parison was 90 ° C. was changed to 25 ° C., and a container having a capacity of 500 mL was produced in the same manner as in Example 1 except that the cooling treatment was not performed. .
The formation position of the cavity in the container produced in Example 6 was the same as in Example 1.
(比較例1)
 実施例1の成形工程において、延伸処理を行わなかった以外は、実施例1と同様にして、容量500mLの容器を作製した。
 比較例1では、パリソンの冷却時に空洞起点粒子が形成されていたが、成形工程後の容器には、空洞が形成されていなかった。
(Comparative Example 1)
A container having a capacity of 500 mL was produced in the same manner as in Example 1 except that the stretching process was not performed in the molding step of Example 1.
In Comparative Example 1, the cavity starting particles were formed when the parison was cooled, but no cavity was formed in the container after the molding process.
(比較例2)
 実施例2の成形工程において、延伸処理を行わなかった以外は、実施例2と同様にして、容量500mLの容器を作製した。
 比較例2では、パリソンの冷却時に空洞起点粒子が形成されていたが、成形工程後の容
器には、空洞が形成されていなかった。
(Comparative Example 2)
In the molding step of Example 2, a container having a capacity of 500 mL was produced in the same manner as Example 2 except that the stretching treatment was not performed.
In Comparative Example 2, the cavity starting particles were formed when the parison was cooled, but the cavity was not formed in the container after the molding process.
(比較例3)
<パリソンの製造>
 実施例1のパリソンの製造において、パリソンの形状を図9の形状に変えた以外は、実施例1と同様にしてパリソンを製造した。
 なお、電子顕微鏡を用いた断面観察(サンプルをエポキシ樹脂に樹脂包埋したのち、LEICA ULTRACUT UCT(ライカ製)により切出し、薄片とし、電子顕微鏡JEM-2010(日本電子(株)製)にて観察)により、パリソンの冷却時に空洞起点粒子が形成されていたことがわかった。
-パリソンの形状-
 形状:図9
 ネック起点部:なし
 開口部の幅:62mm
 側部の厚み:1.5mm
 側部の長さ:15mm
 底の厚み:2mm
 底の幅:30mm
 把持部位の厚み:3mm
(Comparative Example 3)
<Manufacture of parison>
In the production of the parison of Example 1, a parison was produced in the same manner as in Example 1 except that the shape of the parison was changed to the shape of FIG.
Cross-sectional observation using an electron microscope (the sample was embedded in an epoxy resin and then cut out with LEICA ULTRACUT UCT (manufactured by Leica), cut into thin pieces, and observed with an electron microscope JEM-2010 (manufactured by JEOL Ltd.) ), It was found that the cavity starting particles were formed when the parison was cooled.
-Parison shape-
Shape: Fig. 9
Neck origin: None Opening width: 62mm
Side thickness: 1.5mm
Side length: 15mm
Bottom thickness: 2mm
Bottom width: 30mm
Gripping part thickness: 3mm
<成形工程>
 実施例1の成形工程において、延伸処理を行わず、パリソンの温度設定が90℃であった点を180℃とした以外は、実施例1と同様にして、容量500mLの容器を作製した。
 比較例3では、パリソンの冷却時に空洞起点粒子が形成されていたが、成形工程後の容
器には、空洞が形成されていなかった。
 なお、パリソンの温度設定を実施例1と同じ90℃とした場合には、パリソンを伸ばすことができず、容器を作製することができなかった。
<Molding process>
In the molding process of Example 1, a container having a capacity of 500 mL was produced in the same manner as in Example 1 except that the stretching process was not performed and the temperature setting of the parison was 90 ° C., which was 180 ° C.
In Comparative Example 3, the cavity starting particles were formed when the parison was cooled, but the cavity was not formed in the container after the molding process.
