WO2011077776A1 - 中空エンジンバルブの弁傘部の製造方法及び中空エンジンバルブの弁傘部のプレス装置及び中空エンジンバルブ - Google Patents

中空エンジンバルブの弁傘部の製造方法及び中空エンジンバルブの弁傘部のプレス装置及び中空エンジンバルブ Download PDF

Info

Publication number
WO2011077776A1
WO2011077776A1 PCT/JP2010/061933 JP2010061933W WO2011077776A1 WO 2011077776 A1 WO2011077776 A1 WO 2011077776A1 JP 2010061933 W JP2010061933 W JP 2010061933W WO 2011077776 A1 WO2011077776 A1 WO 2011077776A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
valve head
hollow
semi
finished product
Prior art date
Application number
PCT/JP2010/061933
Other languages
English (en)
French (fr)
Inventor
豹治 吉村
Original Assignee
三菱重工業株式会社
株式会社 吉村カンパニー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 株式会社 吉村カンパニー filed Critical 三菱重工業株式会社
Priority to CN201080047680.2A priority Critical patent/CN102652042B/zh
Priority to US13/502,902 priority patent/US8650752B2/en
Priority to EP20100839013 priority patent/EP2517806B1/en
Publication of WO2011077776A1 publication Critical patent/WO2011077776A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/02Making uncoated products
    • B21C23/18Making uncoated products by impact extrusion
    • B21C23/183Making uncoated products by impact extrusion by forward extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21KMAKING FORGED OR PRESSED METAL PRODUCTS, e.g. HORSE-SHOES, RIVETS, BOLTS OR WHEELS
    • B21K1/00Making machine elements
    • B21K1/20Making machine elements valve parts
    • B21K1/22Making machine elements valve parts poppet valves, e.g. for internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/12Cooling of valves
    • F01L3/14Cooling of valves by means of a liquid or solid coolant, e.g. sodium, in a closed chamber in a valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2303/00Manufacturing of components used in valve arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0402Cleaning, repairing, or assembling
    • Y10T137/0491Valve or valve element assembling, disassembling, or replacing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/598With repair, tapping, assembly, or disassembly means
    • Y10T137/6065Assembling or disassembling reciprocating valve
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49229Prime mover or fluid pump making
    • Y10T29/49288Connecting rod making
    • Y10T29/49291Connecting rod making including metal forging or die shaping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49229Prime mover or fluid pump making
    • Y10T29/49298Poppet or I.C. engine valve or valve seat making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49229Prime mover or fluid pump making
    • Y10T29/49298Poppet or I.C. engine valve or valve seat making
    • Y10T29/49307Composite or hollow valve stem or head making
    • Y10T29/49309Composite or hollow valve stem or head making including forging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49229Prime mover or fluid pump making
    • Y10T29/49298Poppet or I.C. engine valve or valve seat making
    • Y10T29/49307Composite or hollow valve stem or head making
    • Y10T29/49311Composite or hollow valve stem or head making including extruding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49229Prime mover or fluid pump making
    • Y10T29/49298Poppet or I.C. engine valve or valve seat making
    • Y10T29/49314Poppet or I.C. engine valve or valve seat making with assembly or composite article making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/51Plural diverse manufacturing apparatus including means for metal shaping or assembling
    • Y10T29/5116Plural diverse manufacturing apparatus including means for metal shaping or assembling forging and bending, cutting or punching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/53796Puller or pusher means, contained force multiplying operator

