WO2011074448A1 - 光制御装置、制御装置、光学スコープ及び光走査型光学装置 - Google Patents

光制御装置、制御装置、光学スコープ及び光走査型光学装置 Download PDF

Info

Publication number
WO2011074448A1
WO2011074448A1 PCT/JP2010/071962 JP2010071962W WO2011074448A1 WO 2011074448 A1 WO2011074448 A1 WO 2011074448A1 JP 2010071962 W JP2010071962 W JP 2010071962W WO 2011074448 A1 WO2011074448 A1 WO 2011074448A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength band
white light
image
specific wavelength
Prior art date
Application number
PCT/JP2010/071962
Other languages
English (en)
French (fr)
Inventor
佐々木 寛
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Publication of WO2011074448A1 publication Critical patent/WO2011074448A1/ja
Priority to US13/488,633 priority Critical patent/US9335269B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00112Connection or coupling means
    • A61B1/00121Connectors, fasteners and adapters, e.g. on the endoscope handle
    • A61B1/00126Connectors, fasteners and adapters, e.g. on the endoscope handle optical, e.g. for light supply cables
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00165Optical arrangements with light-conductive means, e.g. fibre optics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00172Optical arrangements with means for scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/043Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for fluorescence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0638Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0646Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements with illumination filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0655Control therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0669Endoscope light sources at proximal end of an endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0071Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by measuring fluorescence emission
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • A61B1/000094Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope extracting biological structures

Definitions

  • the present invention relates to a light control device, a control device, an optical scope, an optical scanning type optical device, and the like.
  • three-color light of R, G, and B is sequentially irradiated to tissue in a body cavity using a rotation filter, and diagnosis is performed using an image (normal light image) created from the reflected light image of them.
  • a field sequential endoscope system is widely used.
  • the tissue in the body cavity is sequentially irradiated with two types of narrow band light G2 and B2 different in characteristics from the above-described three color lights, and diagnosis is performed using a narrow band image created from the reflected light image
  • An endoscope system to perform is proposed (for example, patent document 1).
  • an endoscope system uses a fluorescence image created by irradiating narrow-band excitation light to tissue in a body cavity and acquiring autofluorescence or drug fluorescence generated from the tissue by the excitation light.
  • Patent Document 2 uses a fluorescence image created by irradiating narrow-band excitation light to tissue in a body cavity and acquiring autofluorescence or drug fluorescence generated from the tissue by the excitation light.
  • the imaging method of the above-mentioned prior art is surface sequential, but unlike this surface sequential method, the tissue inside the body cavity is irradiated with spot light including UV, visible and IR wavelengths from the optical fiber which scans at high speed, and the reflected light
  • a point-sequential scanning endoscope system has also been proposed to receive an image to form an image. Since this scanning endoscope system can be provided with light receiving elements outside the body, there is no fundamental restriction in size, number, etc., and the above-mentioned spot light can be provided by providing a spectroscope between the return light and the light receiving elements. It is also possible to obtain spectral characteristics for the region of. Moreover, it is described that a normal image, a fluorescence image, etc. can be produced
  • these narrow band images and fluorescence images are generally dark and noisy images due to a shortage of illumination light as compared to normal light images, and therefore, they are lesions. There are cases where the fine structure of the part can not be imaged clearly. Furthermore, due to the nature of the special light, basically only the lesion is an enhanced image, so it is difficult to grasp where in the living body there is a lesion only with the special light image. For this reason, it is difficult to diagnose using only the special light image.
  • Patent Document 3 discloses that normal light images and special light images can be simultaneously acquired, there is no problem with eliminating the lack of illumination of special light images with respect to normal light images when acquiring simultaneously. Not disclosed.
  • a light control device, a control device, an optical scope, an optical scanning optical device, and the like that can eliminate the lack of illumination of an image corresponding to a specific wavelength band and generate a clear image.
  • a normal light image can be obtained while minimizing the effect of irradiating a living body with a strong spot light (that is, minimizing the irradiation energy per unit area). It is possible to provide a light control device, a control device, an optical scope, a light scanning optical device, etc. capable of simultaneously acquiring a special light image, eliminating lack of illumination of the special light image and acquiring a clear special light image with little noise.
  • One embodiment of the present invention is an optical scanning type optical device that irradiates a subject with light from a light source in the form of a spot and scans the spot light that is light irradiated in the form of a spot and detecting the return light thereof.
  • a light control unit mounted on the white light source which is a light quantity increasing portion for increasing the light quantity in a specific wavelength band among the wavelength bands of white light from the white light source, and white for which the light quantity in the specific wavelength band is increased
  • a light irradiation unit that irradiates the subject with a specific wavelength band-enhanced white light that is light; and a light detection unit that detects return light from the subject due to the irradiation of the specific wavelength band-enhanced white light. It relates to a light control device.
  • a specific wavelength band-enhanced white light with an increased amount of light in a specific wavelength band is obtained and irradiated. And since the return light is detected, the lack of illumination of the image corresponding to the specific wavelength band can be eliminated, and a clear image can be acquired.
  • Another aspect of the present invention is an optical scanning type optical system that irradiates a subject with light from a light source in the form of a spot, and detects the return light while scanning the spot light that is the light emitted in the form of a spot. It is an apparatus, The specific wavelength zone which is the white light which the light intensity increase part which increases the light volume in the specific wavelength zone among the wavelength zones of the white light from a white light source, and the light intensity of the specific wavelength zone was increased.
  • the light irradiator includes: a light irradiator that irradiates the subject with enhanced white light; and a light detector that detects return light from the subject due to the irradiation of the specific wavelength band enhanced white light, the light irradiator comprising:
  • the present invention relates to a light scanning optical device that acquires the white light from the white light source and emits the white light.
  • a specific wavelength band enhanced white light having an increased amount of light in a specific wavelength band is obtained and illuminated. And since the return light is detected, the lack of illumination of the image corresponding to the specific wavelength band is eliminated, and it is possible to realize an optical scanning type optical device capable of acquiring a clear image.
  • FIG. 1 is a configuration example of a light scanning optical device.
  • FIG. 2 is a configuration example of a light source unit.
  • Figure 3 shows the cut filter characteristics.
  • Figure 4 shows the cut filter characteristics.
  • Fig. 5 shows the characteristics of the NBI mode filter.
  • FIG. 6 shows the characteristics of the filter for fluorescence observation mode.
  • FIG. 7 shows the characteristics of the IRI mode filter.
  • 8 (A), FIG. 8 (B), and FIG. 8 (C) are explanatory diagrams of the acquisition method of the specific wavelength band enhanced white light in the NBI mode.
  • 9 (A), FIG. 9 (B), and FIG. 9 (C) are explanatory diagrams of the acquisition method of the specific wavelength band enhanced white light in the fluorescence observation mode.
  • 10 A), FIG. 10 (B), and FIG.
  • FIGS. 11 (A) to 11 (E) are diagrams for explaining problems when using an inappropriate cut filter in the fluorescence observation mode.
  • 12 (A) to 12 (D) are diagrams for explaining problems when an inappropriate cut filter is used in the IRI observation mode.
  • FIG. 13 shows an example of the configuration of the image processing unit.
  • FIG. 14 is a configuration example of a classification unit.
  • FIG. 15 is an explanatory diagram of weight coefficients in the NBI mode.
  • FIG. 16 is an explanatory view of weight coefficients in the fluorescence observation mode.
  • FIG. 17 is an explanatory view of an associating method of a spectrum and each color signal in the NBI mode.
  • FIG. 18 is an explanatory view of a method of associating the spectrum and each color signal in the fluorescence observation mode.
  • FIG. 19 is an explanatory view of an associating method of a spectrum and each color signal in an IRI mode.
  • FIG. 20 shows an example of the scanning trajectory of the spot light in the present embodiment.
  • FIG. 21 is an explanatory diagram of an image configuration of a raster scan format.
  • FIG. 22 shows another configuration example of the light source unit.
  • FIG. 23 is another structural example of a light source part.
  • FIG. 24 shows the characteristics of the NBI mode filter.
  • FIG. 25 shows the characteristics of the filter for fluorescence observation mode.
  • FIG. 26 shows the characteristics of the IRI mode filter.
  • 27B are explanatory diagrams of a method of acquiring a specific wavelength band enhanced white light in the NBI mode.
  • 28 (A) and 28 (B) are explanatory diagrams of an acquisition method of a specific wavelength band enhanced white light in a fluorescence observation mode.
  • FIG. 29A and FIG. 29B are explanatory diagrams of a method of acquiring a specific wavelength band enhanced white light in the IRI mode.
  • the special light image is displayed with a color different from that of the surrounding area (for example, squamous cell carcinoma etc. in narrow band light observation) Lesions appear in brown), and the visibility of lesions is higher than that observed with normal light.
  • the wavelength band of the light to be irradiated is narrow and the amount of light is small as compared with the observation by the normal light, the whole image becomes dark and hard to see.
  • the applicant has proposed a method of acquiring a bright special light image with less noise by increasing the amount of light in the wavelength band corresponding to the special light.
  • light having a specific wavelength band (light emitted from white light source 501 in FIG. 2 and transmitted through filter 508) and white light (white light source 503 in FIG. 2) Combined with the light emitted from
  • FIG. 10A shows the characteristics of the cut filter (barrier filter) 504, and the light intensity of light emitted from the white light source 503 and transmitted through the cut filter 504 has a similar shape to that shown in FIG.
  • FIG. 10B shows the characteristics of the filter 508, and the light intensity of the light emitted from the white light source 501 and transmitted through the filter 508 is similar to that of FIG. 10B.
  • the similar shape holds when it is assumed that the light source emitted from the white light source 501 is an ideal light source which is constant regardless of the wavelength.
  • a light source will be described as the ideal light source in order to make the invention clearer.
  • the spectral radiation characteristics of the actual light source are not uniform, and the light intensity passing through the filter 508 is not a strictly similar shape because it is a product of the characteristics of the filter 504 and the spectral radiation characteristics of the light source.
  • the method of acquiring white light in which a specific wavelength band is enhanced is not limited to the above, and the light source unit and the like can have other configurations. Modifications will be described in detail in the second and third embodiments.
  • FIG. 1 shows an example of the configuration of an optical scanning type optical device for realizing the method of the present embodiment described above.
  • This light scanning type optical device includes a light control unit 100, an insertion unit 200, an image processing unit 300, a display unit 400, and an external I / F unit 500.
  • the light control unit 100 corresponds to the light control device of the present embodiment, and the light control unit 100 and the image processing unit 300 constitute the control device of the present embodiment.
  • the light control unit 100 includes a light source unit 101, a half mirror 102, a light detection unit 103, a tapered rod 107, an optical connector 108, and a control unit 109.
  • the configuration of the light control unit 100 is not limited to this, and various modifications may be made such as omitting some of these components.
  • the insertion portion 200 is formed to be elongated and bendable, for example, to allow insertion into a body cavity.
  • the insertion unit 200 includes an optical fiber 201, an actuator 202 for vibrating the light emitting end 203 of the optical fiber 201, and an operation unit 204 for allowing the user to freely control the bendable tip.
  • the actuator 202 it is conceivable to use a piezoelectric element, a magnetostrictive element, an electromagnetic induction or the like.
  • the image processing unit 300 includes a classification unit 301, a scan conversion unit 302, a normal light image generation unit 303, a special light image generation unit 304, and an output image generation unit 305.
  • the configuration of the image processing unit 300 is not limited to this, and various modifications can be made such as omitting some of these components.
  • the display unit 400 is a display device capable of displaying moving pictures, such as a CRT or a liquid crystal monitor.
  • the external I / F unit 500 is an interface for performing input from the user to the optical scanning type optical device, and is used to switch the power switch for turning the power on / off, the photographing mode, and various other modes.
  • the mode switching button is included. Then, the external I / F unit 500 outputs the input information to the control unit 109.
  • the details of the light control unit 100 will be described below.
  • a white illumination light (hereinafter, appropriately referred to as a specific wavelength band enhanced white light) in which the specific wavelength light is enhanced is emitted from the light source unit 101 (including the light quantity increasing unit and the light irradiation unit) configuring the light control unit 100 .
  • the specific wavelength band enhanced white light from the light source unit 101 is incident on the thick end portion of the tapered rod 107 via the half mirror 102.
  • An optical connector 108 is provided at the narrow end of the tapered rod 107 so that specific wavelength band enhanced white light, which is light emitted from the tapered rod 107, is sent to the illumination light input end of the optical fiber 201.
  • the specific wavelength band enhanced white light is irradiated from the light emitting end 203 of the optical fiber to the subject 10 as a minute spot light, and the return light from the subject 10 returns to the light emitting end 203 again.
  • the return light from the subject 10 is taken into the optical fiber 201 from the light emission end portion 203, returns to the taper rod 107 via the optical connector 108, is reflected by the half mirror 102, and is incident on the light detection unit 103.
  • the light incident on the light detection unit 103 is split by a splitter 104 including a prism or a diffraction grating, and the split light (spectral light) is arranged in a line along the direction of the split (diffuse)
  • the sensor 105 is irradiated.
  • the optical sensor 105 is configured by arranging a line sensor including a photodiode or a phototransistor capable of photoelectric conversion, a plurality of photomultipliers, and the like, and one for each predetermined wavelength band unit (for example, 10 nm unit) of spectral light. Two photoelectric conversion elements are arranged in such a positional relationship as to correspond.
  • the spectral light of the return light is sampled at a predetermined wavelength interval by the light sensor 105 and converted into an electrical signal, and then output to the A / D converter 106 as analog spectral data.
  • the A / D conversion unit 106 quantizes the sampled analog spectral data with a predetermined number of bits (for example, 16 bits) and converts it into digital data.
  • the digital spectral data from the A / D converter 106 is output to the image processor 300.
  • the light source unit 101 includes white light sources 501 and 503, cut filters 502 and 504, filters 506 to 508, a total reflection mirror 509, a half mirror 510, and a condenser lens 511.
  • the white light sources 501 and 503 are realized by a halogen, a xenon lamp, a white LED or the like.
  • the cut filters 502 and 504 are UV and IR cut filters that cut the ultraviolet region and the infrared region of the white light source.
  • the filters 506 to 508 are filters having different spectral transmittance characteristics, and are stored in a folder 505 which can be moved automatically or manually.
  • Parallel light (including substantially parallel light) emitted from the white light sources 501 and 503 becomes white light in which unnecessary wavelength bands are cut by the cut filters 502 and 504 having the filter transmittance of FIG. 3 or 4.
  • the difference between FIG. 3 and FIG. 4 is whether or not to cut the wavelength in the near infrared region, and in the case of an optical scanning optical device (image processing device) having a mode for observing fluorescence in the infrared region, In the case where there is no mode for observing fluorescence in the infrared region, the characteristics shown in FIG. 3 are obtained.
  • the filters 502 and 504 may be stored in a turret (not shown) and switched by the selection of the observation mode. Details of the cut filter will be described later.
  • the folder 505 is configured to be movable so that the filters (506, 507, 508) corresponding to the optical path of the white light are automatically positioned by designation of the observation mode from the control unit 109.
  • the spectral transmittance characteristic of FIG. 5 is a characteristic in which B2 is transmitted in the range of 390 to 445 nm, G2 is in the range of 530 to 550 nm, and the other is the stop band. It is the one in NBI mode which observes the fine structure of the blood vessel and the mucous membrane surface from the reflected light image.
  • the spectral transmittance characteristic of FIG. 6 is a characteristic in which R2 transmits at 600 to 650 nm and the rest is in the blocking region, for example, in the fluorescence image observation mode of drug fluorescence in the infrared region with transmitted light as excitation light. is there.
  • IR2 transmits in the range of near infrared region of 790 to 820 nm and IR3 at 905 to 970 nm, and the other becomes the blocking region.
  • the transmitted light of these two near infrared regions In the IRI mode for observing the reflected light image of
  • white light emitted from the white light source 501 and having an unnecessary wavelength band cut by the filter 502 passes through the filter 508 in the folder 505. Since the filter 508 has the transmittance characteristic of FIG. 5, as the light transmitted through the filter 508, as shown in FIG. 8B, special light consisting of only B2 of 390 to 445 nm and G2 of 530 to 550 nm is can get. This special light is reflected by the total reflection mirror 509 and is incident on the half mirror 510. On the other hand, white light (characteristic of FIG. 8A) whose unnecessary wavelength band is cut by the white light source 503 and the filter 504 (characteristic of FIG. 3) is incident on the half mirror 510.
  • the two incident lights that are incident on the half mirror 510 become white light in which the special light wavelength band is enhanced, and are incident on the condenser lens 511.
  • a light beam of this special light wavelength band enhanced white light is narrowed by the condenser lens 511, and is incident on the thick end face of the tapered rod 107 via the half mirror 102.
  • the light source unit 101 emits white light in which a specific wavelength band (B2 and G2 in the NBI mode) is enhanced.
  • the filters 502, 504 have the characteristics of FIG. Accordingly, as shown in FIG. 10B, special light having wavelengths of 790 to 820 nm for IR2 and 905 to 970 nm for IR3 is obtained as the light transmitted through the filter 506, and is incident on the half mirror 510. On the other hand, the light transmitted through the filter 504 has a wavelength band as shown in FIG. 10A and is similarly incident on the half mirror 510. As a result, the spectral radiation characteristics of the white light output from the light source unit 101 have the characteristics as shown in FIG.
  • FIGS. 11A to 11E are diagrams for explaining problems that occur when the cut filters 502 and 504 having the characteristics shown in FIG. 3 are used when the filter 507 for fluorescence observation mode is used.
  • the light at the position (B) is the light that has passed through the cut filters 502 and 504, and thus has the characteristics shown in FIG. 11B.
  • the light of the position (C) is the light of (B) which has passed through the filter 507 for fluorescence observation mode, and therefore has the characteristic of FIG. 11 (C).
  • the light of the position of (D) where the light of (B) and the light of (C) are combined has the characteristic of FIG. 11 (D).
  • the irradiation with excitation light of 600 to 650 nm generates fluorescence having a wavelength band of 650 nm to about.
  • the characteristics of the cut filters 502 and 504 must be selected appropriately in accordance with the mode to be used.
  • the cut filters 502 and 504 may have either of the characteristics shown in FIGS. 3 and 4.
  • the insertion unit 200 is connected to the optical connector 108, and the specific wavelength band enhanced white light emitted from the light source unit 101 is incident on the optical fiber 201 through the tapered rod 107.
  • the actuator 202 of the insertion portion 200 is disposed so as to concentrically cover the optical fiber 201, and is not covered by the actuator 202 by oscillating at a predetermined frequency in two axial directions orthogonal to the axis through which the optical fiber 201 passes.
  • the portion up to the light emitting end 203 of the optical fiber 201 is resonated.
  • the vibration control is performed by a control signal from the control unit 109.
  • control unit 109 controls the actuator 202 so as to variably control the vibration amplitude in the two axial directions, thereby controlling the light emitting end portion 203 to, for example, periodically and repeatedly draw a spiral trajectory as shown in FIG.
  • the locus position information representing the correspondence between the control information for the actuator 202 and the locus position of the light emitting end 203 is previously tabulated or functionized and stored in the control unit 109.
  • a specific wavelength band enhanced white light is emitted from the light emission end portion 203 as a small spot light to the subject 10 while drawing such a locus.
  • the return light from the spot light corresponds to pixel information of the captured image.
  • the return light of the spot light returns from the light emission end portion 203 to the optical fiber 201 via the tapered rod 107 and is reflected by the half mirror 102 and is incident on the light detection unit 103.
  • the return light is incident on the light emission end 203, but it is also conceivable that the light emission part and the return light incidence part are different.
  • the light emission fiber may be fixedly provided around the return light incidence fiber. In this way, it is possible to capture as much return light as possible.
  • the classification unit 301 generates an R signal, a G signal, a B signal, a G2 signal (NBI-G signal), and a B2 signal (NBI-B signal).
  • the color signal from the classification unit 301 and the locus position information of the light emitting end 203 of the optical fiber 201 are input from the control unit 109.
  • the input color signal is stored in the memory.
  • the image is converted to an image of one screen so as to be a raster scan format of a normal display device.
  • sampling may not be performed at a predetermined sampling position in the raster scan format, and in that case, interpolation processing is performed using the peripheral pixels to generate pixels.
  • the scan conversion unit 302 generates an image of one screen for each of a plurality of color signals (for example, R signal, G signal, B signal, G2 signal, and B2 signal) input.
  • color signals for example, R signal, G signal, B signal, G2 signal, and B2 signal
  • color signals corresponding to the normal light image are output to the normal light image generation unit 303 as color signals corresponding to the special light image (eg G2 signal,
  • the B2 signal is output to the special light image generation unit 304.
  • the normal light image generation unit 303 and the special light image generation unit 304 respectively perform image processing such as noise reduction processing, color correction processing, gradation conversion processing, enhancement processing, and the like, and output a normal light image and a special light image. It is output to the generation unit 305.
  • the output image generation unit 305 detects, for example, a brown area that is a lesion of a squamous cell carcinoma or the like from the input special light image. Specifically, when it is determined that the area of the predetermined hue is equal to or more than the predetermined area, an output image in which the special light image overlaps the same area of the normal light image is generated. The generated output image is output to the display unit 400.
  • FIG. 13 Details of the classification unit 301, the scan conversion unit 302, and the output image generation unit 305 will be described based on FIGS. 13 and 14.
  • FIG. 13 Details of the classification unit 301, the scan conversion unit 302, and the output image generation unit 305 will be described based on FIGS. 13 and 14.
  • FIG. 13 Details of the classification unit 301, the scan conversion unit 302, and the output image generation unit 305 will be described based on FIGS. 13 and 14.
  • the classification unit 301 includes a spectral data storage memory 401, classification units 402 to 406, and a spectral classification coefficient setting unit 421.
  • the configuration of the classification unit 301 is not limited to this, and various modifications may be made such as omitting some of these components.
  • the digital spectral data is input to the classification unit 301 from the light detection unit 103, and temporarily stored in the spectral data storage memory 401.
  • the digital spectral data stored in the spectral data storage memory 401 is, for example, 60 data in 10 nm increments in the range of 400 nm to 1000 nm.
  • the 60 pieces of digital spectral data are output to classification units 402-406.
  • the spectral classification coefficient setting unit 421 sets 60 spectral data weighting coefficients for each color signal (R, G, B, B2, and G2 in the case of the NBI mode) corresponding to the observation mode selected from the control unit 109. Are input, and corresponding weighting factors are set to the classification units 402 to 406 corresponding to the respective color signals.
  • FIG. 14 shows a detailed configuration example of the classification units 402 to 406.
  • the weighting factors from the spectral classification factor setting unit 421 are input to the classification units 402 to 406, and the input weighting factors are stored in the weighting factor storage memory 702 of FIG.
  • the digital spectral data stored in the spectral data storage memory 401 and the weighting factors stored in the weighting factor storage memory 702 are multiplied by the multipliers 703_1 to 703_N (where N is 60) to obtain weighted spectral data.
  • the color signal is generated by being integrated by the integrator 704.
  • digital spectral data input to the classification units 402 to 406 is in a state in which a portion corresponding to a specific wavelength band is enhanced.
  • the classification unit 402 generates a normal light R signal
  • the classification unit 403 generates a normal light G signal
  • the classification unit 404 generates a normal light B signal.
  • the classification unit 405 generates a special light B2 signal
  • the classification unit 406 generates a special light G2 signal. It is needless to say that in the case of the fluorescence observation mode, since the signals are four signals of R signal, G signal, B signal and R2 signal, it is sufficient to use only four classification units.
  • the wavelength range (corresponding to B2 and G2) enhanced for special light should be equal in weight to the other wavelength ranges It needs to be corrected. That is, the weighting factors in the classification units 403 and 404 for generating the G signal and the B signal need to be set so that the weighting factors in the wavelength region which are enhanced as shown in FIG. 15 become small. Similarly, in the fluorescence observation mode, as shown in FIG. 16, it is necessary to set the weight coefficient of the wavelength band corresponding to R2 small. In the IRI mode, it is not necessary to set a small weighting factor to create a signal for normal light because the enhanced wavelength bands (IR2 and IR3) do not overlap with the wavelength bands of R signal, G signal and B signal. .
  • the weighting factors for the special light are similar to the filter transmittances B2 and G2 in FIG. 5, and are set in the classification units 405 and 406 that generate the B2 signal and the G2 signal.
  • the weighting factor can be set to 0 for unnecessary wavelength regions, so that digital spectral data can be selected as partially used / not used. Not to mention.
  • FIG. 17 schematically shows group classification of digital spectral data used to generate five signals in the observation mode NBI mode.
  • the number of digital spectral data is 15 and divided by 40 nm, and the range of digital spectral data used for each color signal is shown in parentheses.
  • FIG. 18 and FIG. 19 are diagrams schematically showing group classification in the fluorescence observation mode and the IRI mode, respectively.
  • the scan conversion unit 302 includes a normal light color signal value storage memory 407, a special light color signal value storage memory 408, a sampling position information storage memory 409, and interpolation processing units 410 to 411.
  • the locus position information of the light emitting end 203 of the optical fiber 201 is input from the control unit 109 to the sampling position information storage memory 409 in the order of scanning and stored.
  • the locus position information is two-dimensional coordinates.
  • the R, G and B signals from the classification units 402, 403 and 404 are input to the normal light color signal value storage memory 407 and stored in the scanning order.
  • G2 and B2 signals from the classification units 405 and 406 are input to the special light color signal value storage memory 408 and stored in the scanning order.
  • the interpolation processing unit 410 receives R, G and B signals from the normal light color signal value storage memory 407 and locus position information from the sampling position information storage memory 409. Based on corresponding trajectory position information, the input R, G, B signals are stored in a raster scan memory that the interpolation processing unit 410 has. At this time, since the R, G and B signals are in a two-dimensional spiral shape as shown in FIG. 20, each pixel deviates from its original position. An example of converting a two-dimensional spiral scan in this case to a raster scan is shown below.
  • R (x, y) be the pixel value at the sampling position of the raster scan
  • S (u, v) be the pixel value at the sampling position of the two-dimensional spiral scan.
  • x and u are coordinates in the horizontal direction
  • y and v are coordinates in the vertical direction
  • the scale between the two coordinates is in a state adapted to the display magnification.
  • sampling positions u1 and v1, (u2, v2) and (u3, v3) of three two-dimensional spiral scans which surround sampling positions x and y of the raster scan and are close in distance are searched.
  • the distances D1, D2, D3 between the three sampling positions u1, v1, (u2, v2), (u3, v3) and the x, y are calculated
  • R (x, y) is calculated based on the following equation (1) Calculate).
  • the pixel value of the missing pixel is determined using linear interpolation or a median value (median filter) in neighboring pixels around it.
  • the image is converted into an image of a two-dimensional raster scan format as shown in FIG.
  • the normal light image for which scan conversion has been completed is output to the normal light image generation unit 303.
  • the G2 and B2 signals from the special light color signal value storage memory 407 and the locus position information from the sampling position information storage memory 409 are input to the interpolation processing unit 411. Based on corresponding locus position information, the input G2 and B2 signals are stored in a raster scan memory included in the interpolation processing unit 411. The storage position is converted to the raster scan format using the above equation (1) as in the normal light.
  • the special light image for which scan conversion has been completed is output to the special light image generation unit 304.
  • the special light image generation unit 304 generates a special light image in which the two channels of the input G2 and B2 signals are artificially converted to three channels, and is output to the lesion detection unit 412 and the combination processing unit 413.
  • the output image generation unit 305 includes a lesion detection unit 412 and a combination processing unit 413.
  • the special light image generated by the special light image generation unit 304 is input to the lesion detection unit 412, and a region of a predetermined hue is extracted.
  • the areas connected in the extraction area are grouped, and it is determined whether the area after grouping is equal to or greater than a predetermined threshold. If it is determined that the area is equal to or larger than the predetermined threshold value, a rectangular or circular area surrounding the grouping area is set and output to the combining processing unit 413.
  • the combination processing unit 413 receives the lesion detection area from the lesion detection unit 412, the normal light image from the normal light image generation unit 303, and the special light image from the special light image generation unit 304. A partial area of the normal light image is cut based on the lesion detection area, the lesion detection area is extracted from the special light image corresponding to the position, and is attached to the normal light image, and the obtained image is output to the display unit 400 and displayed Be done.
  • the above embodiment is mounted on a light scanning optical device (for example, an endoscope device in a narrow sense) which irradiates a spot light to a subject and scans the spot light while detecting the return light. It is applicable to a light control device.
  • the light control device corresponds to the light control unit 100 in the present embodiment, and the light control unit 100 includes a light amount increase unit, a light irradiation unit, and a light detection unit 103.
  • the light amount increasing unit and the light irradiating unit are realized by, for example, the light source unit 101, the light amount increasing unit acquires the specific wavelength band enhanced white light from the white light source, and the light irradiating unit acquires the specific wavelength band enhanced white light acquired by the light amount increasing unit. Irradiate.
  • the light detection unit 103 also detects return light from the subject due to the irradiation of the specific wavelength band enhanced white light.
  • spot light refers to light irradiated to a subject in the form of a spot.
  • the light intensity of a specific wavelength band (white light in a narrow sense, such as excitation light for generating fluorescence or a wavelength band such as narrow band light) is the light intensity of the other band of white light Specifically, the white light has a characteristic as shown in FIG. 8 (C), FIG. 9 (C), and FIG. 10 (C).
  • the energy of the wavelength band of only special light can be increased while suppressing the overall energy, so that damage to the living body to be irradiated can be suppressed. Simultaneous shooting of special light images becomes possible. Therefore, the wavelength light of special light can be made brighter, and a low noise and clear image can be generated in the special light image obtained by the reflected light.
  • the light amount increasing unit obtains the specific wavelength band enhanced white light by increasing the light amount in the specific wavelength band.
  • the white light source can acquire the specific wavelength band-enhanced white light without using a light source whose light intensity is strong over the entire wavelength band.
  • strong light intensity indicates the strength as compared with the white light source used in the third embodiment.
  • specific wavelength band enhanced white light is acquired by blocking light in wavelength bands other than the specific wavelength band with a filter. Therefore, in order to obtain a specific wavelength band enhanced white light having a light intensity equal to that of the present embodiment, it is necessary to make the light intensity of the original white light source stronger than that of the present embodiment.
  • Embodiments have advantages.
  • the light amount increasing unit obtains the first white light and the second white light from the white light source. Then, light having a specific wavelength band is acquired from the first white light, and the specific wavelength band-enhanced white light is acquired by combining the acquired light having the specific wavelength band and the second white light.
  • the white light source a first white light source and a second white light source may be provided. Then, the light amount increase unit may acquire the first white light from the first white light source and may acquire the second white light from the second white light source. An example is shown in FIG.
  • the specific wavelength band enhanced white light of a large light amount is obtained by separately preparing the white light source for obtaining each light. It becomes possible.
  • the light amount increasing unit uses a filter that transmits a specific wavelength band (specifically, the filters 506, 507, and 508 in FIG. 2.
  • the characteristics are illustrated in FIG. 5, FIG. 6, and FIG. Acquire light having a specific wavelength band.
  • first to Nth filters for example, filters 506, 507, 508 in FIG. 2, etc., and characteristics are shown in FIG. 5, FIG. 6, FIG. 7) are provided.
  • the i-th filter of the above By using the i-th filter of the above, light having the i-th specific wavelength band (for example, wavelength bands of 390 to 445 nm and 530 to 550 nm as shown in FIG. 8B) is obtained.
  • three filters for NBI mode, fluorescence observation mode, and IRI mode are prepared, and switching is performed as necessary, and light having a specific wavelength band to be acquired is also switched.
  • the light amount increasing portion applies a cut filter that blocks infrared light and ultraviolet light with respect to white light from the white light source.
  • a first cut filter and a second cut filter are provided as cut filters, and the first cut filter has a characteristic that the cutoff wavelength on the long wavelength band side is larger than that of the second cut filter.
  • the first cut filter has the characteristics shown in FIG. 3 and the second cut filter has the characteristics shown in FIG.
  • which of the first cut filter and the second cut filter is applied is determined according to which of the above-described first to Nth filters is used.
  • the second cut filter is adopted when the filter 507 for fluorescence observation mode is used, and the first cut filter is adopted when the filter 506 for IRI mode is used. Ru.
  • the second cut filter (FIG. 3) is adopted when the first cut filter (characteristic of FIG. 3) is adopted or when the filter for IRI mode 506 is used.
  • the characteristic 4 is adopted, a fault occurs. Specifically, this is as described above with reference to FIGS. 11 (A) to 11 (E) and FIGS. 12 (A) to 12 (D).
  • the fluorescence observation mode as shown in FIG. 11E, the wavelength bands of the reflected light of the irradiation light and the fluorescence overlap, and the observation of the fluorescence becomes difficult.
  • the IRI mode as shown in FIG. 12D, it is not possible to acquire a specific wavelength band enhanced white light from the first place. From the above reasons, it is necessary to change the characteristics of the cut filter to be applied depending on which of the first to Nth filters is used.
  • the second cut filter transmits light of a specific wavelength band corresponding to the filter to be used, and then transmits light of a wavelength band corresponding to fluorescence generated by irradiating light having the specific wavelength band.
  • Has the property of blocking Specifically, for example, when a filter for fluorescence observation mode is used, light of 600 to 650 nm corresponding to a specific wavelength band is transmitted, but light of 650 nm to 500 nm corresponding to generated fluorescence (longer than 650 nm) Light in the wavelength band is blocked.
  • the light of the wavelength band corresponding to the generated fluorescence is not irradiated. That is, it is possible to suppress the overlap of the wavelength band of the emitted light with the reflected light due to the irradiation, and it is possible to suppress the inhibition of the observation of the fluorescence by the reflected light.
  • fluorescence since fluorescence has very small light quantity compared with reflected light, when reflected light and a wavelength range have overlapped, observation is difficult.
  • the specific wavelength band is a band narrower than the wavelength band of white light.
  • the specific wavelength band is a wavelength band of a wavelength absorbed by hemoglobin in blood. More specifically, it is a wavelength band of 390 nm to 445 nm or 530 nm to 550 nm.
  • NBI narrowband light observation
  • R, G, B a specific channel
  • 390 nm to 445 nm or 530 nm to 550 nm refers to a wavelength band obtained from the property of being absorbed by hemoglobin and the property of reaching the surface layer or the deep part of the living body, respectively.
  • the wavelength band in this case is not limited to this, and for example, the lower limit of the wavelength band is reduced by about 5% due to fluctuation factors such as absorption by hemoglobin and experimental results on reaching the surface or deep part of the living body. The value may rise by about 5%.
  • the specific wavelength band may be a wavelength band of excitation light for causing the fluorescent substance to generate fluorescence.
  • the specific wavelength band may be a wavelength band of infrared light. Specifically, it is a wavelength band of 790 nm to 820 nm or 905 nm to 970 nm.
  • IRI infrared light observation
  • ICG indocyanine green
  • ICG indocyanine green
  • the wavelength band of 790 nm to 820 nm is determined from the property that the absorption of the infrared index drug is the strongest, and the wavelength band of 905 nm to 970 nm is determined from the property that the absorption of the infrared index drug is the weakest.
  • the wavelength band in this case is not limited to this, and for example, the lower limit of the wavelength band decreases by about 5% and the upper limit increases by about 5% due to fluctuation factors such as experimental results on absorption of infrared index drug. It is also conceivable.
  • the light scanning optical device in the present embodiment may be a light scanning endoscope.
  • the present embodiment can be applied to a control device including the light control unit 100 which is the light control device described above and the image processing unit 300.
  • the image processing unit 300 generates a first image corresponding to white light and a second image corresponding to a specific wavelength band, and generates an output image from the first image and the second image.
  • the light control unit can first acquire an optical signal and convert it into an electrical signal, and then perform A / D conversion to acquire a digital signal. Then, by performing image processing on the acquired digital signal by the image processing unit, it becomes possible to display an image in an appropriate format. Specifically, by enhancing a specific wavelength band, it is suppressed that the tint of the white light image changes, or the color of a specific area (for example, a lesion in endoscopic observation) is changed. Therefore, processing such as suppressing oversight can be considered.
  • the image processing unit 300 includes a classification unit 301 and an image generation unit 306.
  • the classification unit 301 classifies the light signal contained in the return light into a plurality of types of groups according to the wavelength, and the image generation unit 306 generates an image of the subject based on the light signal belonging to the group classified by the classification unit. Do.
  • the light detection unit 103 acquires a spectrum using the spectrometer 104. Then, the classification unit 301 classifies into the first group and the second group based on the acquired spectral spectrum.
  • a spectroscope can acquire an optical signal, for example, every 10 nm, there is no need to use a special light source (for example, a light source that emits light corresponding to a narrow band light B2 signal), and ordinary white light can be obtained.
  • the light source unit can be configured only by the combination of the light source, the half mirror, and the filter. Further, for example, since it is possible to acquire signals at equal intervals with high accuracy in 10 nm steps, there is an advantage that the classification by the classification unit 301 later becomes easy.
  • the image generation unit 306 generates a first image based on the light signals belonging to the first group, and generates a second image based on the light signals belonging to the second group.
  • the first image is, in a narrow sense, an ordinary light image, and is an image including information in the wavelength band of white light.
  • the second image is, in a narrow sense, a special light image, and is an image including information of a wavelength band of special light (specifically, for example, wavelength bands of narrow band light B2 and G2).
  • the first group includes optical signals having first to Pth wavelength bands constituting a wavelength band of white light.
  • the image generation unit 306 generates, based on the first to P-th light signals, the first to P-th constituent images constituting the first image.
  • the first to P-th light signals may be light signals of R color, light signals of G color, and light signals of B color.
  • the component image here is an image of each color necessary to generate a normal light image, specifically, an R image having an R signal over the entire image area, and a G having a G signal over the entire image area.
  • An image is a B image with B signals throughout.
  • a normal light image can be obtained by inputting the R image into the R channel, the G image into the G channel, and the B image into the B channel.
  • each optical signal of R, G, B was mentioned as an example as an optical signal which comprises the wavelength zone of white light, it is needless to say that an optical signal is not limited to this.
  • the first to Qth (Q is an integer of 1 or more) wavelength bands constituting a specific wavelength band (for example, in the NBI mode, the 390 to 445 nm wavelength band corresponding to B2 is the first). And a wavelength band of 530 to 550 nm corresponding to G2 is the second wavelength band).
  • the image generation unit generates, based on the first to Qth optical signals, the first to Qth constituent images (for example, the B2 image and the G2 image in the NBI mode) that constitute the second image.
  • each component image of each color is generated from each light signal that constitutes a specific wavelength band.
  • Special light images are generated from these constituent images.
  • it may be a component image based on an optical signal having a wavelength band of narrow band light B2 and G2, or may be a component image based on an optical signal having a wavelength band of IR2 and IR3 in the IRI mode. Good.
  • the optical signal is not limited to these.
  • the image processing unit 300 includes a scan conversion unit 302 that acquires position information of the spot light, and the scan conversion unit 302 further includes a first interpolation processing unit 410 and a second interpolation processing unit 411.
  • the first interpolation processing unit 410 converts the arrangement mode of the first image signal corresponding to the first group classified by the classification unit 301 into a raster scan format based on the position information.
  • the second interpolation processing unit 411 converts the arrangement mode of the second image signal corresponding to the second group into a raster scan format. Then, the image processing unit 300 generates a first image based on the first image signal converted into raster scan format, and generates a second image based on the second image signal.
  • the present embodiment can also be applied to an optical scope that passes white light emitted by the light irradiation unit in the light control device of the present embodiment and returns return light from the object to the light detection unit.
  • the optical scope corresponds to the insertion portion 200 in FIG. 1, and specifically, there are an upper digestive scope, a lower digestive scope, and the like.
  • the diameter can be reduced.
  • the present embodiment can also be applied to a light scanning type optical device including a light amount increasing unit, a light irradiating unit, and a light detecting unit.
  • the light amount increasing unit and the light emitting unit are realized by the light source unit 101, the light amount increasing unit acquires the specific wavelength band enhanced white light from the white light source, and the light emitting unit is the specific wavelength band enhanced white light acquired in the light amount increasing unit. Irradiate.
  • the light detection unit 103 also detects return light from the subject due to the irradiation of the specific wavelength band enhanced white light.
  • the energy of the wavelength band of only special light can be increased while suppressing the overall energy, so that damage to the living body to be irradiated can be suppressed.
  • Simultaneous shooting of special light images becomes possible. Therefore, it is possible to make the wavelength light of special light a brighter illumination light, and to generate a low noise and clear image in the special light image obtained by the reflected light (in a narrow sense, for example, an optical scanning type ) Can be realized.
  • the light scanning optical device may also include a classification unit.
  • the parallel light (including approximately parallel light) emitted from the white light source 601 becomes white light whose unnecessary wavelength band is cut by the UV / IR cut filter 502 having the filter transmittance of FIG. 4.
  • the folder 514 is configured to be movable so that the filters (508 and 507) corresponding to the optical path of the white light are automatically positioned by the observation mode from the control unit 109.
  • the process after the specific wavelength band enhanced white light is obtained is the same as that of the first embodiment.
  • the second embodiment only two types of filters 508 and 507 (NBI mode and fluorescence observation mode) are used because the characteristics of the cut filter 502 do not need to be switched in such a configuration. It is. It is needless to say that three types (or more) of filters can be used as in the first embodiment, in consideration of switching of the filter characteristics of the cut filter 502 as well.
  • a single white light source 601 is provided as a white light source. Then, the light amount increase unit obtains both the first white light and the second white light from the single white light source 601. At that time, it is conceivable to use, for example, a half mirror, and there is an example shown in FIG. In FIG. 22, the first white light is light that passes through (straight-forwards) the half mirror 512, and becomes light having a specific wavelength band by passing through the filters (507, 508), and a total reflection mirror 509. It is reflected by. The second white light is light reflected by the half mirror 512, and is reflected by the total reflection mirror 513.
  • the light source unit 101 has a white light source 601 capable of obtaining higher luminance than that of the first embodiment, a UV / IR cut filter 502 for cutting the ultraviolet region and the infrared region of the white light source, and a plurality of spectral transmittance characteristics. It comprises an automatically or manually movable folder 505 containing filters (602, 603, 604) and a condenser lens 511.
  • White light (characteristics in FIG. 3) emitted from the white light source 601 and having an unnecessary wavelength band cut by the filter 502 is incident on the filters 602, 603, and 604 in the folder 505. Since the filter 602 has the characteristics of FIG. 24 (FIG. 27A), the light transmitted through the filter 602 has a large amount of light at the wavelengths G2 and B2 as shown in FIG. White light with a reduced amount of light is obtained. Similarly, since the filter 603 has the characteristics shown in FIG. 25 (FIG. 28A), the light transmitted through the filter 603 has a large amount of light at the wavelength of R2, as shown in FIG. White light with a reduced amount of light is obtained. Since the filter 604 has the transmittance characteristic of FIG. 26 (FIG. 29A), the light transmitted through the filter 604 has a large amount of light of the wavelengths IR2 and IR3 as shown in FIG. 29B, and the other wavelengths White light with a reduced amount of light is obtained.
  • the obtained white light is incident on the condenser lens 511.
  • a light beam of white light is narrowed by the condenser lens 511, and is incident on the thick end face of the tapered rod 107 via the half mirror 102.
  • the process after the specific wavelength band enhanced white light is obtained is the same as that of the first embodiment.
  • the light amount increasing unit uses a filter that transmits a specific wavelength band (specifically, the filters 602, 603, 604, etc. in FIG. 23. The characteristics are shown in FIG. 24, FIG. 25, FIG. 26). A specific wavelength band enhanced white light is acquired.
  • first to Mth filters for example, filters 602 to 604 in FIG. 23; characteristics are shown in FIGS. 24 to 26
  • the jth of the first to Mth filters are provided.
  • the j-th specific wavelength band enhanced white light for example, light having the characteristics shown in FIG. 27B in the case of the NBI mode
  • three filters for NBI mode, fluorescence observation mode, and IRI mode are prepared, and switching is performed as necessary, thereby switching the specific wavelength band enhanced white light to be acquired.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Endoscopes (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

特殊光画像の照明不足を解消しノイズの少ないクリアな特殊光画像を取得できる光制御装置、制御装置、光学スコープ及び光走査型光学装置等の提供。 光制御装置は、光源からの光をスポット状に被検体に対して照射し、スポット状に照射された光であるスポット光を走査しながら、その戻り光を検出する光走査型光学装置に搭載される光制御装置であって、白色光光源からの白色光の波長帯域のうち特定の波長帯域内の光量を増加させる光量増加部と、特定の波長帯域の光量が増加された白色光である特定波長帯域増強白色光を、被検体に照射する光照射部と、特定波長帯域増強白色光の照射による、被検体からの戻り光を検出する光検出部103を含む。

Description

光制御装置、制御装置、光学スコープ及び光走査型光学装置
 本発明は、光制御装置、制御装置、光学スコープ及び光走査型光学装置等に関する。
 従来より、体腔内の組織に対して回転フィルタを用いてR,G,Bの3色の光を順次照射し、それらの反射光画像から作成した画像(通常光画像)を用いて診断を行う面順次式の内視鏡システムが広く使用されている。さらに、体腔内の組織に対して前述の3色の光とは特性が異なる2種類の狭帯域光G2とB2を順次照射し、それらの反射光画像から作成した狭帯域画像を用いて診断を行う内視鏡システムが提案されている(例えば特許文献1)。また、体腔内の組織に対して狭帯域の励起光を照射し、励起光により組織から発生する自家蛍光もしくは薬剤蛍光を取得して作成した蛍光画像を用いて診断を行う内視鏡システムが提案されている(例えば特許文献2)。
 上記従来技術の撮像方式は面順次であるが、この面順次方式とは異なり、高速に走査する光ファイバから体腔内の組織にUV、可視、IR波長を含むスポット光を照射し、その反射光を受けて画像を形成する点順次式の走査型内視鏡システムも提案されている。この走査型内視鏡システムは受光素子を体外に設けることが可能なため、大きさ、個数等に基本的な制約は無く、戻り光と受光素子の間に分光器を設ける事で上記スポット光の領域に対する分光特性の取得も可能である。また取得した分光特性をもとに通常画像、及び蛍光画像等を生成できることが記載されている(例えば特許文献3)。
特開2006-68113号公報 特開2007-229053号公報 特開2003-535659号公報
 上述の特許文献1のような狭帯域画像を取得する内視鏡システムを用いて診断を行うことで、例えば通常光観察による視認が困難な扁平上皮癌等の病変部が、正常部とは異なる褐色の領域として描出されるため、その発見が容易になることが知られている。
 また、上述の特許文献2のような蛍光画像を取得する内視鏡システムを用いて診断を行う場合は、腫瘍等の病変部に特異的に集積する性質を持つ蛍光薬剤を使用することで、腫瘍等の病変部だけが蛍光を発生することでその発見が容易になる。
 しかしこれらの狭帯域画像や蛍光画像(これらを合わせて特殊光画像と呼ぶ)は、一般的に通常光画像と比較して照明光が不足するため非常に暗くノイズが多い画像となるため、病変部の微細構造をクリアに画像化できない場合がある。更に特殊光の性質上、基本的に病変部のみが強調された画像となるため、特殊光画像だけでは生体内の何処に病変部があるのかを把握しづらい。このため、特殊光画像のみを用いて診断を行うことは難しい。
 このような理由から、ドクターの診断精度を向上するために、例えば通常光画像と特殊光画像を同時に取得し、これら2種類の同時表示を工夫することが考えられる。特に上述の特許文献3では通常光画像と特殊光画像を同時に取得可能な事が開示されているが、同時に取得する場合に通常光画像に対する特殊光画像の照明不足を解消する点については、何ら開示されていない。
 本発明の幾つかの態様によれば、特定波長帯域に対応する画像の照明不足を解消し、クリアな画像を生成できる光制御装置、制御装置、光学スコープ及び光走査型光学装置等を提供できる。また本発明の幾つかの態様によれば、強力なスポット光を生体に照射する事により与える影響を最小限に抑えつつ(つまり単位面積当たりの照射エネルギーを最小限に抑えつつ)、通常光画像と特殊光画像を同時に取得し、特殊光画像の照明不足を解消しノイズの少ないクリアな特殊光画像を取得できる光制御装置、制御装置、光学スコープ及び光走査型光学装置等を提供できる。
 本発明の一態様は、光源からの光をスポット状に被検体に対して照射し、スポット状に照射された光であるスポット光を走査しながら、その戻り光を検出する光走査型光学装置に搭載される光制御装置であって、白色光光源からの白色光の波長帯域のうち特定の波長帯域内の光量を増加させる光量増加部と、前記特定の波長帯域の光量が増加された白色光である特定波長帯域増強白色光を、前記被検体に照射する光照射部と、前記特定波長帯域増強白色光の照射による、前記被検体からの戻り光を検出する光検出部と、を含む光制御装置に関係する。
 本発明の一態様では、特定の波長帯域の光量が増加された特定波長帯域増強白色光を取得して照射する。そしてその戻り光を検出するため、特定波長帯域に対応する画像の照明不足を解消し、クリアな画像を取得できる。
 本発明の他の態様は、光源からの光をスポット状に被検体に対して照射し、スポット状に照射された光であるスポット光を走査しながら、その戻り光を検出する光走査型光学装置であって、白色光光源からの白色光の波長帯域のうち特定の波長帯域内の光量を増加させる光量増加部と、前記特定の波長帯域の光量が増加された白色光である特定波長帯域増強白色光を前記被検体に照射する光照射部と、前記特定波長帯域増強白色光の照射による、前記被検体からの戻り光を検出する光検出部と、を含み、前記光照射部は、前記白色光光源から前記白色光を取得して照射する光走査型光学装置に関係する。
 本発明の他の態様によれば、特定の波長帯域の光量が増加された特定波長帯域増強白色光を取得して照射する。そしてその戻り光を検出するため、特定波長帯域に対応する画像の照明不足を解消し、クリアな画像を取得できる光走査型光学装置を実現できる。
図1は、光走査型光学装置の構成例。 図2は、光源部の構成例。 図3は、カットフィルタの特性。 図4は、カットフィルタの特性。 図5は、NBIモード用フィルタの特性。 図6は、蛍光観察モード用フィルタの特性。 図7は、IRIモード用フィルタの特性。 図8(A)、図8(B)、図8(C)はNBIモードにおける特定波長帯域増強白色光の取得手法の説明図。 図9(A)、図9(B)、図9(C)は蛍光観察モードにおける特定波長帯域増強白色光の取得手法の説明図。 図10(A)、図10(B)、図10(C)はIRIモードにおける特定波長帯域増強白色光の取得手法の説明図。 図11(A)~図11(E)は蛍光観察モードにおいて不適切なカットフィルタを用いた場合の不具合を説明する図。 図12(A)~図12(D)はIRI観察モードにおいて不適切なカットフィルタを用いた場合の不具合を説明する図。 図13は、画像処理部の構成例。 図14は、分類ユニットの構成例。 図15は、NBIモードにおける重み係数の説明図。 図16は、蛍光観察モードにおける重み係数の説明図。 図17は、NBIモードにおける分光スペクトルと各色信号との対応付け手法の説明図。 図18は、蛍光観察モードにおける分光スペクトルと各色信号との対応付け手法の説明図。 図19は、IRIモードにおける分光スペクトルと各色信号との対応付け手法の説明図。 図20は、本実施形態におけるスポット光の走査軌跡の例。 図21は、ラスタスキャン形式の画像構成の説明図。 図22は、光源部の他の構成例。 図23は、光源部の他の構成例。 図24は、NBIモード用フィルタの特性。 図25は、蛍光観察モード用フィルタの特性。 図26は、IRIモード用フィルタの特性。 図27(A)、図27(B)はNBIモードにおける特定波長帯域増強白色光の取得手法の説明図。 図28(A)、図28(B)は蛍光観察モードにおける特定波長帯域増強白色光の取得手法の説明図。 図29(A)、図29(B)はIRIモードにおける特定波長帯域増強白色光の取得手法の説明図。
 以下、本実施形態について説明する。なお、以下に説明する本実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではない。また本実施形態で説明される構成の全てが、本発明の必須構成要件であるとは限らない。
 1.第1の実施形態
 まず本実施形態の手法の概要について説明する。通常光画像と同時に特殊光画像を取得し、病変部を観察する手法において、特殊光画像は病変部が周囲とは異なった色味で表示されるため(例えば狭帯域光観察において扁平上皮癌等の病変が褐色で表示される)、通常光による観察に比べて病変部の視認性が高い。しかし通常光による観察に比べて照射する光の波長帯域が狭く、光量が少ないため、全体には暗く見づらい画像になってしまう。
 そこで本出願人は特殊光に対応する波長帯域の光量を増加させ、明るくノイズの少ない特殊光画像を取得する手法を提案している。具体的には、例えば後述する図2に示すように、特定の波長帯域を有する光(図2では白色光源501から照射され、フィルタ508を透過した光)と白色光(図2では白色光源503から照射された光)とを合成する。
 合成処理を模式的に表したのが図10(A)~図10(C)である。図10(A)はカットフィルタ(バリアフィルタ)504の特性を示しており、白色光源503から照射されカットフィルタ504を透過した光の光強度は図10(A)の相似形となる。また、図10(B)はフィルタ508の特性を示しており、白色光源501から照射されフィルタ508を透過した光の光強度は図10(B)の相似形となる。
 ここで前記相似形となるのは、白色光源501から放射される光強度は波長によらず一定という理想光源を仮定した場合に成り立つものである。以降、発明をより明確化する為に光源は前記理想光源として記述する。現実の光源の分光放射特性は均一ではなく、フィルタ508を通過した光強度は前記フィルタ504の特性と光源の分光放射特性のかけ算となるので厳密には相似形とはならない。
 図10(A)の白色光と、図10(B)の特定の波長帯域を有する光とを、図2のハーフミラー510の位置で合成することにより、図10(C)に示すような、特定の波長帯域が増強された白色光を取得することができる。取得した特定の波長帯域が増強された白色光を照射することで、全体の照射エネルギーを小さく抑えながら、明るくノイズの少ない特殊光画像を取得することが可能になる。詳細については第1の実施形態において説明する。
 なお特定の波長帯域が増強された白色光を取得する方法は上記に限られず、光源部等は他の構成を取ることも可能である。変形例を第2の実施形態及び第3の実施形態において詳細に説明する。
 図1に、以上の本実施形態の手法を実現する光走査型光学装置の構成例を示す。この光走査型光学装置は、光制御部100、挿入部200、画像処理部300、表示部400、外部I/F部500を含む。光制御部100が本実施形態の光制御装置に対応し、光制御部100及び画像処理部300により本実施形態の制御装置が構成される。
 光制御部100は、光源部101、ハーフミラー102、光検出部103、テーパーロッド107、光コネクタ108、制御部109を含む。なお光制御部100の構成はこれに限定されず、これらの構成要素の一部を省略するなどの種々の変形実施が可能である。
 挿入部200は例えば体腔への挿入を可能にするため細長くかつ湾曲可能に形成されている。挿入部200は、光ファイバー201と、光ファイバー201の光射出端部203を振動させるためのアクチュエータ202と、湾曲可能な先端部を自由にユーザーが操作制御するための操作部204により構成されている。アクチュエータ202としては、圧電素子、磁歪素子、或いは電磁誘導等を用いることが考えられる。
 画像処理部300は、分類部301、スキャン変換部302、通常光画像生成部303、特殊光画像生成部304、出力画像生成部305を含む。なお画像処理部300の構成はこれに限定されず、これらの構成要素の一部を省略するなどの種々の変形実施が可能である。
 表示部400はCRTや液晶モニタ等の動画表示可能な表示装置である。
 外部I/F部500は、この光走査型光学装置に対するユーザーからの入力等を行うためのインターフェースであり、電源のオン/オフを行うための電源スイッチ、撮影モードやその他各種のモードを切り換えるためのモード切換ボタンなどを含んで構成されている。そして、この外部I/F部500は、入力された情報を、制御部109へ出力する。
 以下に光制御部100(光制御装置)の詳細を説明する。
 光制御部100を構成する光源部101(光量増加部、光照射部を含む)からは特定波長光が増強された白色照明光(以下適宜、特定波長帯域増強白色光と呼ぶ)が射出される。光源部101からの特定波長帯域増強白色光はハーフミラー102を経由してテーパーロッド107の太端部に入射される。テーパーロッド107の細端部には光コネクタ108が設けられており、光ファイバー201の照明光の入力端にテーパーロッド107からの射出光である特定波長帯域増強白色光を送り込むようになっている。特定波長帯域増強白色光は光ファイバーの光射出端部203から被検体10に微小なスポット光として照射され、被検体10からの戻り光が再び光射出端部203に戻ってくる。
 被検体10からの戻り光は光射出端部203から光ファイバー201に取り込まれ、光コネクタ108を経由してテーパーロッド107に戻り、ハーフミラー102で反射されて光検出部103に入射される。
 光検出部103に入射した光は、プリズム、或いは回折格子からなる分光器104にて分光され、この分光光(スペクトル光)が分光(拡散)する方向に沿って列状に配列されている光センサー105に照射される。光センサー105は光電変換可能なフォトダイオードやフォトトランジスタから構成されるラインセンサや、複数のフォトマル等を配置して構成したものであり、分光光の所定波長帯域単位(例えば10nm単位)に1つの光電変換素子が対応するような位置関係で配置されている。戻り光の分光光は光センサー105にて所定波長間隔でサンプリングして電気信号に変換された後、アナログ分光データとしてA/D変換部106に出力される。
 A/D変換部106は、サンプリングされたアナログ分光データを所定ビット数(例えば16ビット)で量子化し、デジタルデータに変換する。A/D変換部106からのデジタル分光データは画像処理部300へ出力される。
 続いて第1実施形態の光源部101の詳細を図2に基づいて説明する。
 光源部101は、白色光源501、503と、カットフィルタ502、504と、フィルタ506~508と、全反射ミラー509と、ハーフミラー510と、集光レンズ511から構成される。白色光源501、503はハロゲンやキセノンランプ、白色LED等により実現される。カットフィルタ502、504は白色光源の紫外域と赤外域をカットするUV・IRカットフィルタである。フィルタ506~508はそれぞれ異なる分光透過率特性をもつフィルタであり、自動或いは手動で移動可能なフォルダ505に収められている。
 白色光源501、503から射出された平行光(略平行光を含む)は、図3或いは図4のフィルタ透過率を持つカットフィルタ502、504で不要な波長帯域をカットした白色光となる。ここで図3と図4の違いは近赤外域の波長をカットするかどうかであり、赤外域の蛍光を観察するモードを持つ光走査型光学装置(画像処理装置)においては図4の特性を、赤外域の蛍光を観察するモードを持たない場合は図3の特性を有する。或いは、このフィルタ502、504を不図示のターレットに収め、上記観察モードの選択により切り替えられる構成としても良い。カットフィルタの詳細については後述する。
 フォルダ505は、制御部109からの観察モードの指定により、自動的に白色光の光路に対応するフィルタ(506、507、508)が位置するように移動可能な構成となっている。
 以下に3つの観察モード(NBIモード、蛍光観察モード、IRIモード)と一対一で対応するフィルタ(508、507、506)の関係を示す。ここでフィルタ508は図5の分光透過率特性を、フィルタ507は図6の分光透過率特性を、フィルタ506は図7の分光透過率特性を持つものとする。
 図5の分光透過率特性は、B2が390~445nm、G2が530~550nmの範囲で透過し、それ以外は阻止域となる特性であり、特許文献1に記載されている2つの透過光の反射光画像から血管と粘膜表層の微細構造を観察するNBIモード時のものである。図6の分光透過率特性は、R2が600~650nmで透過し、それ以外は阻止域となる特性であり、例えば透過光を励起光として赤外域の薬剤蛍光の蛍光画像観察モード時のものである。図7の分光透過率特性は、IR2が790~820nm、IR3が905~970nmの近赤外域の範囲で透過し、それ以外は阻止域となる特性であり、これら2つの近赤外域の透過光の反射光画像を観察するIRIモード時のものである。
 NBIモードにおいては、白色光源501から射出され、フィルタ502(図3の特性)により不要な波長帯域をカットした白色光は、フォルダ505内のフィルタ508を通る。フィルタ508は図5の透過率特性を持つので、フィルタ508を透過した光として、図8(B)に示すように、B2が390~445nm、G2が530~550nmのみの波長からなる特殊光が得られる。この特殊光は全反射ミラー509で反射され、ハーフミラー510へ入射される。一方、白色光源503とフィルタ504(図3の特性)により不要な波長帯域をカットした白色光(図8(A)の特性)がハーフミラー510に入射される。ハーフミラー510に入射される2つの入射光は特殊光波長帯域が増強された白色光となり、集光レンズ511に入射される。この特殊光波長帯域増強白色光は集光レンズ511により光線が絞られ、ハーフミラー102を経由してテーパーロッド107の太端面に入射される。以上のように光源部101からは、結果として図8(C)に示すように、特定の波長帯域(NBIモードにおいてはB2、G2)が増強された白色光が照射されることになる。
 蛍光観察モードにおいては、フィルタ502、504は図4の特性を有する。よってフィルタ507を透過した光は図9(B)に示すように、600~650nm(R2)のみの波長からなる特殊光が得られ、ハーフミラー510へ入射される。一方、フィルタ504を透過した光は図9(A)に示すような波長帯域を持ち、同様にハーフミラー510に入射される。結果として光源部101から出力される白色光の分光放射特性は図9(C)に示すような特性を有する。
 IRIモードにおいては、フィルタ502、504は図3の特性を有する。よってフィルタ506を透過した光は図10(B)に示すように、IR2が790~820nm、IR3が905~970nmのみの波長からなる特殊光が得られ、ハーフミラー510へ入射される。一方、フィルタ504を透過した光は図10(A)に示すような波長帯域を持ち、同様にハーフミラー510に入射される。結果として光源部101から出力される白色光の分光放射特性は図10(C)に示すような特性を有する。
 以上に示したように、蛍光観察モード用のフィルタ507を用いる場合と、IRIモード用のフィルタ506を用いる場合では、カットフィルタ502、504の特性を切り替える必要がある。以下その理由について図を用いて説明する。
 図11(A)~図11(E)は、蛍光観察モード用フィルタ507の使用時に、図3の特性のカットフィルタ502、504を用いた場合に生じる不具合について説明する図である。
 図11(A)において、(B)の位置の光はカットフィルタ502、504を通過した光であるため、図11(B)の特性を有する。また(C)の位置の光は(B)の光が蛍光観察モード用フィルタ507を通過した光であるため、図11(C)の特性を有する。(B)の光と(C)の光が合成された(D)の位置の光は図11(D)の特性を有する。図11(D)の光を被検体に照射した場合、600~650nmの励起光の照射により、650nm~の波長帯域を有する蛍光が発生する。しかし蛍光の光強度は照射光の反射光に比べて非常に弱いため、図11(E)に示すように、反射光に埋もれて蛍光の観察は困難である。よって本実施形態の蛍光観察を行うためには、照射光の反射光と、蛍光の波長帯域が重複しないように設定する必要があることがわかる。つまりカットフィルタ502、504は図3の特性ではなく、図4の特性のものを用い、照射光として図9(C)に示すような特定波長帯域増強白色光を採用する必要がある。
 また、図12(A)~図12(D)はIRIモード用フィルタ506の使用時に、図4の特性のカットフィルタ502、504を用いた場合に生じる不具合について説明する図である。
 図12(A)において、(B)の位置の光はカットフィルタ502、504を通過した光であるため、図12(B)の特性を有する。また(C)の位置の光は(B)の光がIRIモード用フィルタ506を通過した光であるため、図12(C)の特性を有する。(B)の光と(C)の光が合成された(D)の位置の光は図12(D)の特性を有する。図から明らかなように、フィルタ506を通過させることで380~650nmの光は全て遮断されてしまう。そのため(D)の位置においても特定波長帯域増強白色光を取得することができない。つまりカットフィルタ502、504は図4の特性ではなく、図3の特性のものを用いる必要がある。
 以上の理由により、カットフィルタ502、504の特性は使用するモードにあわせて適切に選択されなくてはならない。なおNBIモードにおいては、蛍光観察モードやIRIモードのような制約はなく、カットフィルタ502、504は図3及び図4のどちらの特性を有していてもよい。
 続いて挿入部200について詳細に説明する。
 挿入部200は光コネクタ108と接続されており、テーパーロッド107を通して光ファイバー201に光源部101から射出された特定波長帯域増強白色光が入射される。挿入部200のアクチュエータ202は光ファイバー201を同心円状に覆うように設置されており、光ファイバー201が通る軸に対して直交する2軸方向に所定周波数で振動する事で、アクチュエータ202に覆われていない光ファイバー201の光射出端部203までの間の部分を共振させる。その振動制御は制御部109からの制御信号で行なう。特に制御部109はアクチュエータ202に2軸方向に対する振動振幅を可変制御する事で光射出端部203を例えば図20のようならせん状の軌跡を周期的に繰り返し描くように制御する。アクチュエータ202に対する上記制御情報と光射出端部203の軌跡位置の対応関係を表す軌跡位置情報は予めテーブル化、或いは関数化されており、制御部109に格納されている。
 このような軌跡を描きながら光射出端部203からは特定波長帯域増強白色光が被検体10に対して小さなスポット光として照射される。このスポット光からの戻り光が撮像画像の画素情報に相当する。スポット光の戻り光は光射出端部203から光ファイバー201に戻りテーパーロッド107を経由してハーフミラー102にて戻り光が反射されて光検出部103に入射される。
 なお、本実施形態では、戻り光が光射出端部203に入射する場合を説明したが、光の射出部と戻り光の入射部が異なる場合も考えられる。例えば、戻り光入射用ファイバーの周囲に光射出用ファイバーを固定して設けてもよい。このようにすることで、戻り光を出来るだけ多く取り込むことが可能となる。
 続いて画像処理部300について詳細を説明する。
 光検出部103に入射した戻り光が光検出部103からデジタル分光データとして分類部301に出力される。分類部301には、光検出部103からデジタル分光データが入力され、制御部109から観察モードに対応する各色信号の分光データ重み係数が入力される。分類部301(色信号生成部)は、各波長に対するデジタル分光データと各色信号に対する所定の重みを乗算した後、重み付き分光データを積和演算する事により色信号を算出する。算出された色信号はスキャン変換部302へ出力される。
 例えばNBIモードであれば、分類部301はR信号、G信号、B信号、G2信号(NBI-G信号)、B2信号(NBI-B信号)を生成する。
 スキャン変換部302には、分類部301からの色信号と、制御部109から光ファイバー201の光射出端部203の軌跡位置情報とが入力される。入力された色信号はメモリに格納される。一画面分の軌跡に対応する色信号(ここではまだらせん状)と、対応する軌跡位置情報に基づいて、通常の表示装置のラスタスキャン形式となるように一画面分の画像に変換する。単純な画素データの並び替えではラスタスキャン形式での所定サンプリング位置にサンプリングされていない場合があるので、その場合はその周辺画素を用いて補間処理を行い、画素を生成する。スキャン変換部302では入力される複数の色信号(例えばR信号、G信号、B信号、G2信号、B2信号)に対してそれぞれ一画面分の画像を生成する。生成した一画面分の画像のうち、通常光画像に対応する色信号(R信号、G信号、B信号)は通常光画像生成部303に、特殊光画像に対応する色信号(例えばG2信号、B2信号)は特殊光画像生成部304に出力される。
 通常光画像生成部303及び特殊光画像生成部304は、それぞれ対応するノイズ低減処理、色補正処理、階調変換処理、強調処理等の画像処理を施し、通常光画像及び特殊光画像を出力画像生成部305に出力する。
 出力画像生成部305は、入力される特殊光画像から例えば扁平上皮癌等の病変部である褐色の領域を検出する。具体的には所定色相の領域が所定面積以上あると判定された場合は、通常光画像のその同一領域に特殊光画像をオーバーラップした出力画像を生成する。生成した出力画像は表示部400に出力される。
 表示部400(表示装置)は、出力画像生成部305から入力された出力画像を表示する。
 続いて分類部301、スキャン変換部302、出力画像生成部305の詳細を図13と図14に基づき説明する。
 図13に示すように、分類部301は、分光データ格納メモリ401、分類ユニット402~406、分光分類係数設定部421を含む。なお分類部301の構成はこれに限定されず、これらの構成要素の一部を省略するなどの種々の変形実施が可能である。
 分類部301には光検出部103からデジタル分光データが入力され、分光データ格納メモリ401に一時的に格納される。分光データ格納メモリ401に格納されるデジタル分光データは、例えば400nm~1000nmの範囲で10nm刻みの60個のデータとする。この60個のデジタル分光データは分類ユニット402~406に出力される。
 分光分類係数設定部421には、制御部109から選択した観察モードに対応する各色信号(NBIモードの場合はR,G,B,B2,G2)のそれぞれに対して60個の分光データ重み係数が入力され、各色信号に対応する分類ユニット402~406にそれぞれ対応する重み係数がセットされる。
 図14は分類ユニット402~406の詳細な構成例である。分類ユニット402~406には、分光分類係数設定部421からの重み係数が入力され、入力された重み係数は、図14の重み係数格納メモリ702に格納される。分光データ格納メモリ401に格納されているデジタル分光データと、重み係数格納メモリ702に格納されている重み係数が、乗算器703_1~703_N(ここでNは60)において乗算され、重み付分光データが積算器704にて積算されることで、色信号が生成される。
 ここでデジタル分光データに対する重み係数について説明する。
 NBIモードでは、分類ユニット402~406に入力されるデジタル分光データは、図8(C)に示すように特定の波長帯域に対応する部分が増強された状態となっている。ここで分類ユニット402は通常光のR信号を、分類ユニット403は通常光のG信号を、分類ユニット404は通常光のB信号を生成する。分類ユニット405は特殊光のB2信号を、分類ユニット406は特殊光のG2信号を生成する。なお蛍光観察モードであれば信号はR信号、G信号、B信号、R2信号の4つであるため、分類ユニットも4つ使うだけで良いことは言うまでもない。
 通常光用のR信号、G信号、B信号の3原色信号については特殊光のために増強された波長域(B2とG2に対応)を、それ以外の波長域と同等の重みになるように修正する必要がある。つまり、G信号とB信号を生成する分類ユニット403、404における重み係数は、図15に示すように増強されている波長域の重み係数が小さくなるように設定する必要がある。同様に蛍光観察モードでは図16に示すように、R2に対応する波長帯域の重み係数を小さく設定する必要がある。なおIRIモードにおいては、増強した波長帯域(IR2、IR3)とR信号、G信号、B信号の波長帯域とは重複しないため、通常光用の信号を作るに当たって重み係数を小さく設定する必要はない。
 以下、特に断りがない場合はNBIモードを例にとって説明する。蛍光観察モード、IRIモードにおいても同様に処理されることは当業者には容易に理解可能であろう。
 特殊光用の重み係数は図5のフィルタ透過率のB2とG2の相似形となり、B2信号とG2信号を生成する分類ユニット405、406にセットされる。
 当然、重み係数は図15や図5に示しているように不必要な波長域については0を指定できるので、デジタル分光データを部分的に使用/不使用として選択できるようになって
いるのは言うまでも無い。
 図17に観察モードがNBIモード時の5つの信号を生成するのに使用するデジタル分光データのグループ分類を模式的に示す。この図ではデジタル分光データの数は15個で40nm毎に分割したものであり、各色信号で使用するデジタル分光データの範囲を括弧で示している。同様に図18、図19は、各々、蛍光観察モード、IRIモードでのグループ分類を模式的に示す図である。
 スキャン変換部302は、通常光用色信号値格納メモリ407、特殊光用色信号値格納メモリ408、サンプリング位置情報格納メモリ409、補間処理部410~411から構成される。
 サンプリング位置情報格納メモリ409には制御部109から光ファイバー201の光射出端部203の軌跡位置情報がスキャン順に入力され、格納される。軌跡位置情報は2次元座標となる。
 通常光用色信号値格納メモリ407には分類ユニット402、403、404からのR、G、B信号が入力されスキャン順に格納される。
 特殊光用色信号値格納メモリ408には分類ユニット405、406からのG2、B2信号が入力されスキャン順に格納される。
 補間処理部410には通常光用色信号値格納メモリ407からのR、G、B信号とサンプリング位置情報格納メモリ409からの軌跡位置情報が入力される。対応する軌跡位置情報に基づき、入力されたR、G、B信号を補間処理部410が有するラスタスキャン用メモリに格納する。この際、R,G,B信号は図20に示すように、2次元らせん状になっているため、各画素は本来の位置からずれる。この場合の2次元らせんスキャンをラスタスキャンに変換する一例を以下に示す。
 まずラスタスキャンのサンプリング位置の画素値をR(x,y)と2次元らせんスキャンのサンプリング位置の画素値をS(u,v)とする。ここでx及びuは水平方向の座標、y及びvは垂直方向の座標であり、2つの座標間のスケールは表示倍率に合わせた状態とする。そしてラスタスキャンのサンプリング位置x,yを囲み、且つ距離が近い3つの2次元らせんスキャンのサンプリング位置u1,v1、(u2,v2)、(u3,v3)を検索する。前記3つのサンプリング位置u1,v1、(u2,v2)、(u3,v3)と前記x,yとの距離D1,D2,D3を算出し、以下の式(1)に基づきR(x,y)を算出する。
R(x,y)=S(u1,v1)α+S(u2,v2)β+S(u3,v3)γ
α=(D2+D3)/{2(D1+D2+D3)}
β=(D1+D3)/{2(D1+D2+D3)}
γ=(D1+D2)/{2(D1+D2+D3)} ・・・・・(1)
 上記処理の後にラスタスキャンのサンプリング位置に欠落がある場合には、その周辺の隣接画素で線形補間、或はメディアン値(メディアンフィルタ)を使ってその欠落画素の画素値を決定する。
 上記の補間処理により、図21に示すような2次元ラスタスキャン形式の画像に変換される。スキャン変換が終了した通常光画像は通常光画像生成部303へ出力される。
 補間処理部411には特殊光用色信号値格納メモリ407からのG2、B2信号とサンプリング位置情報格納メモリ409からの軌跡位置情報が入力される。対応する軌跡位置情報に基づき、入力されたG2、B2信号を補間処理部411が有するラスタスキャン用メモリに格納する。格納位置については通常光時と同様に上式(1)を用いてラスタスキャン形式に変換される。スキャン変換が終了した特殊光画像は特殊光画像生成部304へ出力される。特殊光画像生成部304では入力されるG2、B2信号の2チャンネルを擬似的に3チャンネル化した特殊光画像を生成し、病変検出部412と合成処理部413へ出力される。
 出力画像生成部305は病変検出部412と合成処理部413から構成される。
 病変検出部412には特殊光画像生成部304にて生成された特殊光画像が入力され、所定色相の領域を抽出する。前記抽出領域で連結する領域をグルーピングしグルーピング後の面積が所定閾値以上か判定を行なう。面積が所定閾値以上と判定された場合には、グルーピング領域を囲む矩形、或いは円形領域を設定し、合成処理部413に出力される。
 合成処理部413には、病変検出部412からの病変検出領域と、通常光画像生成部303からの通常光画像と、特殊光画像生成部304からの特殊光画像とが入力される。病変検出領域に基づき通常光画像の一部領域をカットし、その位置に対する特殊光画像から病変検出領域を抽出して通常光画像に貼り付け、得られた画像が表示部400に出力されて表示される。
 以上の本実施形態は、スポット光を被検体に対して照射し、スポット光を走査しながら、その戻り光を検出する光走査型光学装置(狭義には例えば内視鏡装置)に搭載される光制御装置に適用できる。光制御装置とは本実施形態における光制御部100に対応し、光制御部100は、光量増加部と、光照射部と、光検出部103を含む。光量増加部と光照射部は例えば光源部101により実現され、光量増加部は白色光光源から特定波長帯域増強白色光を取得し、光照射部は光量増加部で取得した特定波長帯域増強白色光を照射する。また光検出部103は特定波長帯域増強白色光の照射による被検体からの戻り光を検出する。
 ここで、スポット光とはスポット状に被検体に対して照射される光のことである。また、特定波長帯域増強白色光とは特定の波長帯域(狭義には蛍光を発生させるための励起光や、狭帯域光等の波長帯域)の光強度が、白色光の他の帯域の光強度に比べ大きくなっている白色光のことであり、具体的には図8(C)、図9(C)、図10(C)に示すような特性を有する。
 これにより、白色光を照明光としてスポット状に集中した場合でも全体のエネルギーを抑えつつ特殊光のみの波長帯域のエネルギーを大きくできるので、照射される生体に与えるダメージを抑えながら、通常光画像と特殊光画像の同時撮影が可能となる。よって特殊光の波長光をより明るい照明光とする事ができ、その反射光で得られる特殊光画像において低ノイズでクリアな画像を生成できる。
 また、光量増加部は特定の波長帯域の光量を増加させることで、特定波長帯域増強白色光を取得する。
 これにより、白色光光源は波長帯域全体にわたって光強度が強いものを使わなくとも、特定波長帯域増強白色光を取得することができる。ここで光強度が強いとは、第3の実施形態で使用される白色光光源と比べた場合の強弱を表す。後述するように第3の実施形態では、特定の波長帯域以外の波長帯域の光をフィルタで遮断することで特定波長帯域増強白色光を取得する。そのため、本実施形態と同等の光強度を持つ特定波長帯域増強白色光を取得するためには元の白色光光源の光強度を、本実施形態に比べて強くする必要があり、その点で本実施形態は利点を有する。
 また、光量増加部は白色光光源から第1の白色光と第2の白色光を取得する。そして第1の白色光から特定の波長帯域を有する光を取得し、取得した特定の波長帯域を有する光と第2の白色光を合成することで、特定波長帯域増強白色光を取得する。
 これにより、白色光源から特定波長の光を取得するのに、任意の波長帯域フィルタを設計するだけで済むので低コストに特定波長帯域増強白色光を取得することが可能となる。
 また、白色光光源として、第1の白色光光源と第2の白色光光源が設けられてもよい。そして光量増加部は、第1の白色光光源から第1の白色光を取得し、第2の白色光光源から第2の白色光を取得しても良い。一例としては図2の構成がある。
 これにより、第1の白色光と第2の白色光の合成という手法に際して、それぞれの光を取得するための白色光光源を別々に用意することで大光量の特定波長帯域増強白色光を取得することが可能となる。
 また、光量増加部は、特定の波長帯域を透過するフィルタ(具体的には図2におけるフィルタ506、507、508等。特性については図5、図6、図7に示す)を用いることで、特定の波長帯域を有する光を取得する。
 これにより、光源自体に特殊光を発生させるようなものを採用する必要がなくなり、光源としては白色光光源のみから特定波長帯域増強白色光を取得することが可能となる。そのためコストの削減にもつながる。
 また、フィルタとして、第1~第Nのフィルタ(例えば図2におけるフィルタ506、507、508等。特性については図5、図6、図7に示す)が設けられ、第1~第Nのフィルタのうちの第iのフィルタを用いることで、第iの特定の波長帯域(例えば図8(B)に示すような390~445nm、530~550nmという波長帯域)を有する光を取得する。具体的には、NBIモード用・蛍光観察モード用・IRIモード用の3つのフィルタを用意して、必要に応じて切り替えることで、取得する特定の波長帯域を有する光も切り替える。
 これにより、フィルタを適宜切り替えることで、例えばNBIモード・蛍光観察モード・IRIモードの3つのように異なるモードを自由に選択することが可能になる。
 また、光量増加部は白色光光源からの白色光に対して、赤外光及び紫外光を遮断するカットフィルタを適用する。ここでカットフィルタとして第1のカットフィルタと第2のカットフィルタが設けられ、第1のカットフィルタは第2のカットフィルタに比べて、長波長帯域側のカットオフ波長が大きい特性を有する。具体的には例えば、第1のカットフィルタは図3に示す特性を有し、第2のカットフィルタは図4に示す特性を有することが考えられる。さらに第1のカットフィルタと第2のカットフィルタのどちらが適用されるかは、前述した第1~第Nのフィルタのうち、どのフィルタが用いられたかに応じて決定される。具体的には前述したように蛍光観察モード用のフィルタ507が用いられた場合には第2のカットフィルタが、IRIモード用のフィルタ506が用いられた場合には第1のカットフィルタが採用される。
 ここで、蛍光観察モード用フィルタ507が用いられた場合に第1のカットフィルタ(図3の特性)を採用した時や、IRIモード用フィルタ506が用いられた場合に第2のカットフィルタ(図4の特性)を採用した時には不具合が生じる。具体的には図11(A)~図11(E)及び図12(A)~図12(D)を用いて前述した通りである。蛍光観察モードにおいては、図11(E)に示すように照射光の反射光と蛍光の波長帯域が重複してしまい、蛍光の観察が困難になる。IRIモードにおいては、図12(D)に示すように、そもそも特定波長帯域増強白色光を取得することができない。以上の理由から第1~第Nのフィルタのうち、どのフィルタが用いられたかによって、適用するカットフィルタの特性も変化させる必要がある。
 適用するカットフィルタの特性を適切に選択することで、使用するモードに応じた波長帯域を有する白色光を取得することが可能になる。
 また、第2のカットフィルタは、使用するフィルタに対応する特定の波長帯域の光は透過させたうえで、特定の波長帯域を有する光を照射することで発生する蛍光に対応する波長帯域の光は遮断する特性を有する。具体的には例えば、蛍光観察モード用のフィルタを使用する場合において、特定の波長帯域に対応する600~650nmの光は透過させるが、発生する蛍光に対応する650nm~の光(650nmよりも長波長帯域の光)は遮断する。
 これにより、照射光としての特定波長帯域増強白色光を適切に取得した上で、発生する蛍光に対応する波長帯域の光は照射しないことになる。つまり照射による反射光と、発生する蛍光の波長帯域が重複することを抑止することが可能になり、反射光により蛍光の観察が阻害されることを抑止することができる。なお蛍光は反射光に比べて、光量が非常に少ないため、反射光と波長帯域が重複してしまった場合には観察は困難である。
 また、特定の波長帯域とは、白色光の波長帯域よりも狭い帯域である。具体的には特定の波長帯域とは、血液中のヘモグロビンに吸収される波長の波長帯域である。さらに具体的には、390nm~445nmまたは530nm~550nmの波長帯域である。
 これにより、NBIと呼ばれる狭帯域光観察が可能になる。NBIでは生体の表層部及び、深部に位置する血管の構造を観察することができる。また得られた信号を特定のチャンネル(R,G,B)に入力することで、扁平上皮癌等の通常光では視認が難しい病変などを褐色等で表示することができ、病変部の見落としを抑止することができる。なお、390nm~445nmまたは530nm~550nmとはヘモグロビンに吸収されるという特性及び、それぞれ生体の表層部または深部まで到達するという特性から得られた波長帯域である。ただし、この場合の波長帯域はこれに限定されず、例えばヘモグロビンによる吸収と生体の表層部又は深部への到達に関する実験結果等の変動要因により、波長帯域の下限値が5%程度減少し、上限値が5%程度上昇することも考えられる。
 また、特定の波長帯域とは、蛍光物質に蛍光を発生させるための励起光の波長帯域であってもよい。
 これにより、蛍光観察が可能となる。励起光を照射することで、コラーゲンなどの蛍光物質からの自家蛍光や、蛍光薬剤を用いた薬剤蛍光を観察することができる。このような観察では病変を正常粘膜とは異なった色調で強調表示することができ、病変部の見落としを抑止すること等が可能になる。
 また、特定の波長帯域とは、赤外光の波長帯域であってもよい。具体的には790nm~820nmまたは905nm~970nmの波長帯域である。
 これにより、IRIと呼ばれる赤外光観察が可能となる。赤外光が吸収されやすい赤外指標薬剤であるICG(インドシアニングリーン)を静脈注射した上で、上記波長帯域の赤外光を照射することで、人間の目では視認が難しい粘膜深部の血管や血流情報を強調表示することができ、胃癌の深達度診断や治療方針の判定などが可能になる。なお790nm~820nmという波長帯域は赤外指標薬剤の吸収がもっとも強いという特性から、905nm~970nmという波長帯域は赤外指標薬剤の吸収がもっとも弱いという特性から求められたものである。ただし、この場合の波長帯域はこれに限定されず、例えば赤外指標薬剤の吸収に関する実験結果等の変動要因により、波長帯域の下限値が5%程度減少し、上限値が5%程度上昇することも考えられる。
 また、本実施形態における光走査型光学装置は光走査型内視鏡であっても良い。
 これにより、本実施形態で示された光制御装置を搭載した光走査型内視鏡を実現することが可能になる。
 また、本実施形態は前述してきた光制御装置である光制御部100と、画像処理部300とを含む制御装置にも適用できる。画像処理部300は白色光に対応する第1の画像と、特定の波長帯域に対応する第2の画像を生成し、第1の画像と第2の画像から出力画像を生成する。
 これにより、まず光制御部において、光信号を取得し電気信号に変換した上でA/D変換をしてデジタル信号を取得することができる。そして画像処理部により、取得したデジタル信号に画像処理を施すことにより、適切な形式で画像を表示することが可能になる。具体的には、特定の波長帯域を増強したことにより白色光画像の色味が変化してしまうことを抑止したり、特定の領域(例えば内視鏡観察における病変部等)の色を変更することで、見落としを抑止する等の処理が考えられる。
 また、画像処理部300は分類部301と画像生成部306を含む。分類部301は戻り光に含まれる光信号を波長に応じて複数種類のグループに分類し、画像生成部306は分類部により分類されたグループに属する光信号に基づいて、被検体の画像を生成する。
 これにより、戻り光から得た信号を、生成する画像の特性に合わせて、複数のグループに分類することが可能になる。
 また、分類部301は、白色光の波長帯域を有する光信号を含む第1のグループと、特定の波長帯域を有する特殊光の光信号を含む第2のグループとに分類する。
 これにより、白色光に対応する第1のグループと、特殊光に対応する第2のグループに分類することが可能になる。具体的には、NBIモードにおいてはR,G,B信号は第1のグループ(狭義には通常光グループ)に、B2,G2信号は第2のグループ(狭義には特殊光グループ)に分類され、適切に通常光画像と特殊光画像とを生成することができる。
 また、光検出部103は分光器104を用いて分光スペクトルを取得する。そして分類部301は取得した分光スペクトルに基づいて、第1のグループと第2のグループに分類する。
 これにより、分光器という光学的にわかりやすい装置を用いてシステムを構成することが可能になる。分光器により、例えば10nm刻みに光信号を取得することができるため、光源として特殊なもの(例えば狭帯域光のB2信号に対応する光を照射する光源等)を用いる必要がなく、通常の白色光光源とハーフミラー、フィルタ等の組み合わせのみで、光源部を構成することが可能になる。また例えば10nm刻みの高精度で等間隔の信号を取得できるため、その後の分類部301による分類が容易になるという利点がある。
 また、画像生成部306は第1のグループに属する光信号に基づいて、第1の画像を生成し、第2のグループに属する光信号に基づいて、第2の画像を生成する。ここで第1の画像とは狭義には通常光画像のことであり、白色光の波長帯域における情報を含む画像である。また第2の画像とは狭義には特殊光画像のことであり、特殊光の波長帯域(具体的には例えば狭帯域光B2,G2の波長帯域)の情報を含む画像である。
 これにより、分類部301の分類に基づいて、適切に通常光画像と特殊光画像を生成することが可能になる。
 また、第1のグループは白色光の波長帯域を構成する第1~第Pの波長帯域を有する光信号を含む。そして画像生成部306は第1~第Pの光信号に基づいて、第1の画像を構成する第1~第Pの構成画像を生成する。ここで第1~第Pの光信号とは具体的には、R色の光信号、G色の光信号及びB色の光信号であってもよい。また、ここでの構成画像とは、通常光画像を生成するために必要な各色の画像のことであり、具体的には画像領域全体にわたりR信号を有するR画像、全体にわたりG信号を有するG画像、全体にわたりB信号を有するB画像のことである。R画像をRチャンネルに、G画像をGチャンネルに、B画像をBチャンネルに入力することで通常光画像が得られることになる。
 これにより、白色光の波長帯域を構成する各光信号から、各色の構成画像を生成することが可能になる。具体的には例えばR色の光信号からR画像を取得し、同様にG画像及びB画像を取得することができる。これらの構成画像から通常光画像を生成する。なお白色光の波長帯域を構成する光信号としてR,G,Bの各光信号を例に挙げたが、光信号がこれに限定されないことは言うまでもない。
 また、第2のグループは特定の波長帯域を構成する第1~第Q(Qは1以上の整数)の波長帯域(例えばNBIモードにおいては、B2に対応する390~445nmの波長帯域が第1の波長帯域であり、G2に対応する530~550nmの波長帯域が第2の波長帯域である)を有する光信号を含む。そして画像生成部は第1~第Qの光信号に基づいて、第2の画像を構成する第1~第Qの構成画像(例えばNBIモードにおいてはB2画像とG2画像)を生成する。
 これにより、特定の波長帯域を構成する各光信号から、各色の構成画像を生成することが可能になる。これらの構成画像から特殊光画像を生成する。具体的には例えば狭帯域光B2,G2の波長帯域を有する光信号に基づく構成画像であってもよいし、IRIモードのIR2、IR3の波長帯域を有する光信号に基づく構成画像であってもよい。また、光信号がこれらに限定されないことは言うまでもない。
 また、光照射部はスポット光をらせん状に照射する。画像処理部300はスポット光の位置情報を取得するスキャン変換部302を含み、スキャン変換部302はさらに第1補間処理部410と第2補間処理部411を含む。第1補間処理部410は分類部301で分類された第1のグループに対応する第1の画像信号の配置態様を、位置情報に基づいてラスタスキャン形式に変換する。同様に第2補間処理部411は第2のグループに対応する第2の画像信号の配置態様を、ラスタスキャン形式に変換する。そして画像処理部300はラスタスキャン形式に変換された第1の画像信号に基づいて第1の画像を生成し、第2の画像信号に基づいて第2の画像を生成する。
 これにより、らせん状の走査により得られた画像(自然な画像ではなく、被検体が歪んで見える)を図21に示すようなラスタスキャン形式に変換することが可能になる。また前記スキャン形式を変換しただけでは、情報が格納されない画素が出てくるため、例えば線形補間やメディアンフィルタ等で補間値を算出する。そして得られたラスタスキャン形式の画像信号に基づいて画像を生成することができる。
 また、本実施形態は、本実施形態の光制御装置内の光照射部により照射された白色光を通過させ、被検体からの戻り光を光検出部に返す光学スコープにも適用できる。
 ここで光学スコープとは、図1における挿入部200に対応するもので、具体的には上部消化器用スコープや下部消化器用スコープ等がある。本実施形態のスコープでは、照明部と受光部を共通化できるので細径化が可能となる。
 また、本実施形態は、光量増加部と光照射部と光検出部とを含む光走査型光学装置にも適用できる。光量増加部と光照射部は光源部101により実現され、光量増加部は白色光光源から特定波長帯域増強白色光を取得し、光照射部は光量増加部で取得した特定波長帯域増強白色光を照射する。また光検出部103は特定波長帯域増強白色光の照射による被検体からの戻り光を検出する。
 これにより、白色光を照明光としてスポット状に集中した場合でも全体のエネルギーを抑えつつ特殊光のみの波長帯域のエネルギーを大きくできるので、照射される生体に与えるダメージを抑えながら、通常光画像と特殊光画像の同時撮影が可能となる。よって特殊光の波長光をより明るい照明光とする事ができ、その反射光で得られる特殊光画像において低ノイズでクリアな画像を生成できる光走査型光学装置(狭義には例えば光走査型内視鏡)を実現することが可能になる。
 また、光走査型光学装置は分類部を含んでも良い。
 これにより、戻り光から得た信号を、生成する画像の特性に合わせて、複数のグループに分類することが可能になる。
 2.第2の実施形態
 続いて第2実施形態について説明する。なお光源部101以外の構成は第1の実施形態と同様であるため、詳細な説明は省略する。光源部101の詳細を図22に示す。
 光源部101は、第1実施形態に比べて高輝度が得られる白色光源601と、白色光源の紫外域と赤外域をカットするUV・IRカットフィルタ502と、複数の分光透過率特性を持つフィルタ(508、507)を収めた自動或いは手動で移動可能なフォルダ514と、全反射ミラー509、513と、ハーフミラー510、512と、集光レンズ511から構成される。
 白色光源601から射出された平行光(略平行光を含む)は図4のフィルタ透過率を持つUV・IRカットフィルタ502で不要な波長帯域をカットした白色光となる。
 フォルダ514は制御部109からの観察モードにより、自動的に白色光の光路に対応するフィルタ(508、507)が位置するように移動可能な構成となっている。
 白色光源601から射出されフィルタ502により不要な波長帯域をカットした白色光は、ハーフミラー512を透過してフォルダ514内のフィルタ507もしくは508に入射される。フィルタを透過させることで特定の波長帯域を有する光が取得される。取得された特定の波長帯域を有する光は全反射ミラー509で反射され、ハーフミラー510へ入射される。一方、ハーフミラー512を反射した白色光は全反射ミラー513で反射され、ハーフミラー510に入射される。ハーフミラー510に入射される2つの入射光が合成された光は特定波長帯域増強白色光となり、集光レンズ511に入射される。集光レンズ511により特定波長帯域増強白色光の光線が絞られ、ハーフミラー102を経由してテーパーロッド107の太端面に入射される。
 特定波長帯域増強白色光が得られた後の処理は第1の実施形態と同様である。
 なお第2の実施形態において、フィルタが508及び507(NBIモード、蛍光観察モード)の2種類のみとなっているのは、このような構成にすればカットフィルタ502の特性を切り替える必要がないからである。カットフィルタ502のフィルタ特性の切り替えも考慮するならば、第1の実施形態と同様に3種類(もしくはそれ以上)のフィルタを使用することができるのは言うまでもない。
 以上の本実施形態では、白色光光源として、単一の白色光光源601が設けられる。そして光量増加部は、単一の白色光光源601から第1の白色光と第2の白色光の両方を取得する。その際には例えばハーフミラーを用いることなどが考えられ、一例としては図22に示す構成がある。図22においては第1の白色光とは、ハーフミラー512を透過する(直進する)光であり、フィルタ(507、508)を透過することで特定の波長帯域を有する光となり、全反射ミラー509によって反射される。また、第2の白色光とは、ハーフミラー512で反射される光であり、全反射ミラー513によって反射される。
 これにより、白色光光源1つのみで光源部を構成することが可能となり、構成を簡単にすることができるとともに、コスト削減にもつながる。
 3.第3の実施形態
 続いて第3実施形態について説明する。なお光源部101以外の構成は第1の実施形態と同様であるため、詳細な説明は省略する。光源部101の詳細を図23に示す。
 光源部101は、第1実施形態に対してより高輝度が得られる白色光源601と、白色光源の紫外域と赤外域をカットするUV・IRカットフィルタ502と、複数の分光透過率特性を持つフィルタ(602、603、604)を収めた自動或いは手動で移動可能なフォルダ505と、集光レンズ511から構成される。
 白色光源601から射出された略平行光は図3のフィルタ透過率を持つUV・IRカットフィルタ502で不要な波長帯域をカットした白色光となる。
 フォルダ505は制御部109からの観察モードにより、自動的に白色光の光路に対応するフィルタ(602、603、604)が位置するように移動可能な構成となっている。
 白色光源601から射出されフィルタ502により不要な波長帯域をカットした白色光(図3の特性)はフォルダ505内のフィルタ602、603、604に入射される。フィルタ602は図24(図27(A))の特性を持つので、フィルタ602を透過した光は図27(B)に示すように、G2、B2の波長の光量が多く、それ以外の波長の光量が低減された白色光が得られる。同様にフィルタ603は図25(図28(A))の特性を持つので、フィルタ603を透過した光は図28(B)に示すように、R2の波長の光量が多く、それ以外の波長の光量が低減された白色光が得られる。フィルタ604は図26(図29(A))の透過率特性を持つのでフィルタ604を透過した光は図29(B)に示すように、IR2、IR3の波長の光量が多く、それ以外の波長の光量が低減された白色光が得られる。
 得られた白色光は集光レンズ511に入射される。集光レンズ511により白色光の光線が絞られ、ハーフミラー102を経由してテーパーロッド107の太端面に入射される。
 特定波長帯域増強白色光が得られた後の処理は、第1の実施形態と同様である。
 以上の本実施形態では、光量増加部は特定の波長帯域以外の波長帯域の光量を減少させることで、特定波長帯域増強白色光を取得する。
 これにより、2つ以上の光を合成するような処理を行う必要がなくなるため、光源部の構成を簡略化することが可能になり、コスト削減につながる。
 また、光量増加部は、特定の波長帯域を透過するフィルタ(具体的には図23におけるフィルタ602、603、604等。特性については図24、図25、図26に示す)を用いることで、特定波長帯域増強白色光を取得する。
 これにより、光源自体に特殊光を発生させるようなものを採用する必要がなくなり、光源としては白色光光源のみから特定波長帯域増強白色光を取得することが可能となる。さらにフィルタを一つ適用するだけで特定波長帯域増強白色光を取得できるため、複数の光源やハーフミラー等が必要なくなり、コストの削減にもつながる。
 また、フィルタとして、第1~第Mのフィルタ(例えば図23における、フィルタ602~604。特性は図24~図26に示す)が設けられ、第1~第Mのフィルタのうちの第jのフィルタを用いることで、第jの特定波長帯域増強白色光(例えばNBIモードならば、図27(B)に示す特性を有する光)を取得する。具体的には例えば、NBIモード用・蛍光観察モード用・IRIモード用の3つのフィルタを用意して、必要に応じて切り替えることで、取得する特定波長帯域増強白色光も切り替える。
 これにより、フィルタを適宜切り替えることで、例えばNBIモード・蛍光観察モード・IRIモードの3つのように異なるモードを自由に選択することが可能になる。更に白色光源を1つで構成することができるので、コスト削減が可能となる。またカットフィルタ502の特性を切り替える必要がないという利点もある。
 以上、本発明を適用した3つの実施の形態1~3およびその変形例について説明したが、本発明は、各実施の形態1~3やその変形例そのままに限定されるものではなく、実施段階では、発明の要旨を逸脱しない範囲内で構成要素を変形して具体化することができる。また、上記した各実施の形態1~3や変形例に開示されている複数の構成要素を適宜組み合わせることによって、種々の発明を形成することができる。例えば、各実施の形態1~3や変形例に記載した全構成要素からいくつかの構成要素を削除してもよい。さらに、異なる実施の形態や変形例で説明した構成要素を適宜組み合わせてもよい。このように、発明の主旨を逸脱しない範囲内において種々の変形や応用が可能である。
 また、明細書又は図面において、少なくとも一度、より広義または同義な異なる用語(例えば第1の画像、第2の画像等)と共に記載された用語(例えば通常光画像、特殊光画像等)は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。
10 被検体、100 光制御部、101 光源部、102 ハーフミラー、
103 光検出部、104 分光器、105 光センサー、
106 A/D変換部、107 テーパーロッド、108 光コネクタ、
109 制御部、200 挿入部、201 光ファイバー、
202 アクチュエータ、203 光射出端部、204 操作部、
300 画像処理部、301 分類部、302 スキャン変換部、
303 通常光画像生成部、304 特殊光画像生成部、
305 出力画像生成部、400 表示部、401 分光データ格納メモリ、
402~406 分類ユニット、407 通常光用色信号値格納メモリ、
408 特殊光用色信号値格納メモリ、
409 サンプリング位置情報格納メモリ、410 第1補間処理部、
411 第2補間処理部、412 病変検出部、413 合成処理部、
421 分光分類係数設定部、500 外部I/F部、501 白色光源、
502 カットフィルタ、503 白色光源、504 カットフィルタ、
505 フォルダ、506 IRIモード用フィルタ、
507 蛍光観察モード用フィルタ、508 NBIモード用フィルタ、
509 全反射ミラー、510 ハーフミラー、511 集光レンズ、
512 ハーフミラー、513 全反射ミラー、514 フォルダ、
601 白色光源、602 NBIモード用フィルタ、
603 蛍光観察モード用フィルタ、604 IRIモード用フィルタ、
702 重み係数格納メモリ、704 積算器、
702_1~702_N 乗算器

Claims (31)

  1.  光源からの光をスポット状に被検体に対して照射し、スポット状に照射された光であるスポット光を走査しながら、その戻り光を検出する光走査型光学装置に搭載される光制御装置であって、
     白色光光源からの白色光の波長帯域のうち特定の波長帯域内の光量を増加させる光量増加部と、
     前記特定の波長帯域の光量が増加された白色光である特定波長帯域増強白色光を、前記被検体に照射する光照射部と、
     前記特定波長帯域増強白色光の照射による、前記被検体からの戻り光を検出する光検出部と、
     を含むことを特徴とする光制御装置。
  2.  請求項1において、
     前記光量増加部は、
     前記白色光光源からの前記白色光の波長帯域のうち前記特定の波長帯域内の光量を増加させることで、前記特定波長帯域増強白色光を取得することを特徴とする光制御装置。
  3.  請求項2において、
     前記光量増加部は、
     前記白色光光源から第1の白色光と第2の白色光とを取得し、前記第1の白色光から前記特定の波長帯域を有する光を取得し、取得した前記特定の波長帯域を有する光と前記第2の白色光とを合成することで、前記特定波長帯域増強白色光を取得することを特徴とする光制御装置。
  4.  請求項3において、
     前記白色光光源として、
     第1の白色光光源と第2の白色光光源が設けられ、
     前記光量増加部は、
     前記第1の白色光光源から前記第1の白色光を取得し、前記第2の白色光光源から前記第2の白色光を取得することを特徴とする光制御装置。
  5.  請求項3において、
     前記白色光光源として、
     単一白色光光源が設けられ、
     前記光量増加部は、
     前記単一白色光光源から前記第1の白色光と前記第2の白色光を取得することを特徴とする光制御装置。
  6.  請求項3において、
     前記光量増加部は、
     前記特定の波長帯域を透過するフィルタを用いて、前記特定の波長帯域を有する光を取得することを特徴とする光制御装置。
  7.  請求項6において、
     前記フィルタとして、
     第1~第N(Nは2以上の整数)のフィルタが設けられ、
     前記光量増加部は、
     前記第1~第Nのフィルタのうちの第i(1≦i≦N)のフィルタを用いて、前記特定の波長帯域を有する光として、第iの特定の波長帯域を有する光を取得することを特徴とする光制御装置。
  8.  請求項7において、
     前記光量増加部は、
     前記白色光光源からの白色光に対して、赤外光及び紫外光をカットするカットフィルタを適用し、
     前記カットフィルタは、
     第1のカットフィルタと第2のカットフィルタを備え、前記第1のカットフィルタは前記第2のカットフィルタに比べて、長波長帯域側のカットオフ波長が大きい特性を有し、
     前記光量増加部は、
     前記第1~第Nのフィルタのうち、第k(1≦k≦N)のフィルタを用いた場合には、前記第1のカットフィルタを適用し、第h(1≦h≦N、k≠h)のフィルタを用いた場合には第2のカットフィルタを適用することを特徴とする光制御装置。
  9.  請求項8において、
     前記第2のカットフィルタは、前記第hのフィルタに対応する第hの特定の波長帯域の光は透過させ、第hの特定の波長帯域を有する光を照射することで発生する蛍光に対応する波長帯域の光は遮断する特性を有することを特徴とする光制御装置。
  10.  請求項1において、
     前記光量増加部は、
     波長帯域全体にわたって光量が増加された白色光について前記特定の波長帯域以外である残りの波長帯域の光量を減少させることで、前記特定波長帯域増強白色光を取得することを特徴とする光制御装置。
  11.  請求項10において、
     前記光量増加部は、
     前記白色光の波長帯域のうち前記残りの波長帯域を減衰させるフィルタを用いることで、前記残りの波長帯域の光量を減少させることを特徴とする光制御装置。
  12.  請求項11において、
     前記フィルタとして、
     第1~第M(Mは2以上の整数)のフィルタが設けられ、
     前記光量増加部は、
     前記第1~第Mのフィルタのうち、前記残りの波長帯域を減衰させる第j(1≦j≦M)のフィルタを用いて、前記特定波長帯域増強白色光として、第jの特定波長帯域増強白色光を取得することを特徴とする光制御装置。
  13.  請求項1において、
     前記特定の波長帯域は、前記白色光の波長帯域よりも狭い帯域であることを特徴とする光制御装置。
  14.  請求項1において、
     前記特定の波長帯域は、血液中のヘモグロビンに吸収される波長の波長帯域であることを特徴とする光制御装置。
  15.  請求項14において、
     前記特定の波長帯域は、390ナノメータ~445ナノメータ、または530ナノメータ~550ナノメータであることを特徴とする光制御装置。
  16.  請求項1において、
     前記特定の波長帯域は、蛍光物質に蛍光を発生させる励起光の波長帯域であることを特徴とする光制御装置。
  17.  請求項1において、
     前記特定の波長帯域は、赤外光の波長帯域であることを特徴とする光制御装置。
  18.  請求項17において、
     前記特定の波長帯域は、790ナノメータ~820ナノメータ、または905ナノメータ~970ナノメータの波長帯域であることを特徴とする光制御装置。
  19.  請求項1において、
     前記光走査型光学装置は、光走査型内視鏡装置であることを特徴とする光制御装置。
  20.  請求項1乃至19のいずれかの光制御装置である光制御部と、
     前記光制御部で取得した光信号に基づいて、白色光に対応する第1の画像と、前記特定の波長帯域に対応する第2の画像を生成し、前記第1の画像と前記第2の画像から出力画像を生成する画像処理部と、
     を含むことを特徴とする制御装置。
  21.  請求項20において、
     前記画像処理部は、
     前記検出された戻り光に含まれる光信号を、その光信号が有する波長に応じて、複数の種類のグループに分類する分類部と、
     前記分類部により分類されたグループに属する光信号に基づいて、前記被検体の画像を生成する画像生成部と、
     を含むことを特徴とする制御装置。
  22.  請求項21において、
     前記分類部は、
     少なくとも、前記白色光の波長帯域を有する光信号を含む第1のグループと、前記特定の波長帯域を有する特殊光の光信号を含む第2のグループとに分類することを特徴とする制御装置。
  23.  請求項22において、
     前記光検出部は、
     分光器を用いて分光スペクトルを取得し、
     前記分類部は、取得した前記分光スペクトルに基づいて、前記第1のグループと、前記第2のグループとに分類することを特徴とする制御装置。
  24.  請求項22において、
     前記画像生成部は、
     前記第1のグループに属する光信号に基づいて、前記白色光の波長帯域における情報を含む前記第1の画像を生成し、前記第2のグループに属する光信号に基づいて、前記特殊光の波長帯域における情報を含む前記第2の画像を生成することを特徴とする制御装置。
  25.  請求項24において、
     前記第1のグループは、前記白色光の波長帯域を構成する第1~第P(Pは2以上の整数)の波長帯域を有する光信号を含み、
     前記画像生成部は、
     前記第1~第Pの波長帯域を有する光信号に基づいて、前記第1の画像を構成する第1~第Pの構成画像を生成することを特徴とする制御装置。
  26.  請求項25において、
     前記第1~第Pの波長帯域を有する光信号は、R色の光信号、G色の光信号およびB色の光信号であることを特徴とする制御装置。
  27.  請求項24において、
     前記第2のグループは、前記特定の波長帯域を構成する第1~第Q(Qは1以上の整数)の波長帯域を有する光信号を含み、
     前記画像生成部は、
     前記第1~第Qの波長帯域を有する光信号に基づいて、前記第2の画像を構成する第1~第Qの構成画像を生成することを特徴とする制御装置。
  28.  請求項22において、
     前記光照射部は、
     前記スポット光を前記被検体にらせん状に照射し、
     前記画像生成部は、
     前記スポット光の位置情報を取得するスキャン変換部を含み、
     前記スキャン変換部は、
     分類された前記第1のグループに対応する第1の画像信号の配置態様を、前記スポット光の位置情報に基づいて、ラスタスキャン形式に変換する第1補間処理部と、
     分類された前記第2のグループに対応する第2の画像信号の配置態様を、前記スポット光の位置情報に基づいて、ラスタスキャン形式に変換する第2補間処理部と、
     を含み、
     前記画像生成部は、
     ラスタスキャン形式に変換された前記第1の画像信号に基づいて前記第1の画像を生成し、ラスタスキャン形式に変換された前記第2の画像信号に基づいて前記第2の画像を生成することを特徴とする制御装置。
  29.  請求項1に記載の光制御装置の前記光照射部により照射された前記白色光を通過させ、前記被検体からの戻り光を前記光検出部に返すことを特徴とする光学スコープ。
  30.  光源からの光をスポット状に被検体に対して照射し、スポット状に照射された光であるスポット光を走査しながら、その戻り光を検出する光走査型光学装置であって、
     白色光光源からの白色光の波長帯域のうち特定の波長帯域内の光量を増加させる光量増加部と、
     前記特定の波長帯域の光量が増加された白色光である特定波長帯域増強白色光を、前記被検体に照射する光照射部と、
     前記特定波長帯域増強白色光の照射による、前記被検体からの戻り光を検出する光検出部と、
     を含むことを特徴とする光走査型光学装置。
  31.  請求項30において、
     検出された前記戻り光に含まれる光信号を、その光信号が有する波長に応じて、複数の種類のグループに分類する分類部を含むことを特徴とする光走査型光学装置。
PCT/JP2010/071962 2009-12-15 2010-12-08 光制御装置、制御装置、光学スコープ及び光走査型光学装置 WO2011074448A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/488,633 US9335269B2 (en) 2009-12-15 2012-06-05 Optical control device, control device, optical scope, and scanning optical device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009284472A JP5570798B2 (ja) 2009-12-15 2009-12-15 光走査型内視鏡装置
JP2009-284472 2009-12-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/488,633 Continuation US9335269B2 (en) 2009-12-15 2012-06-05 Optical control device, control device, optical scope, and scanning optical device

Publications (1)

Publication Number Publication Date
WO2011074448A1 true WO2011074448A1 (ja) 2011-06-23

Family

ID=44167205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071962 WO2011074448A1 (ja) 2009-12-15 2010-12-08 光制御装置、制御装置、光学スコープ及び光走査型光学装置

Country Status (3)

Country Link
US (1) US9335269B2 (ja)
JP (1) JP5570798B2 (ja)
WO (1) WO2011074448A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102872689A (zh) * 2012-08-20 2013-01-16 中国计量学院 基于红外差分光谱法沼气检测与提纯控制***
WO2013029580A1 (de) * 2011-08-26 2013-03-07 Bundesrepublik Deutschland, vertreten durch das Bundesministerium für Wirtschaft und Technologie, dieses vertreten durch den Präsidenten der Physikalisch-Technischen Bundesanstalt Verfahren zur fluoreszenzmessung
CN103826527A (zh) * 2011-09-22 2014-05-28 奥普特米德有限公司 一次性内窥镜
EP2801315A4 (en) * 2012-08-07 2015-09-09 Olympus Medical Systems Corp ABTASTENDOSKOPVORRICHTUNG
WO2015145826A1 (ja) * 2014-03-28 2015-10-01 オリンパス株式会社 走査型内視鏡装置
US20150342447A1 (en) * 2013-02-13 2015-12-03 Olympus Corporation Fluoroscopy apparatus
WO2019012623A1 (ja) * 2017-07-12 2019-01-17 オリンパス株式会社 画像処理装置、光走査型観察システムおよび画像処理方法
WO2020179586A1 (ja) * 2019-03-04 2020-09-10 ソニー株式会社 情報処理装置、及び顕微鏡システム
JP7404906B2 (ja) 2019-03-04 2023-12-26 ソニーグループ株式会社 情報処理装置、及び顕微鏡システム

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011122602A1 (de) * 2011-12-30 2013-07-04 Karl Storz Gmbh & Co. Kg Vorrichtung und Verfahren zur endoskopischen Fluoreszenzdetektion
WO2014188719A1 (ja) * 2013-05-21 2014-11-27 オリンパス株式会社 光走査ユニット、光走査型観察装置、および光ファイバ走査装置
JP5925169B2 (ja) * 2013-09-27 2016-05-25 富士フイルム株式会社 内視鏡システム及びその作動方法並びに内視鏡用光源装置
CN105764401A (zh) * 2013-11-28 2016-07-13 奥林巴斯株式会社 荧光观察装置
JP6429507B2 (ja) * 2014-06-23 2018-11-28 オリンパス株式会社 光走査型観察システム
JP6465436B2 (ja) * 2015-03-23 2019-02-06 オリンパス株式会社 走査型内視鏡システム
WO2018117299A1 (ko) * 2016-12-22 2018-06-28 주식회사 메이트닥터 광원장치
CN112996423A (zh) * 2018-11-07 2021-06-18 索尼集团公司 图像获取***和图像获取方法
US20220228968A1 (en) * 2019-05-31 2022-07-21 Cytognos, S.L. Hyperspectral quantitative imaging cytometry system
JP7393647B2 (ja) * 2020-03-04 2023-12-07 日本製鉄株式会社 温度測定装置及び温度測定方法
DE102022117580A1 (de) 2022-07-27 2024-02-01 Karl Storz Se & Co. Kg Medizinische Bildgebungsvorrichtung, medizinisches Bildgebungssystem und Verfahren zum Betrieb einer medizinischen Bildgebungsvorrichtung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08224209A (ja) * 1995-02-23 1996-09-03 Olympus Optical Co Ltd 蛍光観察装置
JPH09308697A (ja) * 1996-03-19 1997-12-02 Matsushita Electric Ind Co Ltd 蛍光診断方法、蛍光診断装置および蛍光診断治療装置
JP2006122234A (ja) * 2004-10-27 2006-05-18 Olympus Corp 蛍光観察内視鏡装置
JP2007313169A (ja) * 2006-05-29 2007-12-06 Olympus Corp 病変抽出装置および病変抽出方法
JP2009240635A (ja) * 2008-03-31 2009-10-22 Hoya Corp ファイバー走査型電子内視鏡装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020138008A1 (en) * 2000-01-13 2002-09-26 Kazuhiro Tsujita Method and apparatus for displaying fluorescence images and method and apparatus for acquiring endoscope images
US6975898B2 (en) 2000-06-19 2005-12-13 University Of Washington Medical imaging, diagnosis, and therapy using a scanning single optical fiber system
JP4031824B2 (ja) * 2001-05-22 2008-01-09 ゼロックス コーポレイション カラープリント用色修正システム及び分光光度計
JP4554944B2 (ja) * 2004-01-15 2010-09-29 Hoya株式会社 内視鏡装置
WO2006025334A1 (ja) * 2004-08-30 2006-03-09 Olympus Corporation 内視鏡装置
JP4025764B2 (ja) 2004-08-31 2007-12-26 オリンパス株式会社 内視鏡装置
US7798955B2 (en) 2004-10-26 2010-09-21 Olympus Corporation Image generating device for generating a fluorescence image
JP4818753B2 (ja) 2006-02-28 2011-11-16 オリンパス株式会社 内視鏡システム
US20080058629A1 (en) * 2006-08-21 2008-03-06 University Of Washington Optical fiber scope with both non-resonant illumination and resonant collection/imaging for multiple modes of operation
JP5267143B2 (ja) * 2008-03-27 2013-08-21 富士フイルム株式会社 撮像装置およびプログラム
US8506478B2 (en) * 2008-06-04 2013-08-13 Fujifilm Corporation Illumination device for use in endoscope

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08224209A (ja) * 1995-02-23 1996-09-03 Olympus Optical Co Ltd 蛍光観察装置
JPH09308697A (ja) * 1996-03-19 1997-12-02 Matsushita Electric Ind Co Ltd 蛍光診断方法、蛍光診断装置および蛍光診断治療装置
JP2006122234A (ja) * 2004-10-27 2006-05-18 Olympus Corp 蛍光観察内視鏡装置
JP2007313169A (ja) * 2006-05-29 2007-12-06 Olympus Corp 病変抽出装置および病変抽出方法
JP2009240635A (ja) * 2008-03-31 2009-10-22 Hoya Corp ファイバー走査型電子内視鏡装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013029580A1 (de) * 2011-08-26 2013-03-07 Bundesrepublik Deutschland, vertreten durch das Bundesministerium für Wirtschaft und Technologie, dieses vertreten durch den Präsidenten der Physikalisch-Technischen Bundesanstalt Verfahren zur fluoreszenzmessung
CN103826527A (zh) * 2011-09-22 2014-05-28 奥普特米德有限公司 一次性内窥镜
US20140350343A1 (en) * 2011-09-22 2014-11-27 Optimede Inc. Disposable endoscope
EP2801315A4 (en) * 2012-08-07 2015-09-09 Olympus Medical Systems Corp ABTASTENDOSKOPVORRICHTUNG
CN104125794B (zh) * 2012-08-07 2016-06-22 奥林巴斯株式会社 扫描型内窥镜装置
CN102872689A (zh) * 2012-08-20 2013-01-16 中国计量学院 基于红外差分光谱法沼气检测与提纯控制***
US20150342447A1 (en) * 2013-02-13 2015-12-03 Olympus Corporation Fluoroscopy apparatus
JP5865562B1 (ja) * 2014-03-28 2016-02-17 オリンパス株式会社 走査型内視鏡用画像処理装置
WO2015145826A1 (ja) * 2014-03-28 2015-10-01 オリンパス株式会社 走査型内視鏡装置
US9820639B2 (en) 2014-03-28 2017-11-21 Olympus Corporation Image processing apparatus for scanning endoscope
WO2019012623A1 (ja) * 2017-07-12 2019-01-17 オリンパス株式会社 画像処理装置、光走査型観察システムおよび画像処理方法
WO2020179586A1 (ja) * 2019-03-04 2020-09-10 ソニー株式会社 情報処理装置、及び顕微鏡システム
US11761895B2 (en) 2019-03-04 2023-09-19 Sony Group Corporation Information processing apparatus and microscope system
JP7404906B2 (ja) 2019-03-04 2023-12-26 ソニーグループ株式会社 情報処理装置、及び顕微鏡システム

Also Published As

Publication number Publication date
JP5570798B2 (ja) 2014-08-13
US20120242859A1 (en) 2012-09-27
US9335269B2 (en) 2016-05-10
JP2011127933A (ja) 2011-06-30

Similar Documents

Publication Publication Date Title
WO2011074448A1 (ja) 光制御装置、制御装置、光学スコープ及び光走査型光学装置
US11823403B2 (en) Fluorescence imaging in a light deficient environment
WO2011074447A1 (ja) 光制御装置、制御装置、光学スコープ及び光走査型光学装置
US20170079741A1 (en) Scanning projection apparatus, projection method, surgery support system, and scanning apparatus
JP6103824B2 (ja) 蛍光内視鏡装置
US20030139650A1 (en) Endoscope
JP2013521900A (ja) 高速マルチスペクトルイメージングの方法および装置と癌検出および局在診断への応用
US11877065B2 (en) Image rotation in an endoscopic hyperspectral imaging system
WO2020257027A1 (en) Pulsed illumination in a hyperspectral imaging system
JP6770587B2 (ja) 内視鏡システム、及び画像表示装置
WO2020257201A1 (en) Image rotation in an endoscopic fluorescence imaging system
WO2017043539A1 (ja) 画像処理システム、画像処理装置、投影装置、及び投影方法
JP5489785B2 (ja) 蛍光内視鏡装置
US12020450B2 (en) Fluorescence imaging in a light deficient environment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10837477

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10837477

Country of ref document: EP

Kind code of ref document: A1