In addition, when the temperature setting of the parison was set to 90 ° C. as in Example 1, the parison could not be stretched and a container could not be produced.
(評価)
 前記実施例1~6、及び比較例1~3で得られた容器の断熱性、高輝度性、光輝ムラ(均一な光輝面が形成されているか)、及び成形維持性について、下記のように評価した。結果を表1に示す。
(Evaluation)
Regarding the heat insulating properties, high brightness, brightness unevenness (whether a uniform bright surface is formed), and molding maintainability of the containers obtained in Examples 1 to 6 and Comparative Examples 1 to 3, the following is obtained. evaluated. The results are shown in Table 1.
<断熱性評価>
 前記実施例1~6、及び比較例1~3で得られた容器に、75℃の熱水を口のところまで注ぎ、ボトル内部中央のボトルの全高さの1/2の位置に設置した熱電対を用いて温度を測定した。
 評価基準は、下記の通りとした。
-評価基準-
 比較例3の容器を基準容器とし、以下の評価基準で評価した。
 ◎:60分後の基準容器に対する温度差が+15℃より大。
 ○:60分後の基準容器に対する温度差が+10℃より大きく+15℃以下。
 △:60分後の基準容器に対する温度差が+3℃より大きく+10℃以下。
 ×:60分後の基準容器に対する温度差が+3℃以下。
<Insulation evaluation>
In the containers obtained in Examples 1 to 6 and Comparative Examples 1 to 3, hot water at 75 ° C. was poured to the mouth, and the thermoelectric device installed at a position half the total height of the bottle in the center of the bottle. The temperature was measured using a pair.
The evaluation criteria were as follows.
-Evaluation criteria-
The container of Comparative Example 3 was used as a reference container, and evaluation was performed according to the following evaluation criteria.
(Double-circle): The temperature difference with respect to the reference | standard container after 60 minutes is larger than +15 degreeC.
○: The temperature difference with respect to the reference container after 60 minutes is greater than + 10 ° C. and not more than + 15 ° C.
(Triangle | delta): The temperature difference with respect to the reference | standard container after 60 minutes is larger than +3 degreeC and +10 degrees C or less.
X: The temperature difference with respect to the reference container after 60 minutes is + 3 ° C. or less.
<高輝度性評価>
 前記実施例1~6、及び比較例1~3で得られた容器の側面の容器底部から10cmの高さを中心とする、比較的平坦な部分を2cm×2cmの矩形に切出し、このサンプルの波長550nmにおける光線透過率を測定した。
 評価基準は、下記の通りとした。
-評価基準-
 ◎:光線透過率が50%未満。
 ○:光線透過率が50%以上60%未満。
 △:光線透過率が60%以上70%未満。
 ×:光線透過率が70%以上。
<High brightness evaluation>
A relatively flat portion centered at a height of 10 cm from the bottom of the container on the side surface of the container obtained in Examples 1 to 6 and Comparative Examples 1 to 3 was cut into a 2 cm × 2 cm rectangle, and this sample was cut. The light transmittance at a wavelength of 550 nm was measured.
The evaluation criteria were as follows.
-Evaluation criteria-
A: Light transmittance is less than 50%.
○: The light transmittance is 50% or more and less than 60%.
Δ: Light transmittance is 60% or more and less than 70%.
X: Light transmittance is 70% or more.
<光輝ムラ評価>
 前記実施例1~6で得られた容器の光輝ムラについて、以下の基準で評価した。
-評価基準-
 ◎:容器の空洞形成位置全体に均一な光輝面が形成されている。
 △:実用上問題ないが、光にかざすと容器の空洞形成位置にムラが認識される。
 ×:目視にて容器の空洞形成位置にムラがある。
<Evaluation of brightness unevenness>
The brightness unevenness of the containers obtained in Examples 1 to 6 was evaluated according to the following criteria.
-Evaluation criteria-
(Double-circle): The uniform luminescent surface is formed in the whole cavity formation position of a container.
Δ: No problem in practical use, but when held over light, unevenness is recognized at the cavity forming position of the container.
X: There is unevenness in the cavity forming position of the container visually.
<成形維持性評価>
 前記実施例1~6、及び比較例1~3で得られた容器に25℃の雰囲気下で25℃の水を充填し、容器の容量を測定し、このときのボトル容量をV1(元の容量)とする。
 水を排水した後、85℃の熱水を充填し、10分間放置後に排水し、容器が空になった状態で20分放置する。
 その後、再度、容器に25℃の水を充填して容器の容量を測定する。このときの容器の容量をV2とする。
 V2/V1を計算し、容量の変化を求め、以下の評価基準で評価した。
-評価基準-
 ◎:元の容量の2%以下(合格)。
 ○:元の容量の2%を超え5%以下(許容可)。
 ×:元の容量の5%を超える場合(NG)。
<Molding maintainability evaluation>
The containers obtained in Examples 1 to 6 and Comparative Examples 1 to 3 were filled with water at 25 ° C. in an atmosphere of 25 ° C., and the capacity of the container was measured. Capacity).
After draining the water, it is filled with 85 ° C. hot water, left standing for 10 minutes, drained, and left for 20 minutes with the container empty.
Thereafter, the container is again filled with water at 25 ° C., and the capacity of the container is measured. The capacity of the container at this time is V2.
V2 / V1 was calculated to determine the change in capacity, and evaluated according to the following evaluation criteria.
-Evaluation criteria-
A: 2% or less of original capacity (pass).
○: Over 2% of the original capacity and 5% or less (acceptable).
X: When exceeding 5% of the original capacity (NG).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、本発明の製造方法により得られた成形体は、内部に空洞を含有し、断熱性、高輝度性、光輝ムラ、及び成形維持性に優れていることがわかった。また、実施例1~6の中でも、実施例1~4は、光輝ムラがより優れていることがわかった。 From the results of Table 1, it was found that the molded product obtained by the production method of the present invention contained cavities inside and was excellent in heat insulation, high luminance, brightness unevenness, and molding maintainability. In addition, among Examples 1 to 6, Examples 1 to 4 were found to have more excellent brightness unevenness.
 本発明の内部に空洞を含有する成形体の製造方法は、成形維持性、及び断熱性に優れ、高輝度であり、均一な光輝面が形成されている内部に空洞を含有する成形体の製造方法として、好適に用いることができる。
 また、本発明の内部に空洞を含有する成形体は、断熱性、高輝度性、光輝ムラ、及び成形維持性に優れているので、例えば、高断熱性及び高輝度性や、容器内容物の保護が必要とされるボトル容器として、好適に利用することができる。
The method for producing a molded body containing cavities in the present invention is excellent in molding maintenance and heat insulation, and has high brightness and a uniform bright surface is formed. As a method, it can use suitably.
In addition, since the molded body containing a cavity in the present invention is excellent in heat insulation, high brightness, brightness unevenness, and molding maintainability, for example, high heat insulation and high brightness, and container contents It can be suitably used as a bottle container that requires protection.
1   ブロー成形機
10  パリソン
20  金型
20a 金型
20b 金型
30  成形体
31  加熱装置
32  支持部材
41  延伸軸
42  開口部
43  底
44  側部
45  把持部位
81  押さえ金具
82  支持部材
DESCRIPTION OF SYMBOLS 1 Blow molding machine 10 Parison 20 Mold 20a Mold 20b Mold 30 Molded body 31 Heating device 32 Supporting member 41 Stretching shaft 42 Opening part 43 Bottom 44 Side part 45 Holding part 81 Presser fitting 82 Supporting member

Claims (7)

  1.  パリソンを成形し、成形体を製造する成形工程を含み、
     前記成形工程が、加熱したパリソンを延伸する延伸処理と、
     前記延伸したパリソンをブローするブロー処理とを含み、
     前記パリソンが、開口部と、底とを有し、かつ、ネック起点部を設けたことを特徴とする内部に空洞を含有する成形体の製造方法。
    Including a molding step of forming a parison and manufacturing a molded body,
    The forming step is a drawing process for drawing a heated parison;
    A blow treatment for blowing the stretched parison,
    The said parison has an opening part and a bottom, and provided the neck starting part, The manufacturing method of the molded object which contains a cavity inside characterized by the above-mentioned.
  2.  延伸処理における延伸が、ネッキング延伸である請求項1に記載の内部に空洞を含有する成形体の製造方法。 The method for producing a molded article containing cavities inside according to claim 1, wherein the stretching in the stretching treatment is necking stretching.
  3.  パリソンの加熱温度(Tp)が、下記式(1)を満たす請求項1から2のいずれかに記載の内部に空洞を含有する成形体の製造方法。
     (Tg-30)℃<Tp<(Tg+70)℃   ・・・ (1)
     ただし、式(1)中、Tgはパリソンの樹脂のガラス転移温度を表す。
    The manufacturing method of the molded object which contains a cavity in the inside in any one of Claim 1 to 2 whose heating temperature (Tp) of a parison satisfies following formula (1).
    (Tg-30) ° C. <Tp <(Tg + 70) ° C. (1)
    However, in Formula (1), Tg represents the glass transition temperature of resin of a parison.
  4.  ネック起点部が、パリソンの薄肉部である請求項1から3のいずれかに記載の内部に空洞を含有する成形体の製造方法。 4. The method for producing a molded body containing a cavity inside according to any one of claims 1 to 3, wherein the neck starting portion is a thin portion of a parison.
  5.  薄肉部が、パリソンの延伸軸に対して、軸対称に設けられている請求項4に記載の内部に空洞を含有する成形体の製造方法。 The method for producing a molded body containing a cavity inside according to claim 4, wherein the thin-walled portion is provided symmetrically with respect to the drawing axis of the parison.
  6.  請求項1から5のいずれかに記載の内部に空洞を含有する成形体の製造方法により製造されたことを特徴とする内部に空洞を含有する成形体。 A molded article containing a cavity inside, wherein the molded article is produced by the method for producing a molded article containing a cavity inside according to any one of claims 1 to 5.
  7.  成形体の少なくとも一部の波長550nmの光に対する光線透過率が、70%未満である請求項6に記載の内部に空洞を含有する成形体。
     
    The molded article containing cavities inside according to claim 6, wherein the light transmittance of at least a part of the molded article with respect to light having a wavelength of 550 nm is less than 70%.
PCT/JP2010/068630 2009-12-24 2010-10-21 Molded body having cavity thereinside, and production method thereof WO2011077821A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-292738 2009-12-24
JP2009292738A JP2011131487A (en) 2009-12-24 2009-12-24 Molding havting cavity thereinside, and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2011077821A1 true WO2011077821A1 (en) 2011-06-30

Family

ID=44195367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068630 WO2011077821A1 (en) 2009-12-24 2010-10-21 Molded body having cavity thereinside, and production method thereof

Country Status (2)

Country Link
JP (1) JP2011131487A (en)
WO (1) WO2011077821A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023046580A1 (en) * 2021-09-22 2023-03-30 Société des Produits Nestlé S.A. Pha-based container and method for manufacturing such container

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2463079A1 (en) * 2010-12-10 2012-06-13 Nestec S.A. A process for single-step forming and filling of containers
JP2017159919A (en) * 2016-03-08 2017-09-14 東洋製罐グループホールディングス株式会社 Stretch-molded container

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5836121U (en) * 1981-09-02 1983-03-09 株式会社吉野工業所 Primary molded product for biaxially stretched blow molded bottle molding
JPH0339226A (en) * 1989-07-07 1991-02-20 Nissei Ee S B Kikai Kk Method for stretching parison in stretching blow molding
JPH04115938A (en) * 1990-09-05 1992-04-16 Dainippon Printing Co Ltd Heat-resistant light-screening multilayer bottle
JPH0531789A (en) * 1991-08-01 1993-02-09 Polyplastics Co Manufacture of blown bottle
US5750224A (en) * 1991-07-01 1998-05-12 Plm Ab Plastic container
JP2000301596A (en) * 1999-04-19 2000-10-31 Toppan Printing Co Ltd Frost-like plastic bottle
JP2003170487A (en) * 2001-09-25 2003-06-17 Frontier:Kk Preform of cup-shaped container
JP2006321152A (en) * 2005-05-20 2006-11-30 Toyo Seikan Kaisha Ltd Lightproof container and its manufacturing method
WO2010110420A1 (en) * 2009-03-27 2010-09-30 富士フイルム株式会社 Porous molded object and process for producing same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5836121U (en) * 1981-09-02 1983-03-09 株式会社吉野工業所 Primary molded product for biaxially stretched blow molded bottle molding
JPH0339226A (en) * 1989-07-07 1991-02-20 Nissei Ee S B Kikai Kk Method for stretching parison in stretching blow molding
JPH04115938A (en) * 1990-09-05 1992-04-16 Dainippon Printing Co Ltd Heat-resistant light-screening multilayer bottle
US5750224A (en) * 1991-07-01 1998-05-12 Plm Ab Plastic container
JPH0531789A (en) * 1991-08-01 1993-02-09 Polyplastics Co Manufacture of blown bottle
JP2000301596A (en) * 1999-04-19 2000-10-31 Toppan Printing Co Ltd Frost-like plastic bottle
JP2003170487A (en) * 2001-09-25 2003-06-17 Frontier:Kk Preform of cup-shaped container
JP2006321152A (en) * 2005-05-20 2006-11-30 Toyo Seikan Kaisha Ltd Lightproof container and its manufacturing method
WO2010110420A1 (en) * 2009-03-27 2010-09-30 富士フイルム株式会社 Porous molded object and process for producing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023046580A1 (en) * 2021-09-22 2023-03-30 Société des Produits Nestlé S.A. Pha-based container and method for manufacturing such container

Also Published As

Publication number Publication date
JP2011131487A (en) 2011-07-07

Similar Documents

Publication Publication Date Title
US10370139B2 (en) Plastic container having pearl-like appearance and process for producing the same
JP3978012B2 (en) Multilayer container and manufacturing method thereof
CA2421433A1 (en) Multilayer containers and preforms having barrier properties utilizing recycled material
JP4599900B2 (en) Preform and blow molded container comprising the preform
JP4294475B2 (en) Biaxial stretch blow thermoset container and method for manufacturing the same
JP2008254774A (en) Pressure-resistant polyester container and manufacturing method therefor
JPWO2016067658A1 (en) Heat-shrinkable polyester film and package
JP2012121241A (en) Biaxially-stretched polybutylene terephthalate film
JP5929082B2 (en) Foamed stretched plastic container and manufacturing method thereof
WO2011077821A1 (en) Molded body having cavity thereinside, and production method thereof
JP2015229242A (en) Heat-shrinkable polyester film and package
JP5685525B2 (en) Method for producing porous molded body
JP4784149B2 (en) Container preform and plastic container
JP2003020344A (en) Polyglycolic acid molded article
JP2001354223A (en) Container made of aliphatic polyester
CN117440982A (en) Polyester heat-shrinkable film
JPH0379189B2 (en)
JPS62263250A (en) Polyester resin composition
JP2007182509A (en) Biaxially stretched polyester film for molding transfer
JP4543743B2 (en) Biaxially stretched polylactic acid film and container for molding
JPH1045886A (en) Polyester, perform biaxially oriented bottle comprising the same and production of biaxially oriented polyester bottle
JP3522043B2 (en) Polyester, preform and biaxially stretched bottle made of polyester, and method for producing polyester biaxially stretched bottle
JP5929085B2 (en) Foam stretch container and method for producing the same
JP3498939B2 (en) Polyester, preform and biaxially stretched bottle made of polyester, and method for producing polyester biaxially stretched bottle
JPS6212023B2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839058

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10839058

Country of ref document: EP

Kind code of ref document: A1