Definitions

  • the present invention has a valve head hollow hole whose side is welded to a shaft end sealing material or a hollow shaft section, and the valve head hollow hole is formed with an enlarged diameter within a diameter expansion section of the valve head section.
  • the present invention relates to a hollow engine valve having an umbrella part.
  • Patent Document 1 Regarding the manufacturing method of the valve head part of the hollow engine valve, the inventor of the following Patent Document 1 has been made by the inventor of the present application.
  • the outline is as follows.
  • the valve head part of a hollow engine valve is exposed to high temperatures, particularly in an exhaust valve, so that materials having excellent heat resistance such as heat-resistant steel based on manganese, nickel, chromium, etc. have been conventionally used. Has been used.
  • the inventor of the present application sought a method of forming the valve head portion by cold forging instead of hot forging using a material having high heat resistance as described above, and as a result of trial and error, the expanded diameter portion A valve head having a bottomed cylindrical hollow hole whose bottom end is the same as the maximum inner diameter of the valve head hollow hole of the finished valve head portion.
  • the semi-finished product is manufactured, and the semi-finished product is cold-forged, and the upper part of the diameter-expanded part and the body part are gradually squeezed into multiple stages to complete the method of making the finished product valve head part. This was filed and this application was granted a right (Patent Document 1 below).
  • NCF47W Nickel base steel
  • SUH35 Austenitic manganese base steel
  • Inconel 751 Nickel base steel
  • a first step of manufacturing a semi-finished product of a valve head part from a solid round bar of a material, and a second step of making the semi-finished product of the valve head part a finished product of the valve head part by warm forging In the first step, when the cylindrical body portion has an enlarged diameter portion integrated with the body portion at one end and the enlarged diameter portion side is at the bottom, the maximum outer diameter of the enlarged diameter portion is a finished valve umbrella.
  • the upper part of the enlarged diameter part and the body part are gradually squeezed in multiple stages by forging the semi-finished product of the valve head part in the range of room temperature to 870 ° C., That is, the entire space including the workpiece, the die, and the punch is maintained at a constant temperature, and the inner diameter of the die that presses the upper portion of the enlarged diameter portion and the body portion of the semi-finished valve umbrella portion is gradually increased as the step proceeds.
  • the finished valve head portion is configured such that the maximum inner diameter in the enlarged diameter portion of the valve head hollow hole is maintained as the inner diameter of the cylindrical hollow hole, and the inner diameter is reduced toward the upper side.
  • the press apparatus used in the second step has a heat insulating wall that includes the work and the fixing tool for fixing the work and the die and the fixing tool for fixing the die, and the inside of the heat insulating wall is formed by the effect of the heat insulating wall.
  • a press device for a valve head part of a hollow engine valve characterized in that the valve head part of the hollow engine valve can be manufactured by the manufacturing method described in Solution 1 so as to be maintained in a constant temperature state.
  • ⁇ Solution 3> A hollow engine valve formed by welding a valve head portion manufactured by the manufacturing method described in Solution 1 or the press device described in Solution 2 to one end of a shaft end sealing material.
  • ⁇ Solution 4> A valve shaft manufactured by the manufacturing method described in Solution 1 or the press device described in Solution 2 is welded to one end of a hollow shaft portion whose both ends are open, and a shaft end sealing material is welded to the other end.
  • a hollow engine valve is welded to one end of a hollow shaft portion whose both ends are open, and a shaft end sealing material is welded to the other end.
  • the semi-finished valve head part is kept at a constant temperature by holding the entire space including the workpiece, the die, and the punch at a constant temperature by warm forging at room temperature to 870 ° C. Since the upper part of the diameter part and the body part are gradually drawn up in multiple stages, cracks and deformations are drastically reduced, the number of necking (squeezing up) processes is not increased, and intermediate heat treatment such as annealing is performed. For example, even if it is a material with a high carbon content contained in JIS 4311 heat-resisting steel, the valve head portion can be molded without any problem.
  • the formation of the valve head part is smoothly performed because the material is temporarily made into a semi-finished part of the valve head part in the first step, and it is drawn up in the second step to make the finished part of the valve head part. It has nothing but two steps. That is, if the first step for manufacturing the semi-finished valve head part is lacking, it is impossible to smoothly perform the second step of squeezing in warm forging from room temperature to 870 ° C. In addition, hot forging with high temperature must be used.
  • the heat insulation including the work, the fixing tool for fixing the work, the die, and the fixing tool for fixing the die.
  • maintained to a constant temperature state by the effect of this heat insulation wall is disclosed.
  • the intermediate heat treatment process such as annealing is often performed several times.
  • the expansion of the valve head part of the hollow engine valve since it differs depending on the material, it can not be said unconditionally, but since about 10 steps, depending on the case, more steps are required, the number of intermediate heat treatment increases, Each time the drawing must be interrupted, it becomes almost impossible to say a realistic manufacturing method. In other words, it may be carried out experimentally, but it cannot be said that the technical contents can be applied to line production in an actual factory.
  • Solution 2 of the present invention the technical contents for maintaining the entire space in a constant temperature atmosphere are disclosed.
  • the constant temperature state when the workpiece is drawn up is maintained in an ideal form, and even when the workpiece is drawn up, the temperature of the workpiece is prevented from being lowered, and more than one intermediate heat treatment is not necessary. It became possible to squeeze up.
  • a hollow engine valve as a finished product having a valve head portion obtained by the invention of Solution 1 or Solution 2 of the present invention can be obtained.
  • the grounds for limiting the numerical value of the temperature range in the second step described in Solution 1 are as follows. That is, there are various theories in the definition of the temperature range of warm forging, and there is no established theory yet, but in the present invention, the temperature range of warm forging is considered to be the most common " The temperature range below the recrystallization temperature is considered as the “temperature range for warm forging”. In addition, the meaning of writing “general” here means “applicable most widely in various steel materials”. Therefore, it goes without saying that this temperature range can be further narrowed if the material is limited.
  • normal temperature there is no lower limit of the temperature range of “warm forging”, but in the actual site, it is rarely done to cool and forge the material, so the lower limit of the temperature range is “Normal temperature”. Although there are various definitions of “normal temperature”, in the present invention, “normal temperature” is generally set to 10 ° C. to 30 ° C. The lower limit in actual work is considered to be around 20 ° C.
  • the recrystallization temperature is not a specific temperature, and varies depending on various conditions, but in the case of soft iron, it can be up to 870 ° C. depending on the conditions. In this case, this is the upper limit of the temperature range.
  • the recrystallization temperature of iron As for the recrystallization temperature of iron, p. 138 of Non-Patent Document 2 describes that the recrystallization temperature changes (increases) when iron contains an additive element.
  • nickel In the heat resistant steel as one of the materials in the present invention, nickel (contained in almost all austenitic heat resistant steels), molybdenum (contained in SUH38), chromium (contained in all heat resistant steels), which has the function of raising the recrystallization temperature.
  • the temperature is at least 700 ° C. or higher. Get nice.
  • the term “finished valve head part” or “finished valve head part” is used, which means the valve head part in the following state. It is. That is, 1) The outer diameter of the expanded portion has not changed any more 2) The maximum inner diameter of the hollow hole has not changed any more 3) The outer diameter of the end of the barrel is sealed at the shaft end What is in a state that coincides with the outer diameter of the stopper or the hollow shaft portion
  • the one having the above-mentioned three states is referred to as a “finished valve head part” or a “finished valve head part”.
  • the “finished valve head part” or “finished valve head part” in the present invention is processed later, and the “finished valve head part” or “finished valve head part” in the present invention is used. Regardless of what kind of processing is performed later, if the method of the present invention is used in the processing of the above three points of the valve head part, they are all included in the scope of the present invention. Does not speak again.
  • the method of the present invention has an eye for reducing the “annealing” process as much as possible. Therefore, as a matter of course, the method of the present invention does not exclude a method in which an annealing process of about 1 to 2 times is further interposed in the middle. That is, when the number of processes in the rotary press device becomes too large, the second step is divided into the first half and the second half to reduce the number of processes for one time, and the material is reheated between the first half and the second half, that is, the annealing process It is a natural request based on the technical contents, and it is natural that all such methods are also included in the scope of the present invention.
  • (A) It is a longitudinal cross-sectional view of the semi-finished product of the valve head part obtained at the 1st step in the manufacturing method of Example 1 of this invention.
  • (B) It is a longitudinal cross-sectional view of the finished product of the valve head part obtained in the second step in the manufacturing method of Example 1 of the present invention.
  • (A)-(c) It is explanatory drawing for demonstrating the 1st method of the 1st step in the manufacturing method of Example 1 of this invention.
  • (A)-(c) It is explanatory drawing for demonstrating the 2nd method of the 1st step in the manufacturing method of Example 1 of this invention.
  • (A) It is a longitudinal cross-sectional view of an example of the hollow engine valve obtained in the manufacturing method of Example 1 of this invention.
  • (B) It is a longitudinal cross-sectional view of another example of the hollow engine valve obtained in the manufacturing method of Example 1 of the present invention.
  • the hollow engine valve V includes a valve head portion 1 and a shaft end sealing material 3. That is, the shaft end sealing material 3 is welded to one end of the valve head portion 1 and a hollow hole S is provided therein, and the hollow hole S is not shown when used as an exhaust valve. Sodium is enclosed. When not used as an exhaust valve, sodium is not enclosed.
  • the hollow engine valve Y shown in FIG. 9b is an example in which the hollow shaft portion 2 is welded to the valve head portion 1, and the shaft end sealing material 3 is further welded to the hollow shaft portion 2, and the hollow hole S is also provided inside.
  • the hollow hole S is filled with sodium (not shown) when used as an exhaust valve, and is not sealed when not used as an exhaust valve.
  • an electric resistance welded tube obtained by rolling a steel plate and welding the end portions, a seamless seamless pipe, or the like can be used.
  • the welding method at the time of welding each member is not ask
  • the specific names of the material of the valve head part 1 are as follows.
  • a material having high heat resistance for example, NCF47W, SUH35, Inconel 751 or the like is used for the valve head portion 1, and then the material having the next high heat resistance.
  • SUS304, SUS430, SUH11, or the like may be used for the hollow shaft portion 2 (only Y), and the shaft end sealing material 3 may be made of a material that is slightly inferior in heat resistance, such as SUH11.
  • a material having high heat resistance is used for each of the valve head portion 1, the hollow shaft portion 2, and the shaft end sealing material 3. There is no need.
  • the hollow engine valves V and Y obtained by the manufacturing method of Example 1 of the present invention are as described above.
  • the manufacturing method of the valve head part 1 which becomes the core of Example 1 of this invention is demonstrated in detail.
  • FIG. 6 a shows a semi-finished product 11 of the valve head portion 1 obtained in the first step of Embodiment 1 of the present invention in a longitudinal sectional view.
  • the semi-finished product 11 includes a disk-shaped enlarged diameter portion 111 and a cylindrical body portion 112 formed integrally, and the lower end portion of the body portion 112 is continuously connected to the upper end of the enlarged diameter portion 111.
  • the connecting portion has a gentle curve as seen in FIG. 6a.
  • Inside the semi-finished product 11 is formed a cylindrical hollow hole S11 having a bottom at the bottom, the upper end of the hollow hole S11 is opened at the upper surface of the body 112, and the lower end is provided within the enlarged diameter part 111. It is the bottom.
  • the upper portion of the enlarged diameter portion 111 and the entire body portion 112 of the semi-finished product 11 of FIG. 6a are drawn (necked) by warm forging, as shown in FIG. 6b.
  • a finished product of the large valve head part 1 is obtained.
  • 1a is an enlarged diameter part and 1b is a trunk
  • S1 is a cylindrical hollow hole with a bottom at the bottom. The upper end of the hollow hole S1 is opened at the upper surface of the body 1b, and the lower end is bottomed inside the enlarged diameter part 1a.
  • h11 is the overall height of the semi-finished product 11
  • h12 is the height of the enlarged diameter portion 111
  • h13 is the height of the trunk portion 112
  • h14 is the height (depth) of the hollow hole S11
  • ⁇ 10 Is the outer diameter of the body 112
  • ⁇ 12 is the maximum outer diameter of the enlarged diameter portion 111
  • ⁇ 11 is the inner diameter of the hollow hole S11.
  • h15 is the overall height of the finished valve head portion 1
  • h16 is the height of the enlarged diameter portion 1a
  • h17 is the height of the trunk portion 1b
  • h18 is the height of the hollow hole S1 ( Depth)
  • ⁇ 14 is the outer diameter of the upper end portion of the body portion 1b
  • ⁇ 12 is the maximum outer diameter of the enlarged diameter portion 1a
  • ⁇ 11 is the maximum inner diameter of the hollow hole S1
  • ⁇ 13 is the inner diameter of the upper end portion of the hollow hole S1.
  • the overall height h15 of the finished valve head portion 1 is larger than the overall height h11 of the semi-finished product 11 (h11 ⁇ h15), and the height (depth) h18 of the hollow hole S1 is the hollow hole S11.
  • the height (depth) of h14 is larger than h14 (h14 ⁇ h18)
  • the height h12 of the enlarged diameter portion 111 is substantially the same as the height h16 of the enlarged diameter portion 1a (h12 ⁇ h16)
  • the height h17 of the body portion 1b is It is larger than the height h13 of the body part 112 (h13 ⁇ h17)
  • the maximum outer diameter of the enlarged part 111 is the same as the maximum outer diameter of the enlarged part 1a (both are ⁇ 12)
  • the outer diameter ⁇ 10 of the upper end part of the trunk part 112 is 10 Is larger than the outer diameter ⁇ 14 of the upper end of the body 1b ( ⁇ 14 ⁇ 10)
  • the inner diameter of the hollow hole S11 is the
  • FIG. 7 shows a first method for obtaining the semi-finished product 11.
  • a solid round bar 2A made of an appropriate material is prepared.
  • the engine valve V or Y is used as an exhaust valve
  • SUH35 is used as a material.
  • the outer diameter of the solid round bar 2A is the same as the outer diameter of the body portion 112 of the semi-finished product 11, and the height h20 is lower than the height h11 of the semi-finished product 11 (h20 ⁇ h11).
  • a hollow hole 2C is formed by punching on the upper surface of the solid round bar 2A to form a cup-shaped intermediate member 2B (FIG. 7b).
  • the hollow hole 2C has a height (depth) h22 that is about half of the overall height h21 of the intermediate member 2B.
  • the outer diameter of the intermediate member 2B is the same as the outer diameter ⁇ 10 of the solid round bar 2A, as a result, the height h21 of the intermediate member 2B is larger than the height h20 of the solid round bar 2A. (H20 ⁇ h21).
  • the inner diameter of the hollow hole 2C is the same as the inner diameter ⁇ 11 of the hollow hole S11 of the semi-finished product 11 (FIG. 7c).
  • the lower portion of the intermediate member 2B is formed by forging to form the enlarged diameter portion 111.
  • the type of forging is not limited. That is, any of cold forging, warm forging, and hot forging may be used. Since this step is an intermediate process, the accuracy required in the second step described later is not required, but the outer diameter of the upper part of the intermediate member 2B is held at the outer diameter ⁇ 10 of the body portion of the semi-finished product 11. That is, the inner diameter of the hollow hole 2C is held at the inner diameter ⁇ 11 of the hollow hole S11 of the semi-finished product 11, and the maximum outer diameter of the semi-finished product 11 is set when the lower portion of the intermediate member 2B is the enlarged diameter portion 111.
  • the maximum outer diameter ⁇ 12 of the enlarged diameter portion 111 and these three points are important.
  • the hollow hole 2C (height h22) is slightly deepened to form a hollow hole S11 having a height (depth) h14.
  • the semi-finished product 11 (FIG. 7c) is obtained from the solid round bar 2A (FIG. 7a) via the intermediate member 2B (FIG. 7b).
  • FIG. 8 shows a second method for obtaining the semi-finished product 11.
  • a solid round bar 3A made of a material selected from suitable materials is prepared.
  • the engine valve V or Y is used as an exhaust valve
  • SUH35 is used as a material.
  • the outer diameter of the solid round bar 3A is the same as the outer diameter of the body 112 of the semi-finished product 11, and the height h30 is lower than the height h11 of the semi-finished product 11 (h30 ⁇ h11).
  • the lower part of the solid round bar 3A is formed by forging to form a solid cap-shaped intermediate member 3B having an enlarged diameter portion 3C (FIG. 8b).
  • the type of forging is not limited. That is, any of cold forging, warm forging, and hot forging may be used. Since this step is an intermediate process, the accuracy required in the second step described later is not required, but the outer diameter of the upper part of the intermediate member 3B is held at the outer diameter ⁇ 10 of the body portion of the semi-finished product 11.
  • the maximum outer diameter of the enlarged diameter part 3C is the maximum outer diameter ⁇ 12 of the enlarged diameter part 111 of the semi-finished product 11, and these two points are important. Become. In this process, the height h31 of the intermediate member 3B is slightly lowered. That is, h31 ⁇ h30.
  • a hollow hole S11 having a height (depth) h14 and an inner diameter ⁇ 11 is formed by punching on the upper surface of the intermediate member 3B.
  • the upper portion of the intermediate member 3B is stretched to become a body portion 112 having a height h13 (FIG. 8c).
  • the semi-finished product 11 (FIG. 8c) is obtained from the solid round bar 3A (FIG. 8a) via the intermediate member 3B (FIG. 8b).
  • two points are important: the outer diameter of the body 112 is held at ⁇ 10, and the maximum outer diameter of the enlarged diameter portion 111 is held at ⁇ 12.
  • FIG. 1 shows a press apparatus PR used in the second step.
  • the press device PR is a rotary press device, and its configuration is known, and therefore the configuration will be described in detail only for the die set DS that is a configuration unique to the first embodiment of the present invention.
  • a plurality of upper punches P for suspending the workpiece W, a plurality of dies D on which the workpiece W is inserted and molded, a ram R and an upper ram UR for pressing the plurality of upper punches P, and a plurality of dies D are fixed.
  • the press bed B is composed of four guide posts GP that expand and contract, and the corresponding positions of the plurality of upper punches P and the plurality of dies D are shifted one by one as the ram R rotates by a certain angle. Go.
  • the ram R can be rotated clockwise or counterclockwise in plan view, but in the first embodiment, the ram R is rotated clockwise in plan view.
  • the plurality of upper punches P for suspending the workpiece W correspond to the “fixing tool for fixing the workpiece” described in the solving means 2, and the plurality of dies D are used for fixing the “dies” described in the solving means 2. It also includes “fixtures”.
  • the plurality of dies D and the plurality of upper punches P incorporate heaters (not shown), and the plurality of dies D and the plurality of upper punches P can be placed at any temperature between room temperature (10 ° C. to 30 ° C.) and 870 ° C. It is comprised so that it can hold
  • the whole of the plurality of dies D and the plurality of upper punches P is surrounded by an outer cylinder 4 and an inner cylinder 5 made of a heat insulating material (see FIG. 3). That is, the double cylinder of the outer cylinder 4 and the inner cylinder 5 forms a donut-shaped space C1, and the plurality of dies D and the plurality of upper punches P are entirely contained in the space C1. Further, a part or all of the ram R is made of a heat insulating material, and a part of the heat insulating material part of the ram R is formed in a cylindrical shape as a shielding cylinder 6 positioned inside the inner cylinder 5.
  • the outer cylinder 4, the inner cylinder 5, and the shielding cylinder 6 have a configuration corresponding to the “heat insulating wall” described in the solving means 2.
  • a heat insulating layer HS made of a heat insulating material is sandwiched between the ram R and the upper ram UR. Although not shown, a heat insulating layer is also provided between the plurality of dies D and the press bed B. These heat insulating layers also have a configuration corresponding to the “heat insulating wall” described in Solution 2.
  • a dish-like float 7 is floated in the space C2 inside the inner cylinder 5.
  • the lowest position of the float 7 is determined by a plurality of convex portions 5 a provided on the inner cylinder 5.
  • the inner cylinder 5 is provided with a plurality of airways A1, and the spaces C1 and C2 are in communication with each other by the plurality of airways A1.
  • a plurality of airways A2 are also formed in the ram R, and the space C3 above the float 7 and the external space are in communication with each other by the plurality of airways A2.
  • a rectangular window 41 is formed in the front portion of the outer cylinder 4 (see FIG. 2). Further, a door DR is attached to the front portion of the ram R, and is configured to shield the window 41 of the outer cylinder 4 as the ram R descends.
  • Reference numeral 42 denotes an air curtain device in which a plurality of air outlets 42a are drilled in parallel, and the air outlets 42a are arranged along the lower side of the window portion 41.
  • the operation of the die set DS will be described. Since the press device PR is used in the second step in the manufacturing method of the first embodiment of the present invention, the description of the action of the die set DS is the same as that of the second step in the manufacturing method of the first embodiment of the present invention. It becomes.
  • the semi-finished product 11 of the valve head part is carried into the die set DS by a carrying device (not shown). This loading is performed from the window portion 41.
  • the ram R is in the raised state, and the semi-finished product 11 serves as the workpiece W with the diameter-enlarged portion 111 facing upward.
  • the upper punch P1 (P) is suspended and fixed to a horseshoe-shaped hanger H (see FIGS. 4a and 4b).
  • the hanger H is a part of the “fixing tool for fixing the workpiece” described in the solving means 2.
  • FIG. 4b is a bottom view of the upper punch P1 (P). In the state where the workpiece W (semi-finished product 11) is carried in, the die D does not exist below the upper punch P1 (P).
  • the loading device (not shown) is retracted from the window 41, and the ram R is rotated at a constant angle clockwise in plan view. Only rotate. Then, the center of the workpiece W (semi-finished product 11) is positioned immediately above the center of the die D1, and the rotation of the ram R is stopped here (see FIG. 4c).
  • the ram R descends (direction X in FIG. 4c).
  • the workpiece W (semi-finished product 11) is inserted into the die D1 (D), and the first squeezing is performed here.
  • the ram R rises (direction Z in FIG. 4c), and the ram R rotates clockwise by a certain angle in plan view and stops immediately above the die D2 (D) (see FIG. 4d), and then descends.
  • the work W (direction X) is subjected to the second drawing up by the die D2 (D).
  • FIG. 5a shows a state immediately before the workpiece W is positioned immediately above the dice DM (M ⁇ N) and subjected to drawing up by the dice DM (M ⁇ N).
  • the workpiece W becomes the finished valve head portion 1 after the squeezing of FIG. 5b and the ram R rotates clockwise by a certain angle in plan view, the workpiece W is positioned immediately behind the window portion 41 ( 5c and 5d), an unillustrated unloader is inserted here, the workpiece W (valve part 1) is removed from the hanger H (direction ⁇ in FIG.
  • FIG. 5d is a bottom view of the upper punch P1 (P) during unloading, and there is no die D corresponding to the lower side in this state. Also, the work W (semi-finished product 11) is carried in (FIGS. 4a and 4b) and the work W (valve part 1) is carried out (FIGS. 5c and 5d) simultaneously.
  • the semi-finished product 11 (work W) of the valve head portion is thus squeezed up by the dies D1 to DN whose inner diameter Dr is gradually narrowed for each squeezing process.
  • the state which becomes the part 1 (work W) is shown.
  • the upper punch P has N + 2 if the number of dies D is N, and when the ram R rotates clockwise by a certain angle in plan view, the next upper punch P is positioned immediately behind the window 41. Since the new workpiece W is suspended and fixed here, the workpiece W is inserted and molded into each of the plurality of dies D each time the ram R rotates clockwise by a certain angle in plan view.
  • the enlarged diameter portion Wa of the work W is always suspended from the hanger H from the beginning to the end. That is, most of the enlarged diameter portion Wa of the workpiece W is not inserted into the dies D1 to DN, and therefore is not subjected to squeezing. As described above, since the diameter-enlarged portion Wa of the work W is hardly deformed and is squeezed around the body portion Wb, smooth squeezing can be performed.
  • the semi-finished product 11 as shown in FIG. 6a is formed first (first step), it is not necessary to almost deform the enlarged diameter portion Wa of the workpiece W in the second step thereafter. Since this part can be squeezed in a state where it is suspended from the hanger H, the first step and the second step are connected extremely reasonably, and finally the hollow hole S is formed in the enlarged diameter portion 1a. As a result, it is possible to obtain a finished valve head portion 1 that maintains a sufficiently expanded diameter.
  • the plurality of upper punches P and the plurality of dies D have built-in heaters (not shown), and the plurality of upper punches P and the plurality of dies D have an arbitrary temperature range between room temperature (10 ° C. to 30 ° C.) and 870 ° C.
  • the temperature is set to be constant.
  • the plurality of upper punches P and the plurality of dies D can be set to a constant temperature state of about 400 ° C. as an example.
  • the workpiece W is also inserted into the space C1 from the window portion 41 in a state of being heated to 400 ° C. in advance using an induction heater or the like (not shown).
  • the workpiece W can also be heated to any temperature in the temperature range between room temperature (10 ° C. to 30 ° C.) and 870 ° C.
  • the space C1 includes a plurality of upper punches P.
  • the plurality of dies D, the workpiece W, and the air in the space C1 can all maintain the same temperature atmosphere.
  • the air in the space C1 communicates with the air in the space C2 by the plurality of airways A1, but since it does not leak out of the space C2 due to the shielding action of the float 7, the warmed air passes through the spaces C1 and C2.
  • the constant temperature atmosphere in the space C ⁇ b> 1 is maintained only by coming and going.
  • the space C3 communicates with the external space through the plurality of airways A2, the cold air in the external space does not flow into the space C2 because the space C3 and the space C2 are shielded by the shielding action of the float 7.
  • a slight amount of air enters and exits through a slight gap between the float 7 and the inner cylinder 5, but the air that has entered the space C2 must further pass through the plurality of airways A1 and not enter the space C1. Therefore, the air reaching the space C1 from the outside via the spaces C3 and C2 is negligible, and the plurality of upper punches P and the plurality of dies D are continuously heated by a heater (not shown). Therefore, the constant temperature atmosphere of the space C1 is not disturbed.
  • the window portion 41 of the outer cylinder 4 is in an opened state, but is provided at the lower front of the outer cylinder 4 except for the bottom dead center state (not shown) of the ram R. Since strong air currents are ejected upward from the plurality of air outlets 42a of the air curtain device 42, the space C1 is shut off from the external space in terms of air current, so that the temperature of the space C1 does not decrease.
  • the second step of the squeezing-up process is performed, and one complete valve head portion 1 is obtained each time the ram R rotates by a certain angle.
  • the inner diameter ⁇ 11 (see FIG. 6A) of the hollow hole S11 is that it is held as ⁇ 11 even in the finished valve head portion 1 (see FIG. 6B).
  • the outer diameter ⁇ 12 of the enlarged diameter portion 111 of the semi-finished product 11 is also maintained as ⁇ 12 in the enlarged diameter portion 1a of the valve head portion 1 of the finished product.
  • the whole can be configured very compactly. That is, a normal rotary press apparatus is used, and only the periphery of the die set DS is surrounded by the outer cylinder 4 and the inner cylinder 5, so that it can be easily configured without requiring a special large heating apparatus. It can also be said that this is a great feature of the present invention.
  • the whole process of the said 2nd step can be performed not only with a rotary press apparatus but with the transfer forging apparatus (not shown) which performs normal linear movement.
  • the present invention discloses a specific method for manufacturing the valve head portion, which is the core of the hollow engine valve, by dividing the whole into two steps, and particularly performing the second step by warm forging. We are convinced that in the future automobile industry, its availability will increase as the trend of demanding economical vehicles with low fuel consumption increases for the promotion of global warming prevention measures.
  • the present invention pays attention to this warm forging.
  • the development of a technique including a device for squeezing only the body portion without squeezing the diameter-expanded portion of the semi-finished product, and the entire squeezing The technology including the equipment that can be used in a constant temperature atmosphere has been developed. This enables the warm forging of the valve head part of the hollow engine valve to be performed smoothly regardless of the material selected. And will contribute greatly to the most desirable direction of the future automotive industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Forging (AREA)

Abstract

 従来、中空エンジンバルブの弁傘部の熱間鍛造においては仕上がり精度が悪く、冷間鍛造では扱える素材が限られていた。また、冷間及び従来の温間鍛造では絞り上げの工程数が多くなって焼きなまし等の中間熱処理の工程が何度も必要となり、作業効率が悪かった。そこで、中空孔と拡径部を有する半完成品を製造しておき(第1ステップ)、ダイセット(DS)全体を外筒(4)、内筒(5)で囲繞するプレス装置を用いることで、常温~870℃の間の任意の温度の恒温雰囲気にて該半完成品の胴部を中心に絞り上げるようにした(第2ステップ)。

Description

中空エンジンバルブの弁傘部の製造方法及び中空エンジンバルブの弁傘部のプレス装置及び中空エンジンバルブ
 本発明は、軸端封止材あるいは中空軸部に溶接される側が開口された弁傘部中空孔を有し、該弁傘部中空孔が弁傘部の拡径部内において拡径形成されていて、該弁傘部中空孔の最大内径が中空軸部の最大外径より大である中空エンジンバルブの弁傘部の製造方法、及び該中空エンジンバルブの弁傘部のプレス装置、及び該弁傘部を有する中空エンジンバルブに関するものである。
 中空エンジンバルブの弁傘部の製造方法に関しては、本願の発明者により下記特許文献1の発明がなされている。その概要を述べれば、以下のとおりである。すなわち、中空エンジンバルブの弁傘部は、特に排気バルブにおいては高温に晒されることになるので、従来からマンガン、ニッケル、クロムなどをベースとした耐熱鋼など耐熱性に優れた特性を示す素材が用いられてきた。
 これらの素材は、耐熱性が高いという長所を持つ反面、塑性加工性に劣るという短所も合わせ持っている。すなわち、弁傘部の完成形状にまで鍛造するのが難しい上に、中空エンジンバルブにおいては中空孔を設けなければならず、なお一層加工が困難となる。したがって、このような素材を鍛造して弁傘部を形成する際には、素材の温度を再結晶温度以上に上げて、熱間鍛造によって行うのが一般的であった。
 しかしながら、熱間鍛造においては、金属の膨張等の問題から加工精度が下がり、製品の表面の肌理も冷間鍛造に比べると劣る結果とならざるを得ない。
 そこで、本願発明者は、上記の様な耐熱性の高い素材を使用して、熱間鍛造ではなく冷間鍛造にて弁傘部を形成する方法を模索し、試行錯誤の結果、拡径部の最大外径が完成品の弁傘部の最大外径と一致し、完成品の弁傘部の弁傘部中空孔の最大内径と同一の下端が有底の円筒形状中空孔を有する弁傘部半完成品をまず製造しておき、該半完成品を冷間鍛造により拡径部の上部及び胴部を複数段階に分けて徐々に絞り上げ、完成品の弁傘部とする方法を完成してこれを出願し、この出願は権利化されることとなった(下記特許文献1)。
 この際、弁傘部の素材としては、
 NCF47W(ニッケルベース鋼)
 SUH35(オーステナイト系マンガンベース鋼)
 インコネル751(ニッケルベース鋼)
 の3種類を掲げておいた。
 本願発明者は、下記特許文献1の特許取得後も上記素材について何度も確認のための実験を繰り返した。その結果、NCF47Wとインコネル751は下記特許文献1の方法にて何ら問題なく完成品の弁傘部が得られることが確認されたが、JIS4311耐熱鋼に含まれる炭素含有量の多い素材(上記SUH35も含まれる)については、ネッキング(絞り上げ)の全段階を冷間鍛造で行おうとするとクラックや変形等の支障がNCF47Wやインコネル751に比べてやや多く見られることが判明してきた。
 近年は、車両の低燃費化が求められる風潮が強く、車両用部品は全て小型軽量化が求められる傾向にある。中空エンジンバルブは、そういう風潮の中で、特にエンジン内部で急速な往復運動を繰り返す部材の軽量化という点においても注目が集まり、冷鍛性の良くないものも含めた様々な素材を用いて、精度の良い鍛造を希求する傾向が強くなっているのが現状である。
特許第4390291号公報
日本鉄鋼協会編「改訂5版 鋼の熱処理」丸善株式会社、1979年発行(第2版第3刷) 幸田成康監訳「レスリー鉄鋼材料学」丸善株式会社、1987年発行(第2刷)
 中空エンジンバルブの素材としては、さまざまな鋼材が考え得るが、冷鍛性が良いものは少ない。たとえば、JIS4311耐熱鋼に含まれる炭素含有量の多い素材を用いて冷間鍛造で弁傘部を形成しようとすると、不良品の発生率を低く抑えるためには絞り上げの工程数を増やす、つまり、ダイスの数を多くするか、あるいは工程と工程の間に適宜中間熱処理(焼きなまし等)を何度も挟みながら行わなければならないが、いずれにしても手間が増える結果となり、製品価格に跳ね返るのは避けられない。したがって、JIS4311耐熱鋼に含まれる炭素含有量の多い素材を用いて、あるいは他の冷鍛性の悪い素材を用いて、工程数を増加させることなく、また中間熱処理をなるべく行うことなく成形を行うことのできる方法の開発が、今回の解決すべき課題となった。
 本発明は、上記課題解決するためになされたものであって、下記に示す解決手段を提供するものである。
<解決手段1>
 中空軸部あるいは軸端封止材に溶接される側が開口された弁傘部中空孔を有し、該弁傘部中空孔が弁傘部の拡径部内において拡径形成されていて、該弁傘部中空孔の最大内径が中空軸部の最大外径より大である中空エンジンバルブの弁傘部の製造方法において、
 素材の中実丸棒より弁傘部半完成品を製造する第1ステップと、該弁傘部半完成品を温間鍛造によって弁傘部の完成品となす第2ステップを有し、
 第1ステップにおいては、円筒形状の胴部の一端に胴部と一体の拡径部を有し、拡径部側を下とした場合に、拡径部の最大外径が完成品の弁傘部の拡径部の最大外径と同一であり、完成品の弁傘部中空孔の最大内径と同一の内径を有する円筒形状中空孔を有し、該円筒形状中空孔は上端が開口され下端が拡径部内において有底である弁傘部半完成品を得、
 第2ステップにおいては、弁傘部半完成品を温度が常温~870℃の範囲内とする鍛造により拡径部の上部及び胴部を複数段階に分けて徐々に絞り上げ、
 すなわち、ワーク、ダイス、パンチを含めた全体の空間自体を恒温に保持し、弁傘部半完成品の拡径部の上部及び胴部を押圧するダイスの内径が、段階が進むごとに少しずつ縮小されたダイスを、絞り上げ工程の数だけ用いて徐々に絞り上げ、
 弁傘部中空孔の拡径部内に於ける最大内径が上記円筒形状中空孔の内径のままに保持され、その内径は上方に向かうに従い縮径されるように構成された完成品の弁傘部を得る、
ことを特徴とする、中空エンジンバルブの弁傘部の製造方法。
<解決手段2>
 第2ステップに用いられるプレス装置においては、ワーク及びワークを固定する固定具及びダイス及びダイスを固定する固定具の全体を包含する断熱壁を有し、該断熱壁の効果にて断熱壁内部を恒温状態に保持できるように構成され、解決手段1に記載の製造方法にて中空エンジンバルブの弁傘部を製造することができる
ことを特徴とする中空エンジンバルブの弁傘部のプレス装置。
<解決手段3>
 軸端封止材の一端に解決手段1に記載の製造方法あるいは解決手段2に記載のプレス装置にて製造した弁傘部を溶接してなる中空エンジンバルブ。
<解決手段4>
 両端が開放された中空軸部の一端に解決手段1に記載の製造方法あるいは解決手段2に記載のプレス装置にて製造した弁傘部を溶接し、他端に軸端封止材を溶接してなる中空エンジンバルブ。
 本発明の、解決手段1の発明によれば、弁傘部半完成品を、常温~870℃の温間鍛造により、ワーク、ダイス、パンチを含めた全体の空間自体を恒温に保持し、拡径部の上部及び胴部を複数段階に分けて徐々に絞り上げるので、クラックや変形等が激減し、且つネッキング(絞り上げ)の工程数が増えることもなく、また焼きなましの様な中間熱処理を何度も挟む必要もなく、例えばJIS4311耐熱鋼に含まれる炭素含有量の多い素材であっても問題なく弁傘部の成形を行うことができる。
 この際、弁傘部の成形が円滑に行われるのは、素材を第1ステップにおいて、一旦弁傘部半完成品とし、それを第2ステップにおいて絞り上げて弁傘部の完成品とするという2段階のステップを有しているからにほかならない。すなわち、もし弁傘部半完成品を製造する第1ステップを欠いたとすれば、常温~870℃の温間鍛造では、第2ステップの絞り上げを円滑に行うことは不可能であって、さらに温度の高い熱間鍛造を用いなければならなくなる。
 本発明の、解決手段2の発明によれば、弁傘部完成品を絞り上げるためのプレス装置において、ワーク及びワークを固定する固定具及びダイス及びダイスを固定する固定具の全体を包含する断熱壁を有し、該断熱壁の効果にて断熱壁内部を恒温状態に保持できるように構成されている点が開示されている。
 温間鍛造においては、一番問題となるのは絞り上げの際の、ワークの温度変化による組織の変成である。すなわち、絞り上げの工程数が1回や2回程度であれば、必要な温度まで予め加熱したワークをヒータを内蔵したダイスやパンチによって絞り上げることにより、ワークの変成の影響もあまりなく加工を行うことが可能である。
 しかし、絞り上げの工程数が増えてくると、たとえば3,4回を越えるようになると、ダイスやパンチをヒータによって加熱していても、ワークが空気中に晒されるたびにワークの温度が下がり、その結果金属組織の変成(硬化)が進行する。したがって、そのまま無理に絞り上げを行えば、ワークの割れが生じたりして完成品を得ることができない。
 通常は、ある程度工程数の多い絞り上げを行う場合には、途中に焼きなましなどの中間熱処理の工程を何度も挟んで行うことが多い。しかしながら、中空エンジンバルブの弁傘部の絞り上げにおいては、素材によって異なるので一概にはいえないが、10工程前後、場合によってはそれ以上の工程が必要となるので、中間熱処理の回数も増え、その度に絞り上げを中断せねばならず、凡そ現実的な製造方法とは言いがたいものとなってくる。すなわち、実験的に行うなら良いが、現実の工場でのライン生産に応用できる技術内容とは言いがたいものとなる。

 したがって、焼きなましなどの中間熱処理の工程をなるべくはさまずに10工程前後、場合によってはそれ以上の工程の絞り上げを連続的に行うことが必要となってくるが、その際に重要となるのはワークの温度低下を避けるということである。すなわち、ダイスやパンチはヒータを内蔵あるいは添設させれば恒温化が可能であるが、ヒータを取り付けられないワークにおいては、どうしても空気中に晒された瞬間の温度低下が避けられないので、これを解決するにはワーク、ダイス、パンチを含めた全体の空間自体を恒温に保持する必要が生じるのである。
 本発明の、解決手段2の発明によれば、このように空間全体を恒温雰囲気中に保持する技術内容を開示している。これにより、ワークの絞り上げにおける恒温状態は理想的なかたちで保持されることとなり、絞り上げにおいてもワークの温度低下が避けられ、さらに何度も中間熱処理を行う必要もなく円滑に複数工程の絞り上げができるようになったのである。
 本発明の解決手段3あるいは解決手段4の発明によれば、本発明の解決手段1あるいは解決手段2の発明によって得られた弁傘部を有する完成品としての中空エンジンバルブを得ることができる。
 なお、解決手段1に記載の第2ステップにおける温度範囲の数値限定の根拠は以下のとおりである。すなわち、温間鍛造の温度範囲の定義には諸説あり、未だ定説がないのが現状であるが、本発明においては、温間鍛造の温度範囲として、最も一般的であると考えられる「鋼材の再結晶温度以下」の温度範囲を「温間鍛造の温度範囲」として考えるものである。なお、ここに「一般的」と書く意味は、「各種の鋼材において最も幅広く適用できる」という意味である。したがって、素材を限定していけば、この温度範囲はさらに狭く限定され得るものであることはいうまでもない。
 上記考え方からすると、「温間鍛造」の温度範囲の下限はないことになるが、実際の現場では、素材を冷却して鍛造するということは滅多に行われないところから、温度範囲の下限を「常温」とした。「常温」の定義もいろいろあると考えられるが、本発明においては常識的に「常温」を10℃~30℃とする。実際の作業における下限は、20℃前後になるものと考えられる。
 次に、「温間鍛造」の温度範囲の上限についてであるが、これは、前記非特許文献1のp.48の図2・16の記載より870℃とした。すなわち、再結晶温度というものは特定の温度ではなく、諸条件により上下するが、軟鉄の場合で最高870℃までは条件によってはあり得ると前記非特許文献1のp.48の図2・16では述べており、これをもって温度範囲の上限とした。
 なお、鉄の再結晶温度については、前記非特許文献2のp.138には、再結晶温度は鉄に添加元素を含むことで変化する(上昇する)ことが記載されている。本発明において素材の一つとする耐熱鋼においては、再結晶温度を引き上げる働きのあるニッケル(オーステイナイト系の耐熱鋼ほぼ全てに含有)、モリブデン(SUH38に含有)、クロム(耐熱鋼の全てに含有)が含まれており、鉄への合金元素の添加割合でバラツキはあるものの、前記非特許文献2のp.138に記載のデータからの類推では、少なくとも700℃以上である可能性が高いといい得る。
 なお、本発明にては、「完成品の弁傘部」あるいは「弁傘部の完成品」という言葉を用いているが、この言葉は、次のような状態の弁傘部を意味するものである。すなわち、
1)拡径部の外径がそれ以上変化しない状態に至ったもの
2)中空孔の最大内径がそれ以上変化しない状態に至ったもの
3)胴部の端部の外径が、軸端封止材あるいは中空軸部の外径と一致した状態となったもの
 上記3点の状態を備えるものをもって「完成品の弁傘部」あるいは「弁傘部の完成品」と呼称するものである。
 したがって、例えば、フラットな状態の弁傘部の完成品の拡径部面に刻印を施したり、あるいは熱間鍛造にて凹部を形成したりすることは自由であって、それらは、あくまで本発明における「完成品の弁傘部」あるいは「弁傘部の完成品」に後から施される加工であり、本発明における「完成品の弁傘部」あるいは「弁傘部の完成品」を用いて後から上記に類するいかなる加工を行おうとも、弁傘部の上記3点の加工において本発明の方法を用いている場合には、それらはすべて本発明の範囲に包含されるものであることは言をまたない。
 また、本発明の方法は、「焼きなまし」のプロセスをできるだけ減らすという点にも眼目がある。したがって、本発明の方法を用いて、さらに中間に1~2回程度の焼きなまし工程を挟む方法を排除するものではないのは以上の論旨から当然のことである。すなわち、ロータリープレス装置での工程数が多くなりすぎる時など、第2ステップを前半と後半に分割して1回分の工程数を減らし、前半と後半の間に材料の再加熱、すなわち焼きなましの工程を挟むのは、技術内容からする当然の要請であり、このような方法もすべて本発明の範囲に包含されるのは当然のことである。
本発明の実施例1の製造方法における第2ステップに用いられるプレス装置の正面図である。 本発明の実施例1の製造方法における第2ステップに用いられるプレス装置のダイセットの一部を省略した正面図である。 本発明の実施例1の製造方法における第2ステップに用いられるプレス装置のダイセットの一部を省略した縦断面図である。 (a)~(d)本発明の実施例1の製造方法における第2ステップを説明するための説明図である。 (a)~(d)本発明の実施例1の製造方法における第2ステップを説明するための説明図である。 (a)本発明の実施例1の製造方法における第1ステップにて得られる弁傘部の半完成品の縦断面図である。  (b)本発明の実施例1の製造方法における第2ステップにて得られる弁傘部の完成品の縦断面図である。 (a)~(c)本発明の実施例1の製造方法における第1ステップの第1の方法を説明するための説明図である。 (a)~(c)本発明の実施例1の製造方法における第1ステップの第2の方法を説明するための説明図である。 (a)本発明の実施例1の製造方法において得られる中空エンジンバルブの一例の縦断面図である。  (b)本発明の実施例1の製造方法において得られる中空エンジンバルブの他の一例の縦断面図である。
 本発明を実施するための最良の形態を、以下に、図面を参照しながら詳細に説明する。
 本発明の実施例1として、弁傘部1の製造方法及び弁傘部1を有する中空エンジンバルブVを、以下に詳細に説明する。中空エンジンバルブVは、図9aに示すように、弁傘部1、軸端封止材3から構成されている。すなわち、弁傘部1の一端に軸端封止材3が溶接され、内部に中空孔Sが設けられた構成であって、中空孔Sには、排気弁として用いられる場合には、図示しないナトリウムが封入される。排気弁として用いられない場合には、ナトリウムは封入されない。
 図9bに示す中空エンジンバルブYは弁傘部1に中空軸部2を溶接し、さらに中空軸部2に軸端封止材3を溶接した例であって、やはり内部に中空孔Sが設けられており、中空孔Sには、排気弁として用いられる場合には、図示しないナトリウムが封入され、排気弁として用いられない場合には、ナトリウムは封入されない。
 中空エンジンバルブYの中空軸部2は、鋼板を丸めて端部どうしを溶接した電縫管や、継ぎ目のないシームレスパイプなどを用いることができる。また、各部材を溶接する際の溶接方法は問わないが、摩擦圧接などを用いることができる。
 弁傘部1の素材の具体名を挙げれば、以下のとおりである。実施例1の中空エンジンバルブVあるいはYが排気用バルブとして用いられる場合には、耐熱性の高い素材、例えばNCF47WとかSUH35とかインコネル751等を弁傘部1に用い、次に耐熱性の高い素材、例えばSUS304、SUS430、SUH11等を中空軸部2に用い(Yのみ)、軸端封止材3にはSUH11など耐熱性にはやや劣るとされる素材を用いても良い。これに対し、エンジンバルブVあるいはYが排気用バルブとして用いられない場合には、弁傘部1、中空軸部2、軸端封止材3のいずれにも、さほど耐熱性の高い素材を用いる必要は生じない。
 本発明の実施例1の製造方法によって得られる中空エンジンバルブV,Yに関しては、上記のとおりである。以下、本発明の実施例1の中核となる弁傘部1の製造方法について、詳細に説明する。
<第1ステップ>
 図6aに、本発明の実施例1の第1ステップにて得られる弁傘部1の半完成品11を縦断面図にて示す。半完成品11は、円盤状の拡径部111と円筒形状の胴部112が一体として形成されていて、胴部112の下端部が連続的に拡径部111の上端に接続されており、接続部分は図6aに見るように緩やかなカーブを描いている。半完成品11の内部には下端が有底の円筒形状の中空孔S11が形成されおり、中空孔S11の上端は胴部112の上面にて開口され、下端は拡径部111内にて有底とされている。
 本発明の実施例1の第2ステップにては、図6aの半完成品11の拡径部111の上部及び胴部112の全体を温間鍛造によって絞り上げ(ネッキング)、図6bに見るような弁傘部1の完成品を得る。図6bにおいて、1aは拡径部、1bは胴部である。完成品の弁傘部1においては、拡径部1aと胴部1bの境界を確定するのは困難であるが、図6bにては、断面図の外形の曲線の曲率が急になる部分にて拡径部1aと胴部1bを分けている。またS1は下端が有底の円筒形状の中空孔で、中空孔S1の上端は胴部1bの上面にて開放され、下端は拡径部1aの内部にて有底とされている。
 図6aにて、h11は半完成品11の全体の高さ、h12は拡径部111の高さ、h13は胴部112の高さ、h14は中空孔S11の高さ(深さ)、φ10は胴部112の外径、φ12は、拡径部111の最大外径、φ11は中空孔S11の内径である。また、図6bにて、h15は完成品の弁傘部1の全体の高さ、h16は拡径部1aの高さ、h17は胴部1bの高さ、h18は中空孔S1の高さ(深さ)、φ14は胴部1bの上端部の外径、φ12は、拡径部1aの最大外径、φ11は中空孔S1の最大内径、φ13は中空孔S1の上端部の内径である。
 ここで、完成品の弁傘部1の全体の高さh15は半完成品11の全体の高さh11より大(h11<h15)、中空孔S1の高さ(深さ)h18は中空孔S11の高さ(深さ)h14より大(h14<h18)、拡径部111の高さh12は拡径部1aの高さh16と略同一(h12≒h16)、胴部1bの高さh17は胴部112の高さh13より大(h13<h17)、拡径部111の最大外径は拡径部1aの最大外径と同一(両者共φ12)、胴部112の上端部の外径φ10は胴部1bの上端部の外径φ14より大(φ14<φ10)、中空孔S11の内径は中空孔S1の最大内径と同一(両者共φ11)、中空孔S11の内径φ11は中空孔S1の上端部の内径φ13より大(φ13<φ11)である。
 図7に、半完成品11を得る第1の方法を示す。図7aに示すように、適切な素材よりなる中実丸棒2Aを用意する。実施例1にては、エンジンバルブVあるいはYを排気弁として用いることを想定して、素材としてSUH35を用いることとする。中実丸棒2Aの外径は、半完成品11の胴部112の外径と同じφ10、高さh20は半完成品11の高さh11より低い(h20<h11)。
 中実丸棒2Aの上面にパンチで中空孔2Cを形成して、コップ状の中間部材2Bとする(図7b)。本例では、中空孔2Cは、中間部材2Bの全体の高さh21の半分程度の高さ(深さ)h22を有している。この際、中間部材2Bの外径は、中実丸棒2Aの外径φ10と同一とするので、結果として、中間部材2Bの高さh21は、中実丸棒2Aの高さh20より大となる(h20<h21)。また、中空孔2Cの内径は、半完成品11(図7c)の中空孔S11の内径φ11と同一とする。
 次に、中間部材2Bの下部を鍛造によって成形して拡径部111とする。この際、鍛造の種類は問わない。すなわち、冷間鍛造、温間鍛造、熱間鍛造のいずれを用いてもよい。このステップは中間工程であるので、後述の第2ステップにて要求されるほどの精度は要求されないが、中間部材2Bの上部の外径を半完成品11の胴部の外径φ10に保持すること、中空孔2Cの内径を、半完成品11の中空孔S11の内径φ11に保持すること、さらに、中間部材2Bの下部を拡径部111とする際に最大外径を半完成品11の拡径部111の最大外径φ12とすること、この3点が重要となる。なお、この過程にて、中空孔2C(高さh22)はやや深められて、高さ(深さ)h14の中空孔S11とされる。このように、中実丸棒2A(図7a)から中間部材2B(図7b)を経由して半完成品11(図7c)を得る。
 図8に、半完成品11を得る第2の方法を示す。図8aに示すように、適切な素材から選択された素材よりなる中実丸棒3Aを用意する。実施例1にては、エンジンバルブVあるいはYを排気弁として用いることを想定して、素材としてSUH35を用いることとする。中実丸棒3Aの外径は、半完成品11の胴部112の外径と同じφ10、高さh30は半完成品11の高さh11より低い(h30<h11)。なお、高さh30は先述の中実丸棒2Aの高さh20と等しい(h30=h20)。
 中実丸棒3Aの下部を鍛造によって成形して拡径部3Cを有する中実の帽子状の中間部材3Bとする(図8b)。この際、鍛造の種類は問わない。すなわち、冷間鍛造、温間鍛造、熱間鍛造のいずれを用いてもよい。このステップは中間工程であるので、後述の第2ステップにて要求されるほどの精度は要求されないが、中間部材3Bの上部の外径を半完成品11の胴部の外径φ10に保持することと、中間部材3Bの下部を拡径部3Cとする際に拡径部3Cの最大外径を半完成品11の拡径部111の最大外径φ12とすること、この2点が重要となる。なお、この過程で、中間部材3Bの高さh31はやや低くなる。すなわち、h31<h30である。
 次に、中間部材3Bの上面にパンチで高さ(深さ)h14、内径φ11の中空孔S11を形成する。この過程にて、中間部材3Bの上部は延伸されて高さh13の胴部112となる(図8c)。このように、中実丸棒3A(図8a)から中間部材3B(図8b)を経由して半完成品11(図8c)を得る。この際、胴部112の外径をφ10に保持する点と、拡径部111の最大外径をφ12に保持する点の2点が重要である。
<第2ステップ>
 次に、図1~図5にて第2ステップにおける温間鍛造のプロセスを詳細を説明する。図1は第2ステップにて用いられるプレス装置PRである。プレス装置PRはロータリープレス装置であって、その構成は公知であるので、本発明の実施例1に特有の構成であるダイセットDSに限って、その構成を詳細に説明する。
 ダイセットDSは、ワークWを吊設する複数の上部パンチP、ワークWが挿入成形される複数のダイスD、複数の上部パンチPを押圧するラムRと上部ラムUR、複数のダイスDが固定されるプレスベッドB、伸縮する4本のガイドポストGPから構成されており、ラムRが一定角度ずつ回転することによって複数の上部パンチPと複数のダイスDの対応する位置が一つずつずれていく。この場合、ラムRを平面視で時計回りに回転させるのも反時計まわりに回転させるのも自由であるが、実施例1にてはラムRを平面視で時計回りに回転させるものとする。
 すなわち、パンチPがワークWをダイスDに挿入成形させ、ラムRが上昇するとラムRは平面視で時計回りに一定角度だけ回転して停止するのでパンチPは次のダイスDの直上に位置する。この状態にてパンチPがワークWを次のダイスDに挿入成形させ、ラムRが上昇するとラムRはまた平面視で時計回りに一定角度だけ回転して停止する。このようにして、成形を行うロータリープレス装置は公知技術であるので、回転機構に関する説明はこれ以上行わない。なお、ワークWを吊設する複数の上部パンチPは、解決手段2に記載の「ワークを固定する固定具」に相当し、複数のダイスDは、解決手段2に記載の「ダイスを固定する固定具」をも含むものである。
 複数のダイスDと複数の上部パンチPには図示しないヒータが内蔵されており、複数のダイスD、複数の上部パンチPを常温(10℃~30℃)から870℃の間の任意の温度で恒温状態に保持できるように構成されている。このようなヒータ付きのダイスやパンチも公知であるので、詳細な説明は省略する。なお、上記温度範囲の限定の理由については前述のとおりである。
 複数のダイスDと複数の上部パンチPの全体は、断熱材からなる外筒4と内筒5によって囲繞されている(図3参照)。すなわち、外筒4と内筒5の2重円筒がドーナツ状の空間C1を形成して、複数のダイスDと複数の上部パンチPの全体が空間C1内に包含された状態である。また、ラムRの一部または全部が断熱材製とされ、ラムRの断熱材製の部分の一部は内筒5の内側に位置する遮蔽筒6として円筒形状に構成されている。なお、外筒4、内筒5、遮蔽筒6は、解決手段2に記載の「断熱壁」に相当する構成である。
 ラムRと上部ラムURの間には、断熱材からなる断熱層HSが挟まれている。また、図示しないが、複数のダイスDとプレスベッドBの間にも断熱層が設けられている。これらの断熱層も解決手段2に記載の「断熱壁」に相当する構成である。
 内筒5の内部の空間C2には、皿状のフロート7が浮設されている。フロート7は、内筒5に設けられた複数の凸部5aによって最下位位置が定められる。また、内筒5には複数の気道A1が穿設され、複数の気道A1により、空間C1と空間C2は連通状態にある。さらに、ラムRにも複数の気道A2が穿設されており、複数の気道A2によりフロート7の上部の空間C3と外部空間は連通状態にある。
 外筒4の正面部分には長方形状の窓部41が穿設されている(図2参照)。また、ラムRの正面部分には扉DRが装着されていて、ラムRの降下と共に外筒4の窓部41を遮蔽するように構成されている。なお、42は複数の吹出口42aが上方に穿設並列されたエアカーテン装置であって、複数の吹出口42aが窓部41の下辺に沿って並ぶように構成されている。
 次にダイセットDSの作用を説明する。プレス装置PRは本発明の実施例1の製造方法における第2ステップにおいて用いられるものであるので、ダイセットDSの作用の説明は、そのまま本発明の実施例1の製造方法における第2ステップの説明となる。
 ダイセットDSには、図示しない搬入装置によって弁傘部の半完成品11が搬入される。この搬入は窓部41から行われるが、この際には図2に示すようにラムRが上昇状態にあり、半完成品11はワークWとして、拡径部111を上にした状態で空間C1内に搬入され(図4bの方向α)、上部パンチP1(P)の底面視が馬蹄形状のハンガーH(図4a、4b参照)に吊設固定される。なお、ハンガーHは、解決手段2に記載の「ワークを固定する固定具」の一部である。また、図4bは上部パンチP1(P)の底面視である。なお、ワークW(半完成品11)が搬入された状態にては、上部パンチP1(P)の下方にはダイスDは存在しない。
 ワークW(半完成品11)が上部パンチP1(P)のハンガーHに完全に吊設固定され終わると図示しない搬入装置は窓部41から後退し、ラムRは平面視で時計回りに一定角度だけ回転する。すると、ワークW(半完成品11)の中心はダイスD1の中心の真上に位置し、ここでラムRの回転は停止される(図4c参照)。
 次に、ラムRが下降する(図4cの方向X)。ラムRが下降するとワークW(半完成品11)はダイスD1(D)内に挿入され、ここで第1回目の絞り上げが行われる。次にラムRが上昇し(図4cの方向Z)、さらにラムRは平面視で時計回りに一定角度だけ回転してダイスD2(D)の直上に停止し(図4d参照)、次に降下して(方向X)ワークWはダイスD2(D)にて第2回目の絞り上げを受ける。
 このようにして、ワークWは図5bのダイスDN(D)に至るまで絞り上げを受けて完成品の弁傘部1として成形される(図5c参照)。なお、図5aには途中の工程にてワークWがダイスDM(M<N)の直上に位置し、ダイスDM(M<N)にて絞り上げを受ける直前の状態を示す。ワークWが図5bの絞り上げの後完成品の弁傘部1となりさらにラムRが平面視で時計回りに一定角度だけ回転すると、ワークWは窓部41のすぐ背面に位置することになり(図5c、5d参照)、ここに図示しない搬出装置が挿入されてワークW(弁傘部1)をハンガーHから外し(図5dの方向β)、窓部41から搬出する。なお、図5dは搬出時の上部パンチP1(P)の底面視であり、この状態にては下方に対応するダイスDは存在しない。また、ワークW(半完成品11)の搬入(図4a、4b)とワークW(弁傘部1)の搬出(図5c、5d)は同時に行われる。
 図4~図5は、このようにして弁傘部の半完成品11(ワークW)が絞り上げ工程ごとに徐々に内径Drの狭くなるダイスD1~DNによって絞り上げられ、完成品の弁傘部1(ワークW)となる状態を示している。なお、上部パンチPは、ダイスDの数をN基とすると、N+2基存し、ラムRが平面視で時計回りに一定角度だけ回転すると次の上部パンチPが窓部41のすぐ背面に位置してここに新たなワークWが吊設固定されるので、結局ラムRが平面視で時計回りに一定角度だけ回転する毎に複数のダイスDの夫々にワークWが挿入成形されることになり、最初の半完成品11(ワークW)が完成品の弁傘部1(ワークW)となってからは、ラムRが平面視で時計回りに一定角度だけ回転する毎に1個の完成品の弁傘部1が出来上がるということになる。なお、金型の寿命という観点からすれば、複数の上部パンチPの1基おきに半完成品11(ワークW)を吊設固定するという方法もあり得る。
 ここで注目すべきは、ワークWの拡径部Waは最初から最後まで常にハンガーHに吊設されたままの状態であるということである。すなわち、ワークWの拡径部Waの大部分はダイスD1~DN内に挿入されることがなく、従って絞り上げを受けることがない。このように、ワークWの拡径部Waにはほとんど変形を加えることがなく胴部Wbを中心に絞り上げるので、円滑な絞り上げが可能となったのである。
 すなわち、図6aに示すような半完成品11を最初に成形しておけば(第1ステップ)、それ以降の第2ステップにおいてはワークWの拡径部Waにはほとんど変形を加える必要がなくなり、この部分をハンガーHに吊設した状態にて絞り上げを行うことができるので、第1ステップと第2ステップが極めて合理的に連繋されて、最終的に拡径部1a内で中空孔Sが充分に拡径された状態を保持する完成品の弁傘部1を得ることができるのである。
 図3にて、ラムRが下降すると、空間C1内の空気は圧縮されるが、内筒5に複数の気道A1が設けてあるので、圧縮された空気は複数の気道A1を通って内筒5に囲繞された空間C2に流入する。すると空間C2の気圧が高くなってフロート7を押し上げ、フロート7は上昇する。上昇したフロート7は上部の空間C3を圧縮するが、ここで圧縮された空気はラムRに設けられた複数の気道A2を通って装置外に排出される。
 ラムRの上昇時にはこの逆のプロセスで、空間C1の気圧が下がると複数の気道A1から空間C2の空気が流入する。空間C2の気圧が下がるとフロート7が下降し、空間C3の気圧が下がる。空間C3の気圧が下がると複数の気道A2を通って装置外から空気が空間C3に流入する。ラムの上昇、降下に合わせて以上のプロセスが繰り返される。
 複数の上部パンチP及び複数のダイスDには図示しないヒータが内蔵されていて、複数の上部パンチP、複数のダイスDは常温(10℃~30℃)から870℃の間の温度範囲の任意の温度で恒温状態となるように設定されている。今、ワークWの素材がSUH35であるとするなら、一例として複数の上部パンチP、複数のダイスDを400℃程度の恒温状態に設定することができる。また、ワークWも予めインダクションヒータ等(図示せず)を用いて400℃に加熱された状態にて窓部41より空間C1に挿入される。むろん、ワークWも常温(10℃~30℃)から870℃の間の温度範囲の任意の温度に加熱することが可能である。
 複数の上部パンチP、複数のダイスD、ワークWのすべてが同一の温度状態とされ、さらに全体が外筒4と内筒5に囲繞されているので、空間C1内は、複数の上部パンチP、複数のダイスD、ワークW、そして空間C1内の空気のすべてが同一の温度雰囲気を保持することができる。複数の気道A1により空間C1内の空気は空間C2内の空気と連通しているが、フロート7の遮蔽作用により空間C2の外には洩れないので、暖められた空気が空間C1と空間C2を往来するだけで、空間C1の恒温雰囲気は保持される。
 また、空間C3は複数の気道A2によって外部空間と連通するが、フロート7の遮蔽作用によって空間C3と空間C2は遮蔽されているので、外部空間の冷たい空気が空間C2に流入することはない。無論、実際には、フロート7と内筒5の間のわずかな隙間から僅少の空気の出入りはあるものの、空間C2に入った空気はさらに複数の気道A1を通過して空間C1に入らなければならないので、外部から空間C3、空間C2を経由して空間C1に達する空気は無視できる程度であり、しかも複数の上部パンチP、複数のダイスDはヒータ(図示せず)によって加熱され続けているので、空間C1の恒温雰囲気が乱されることはない。
 また、ラムRの上昇状態では、外筒4の窓部41は開かれた状態となるが、ラムRの下死点状態(図示せず)以外では、外筒4の正面下部に設けられたエアカーテン装置42の複数の吹出口42aから強い気流が上方に向けて噴出されることにより空間C1は気流的に外部空間から遮断されるので、空間C1の温度が低下することがない。
 以上のようにして第2ステップの絞り上げ工程が行われ、ラムRが一定角度回転する毎に完成品の弁傘部1が1個得られることになる。この際のポイントは2つあって、まず第一点は、前述のように、ワークWの拡径部Waの大部分については絞り上げが行われず、したがって半完成品11の拡径部111内部の中空孔S11の内径φ11(図6a参照)は、完成品の弁傘部1(図6b参照)においてもφ11のままに保持されるという点である。また、半完成品11の拡径部111の外径φ12が、完成品の弁傘部1の拡径部1aにおいてもφ12のままに保持されることは言うまでもない。
 次に、第2点目として、これも前述のように、ワークWが絞り上げ加工される空間C1全体が恒温の温度雰囲気に保持されるという点である。工程数の多い温間鍛造においては、この点は極めて重要であって、ダイスDからワークWが引き抜かれた瞬間も、空間C1がワークWと同じ温度に保持されているのでワークWの温度が低下することがなく、したがってワークWにおいて加工硬化が起こらない。これにより、工程数の多い場合にても、中間熱処理等の余分な工程をできる限り減らして連続的に絞り上げ工程を進めていくことが可能となり、作業効率は格段に改善されることとなった。
 またさらに注目すべきは、全体が非常にコンパクトに構成できるという点である。すなわち、用いるのは通常のロータリープレス装置であり、ダイセットDSの周囲のみを外筒4、内筒5にて囲繞するので、特別な大掛かりな加熱装置を必要とすることなく簡便に構成できる点も、本発明の大きな特徴であるといい得る。なお、上記第2ステップの全工程は、ロータリープレス装置に限らず、通常の直線移動を行うトランスファー鍛造装置(図示せず)にても行えることはいうまでもないことである。
 本発明は、中空エンジンバルブの中核となる弁傘部の製造において、全体を2つのステップに分け、特にその第2ステップを温間鍛造で行うための具体的な方法を開示したものであり、地球温暖化防止対策の推進のために低燃費の経済的な車が求められる風潮が益々高まる中で、これからの自動車産業において愈々その利用可能性が増すものであると確信している。
 すなわち、中空エンジンバルブは、これまでは内部にナトリウムを封入して排気弁用として用いられるケースが多かったが、昨今その軽量性に注目が集まって、吸気弁としてのニーズも増加の一途を辿っている。吸気弁用として用いられる場合には、排気弁用の場合ほどには耐熱性が要求されないので、用いることのできる素材の範囲もはるかに広くなる。
 しかし、素材としての鋼材の中には、例えばJIS4311耐熱鋼に含まれる炭素含有量の多い素材のように冷間鍛造性の悪いものも多く、このような素材の場合には冷間鍛造による絞り上げは困難であるが、かといって熱間鍛造で行う場合には仕上げ精度の点で問題が残る。したがって、いかなる素材にも対応でき、且つ仕上げ精度も良い温間鍛造にて適応するのが最も望ましい。
 本発明は、この温間鍛造に着目し、特に第2ステップにおいて、半完成品の拡径部には絞り上げを行わず胴部のみを絞り上げる装置を含む技術の開発、及び、絞り上げ全体を恒温雰囲気にて行えるやはり装置を含む技術を開発したものであって、これにより中空エンジンバルブの弁傘部の温間鍛造を、略いかなる素材を選択しても円滑に行うことができる技術内容を開示するものであり、将来の自動車産業の最も望ましい方向付けに、大いに寄与しうるものであると考える次第である。
1     弁傘部
1a    拡径部
1b    胴部
11    半完成品
111   拡径部
112   胴部
2     中空軸部
2A    中実丸棒
2B    中間部材
2C    中空孔
3     軸端封止材
3A    中実丸棒
3B    中間部材
3C    中空孔
4     外筒
41    窓部
42    エアカーテン装置
42a   吹出口
5     内筒
5a    凸部
6     遮蔽筒
7     フロート
A1    気道
A2    気道
B     プレスベッド
C1    空間
C2    空間
C3    空間
D     ダイス
D1    ダイス
D2    ダイス
DM    ダイス
DN    ダイス
DR    扉
DS    ダイセット
Dr    内径
GP    ガイドポスト
H     ハンガー
HS    断熱層
P     上部パンチ
P1    上部パンチ
PR    プレス装置
R     ラム
S     中空孔
S1    中空孔
S11   中空孔
UR    上部ラム
V     中空エンジンバルブ
W     ワーク
Wa    拡径部
Wb    胴部
X     方向
Y     中空エンジンバルブ
Z     方向
h11   高さ
h12   高さ
h13   高さ
h14   高さ
h15   高さ
h16   高さ
h17   高さ
h18   高さ
h20   高さ
h21   高さ
h22   高さ
h30   高さ
h31   高さ
α     方向
β     方向
φ10   外径
φ11   内径
φ12   最大外径
φ13   内径
φ14   外径

Claims (4)

  1.  中空軸部あるいは軸端封止材に溶接される側が開口された弁傘部中空孔を有し、該弁傘部中空孔が弁傘部の拡径部内において拡径形成されていて、該弁傘部中空孔の最大内径が中空軸部の最大外径より大である中空エンジンバルブの弁傘部の製造方法において、
     素材の中実丸棒より弁傘部半完成品を製造する第1ステップと、該弁傘部半完成品を温間鍛造によって弁傘部の完成品となす第2ステップを有し、
     第1ステップにおいては、円筒形状の胴部の一端に胴部と一体の拡径部を有し、拡径部側を下とした場合に、拡径部の最大外径が完成品の弁傘部の拡径部の最大外径と同一であり、完成品の弁傘部中空孔の最大内径と同一の内径を有する円筒形状中空孔を有し、該円筒形状中空孔は上端が開口され下端が拡径部内において有底である弁傘部半完成品を得、
     第2ステップにおいては、弁傘部半完成品を温度が常温~870℃の範囲内とする鍛造により拡径部の上部及び胴部を複数段階に分けて徐々に絞り上げ、
     すなわち、ワーク、ダイス、パンチを含めた全体の空間自体を恒温に保持し、弁傘部半完成品の拡径部の上部及び胴部を押圧するダイスの内径が、段階が進むごとに少しずつ縮小されたダイスを、絞り上げ工程の数だけ用いて徐々に絞り上げ、
     弁傘部中空孔の拡径部内に於ける最大内径が上記円筒形状中空孔の内径のままに保持され、その内径は上方に向かうに従い縮径されるように構成された完成品の弁傘部を得る、
    ことを特徴とする、中空エンジンバルブの弁傘部の製造方法。
  2.  第2ステップに用いられるプレス装置においては、ワーク及びワークを固定する固定具及びダイス及びダイスを固定する固定具の全体を包含する断熱壁を有し、該断熱壁の効果にて断熱壁内部を恒温状態に保持できるように構成され、請求項1に記載の製造方法にて中空エンジンバルブの弁傘部を製造することができる
    ことを特徴とする中空エンジンバルブの弁傘部のプレス装置。
  3.  軸端封止材の一端に請求項1に記載の製造方法あるいは請求項2に記載のプレス装置にて製造した弁傘部を溶接してなる中空エンジンバルブ。
  4.  両端が開放された中空軸部の一端に請求項1に記載の製造方法あるいは請求項2に記載のプレス装置にて製造した弁傘部を溶接し、他端に軸端封止材を溶接してなる中空エンジンバルブ。
PCT/JP2010/061933 2009-12-24 2010-07-15 中空エンジンバルブの弁傘部の製造方法及び中空エンジンバルブの弁傘部のプレス装置及び中空エンジンバルブ WO2011077776A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080047680.2A CN102652042B (zh) 2009-12-24 2010-07-15 中空发动机阀门的阀伞部的制造方法及中空发动机阀门的阀伞部的冲压装置以及中空发动机阀门
US13/502,902 US8650752B2 (en) 2009-12-24 2010-07-15 Method for manufacturing valve umbrella portion of hollow engine valve, press device of valve umbrella portion of hollow engine valve, and hollow engine valve
EP20100839013 EP2517806B1 (en) 2009-12-24 2010-07-15 Method for manufacturing valve umbrella portion of hollow engine valve, press device of valve umbrella portion of hollow engine valve, and hollow engine valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-292226 2009-12-24
JP2009292226A JP4526097B1 (ja) 2009-12-24 2009-12-24 中空エンジンバルブの弁傘部の製造方法及び中空エンジンバルブの弁傘部のプレス装置及び中空エンジンバルブ

Publications (1)

Publication Number Publication Date
WO2011077776A1 true WO2011077776A1 (ja) 2011-06-30

Family

ID=42767855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061933 WO2011077776A1 (ja) 2009-12-24 2010-07-15 中空エンジンバルブの弁傘部の製造方法及び中空エンジンバルブの弁傘部のプレス装置及び中空エンジンバルブ

Country Status (5)

Country Link
US (1) US8650752B2 (ja)
EP (1) EP2517806B1 (ja)
JP (1) JP4526097B1 (ja)
CN (1) CN102652042B (ja)
WO (1) WO2011077776A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013044287A (ja) * 2011-08-24 2013-03-04 Fuji Oozx Inc 中空エンジンバルブの製造方法及び製造装置
KR101474751B1 (ko) * 2011-12-27 2014-12-19 니탄 밸브 가부시키가이샤 엔진 밸브의 단조 시스템
JP5343167B1 (ja) * 2012-01-17 2013-11-13 日鍛バルブ株式会社 エンジンバルブの自動熱処理システム
DE102013218488A1 (de) * 2013-09-16 2015-03-19 Mahle International Gmbh Hohlventil, insbesondere für eine Brennkraftmaschine
DE102014225619A1 (de) * 2014-12-11 2016-06-16 Mahle International Gmbh Vorrichtung für die Herstellung zumindest eines Hohlventils
JP5843991B1 (ja) * 2015-04-28 2016-01-13 三菱重工業株式会社 金属ナトリウム封入エンジンバルブの製造方法及びその装置
JP6829869B2 (ja) * 2016-11-09 2021-02-17 荻野工業株式会社 オイルジェット装置
DE102017114509A1 (de) * 2017-06-29 2019-01-03 Federal-Mogul Valvetrain Gmbh Hohlraumventil mit optimierter Schaftinnengeometrie und Verfahren zu dessen Herstellung
DE102023200287A1 (de) * 2023-01-16 2024-08-01 Mahle International Gmbh Ventil für eine Brennkraftmaschine und Herstellungsverfahren

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07102917A (ja) * 1993-09-30 1995-04-18 Mitsubishi Heavy Ind Ltd Na封入中空エンジンバルブの製造方法
JPH07208127A (ja) * 1994-01-21 1995-08-08 Mitsubishi Heavy Ind Ltd Na封入中空エンジンバルブの製造方法
JP2001225139A (ja) * 2000-02-15 2001-08-21 Toto Ltd 鍛造成形方法及び装置
JP4390291B1 (ja) 2008-09-18 2009-12-24 株式会社 吉村カンパニー 中空エンジンバルブの弁傘部の製造方法及び中空エンジンバルブ

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1950953A (en) * 1929-03-16 1934-03-13 Serimgeour William Hollow forged valve and method of making the same
US2004528A (en) * 1933-12-30 1935-06-11 Wilcox Rich Corp Method of making valves
US2450803A (en) * 1942-01-24 1948-10-05 Thompson Prod Inc Method of making sheathed valves
US2627259A (en) * 1942-06-24 1953-02-03 Gen Motors Corp Valve
JPS5035024B1 (ja) * 1971-06-10 1975-11-13
JPS58151306U (ja) * 1982-04-05 1983-10-11 日産自動車株式会社 内燃機関の吸排気バルブ
JPS61147939A (ja) * 1984-12-20 1986-07-05 Agency Of Ind Science & Technol 鍛造用型
JPS63195308A (ja) 1987-02-10 1988-08-12 Mitsubishi Heavy Ind Ltd 鋼板を丸めて作る中空バルブ
JP2598995B2 (ja) * 1989-05-01 1997-04-09 フジオーゼックス株式会社 エンジンバルブの成形方法及びその装置
JPH03242408A (ja) * 1990-02-16 1991-10-29 Aisan Ind Co Ltd 中空エンジンバルブの製造方法
JPH0576977A (ja) * 1991-07-23 1993-03-30 Sumitomo Metal Ind Ltd 高温型鍛造方法および装置
JPH06122035A (ja) * 1992-10-13 1994-05-06 Mitsubishi Materials Corp 鍛造装置
US5413073A (en) * 1993-04-01 1995-05-09 Eaton Corporation Ultra light engine valve
US6009843A (en) * 1997-10-22 2000-01-04 3M Innovative Properties Company Fiber reinforced, titanium composite engine valve
JPH11148325A (ja) * 1997-11-12 1999-06-02 Fuji Oozx Inc エンジンバルブの成形方法
JP2000000628A (ja) * 1998-06-15 2000-01-07 Fuji Oozx Inc エンジンバルブの成形方法
JP2000271697A (ja) * 1999-03-25 2000-10-03 Fuji Oozx Inc 2工程連続加工装置
JP2003305524A (ja) * 2002-04-09 2003-10-28 Fuji Oozx Inc エンジンバルブの製造方法
DE10354085B4 (de) * 2003-11-19 2005-11-24 Daimlerchrysler Ag Leichtbauventil
DE102005005041A1 (de) * 2005-02-03 2006-08-10 Märkisches Werk GmbH Ventil zur Steuerung des Gasaustauschs, insbesondere bei Verbrennungsmotoren
JP2008088815A (ja) * 2006-09-29 2008-04-17 Sgg Kenkyusho:Kk 中空ポペット弁とその製造方法
JP2009018565A (ja) 2007-06-14 2009-01-29 Komori Corp 輪転式孔版液体塗布機械の液体刷り移し部材位置調整方法及び装置
JP2009185655A (ja) * 2008-02-05 2009-08-20 Toyota Motor Corp 吸排気バルブの製造方法
JP5297402B2 (ja) 2010-02-26 2013-09-25 三菱重工業株式会社 金属ナトリウム封入エンジンバルブの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07102917A (ja) * 1993-09-30 1995-04-18 Mitsubishi Heavy Ind Ltd Na封入中空エンジンバルブの製造方法
JPH07208127A (ja) * 1994-01-21 1995-08-08 Mitsubishi Heavy Ind Ltd Na封入中空エンジンバルブの製造方法
JP2001225139A (ja) * 2000-02-15 2001-08-21 Toto Ltd 鍛造成形方法及び装置
JP4390291B1 (ja) 2008-09-18 2009-12-24 株式会社 吉村カンパニー 中空エンジンバルブの弁傘部の製造方法及び中空エンジンバルブ

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Heat treatment of steel, revised 5th edition", 1979, MARUZEN CO., LTD.
See also references of EP2517806A4 *
W. C. LESLIE: "The Physical Metallurgy of Steels", 1987, MARUZEN CO., LTD.

Also Published As

Publication number Publication date
US20120228538A1 (en) 2012-09-13
JP4526097B1 (ja) 2010-08-18
CN102652042A (zh) 2012-08-29
EP2517806A1 (en) 2012-10-31
EP2517806B1 (en) 2014-10-15
CN102652042B (zh) 2014-09-17
JP2011131228A (ja) 2011-07-07
EP2517806A4 (en) 2013-11-20
US8650752B2 (en) 2014-02-18

Similar Documents

Publication Publication Date Title
JP4526097B1 (ja) 中空エンジンバルブの弁傘部の製造方法及び中空エンジンバルブの弁傘部のプレス装置及び中空エンジンバルブ
KR101247896B1 (ko) 중공 엔진 밸브의 밸브 헤드부를 제조하는 방법 및 중공 엔진 밸브
US9427795B2 (en) Method for producing a hollow engine valve
WO2011104916A1 (ja) 中空エンジンバルブの製造方法
JP5574752B2 (ja) 中空エンジンバルブの製造方法
US10279440B2 (en) Precision forming method of high-efficiency and near-net hollow valve blank of engine
CN110869590B (zh) 中空阀的制造方法
CN102909301A (zh) 一种截止阀毛坯头部墩粗工艺
CN104791040A (zh) 一种新型中空充钠气门
CN110479860B (zh) 一种计量阀衬套的加工工艺
CN104801938A (zh) 一种基于楔横轧制坯的中空充钠气门的成形工艺
CN104801937A (zh) 一种新型中空充钠气门的成形工艺
KR20010039528A (ko) 포핏밸브의 밸브페이스 경화 방법
JP3839787B2 (ja) 二重壁中空金属部品の製造方法
CN108367336B (zh) 具有第二内颈部的高压无缝钢罐及其生产方法
CN116619024A (zh) 一种阀体毛坯的锻造方法、阀体预制件的制造方法及阀体
CN108788640A (zh) 双金属复合焊管制造工艺
JP2011226322A (ja) 中空エンジンバルブの弁傘部材の製造方法
CN103990944A (zh) 盘端密闭中空充钠气门的制作方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080047680.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839013

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010839013

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 948/MUMNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13502902

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE