WO2011074114A1 - ステータ - Google Patents

ステータ Download PDF

Info

Publication number
WO2011074114A1
WO2011074114A1 PCT/JP2009/071147 JP2009071147W WO2011074114A1 WO 2011074114 A1 WO2011074114 A1 WO 2011074114A1 JP 2009071147 W JP2009071147 W JP 2009071147W WO 2011074114 A1 WO2011074114 A1 WO 2011074114A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
stator
lead
slot
phase
Prior art date
Application number
PCT/JP2009/071147
Other languages
English (en)
French (fr)
Inventor
渡辺 敦
富士夫 安藤
芳賀 正宜
北村 学
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2011516587A priority Critical patent/JP5278546B2/ja
Priority to CN200980158927.5A priority patent/CN102449883B/zh
Priority to PCT/JP2009/071147 priority patent/WO2011074114A1/ja
Priority to US13/131,828 priority patent/US8427024B2/en
Priority to KR1020117015000A priority patent/KR101224688B1/ko
Priority to EP09851549.7A priority patent/EP2416471B1/en
Publication of WO2011074114A1 publication Critical patent/WO2011074114A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/04Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of windings, prior to mounting into machines
    • H02K15/0435Wound windings
    • H02K15/0442Loop windings
    • H02K15/045Form wound coils
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/0056Manufacturing winding connections
    • H02K15/0068Connecting winding sections; Forming leads; Connecting leads to terminals
    • H02K15/0081Connecting winding sections; Forming leads; Connecting leads to terminals for form-wound windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to a technique for improving the space factor of a stator in order to reduce the size and increase the output of a motor.
  • Patent Document 1 discloses a technique related to a stator frame conductor portion of a multiphase power generator.
  • a stator core is provided with an outer slot, and a flat surface is defined in the in-slot conductor portion in which the flat conductor is inserted into the slot, and is substantially U-shaped when viewed from above with respect to the flat surface.
  • Patent Document 2 discloses a technique related to a crank-shaped continuous winding coil, a distributed winding stator, and a forming method thereof. After winding the rectangular conductor in a hexagonal shape, a crank shape is formed in the coil end portion using a mold, and the rectangular conductor is disposed on the stator core so that the coils at the coil end It is possible to solve the interference and contribute to improvement of the space factor of the stator and miniaturization.
  • Patent Document 3 discloses a technique regarding a rotating electrical machine and a manufacturing method thereof.
  • the coil assembly wound from the inner peripheral side toward the outer peripheral side is inserted into the slot of the stator core, it is inserted into one slot so as to be arranged from the outer peripheral side of the coil to the outer layer side of the slot, and the other slot
  • the manufacturing work is simplified and the space factor in the slot is improved by inserting the coil so as to be arranged from the inner peripheral side of the coil to the inner peripheral side of the slot. Can be achieved.
  • Patent Document 4 discloses a technique regarding a stator of a rotating electrical machine and a rotating electrical machine.
  • a winding coil having a plurality of phases is formed by arranging a rectangular conductor in a wave winding, a tooth divided from the outer peripheral direction is inserted, and the tooth is inserted into a groove formed in an outer ring portion of the stator core and fixed.
  • a highly accurate stator core can be formed.
  • Japanese Patent No. 3756516 Japanese Patent No. 4234749 JP 2008-125212 A JP 2009-131093 A
  • Patent Documents 1 to 4 are considered to have the following problems.
  • a stator using a distributed winding coil is more likely to have a higher output than a stator using a concentrated winding coil, and the problem of cogging torque is easier to solve.
  • Patent Document 1 or Patent Document 2 in order to increase the output of a stator using distributed winding coils as shown in Patent Document 1 or Patent Document 2, if the depth of the slots provided in the stator core is increased and the number of turns of the coil is increased. The problem of interference between coils comes out. In the techniques shown in Patent Document 1 and Patent Document 2, it is considered difficult to increase the number of turns of the coil any more because there is almost no gap between adjacent coils.
  • Patent Document 1 and Patent Document 2 are not suitable for further increasing the output.
  • Patent Document 3 discloses a specific coil forming method in which a coil is formed by winding a round wire from an inner periphery toward an outer periphery so as to be flat, and then a portion to be inserted into a coil slot is gripped.
  • this method is only shown, and this method is considered unsuitable for using a flat conductor.
  • Patent Document 4 uses a wave winding coil for distributed winding. Since the wave winding coil needs to be woven into a flat conductor, it is required to be complicatedly formed, and since it is necessary to wind up the flat conductor in an annular shape after all the flat conductors are stacked in a flat shape, Requires assembly equipment. For this reason, there exists a problem that an assembly is difficult and cost reduction is difficult. Therefore, it is considered that further ingenuity is required in order to further reduce the size and output of the stator than the techniques disclosed in Patent Documents 1 to 4.
  • an object of the present invention is to provide a stator that can be reduced in size and increased in output in order to solve such problems.
  • a stator has the following characteristics.
  • a stator having a stator core including teeth and a slot formed between the teeth, and a coil formed using a flat wire and disposed in the slot. And a convex portion formed so as to protrude from the oblique side to the axial direction of the stator core, and the convex portion is formed with the other coil when the coil is disposed on the stator core. It is characterized by a height that avoids interference.
  • a lane change portion is formed in the coil end portion of the coil, and a first interference point where the adjacent first coil and the second coil interfere with each other.
  • the coil interference point distance which is the distance between the adjacent second coil and the second interference point where the third coil interferes, is the bending inner peripheral side of the lane change portion disposed on the inner peripheral side of the stator core. It is designed to be equal to or less than the distance between the bending centers that is the distance in the circumferential direction of the stator core between the bending center of the stator core and the bending center of the lane change portion arranged on the outer peripheral side of the stator core.
  • the coil is wound concentrically, and the stator core is divided into a coil rod formed by arranging the coil in a cylindrical shape. It is formed by inserting.
  • the slot is a U-phase first slot, a U-phase second slot, a V-phase first slot, a V-phase second slot, a W-phase first slot, W
  • a three-phase slot block having a second set of phase second slots is sequentially formed, a second set of the three-phase slot blocks is formed adjacent to the first set, and the first set of U-phase slots
  • the rectangular conducting wire in one slot forms a first loop with the rectangular conducting wire in the second set of U-phase second slots, and the rectangular conducting wire in the first set of U-phase second slots. Forming a second loop with the rectangular conducting wire in the second set of U-phase first slots, and the second loop being arranged on the inner periphery of the first loop.
  • the rectangular conducting wire coming out of the U-phase first slot is lane-changed using an area corresponding to two slots.
  • one end of the first loop is connected to one end of the second loop.
  • a stator manufacturing method has the following characteristics. (7)
  • a method of manufacturing a stator having a stator core having teeth and slots formed between the teeth, and a rectangular conductor arranged in the stator a plurality of the rectangular conductors are overlapped and circulated.
  • the outer surface of the octagonal coil is pressed by a pressing mechanism from four directions around the fixed octagonal coil, A pair of convex portions are formed.
  • the coil in which the convex portion is formed is fixed, and the axial direction of the coil in which the convex portion is formed.
  • the coil in which the convex portion is formed is formed in an arc shape.
  • the pair of convex portions of the coil formed in the arc shape is held on the right side.
  • the lane change part is formed on the pair of convex parts by holding the mold and the left holding mold, and displacing the left holding mold with respect to the right holding mold. .
  • a stator manufacturing apparatus has the following characteristics. (11) In a stator manufacturing apparatus that manufactures a stator having a stator core having teeth and slots formed between the teeth, and a rectangular conductor arranged in the stator, a plurality of the rectangular conductors are overlapped and circulated. A coil fixing portion for fixing the formed octagonal coil, and a pressing mechanism for pressing the outer surface of the octagonal coil from four directions around the fixed octagonal coil, and a pair of the octagonal coil Protrusions are formed.
  • the stator manufacturing device has a fixing mechanism that fixes both ends of the coil on which the convex portion is formed, and a curved surface that is pressed from the axial direction of the coil on which the convex portion is formed. And a coil having the convex portion is formed in an arc shape.
  • stator manufacturing apparatus preferably, a right holding mold, a left holding mold, and the right holding mold that hold the pair of convex portions of the arc-shaped coil. And a drive mechanism for shifting the left holding mold, wherein the lane change portion is formed in the pair of convex portions in the arc-shaped coil.
  • An aspect of the invention described in the above (1) is a stator having a stator core including teeth and a slot formed between the teeth, and a coil formed using a flat wire and disposed in the slot.
  • the coil has a shape having a hypotenuse at the coil end portion and a convex portion formed so as to project from the hypotenuse to the sky in the axial direction of the stator core, and the convex portion is another coil when the coil is disposed on the stator core.
  • the height is to avoid interference.
  • the isosceles triangle portions are arranged so as to pass between the coils, the distance between the coils is required due to the thickness of the flat conductor, and a width is required for the lane change.
  • providing the first convex portion and the second convex portion on the coil makes it easy to avoid interference between adjacent coils.
  • the stator when forming the first loop and the second loop, it is necessary to perform edgewise bending, but when providing the first convex portion and the second convex portion, in the edgewise bending direction, Therefore, the bending radius is small and it can be bent relatively easily.
  • the design flexibility of the stator is increased, and the terminal portion of the coil is brought under the first and second loops without extending the coil end so much, and is joined to the bus bar. It can contribute to ensuring ease. Being able to increase the degree of design freedom helps to simplify the process of manufacturing the stator, and has a high merit.
  • a lane change portion is formed in the coil end portion of the coil, and the adjacent first coil and second coil interfere with each other.
  • the coil interference point distance which is the distance between the first interference point to be performed and the second interference point at which the adjacent second coil and third coil interfere with each other, is arranged on the inner peripheral side of the stator core.
  • the distance between the bending centers is the distance in the circumferential direction of the stator core between the bending center on the bending inner peripheral side of the portion and the bending center on the bending inner peripheral side of the lane change portion arranged on the outer peripheral side of the stator core. It is designed.
  • the first coil, the second coil, and the third coil can be arranged adjacent to each other to reduce the pitch between the slots of the stator core. It becomes. That is, it is possible to contribute to the miniaturization of the stator.
  • the coil in the stator described in (1) or (2), is wound concentrically and divided into coil rods formed by arranging the coils in a cylindrical shape. It is formed by inserting a stator core as a formula.
  • the slots include a U-phase first slot, a U-phase second slot, a V-phase first slot, a V-phase second slot, and a W-phase first.
  • a three-phase slot block having one slot and a W-phase second slot as a first set is sequentially formed, a second set of three-phase slot blocks is formed next to the first set, and the first set of U-phases
  • the rectangular conductor in the first slot forms a first loop with the rectangular conductor in the second set of U-phase second slots, and the rectangular conductor in the first set of U-phase second slots is the second
  • the rectangular conductor wire in the first U-phase slot of the set and the second loop are formed, and the second loop is arranged on the inner periphery of the first loop.
  • the flat conducting wire By making the flat conducting wire a double coil having a first loop and a second loop, it is possible to provide a large margin in the lane change portion.
  • the rectangular conductor When a coil in which a loop is formed with a rectangular conductor is inserted into the stator core, the rectangular conductor is arranged in a plane on the end face of the stator core as shown in Patent Document 1 and Patent Document 2.
  • the end face of the stator core has a limited area, it is difficult to increase the number of rectangular conductors in order to increase the number of turns of the coil.
  • a lane change part is required in a coil end part. In this lane change section, the width of the coil tends to be a problem.
  • the end face of the stator core can be used three-dimensionally by adopting a double coil structure in which the second loop is formed on the inner peripheral side of the first loop as in the configuration of the present invention.
  • a double coil structure in which the second loop is formed on the inner peripheral side of the first loop as in the configuration of the present invention.
  • the aspect of the invention described in the above (5) is that, in the stator described in (4), the rectangular conductor wire coming out from the U-phase first slot is lane-changed using the area for two slots. Is. Lane change is essential as long as concentric winding is adopted for the coil and a distributed winding stator is formed. This is because, as described above, the concentric winding coil is inserted across a plurality of slots, so that there is a portion where adjacent coils interfere with each other, which needs to be avoided. More specifically, when a rectangular conductor inserted into a slot is defined as an in-slot conductor portion, the first of the U-phase coils in which one in-slot conductor portion is inserted into the first set of U-phase first slots.
  • the other in-slot conductor is inserted into the second set of U-phase second slots. Then, next to each other, one in-slot conductor is inserted into the first set of V-phase first slots, and the other in-slot conductor is inserted into the second set of V-phase second slots. It is the 1st loop of a coil of a phase.
  • the first loop of the V-phase coil described above is inserted into the first set of U-phase first slots, and the second set of U-phase coils is placed below the first loop of the U-phase coil described above. In the portion inserted into the two slots, it is necessary to come above the first loop of the U-phase coil described above. More specifically, since the first loop and the second loop have a double structure, one of the U-phase first loop, the U-phase second loop, the V-phase first loop, and the V-phase first in order from the top. The other is a V-phase first loop, a V-phase second loop, a U-phase first loop, and a U-phase second loop in order from the top.
  • the lane change portion required in this way can be used only for one slot when a flat conductor is disposed in a plane on the end face of the stator core.
  • the double coil since the double coil is used in the present invention, it is possible to use the double lane change portion for two slots, and it is preferable to prepare a wide width as much as possible in relation to the bending radius.
  • the “region for two slots” here refers to the width of two slots and two teeth, with one slot and one tooth. This is because it is effective to increase the cross-sectional area of the rectangular conductor in order to increase the space factor, and as the cross-sectional area increases, the bending radius also increases relatively. For this reason, it becomes possible to constitute a stator with a high space factor according to the present invention.
  • the aspect of the invention described in (6) is that in the stator described in (5), one end of the first loop is connected to one end of the second loop.
  • the aspect of the invention described in (7) above is a stator manufacturing method for a stator having a stator core including teeth, a slot formed between the teeth, and a rectangular conductor disposed in the stator.
  • the second step is that the octagonal coil is formed by a pressing mechanism from four directions around the fixed octagonal coil.
  • the outer surface is pressed to form a pair of convex portions.
  • Octagonal coils are often made of a metal having good thermal conductivity such as copper or aluminum, and these metals are easy to process. Therefore, after forming the octagonal coil, it is possible to form a pair of convex portions by fixing the base to the base and pressing both sides of the portion that becomes the convex portion with a pressing mechanism.
  • the third step is to fix the coil in which the convex portion is formed, and the convex portion is formed.
  • the coil having the convex portion is formed in an arc shape.
  • By pressing a metal mold having a curved surface and deforming the coil on which the convex portion is formed it is possible to obtain a coil formed in the same arc shape. Since the coils are formed by overlapping the same shape, it is desirable that the overlapping portions have the same shape with high accuracy. Such a coil can be realized by using a mold.
  • the aspect of the invention described in (10) is the stator manufacturing method described in any one of (7) to (9), wherein the fourth step includes a pair of coils formed in an arc shape.
  • the convex portion is held by the right holding die and the left holding die, and the left holding die is shifted with respect to the right holding die, thereby forming the lane change portion in the pair of convex portions.
  • the lane change portion can be formed on the pair of convex portions by applying a force so as to shift the right holding mold and the left holding mold. Since the coils are overlapped to form a coil rod, the merit is higher when the accuracy of the overlapping portion is higher than the accuracy of the lane change portion. By holding the coil with the right mold and the left mold, the accuracy of the overlapping portion when forming the coil cage can be increased.
  • the aspect of the invention described in the above (11) is a stator manufacturing apparatus that manufactures a stator having a stator core including teeth, a slot formed between the teeth, and a flat wire disposed in the stator.
  • a pair of convex portions are formed on the octagonal coil.
  • the pressing mechanism for pressing the coil fixing portion and the outer surface of the octagonal coil is provided, the second step in the stator manufacturing method described above can be realized, and the outer shape of the octagonal coil can be deformed.
  • the aspect of the invention described in (12) is the stator manufacturing apparatus described in (11), in which the fixing mechanism that fixes both ends of the coil on which the convex portion is formed, and the axis of the coil on which the convex portion is formed.
  • the aspect of the invention described in (13) above is the stator manufacturing apparatus described in (12), in which the right holding mold and the left holding mold that hold the pair of convex portions of the arc-shaped coil are provided. And a drive mechanism for shifting the left holding mold with respect to the right holding mold, and the lane change portion is formed on the pair of convex portions in the arc-shaped coil.
  • a drive mechanism for shifting the left holding mold with respect to the right holding mold, and the lane change portion is formed on the pair of convex portions in the arc-shaped coil.
  • the lane change portions are formed at the same position one by one above and below the coil end side of the arc-shaped coil. It becomes possible. With this configuration, the fourth step described in (10) can be realized.
  • stator using the one convex part formation coil of 2nd Embodiment It is a fragmentary perspective view of the stator using the one convex part formation coil of 2nd Embodiment. It is a perspective view of the single convex part formation coil of 3rd Embodiment. It is a side view of the stator using the one convex part formation coil of 3rd Embodiment. It is a perspective view of the stator of 4th Embodiment. It is a perspective view of the double coil of 4th Embodiment. It is a top view of the double coil of 4th Embodiment. It is the model perspective view which piled up the double coil of 4th Embodiment.
  • FIG. 1 is a perspective view of the stator according to the first embodiment.
  • the stator 100 includes a convex forming coil CO1, a split stator core SC, and an outer ring 50.
  • FIG. 2 shows a perspective view of the convex forming coil.
  • FIG. 3 shows a bottom view of the convex forming coil. It is a figure from the arrow A of FIG.
  • the convex portion forming coil CO1 is provided with a first terminal portion TRa and a second terminal portion TRb, in which a flat conductor D is edgewise bent and wound three times.
  • the convex forming coil CO1 is formed with a first hypotenuse HLR, a second hypotenuse HRR, a third hypotenuse HLF, and a fourth hypotenuse HRF, and protrudes from its extension to lead-side projection PR and anti-lead-side projection.
  • a PF is formed. Details of the formation of the lead-side protrusion PR and the anti-lead-side protrusion PF will be described later.
  • a lead side right concave portion DRR and a lead side left concave portion DLR are formed on both sides of the lead side convex portion PR, and an anti lead side right concave portion DRF and an anti lead side left concave portion DLF are formed on both sides of the anti lead side convex portion PF. ing.
  • the lead-side convex portion PR is formed with a lead-side lane change portion LCR
  • the anti-lead-side convex portion PF is formed with an anti-lead-side lane change portion LCF.
  • the convex forming coil CO1 is also provided with a first in-slot conductor portion SSa and a second in-slot conductor portion SSb, which are portions to be inserted into the slots SCS included in the split stator core SC.
  • the split stator core SC is formed by laminating electromagnetic steel plates, and can hold the convex forming coil CO1 by fitting the outer ring 50 in a state where the 24 pieces 41 are arranged in a cylindrical shape. .
  • the split stator core SC has slots SCS and teeth 43 alternately on the inner periphery, and the piece 41 has two teeth 43. Thus, it has a shape divided at the bottom of the slot SCS.
  • the outer ring 50 is a cylindrical metal body and is formed with such a dimension that the inner periphery and the outer periphery of the split stator core SC are fitted.
  • FIG. 4 is a top view of the coil projection forming jig.
  • FIG. 5 shows a top view of a state where the coil convex portion forming jig is formed.
  • the octagonal element coil C1 is formed by winding the rectangular conductor D by edgewise bending.
  • the element body coil C1 is inserted into the center holder J11 of the coil projection forming jig J1.
  • the coil projection forming jig J1 corresponds to a coil fixing portion.
  • the central holder J11 and the convex guide J12 are arranged in combination.
  • the element coil C1 is arranged so as to surround the central holder J11 and the convex guide J12.
  • the coil convex forming jig J1 includes a pressing jig J13 corresponding to a pressing mechanism for forming the lead-side right concave portion DRR or the anti-lead-side left concave portion DLF of the convex-forming coil CO1 in the element coil C1. It has been. As shown in FIG. 5, the pressing jig J ⁇ b> 13 is advanced as the rod J ⁇ b> 14 is advanced in a state where the element body coil C ⁇ b> 1 is disposed on the center holder J ⁇ b> 11 and the convex guide J ⁇ b> 12, thereby forming a concave portion. As a result, a convex portion holding coil C2 in which the lead side convex portion PR and the anti-lead side convex portion PF of the convex portion forming coil CO1 are formed on the element coil C1 is completed.
  • FIG. 6 shows a side view of the arc deformation jig.
  • FIG. 7 shows a state where a coil is formed using an arc deformation jig.
  • the arc deforming jig J2 includes a fixed mold J21, a movable mold J22, and a shaft J23.
  • the fixed side mold J21 has a curved surface necessary for forming a curvature necessary for being arranged on the stator 100 in the convex forming coil CO1.
  • the movable mold J22 has a similar curved surface, and is configured to be movable in the direction of the fixed mold J21 along the shaft J23.
  • the movable side mold J22 includes four parts, a central gripping member J22c corresponding to a fixing mechanism that holds the convex portion holding coil C2, a first curved surface forming die J22a that deforms the convex portion holding coil C2, and a second. It consists of a curved surface forming mold J22b and a mold base J22d.
  • the first curved surface forming mold J22a and the second curved surface forming mold J22b have substantially the same curvature as the curved surface of the fixed mold J21 (strictly, the thickness of the fixed mold J21 + curved surface holding coil C3 is the second curved surface. It becomes the curvature of the forming die J22b), and the convex portion holding coil C2 can be bent.
  • the convex portion holding coil C2 In a state where the convex portion holding coil C2 is inserted into the arc deforming jig J2, the first curved surface forming die J22a and the second curved surface forming die J22a fixed to the die base J22d are held by the central gripping member J22c.
  • the curved surface forming die J22b is subjected to processing of the convex portion holding coil C2 by applying thrust toward the fixed side die J21 together with the die base J22d. As a result, as shown in FIG. 7, the convex portion holding coil C2 can be deformed and processed into the curved surface holding coil C3.
  • FIG. 8 the side view regarding a lane change part formation jig
  • FIG. 9 is a side view showing a state in which the lane change portion is formed on the coil by the lane change portion forming jig.
  • the lane change portion forming jig J3 includes a fixed side base J31, a fixed side chuck J32, a movable side chuck J33, and a movable side base J34.
  • the fixed side base J31 is disposed on the base J35 and holds one end of the curved surface holding coil C3 with the fixed side chuck J32 movable in the direction close to the fixed side base J31 and the fixed side base J31.
  • the movable side chuck J33 and the movable side base J34 are held by the slide base J38 penetrating the shaft J36.
  • the slide base J38 fixed to the slide guide J37 is in the horizontal direction of FIG.
  • the drive mechanism is movable.
  • the movable side chuck J33 and the movable side base J34 are provided with a drive mechanism so as to be movable in the vertical direction of FIG. 8 with respect to the slide base J38.
  • the movable side chuck J33 and the movable side base J34 are configured to hold the other end of the curved surface holding coil C3.
  • the curved surface holding coil C3 is held by the lane change portion forming jig J3 in the state shown in FIG. 8, and at the same time as the slide base J38 is advanced, the movable side chuck J33 and the other end of the curved surface holding coil C3 are gripped.
  • the lane change portion possessing coil C4 is formed into a shape as shown in FIG.
  • the lane change portion possessing coil C4 is the convex portion forming coil CO1 shown in FIG. 2, and can be incorporated into the split stator core SC.
  • the convex forming coil CO1 can be classified into three parts as shown in FIG. They are an inner circumference arrangement portion 31, an outer circumference arrangement portion 32, and a protruding lane change portion 33.
  • the protruding lane change portion 33 is a generic term for a portion corresponding to the lead lane change portion LCR of the lead side convex portion PR or the anti-lead side lane change portion LCF of the anti-lead side convex portion PF in the convex portion forming coil CO1.
  • FIG. 10 is a schematic plan view showing the U-phase coil formed on the stator core.
  • the stator 100 is composed of eight blocks, where the U phase, V phase, and W phase are a set of blocks.
  • the first block B1 includes six U-phase first slots U1B1, U-phase second slots U2B1, V-phase first slots V1B1, V-phase second slots V2B1, W-phase first slots W1B1, and W-phase second slots W2B1. Has a slot.
  • the second block B2 includes a U-phase first slot U1B2, a U-phase second slot U2B2, a V-phase first slot V1B2, a V-phase second slot V2B2, a W-phase first slot W1B2, and a W-phase second slot W2B2. It has 6 slots. Then, as shown in FIG. 10, in the convex portion forming coil CO1, the second in-slot conductor portion SSb is inserted into the U-phase first slot U1B1, and the first in-slot conductor portion SSa is inserted into the U-phase first slot U1B2. The That is, the second in-slot conductor portion SSb is inserted on the outer peripheral side of one slot SCS, and the first in-slot conductor portion SSa is inserted on the inner peripheral side.
  • FIG. 29 is a schematic diagram showing a state of the lane change portion of the coil bundle.
  • coil bundles arranged in a cylindrical shape are schematically shown in a straight line.
  • FIG. 30 shows a side view diagram of the coil bundle.
  • the coil CO in FIG. 30 is shown in a simplified manner for convenience of explanation.
  • the coil CO is assumed to have no lead-side convex portion PR and anti-lead-side convex portion PF formed on the coil end CE of the convex portion forming coil CO1.
  • the coil CO is a coil in which the flat conductors D are wound in three rows like the convex forming coil CO1, and the lead side lane change portion LCR portion of this coil CO is shown in FIG.
  • the lead-side lane change portion LCR is formed in a state where three flat conductors D are arranged, and the width of the coil CO is the conductor bundle thickness DW. If the inner radius of the bending portion is the inner bending radius R1, the distance between the centers of the left and right R1 is the inflection point distance A. Further, the outer radius of the bent portion is defined as an outer bending radius R2. As shown in FIG. 29, the lead-side lane change portion LCR is formed between an inflection point distance A that is a distance between the bending centers of the first bending center BCL1 and the second bending center BCL2.
  • the inflection point distance A is actually a distance in the circumferential direction of the stator 100, it is not actually a linear distance, but is linearly developed in FIG.
  • the side surface of the coil CO is not formed with the lead-side convex portion PR or the anti-lead-side convex portion PF, and is composed of the first hypotenuse HLR and the second hypotenuse HRR.
  • the conductor thickness W originally needs a predetermined thickness, but in FIG. 30, the conductor thickness W is zero for convenience of explanation.
  • the angle ⁇ between the first hypotenuse HLR and the second hypotenuse HRR is determined by the conductor thickness W and the pitch between the slots SCS.
  • FIG. 31 shows a schematic top view in which coil bundles are stacked. Note that the lines between the conductors are omitted. For convenience of explanation, coil bundles arranged in a cylindrical shape are schematically shown in a straight line.
  • FIG. 32 shows a side view diagram in which coils are overlapped. However, the first coil COa to the third coil COc are shown in a simplified manner for explanation. In FIG. 31 in which the coils CO are overlaid, the first coil COa, the second coil COb, and the third coil COc are overlaid.
  • the center of the inner bend radius R1 of the first coil COa and the center of the inner bend radius R1 of the second coil COb are disposed on the first bend center BCL1, and the center of the inner bend radius R1 of the second coil COb and the third The center of the inner bending radius R1 of the coil COc is disposed on the second bending center BCL2.
  • FIG. 32 shows the conductor thickness W as zero as in FIG. If the conductor thickness W is zero as described above, the first coil COa to the third coil COc can be arranged close to each other. However, since the conductor thickness W actually exists, the first coil COa as shown in FIG. The coil COa, the second coil COb, and the third coil COc cannot be arranged.
  • FIG. 33 shows a schematic top view in which thick coil bundles are stacked. This corresponds to FIG.
  • FIG. 34 shows a side view in which thick coil bundles are stacked. The drawing is simplified. Since the coil thickness of the coil CO is not zero, when the coils CO are arranged, it actually becomes as shown in FIGS.
  • the coil interference point distance that is the distance between the first coil center line CL1 and the second coil center line CL2 is used. It is necessary to arrange the first coil COa and the second coil COb so that A1 is not less than the inflection point distance A described in FIG. At this time, the intersection point of the outer periphery side of the second hypotenuse HRR of the first coil COa and the inner periphery side of the first hypotenuse HLR of the second coil COb is defined as a first intersection P1.
  • the distance between the second coil center line CL2 and the third coil center line CL3 is a coil interference point. It is necessary to arrange the second coil COb and the third coil COc so as to be equal to or longer than the distance A1.
  • the intersection point between the outer peripheral side of the second hypotenuse HRR of the second coil COb and the inner peripheral side of the first hypotenuse HLR of the third coil COc is defined as a second intersection P2. If the coil interference point distance A1 between the first intersection P1 and the second intersection P2 is not greater than the inflection point distance A, the second coil COb is disposed between the first coil COa and the third coil COc.
  • FIG. 35 is a top view in which the convex forming coils are stacked. Note that the lines between the conductors are omitted. For convenience of explanation, coil bundles arranged in a cylindrical shape are schematically shown in a straight line.
  • FIG. 36 shows a side view in which convex portion forming coils are stacked. Therefore, the convex portion forming coil CO1 in which the lead side convex portion PR and the anti-lead side convex portion PF are formed on the coil CO is used.
  • the flat conductor D is raised from the middle of the first hypotenuse HLR of the projection forming coil CO1 to form the lead-side projection PR.
  • the rectangular conductor D is lowered from the lead-side convex part PR and connected to the second hypotenuse HRR.
  • the lead-side convex portion PR (the anti-lead-side convex portion PF is formed in the same manner) at the coil end CE, the first coil COa, the second coil COb, and the third coil as shown in FIG.
  • the distance between the coils can be made shorter than the distance A2 between the coil centers by using the coil COc as the shortened coil center distance A3.
  • the shortened coil center distance A3 depends on the size of the flat conductor D used for the coil CO, but in the case assumed by the applicant, it could be suppressed to about 70% of the coil center distance A2. .
  • the rising height of the lead-side convex portion PR (or the anti-lead-side convex portion PF) needs to be set so that the width of the coil interference point distance A1 is equal to or less than the inflection point distance A.
  • the conductor thickness W and the conductor bundle thickness DW Unless the condition that the inner bending radius R1 of the first coil COa and the inner bending radius R1 of the second coil COb are aligned on the first bending center BCL1 is not added, the coil interference point distance A1 theoretically varies. It is also possible to set it below the music point distance A.
  • the inflection point distance A is a dimension necessary for the lane change of the convex portion forming coil CO1, and adjacent to the convex portion forming coil CO1 when the lead side convex portion PR and the anti-lead side convex portion PF are formed.
  • the coil interference point distance A1 between the matching convexity forming coils CO1, for example, the first coil COa and the second coil COb, is substantially equal to the inflection point distance A that is the distance between the center points of the inner bending radius R1.
  • the inflection point distance A is slightly reduced as described above unless the condition that the inner bending radius R1 of the first coil COa and the inner bending radius R1 of the second coil COb are aligned on the first bending center BCL1 is added. Need to be designed).
  • the coil end CE can be shortened by adopting the configuration of the stator 100 of the first embodiment.
  • the stator 100 according to the first embodiment is formed with a split stator core SC including teeth 43 and a slot SCS formed between the teeth 43, and a convex portion formed using the flat conductor D and disposed in the slot SCS.
  • the convex-forming coil CO1 has the first hypotenuse HLR, the second hypotenuse HRR, the third hypotenuse HLF, the fourth hypotenuse HRF, the first hypotenuse HLR, the first hypotenon HLR at the coil end CE.
  • a lead-side convex part PR or an anti-lead-side convex part PF that is formed so as to protrude from the second oblique side HRR, the third oblique side HLF, and the fourth oblique side HRF in the axial direction of the split stator core SC;
  • the lead-side convex part PR or the anti-lead-side convex part PF is the other convex part-forming coil C when the convex part-forming coil CO1 is arranged on the split stator core SC. Is the height to avoid interference with the 1.
  • the first hypotenuse HLR and the second hypotenuse HRR are formed on the coil end CE of the projection forming coil CO1, the lead protuberance PR is formed at the tip, and the third hypotenuse HLF and the fourth hypotenuse HRF are formed on the opposite lead side.
  • the anti-lead side convex portion PF at the tip, interference of the coil end CE can be avoided when the convex portion forming coil CO1 is overlapped, and as a result, the coil end CE can be shortened.
  • FIG. 11 shows a perspective view of a stator that avoids interference between coils without providing a convex portion.
  • the convex-unformed stator 200 determines the angles of the first hypotenuse HLR, the second hypotenuse HRR, the third hypotenuse HLF, and the fourth hypotenuse HRF so that the convex non-formation coil CO2 does not interfere at the coil end CE. Yes. For this reason, the coil end CE is longer than the stator 100 of FIG. 1 using the convex forming coil CO1.
  • the adjacent convex part non-forming coil depends on the interval of the slot SCS formed in the split stator core SC, the thickness of the flat conductor D, or the diameter of the split stator core SC.
  • the angle formed by the second hypotenuse HRR, the third hypotenuse HLF, and the fourth hypotenuse HRF is an acute angle, and the first hypotenuse HLR, the second hypotenuse HRR, the third hypotenuse HLF, and the fourth hypotenuse HRF stand with respect to the end face of the split stator core SC. This is because it is necessary to form the convex part non-forming coil CO2.
  • the lead-side convex part PR is formed so as to protrude from the first oblique side HLR and the second oblique side HRR
  • the anti-lead-side convex part PF is formed so as to protrude from the third oblique side HLF and the fourth oblique side HRF.
  • the adjacent convex forming coils CO1 can be mutually avoided three-dimensionally, so that the space can be used effectively. That is, forming the lead-side convex part PR and the anti-lead-side convex part PF in the convex part forming coil CO1 works effectively in reducing the diameter of the split stator core SC and narrowing the pitch of the slots SCS. As a result, the coil end CE can be shortened.
  • the description regarding the dimension of the concrete lead side convex part PR and the anti-lead side convex part PF is as above-mentioned.
  • FIG. 12 is a perspective view of the single convex portion forming coil of the second embodiment.
  • the one convex portion forming coil CO3 has a first hypotenuse HLR, a second hypotenuse HRR, a third hypotenuse HLF, and a fourth hypotenuse HRF.
  • a lead-side convex portion PR is formed on the extension of the first hypotenuse HLR, and the second hypotenuse HRR is linearly formed to the lead-side lane change portion LCR.
  • an anti-lead-side convex portion PF is formed on the extension line of the third hypotenuse HLF, and the fourth hypotenuse HRF is linearly formed to the anti-lead-side lane change portion LCF.
  • the lead-side convex portion PR and the anti-lead-side convex portion PF are formed only on one side of the oblique side, the lead-side left concave portion DLR and the anti-lead-side left concave portion DLF are formed in the single convex portion forming coil CO3.
  • the lead-side right recess DRR and the anti-lead-side right recess DRF as shown in the first embodiment are not formed. Therefore, although the basic configuration of the coil projection forming jig J1 of the second embodiment is the same as that of the first embodiment, it is necessary to change the arrangement and number of the pressing jigs J13. However, the basic formation process is almost the same, so the description is omitted.
  • FIG. 13 shows a side view of a stator using a single convex forming coil.
  • the first terminal portion TRa and the second terminal portion TRb are omitted.
  • FIG. 14 shows a partial perspective view of a stator using a single convex forming coil.
  • the lead-side convex portion PR and the anti-lead-side convex portion PF provided on the one-convex portion forming coil CO3 function substantially the same as those in the first embodiment. Therefore, the effect is the same, and the coil end CE portion can be shortened by providing the anti-lead side convex portion PF in the one convex portion forming coil CO3.
  • FIG. 14 shows a partial perspective view of a stator using a single convex forming coil.
  • the lead-side convex portion PR and the anti-lead-side convex portion PF provided on the one-convex portion forming coil CO3 function substantially the same as those in the first embodiment. Therefore, the effect is the same, and
  • FIG. 13 which is a side view of the stator 100, shows a state in which the stator 100 is viewed from the outer side surface, while FIG. 14 shows a perspective view showing the inside of the stator 100.
  • the single convex portion forming coil CO3 forms the coil cage CB and the split stator core SC is disposed, the second hypotenuse HRR appears to overlap from the inner peripheral side of the coil cage CB.
  • the lead side convex part PR is arranged from the outer peripheral side of the coil cage CB. This state is the same for the anti-lead side convex portion PF.
  • omitted 1st terminal part TRa and 2nd terminal part TRb are actually formed, and in order for the stator 100 to be electrically connected, the process of connecting by bus bar BB is required.
  • the adjacent single convex portion forming coils CO3 can avoid each other in a three-dimensional manner.
  • the degree of freedom in design is lower than when the convex portion forming coil CO1 of the first embodiment is used, and the effect of shortening the coil end CE may not be obtained as much as the stator 100 of the first embodiment.
  • the applicant confirms that the coil end CE of the stator 100 of the first embodiment is about 5% shorter than the coil end CE of the stator 100 of the second embodiment when compared using the same split stator core SC. ing.
  • the shortening effect varies depending on the pitch and number of the slots SCS of the split stator core SC and the thickness of the rectangular conductor D, whether the configuration of the first embodiment or the configuration of the second embodiment is used depends on the design requirements. Should be selected. Basically, the shortening effect tends to decrease as the pitch increases.
  • FIG. 15 is a perspective view of the single convex portion forming coil of the third embodiment.
  • the one convex portion forming coil CO4 has a first hypotenuse HLR, a second hypotenuse HRR, a third hypotenuse HLF, and a fourth hypotenuse HRF.
  • a lead-side convex portion PR is formed on the extension of the second hypotenuse HRR, and the first hypotenuse HLR is linearly formed to the lead-side lane change portion LCR. Further, an anti-lead-side convex portion PF is formed on the extended line of the fourth hypotenuse HRF, and the third hypotenuse HLF is linearly formed to the anti-lead-side lane change portion LCF.
  • the lead-side convex portion PR and the anti-lead-side convex portion PF are formed only on one side of the oblique side, the lead-side right concave portion DRR and the anti-lead-side right concave portion DRF are formed in the single convex portion forming coil CO4.
  • the lead-side left recessed portion DLR and the anti-lead-side left recessed portion DLF as shown in the first embodiment are not formed. It can be said that this is the opposite shape to the one-convex portion forming coil CO3 of the second embodiment.
  • the basic configuration of the coil projection forming jig J1 is the same as that of the first embodiment, it is necessary to change the arrangement and number of the pressing jigs J13 of the third embodiment as in the second embodiment.
  • the basic formation process is almost the same, so the description is omitted.
  • FIG. 16 shows a side view of a stator using a single convex forming coil.
  • the first terminal portion TRa and the second terminal portion TRb are omitted.
  • the lead-side convex portion PR and the anti-lead-side convex portion PF provided in the one-convex portion forming coil CO4 function substantially the same as those in the first embodiment. Therefore, the effect is also the same, and the coil end CE part can be shortened by forming the anti-lead side convex part PF in the single convex part forming coil CO4.
  • FIG. 16 which is a side view of the stator 100 shows the stator 100 viewed from the outside.
  • the adjacent single convex portion forming coils CO4 can avoid each other in three dimensions. And, the degree of design freedom is higher than that of the convex portion forming coil CO1 of the first embodiment. Even when placed at a lower point, the situation is the same as the one-convex portion forming coil CO3 of the second embodiment. In addition, the effect of shortening the coil end CE tends to be lower in the third embodiment than in the second embodiment because of the influence of the formation positions of the lead lane change portion LCR and the anti-lead lane change portion LCF.
  • the stator 100 of the fourth embodiment is substantially the same as the configuration of the stator 100 of the first embodiment, but the double coil 30 of the fourth embodiment corresponding to the convex forming coil CO1 of the fourth embodiment is formed with a convex.
  • the configuration is different from that of the coil CO1.
  • FIG. 17 the perspective view of the stator of 4th Embodiment is shown.
  • FIG. 18 is a perspective view of the double coil.
  • FIG. 19 shows a top view of the double coil.
  • FIG. 19 shows a double coil from the top surface of FIG.
  • the stator 100 includes a double coil 30, a split stator core SC, an outer ring 50 and a terminal block 55. Note that the double coil 30 in FIG.
  • the double coil 30 includes a first loop coil 10 and a second loop coil 20 as shown in FIG.
  • the first loop coil 10 and the second loop coil 20 are formed by winding a flat rectangular conductor D.
  • the flat conductor D is obtained by coating an insulating resin around a metal wire having a rectangular cross section. A metal having high conductivity such as copper is used for the metal wire, and a highly insulating resin such as enamel or PPS is used for the insulating resin.
  • the first loop coil 10 includes a first terminal part TR11a and a second terminal part TR11b. Further, a lead-side convex portion PR11 and an anti-lead-side convex portion PF11 are formed. A lead side right concave portion DRR11 and a lead side left concave portion DLR11 are formed on both sides of the lead side convex portion PR11, and an anti lead side right concave portion DRF11 and an anti lead side left concave portion DLF11 are formed on both sides of the anti lead side convex portion PF11. ing.
  • the lead-side convex portion PR11 is formed with a lead-side lane change portion LCR11, and the anti-lead-side convex portion PF11 is formed with an anti-lead-side lane change portion LCF11. Moreover, it also includes a first in-slot conductor portion SS11a and a second in-slot conductor portion SS11b, which are portions to be inserted into the slot SCS included in the split stator core SC.
  • the second loop coil 20 includes a first terminal portion TR12a and a second terminal portion TR12b. Further, a lead-side convex portion PR12 and an anti-lead-side convex portion PF12 are formed. A lead side right concave portion DRR12 and a lead side left concave portion DLR12 are formed on both sides of the lead side convex portion PR12, and an anti lead side right concave portion DRF12 and an anti lead side left concave portion DLF12 are formed on both sides of the anti lead side convex portion PF12. ing.
  • the lead-side convex portion PR12 is formed with a lead-side lane change portion LCR12, and the anti-lead-side convex portion PF12 is formed with an anti-lead-side lane change portion LCF12.
  • a first in-slot conductor portion SS12a and a second in-slot conductor portion SS12b are also formed.
  • the double coil 30 is configured by being overlapped so that the second loop coil 20 is arranged on the inner peripheral side of the first loop coil 10.
  • the formation logic of the lead-side convex part PR11, the lead-side convex part PR12, the anti-lead-side convex part PF11, and the anti-lead-side convex part PF12 formed in the first loop coil 10 and the second loop coil 20 is as follows. Since it is the same as that relating to the formation of the lead-side convex portion PR and the anti-lead-side convex portion PF of one embodiment, detailed description thereof is omitted.
  • the split stator core SC is formed by laminating electromagnetic steel plates, and can hold the double coil 30 by fitting the outer ring 50 in a state where 24 pieces 41 are arranged in a cylindrical shape.
  • the split stator core SC includes slots SCS and teeth 43 alternately on the inner periphery, and the piece 41 has a shape divided at the bottom of the slot SCS so as to have two teeth 43.
  • the outer ring 50 is a cylindrical metal body and is formed with such a dimension that the inner periphery and the outer periphery of the split stator core SC are fitted.
  • the terminal block 55 is connected to an external connector (not shown) that is connected for the purpose of finally supplying power from a power source such as a secondary battery after the double coil 30 provided in the stator 100 is electrically coupled. Connection port.
  • a power source such as a secondary battery
  • connection port In the fourth embodiment, since it is a three-phase stator, three connection ports are provided.
  • a method for forming a coil according to the fourth embodiment is basically the same as the method described in the first embodiment with reference to FIGS.
  • a double coil 30 in which the first loop coil 10 and the second loop coil 20 are overlapped is used for the coil cage CB.
  • J11 and the convex part guide J12 Since the shape of J11 and the convex part guide J12 is different between the element coil C1 used for the first loop coil 10 and the element coil C1 used for the second loop coil 20, jigs adapted to different element coils C1 are used. A variable guide mechanism is required. However, since the configuration of the coil projection forming jig J1 is substantially the same, it is treated here as the same for convenience.
  • the formed first loop coil 10 and second loop coil 20 are overlapped to form a double coil 30.
  • the double coil 30 can be classified into three parts as shown in FIG. They are an inner circumference arrangement portion 31, an outer circumference arrangement portion 32, and a protruding lane change portion 33.
  • the protruding lane change portion 33 corresponds to the lead-side lane change portion LCR11 of the lead-side convex portion PR11 in the first loop coil 10 or the anti-lead-side lane change portion LCF11 of the anti-lead-side convex portion PF11.
  • FIG. 20 shows a schematic perspective view in which double coils are superposed.
  • the first terminal portion TR11a, the second terminal portion TR11b, the first terminal portion TR12a, and the second terminal portion TR12b are omitted for convenience of description.
  • the double coil 30 ⁇ / b> A and the double coil 30 ⁇ / b> B are the same shape of the double coil 30, and in FIG. 20, the protruding lane change portions 33 are arranged adjacent to each other. Therefore, the inner peripheral arrangement part 31 of the double coil 30B is arranged under the protruding lane change part 33 of the double coil 30A.
  • the inner peripheral arrangement part 31 of the double coil 30A is arranged below the protruding lane change part 33 of the double coil 30B.
  • a positioning jig J5 is drawn in the back of the double coil 30A and the double coil 30B.
  • the double coil 30 is positioned by the positioning jig J5.
  • FIG. 21 the perspective view which shows a mode that the piece is inserted in the coil cage
  • the first terminal portion TR11a, the second terminal portion TR11b, the first terminal portion TR12a, and the second terminal portion TR12b are omitted for convenience of explanation.
  • FIG. 22 the schematic diagram which inserted the piece in the coil cage
  • the piece shown in FIG. 22 shows only the uppermost surface for explanation.
  • the coil cage CB is formed by stacking the double coils 30 one after another as shown in FIG. 24 sets of double coils 30 are stacked on the coil cage CB, and a piece 41 is inserted from the outside to form a cylindrical split stator core SC.
  • the stator 100 can be formed by shrinking the outer ring 50 on the outer peripheral portion of the split stator core SC.
  • the coil cage CB is formed by protruding the first terminal portion TR11a, the second terminal portion TR11b, the first terminal portion TR12a, and the second terminal portion TR12b. After that, the first terminal portion TR11a, the second terminal portion TR11b, the first terminal portion TR12a, and the second terminal portion TR12b are bent outwardly and joined by the bus bar BB, thereby obtaining a state as shown in FIG.
  • FIG. 23 is a schematic plan view showing the first loop of the U-phase coil formed on the stator core.
  • FIG. 24 is a schematic cross-sectional view showing the second loop of the U-phase coil formed on the stator core.
  • the stator 100 is composed of eight blocks, where the U phase, V phase, and W phase are a set of blocks.
  • the first block B1 includes six U-phase first slots U1B1, U-phase second slots U2B1, V-phase first slots V1B1, V-phase second slots V2B1, W-phase first slots W1B1, and W-phase second slots W2B1. Has a slot.
  • the second block B2 includes a U-phase first slot U1B2, a U-phase second slot U2B2, a V-phase first slot V1B2, a V-phase second slot V2B2, a W-phase first slot W1B2, and a W-phase second slot W2B2. It has 6 slots.
  • the first loop coil 10U1 of the double coil 30 has the second in-slot conductor portion SS11b inserted in the U-phase first slot U1B1, and the first in-slot conductor in the U-phase second slot U2B2. Part SS11a is inserted.
  • the second loop coil 20U1 of the double coil 30 has the second slot internal conductor portion SS12b inserted in the U phase second slot U2B1, and the first in-slot conductor in the U phase first slot U1B2. Part SS12a is inserted.
  • the stator 100 of the fourth embodiment includes a split-type stator core SC including a tooth 43 and a slot SCS formed between the teeth 43, and a double coil that is formed using a flat conductor D and is disposed in the slot SCS.
  • the slot SCS includes the U-phase first slot U1B1, the U-phase second slot U2B1, the V-phase first slot V1B1, the V-phase second slot V2B1, the W-phase first slot W1B1, and the W-phase.
  • Three-phase slot blocks having the second slot W2B1 as the first block B1 are sequentially formed, the three-phase slot block of the second block B2 is formed next to the first block B1, and the U-phase of the first block B1
  • the rectangular conductor D in the first slot U1B1 is the same as the rectangular conductor D in the U-phase second slot U2B2 of the second block B2.
  • the rectangular conductor D in the U-phase second slot U2B1 of the first block B1 is connected to the rectangular conductor D in the U-phase first slot U1B2 of the second block B2 and the second loop coil 20. That is, the second loop coil 20 is arranged on the inner periphery of the first loop coil 10.
  • the distributed winding stator 100 is formed using the concentric winding coil using the double coil 30, it is possible to secure a width that can be used for the protruding lane change portion 33.
  • the protruding lane change portion 33 of the double coil 30 tends to become difficult to form.
  • the double coil 30 is configured to overlap the first loop coil 10 and the second loop coil 20.
  • the width used for the protruding lane change portion 33 can be increased.
  • the space factor of the stator 100 can be improved, which contributes to higher output.
  • the width for forming the protruding lane change portion 33 is two slots as shown in FIGS. Therefore, the number of turns of the first loop coil 10 and the second loop coil 20 of the double coil 30 can be increased, or the thickness of the flat conductor D can be increased. Due to problems such as the minimum bending radius of the flat conductor D and damage to the insulating layer provided around the flat conductor D, it is not preferable to bend the bent portion of the protruding lane change portion 33 at an acute angle.
  • the number of turns of the first loop coil 10 and the second loop coil 20 or the thickness of the rectangular conductor D is determined depending on how much width can be used for the protruding lane change portion 33. However, in order to increase the output, it is essential to increase the thickness and the number of turns of the flat rectangular conductor D, and the fact that two slots can be used for the protruding lane change portion 33 has a great merit.
  • stator 100 of the fourth embodiment when a single coil is used for the stator, only one slot at most can be used for the lane change portion. It is possible to give a width to the formation of the protruding lane change portion 33. This contributes to increasing the output of the stator 100 and also contributing to increasing the degree of design freedom.
  • the space of the protruding lane change portion 33 can be secured as described above, and as a result, the coil end is extended in the axial direction of the stator 100. There is no need to do it. That is, it contributes to shortening of the coil end CE. About 1st terminal part TR11a, 2nd terminal part TR11b, 1st terminal part TR12a, 2nd terminal part TR12b, and bus bar BB connected to these, as shown in FIG. Therefore, the extension of the coil end CE can be minimized. Thus, since the coil end CE of the stator 100 is not increased more than necessary, it is possible to satisfy the demand for downsizing.
  • the first loop coil 10 is provided with a lead-side convex portion PR11 and an anti-lead-side convex portion PF11
  • the second loop coil 20 is provided with a lead-side convex portion PR12 and an anti-lead-side convex portion PF12, so that adjacent coils Interference can be easily avoided, and the length of the coil end CE can be suppressed.
  • a configuration in which the first loop coil 10 and the second loop coil 20 are hexagonal and a triangular portion is provided at the coil end portion is also used in Patent Document 2, etc., but the coil end tends to be enlarged. It is in. In order to dodge the adjacent coils, it is necessary to raise the rectangular conductor D diagonally at the coil end portion. However, if the angle where the base of the triangle contacts is not formed as an obtuse angle, the distance between the adjacent coils becomes long. It is because it ends up.
  • the inner peripheral arrangement part 31 or the outer peripheral arrangement part 32 is overlapped under the protruding lane change part 33, and the protruding lane change part 33 is arranged in line with the coil end CE.
  • the double coils 30 used in the fourth embodiment are all stacked with the same shape to form the coil cage CB, it is possible to reduce the manufacturing cost of the parts and complicate the assembly process. It is also excellent in not inviting.
  • FIG. 25 is a partial perspective view of the coil end portion of the double coil of the fifth embodiment.
  • FIG. 26 shows a partial perspective view of the stator.
  • the 1st loop coil 10 and the 2nd loop coil 20 are connected without using bus bar BB by the connection part CR shown by FIG. That is, the first terminal portion TR11a of the first loop coil 10 of the fourth embodiment shown in FIG. 18 and the second terminal portion TR12b of the second loop coil 20 are joined to form the connection portion CR as shown in FIG. is doing.
  • the connecting portion CR passes through the lower side of the lead-side convex portion PR11, passes through the side surface of the lead-side convex portion PR12, and is connected from the inner peripheral side to the outer peripheral side.
  • the terminal portion of the second loop coil 20 is extended to form a connection portion CR, and is joined to the first loop coil 10 on the outer peripheral side of the stator 100. Therefore, the two protruding from the coil end CE are two double coils 30, the second terminal portion TR 11 b of the first loop coil 10 and the first terminal portion TR 12 a of the second loop coil 20. become.
  • the double terminals 30 having the long second terminal portion TR11b are formed with 24 first coils. Twenty-four double coils 30 each having a long part TR12a are prepared.
  • the first terminal portion TR12a protruding from the outer peripheral side of the U-phase first slot U1B2 of the second block B2 extends from the outer peripheral side of the U-phase first slot U1B3 of the third block B3. Connected to the first terminal portion TR12a. This is the first outer peripheral connection portion CRO1. That is, they are connected to the adjacent double coils 30 of the same phase.
  • U-phase first coil 30U1 and U-phase second coil 30U2 are connected.
  • the second terminal portion TR11b disposed on the inner peripheral side is not illustrated, but is similarly connected to the second terminal portion TR11b of the coil of the same phase disposed adjacently. In the case of FIG. 26, it is connected to a U-phase eighth coil 30U8 (not shown) to form a first inner peripheral connection portion CRI1.
  • the second terminal portion TR11b of the V-phase first coil 30V1 and the V-phase second coil 30V2 arranged on the inner peripheral side of the stator 100 is joined to form the second inner peripheral connection portion CRI2, and the stator
  • the first terminal portion TR12a of the V-phase second coil 30V2 and the V-phase third coil 30V3 arranged on the outer peripheral side of 100 is joined to form the second outer peripheral side connecting portion CRO2.
  • the second terminal portions TR11b arranged inside the stator 100 are joined together to form the inner peripheral side connection portion CRI
  • the first terminal portions TR12a arranged outside the stator 100 are joined together.
  • the second terminal portion TR11b and the first terminal portion TR12a are simply raised, and the second terminal portion TR11b and the second terminal portion TR11b of the adjacent phase.
  • a shape extending to one terminal portion TR12a is required.
  • two patterns of the double coil 30 are prepared.
  • the connection between the second terminal portions TR11b of the adjacent phases and the connection between the first terminal portions TR12a are not prevented from being designed to be joined using the bus bar BB.
  • the first loop coil 10 and the second loop coil 20 need not be joined after the double coil 30 is incorporated as the stator 100 into the split stator core SC. Therefore, the merit of being easy to manufacture is born. Further, reducing the joining work at the coil end CE also has an advantage such as securing a working space, which can contribute to an improvement in yield.
  • two patterns of the double coils 30 need to be alternately combined, so the assembly process is somewhat complicated, but the coil end of the stator 100 of the fifth embodiment is the fourth embodiment. There is an advantage that the stator 100 can be shortened compared to the stator 100. 25 and FIG. 26, it is not necessary to use the bus bar BB, so that the number of parts can be reduced.
  • FIG. 27 is a partial perspective view of the coil end portion of the double coil according to the sixth embodiment as viewed from the inner peripheral side.
  • FIG. 28 shows a partial perspective view of the coil end portion of the double coil as seen from the outer peripheral side.
  • the double coil 30 of the sixth embodiment is in a state where a coil cage CB is formed and a piece 41 of a split stator core SC is inserted.
  • the basic shape of the double coil 30 is substantially the same as that of the double coil 30 of the fifth embodiment, and the first loop coil 10 and the second loop coil 20 are coupled.
  • the U-phase first coil 30U1, the V-phase first coil 30V1, the W-phase first coil 30W1, the U-phase second coil 30U2, and the V-phase second coil 30V2 are different.
  • the double coil 30 passes the second terminal portion TR11b disposed on the inner diameter side of the stator 100 under the lead-side convex portion PR12 of the second loop coil 20 and pulls it out to the outer peripheral side.
  • the double coil 30 is arrange
  • the coil rod CB can be electrically coupled, so that the coil end can be shortened. .
  • stator 100 of the fifth embodiment it is not necessary to form the inner peripheral side connection portion CRI. For this reason, it cannot project on the inner peripheral side of the stator 100, and there is no interference with a rotor (not shown). Since the outer peripheral side connecting portion CRO does not interfere even if it extends to the outer peripheral portion of the split stator core SC, the handling of the flat conductor D is slightly complicated, but the degree of design freedom can be improved.
  • the invention has been described according to the present embodiment, the invention is not limited to the embodiment, and by appropriately changing a part of the configuration without departing from the spirit of the invention. It can also be implemented.
  • the first terminal portion TRa and the second terminal portion TRb do not approach the bus bar BB and do not hinder the joining as in the fifth embodiment and the sixth embodiment.
  • the number of turns of the convex portion forming coil CO1, the single convex portion forming coil CO3, the single convex portion forming coil CO4, the double coil 30 and the thickness of the flat conductor D are matters determined by design requirements. For example, it does not prevent the number of windings from being increased or decreased or the cross-sectional area of the flat conductor D from being increased or decreased.
  • the bonding pattern of the first terminal portion TRa and the second terminal portion TRb in the coil end CE can be considered other than those described in the first to sixth embodiments, and prevents the use of other bonding patterns. Absent.
  • Inner circumference arrangement part 32 Outer circumference arrangement part 33 Lane change part 41 Piece 43 Teeth 50 Outer ring 100 Stator B1 1st block B2 2nd block BB Bus bar C1 Element coil C2 Convex part holding coil C3 Curved face holding coil C4 Lane change part possession Coil CB Coil ⁇ CE Coil end CO1 Convex forming coil CR Connection part D Flat conductor LCF Anti-lead side lane change part LCR Lead side lane change part PF Anti-lead side convex part PR Lead side convex part

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

 小型化及び高出力化が可能なステータ、及びステータ製造方法を提供する為に、ティース(43)と、ティース(43)の間に形成されたスロット(SCS)とを備える分割式ステータコア(SC)と、平角導体(D)を用いて形成されスロット(SCS)内に配置される凸部形成コイル(CO1)と、を有するステータ(100)において、凸部形成コイル(CO1)はコイルエンド(CE)部にて第1斜辺(HLR)、第2斜辺(HRR)、第3斜辺(HLF)、及び第4斜辺(HRF)と、第1斜辺(HLR)、第2斜辺(HRR)、第3斜辺(HLF)、及び第4斜辺(HRF)から分割式ステータコア(SC)の軸方向上空に突出するよう形成されるリード側凸部(PR)または反リード側凸部(PF)と、を有する形状であり、リード側凸部(PR)または反リード側凸部(PF)は、凸部形成コイル(CO1)が分割式ステータコア(SC)に配置された際に他の凸部形成コイル(CO1)との干渉を避ける高さとする。

Description

ステータ
 本発明は、モータの小型化及び高出力化を図るため、ステータの占積率を向上させる技術に関するものである。
 近年、ハイブリッドカーや電気自動車などのニーズが高まっており、自動車の駆動力にモータを用いることが検討されている。しかし、モータを車載する為には、高出力化、小型化が要求される。特に、ハイブリッドカーはエンジンルームにモータを配置する関係上、小型化の要求が厳しい。
 そのため、従来からモータの小型化、高出力化についてさまざまな検討がなされてきている。
 特許文献1には、多相型発電装置のステータ枠用導体部に関する技術が開示されている。
 ステータコアにアウタースロットを備え、平角導体がスロット内に挿入されるスロット内導線部に平面を規定し、該平面に対して上部から見てほぼU字に、前記平面を含む前方から見た場合波状体に、平角導体を成型して、ステータコアに配設することで、ステータのコイルエンドを短縮し、占積率の向上を図ることが可能となる。
 特許文献2には、クランク形状の連続巻きコイル、分布巻き固定子及びそれらの成形方法に関する技術が開示されている。
 平角導体を六角形に巻回した後、コイルエンドとなる部分にクランク形状を、金型を用いて形成し、該平角導体を固定子コアに配設することで、コイルエンドでのコイル同士の干渉を解決し、ステータの占積率の向上、及び小型化に貢献することが可能となる。
 特許文献3には、回転電機とその製造方法についての技術が開示されている。
 内周側から外周側に向けて巻回したコイルアセンブリを、ステータコアのスロットに挿入する際に、一方のスロットにはコイルの外周側からスロットの外層側に配置されるよう挿入し、他方のスロットにはコイルの内周側からスロットの内周側に配置されるよう挿入することで、分布巻きされたコイルを備えた回転電機において、製造作業を簡略化し、かつスロット内の占積率の向上を図ることが可能となる。
 特許文献4には、回転電機の固定子及び回転電機についての技術が開示されている。
 平角導体を波巻きに配置して複数相を有する巻線コイルが形成され、外周方向から分割したティースを挿入し、該ティースをステータコアの外環部に形成された溝に挿入して固定することで、精度の高いステータコアを形成することが可能となる。
特許第3756516号公報 特許第4234749号公報 特開2008-125212号公報 特開2009-131093号公報
 しかしながら、特許文献1乃至特許文献4には以下に説明する課題があると考えられる。
 一般的に、集中巻コイルを用いるステータに比べて分布巻きコイルを用いるステータの方が高出力化し易く、コギングトルクの問題を解決しやすい。ただし、特許文献1又は特許文献2に示されるような分布巻きのコイルを用いたステータを高出力化するために、ステータコアにそなえられるスロットの深さを深くし、かつコイルの巻回数を増やすと、コイル同士の干渉の問題が出てくる。
 特許文献1や特許文献2に示される技術では、隣り合うコイル間の隙間が殆ど無い為、コイルのターン数をこれ以上増やすことが難しいと考えられる。また、平角導体を成形するにあたり、平角導体の曲げ半径に制約がある為、これ以上平角導体の断面積を増やすことも難しいと考えられる。
 したがって、更なる高出力化を求めるには特許文献1及び特許文献2の方法は適さないと考えられる。
 特許文献3は、具体的なコイルの成形方法が、丸線を内周から外周に向けて平らになるように巻いてコイルを形成した後、コイルのスロットに挿入される部分を把持し、ツイストして成形する方法しか示されておらず、この方法は平角導体を用いるには不向きであると考えられる。
 また、平角導体を外周側に積み上げて巻いていくスタイルを用いている為、コイルエンドが大きくなってしまうという問題もあり、ステータの小型化を図るには不向きであると考えられる。
 特許文献4は、分布巻きに波巻きコイルを用いている。波巻きコイルは平角導体を編み込んでいく必要がある為、複雑な成形を要求されると共に、平角導体全てを平面状で重ねた上で、円環状に巻き取っていく必要がある為に、大きな組み立て装置を必要とする。この為、組み立てが難しく、コストダウンが困難であるという問題がある。
 したがって、特許文献1乃至特許文献4に示される技術より、更にステータの小型化と高出力化を図る為には、更なる工夫が必要であると考えられる。
 そこで、本発明はこのような課題を解決するために、小型化及び高出力化が可能なステータを提供することを目的とする。
 前記目的を達成するために、本発明の一態様によるステータは以下のような特徴を有する。
(1)ティースと、該ティースの間に形成されたスロットとを備えるステータコアと、平角導線を用いて形成され前記スロット内に配置されるコイルと、を有するステータにおいて、前記コイルはコイルエンド部にて斜辺と、前記斜辺から前記ステータコアの軸方向上空に突出するよう形成される凸部とを有する形状であり、前記凸部は、前記コイルが前記ステータコアに配置された際に他のコイルとの干渉を避ける高さであることを特徴とする。
(2)(1)に記載のステータにおいて、好ましくは、前記コイルのコイルエンド部にはレーンチェンジ部が形成され、隣り合う第1のコイルと第2のコイルとが干渉する第1干渉点と、隣り合う第2のコイルと第3のコイルとが干渉する第2干渉点との距離であるコイル干渉点距離が、前記ステータコアの内周側に配置される前記レーンチェンジ部の曲げ内周側の曲げ中心と前記ステータコアの外周側に配置される前記レーンチェンジ部の曲げ内周側の曲げ中心との前記ステータコアの周方向の距離である曲げ中心間距離以下になるよう設計されていることを特徴とする。
(3)(1)または(2)に記載のステータにおいて、好ましくは、前記コイルは同心巻きに巻回され、前記コイルを円筒状に配置して形成したコイル籠に、分割式とした前記ステータコアを挿入することで形成されることを特徴とする。
(4)(3)に記載のステータにおいて、好ましくは、前記スロットは、U相第1スロット、U相第2スロット、V相第1スロット、V相第2スロット、W相第1スロット、W相第2スロットを第1組とする3相スロットブロックが、順次形成されており、前記第1組の隣に第2組の前記3相スロットブロックが形成され、前記第1組のU相第1スロット内の前記平角導線が、前記第2組のU相第2スロット内の前記平角導線と第1ループを形成していること、前記第1組のU相第2スロット内の前記平角導線が、前記第2組のU相第1スロット内の前記平角導線と第2ループを形成していること、前記第2ループが、前記第1ループの内周に配置されていること、を特徴とする。
(5)(4)に記載するステータにおいて、好ましくは、前記U相第1スロットから出た前記平角導線が、2スロット分の領域を用いて、レーンチェンジされていること、を特徴とする。
(6)(5)に記載するステータにおいて、好ましくは、前記第1ループの一端が、前記第2ループの一端と接続していること、を特徴とする。
 また、前記目的を達成するために、本発明の一態様によるステータ製造方法は以下のような特徴を有する。
(7)ティースと、ティースの間に形成されたスロットとを備えるステータコアと、ステータ内に配置される平角導線とを有するステータの製造方法において、前記平角導線を、複数重ね合わされて周回させて八角形状コイルとする第1工程と、前記八角形状コイルのコイルエンド部に一対の凸部を形成する第2工程と、前記凸部が形成されたコイルを円弧状に成形する第3工程と、前記一対の凸部にレーンチェンジ部を形成する第4工程と、を有することを特徴とする。
(8)(7)に記載のステータ製造方法において、好ましくは、前記第2工程は、固定された前記八角形状コイルの周囲4方向より、押圧機構によって前記八角形状コイルの外面を押圧し、前記一対の凸部を形成するものであることを特徴とする。
(9)(7)又は(8)に記載のステータ製造方法において、好ましくは、前記第3工程は、前記凸部が形成されたコイルを固定し、前記凸部が形成されたコイルの軸方向より曲面を有する金型を押し付けることで、前記凸部が形成されたコイルを円弧状に形成するものであることを特徴とする。
(10)(7)乃至(9)のいずれか1つに記載のステータ製造方法において、好ましくは、前記第4工程は、前記円弧状に形成されたコイルの前記一対の凸部を、右側保持金型と左側保持金型で保持し、前記右側保持金型に対して前記左側保持金型をずらすことで、前記レーンチェンジ部を前記一対の凸部に形成するものであることを特徴とする。
 また、前記目的を達成するために、本発明の一態様によるステータ製造装置は以下のような特徴を有する。
(11)ティースと、ティースの間に形成されたスロットとを備えるステータコアと、ステータ内に配置される平角導線とを有するステータを製造するステータ製造装置において、前記平角導線が複数重ね合わされて周回され形成された八角形状コイルを固定するコイル固定部と、固定された前記八角形状コイルの周囲4方向より、前記八角形状コイルの外面を押圧する押圧機構と、を備え、前記八角形状コイルに一対の凸部を形成することを特徴とする。
(12)(11)に記載のステータ製造装置において、好ましくは、前記凸部が形成されたコイルの両端を固定する固定機構と、前記凸部が形成されたコイルの軸方向より押し付ける曲面を有する金型と、を有し、前記凸部が形成されたコイルを円弧状に形成することを特徴とする。
(13)(12)に記載のステータ製造装置において、好ましくは、前記円弧状に形成されたコイルの前記一対の凸部を保持する右側保持金型と左側保持金型と、前記右側保持金型に対して前記左側保持金型をずらす駆動機構と、を備え、前記円弧状に形成されたコイルに前記レーンチェンジ部を前記一対の凸部に形成することを特徴とする。
 このような特徴を有する本発明の一態様によるステータにより、以下のような作用、効果が得られる。
 上記(1)に記載される発明の態様は、ティースと、ティースの間に形成されたスロットとを備えるステータコアと、平角導線を用いて形成されスロット内に配置されるコイルと、を有するステータにおいて、コイルはコイルエンド部にて斜辺と、斜辺からステータコアの軸方向上空に突出するよう形成される凸部とを有する形状であり、凸部は、コイルがステータコアに配置された際に他のコイルとの干渉を避ける高さとしている。
 コイルのコイルエンド部に形成される斜辺から突出する凸部を形成することで、コイルをステータコアに挿入した際にコイル同士の干渉を回避することが容易となり、コイルエンドを短縮することが可能となる。
 ステータのコイルエンド部では、コイル同士の干渉を避ける必要があるが、コイルはコイルエンド部にて複雑に立体交差することになる。従って、隣り合うコイル同士の干渉を避ける為に凸部を形成し、干渉を回避することで効率的にコイルエンド部の短縮を図ることが可能となる。
 例えばコイルを六角形に巻回して構成する場合、コイルエンドには2辺が二等辺三角形を作る形で突出する。この場合、二等辺三角形部分をコイル同士ですれ違うように配置すると、平角導体の厚みの関係でコイル間の距離を必要として、レーンチェンジに幅を必要とする結果となる。しかし、コイルに第1凸部及び第2凸部を設けることで、隣り合うコイル同士の干渉をかわし易くなる。
 また、ステータの構成上、第1ループや第2ループを形成する場合にはエッジワイズ曲げ加工する必要があるが、第1凸部及び第2凸部を設ける場合には、エッジワイズ曲げ方向ではなく厚みの薄い方向に曲げることになるので、曲げ半径が小さく、比較的容易に曲げることができる。
 この結果、ステータの設計自由度が高くなり、コイルエンドをそれ程伸ばさずにコイルの端子部分を第1ループ及び第2ループの下をくぐらせて外側に持ってくる等、バスバとの接合のし易さを確保することに貢献することができる。
 設計自由度を高くできることは、ステータを製作する工程を簡素化する助けとなり、メリットが高い。
 上記(2)に記載される発明の態様は、(1)に記載のステータにおいて、コイルのコイルエンド部にはレーンチェンジ部が形成され、隣り合う第1のコイルと第2のコイルとが干渉する第1干渉点と、隣り合う第2のコイルと第3のコイルとが干渉する第2干渉点との距離であるコイル干渉点距離が、前記ステータコアの内周側に配置される前記レーンチェンジ部の曲げ内周側の曲げ中心と前記ステータコアの外周側に配置される前記レーンチェンジ部の曲げ内周側の曲げ中心との前記ステータコアの周方向の距離である曲げ中心間距離以下になるよう設計されているものである。
 コイル干渉点距離が曲げ中心距離以下になるように設定することで、第1のコイル、第2のコイル、及び第3のコイルを隣接して並べ、ステータコアのスロット間のピッチを詰めることが可能となる。すなわち、ステータの小型化に貢献することが可能となる。
 上記(3)に記載される発明の態様は、(1)又は(2)に記載のステータにおいて、コイルは同心巻きに巻回され、コイルを円筒状に配置して形成したコイル籠に、分割式としたステータコアを挿入することで形成されるものである。
 同心巻きコイルを円筒状に配置してコイル籠を形成し、分割式のステータコアを挿入してステータを形成する手法を採ることで、コイルの設計自由度を向上させることができる。
 上記(4)に記載される態様は、(3)に記載のステータにおいて、スロットは、U相第1スロット、U相第2スロット、V相第1スロット、V相第2スロット、W相第1スロット、W相第2スロットを第1組とする3相スロットブロックが、順次形成されており、第1組の隣に第2組の3相スロットブロックが形成され、第1組のU相第1スロット内の平角導線が、第2組のU相第2スロット内の平角導線と第1ループを形成していること、第1組のU相第2スロット内の平角導線が、第2組のU相第1スロット内の平角導線と第2ループを形成していること、第2ループが、第1ループの内周に配置されるというものである。
 平角導線を第1ループと第2ループを有する2重コイルとすることで、レーンチェンジ部分の余裕を多くとることが可能となる。
 平角導体でループを形成したコイルをステータコアに挿入する場合、特許文献1及び特許文献2に示されているように、平角導体をステータコアの端面に平面的に並べることになる。この場合、ステータコアの端面は面積が限られる為、コイルのターン数を多くする為に平角導体の数を増やすことは難しい。そして、コイルを分布巻きとして構成する場合、同心巻きのコイル同士が干渉する為、コイルエンド部にレーンチェンジ部分を必要とする。このレーンチェンジ部で、コイルの幅は問題となりやすい。
 そこで、本発明の構成のように第1ループの内周側に第2ループを形成する2重コイルの構造とすることで、ステータコアの端面を立体的に利用することができる。この結果、コイルのターン数を増やすことが可能で、ターン数が増えた場合にもレーンチェンジ部において隣り合うコイル同士の干渉を防ぐことが可能となる。
 コイルの第1ループと第2ループを重ねて2重のコイルを形成しているため、コイルエンドの厚みをそれ程増やすことなく、スロットの深いステータコアを採用することが可能となる。その結果、ステータの占積率の向上と小型化の要求を満足することが可能となる。
 また、上記(5)に記載される発明の態様は、(4)に記載するステータにおいて、U相第1スロットから出た平角導線が、2スロット分の領域を用いて、レーンチェンジされるというものである。
 レーンチェンジは、コイルに同心巻きを採用し、分布巻きステータを構成する以上、必須となる。これは、前述通り同心巻きコイルを複数のスロットを跨いで挿入する為、隣り合うコイル同士で干渉する部分ができ、それを回避する必要がある為である。
 具体的に言えば、スロット内に挿入される平角導体をスロット内導線部と定義すると、一方のスロット内導線部が第1組のU相第1スロットに挿入されるU相のコイルの第1ループは、他方のスロット内導線部が第2組のU相第2スロットに挿入される。そして、その隣に来るのは、一方のスロット内導線部が第1組のV相第1スロットに挿入され、他方のスロット内導線部が第2組のV相第2スロットに挿入されたV相のコイルの第1ループである。
 前述したV相のコイルの第1ループは、第1組のU相第1スロットに挿入される部分において、前述したU相のコイルの第1ループの下側に、第2組のU相第2スロットに挿入される部分において、前述したU相コイルの第1ループの上側に来る必要がある。更に細かく言えば、第1ループと第2ループは2重構造となっているので、一方は、上から順に、U相第1ループ、U相第2ループ、V相第1ループ、V相第2ループとなり、他方は上から順にV相第1ループ、V相第2ループ、U相第1ループ、U相第2ループとなる。
 このように必要となるレーンチェンジ部分は、ステータコアの端面に平面的に平角導体が配置されると1スロット分しか使用できない。しかし、本発明では2重コイルとしていることで、このレーンチェンジ部分が2倍の2スロット分使用することが可能であり、曲げ半径の関係で極力広い幅を用意することが好ましい。
 ここでいう「2スロット分の領域」とは、スロットとティースを1スロット分としてスロット2つとティース2つ分の幅のことを指している。
 これは、占積率を上げる為には平角導体の断面積を大きくすることが有効であるためで、断面積が大きくなれば相対的に曲げ半径も大きくなるからである。このため、本発明によって占積率の高いステータを構成することが可能となる。
 また、上記(6)に記載される発明の態様は、(5)に記載するステータにおいて、第1ループの一端が、第2ループの一端と接続しているというものである。
 コイルの第1ループと第2ループを接続することで、ステータコアにコイルを配設した後にバスバを接続する必要がなくなる。つまり、第1ループと第2ループの単体同士を、事前に接続することが可能となり、バスバの数の削減及びバスバ接続時の作業スペースの向上を図ることが可能となる。
 コイルエンドでのバスバ接続は、コイルを電気的に接続する上で必要となる。しかしながら、コイル同士が近接していると接合作業に支障が出るなどの事情もあり、好ましくない。場合によっては片方のコイルの端子部を除けてバスバと接続する必要が出ることも考えられる。
 しかし、事前に第1ループと第2ループを接続したコイルを、ステータコアに配設する方法を用いることで、作業効率を向上させることが可能となる。
 また、このような特徴を有する本発明の一態様によるステータ製造方法により、以下のような作用、効果が得られる。
 上記(7)に記載の発明の態様は、ティースと、ティースの間に形成されたスロットとを備えるステータコアと、ステータ内に配置される平角導線とを有するステータのステータ製造方法において、平角導線を、複数重ね合わされて周回させて八角形状コイルとする第1工程と、八角形状コイルのコイルエンド部に一対の凸部を形成する第2工程と、凸部が形成されたコイルを円弧状に成形する第3工程と、一対の凸部にレーンチェンジ部を形成する第4工程と、を有するものである。
 このような構成を採ることで、凸部を有するコイルを形成することが可能となり、このコイルをステータコアに配設することで占積率が高く、コイルエンドの短いステータを形成可能となる。凸部を有する2重コイルを用いた場合でも同じようにコイルエンドの短縮に寄与することができる。
 つまり、ステータの高出力化、小型化に貢献することが可能となる。
 また、上記(8)に記載される発明の態様は、(7)に記載のステータ製造方法において、第2工程は、固定された八角形状コイルの周囲4方向より、押圧機構によって八角形状コイルの外面を押圧し、一対の凸部を形成するものである。
 八角形状コイルは、銅やアルミニウムなど熱伝導性の良い金属で形成されるケースが多く、これらの金属は加工が容易である。したがって、八角形状コイルを形成した後、ベースに固定し、押圧機構で凸部となる部分の両脇を押圧することで、一対の凸部を形成することが可能となる。
 また、上記(9)に記載される発明の態様は、(7)又は(8)に記載のステータ製造方法において、第3工程は、凸部が形成されたコイルを固定し、凸部が形成されたコイルの軸方向より曲面を有する金型を押し付けることで、凸部が形成されたコイルを円弧状に形成するものである。
 曲面を有する金型を押し付け、凸部が形成されたコイルを変形させることで、同じ形状の円弧状に形成されたコイルを得ることが可能である。コイルは同一形状のものを重ねてコイル籠を形成していく関係上、重なる部分は精度良く同じ形状であることが望ましい。金型を用いることで、このようなコイルを実現することが可能となる。
 また、上記(10)に記載される発明の態様は、(7)乃至(9)のいずれか1つに記載のステータ製造方法において、第4工程は、円弧状に形成されたコイルの一対の凸部を、右側保持金型と左側保持金型で保持し、右側保持金型に対して左側保持金型をずらすことで、レーンチェンジ部を一対の凸部に形成するものである。
 レーンチェンジ部の形成に関しても、右側保持金型と左側保持金型をずらすように力を加えることで、一対の凸部にレーンチェンジ部を形成することが可能となる。コイルは重ねてコイル籠を形成する関係上、レーンチェンジ部の精度よりもより重なる部分の精度が高い方がメリットは高い。右型保持金型と左側保持金型とでコイルを保持することでコイル籠を形成する際に重なる部分の精度を高くすることができる。
 また、このような特徴を有する本発明の一態様によるステータ製造装置により、以下のような作用、効果が得られる。
 上記(11)に記載される発明の態様は、ティースと、ティースの間に形成されたスロットとを備えるステータコアと、ステータ内に配置される平角導線とを有するステータを製造するステータ製造装置において、平角導線が複数重ね合わされて周回され形成された八角形状コイルを固定するコイル固定部と、固定された八角形状コイルの周囲4方向より、八角形状コイルの外面を押圧する押圧機構と、を備え、八角形状コイルに一対の凸部を形成するものである。
 コイル固定部と八角形状コイルの外面を押圧する押圧機構を備えているので、前述のステータ製造方法における第2工程を実現し、八角形状コイルの外形を変形することが可能となる。前述のステータを形成する為には、第1ループのコイルエンド部に第1凸部、第2ループのコイルエンド部に第2凸部が形成されている必要がある。上記構成を備えていることで、このような第1凸部または第2凸部を容易に形成することが可能となる。
 また、上記(12)に記載の発明の態様は、(11)に記載のステータ製造装置において、凸部が形成されたコイルの両端を固定する固定機構と、凸部が形成されたコイルの軸方向より押し付ける曲面を有する金型と、を有し、凸部が形成されたコイルを円弧状に形成するものである。
 曲面を有する金型を用いることで、凸部が形成されたコイルを円弧状に形成することができ、前述の(7)に記載の第3工程を実現することができる。
 また、上記(13)に記載の発明の態様は、(12)に記載のステータ製造装置において、円弧状に形成されたコイルの一対の凸部を保持する右側保持金型と左側保持金型と、右側保持金型に対して左側保持金型をずらす駆動機構と、を備え、円弧状に形成されたコイルにレーンチェンジ部を一対の凸部に形成するものである。
 円弧状に形成されたコイルを重ねる為には、隣り合うコイルとの干渉を避ける必要がある。レーンチェンジ部をコイルに形成することで、(1)に記載の発明と同様にコイルエンドの短いステータを形成することが可能となる。また、駆動機構と右側保持金型と左側保持金型を用いて、力を加えることで、円弧状に形成されたコイルのコイルエンド側上下にそれぞれ1カ所ずつ同じ位置にレーンチェンジ部を形成することが可能となる。この構成によって(10)に記載の第4工程の実現を可能としている。
第1実施形態の、ステータの斜視図である。 第1実施形態の、凸部形成コイルの斜視図である。 第1実施形態の、凸部形成コイルの下面視図である。 第1実施形態の、コイル凸部成形治具の上面視図である。 第1実施形態の、コイル凸部成形治具を用いて成形した状態の上面視図である。 第1実施形態の、円弧変形治具の側面図である。 第1実施形態の、円弧変形治具を用いてコイルを成形した状態の側面図である。 第1実施形態の、レーンチェンジ部形成治具に関する側面図である。 第1実施形態の、レーンチェンジ部形成治具によってコイルにレーンチェンジ部を形成した状態の側面図である。 第1実施形態の、ステータコアに形成されたU相コイルを示した平面模式図である。 凸部を設けないでコイル同士の干渉を回避したステータの斜視図である。 第2実施形態の、片凸部形成コイルの斜視図である。 第2実施形態の、片凸部形成コイルを用いたステータの側面図である。 第2実施形態の、片凸部形成コイルを用いたステータの部分斜視図である。 第3実施形態の、片凸部形成コイルの斜視図である。 第3実施形態の、片凸部形成コイルを用いたステータの側面図である。 第4実施形態の、ステータの斜視図である。 第4実施形態の、2重コイルの斜視図である。 第4実施形態の、2重コイルの上面視図である。 第4実施形態の、2重コイルを重ね合わせた模式斜視図である。 第4実施形態の、コイル籠にピースを挿入している様子を示す斜視図である。 第4実施形態の、コイル籠にピースを挿入した模式図である。 第4実施形態の、ステータコアに形成されたU相コイルの第1ループを示した平面図である。 第4実施形態の、ステータコアに形成されたU相コイルの第2ループを示した平面図である。 第5実施形態の、2重コイルのコイルエンド部分の部分斜視図である。 第5実施形態の、ステータの部分斜視図である。 第6実施形態の、2重コイルのコイルエンド部分を内周側から見た部分斜視図である。 第6実施形態の、2重コイルのコイルエンド部分を外周側から見た部分斜視図である。 第1実施形態との比較のために仮定した、コイル束のレーンチェンジ部の様子を示した模式上面図である。 第1実施形態との比較のために仮定した、コイル束の側面線図である。 第1実施形態との比較のために仮定した、コイル束を重ねた模式上面図である。 第1実施形態との比較のために仮定した、コイルを重ねた側面線図である。 第1実施形態との比較のために仮定した、厚みのあるコイル束を重ねた模式上面図である。 第1実施形態との比較のために仮定した、厚みのあるコイル束を重ねた側面図である。 第1実施形態の、凸部形成コイルを重ねた上面視図である。 第1実施形態の、凸部形成コイルを重ねた側面図である。
 まず、本発明の第1の実施形態について説明をする。
(第1実施形態)
 図1に、第1実施形態のステータの斜視図を示す。
 ステータ100は、凸部形成コイルCO1と、分割式ステータコアSCと、アウターリング50を有している。なお、図1ではレーンチェンジ部を説明する関係で図示していないが、ステータ100として形成されるには図17に示される端子台55やバスバBBの接続もコイルエンドCEで形成される。
 図2に、凸部形成コイルの斜視図を示す。
 図3に、凸部形成コイルの下面視図を示す。図2の矢視Aからの図である。
 凸部形成コイルCO1は、図2に示すように平角導体Dがエッジワイズ曲げ加工されて3重に巻回され、第1端子部TRa及び第2端子部TRbが備えられている。
 また、凸部形成コイルCO1には第1斜辺HLR、第2斜辺HRR、第3斜辺HLF、及び第4斜辺HRFが形成され、その延長部に突出してリード側凸部PR及び反リード側凸部PFが形成されている。なお、リード側凸部PR及び反リード側凸部PFの形成についての詳細については、後に説明する。リード側凸部PRの両側にはリード側右凹部DRR及びリード側左凹部DLRが形成され、反リード側凸部PFの両側には反リード側右凹部DRF及び反リード側左凹部DLFが形成されている。また、リード側凸部PRには、リード側レーンチェンジ部LCRが、反リード側凸部PFには反リード側レーンチェンジ部LCFが形成されている。
 また、凸部形成コイルCO1には分割式ステータコアSCが備えるスロットSCSに挿入される部分となる、第1スロット内導線部SSa及び第2スロット内導線部SSbも備えられる。
 分割式ステータコアSCは、電磁鋼板を積層して形成されており、24個のピース41を円筒状に配置した状態で、アウターリング50を嵌め込むことで凸部形成コイルCO1を保持することができる。
 なお、図1では分割式ステータコアSCの分割線は敢えて示していないが、分割式ステータコアSCは、内周にスロットSCS及びティース43を交互に備えており、ピース41はティース43を2つ分有するように、スロットSCSの底部で分割された形状となっている。
 アウターリング50は円筒状の金属体で、内周と分割式ステータコアSCの外周とが嵌合するような寸法で形成されている。アウターリング50を分割式ステータコアSCの外周に配設する際には、焼きバメを用いるので、アウターリング50の内周は分割式ステータコアSCの外周よりも若干径が小さく設定されている。
 次に、第1実施形態のコイルの形成方法について説明する。
 図4に、コイル凸部成形治具の上面視図を示す。
 図5に、コイル凸部成形治具を用いて成形した状態の上面視図を示す。
 まず、平角導体Dをエッジワイズ曲げ加工して巻回することで、八角形の素体コイルC1を形成する。
 そして、素体コイルC1をコイル凸部成形治具J1の中心保持具J11に挿入する。コイル凸部成形治具J1はコイル固定部に該当する。中心保持具J11と凸部ガイドJ12は組み合わせて配置されており、図4に示すように、素体コイルC1は中心保持具J11及び凸部ガイドJ12の周囲を取り囲むように配置される。
 コイル凸部成形治具J1には、素体コイルC1に凸部形成コイルCO1のリード側右凹部DRR乃至反リード側左凹部DLFを形成させる為の、押圧機構に該当する押圧治具J13が備えられている。
 この押圧治具J13を、素体コイルC1が中心保持具J11及び凸部ガイドJ12に配置されている状況で、ロッドJ14を前進させることで、図5に示すように、凹部を形成する。この結果、素体コイルC1に凸部形成コイルCO1のリード側凸部PR及び反リード側凸部PFが形成された凸部保有コイルC2が出来上がる。
 次に、素体コイルC1に凸部を成形した凸部保有コイルC2を、円弧状に変形させる工程が必要となる。
 図6に、円弧変形治具の側面図を示す。
 図7に、円弧変形治具を用いてコイルを成形した状態を示す。
 円弧変形治具J2は、固定側金型J21と可動側金型J22とシャフトJ23とからなる。
 固定側金型J21は、ステータ100に配置される際に必要な曲率を凸部形成コイルCO1に形成するのに必要な曲面を有している。
 可動側金型J22も同様の曲面を有しており、シャフトJ23に沿って固定側金型J21方向に可動可能に構成されている。
 可動側金型J22は4つの部品を備えており、凸部保有コイルC2を押さえる固定機構に該当する中央把持部材J22cと、凸部保有コイルC2を変形させる第1曲面形成金型J22aと第2曲面形成金型J22bと、金型ベースJ22dよりなる。
 第1曲面形成金型J22a及び第2曲面形成金型J22bは、固定側金型J21の曲面とほぼ同じ曲率(厳密には、固定側金型J21+曲面保有コイルC3の厚さ分が第2曲面形成金型J22bの曲率となる)を有しており、凸部保有コイルC2の曲げ加工を行うことが可能である。
 凸部保有コイルC2を円弧変形治具J2に挿入した状態で、中央把持部材J22cによって凸部保有コイルC2を把持し、金型ベースJ22dに固定された、第1曲面形成金型J22aと第2曲面形成金型J22bが、金型ベースJ22dごと固定側金型J21に向かって推力を与えられることで、凸部保有コイルC2の加工を行う。
 その結果、図7に示すように凸部保有コイルC2を変形して曲面保有コイルC3に加工することが可能となる。
 次に、曲面保有コイルC3に、第1ループコイル10のリード側レーンチェンジ部LCR11及び反リード側レーンチェンジ部LCF11、第2ループコイル20のリード側レーンチェンジ部LCR12及び反リード側レーンチェンジ部LCF12を形成する工程について説明する。
 図8に、レーンチェンジ部形成治具に関する側面図を示す。
 図9に、レーンチェンジ部形成治具によってコイルにレーンチェンジ部を形成した様子を示した側面図を示す。
 レーンチェンジ部形成治具J3は、固定側ベースJ31、固定側チャックJ32、可動側チャックJ33及び可動側ベースJ34を備えている。
 固定側ベースJ31は、ベースJ35の上に配置され、固定側ベースJ31に近接する方向に移動可能な固定側チャックJ32と、固定側ベースJ31とで曲面保有コイルC3の一端を保持する。
 可動側チャックJ33及び可動側ベースJ34は、スライドベースJ38にシャフトJ36に貫通されて保持されており、スライドガイドJ37に固定されるスライドベースJ38は、固定側ベースJ31に対して図8の左右方向に移動可能な駆動機構を有する構成となっている。また、可動側チャックJ33及び可動側ベースJ34はスライドベースJ38に対して図8の上下方向に移動可能に駆動機構が備えられている。
 また、可動側チャックJ33と可動側ベースJ34は、曲面保有コイルC3の他端を保持可能な構成となっている。
 曲面保有コイルC3は、図8に示されるような状態でレーンチェンジ部形成治具J3に保持され、スライドベースJ38を前進させると同時に、可動側チャックJ33と曲面保有コイルC3の他端を把持した可動側ベースJ34とを下降させることで、図9に示されるような形状に成形してレーンチェンジ部保有コイルC4となる。
 レーンチェンジ部保有コイルC4は、図2に示される凸部形成コイルCO1であり、分割式ステータコアSCに組み込みが可能な状態である。
 凸部形成コイルCO1は、図3に示すように3つの部分に分類することができる。内周配置部31、外周配置部32、及び突出レーンチェンジ部33である。突出レーンチェンジ部33は凸部形成コイルCO1ではリード側凸部PRのリード側レーンチェンジ部LCR、又は反リード側凸部PFの反リード側レーンチェンジ部LCFにあたる部分の総称であるものとする。
 この凸部形成コイルCO1を籠状に重ねてコイル籠CBを形成した後、分割式ステータコアSCを挿入していく。
 コイル籠CBの形成過程については後に説明する第4実施形態で詳細に説明するので省略する。
 コイル籠CBを形成し分割式ステータコアSCを挿入した状態で、最終的には図1に示すように、アウターリング50を分割式ステータコアSCの外周部分に焼きバメすることで、ステータ100を形成することが可能となる。
 図10に、ステータコアに形成されたU相コイルを示した平面模式図を示す。
 ステータ100はU相、V相、W相を一組のブロックとすると、8組のブロックからなる。第1ブロックB1は、U相第1スロットU1B1、U相第2スロットU2B1、V相第1スロットV1B1、V相第2スロットV2B1、W相第1スロットW1B1、W相第2スロットW2B1の6つのスロットを有している。
 又、第2ブロックB2は、U相第1スロットU1B2、U相第2スロットU2B2、V相第1スロットV1B2、V相第2スロットV2B2、W相第1スロットW1B2、W相第2スロットW2B2の6つのスロットを有している。
 そして、凸部形成コイルCO1は、図10が示す通り、U相第1スロットU1B1に第2スロット内導線部SSbが挿入され、U相第1スロットU1B2に第1スロット内導線部SSaが挿入される。つまり、一つのスロットSCSの外周側に第2スロット内導線部SSbが、内周側に第1スロット内導線部SSaが挿入されることになる。
 次に、凸部形成コイルCO1のリード側凸部PR及び反リード側凸部PFの形成に関する詳細について説明をする。
 図29に、コイル束のレーンチェンジ部の様子を示した模式図を示す。なお、説明の都合上模式的に円筒状に並べられるコイル束を直線展開して示している。
 図30に、コイル束の側面線図を示す。ただし、図30のコイルCOは説明の都合上、単純化して示している。
 コイルCOは、凸部形成コイルCO1のコイルエンドCEにリード側凸部PR及び反リード側凸部PFが形成されていないものを想定している。コイルCOは凸部形成コイルCO1と同様に平角導体Dを3列に巻回したコイルであり、このコイルCOのリード側レーンチェンジ部LCRの部分が図29に示されている。
 3本の平角導体Dが並べられた状態でリード側レーンチェンジ部LCRが形成されており、コイルCOの幅は導体束厚DWである。そして、曲げ部の内側の半径を内曲げ半径R1とすると、左右のR1の中心間の距離は変曲点距離Aとなる。また、曲げ部外側の半径を外曲げ半径R2とする。リード側レーンチェンジ部LCRは図29に示される通り、第1曲げ中心BCL1と第2曲げ中心BCL2の、曲げ中心間の距離である変曲点距離Aの間に形成されていることになる。なお、変曲点距離Aは実際にはステータ100の周方向の距離であるので、実際には直線距離ではないが図29では直線展開しているので直線距離として説明する。
 コイルCOの側面は図30に示すようにリード側凸部PR又は反リード側凸部PFが形成されておらず、第1斜辺HLRと第2斜辺HRRで構成されている。そして、本来ならば導体厚Wは所定の厚みを必要とするが、図30では説明の都合上、導体厚Wはゼロとしている。第1斜辺HLR及び第2斜辺HRRの角度θは、導体厚WとスロットSCS同士のピッチによって決定される。
 図31に、コイル束を重ねた模式上面図を示す。なお、導体間の線は省略している。また、説明の都合上模式的に円筒状に並べられるコイル束を直線展開して示している。
 図32に、コイルを重ねた側面線図を示す。ただし、説明のため第1コイルCOa乃至第3コイルCOcは単純化して示している。
 コイルCOを重ねた図31には、第1コイルCOa、第2コイルCOb、第3コイルCOcが重ねられて示されている。第1コイルCOaの内曲げ半径R1の中心と、第2コイルCObの内曲げ半径R1の中心は第1曲げ中心BCL1上に配置され、第2コイルCObの内曲げ半径R1の中心と、第3コイルCOcの内曲げ半径R1の中心は第2曲げ中心BCL2上に配置されている。
 これらを側面から見ると、図32に示すような状態となる。図32は図30同様に、導体厚Wをゼロとして示している。このように導体厚Wがゼロならば、第1コイルCOa乃至第3コイルCOcは近接して並べることが可能だが、実際には導体厚Wの厚みは存在するので、図31のように第1コイルCOa、第2コイルCOb、及び第3コイルCOcを並べることは出来ない。
 図33に、厚みのあるコイル束を重ねた模式上面図を示す。図31に対応する。
 図34に、厚みのあるコイル束を重ねた側面図を示す。図面は単純化してある。
 コイルCOには導体厚Wがゼロでは無いので、コイルCOを並べると、実際には図33及び図34のようになってしまう。第1コイルCOaと第2コイルCObとは平角導体D同士が干渉しないように配置するためには、第1コイル中心線CL1と第2コイル中心線CL2との間の距離であるコイル干渉点距離A1が図29で説明する変曲点距離A以上となるように第1コイルCOaと第2コイルCObを配置する必要がある。この際の、第1コイルCOaの第2斜辺HRRの外周側と、第2コイルCObの第1斜辺HLRの内周側の交点を第1交点P1とする。
 そして、第2コイルCObと第3コイルCOcとは平角導体D同士が干渉しないように配置するためには、第2コイル中心線CL2と第3コイル中心線CL3との間の距離がコイル干渉点距離A1以上となるように第2コイルCObと第3コイルCOcを配置する必要がある。この際の、第2コイルCObの第2斜辺HRRの外周側と、第3コイルCOcの第1斜辺HLRの内周側の交点を第2交点P2とする。
 この第1交点P1と第2交点P2との間のコイル干渉点距離A1が変曲点距離A以上にならなければ、第1コイルCOaと第3コイルCOcとの間に第2コイルCObを配置することは出来ない。したがって、図33に示すように、第1コイルCOa乃至第3コイルCOcの配置間隔は間延びしてしまい、コイル中心間距離A2の分だけのピッチを必要とする。この結果、分割式ステータコアSCのスロットSCSのピッチも広げる必要があり、ステータ100を用いたモータの高出力化の妨げとなる。
 図35に、凸部形成コイルを重ねた上面視図を示す。なお、導体間の線は省略している。また、説明の都合上模式的に円筒状に並べられるコイル束を直線展開して示している。
 図36に、凸部形成コイルを重ねた側面図を示す。
 そこで、コイルCOにリード側凸部PR及び反リード側凸部PFを形成した凸部形成コイルCO1を用いる。凸部形成コイルCO1の第1斜辺HLRの途中から平角導体Dを立ち上げてリード側凸部PRを形成している。また、リード側凸部PRから平角導体Dを立ち下げて第2斜辺HRRに接続している。このように、コイルエンドCEにリード側凸部PR(反リード側凸部PFも同様に形成する)を形成することで、図35のように第1コイルCOa、第2コイルCOb、及び第3コイルCOcを短縮コイル中心間距離A3として、コイル中心間距離A2よりもコイル間の距離を短くすることが可能となる。短縮コイル中心間距離A3はコイルCOに用いる平角導体Dのサイズにも寄るが、出願人が想定しているケースでは、コイル中心間距離A2の7割程度の距離に抑えることが可能であった。
 なお、リード側凸部PR(又は反リード側凸部PF)の立ち上げ高さは、コイル干渉点距離A1の幅が変曲点距離A以下になるように設定される必要があり、角度θと導体厚Wと導体束厚DWに関連して決定されることになる。
 また、第1コイルCOaの内曲げ半径R1と第2コイルCObの内曲げ半径R1とが第1曲げ中心BCL1上に並ぶと言う条件を付加しなければ、理論的にコイル干渉点距離A1は変曲点距離A以下に設定することも可能である。
 そして、これらの数値の決定は、設計要求により決定されることになる。
 結局、変曲点距離Aは、凸部形成コイルCO1をレーンチェンジさせるのに必要な寸法であり、凸部形成コイルCO1にリード側凸部PR及び反リード側凸部PFを形成するにあたって、隣り合う凸部形成コイルCO1同士、例えば第1コイルCOaと第2コイルCObとのコイル干渉点距離A1が、内曲げ半径R1の中心点同士の距離となる変曲点距離Aとほぼ等しくなるように(変曲点距離Aは、第1コイルCOaの内曲げ半径R1と第2コイルCObの内曲げ半径R1とが第1曲げ中心BCL1上に並ぶと言う条件を付加しなければ、前述通り若干詰められる)設計される必要がある。
 第1実施形態のステータ100は上記構成であるので、以下に説明するような作用及び効果を示す。
 まず、第1実施形態のステータ100の構成とすることで、コイルエンドCEを短くできる点が挙げられる。
 第1実施形態のステータ100は、ティース43と、ティース43の間に形成されたスロットSCSとを備える分割式ステータコアSCと、平角導体Dを用いて形成されスロットSCS内に配置される凸部形成コイルCO1と、を有するステータ100において、凸部形成コイルCO1はコイルエンドCE部にて第1斜辺HLR、第2斜辺HRR、第3斜辺HLF、及び第4斜辺HRFと、第1斜辺HLR、第2斜辺HRR、第3斜辺HLF、及び第4斜辺HRFから分割式ステータコアSCの軸方向上空に突出するよう形成されるリード側凸部PRまたは反リード側凸部PFと、を有する形状であり、リード側凸部PRまたは反リード側凸部PFは、凸部形成コイルCO1が分割式ステータコアSCに配置された際に他の凸部形成コイルCO1との干渉を避ける高さとしている。
 凸部形成コイルCO1のコイルエンドCEに、第1斜辺HLR及び第2斜辺HRRを形成しその先端にリード側凸部PRを、また反リード側に第3斜辺HLF及び第4斜辺HRFを形成し、その先端に反リード側凸部PFを形成することで、凸部形成コイルCO1を重ねた時にコイルエンドCEの干渉を避けることができ、結果的にコイルエンドCEの短縮を図ることが可能となる。
 図11に、凸部を設けないでコイル同士の干渉を回避したステータの斜視図を示す。
 凸部不形成ステータ200は、コイルエンドCE部で凸部不形成コイルCO2が干渉しないように第1斜辺HLR、第2斜辺HRR、第3斜辺HLF、及び第4斜辺HRFの角度を決定している。
 このため、コイルエンドCEは凸部形成コイルCO1を用いた図1のステータ100よりも長くなっている。
 凸部不形成コイルCO2の形状を採用した場合、分割式ステータコアSCに形成されるスロットSCSの間隔や平角導体Dの太さ、あるいは分割式ステータコアSCの径などによって、隣り合う凸部不形成コイルCO2との干渉を避ける為に、コイルエンドCEを長くする必要がある。
 これは、第1斜辺HLR、第2斜辺HRR、第3斜辺HLF、及び第4斜辺HRFのように斜辺だけで形成する場合は、コイルエンドCEの自由度が少ない為、第1斜辺HLRと第2斜辺HRR、第3斜辺HLFと第4斜辺HRFが作る角度を鋭角にし、分割式ステータコアSCの端面に対して第1斜辺HLR、第2斜辺HRR、第3斜辺HLF及び第4斜辺HRFが立つように凸部不形成コイルCO2を形成する必要があるためである。
 逆に凸部不形成コイルCO2のようなリード側凸部PR及び反リード側凸部PFを設けず、コイルエンドCEを短縮しようとする場合は、図33及び図34に示されるようにスロットSCSのピッチを広くして分割式ステータコアSCの径を大きくするか、スロットSCSの数を減らしてピッチを確保する必要がある。
 一方、第1斜辺HLR及び第2斜辺HRRから突出するようにリード側凸部PRを形成し、第3斜辺HLF及び第4斜辺HRFから突出するように反リード側凸部PFを形成することで、隣り合う凸部形成コイルCO1が三次元的にお互いに回避できるようになる為、空間を有効に活用することが可能となるからである。
 つまり、凸部形成コイルCO1にリード側凸部PR及び反リード側凸部PFを形成することは、分割式ステータコアSCの径を小さくしスロットSCSのピッチを狭くする上では有効に作用する。そして、結果的にコイルエンドCEの短縮に貢献することができる。
 なお、具体的なリード側凸部PR及び反リード側凸部PFの寸法に関する説明は前述の通りである。
 次に、本発明の第2実施形態について説明をする。
(第2実施形態)
 第2実施形態のステータ100は、第1実施形態のステータ100の構成とほぼ同じであるが、第1実施形態の凸部形成コイルCO1にあたる第2実施形態の片凸部形成コイルCO3は、凸部形成コイルCO1とはコイルエンドCEの構成が若干異なる。
 図12に、第2実施形態の片凸部形成コイルの斜視図を示す。
 片凸部形成コイルCO3は、図12に示すように、第1斜辺HLR、第2斜辺HRR、第3斜辺HLF、及び第4斜辺HRFが形成される。また、第1斜辺HLRの延長上にはリード側凸部PRが形成され、第2斜辺HRRはリード側レーンチェンジ部LCRまで直線状に形成されている。また、第3斜辺HLFの延長線上には反リード側凸部PFが形成されて、第4斜辺HRFは反リード側レーンチェンジ部LCFまで直線状に形成されている。
 つまり、片凸部形成コイルCO3には、リード側凸部PRおよび反リード側凸部PFが斜辺の片側にだけ形成されている為、リード側左凹部DLR及び反リード側左凹部DLFは形成されるが、第1実施形態に示すようなリード側右凹部DRR及び反リード側右凹部DRFは形成されない。よって、第2実施形態のコイル凸部成形治具J1の基本構成は第1実施形態と同等であるが、押圧治具J13の配置や個数などを変える必要がある。ただし、基本的な形成過程はほぼ同じであるので説明は省略する。
 図13に、片凸部形成コイルを用いたステータの側面図を示す。なお、説明の都合上第1端子部TRa及び第2端子部TRbは省略している。
 図14に、片凸部形成コイルを用いたステータの部分斜視図を示す。
 片凸部形成コイルCO3に設けられたリード側凸部PR及び反リード側凸部PFは、第1実施形態のものとほぼ同じ働きをする。したがってその効果も同じであり、反リード側凸部PFを片凸部形成コイルCO3に設けることでコイルエンドCE部の短縮を図ることができる。
 ステータ100の側面図である図13は、ステータ100を外側側面から見た様子を示しており、一方、図14は、ステータ100の内側を示す斜視図を示している。片凸部形成コイルCO3がコイル籠CBを形成して分割式ステータコアSCが配置されることで、コイル籠CBの内周側からは第2斜辺HRRが重なるように見える。また、コイル籠CBの外周側からはリード側凸部PRが連なって配置されるように見える。この状態は反リード側凸部PFについても同じである。
 なお、説明は省略するが実際には第1端子部TRa及び第2端子部TRbが形成されており、ステータ100が電気的に接続される為にはバスバBBで接続する工程を必要とする。
 このようにステータ100を構成することで、隣り合う片凸部形成コイルCO3同士は、立体的にお互いを回避することができる。
 ただし、第1実施形態の凸部形成コイルCO1を用いた場合よりも設計自由度が低くなり、第1実施形態のステータ100程はコイルエンドCEの短縮効果が得られない場合がある。同じ分割式ステータコアSCを用いて比べると第1実施形態のステータ100のコイルエンドCEの方が第2実施形態のステータ100のコイルエンドCEに比べて5%程短くなることを出願人は確認している。
 もっとも分割式ステータコアSCのスロットSCSのピッチや数、及び平角導体Dの太さによって短縮効果は変化するので、設計要件によって第1実施形態の構成を用いるか第2実施形態の構成を用いるかを選択すべきである。基本的にはピッチが広くなるほど短縮効果は低くなる傾向にある。
 次に、本発明の第3実施形態について説明をする。
(第3実施形態)
 第3実施形態のステータ100は、第2実施形態のステータ100の構成とほぼ同じであるが、第2実施形態の片凸部形成コイルCO3にあたる第3実施形態の片凸部形成コイルCO4は、片凸部形成コイルCO3とはコイルエンドCEの構成が若干異なる。
 図15に、第3実施形態の片凸部形成コイルの斜視図を示す。
 片凸部形成コイルCO4は、図15に示すように、第1斜辺HLR、第2斜辺HRR、第3斜辺HLF、及び第4斜辺HRFが形成される。そして、第2斜辺HRRの延長上にはリード側凸部PRが形成され、第1斜辺HLRはリード側レーンチェンジ部LCRまで直線状に形成されている。また、第4斜辺HRFの延長線上には反リード側凸部PFが形成され、第3斜辺HLFは反リード側レーンチェンジ部LCFまで直線状に形成されている。
 つまり、片凸部形成コイルCO4には、リード側凸部PRおよび反リード側凸部PFが斜辺の片側にだけ形成されている為、リード側右凹部DRR及び反リード側右凹部DRFは形成されるが、第1実施形態に示すようなリード側左凹部DLR及び反リード側左凹部DLFは形成されない。これは、第2実施形態の片凸部形成コイルCO3と逆の形状であるとも言える。よって、コイル凸部成形治具J1の基本構成は第1実施形態と同等であるが、第2実施形態と同様に第3実施形態の押圧治具J13の配置や個数などを変える必要がある。ただし、基本的な形成過程はほぼ同じであるので説明は省略する。
 図16に、片凸部形成コイルを用いたステータの側面図を示す。なお、説明の都合上第1端子部TRa及び第2端子部TRbは省略している。
 片凸部形成コイルCO4に設けられたリード側凸部PR及び反リード側凸部PFは、第1実施形態のものとほぼ同じ働きをする。したがってその効果も同じであり、片凸部形成コイルCO4に反リード側凸部PFを形成することで、コイルエンドCE部の短縮を図ることができる。
 ステータ100の側面図である図16は、ステータ100を外側から見た様子を示している。片凸部形成コイルCO4がコイル籠CBを形成して分割式ステータコアSCが配置されることで、コイル籠CBの外周側からは第2斜辺HRRが重なるように見える。また、図示しないコイル籠CBの内周側からはリード側凸部PRが連なって配置されるように見える。この状態は反リード側凸部PFについても同じである。
 なお、説明は省略するが実際には第1端子部TRa及び第2端子部TRbが形成されており、ステータ100が電気的に接続される為にはバスバBBで接続する工程を必要とする。
 このようにステータ100を構成することで、隣り合う片凸部形成コイルCO4同士は、立体的にお互いを回避することができる
 そして、第1実施形態の凸部形成コイルCO1よりも設計自由度が低くなる点に置いても第2実施形態の片凸部形成コイルCO3と同じ事情となっている。
 また、リード側レーンチェンジ部LCR及び反リード側レーンチェンジ部LCFの形成位置に影響されて、第2実施形態よりも第3実施形態の方がコイルエンドCEの短縮効果は低くなる傾向にある。
 次に、本発明の第4実施形態について説明をする。
(第4実施形態)
 第4実施形態のステータ100は、第1実施形態のステータ100の構成とほぼ同じであるが、第4実施形態の凸部形成コイルCO1にあたる第4実施形態の2重コイル30は、凸部形成コイルCO1とは構成が異なる。
 図17に、第4実施形態のステータの斜視図を示す。
 図18に、2重コイルの斜視図を示す。
 図19に、2重コイルの上面視図を示す。図18の上面からの2重コイルを示している。
 ステータ100は、2重コイル30と、分割式ステータコアSCと、アウターリング50及び端子台55を有している。なお、図17の2重コイル30はバスバBBが接続され、コイルエンド部分が倒された状態である。
 2重コイル30は、図18に示すように第1ループコイル10と、第2ループコイル20とからなる。第1ループコイル10及び第2ループコイル20は、平角導体Dを巻回して形成されている。
 平角導体Dは、矩形断面を有する金属線の周囲に絶縁性の樹脂を塗工したものである。金属線には銅などの導電性の高い金属が用いられており、絶縁性の樹脂にはエナメルやPPSなど絶縁性の高い樹脂が用いられている。
 第1ループコイル10には、第1端子部TR11a及び第2端子部TR11bが備えられている。また、リード側凸部PR11及び反リード側凸部PF11が形成されている。リード側凸部PR11の両側にはリード側右凹部DRR11及びリード側左凹部DLR11が形成され、反リード側凸部PF11の両側には反リード側右凹部DRF11及び反リード側左凹部DLF11が形成されている。また、リード側凸部PR11には、リード側レーンチェンジ部LCR11が、反リード側凸部PF11には反リード側レーンチェンジ部LCF11が形成されている。
 また、分割式ステータコアSCが備えるスロットSCSに挿入される部分となる、第1スロット内導線部SS11a及び第2スロット内導線部SS11bも備えている。
 第2ループコイル20も第1ループコイル10と同様にして、第1端子部TR12a、第2端子部TR12bが備えられており。また、リード側凸部PR12及び反リード側凸部PF12が形成されている。リード側凸部PR12の両側にはリード側右凹部DRR12及びリード側左凹部DLR12が形成され、反リード側凸部PF12の両側には反リード側右凹部DRF12及び反リード側左凹部DLF12が形成されている。また、リード側凸部PR12にはリード側レーンチェンジ部LCR12が、反リード側凸部PF12には反リード側レーンチェンジ部LCF12が形成されている。
 また、第1スロット内導線部SS12a、第2スロット内導線部SS12bも形成されている。
 このような第1ループコイル10の内周側に第2ループコイル20が配置されるように重ねられることで、2重コイル30を構成している。
 なお、第1ループコイル10及び第2ループコイル20に形成されるリード側凸部PR11、リード側凸部PR12、反リード側凸部PF11、及び反リード側凸部PF12の形成ロジックに関しては、第1実施形態のリード側凸部PR及び反リード側凸部PFの形成に関するものと同じであるので、その詳細の説明は省略する。
 分割式ステータコアSCは、電磁鋼板を積層して形成されており、24個のピース41を円筒状に配置した状態で、アウターリング50を嵌め込むことで2重コイル30を保持することができる。
 分割式ステータコアSCは、内周にスロットSCS及びティース43を交互に備えており、ピース41はティース43を2つ分有するように、スロットSCSの底部で分割された形状となっている。
 アウターリング50は円筒状の金属体で、内周と分割式ステータコアSCの外周とが嵌合するような寸法で形成されている。アウターリング50を分割式ステータコアSCの外周に配設する際には、焼きバメを用いるので、アウターリング50の内周は分割式ステータコアSCの外周よりも若干径が小さく設定されている。
 端子台55は、ステータ100に備えられる2重コイル30が電気的に結合された後に、最終的に二次電池などの電源から電力を供給する等の目的で接続される、図示しない外部コネクタとの接続口である。第4実施形態では3相のステータとしているので、接続口は3カ所備えられている。
 次に、第4実施形態のコイルの形成方法についてであるが、基本的には図4乃至図9を用いて第1実施形態で説明した方法と同じである。
  ただし、第4実施形態では第1実施形態の凸部形成コイルCO1と異なり、第1ループコイル10と第2ループコイル20とを重ねた2重コイル30をコイル籠CBに用いている。このため、素体コイルC1は2種類用意する必要がある。
 そして、実際には第1ループコイル10に用いる素体コイルC1と第2ループコイル20に用いる素体コイルC1は周長が異なるので、実際には、コイル凸部成形治具J1の中心保持具J11及び凸部ガイドJ12の形状が、第1ループコイル10に用いる素体コイルC1と第2ループコイル20に用いる素体コイルC1では異なるので、それぞれ別の素体コイルC1に合わせた治具を用意するか、可変ガイド機構が必要となる。
 もっとも、コイル凸部成形治具J1の構成はほぼ同じであるので、ここでは便宜上同じものとして扱っている。
 形成された第1ループコイル10及び第2ループコイル20は、重ねられて2重コイル30を形成する。
 2重コイル30は、図19に示すように3つの部分に分類することができる。内周配置部31、外周配置部32、及び突出レーンチェンジ部33である。突出レーンチェンジ部33は第1ループコイル10ではリード側凸部PR11のリード側レーンチェンジ部LCR11、又は反リード側凸部PF11の反リード側レーンチェンジ部LCF11にあたり、第2ループコイル20ではリード側凸部PR12のリード側レーンチェンジ部LCR12又は反リード側凸部PF12の反リード側レーンチェンジ部LCF12にあたる部分の総称であるものとする。
 この2重コイル30を籠状に重ねてコイル籠CBを形成した後、分割式ステータコアSCを挿入していく。
 図20に、2重コイルを重ね合わせた模式斜視図を示す。なお、第1端子部TR11a及び第2端子部TR11b、第1端子部TR12a及び第2端子部TR12bは、説明の都合上省略している。
 2重コイル30Aと2重コイル30Bは、同じ形状の2重コイル30であり、図20では突出レーンチェンジ部33が隣り合うように配置される。したがって、2重コイル30Aの突出レーンチェンジ部33の下に、2重コイル30Bの内周配置部31が配置される。
 一方、2重コイル30Aの内周配置部31は、2重コイル30Bの突出レーンチェンジ部33の下側に配置される。
 なお、2重コイル30A及び2重コイル30Bの奥に描かれているのは、位置決め治具J5である。位置決め治具J5によって、2重コイル30の位置決めを行う。
 図21に、コイル籠にピースを挿入している様子を示す斜視図を示す。図20と同じく、第1端子部TR11a及び第2端子部TR11b、第1端子部TR12a及び第2端子部TR12bは説明の都合上省略している。
 図22に、コイル籠にピースを挿入した模式図を示す。図22に示すピースは説明の為に一番上の面だけを示している。
 コイル籠CBは、2重コイル30を図20に示すように次々と積層されて形成されたものである。コイル籠CBには24組の2重コイル30が重ねられており、その外部からピース41が差し込まれて、円筒状の分割式ステータコアSCが形成される。
 そして、最終的には、図17に示すように、アウターリング50を分割式ステータコアSCの外周部分に焼きバメすることで、ステータ100を形成することが可能となる。
 コイル籠CBは、図22に示すように、第1端子部TR11a、第2端子部TR11b、第1端子部TR12a、及び第2端子部TR12bが突出して形成されており、アウターリング50を焼きバメした後、第1端子部TR11a、第2端子部TR11b、第1端子部TR12a及び第2端子部TR12bを外側に曲げ、バスバBBで結合することで、図17に示すような状態となる。
 図23に、ステータコアに形成されたU相コイルの第1ループを表した平面模式図を示す。
 図24に、ステータコアに形成されたU相コイルの第2ループを表した断面模式図を示す。
 ステータ100はU相、V相、W相を一組のブロックとすると、8組のブロックからなる。第1ブロックB1は、U相第1スロットU1B1、U相第2スロットU2B1、V相第1スロットV1B1、V相第2スロットV2B1、W相第1スロットW1B1、W相第2スロットW2B1の6つのスロットを有している。
 又、第2ブロックB2は、U相第1スロットU1B2、U相第2スロットU2B2、V相第1スロットV1B2、V相第2スロットV2B2、W相第1スロットW1B2、W相第2スロットW2B2の6つのスロットを有している。
 そして、2重コイル30の第1ループコイル10U1は、図23に示す通り、U相第1スロットU1B1に第2スロット内導線部SS11bが挿入され、U相第2スロットU2B2に第1スロット内導線部SS11aが挿入される。
 一方、2重コイル30の第2ループコイル20U1は、図24に示す通り、U相第2スロットU2B1に第2スロット内導線部SS12bが挿入され、U相第1スロットU1B2に第1スロット内導線部SS12aが挿入される。
 第4実施形態のステータ100は上記構成であるので、以下に説明するような作用及び効果を示す。
 まず、ステータ100の高出力化と小型化とを図ることが可能となる。
 第4実施形態のステータ100は、ティース43と、ティース43の間に形成されたスロットSCSとを備える分割式ステータコアSCと、平角導体Dを用いて形成されスロットSCS内に配置される2重コイル30と、を有するステータ100において、スロットSCSは、U相第1スロットU1B1、U相第2スロットU2B1、V相第1スロットV1B1、V相第2スロットV2B1、W相第1スロットW1B1、W相第2スロットW2B1を第1ブロックB1とする3相スロットブロックが、順次形成されており、第1ブロックB1の隣に第2ブロックB2の3相スロットブロックが形成され、第1ブロックB1のU相第1スロットU1B1内の平角導体Dが、第2ブロックB2のU相第2スロットU2B2内の平角導体Dと第1ループコイル10を形成していること、第1ブロックB1のU相第2スロットU2B1内の平角導体Dが、第2ブロックB2のU相第1スロットU1B2内の平角導体Dと第2ループコイル20を形成していること、第2ループコイル20が、第1ループコイル10の内周に配置されるというものである。
 したがって、2重コイル30を用いた同心巻きコイルを用いて分布巻きのステータ100を形成するにあたって、突出レーンチェンジ部33に用いることができる幅を確保することが可能となる。
 2重コイル30の巻数が多くなる、或いは2重コイル30に用いる平角導体Dの幅が太くなるにつれて、2重コイル30の突出レーンチェンジ部33は形成しにくくなる傾向にある。ステータ100の占積率を高め、出力の向上を図りたい場合には、この点がネックとなるが、2重コイル30を第1ループコイル10と第2ループコイル20を重ねた構成とすることで、突出レーンチェンジ部33に用いる幅を増やすことが可能となる。
 その結果、ステータ100の占積率の向上を図ることができ、高出力化に貢献する。
 具体的には、突出レーンチェンジ部33を形成する幅は、図23、及び図24等に示すように2スロット分用いている。したがって、2重コイル30の第1ループコイル10及び第2ループコイル20の巻回数を増やすか、平角導体Dの太さを太くすることが可能となる。
 平角導体Dの最小曲げ半径や、平角導体Dの周囲に設けた絶縁層の損傷等の問題により、突出レーンチェンジ部33の曲げ部分を鋭角に曲げることは好ましくない。そして、突出レーンチェンジ部33にどの程度の幅を使えるかによって、第1ループコイル10及び第2ループコイル20のターン数、又は平角導体Dの太さが決定されてしまう。
 しかし、高出力化を狙うには、平角導体Dの太さやターン数の増加は必須であり、突出レーンチェンジ部33に2スロット分用いることができることはメリットが大きい。
 第4実施形態のステータ100は、1重コイルをステータに用いた場合には、最大でも1スロット分しかレーンチェンジ部に用いることができないところを、2重コイル30を用いたことで2スロット分まで突出レーンチェンジ部33の形成に幅を持たせることが可能としている。このことは、ステータ100の高出力化を図ることにも貢献するし、設計自由度を高めることにも貢献する。
 また、第1ループコイル10と第2ループコイル20を重ねて2重コイル30とすることで、上述の通り突出レーンチェンジ部33のスペースを確保できる結果、ステータ100の軸方向にコイルエンドを延長する必要がなくなる。すなわち、コイルエンドCEの短縮に貢献する。
 第1端子部TR11a、第2端子部TR11b、第1端子部TR12a、第2端子部TR12b及びこれらと接続するバスバBBについては、図17に示す通り、溶接などの方法により接合した後に、外周方向に倒してしまうので、コイルエンドCEの延長を最小限に抑えることができる。
 このように、ステータ100のコイルエンドCEを必要以上に大きくすることがない為、小型化の要求を満足することが可能となる。
 また、第1ループコイル10にリード側凸部PR11、反リード側凸部PF11を設け、第2ループコイル20にリード側凸部PR12、反リード側凸部PF12を設けることで、隣り合うコイルの干渉をかわし易く、コイルエンドCEの長さを抑えることができる。
 第1ループコイル10及び第2ループコイル20を六角形とし、コイルエンド部に三角形の部分を持ってくるような構成は、特許文献2等にも用いられているが、コイルエンドを大きくする傾向にある。
 これは、隣り合うコイルをかわす為にコイルエンド部に平角導体Dを斜めに立ち上げる必要があるが、この三角形の底辺の接する角が鈍角に形成されないと、隣り合うコイル同士の距離が遠くなってしまう為である。
 一方、第4実施形態の第1ループコイル10及び第2ループコイル20の様に、凸部を設けることで、平角導体Dを立体的にかわすことが可能となる。
 具体的には、突出レーンチェンジ部33の下に内周配置部31又は外周配置部32が重ねられ、突出レーンチェンジ部33がコイルエンドCEに並ぶように構成される。
 その結果、コイルエンドCEを短縮することに貢献することができる。
 また、第4実施形態に用いる2重コイル30は、全て同じ形のものを重ねてコイル籠CBを形成しているので、部品の製作コストを下げることが可能であり、組立工程の煩雑化を招かないという点でも優れている。
 次に、本発明の第5の実施形態について説明する。
(第5実施形態)
 第5実施形態のステータ100は、第4実施形態のステータ100とその構成においてほぼ同じである。但し、2重コイル30の形成方法が若干異なるので以下に説明する。
 図25は、第5実施形態の2重コイルのコイルエンド部分の部分斜視図である。
 図26は、ステータの部分斜視図を示している。
 第5実施形態に用いられる2重コイル30は、第1ループコイル10と第2ループコイル20が、図25に示される接続部CRによってバスバBBを用いずに接続されている。
 つまり、図18に示す第4実施形態の第1ループコイル10の第1端子部TR11aと第2ループコイル20の第2端子部TR12bとが接合され、図25に示すように接続部CRを形成している。
 接続部CRは、リード側凸部PR11の下側をくぐって、リード側凸部PR12の側面を抜け、内周側から外周側に接続されている。図26に示すように、第2ループコイル20の端子部を延長して接続部CRを形成し、ステータ100の外周側で第1ループコイル10と接合する形となる。
 したがって、コイルエンドCE側に突出しているのは、2重コイル30一つにつき、第1ループコイル10の第2端子部TR11bと、第2ループコイル20の第1端子部TR12aの2本ということになる。
 なお、2重コイル30でコイル籠CBを形成する為には、第1端子部TR11aと第2端子部TR12bとが接合されて接続部CRを形成したものを、48個用意すれば良い。しかし、後述する理由により第2端子部TR11b及び第1端子部TR12aの形状が異なる必要があるので、実際には第2端子部TR11bが長く形成された2重コイル30を24個と第1端子部TR12aが長く形成された2重コイル30を24個用意される。
 そして、図26に示されるように第2ブロックB2のU相第1スロットU1B2の外周側から出ている第1端子部TR12aは、第3ブロックB3のU相第1スロットU1B3の外周側から出ている第1端子部TR12aと接続される。これが第1外周接続部CRO1である。すなわち、隣り合う同じ相の2重コイル30と接続されることになる。図26では、U相第1コイル30U1とU相第2コイル30U2とが接続される。
 なお、内周側に配置される第2端子部TR11bは図示されないが、同様にして隣に配置される同じ相のコイルの第2端子部TR11bと接続される。図26の場合は、図示されていないU相第8コイル30U8と接続され、第1内周接続部CRI1を形成する。
 同様にして、ステータ100の内周側に配置されるV相第1コイル30V1とV相第2コイル30V2の第2端子部TR11bが接合されて第2内周側接続部CRI2を形成し、ステータ100の外周側に配置されるV相第2コイル30V2とV相第3コイル30V3の第1端子部TR12aが接合されて第2外周側接続部CRO2を形成する。このように、ステータ100の内側に配置される第2端子部TR11b同士を接合して内周側接続部CRIを形成し、ステータ100の外側に配置される第1端子部TR12a同士を接合して外周側接続部CROを形成して、ステータ100に備えられた2重コイル30を電気的に接合することで、ステータ100の電気回路を形成する。
 このように、2重コイル30の配置される場所によって、第2端子部TR11b及び第1端子部TR12aは単純に立ち上げただけの形状のものと、隣り合う相の第2端子部TR11b及び第1端子部TR12aまで伸ばした形状のものとが必要とされる。このため、2重コイル30は2パターン用意されることになる。
 もっとも、この隣り合う相の第2端子部TR11b同士の接続、及び第1端子部TR12a同士の接続については、バスバBBを用いて接合されるように設計されることを妨げない。
 上述した構成の第5実施形態のステータ100では、第1ループコイル10と第2ループコイル20との接合については、ステータ100として2重コイル30を分割式ステータコアSCに組み込んだ後に行う必要がない為、製造し易くなるというメリットが産まれる。
 また、コイルエンドCEでの接合作業を減らすことも、作業空間を確保する等のメリットが生じ、歩留まり向上に寄与することができる。
 もっとも、第4実施形態と異なり2パターンの2重コイル30を交互に組み合わせていく必要があるため、組立工程は多少煩雑化するが、第5実施形態のステータ100のコイルエンドが第4実施形態のステータ100に比べて短くできるメリットがある。また、図25及び図26の構成であればバスバBBを用いる必要もないため、部品点数の削減を図ることも可能となる。
 次に、本発明の第6の実施形態について説明する。
(第6実施形態)
 第6実施形態のステータ100は、第5実施形態のステータ100とその構成においてほぼ同じである。但し、2重コイル30の形状と2重コイル30の接合方法が若干異なるので以下に説明する。
 図27は、第6実施形態の2重コイルのコイルエンド部分を内周側から見た部分斜視図を示している。
 図28は、2重コイルのコイルエンド部分を外周側から見た部分斜視図を示している。
 第6実施形態の2重コイル30は、コイル籠CBが形成され、分割式ステータコアSCのピース41が挿入された状態である。
 2重コイル30の基本形状は、第5実施形態の2重コイル30とほぼ同じであり、第1ループコイル10と第2ループコイル20とは結合されている。
 ただし、図28に示されるように、U相第1コイル30U1、V相第1コイル30V1、W相第1コイル30W1と、U相第2コイル30U2、V相第2コイル30V2の形状は異なる。
 2重コイル30は、図27に示すようにステータ100の内径側に配置される第2端子部TR11bを第2ループコイル20のリード側凸部PR12の下をくぐらせて外周側に引き出している。
 そして、2重コイル30をコイル籠CBとして配置し、ステータ100の外周側で、第1外周接続部CRO1乃至第4外周接続部CRO4を形成する。
 このように、第6実施形態のステータ100の外周側に外周側接続部CROを形成することで、コイル籠CBを電気的に結合することが可能となる為、コイルエンドの短縮が可能となる。
 また、第5実施形態のステータ100とは異なり、内周側接続部CRIを形成する必要がない。このため、ステータ100の内周側に出っ張りが出来ず、図示しないローターへの干渉が無い。
 外周側接続部CROは、分割式ステータコアSCの外周部分の所まで張り出しても干渉するものが無い為、平角導体Dの取り回しが若干複雑にはなるものの、設計自由度の向上が図れる。
 以上、本実施形態に則して発明を説明したが、この発明は前記実施形態に限定されるものではなく、発明の趣旨を逸脱することのない範囲で構成の一部を適宜変更することにより実施することもできる。
 例えば、第1実施形態のコイルエンドCEにおいて、第1端子部TRa、第2端子部TRbをバスバBBに寄らず、第5実施形態や第6実施形態のように接合することを妨げない。
 また、凸部形成コイルCO1、片凸部形成コイルCO3、片凸部形成コイルCO4、2重コイル30の巻回数及び平角導体Dの太さは、設計の要求により決定される事項であるので、例えば、巻回数の増減や平角導体Dの断面積の増減をすることを妨げない。
 また、コイルエンドCEにおける第1端子部TRa、第2端子部TRbの接合パターンは、第1実施形態乃至第6実施形態に説明する以外にも考えられ、他の接合パターンを採用することを妨げない。
31   内周配置部
32   外周配置部
33   レーンチェンジ部
41   ピース
43   ティース
50   アウターリング
100   ステータ
B1   第1ブロック
B2   第2ブロック
BB   バスバ
C1   素体コイル
C2   凸部保有コイル
C3   曲面保有コイル
C4   レーンチェンジ部保有コイル
CB   コイル籠
CE   コイルエンド
CO1   凸部形成コイル
CR   接続部
D   平角導体
LCF   反リード側レーンチェンジ部
LCR   リード側レーンチェンジ部
PF   反リード側凸部
PR   リード側凸部

Claims (3)

  1.  ティースと、該ティースの間に形成されたスロットとを備えるステータコアと、平角導線を用いて形成され前記スロット内に配置されるコイルと、を有するステータにおいて、
     前記コイルはコイルエンド部にて斜辺と、前記斜辺から前記ステータコアの軸方向上空に突出するよう形成される凸部とを有する形状であり、
     前記凸部は、前記コイルが前記ステータコアに配置された際に他のコイルとの干渉を避ける高さであることを特徴とするステータ。
  2.  請求項1に記載のステータにおいて、
     前記コイルのコイルエンド部にはレーンチェンジ部が形成され、
     隣り合う第1のコイルと第2のコイルとが干渉する第1干渉点と、隣り合う第2のコイルと第3のコイルとが干渉する第2干渉点との距離であるコイル干渉点距離が、前記ステータコアの内周側に配置される前記レーンチェンジ部の曲げ内周側の曲げ中心と前記ステータコアの外周側に配置される前記レーンチェンジ部の曲げ内周側の曲げ中心との前記ステータコアの周方向の距離である曲げ中心間距離以下になるよう設計されていることを特徴とするステータ。
  3.  請求項1又は請求項2に記載のステータにおいて、
     前記コイルは同心巻きに巻回され、
     前記コイルを円筒状に配置して形成したコイル籠に、分割式とした前記ステータコアを挿入することで形成されることを特徴とするステータ。
     
PCT/JP2009/071147 2009-12-18 2009-12-18 ステータ WO2011074114A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2011516587A JP5278546B2 (ja) 2009-12-18 2009-12-18 ステータ
CN200980158927.5A CN102449883B (zh) 2009-12-18 2009-12-18 定子
PCT/JP2009/071147 WO2011074114A1 (ja) 2009-12-18 2009-12-18 ステータ
US13/131,828 US8427024B2 (en) 2009-12-18 2009-12-18 Stator
KR1020117015000A KR101224688B1 (ko) 2009-12-18 2009-12-18 스테이터
EP09851549.7A EP2416471B1 (en) 2009-12-18 2009-12-18 Stator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/071147 WO2011074114A1 (ja) 2009-12-18 2009-12-18 ステータ

Publications (1)

Publication Number Publication Date
WO2011074114A1 true WO2011074114A1 (ja) 2011-06-23

Family

ID=44166903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071147 WO2011074114A1 (ja) 2009-12-18 2009-12-18 ステータ

Country Status (6)

Country Link
US (1) US8427024B2 (ja)
EP (1) EP2416471B1 (ja)
JP (1) JP5278546B2 (ja)
KR (1) KR101224688B1 (ja)
CN (1) CN102449883B (ja)
WO (1) WO2011074114A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012182972A (ja) * 2011-02-09 2012-09-20 Toyota Industries Corp コイル、ステータ、コイルの製造方法
JP2013132176A (ja) * 2011-12-22 2013-07-04 Nissan Motor Co Ltd 固定子及び回転電機
JP2013179772A (ja) * 2012-02-28 2013-09-09 Aisin Aw Co Ltd コイルの製造方法
WO2013179488A1 (ja) * 2012-06-01 2013-12-05 株式会社安川電機 回転電機、回転電機用ステータおよび車両
WO2013179491A1 (ja) * 2012-06-01 2013-12-05 株式会社安川電機 回転電機、回転電機用ステータおよび車両
WO2013179477A1 (ja) * 2012-06-01 2013-12-05 株式会社安川電機 回転電機、回転電機用ステータおよび車両
WO2013179476A1 (ja) * 2012-06-01 2013-12-05 株式会社安川電機 回転電機、回転電機用ステータおよび車両
WO2014006927A1 (ja) * 2012-07-06 2014-01-09 三菱電機株式会社 回転電機およびその製造方法
WO2014034712A1 (ja) * 2012-08-31 2014-03-06 三菱電機株式会社 回転電機
WO2014034723A1 (ja) * 2012-08-31 2014-03-06 三菱電機株式会社 回転電機およびその製造方法
JP5566541B1 (ja) * 2013-03-28 2014-08-06 三菱電機株式会社 回転電機
JP2014233176A (ja) * 2013-05-30 2014-12-11 三菱電機株式会社 電気機械の電機子およびその製造方法
JP5924711B2 (ja) * 2012-10-22 2016-05-25 三菱電機株式会社 電気機械用電機子巻線に用いられる巻線体の製造方法
JP2016208745A (ja) * 2015-04-24 2016-12-08 株式会社安川電機 回転電機、回転電機の製造方法、固定子コイル、コイル樹脂構造体
JP2017079573A (ja) * 2015-10-22 2017-04-27 三菱電機株式会社 回転電機の固定子
WO2018016331A1 (ja) * 2016-07-22 2018-01-25 三菱電機株式会社 回転電機及び、回転電機の単位コイルの製造方法
JP2018534790A (ja) * 2015-10-26 2018-11-22 ティーエム4・インコーポレーテッド 平角線コイルヘッドを成形するための機械およびそのための方法
WO2021181573A1 (ja) * 2020-03-11 2021-09-16 株式会社 東芝 回転電機の固定子および回転電機

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2947968A1 (fr) * 2009-07-09 2011-01-14 Valeo Equip Electr Moteur Bobinage d'une machine electrique tournante
JP5234173B2 (ja) * 2010-06-11 2013-07-10 トヨタ自動車株式会社 ステータ及びそれに使用される単位コイルの製造方法
KR101229810B1 (ko) * 2011-08-16 2013-02-05 한국델파이주식회사 자동차용 교류발전기의 고정자 세그먼트 및 이를 포함하는 고정자
US10170950B2 (en) * 2013-01-09 2019-01-01 Mitsubishi Electric Corporation Rotary electric machine and method for manufacturing an armature that is used in the rotary electric machine
DE112013006691T5 (de) * 2013-02-18 2015-10-29 Mitsubishi Electric Corporation Drehende elektrische Maschine
JP6146219B2 (ja) * 2013-03-29 2017-06-14 アイシン・エィ・ダブリュ株式会社 同芯巻コイルの成形方法及び成形装置
JP6356394B2 (ja) * 2013-08-07 2018-07-11 株式会社東芝 回転電機、及び回転電機の製造方法
JP6058146B2 (ja) 2013-08-26 2017-01-11 三菱電機株式会社 回転電機
JP6120987B2 (ja) * 2013-11-29 2017-04-26 三菱電機株式会社 電気機械の電機子
KR101797884B1 (ko) * 2013-12-05 2017-11-14 아이신에이더블류 가부시키가이샤 코일 엔드 성형 장치 및 방법
DE102014200947A1 (de) * 2014-01-20 2015-08-06 Wobben Properties Gmbh Synchrongenerator einer getriebelosen Windenergieanlage
FR3019948B1 (fr) 2014-04-10 2017-12-22 Moteurs Leroy-Somer Rotor de machine electrique tournante.
WO2015162643A1 (ja) * 2014-04-24 2015-10-29 三菱電機株式会社 回転電機の固定子及びこの固定子を用いた回転電機
JP6298161B2 (ja) * 2014-07-08 2018-03-20 日立オートモティブシステムズ株式会社 固定子コイル、固定子、電磁装置、ならびに、固定子コイルの製造方法
CN106663976B (zh) * 2014-09-01 2019-07-05 爱信艾达株式会社 定子组装方法以及定子
JP6358335B2 (ja) * 2014-09-18 2018-07-18 アイシン・エィ・ダブリュ株式会社 ステータ
JP6540038B2 (ja) * 2015-01-22 2019-07-10 株式会社デンソー アウターロータ型回転電機
EP3086442B1 (de) * 2015-04-22 2020-05-27 Siemens Aktiengesellschaft Elektrische maschine mit einem ersten aktivteil und einem zweiten aktivteil
JP6351861B2 (ja) * 2015-08-28 2018-07-04 三菱電機株式会社 電機子の製造方法
DE112016003631T5 (de) * 2015-09-30 2018-04-26 Aisin Aw Co., Ltd. Verfahren zum Bilden einer Spule und eine Vorrichtung zum Bilden der Spule
DE102016108712A1 (de) 2016-05-11 2017-11-16 Wobben Properties Gmbh Synchrongenerator einer getriebelosen Windenergieanlage sowie Verfahren zum Herstellen eines Synchrongenerators und Verwendung von Formspulen
JP2018068058A (ja) * 2016-10-20 2018-04-26 住友重機械工業株式会社 モータ
DE102017210441A1 (de) * 2017-06-21 2018-12-27 Robert Bosch Gmbh Elektromagnetisch erregbare Spule
WO2019064712A1 (ja) * 2017-09-28 2019-04-04 日本電産株式会社 コイルの製造方法、コイルの製造装置、コイルおよびモータ
KR102128046B1 (ko) * 2017-09-29 2020-06-29 한국생산기술연구원 분포권 평각형 전기자 권선 및 이를 포함하는 모터, 그리고 이들의 제조방법
JP6974206B2 (ja) * 2018-02-13 2021-12-01 トヨタ自動車株式会社 ステータの製造方法、および曲げ加工装置
FR3082376B1 (fr) * 2018-06-07 2020-07-17 Moteurs Leroy-Somer Stator de machine electrique tournante
US11502572B2 (en) 2018-10-09 2022-11-15 Ford Global Technologies, Llc Electric machine stator
DE102018125839A1 (de) * 2018-10-18 2020-04-23 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zur Anordnung von elektrischen Leitern in einem Stator eines Elektromotors
DE102018125828A1 (de) * 2018-10-18 2020-04-23 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zur Anordnung von elektrischen Leitern in einem Stator eines Elektromotors
CN109687618B (zh) * 2018-12-29 2020-05-01 苏州贝得科技有限公司 一种磁悬浮直线电机的绕组线圈的设计及验证方法
JP7348029B2 (ja) * 2019-10-31 2023-09-20 ファナック株式会社 ステータおよびモータ
FR3118349B1 (fr) 2020-12-17 2024-03-01 Nidec Psa Emotors Bobine destinée à être insérée dans des encoches d’un stator d’une machine électrique tournante
WO2022129796A1 (fr) 2020-12-17 2022-06-23 Nidec Psa Emotors Bobine destinée à être insérée dans des encoches d'un stator d'une machine électrique tournante
FR3118351B1 (fr) 2020-12-17 2023-09-08 Nidec Psa Emotors Bobine destinée à être insérée dans des encoches d’un stator d’une machine électrique tournante
FR3118340A1 (fr) 2020-12-17 2022-06-24 Nidec Psa Emotors Stator avec une couronne ayant des encoches ouvertes radialement vers l’extérieur et recevant des bobines et une culasse rapportée.
GB202209892D0 (en) * 2022-07-05 2022-08-17 Saietta Group PLC Coil shaping device and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5595441U (ja) * 1978-12-26 1980-07-02
JPH0260444A (ja) * 1988-08-26 1990-02-28 Mitsubishi Electric Corp 極数変換形電動機
JP2001231203A (ja) * 2000-02-10 2001-08-24 Mitsubishi Electric Corp 車両用交流発電機
JP2004201465A (ja) * 2002-12-20 2004-07-15 Denso Corp 回転電機の固定子
JP2008099441A (ja) * 2006-10-12 2008-04-24 Meidensha Corp 回転電機の巻線絶縁構造
JP2009011152A (ja) * 2007-05-30 2009-01-15 Denso Corp 回転電機の固定子

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3631278A (en) * 1970-04-20 1971-12-28 Gen Electric Form-wound dynamoelectric machine with reduced coil distortion
JPS61293129A (ja) 1985-06-19 1986-12-23 Hitachi Ltd 回転電機の固定子装巻線
JPS6289454A (ja) * 1985-10-14 1987-04-23 Toshiba Corp 固定子コイルの製造方法
US5714824A (en) * 1994-06-23 1998-02-03 Hydro-Quebec Conductor section for a stator frame of a polyphase dynamoelectric machine
EP0890214B1 (en) * 1996-03-29 2001-08-01 Newage International Limited Alternating current machines
JP3952346B2 (ja) * 1998-05-20 2007-08-01 株式会社デンソー 回転電機及びその製造方法
JP2001320845A (ja) * 2000-05-10 2001-11-16 Mitsubishi Electric Corp 回転電機の固定子
JP3586186B2 (ja) * 2000-11-15 2004-11-10 株式会社日立製作所 回転電機の固定子
KR100589729B1 (ko) * 2001-08-09 2006-06-19 혼다 기켄 고교 가부시키가이샤 고정자 및 고정자의 제조 방법
JP3741037B2 (ja) * 2001-12-03 2006-02-01 株式会社デンソー 回転電機およびその製造方法
US7129612B2 (en) * 2002-01-24 2006-10-31 Visteon Global Technologies, Inc. Stator assembly with cascaded winding and method of making same
FR2844646B1 (fr) * 2002-09-17 2006-02-24 Denso Corp Machine rotative electrique a haute tension
US6958561B2 (en) * 2004-02-27 2005-10-25 Unique Product & Design Co., Ltd. Stator winding structure of a motor or a generator
JP2006149049A (ja) * 2004-11-18 2006-06-08 Denso Corp 車両用回転電機
JP4234749B2 (ja) * 2006-10-19 2009-03-04 株式会社日立製作所 回転電機、クランク形状の連続巻きコイル、分布巻き固定子及びそれらの形成方法
JP4509088B2 (ja) 2006-11-10 2010-07-21 三菱電機株式会社 回転電機の製造法
JP2009131093A (ja) * 2007-11-26 2009-06-11 Denso Corp 回転電機の固定子および回転電機
WO2009084473A1 (ja) * 2007-12-27 2009-07-09 Aisin Aw Co., Ltd. ステータ及びこれを用いた回転電機
CN101515733B (zh) * 2008-02-18 2012-11-21 株式会社日立制作所 旋转电机、连续绕组线圈、分布绕组定子及其形成方法
JP2010166802A (ja) * 2008-12-15 2010-07-29 Denso Corp 回転電機の固定子
WO2011055438A1 (ja) 2009-11-05 2011-05-12 トヨタ自動車株式会社 ステータ及びステータ製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5595441U (ja) * 1978-12-26 1980-07-02
JPH0260444A (ja) * 1988-08-26 1990-02-28 Mitsubishi Electric Corp 極数変換形電動機
JP2001231203A (ja) * 2000-02-10 2001-08-24 Mitsubishi Electric Corp 車両用交流発電機
JP2004201465A (ja) * 2002-12-20 2004-07-15 Denso Corp 回転電機の固定子
JP2008099441A (ja) * 2006-10-12 2008-04-24 Meidensha Corp 回転電機の巻線絶縁構造
JP2009011152A (ja) * 2007-05-30 2009-01-15 Denso Corp 回転電機の固定子

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9130416B2 (en) 2011-02-09 2015-09-08 Kabushiki Kaisha Toyota Jidoshokki Coil, stator, and method for manufacturing coil
JP2012182972A (ja) * 2011-02-09 2012-09-20 Toyota Industries Corp コイル、ステータ、コイルの製造方法
JP2013132176A (ja) * 2011-12-22 2013-07-04 Nissan Motor Co Ltd 固定子及び回転電機
JP2013179772A (ja) * 2012-02-28 2013-09-09 Aisin Aw Co Ltd コイルの製造方法
JPWO2013179477A1 (ja) * 2012-06-01 2016-01-18 株式会社安川電機 回転電機、回転電機用ステータおよび車両
WO2013179476A1 (ja) * 2012-06-01 2013-12-05 株式会社安川電機 回転電機、回転電機用ステータおよび車両
JPWO2013179491A1 (ja) * 2012-06-01 2016-01-18 株式会社安川電機 回転電機、回転電機用ステータおよび車両
WO2013179477A1 (ja) * 2012-06-01 2013-12-05 株式会社安川電機 回転電機、回転電機用ステータおよび車両
JPWO2013179488A1 (ja) * 2012-06-01 2016-01-18 株式会社安川電機 回転電機、回転電機用ステータおよび車両
JPWO2013179476A1 (ja) * 2012-06-01 2016-01-18 株式会社安川電機 回転電機、回転電機用ステータおよび車両
WO2013179488A1 (ja) * 2012-06-01 2013-12-05 株式会社安川電機 回転電機、回転電機用ステータおよび車両
WO2013179491A1 (ja) * 2012-06-01 2013-12-05 株式会社安川電機 回転電機、回転電機用ステータおよび車両
JP5791805B2 (ja) * 2012-07-06 2015-10-07 三菱電機株式会社 回転電機およびその製造方法
WO2014006927A1 (ja) * 2012-07-06 2014-01-09 三菱電機株式会社 回転電機およびその製造方法
US10461591B2 (en) 2012-07-06 2019-10-29 Mitsubishi Electric Corporation Rotary electric machine with armature coil end top portions displaced in a radial direction
WO2014034723A1 (ja) * 2012-08-31 2014-03-06 三菱電機株式会社 回転電機およびその製造方法
US9735641B2 (en) 2012-08-31 2017-08-15 Mitsubishi Electric Corporation Rotary electric machine and manufacturing method therefor
US9641036B2 (en) 2012-08-31 2017-05-02 Mitsubishi Electric Corporation Rotary electric machine
WO2014034157A1 (ja) * 2012-08-31 2014-03-06 三菱電機株式会社 回転電機およびその製造方法
WO2014034712A1 (ja) * 2012-08-31 2014-03-06 三菱電機株式会社 回転電機
JP5924710B2 (ja) * 2012-08-31 2016-05-25 三菱電機株式会社 回転電機
JPWO2014034712A1 (ja) * 2012-08-31 2016-08-08 三菱電機株式会社 回転電機
US9680358B2 (en) 2012-10-22 2017-06-13 Mitsubishi Electric Corporation Method for manufacturing a winding body that is used in an armature winding for an electric machine
JP5924711B2 (ja) * 2012-10-22 2016-05-25 三菱電機株式会社 電気機械用電機子巻線に用いられる巻線体の製造方法
TWI511421B (zh) * 2013-03-28 2015-12-01 Mitsubishi Electric Corp 旋轉電動機
WO2014155630A1 (ja) * 2013-03-28 2014-10-02 三菱電機株式会社 回転電機
JP5566541B1 (ja) * 2013-03-28 2014-08-06 三菱電機株式会社 回転電機
JP2014233176A (ja) * 2013-05-30 2014-12-11 三菱電機株式会社 電気機械の電機子およびその製造方法
JP2016208745A (ja) * 2015-04-24 2016-12-08 株式会社安川電機 回転電機、回転電機の製造方法、固定子コイル、コイル樹脂構造体
JP2017079573A (ja) * 2015-10-22 2017-04-27 三菱電機株式会社 回転電機の固定子
JP2018534790A (ja) * 2015-10-26 2018-11-22 ティーエム4・インコーポレーテッド 平角線コイルヘッドを成形するための機械およびそのための方法
WO2018016331A1 (ja) * 2016-07-22 2018-01-25 三菱電機株式会社 回転電機及び、回転電機の単位コイルの製造方法
JPWO2018016331A1 (ja) * 2016-07-22 2018-09-13 三菱電機株式会社 回転電機及び、回転電機の単位コイルの製造方法
WO2021181573A1 (ja) * 2020-03-11 2021-09-16 株式会社 東芝 回転電機の固定子および回転電機

Also Published As

Publication number Publication date
JPWO2011074114A1 (ja) 2013-04-25
EP2416471A1 (en) 2012-02-08
US20120025658A1 (en) 2012-02-02
KR101224688B1 (ko) 2013-01-21
JP5278546B2 (ja) 2013-09-04
CN102449883B (zh) 2014-03-19
EP2416471B1 (en) 2020-02-12
EP2416471A4 (en) 2016-11-30
CN102449883A (zh) 2012-05-09
US8427024B2 (en) 2013-04-23
KR20110103983A (ko) 2011-09-21

Similar Documents

Publication Publication Date Title
JP5278546B2 (ja) ステータ
JP5370491B2 (ja) ステータ及びステータ製造方法
JP5560176B2 (ja) モータ及びモータ製造方法
US8587177B2 (en) Stator and method of manufacturing unit coil to be used therein
US8884489B2 (en) Motor
JP5167939B2 (ja) 回転電機のコイル組立体製造方法
JP5234111B2 (ja) ステータ及びその製造方法
JP5418686B2 (ja) ステータ及びステータ製造方法
JP5299515B2 (ja) モータ
EP2782224B1 (en) Coil manufacturing method
TWI538353B (zh) 旋轉電機之定子及使用該定子之旋轉電機
JP5286397B2 (ja) 波捲きコイル、および平角線の製造方法
JP2014217136A (ja) 固定子
JP2011234531A (ja) 平角導体を用いた分布巻き固定子構造
JP2018074698A (ja) 回転電機の固定子および固定子巻線の製造方法
JP2015019452A (ja) コイル及びコイル形成方法
JP5683046B2 (ja) 巻線成形装置および巻線成形方法
JP2010233449A (ja) 連続捲きコイル、連続捲きコイル組、及びステータ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980158927.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011516587

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13131828

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009851549

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117015000

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09851549

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE