WO2011070943A1 - Zoom lens for microscope, and microscope - Google Patents

Zoom lens for microscope, and microscope Download PDF

Info

Publication number
WO2011070943A1
WO2011070943A1 PCT/JP2010/071346 JP2010071346W WO2011070943A1 WO 2011070943 A1 WO2011070943 A1 WO 2011070943A1 JP 2010071346 W JP2010071346 W JP 2010071346W WO 2011070943 A1 WO2011070943 A1 WO 2011070943A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
lens group
microscope
zoom
refractive power
Prior art date
Application number
PCT/JP2010/071346
Other languages
French (fr)
Japanese (ja)
Inventor
中川由美
須藤武司
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2011545176A priority Critical patent/JP5278558B2/en
Priority to CN2010800458397A priority patent/CN102576147A/en
Publication of WO2011070943A1 publication Critical patent/WO2011070943A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/02Objectives
    • G02B21/025Objectives with variable magnification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144105Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-+-

Definitions

  • the present invention relates to a zoom lens for a microscope used in a microscope, and a microscope having the same.
  • the present invention has been made in view of the above problems, and has a zoom lens for a microscope that ensures object-side telecentricity and is small and has a high zoom ratio and high imaging performance, and a microscope having the zoom lens for the microscope.
  • the issue is to provide.
  • a microscope zoom lens that receives substantially parallel light from an objective lens and forms an image on an imaging surface of an imaging device, In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens having a negative refractive power And having a group
  • the fourth lens group includes, in order from the object side, an eleventh lens group having a positive refractive power, a twelfth lens group having a negative refractive power, and a thirteenth lens group having a positive refractive power,
  • the second lens group and the third lens group move along the optical axis direction,
  • a zoom lens for a microscope characterized by satisfying the following conditions.
  • d1W Distance between the most image side lens surface of the first lens group and the most object side lens surface of the second lens group in the low magnification end state
  • f2 Focal length of the second lens group
  • d11 The eleventh The distance between the lens surface closest to the image side of the lens group and the lens surface closest to the object side of the twelfth lens group d12: the lens surface closest to the image side of the twelfth lens group and the lens surface closest to the object side Distance from lens surface
  • the zoom lens for a microscope according to the present invention preferably further satisfies the following conditions. 0.05 ⁇ d11 /
  • d11 Distance between the most image side lens surface of the eleventh lens group and the most object side lens surface of the twelfth lens group
  • f4 Focal length of the fourth lens group
  • the zoom lens for a microscope according to the present invention preferably satisfies the following conditions.
  • f1 Focal length of the first lens group
  • the most object side lens surface of the second lens group has a concave shape.
  • the second lens group moves only from the object side to the image side and the third lens group moves from the image side to the object side during zooming from the low magnification end state to the high magnification end state. It is preferable to move only to the side.
  • a microscope comprising the objective lens and the zoom lens for a microscope according to the present invention.
  • a zoom lens for a microscope that secures object-side telecentricity and that is small and has a high zoom ratio and high imaging performance, and a microscope having the zoom lens for the microscope.
  • FIGS. 1A and 1B are diagrams showing a basic configuration and zoom movement locus of a zoom lens for a microscope according to an embodiment of the present invention. These are figures which show the lens structure of the zoom lens for microscopes concerning 1st Example of this application.
  • 3A to 3C are graphs showing various aberrations in the infinitely focused state of the microscope zoom lens according to the first example.
  • FIG. 3A is a low magnification end state
  • FIG. 3B is an intermediate focal length state
  • FIG. 3C is a high magnification end.
  • Each aberration diagram in the state is shown.
  • FIG. 5A to 5C are graphs showing various aberrations of the microscope zoom lens according to the second example in the infinite focus state.
  • FIG. 5A is a low magnification end state
  • FIG. 5B is an intermediate focal length state
  • FIG. Each aberration diagram in the state is shown.
  • the zoom lens for a microscope includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power. And a fourth lens group having a negative refractive power, the lens surface closest to the object side of the second lens group has a concave shape, and upon zooming from the low magnification end state to the high magnification end state, The second lens group and the third lens group move along the optical axis direction, and the following conditional expressions (1), (2), and (3) are satisfied.
  • d1W is the distance between the most image side lens surface of the first lens group and the most object side lens surface of the second lens group in the low magnification end state
  • f2 is the focal length of the second lens group
  • Z is the zoom ratio of the zoom lens for microscope
  • V2 is the magnification of the second lens group.
  • the zoom lens for this microscope can reduce the angle formed by the principal ray and the optical axis at about 70% of the field of view (object height) in the low magnification end state to 0.013 ° or less. It is possible to achieve a zoom lens for a microscope that secures object-side telecentricity, has a high zoom ratio of 15 times or more, and is small and has high imaging performance.
  • Conditional expression (1) is the distance between the most image side lens surface of the first lens group and the most object side lens surface of the second lens group in the low magnification end state, that is, the first lens group and the second lens group.
  • An appropriate range of the ratio between the distance in the optical axis direction and the focal length of the second lens group is defined.
  • conditional expression (1) If the upper limit value of conditional expression (1) is exceeded, the outer diameter of the objective lens becomes large, and the fluctuation of coma aberration at the time of zooming becomes large.
  • conditional expression (1) If the lower limit value of conditional expression (1) is not reached, the entrance pupil position in the low magnification end state is close to the object plane, and the rate of change of the image size at the time of defocusing becomes large, so the object side telecentricity cannot be ensured. .
  • the lens having the concave shape reasonably bends the light beam and satisfies the conditional expression (1).
  • the occurrence of coma from the two lens units is suppressed.
  • Conditional expression (2) defines an appropriate range of the ratio of the focal lengths of the first lens group and the second lens group.
  • Conditional expression (3) defines an appropriate range of the zoom ratio of the second lens group. By satisfying conditional expression (3), it is possible to achieve a zoom lens for a microscope having high imaging performance while maintaining the overall length of the zoom lens for microscope compact.
  • the “magnification ratio” indicates the “burden amount” with respect to the “zoom ratio” of the microscope zoom lens.
  • the refractive power of the second lens group increases and the “burden amount” of the second lens group increases, which is advantageous for downsizing the zoom lens for a microscope.
  • an increase in distortion, an increase in astigmatism due to the deterioration of Petzval sum, an increase in coma at the time of zooming, especially an increase in fluctuation of the lower coma, etc. occur in the low magnification end state. Increases spherical aberration and the like.
  • conditional expression (3) When the lower limit value of conditional expression (3) is not reached, the zoom ratio of the third lens group increases when attempting to obtain a high zoom ratio, and the amount of movement of the third lens group during zooming increases. As a result, it is necessary to increase the distance between the second lens group and the third lens group in order to prevent interference between the second lens group and the third lens group, and the overall length of the zoom lens for the microscope is increased. Cannot be achieved.
  • the fourth lens group has, in order from the object side, an eleventh lens group having a positive refractive power, a twelfth lens group having a negative refractive power, and a positive refractive power.
  • the thirteenth lens group is preferable. With such a configuration, various aberrations can be corrected satisfactorily, and miniaturization of the microscope zoom lens can be achieved.
  • the back focus can be shortened and the overall length of the zoom lens can be reduced as compared with the case where the lens closest to the image side is configured as a negative lens.
  • a zoom lens having a four-group configuration includes a focusing lens (first group: focus and focus adjustment), a variator lens (second group: variable magnification lens), a compensator lens (third group: correction lens), a relay lens ( 4th group: imaging lens), and each group has an independent role.
  • the first group (focusing lens) has a function to focus on the subject
  • the second group (variator lens) has a function to change the size of the image by changing the power distribution in the front and back
  • the third group (compensator).
  • the lens works in conjunction with the variator lens and has a function of correcting the focus shift.
  • the fourth group is called a relay lens or a master lens, and corrects aberrations generated in the zoom unit including the focusing lens, the variator lens, and the compensator lens of the first to third groups, and is formed by the zoom unit. It has the function of returning the virtual image to a real image.
  • the fourth group plays a role of forming an image formed by the zoom unit composed of the first group to the third group, so that the light flux passing through the fourth group at the time of zooming is substantially constant, and the fourth group In the zoom lens having the configuration, the fourth group acts as an independent lens. For this reason, various aberrations can be favorably corrected by configuring the fourth group to have a positive and negative triplet structure.
  • the zoom lens for the microscope satisfies the following conditional expression (4). (4) 0.9 ⁇ d11 / d12 ⁇ 1.2
  • d11 is the distance between the most image side lens surface of the eleventh lens group and the most object side lens surface of the twelfth lens group
  • d12 is the most image side lens surface of the twelfth lens group and the thirteenth lens group. The distance from the most object side lens surface of the 13 lens group is shown.
  • Conditional expression (4) defines an appropriate range of the ratio between the distance between the twelfth lens group and the thirteenth lens group and the distance between the eleventh lens group and the twelfth lens group.
  • conditional expression (4) If the upper limit value of conditional expression (4) is exceeded, the distance between the eleventh lens group and the twelfth lens group becomes too large, and the field curvature deteriorates.
  • conditional expression (4) When the lower limit value of conditional expression (4) is not reached, coma and spherical aberration are deteriorated.
  • the zoom lens for the microscope satisfies the following conditional expression (5).
  • (5) 0.05 ⁇ d11 /
  • d11 is the distance between the most image side lens surface of the eleventh lens group and the most object side lens surface of the twelfth lens group
  • f4 is the focal length of the fourth lens group.
  • Conditional expression (5) defines the focal length of the fourth lens group and the distance between the eleventh lens group and the twelfth lens group in the fourth lens group.
  • An image pickup device such as a CCD has an element structure, for example, a color filter or a light receiving portion located behind a light shielding portion of a charge transfer path.
  • an image sensor such as a CCD is placed on the image plane to change the amount of peripheral light (shading)
  • the exit pupil position is set as far as possible from the image formation position, and the light beam is designed to enter the element almost perpendicularly.
  • an eyepiece is placed behind the image plane and the image is viewed through the eyepiece, it is easier to observe the image when the exit pupil position is far from the image plane, and the optical performance of the microscope itself is prevented from deteriorating. Can do.
  • conditional expression (5) When the upper limit value of conditional expression (5) is exceeded, the back focus becomes too short, for example, even if an image pickup device such as a CCD is arranged on the image plane, the space cannot be secured, or optical adjustment after the lens is assembled. There is a possibility that the range of the movable image plane cannot be secured sometimes.
  • conditional expression (5) When the lower limit value of conditional expression (5) is not reached, the exit pupil position approaches the image plane and the back focus becomes longer. As a result, the entire length of the zoom lens for a microscope becomes large, and it becomes impossible to achieve downsizing.
  • the second lens group moves only from the object side to the image side and the third lens group moves from the image side to the object side when zooming from the low magnification end state to the high magnification end state. It is preferable to move only to. With such a configuration, the moving mechanism of the lens unit at the time of zooming can be simplified.
  • the microscope of the present application is characterized by including the microscope zoom lens having the above-described configuration. As a result, it is possible to realize a compact microscope having high image-forming performance while ensuring object-side telecentricity and having a high zoom ratio.
  • FIG. 1A and FIG. 1B are diagrams showing a basic configuration and a zoom movement locus of a microscope zoom lens common to each numerical example.
  • the zoom lens for a microscope includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a positive refractive power.
  • the lens group G3 includes a fourth lens group G4 having negative refractive power, and the lens surface closest to the object side of the second lens group G2 has a concave shape.
  • I indicates an image plane.
  • the zoom lens for this microscope is designed so that the air gap between the second lens group G2 and the third lens group G3 is reduced upon zooming from the low magnification end state (FIG. 1A) to the high magnification end state (FIG. 1B).
  • the second lens group G2 moves only from the object side to the image side
  • the third lens group G3 moves only from the image side to the object side.
  • the zoom lens for this microscope can take a trajectory that the second lens group and the third lens group move only in one direction and return in the middle when zooming from the low magnification end state to the high magnification end state. Absent.
  • FIG. 2 is a diagram illustrating a lens configuration of the zoom lens for a microscope according to the first example.
  • the zoom lens for a microscope according to the first example includes a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, and a positive lens in order from the object side. It is composed of a third lens group G3 having a refractive power and a fourth lens group G4 having a negative refractive power.
  • the first lens group G1 includes, in order from the object side, a cemented positive lens composed of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a positive meniscus having a convex surface facing the object side. It consists of a lens L13.
  • the second lens group G2 includes, in order from the object side, a negative biconcave lens L21, a negative cemented lens formed by cementing a biconcave negative lens L22 and a positive meniscus lens L23 having a convex surface facing the object side. Has been.
  • the third lens group G3 includes, in order from the object side, a biconvex positive lens L31, and a cemented positive lens formed by cementing a negative meniscus lens L32 having a convex surface toward the object side and a biconvex positive lens L33. Has been.
  • the fourth lens group G4 includes, in order from the object side, an eleventh lens group G4a having a positive refractive power, a twelfth lens group G4b having a negative refractive power, and a thirteenth lens group G4c having a positive refractive power. It is composed of
  • the eleventh lens group G4a includes, in order from the object side, a cemented positive lens formed by cementing a biconvex positive lens L41 and a biconcave negative lens L42.
  • the twelfth lens group G4b includes, in order from the object side, a cemented negative lens formed by cementing a planoconvex lens L43 having a convex surface directed toward the image plane I and a biconcave negative lens L44.
  • the thirteenth lens group G4c is composed of a biconvex positive lens L45.
  • Table 1 below shows specification values of the zoom lens for a microscope according to the first example.
  • the object surface is the object surface
  • the surface number is the order of the lens surfaces counted from the object side
  • r is the radius of curvature of each lens surface
  • d is the surface spacing of the lens surfaces
  • (variable) is the variable surface separation
  • (diaphragm) is the aperture stop S
  • the image plane is the image plane I. ing.
  • of the radius of curvature r indicates a plane
  • the refractive index of air nd 1.00000 is omitted.
  • f is a focal length
  • FNO is an F number
  • Y is an image height
  • Bf is a back focus
  • di is a variable surface interval value at a surface number i.
  • represents the total magnification of the entire system when an objective lens shown in Table 4 described later is attached to the microscope zoom lens of each of the following examples.
  • mm is generally used as the unit of focal length f, radius of curvature r, and other lengths listed in all the following specification values.
  • the optical system is not limited to this because the same optical performance can be obtained even when proportionally enlarged or reduced.
  • the unit is not limited to “mm”, and other appropriate units may be used. Further, these symbols are the same in the other embodiments described below, and the description thereof is omitted.
  • FIG. 3A to 3C are graphs showing various aberrations in the infinitely focused state of the microscope zoom lens according to the first example.
  • FIG. 3A is a low magnification end state
  • FIG. 3B is an intermediate focal length state
  • FIG. Each aberration diagram in the end state is shown.
  • When actually used as a microscope it is used in combination with an objective lens shown in Table 3 to be described later.
  • In this example in order to show the performance of the microscope zoom lens well, aberrations of only the microscope zoom lens are used.
  • Figure ie ray tracing from infinity
  • FNO represents the F number
  • Y represents the image height.
  • the solid line represents the sagittal image plane
  • the dotted line represents the meridional image plane
  • the zoom lens for a microscope corrects various aberrations well in each of the low magnification end state, the intermediate focal length state, and the high magnification end state, and has excellent imaging. It can be seen that it has performance. While having a high zoom ratio of 20 times, the object side telecentricity at the low magnification end state is ensured.
  • FIG. 4 is a diagram illustrating a lens configuration of a zoom lens for a microscope according to the second example.
  • the zoom lens for a microscope according to the second example includes a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, and a positive lens in order from the object side. It is composed of a third lens group G3 having a refractive power and a fourth lens group having a negative refractive power.
  • the first lens group G1 includes, in order from the object side, a cemented positive lens composed of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a positive meniscus having a convex surface facing the object side. It consists of a lens L13.
  • the second lens group G2 includes, in order from the object side, a biconcave negative lens L21, a cemented negative lens formed by cementing a biconcave negative lens L22 and a positive meniscus lens L23 having a convex surface facing the object side. It is configured.
  • the third lens group G3 includes, in order from the object side, a biconvex positive lens L31, and a cemented positive lens formed by cementing a negative meniscus lens L32 having a convex surface toward the object side and a biconvex positive lens L33. It is configured.
  • the fourth lens group G4 includes, in order from the object side, an eleventh lens group G4a having a positive refractive power, a twelfth lens group G4b having a negative refractive power, and a thirteenth lens group G4c having a positive refractive power. It is composed of
  • the eleventh lens group G4a is composed of, in order from the object side, a cemented positive lens composed of a positive meniscus lens L41 having a convex surface facing the object side and a negative meniscus lens L42 having a convex surface facing the object side.
  • the twelfth lens group G4b includes, in order from the object side, a cemented negative lens formed by cementing a positive meniscus lens L43 having a convex surface toward the image plane I side and a biconcave negative lens L44.
  • the thirteenth lens group G4c is composed of a positive meniscus lens L45 having a convex surface directed toward the image plane I side.
  • Table 2 below shows specification values of the zoom lens for a microscope according to the second example.
  • FIGS. 5A to 5C are graphs showing various aberrations of the microscope zoom lens according to the second example in the infinite focus state.
  • FIG. 5A is a low magnification end state
  • FIG. 5B is an intermediate focal length state
  • FIG. Each aberration diagram in the end state is shown.
  • the zoom lens for a microscope according to the second example corrects various aberrations well in each of the low magnification end state, the intermediate focal length state, and the high magnification end state, and has excellent imaging. It can be seen that it has performance. While having a high zoom ratio of 15 times, the object side telecentricity at the low magnification end state is ensured.
  • the zoom lens for a microscope according to the present embodiment can be used in combination with, for example, an objective lens having specification values shown in FIG. 6 and Table 3 below.
  • FIG. 6 is a diagram showing a lens configuration of the objective lens.
  • FIG. 7 is a diagram illustrating an optical system of a microscope including the zoom lens for a microscope according to the embodiment.
  • the light from the object 1 is converted into parallel light by the objective lens 2 as shown in FIG. 6 and then zoomed by the zoom lens 3 and simultaneously forms an image of the object on the image plane I. Then, for example, an observer observes this image through an eyepiece (not shown), or an imaging unit such as an imaging device I such as a CCD is arranged on the image plane and observed through a monitor.
  • an imaging means such as a CCD is disposed on the image plane, a relatively large object such as a metal specimen or a mechanical part (for example, a gear) can be observed well with a wide field of view.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Lenses (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

Provided is a zoom lens for a microscope, which receives approximately parallel light from an objective lens, and forms an image on the imaging surface of an imaging element. Also provided is a microscope having said zoom lens for a microscope. The zoom lens for a microscope is an object-space telecentric lens, is small, and has a high zoom ratio and a high image-forming performance. The zoom lens for a microscope is provided, from the object side, with a first lens group (G1) having a positive refractive power, a second lens group (G2) having a negative refractive power, a third lens group (G3) having a positive refractive power, and a fourth lens group (G4) having a negative refractive power. The fourth lens group comprises, from the object side, an eleventh lens group having a positive refractive power, a twelfth lens group having a negative refractive power, and a thirteenth lens group having a positive refractive power. The second lens group (G2) and the third lens group (G3) move along the optical axis direction when the magnification is being changed from a low magnification end to a high magnification end. A given condition is applied between the first lens group and the second lens group, and between the eleventh lens group and the twelfth lens group constituting the fourth lens group.

Description

顕微鏡用ズームレンズ、顕微鏡Microscope zoom lens, microscope
 本発明は、顕微鏡に用いられる顕微鏡用ズームレンズ、及びこれを有する顕微鏡に関する。 The present invention relates to a zoom lens for a microscope used in a microscope, and a microscope having the same.
 従来、顕微鏡に用いられる顕微鏡用ズームレンズ、及び顕微鏡用ズームレンズを有する顕微鏡が提案されている(例えば、特開平6-18784号公報,特開2006-178440号公報)。 Conventionally, a microscope zoom lens used for a microscope and a microscope having a microscope zoom lens have been proposed (for example, Japanese Patent Laid-Open Nos. 6-18784 and 2006-178440).
 近年、顕微鏡、実体顕微鏡、デジタル顕微鏡等においては、被検物の大きさを測る等の測定機能のために、デフォーカスしても像の大きさが変化しない物体側テレセントリックな顕微鏡用ズームレンズが望まれている。このような顕微鏡用ズームレンズは、さらに、高いズーム比と高い結像性能を有し、且つ小型であることが求められている。 In recent years, in microscopes, stereo microscopes, digital microscopes, etc., there is an object-side telecentric microscope zoom lens that does not change the size of the image even when defocused due to the measurement function such as measuring the size of the test object. It is desired. Such a zoom lens for a microscope is further required to have a high zoom ratio and high imaging performance, and to be small in size.
 しかしながら、従来の顕微鏡用ズームレンズは、これらをすべて満足することが困難であった。 However, it has been difficult for conventional zoom lenses for microscopes to satisfy all of these requirements.
 本発明は上記問題に鑑みてなされたものであり、物体側テレセントリック性を確保し、且つ小型で高いズーム比と高い結像性能を有する顕微鏡用ズームレンズ、及び該顕微鏡用ズームレンズを有する顕微鏡を提供することを課題とする。 The present invention has been made in view of the above problems, and has a zoom lens for a microscope that ensures object-side telecentricity and is small and has a high zoom ratio and high imaging performance, and a microscope having the zoom lens for the microscope. The issue is to provide.
 上記課題を解決するため、本発明は、
対物レンズからの略平行光を受光し、撮像素子の撮像面に結像させる顕微鏡用ズームレンズであって、
物体側から順に、正の屈折力を有る第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群とを有し、
 前記第4レンズ群は、物体側から順に、正の屈折力を有する第11レンズ群と、負の屈折力を有する第12レンズ群と、正の屈折力を有する第13レンズ群とからなり、
 低倍端状態から高倍端状態への変倍に際し、前記第2レンズ群と前記第3レンズ群とが光軸方向に沿って移動し、
 以下の条件を満足することを特徴とする顕微鏡用ズームレンズ。
 0.4 < d1W/|f2| < 0.7
 0.9 < d11/d12< 1.2
ただし、
d1W:低倍端状態における前記第1レンズ群の最も像側のレンズ面と前記第2レンズ群の最も物体側のレンズ面との間隔
 f2:前記第2レンズ群の焦点距離
 d11:前記第11レンズ群の最も像側のレンズ面と前記第12レンズ群の最も物体側のレンズ面との間隔
 d12:前記第12レンズ群の最も像側のレンズ面と前記第13レンズ群の最も物体側のレンズ面との間隔
In order to solve the above problems, the present invention provides:
A microscope zoom lens that receives substantially parallel light from an objective lens and forms an image on an imaging surface of an imaging device,
In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens having a negative refractive power And having a group
The fourth lens group includes, in order from the object side, an eleventh lens group having a positive refractive power, a twelfth lens group having a negative refractive power, and a thirteenth lens group having a positive refractive power,
Upon zooming from the low magnification end state to the high magnification end state, the second lens group and the third lens group move along the optical axis direction,
A zoom lens for a microscope characterized by satisfying the following conditions.
0.4 <d1W / | f2 | <0.7
0.9 <d11 / d12 <1.2
However,
d1W: Distance between the most image side lens surface of the first lens group and the most object side lens surface of the second lens group in the low magnification end state f2: Focal length of the second lens group d11: The eleventh The distance between the lens surface closest to the image side of the lens group and the lens surface closest to the object side of the twelfth lens group d12: the lens surface closest to the image side of the twelfth lens group and the lens surface closest to the object side Distance from lens surface
 本発明の顕微鏡用ズームレンズは、さらに以下の条件を満足することが好ましい。
 0.05 < d11/|f4| < 0.2
 ただし、
 d11:前記第11レンズ群の最も像側のレンズ面と前記第12レンズ群の最も物体側のレンズ面との間隔
 f4:前記第4レンズ群の焦点距離
The zoom lens for a microscope according to the present invention preferably further satisfies the following conditions.
0.05 <d11 / | f4 | <0.2
However,
d11: Distance between the most image side lens surface of the eleventh lens group and the most object side lens surface of the twelfth lens group f4: Focal length of the fourth lens group
 さらにまた、本発明の顕微鏡用ズームレンズは、以下の条件を満足するこが好ましい。
  |f1/f2| > 4.5
 ただし、
 f1:前記第1レンズ群の焦点距離
Furthermore, the zoom lens for a microscope according to the present invention preferably satisfies the following conditions.
| F1 / f2 |> 4.5
However,
f1: Focal length of the first lens group
 本発明の顕微鏡用ズームレンズにおいてはさらに以下の条件を満足することが好ましい。
   Z0.5< V2 < Z0.6
ただし、
 Z:前記顕微鏡用ズームレンズのズーム比
 V2:前記第2レンズ群の変倍率
In the zoom lens for a microscope of the present invention, it is preferable that the following conditions are further satisfied.
Z 0.5 <V2 <Z 0.6
However,
Z: Zoom ratio of the microscope zoom lens V2: Variable magnification of the second lens group
本発明の顕微鏡用ズームレンズにおいては、また前記第2レンズ群の最も物体側のレンズ面は、凹面形状であることが好ましい。 In the zoom lens for a microscope according to the present invention, it is preferable that the most object side lens surface of the second lens group has a concave shape.
本発明の顕微鏡用ズームレンズにおいては、低倍端状態から高倍端状態への変倍に際し、前記第2レンズ群は物体側から像側へのみ移動し、前記第3レンズ群は像側から物体側へのみ移動することが好ましい。 In the zoom lens for a microscope according to the present invention, the second lens group moves only from the object side to the image side and the third lens group moves from the image side to the object side during zooming from the low magnification end state to the high magnification end state. It is preferable to move only to the side.
本発明はまた別の態様によれば、対物レンズと、上記本発明の顕微鏡用ズームレンズとを備えることを特徴とする顕微鏡を提供する。 According to another aspect of the present invention, there is provided a microscope comprising the objective lens and the zoom lens for a microscope according to the present invention.
 本発明によれば、物体側テレセントリック性を確保し、且つ小型で高いズーム比と高い結像性能を有する顕微鏡用ズームレンズ、及び該顕微鏡用ズームレンズを有する顕微鏡を提供することができる。 According to the present invention, it is possible to provide a zoom lens for a microscope that secures object-side telecentricity and that is small and has a high zoom ratio and high imaging performance, and a microscope having the zoom lens for the microscope.
図1Aおよび図1Bは本発明の一実施形態に係る顕微鏡用ズームレンズの基本構成とズーム移動軌跡を示す図である。1A and 1B are diagrams showing a basic configuration and zoom movement locus of a zoom lens for a microscope according to an embodiment of the present invention. は本願の第1実施例に係る顕微鏡用ズームレンズのレンズ構成を示す図である。These are figures which show the lens structure of the zoom lens for microscopes concerning 1st Example of this application. 図3A-図3Cは第1実施例に係る顕微鏡用ズームレンズの無限遠合焦状態における諸収差図であり、図3Aは低倍端状態、図3Bは中間焦点距離状態、図3Cは高倍端状態の各諸収差図をそれぞれ示す。3A to 3C are graphs showing various aberrations in the infinitely focused state of the microscope zoom lens according to the first example. FIG. 3A is a low magnification end state, FIG. 3B is an intermediate focal length state, and FIG. 3C is a high magnification end. Each aberration diagram in the state is shown. は本願の第2実施例に係る顕微鏡用ズームレンズのレンズ構成を示す図である。These are figures which show the lens structure of the zoom lens for microscopes concerning 2nd Example of this application. 図5A-図5Cは第2実施例に係る顕微鏡用ズームレンズの無限遠合焦状態における諸収差図であり、図5Aは低倍端状態、図5Bは中間焦点距離状態、図5Cは高倍端状態の各諸収差図をそれぞれ示す。FIGS. 5A to 5C are graphs showing various aberrations of the microscope zoom lens according to the second example in the infinite focus state. FIG. 5A is a low magnification end state, FIG. 5B is an intermediate focal length state, and FIG. Each aberration diagram in the state is shown. は本発明の実施形態に係る顕微鏡用ズームレンズと組み合わせて使用される対物レンズの一例のレンズ構成を示す図である。These are figures which show the lens structure of an example of the objective lens used in combination with the zoom lens for microscopes concerning embodiment of this invention. は本発明の実施形態に係る顕微鏡用ズームレンズを備えた顕微鏡の光学系を示す図である。These are figures which show the optical system of the microscope provided with the zoom lens for microscopes concerning embodiment of this invention.
 以下、本発明の実施形態に係る顕微鏡用ズームレンズについて説明する。なお、以下の実施形態は、発明の理解を容易にするためのものに過ぎず、本発明の技術的思想を逸脱しない範囲において当業者により実施可能な付加・置換等を施すことを排除することは意図していない。 Hereinafter, a zoom lens for a microscope according to an embodiment of the present invention will be described. The following embodiments are only for facilitating understanding of the invention, and exclude additions and substitutions that can be performed by those skilled in the art without departing from the technical idea of the present invention. Is not intended.
 本実施形態に係る顕微鏡用ズームレンズは、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群とを有し、前記第2レンズ群の最も物体側のレンズ面は凹形状を有し、低倍端状態から高倍端状態への変倍に際し、前記第2レンズ群と前記第3レンズ群とが光軸方向に沿って移動し、以下の条件式(1)、(2)及び(3)を満足する。
 (1)  0.4 < d1W/|f2| < 0.7
 (2)  |f1/f2| > 4.5
 (3)   Z0.5< V2 < Z0.6
 ただし、d1Wは低倍端状態における前記第1レンズ群の最も像側のレンズ面と前記第2レンズ群の最も物体側のレンズ面との間隔、f2は前記第2レンズ群の焦点距離、f1は前記第1レンズ群の焦点距離、Zは前記顕微鏡用ズームレンズのズーム比、V2は前記第2レンズ群の変倍率をそれぞれ示す。
The zoom lens for a microscope according to this embodiment includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power. And a fourth lens group having a negative refractive power, the lens surface closest to the object side of the second lens group has a concave shape, and upon zooming from the low magnification end state to the high magnification end state, The second lens group and the third lens group move along the optical axis direction, and the following conditional expressions (1), (2), and (3) are satisfied.
(1) 0.4 <d1W / | f2 | <0.7
(2) | f1 / f2 |> 4.5
(3) Z0.5 <V2 < Z0.6
Here, d1W is the distance between the most image side lens surface of the first lens group and the most object side lens surface of the second lens group in the low magnification end state, f2 is the focal length of the second lens group, and f1. Is the focal length of the first lens group, Z is the zoom ratio of the zoom lens for microscope, and V2 is the magnification of the second lens group.
 このような構成により、本顕微鏡用ズームレンズは、低倍端状態における視野(物体高)の約7割の位置における主光線が光軸となす角度を0.013°以下にすることができ、物体側テレセントリック性を確保し且つ15倍以上の高いズーム比を有し、小型で高い結像性能を有する顕微鏡用ズームレンズを達成することができる。  With such a configuration, the zoom lens for this microscope can reduce the angle formed by the principal ray and the optical axis at about 70% of the field of view (object height) in the low magnification end state to 0.013 ° or less. It is possible to achieve a zoom lens for a microscope that secures object-side telecentricity, has a high zoom ratio of 15 times or more, and is small and has high imaging performance. *
 条件式(1)は、低倍端状態における第1レンズ群の最も像側のレンズ面と第2レンズ群の最も物体側のレンズ面との間隔、すなわち第1レンズ群と第2レンズ群の光軸方向の間隔と、第2レンズ群の焦点距離の比の適切な範囲を規定している。条件式(1)を満足することにより、低倍端状態における入射瞳位置を物体面から遠ざけ、低倍端状態での物体側テレセントリック性を確保することができる。 Conditional expression (1) is the distance between the most image side lens surface of the first lens group and the most object side lens surface of the second lens group in the low magnification end state, that is, the first lens group and the second lens group. An appropriate range of the ratio between the distance in the optical axis direction and the focal length of the second lens group is defined. By satisfying conditional expression (1), the entrance pupil position in the low magnification end state can be moved away from the object plane, and the object side telecentricity in the low magnification end state can be ensured.
 条件式(1)の上限値を上回る場合、対物レンズの外径が大きくなり、変倍時におけるコマ収差の変動が大きくなる。 If the upper limit value of conditional expression (1) is exceeded, the outer diameter of the objective lens becomes large, and the fluctuation of coma aberration at the time of zooming becomes large.
 条件式(1)の下限値を下回る場合、低倍端状態における入射瞳位置が物体面に近くなり、デフォーカス時における像の大きさの変化率が大きくなるため、物体側テレセントリック性が確保できない。 If the lower limit value of conditional expression (1) is not reached, the entrance pupil position in the low magnification end state is close to the object plane, and the rate of change of the image size at the time of defocusing becomes large, so the object side telecentricity cannot be ensured. .
 本顕微鏡用ズームレンズでは、第2レンズ群の最も物体側のレンズ面が凹形状を有しているため、当該凹形状を有するレンズが無理なく光線を曲げ、条件式(1)を満足する第2レンズ群からのコマ収差の発生を抑制している。 In this zoom lens for a microscope, since the lens surface closest to the object side of the second lens group has a concave shape, the lens having the concave shape reasonably bends the light beam and satisfies the conditional expression (1). The occurrence of coma from the two lens units is suppressed.
 条件式(2)は、第1レンズ群と第2レンズ群の焦点距離の比の適切な範囲を規定している。条件式(2)を満足することにより、15倍以上の高いズーム比を確保し、且つ低倍端状態における入射瞳位置を物体面から遠ざけ、小型で高い結像性能を有する顕微鏡用ズームレンズを達成することができる。 Conditional expression (2) defines an appropriate range of the ratio of the focal lengths of the first lens group and the second lens group. By satisfying conditional expression (2), a zoom lens for a microscope having a high zoom ratio of 15 times or more and having a small zoom lens with high imaging performance while keeping the entrance pupil position in the low magnification end state away from the object plane Can be achieved.
 条件式(2)の下限値を下回る場合、第1レンズ群と第2レンズ群との光軸方向の間隔が狭まり、第1レンズ群と第2レンズ群とが干渉するため、低倍端状態における倍率を小さくすることができず、結果として高いズーム比が得られない。また、条件式(2)の下限値を下回る状態で高いズーム比を得ようとすると、第1レンズ群と第2レンズ群との間隔が広くなり、小型化を達成できなくなる。また、条件式(2)の下限値を下回った状態で、第3レンズ群と第4レンズ群の屈折力を大きくしてズーム比を高くしようとしても、15倍以上の高いズーム比は得られない。 When the lower limit value of conditional expression (2) is not reached, the distance between the first lens group and the second lens group in the optical axis direction is narrowed, and the first lens group and the second lens group interfere with each other. The zoom ratio cannot be reduced, and as a result, a high zoom ratio cannot be obtained. In addition, if an attempt is made to obtain a high zoom ratio in a state where the lower limit value of conditional expression (2) is not reached, the distance between the first lens group and the second lens group becomes wide, making it impossible to achieve downsizing. In addition, if the zoom ratio is increased by increasing the refractive power of the third lens group and the fourth lens group in a state where the lower limit of conditional expression (2) is not reached, a high zoom ratio of 15 times or more is obtained. Absent.
 条件式(3)は、第2レンズ群の変倍率の適切な範囲を規定している。条件式(3)を満足することにより、顕微鏡用ズームレンズの全長をコンパクトに維持しつつ、高い結像性能を有する顕微鏡用ズームレンズを達成することができる。なお、本明細書において「変倍率」とは、顕微鏡用ズームレンズの「ズーム比」に対する「負担量」を示す。 Conditional expression (3) defines an appropriate range of the zoom ratio of the second lens group. By satisfying conditional expression (3), it is possible to achieve a zoom lens for a microscope having high imaging performance while maintaining the overall length of the zoom lens for microscope compact. In the present specification, the “magnification ratio” indicates the “burden amount” with respect to the “zoom ratio” of the microscope zoom lens.
 条件式(3)の上限値を上回る場合、第2レンズ群の屈折力が大きくなり第2レンズ群の「負担量」を上げることとなるため、顕微鏡用ズームレンズの小型化には有利となる。しかしこの場合、低倍端状態においては、歪曲収差の増大、ペッツバール和の悪化による非点収差の増大、変倍時におけるコマ収差、特に下方コマ収差の変動の増大等が生じ、高倍端状態においては球面収差の増大等が生じてしまう。 When the upper limit of conditional expression (3) is exceeded, the refractive power of the second lens group increases and the “burden amount” of the second lens group increases, which is advantageous for downsizing the zoom lens for a microscope. . However, in this case, an increase in distortion, an increase in astigmatism due to the deterioration of Petzval sum, an increase in coma at the time of zooming, especially an increase in fluctuation of the lower coma, etc. occur in the low magnification end state. Increases spherical aberration and the like.
 条件式(3)の下限値を下回る場合、高いズーム比を得ようとすると第3レンズ群の変倍率が増大し、変倍時の第3レンズ群の移動量が増加する。その結果、第2レンズ群と第3レンズ群との干渉を防止するために第2レンズ群と第3レンズ群との間隔を長くする必要が生じ、顕微鏡用ズームレンズの全長が大きくなり、小型化が達成できなくなる。 When the lower limit value of conditional expression (3) is not reached, the zoom ratio of the third lens group increases when attempting to obtain a high zoom ratio, and the amount of movement of the third lens group during zooming increases. As a result, it is necessary to increase the distance between the second lens group and the third lens group in order to prevent interference between the second lens group and the third lens group, and the overall length of the zoom lens for the microscope is increased. Cannot be achieved.
 また、本顕微鏡用ズームレンズは、第4レンズ群が、物体側から順に、正の屈折力を有する第11レンズ群と、負の屈折力を有する第12レンズ群と、正の屈折力を有する第13レンズ群とからなることが好ましい。このような構成により、諸収差を良好に補正し、顕微鏡用ズームレンズの小型化を達成することができる。 In this zoom lens for a microscope, the fourth lens group has, in order from the object side, an eleventh lens group having a positive refractive power, a twelfth lens group having a negative refractive power, and a positive refractive power. The thirteenth lens group is preferable. With such a configuration, various aberrations can be corrected satisfactorily, and miniaturization of the microscope zoom lens can be achieved.
 第4レンズ群の最も像側のレンズを正レンズで構成すると、当該最も像側のレンズを負レンズで構成するよりもバックフォーカスを短くでき、ズームレンズの全長が小さくなる。   If the lens closest to the image side of the fourth lens group is configured as a positive lens, the back focus can be shortened and the overall length of the zoom lens can be reduced as compared with the case where the lens closest to the image side is configured as a negative lens. *
 また、本顕微鏡用ズームレンズは第1~第4のレンズ群を有するため、4群構成の場合を含んでいる。一般に、4群構成のズームレンズは、フォーカシングレンズ(第1群:焦点及びピント調節)、バリエーターレンズ(第2群:変倍系レンズ)、コンペンセータレンズ(第3群:補正レンズ)、リレーレンズ(第4群:結像レンズ)に分けられ、各グループが各々独立した役目を持っている。 In addition, since the zoom lens for this microscope has the first to fourth lens groups, the case of a four-group configuration is included. In general, a zoom lens having a four-group configuration includes a focusing lens (first group: focus and focus adjustment), a variator lens (second group: variable magnification lens), a compensator lens (third group: correction lens), a relay lens ( 4th group: imaging lens), and each group has an independent role.
 第1群(フォーカシングレンズ)は被写体にピントを合わせる働きを有し、第2群(バリエーターレンズ)は前後のパワー配分を変化させて像の大きさを変える働きを有し、第3群(コンペンセータレンズ)はバリエーターレンズと連動し、ピントのずれを補正する働きを有する。そして第4群は、リレーレンズ又はマスターレンズと呼ばれ、第1群~第3群のフォーカシングレンズ、バリエーターレンズ、及びコンペンセータレンズからなるズーム部で発生した収差を補正するとともに、ズーム部で形成された虚像を実像に戻して結像する働きを有する。 The first group (focusing lens) has a function to focus on the subject, and the second group (variator lens) has a function to change the size of the image by changing the power distribution in the front and back, and the third group (compensator). The lens) works in conjunction with the variator lens and has a function of correcting the focus shift. The fourth group is called a relay lens or a master lens, and corrects aberrations generated in the zoom unit including the focusing lens, the variator lens, and the compensator lens of the first to third groups, and is formed by the zoom unit. It has the function of returning the virtual image to a real image.
 このように、第4群は、第1群から第3群からなるズーム部でできた像を結像する役割のため、変倍時に第4群を通過する光束はほぼ一定であり、4群構成のズームレンズにおいて第4群は独立したレンズとして作用している。このため、第4群を正負正のトリプレットの構成とすることで、諸収差の補正を良好に行うことができる。  As described above, the fourth group plays a role of forming an image formed by the zoom unit composed of the first group to the third group, so that the light flux passing through the fourth group at the time of zooming is substantially constant, and the fourth group In the zoom lens having the configuration, the fourth group acts as an independent lens. For this reason, various aberrations can be favorably corrected by configuring the fourth group to have a positive and negative triplet structure. *
 また、本顕微鏡用ズームレンズは、以下の条件式(4)を満足することが好ましい。
 (4) 0.9 < d11/d12< 1.2
 ただし、d11は前記第11レンズ群の最も像側のレンズ面と前記第12レンズ群の最も物体側のレンズ面との間隔、d12は前記第12レンズ群の最も像側のレンズ面と前記第13レンズ群の最も物体側のレンズ面との間隔をそれぞれ示す。
In addition, it is preferable that the zoom lens for the microscope satisfies the following conditional expression (4).
(4) 0.9 <d11 / d12 <1.2
Here, d11 is the distance between the most image side lens surface of the eleventh lens group and the most object side lens surface of the twelfth lens group, and d12 is the most image side lens surface of the twelfth lens group and the thirteenth lens group. The distance from the most object side lens surface of the 13 lens group is shown.
 条件式(4)は、第12レンズ群と第13レンズ群の間隔と、第11レンズ群と第12レンズ群の間隔との比の適切な範囲を規定している。条件式(4)を満足することにより、第4レンズ群において、第11レンズ群と第12レンズ群との距離と、第12レンズ群と第13レンズ群との距離とがほぼ等しくなり、諸収差の補正、特に球面収差、コマ収差の補正を良好に行うことができる。 Conditional expression (4) defines an appropriate range of the ratio between the distance between the twelfth lens group and the thirteenth lens group and the distance between the eleventh lens group and the twelfth lens group. By satisfying conditional expression (4), in the fourth lens group, the distance between the eleventh lens group and the twelfth lens group and the distance between the twelfth lens group and the thirteenth lens group become substantially equal. It is possible to satisfactorily correct aberrations, particularly spherical aberrations and coma.
 条件式(4)の上限値を上回る場合、第11レンズ群と第12レンズ群との間隔が大きくなり過ぎ、像面湾曲が悪化する。 If the upper limit value of conditional expression (4) is exceeded, the distance between the eleventh lens group and the twelfth lens group becomes too large, and the field curvature deteriorates.
 条件式(4)の下限値を下回る場合、コマ収差、球面収差が悪化する。 When the lower limit value of conditional expression (4) is not reached, coma and spherical aberration are deteriorated.
 また、本顕微鏡用ズームレンズは、以下の条件式(5)を満足することが好ましい。
 (5) 0.05 < d11/|f4| < 0.2
 ただし、d11は前記第11レンズ群の最も像側のレンズ面と前記第12レンズ群の最も物体側のレンズ面との間隔、f4は前記第4レンズ群の焦点距離をそれぞれ示す。
In addition, it is preferable that the zoom lens for the microscope satisfies the following conditional expression (5).
(5) 0.05 <d11 / | f4 | <0.2
Here, d11 is the distance between the most image side lens surface of the eleventh lens group and the most object side lens surface of the twelfth lens group, and f4 is the focal length of the fourth lens group.
 条件式(5)は、第4レンズ群の焦点距離と、第4レンズ群中の第11レンズ群と第12レンズ群との間隔を規定している。条件式(5)を満足することにより、適切なバックフォーカスを確保し射出瞳位置を像面から遠ざけることができる。 Conditional expression (5) defines the focal length of the fourth lens group and the distance between the eleventh lens group and the twelfth lens group in the fourth lens group. By satisfying conditional expression (5), an appropriate back focus can be secured and the exit pupil position can be moved away from the image plane.
 CCD等の撮像素子は、素子の構造、例えばカラーフィルタや受光部が電荷転送路の遮光部等の奥に位置するために、光線が素子に斜めに入射すると、色調の変化(色シェーディング)や周辺光量変化(シェーディング)を生じるため、CCD等の撮像素子を像面に配置する場合、射出瞳位置を結像位置からできるだけ遠くに設定し、素子にほぼ垂直に光線が入射するように設計する必要がある。また、像面の後ろに接眼レンズを配置し、接眼レンズを通して観察する場合においても、射出瞳位置が像面から遠い方が像の観察がしやすく、また顕微鏡自体の光学性能の劣化を防ぐことができる。 An image pickup device such as a CCD has an element structure, for example, a color filter or a light receiving portion located behind a light shielding portion of a charge transfer path. When an image sensor such as a CCD is placed on the image plane to change the amount of peripheral light (shading), the exit pupil position is set as far as possible from the image formation position, and the light beam is designed to enter the element almost perpendicularly. There is a need. In addition, when an eyepiece is placed behind the image plane and the image is viewed through the eyepiece, it is easier to observe the image when the exit pupil position is far from the image plane, and the optical performance of the microscope itself is prevented from deteriorating. Can do.
 条件式(5)の上限値を上回る場合、バックフォーカスが短くなりすぎ、例えばCCD等の撮像素子を像面に配置しようとしてもそのスペースが確保できなかったり、あるいはレンズを組み立てた後の光学調整時に移動可能な像面の範囲を確保できなくなる虞がでてくる。 When the upper limit value of conditional expression (5) is exceeded, the back focus becomes too short, for example, even if an image pickup device such as a CCD is arranged on the image plane, the space cannot be secured, or optical adjustment after the lens is assembled. There is a possibility that the range of the movable image plane cannot be secured sometimes.
 条件式(5)の下限値を下回る場合、射出瞳位置が像面に近づき、バックフォーカスが長くなる。その結果、顕微鏡用ズームレンズの全長が大きくなり、小型化が達成できなくなる。 When the lower limit value of conditional expression (5) is not reached, the exit pupil position approaches the image plane and the back focus becomes longer. As a result, the entire length of the zoom lens for a microscope becomes large, and it becomes impossible to achieve downsizing.
 また、本顕微鏡用ズームレンズは、低倍端状態から高倍端状態への変倍に際し、前記第2レンズ群は物体側から像側へのみ移動し、前記第3レンズ群は像側から物体側へのみ移動することが好ましい。このような構成により、変倍時のレンズ群の移動機構を簡素化することができる。 In the zoom lens for a microscope, the second lens group moves only from the object side to the image side and the third lens group moves from the image side to the object side when zooming from the low magnification end state to the high magnification end state. It is preferable to move only to. With such a configuration, the moving mechanism of the lens unit at the time of zooming can be simplified.
 また、本願の顕微鏡は、上述した構成の顕微鏡用ズームレンズを備えていることを特徴とする。これにより、物体側テレセントリック性を確保し且つ高いズーム比を有し、小型で高い結像性能を有する顕微鏡を実現することができる。 Further, the microscope of the present application is characterized by including the microscope zoom lens having the above-described configuration. As a result, it is possible to realize a compact microscope having high image-forming performance while ensuring object-side telecentricity and having a high zoom ratio.
 以下、本実施形態に係る顕微鏡用ズームレンズの各数値実施例について添付図面に基づいて説明する。 Hereinafter, each numerical example of the microscope zoom lens according to the present embodiment will be described with reference to the accompanying drawings.
 図1Aおよび図1Bは、各数値実施例に共通する顕微鏡用ズームレンズの基本構成とズーム移動軌跡を示す図である。 FIG. 1A and FIG. 1B are diagrams showing a basic configuration and a zoom movement locus of a microscope zoom lens common to each numerical example.
 各実施例に係る顕微鏡用ズームレンズは、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4から構成され、第2レンズ群G2の最も物体側のレンズ面は凹形状を有している。
図1A,1B中、Iは像面を示す。
The zoom lens for a microscope according to each example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a positive refractive power. The lens group G3 includes a fourth lens group G4 having negative refractive power, and the lens surface closest to the object side of the second lens group G2 has a concave shape.
In FIGS. 1A and 1B, I indicates an image plane.
 本顕微鏡用ズームレンズは、低倍端状態(図1A)から高倍端状態(図1B)への変倍に際し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少するように、第2レンズ群G2が物体側から像側へのみ移動し、第3レンズ群G3が像側から物体側へのみ移動する。このように、本顕微鏡用ズームレンズは、低倍端状態から高倍端状態への変倍に際して第2レンズ群と第3レンズ群とが一方向のみに移動し、途中で戻る軌跡を取ることがない。 The zoom lens for this microscope is designed so that the air gap between the second lens group G2 and the third lens group G3 is reduced upon zooming from the low magnification end state (FIG. 1A) to the high magnification end state (FIG. 1B). The second lens group G2 moves only from the object side to the image side, and the third lens group G3 moves only from the image side to the object side. In this way, the zoom lens for this microscope can take a trajectory that the second lens group and the third lens group move only in one direction and return in the middle when zooming from the low magnification end state to the high magnification end state. Absent.
(第1実施例)
 図2は、第1実施例に係る顕微鏡用ズームレンズのレンズ構成を示す図である。
(First embodiment)
FIG. 2 is a diagram illustrating a lens configuration of the zoom lens for a microscope according to the first example.
 第1実施例に係る顕微鏡用ズームレンズは、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、開口絞りSと、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4から構成されている。 The zoom lens for a microscope according to the first example includes a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, and a positive lens in order from the object side. It is composed of a third lens group G3 having a refractive power and a fourth lens group G4 having a negative refractive power.
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合よりなる接合正レンズと、物体側に凸面を向けた正メニスカスレンズL13とから構成されている。 The first lens group G1 includes, in order from the object side, a cemented positive lens composed of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a positive meniscus having a convex surface facing the object side. It consists of a lens L13.
 第2レンズ群G2は、物体側から順に、両凹形状の負レンズL21と、両凹形状の負レンズL22と物体側に凸面を向けた正メニスカスレンズL23との接合よりなる接合負レンズから構成されている。 The second lens group G2 includes, in order from the object side, a negative biconcave lens L21, a negative cemented lens formed by cementing a biconcave negative lens L22 and a positive meniscus lens L23 having a convex surface facing the object side. Has been.
 第3レンズ群G3は、物体側から順に、両凸形状の正レンズL31と、物体側に凸面を向けた負メニスカスレンズL32と両凸形状の正レンズL33との接合よりなる接合正レンズから構成されている。 The third lens group G3 includes, in order from the object side, a biconvex positive lens L31, and a cemented positive lens formed by cementing a negative meniscus lens L32 having a convex surface toward the object side and a biconvex positive lens L33. Has been.
 第4レンズ群G4は、物体側から順に、正の屈折力を有する第11レンズ群G4aと、負の屈折力を有する第12レンズ群G4bと、正の屈折力を有する第13レンズ群G4cとから構成されている。 The fourth lens group G4 includes, in order from the object side, an eleventh lens group G4a having a positive refractive power, a twelfth lens group G4b having a negative refractive power, and a thirteenth lens group G4c having a positive refractive power. It is composed of
 第11レンズ群G4aは、物体側から順に、両凸形状の正レンズL41と両凹形状の負レンズL42との接合よりなる接合正レンズから構成されている。 The eleventh lens group G4a includes, in order from the object side, a cemented positive lens formed by cementing a biconvex positive lens L41 and a biconcave negative lens L42.
 第12レンズ群G4bは、物体側から順に、像面I側に凸面を向けた平凸レンズL43と両凹形状の負レンズL44との接合よりなる接合負レンズから構成されている。 The twelfth lens group G4b includes, in order from the object side, a cemented negative lens formed by cementing a planoconvex lens L43 having a convex surface directed toward the image plane I and a biconcave negative lens L44.
 第13レンズ群G4cは、両凸形状の正レンズL45から構成されている。 The thirteenth lens group G4c is composed of a biconvex positive lens L45.
 以下の表1に第1実施例に係る顕微鏡用ズームレンズの諸元値を示す。 Table 1 below shows specification values of the zoom lens for a microscope according to the first example.
 (レンズデータ)において、物面は物体面、面番号は物体側から数えたレンズ面の順序、rは各レンズ面の曲率半径、dはレンズ面の面間隔、ndはd線(波長λ=587.6nm)に対する屈折率、νdはd線(波長λ=587.6nm)に対するアッベ数、(可変)は可変の面間隔、(絞り)は開口絞りS、像面は像面Iをそれぞれ示している。なお、曲率半径rの「∞」は平面を示し、空気の屈折率nd=1.000000は記載を省略している。 In (lens data), the object surface is the object surface, the surface number is the order of the lens surfaces counted from the object side, r is the radius of curvature of each lens surface, d is the surface spacing of the lens surfaces, and nd is the d-line (wavelength λ = The refractive index is 587.6 nm), νd is the Abbe number for the d-line (wavelength λ = 587.6 nm), (variable) is the variable surface separation, (diaphragm) is the aperture stop S, and the image plane is the image plane I. ing. Note that “∞” of the radius of curvature r indicates a plane, and the refractive index of air nd = 1.00000 is omitted.
 (各種データ)において、fは焦点距離、FNOはFナンバー、Yは像高、Bfはバックフォーカス、di(i:整数)は面番号iでの可変面間隔値をそれぞれ示す。(条件式対応値)は、各条件式の対応値をそれぞれ示す。なお、βは、以下の各実施例の顕微鏡用ズームレンズに後述する表4に示す対物レンズを装着した時の全系の総合倍率を示す。 (Various data), f is a focal length, FNO is an F number, Y is an image height, Bf is a back focus, and di (i: integer) is a variable surface interval value at a surface number i. (Conditional expression corresponding value) indicates the corresponding value of each conditional expression. Note that β represents the total magnification of the entire system when an objective lens shown in Table 4 described later is attached to the microscope zoom lens of each of the following examples.
 なお、以下の全ての諸元値において掲載されている焦点距離f、曲率半径r、その他の長さの単位は一般に「mm」が使われる。しかし光学系は、比例拡大又は縮小しても同等の光学性能が得られるため、これに限られるものではない。また、単位は「mm」に限定されることなく他の適当な単位を用いることもできる。さらに、これらの記号は、以降の他の実施例においても同様とし説明を省略する。 It should be noted that “mm” is generally used as the unit of focal length f, radius of curvature r, and other lengths listed in all the following specification values. However, the optical system is not limited to this because the same optical performance can be obtained even when proportionally enlarged or reduced. Further, the unit is not limited to “mm”, and other appropriate units may be used. Further, these symbols are the same in the other embodiments described below, and the description thereof is omitted.
(表1)第1実施例
 
(レンズデータ)
面番号     r      d    nd     νd
物面      ∞
  1)     90.853    2.0    1.80440   39.58
 2)     40.963    3.7    1.49782    82.52
 3)     -93.816     0.2
 4)     35.739     2.5    1.49782    82.52
 5)     57.591    (可変)
 6)     -46.767     1.5     1.77250    49.61
 7)      26.174     2.5
 8)     -41.406     1.0     1.60300    65.47
 9)     15.6205     2.2    1.75520    27.51
 10)     148.037     (可変)
 11> (絞り)   ∞      (可変)
 12)     58.572     2.0     1.60300    65.47
 13)     -58.572     0.2
 14)     42.396     1.5    1.74950    35.33
 15)     19.005     2.6    1.49782    82.52
 16)    -363.441     (可変)
 17)     13.3198    3.0    1.48749    70.41
 18)    -331.203     1.5    1.65844    50.89
 19)     22.4254    14.8 
 20)      ∞      2.0     1.62004    36.26
 21)     -10.484     1.5     1.77250    49.61
 22)     10.484    15.7
 23)     25.847     2.7    1.72916    54.66
 24)    -471.548 
像面      ∞
 
(各種データ)
ズーム比 (Z) 20.0
     低倍端状態     中間焦点距離状態   高倍端状態
β      0.445         2.0         8.9
f      22.25         100         445
FNO    10.93          13.86        22.44
Y      4.45          4.45        4.45
Bf     17.22          17.22        17.22
d5      7.84782         38.30537      50.90242 
d10     45.92459        15.46704       2.86999
d11     45.12076         30.05941       2.87356 
d16      2.52033        17.58168      44.76753
 
(ズームレンズ群データ)
群    始面    f
1      1     82.1
2      6    -17.3 
3      12    37.75 
4      17   -135.2
11      17    101.15 
12      20     -11.2 
13      23    33.7
 
(条件式対応値)
(1) d1W/|f2| =0.454
(2) |f1/f2| = 4.75
(3) Z0.5=4.472<V2=5.884<Z0.6=6.034 
(4) d11/d12=0.943   
(5) d11/|f4| =0.11  
 
(Table 1) First Example
(Lens data)
Surface number r d nd νd
Object ∞
1) 90.853 2.0 1.80440 39.58
2) 40.963 3.7 1.49782 82.52
3) -93.816 0.2
4) 35.739 2.5 1.49782 82.52
5) 57.591 (variable)
6) -46.767 1.5 1.77250 49.61
7) 26.174 2.5
8) -41.406 1.0 1.60300 65.47
9) 15.6205 2.2 1.75520 27.51
10) 148.037 (variable)
11> (Aperture) ∞ (Variable)
12) 58.572 2.0 1.60300 65.47
13) -58.572 0.2
14) 42.396 1.5 1.74950 35.33
15) 19.005 2.6 1.49782 82.52
16) -363.441 (variable)
17) 13.3198 3.0 1.48749 70.41
18) -331.203 1.5 1.65844 50.89
19) 22.4254 14.8
20) ∞ 2.0 1.62004 36.26
21) -10.484 1.5 1.77250 49.61
22) 10.484 15.7
23) 25.847 2.7 1.72916 54.66
24) -471.548
Image plane ∞

(Various data)
Zoom ratio (Z) 20.0
Low magnification end state Intermediate focal length state High magnification end state β 0.445 2.0 8.9
f 22.25 100 445
FNO 10.93 13.86 22.44
Y 4.45 4.45 4.45
Bf 17.22 17.22 17.22
d5 7.84782 38.30537 50.90242
d10 45.92459 15.46704 2.86999
d11 45.12076 30.05941 2.87356
d16 2.52033 17.58168 44.76753

(Zoom lens group data)
Group start surface f
1 1 82.1
2 6 -17.3
3 12 37.75
4 17 -135.2
11 17 101.15
12 20 -11.2
13 23 33.7

(Values for conditional expressions)
(1) d1W / | f2 | = 0.454
(2) | f1 / f2 | = 4.75
(3) Z 0.5 = 4.472 <V2 = 5.884 <Z 0.6 = 6.034
(4) d11 / d12 = 0.944
(5) d11 / | f4 | = 0.11
 図3A-図3Cは、第1実施例に係る顕微鏡用ズームレンズの無限遠合焦状態における諸収差図であり、図3Aは低倍端状態、図3Bは中間焦点距離状態、図3Cは高倍端状態の各諸収差図をそれぞれ示す。なお、顕微鏡として実際に使用する際は、後述する表3に示す対物レンズと組み合わせて使用するが、本実施例では、顕微鏡用ズームレンズの性能をよく示すために、顕微鏡用ズームレンズのみの収差図(即ち、無限遠からの光線追跡)を示す。 3A to 3C are graphs showing various aberrations in the infinitely focused state of the microscope zoom lens according to the first example. FIG. 3A is a low magnification end state, FIG. 3B is an intermediate focal length state, and FIG. Each aberration diagram in the end state is shown. When actually used as a microscope, it is used in combination with an objective lens shown in Table 3 to be described later. In this example, in order to show the performance of the microscope zoom lens well, aberrations of only the microscope zoom lens are used. Figure (ie ray tracing from infinity) is shown.
 各収差図において、FNOはFナンバー、Yは像高をそれぞれ示す。また、dはd線(波長λ=587.56nm)、CはC線(波長λ=656.27nm)、FはF線(波長λ=486.13nm)、gはg線(波長λ=435.84nm)の収差曲線を示している。 In each aberration diagram, FNO represents the F number, and Y represents the image height. D is a d-line (wavelength λ = 587.56 nm), C is a C-line (wavelength λ = 656.27 nm), F is an F-line (wavelength λ = 486.13 nm), and g is a g-line (wavelength λ = 435). .84 nm) aberration curve.
 非点収差図において、実線はサジタル像面、点線はメリジオナル像面をそれぞれ示す。 In the astigmatism diagrams, the solid line represents the sagittal image plane, and the dotted line represents the meridional image plane.
 なお、以下に示す各実施例の諸収差図においても、本実施例と同様の符号を用いる。 In the various aberration diagrams of each example shown below, the same symbols as in this example are used.
 各諸収差図より、本第1実施例に係る顕微鏡用ズームレンズは、低倍端状態、中間焦点距離状態、および高倍端状態の各状態において、諸収差を良好に補正し、優れた結像性能を有することがわかる。ズーム比20倍という高ズーム比を有しつつも、低倍端状態での物体側テレセントリック性を確保している。 From the various aberration diagrams, the zoom lens for a microscope according to the first example corrects various aberrations well in each of the low magnification end state, the intermediate focal length state, and the high magnification end state, and has excellent imaging. It can be seen that it has performance. While having a high zoom ratio of 20 times, the object side telecentricity at the low magnification end state is ensured.
(第2実施例)
 図4は、第2実施例に係る顕微鏡用ズームレンズのレンズ構成を示す図である。
(Second embodiment)
FIG. 4 is a diagram illustrating a lens configuration of a zoom lens for a microscope according to the second example.
 第2実施例に係る顕微鏡用ズームレンズは、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、開口絞りSと、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群とから構成されている。 The zoom lens for a microscope according to the second example includes a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, and a positive lens in order from the object side. It is composed of a third lens group G3 having a refractive power and a fourth lens group having a negative refractive power.
 第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合よりなる接合正レンズと、物体側に凸面を向けた正メニスカスレンズL13とから構成されている。 The first lens group G1 includes, in order from the object side, a cemented positive lens composed of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a positive meniscus having a convex surface facing the object side. It consists of a lens L13.
 第2レンズ群G2は、物体側から順に、両凹形状の負レンズL21と、両凹形状の負レンズL22と物体側に凸面を向けた正メニスカスレンズL23との接合よりなる接合負レンズとから構成されている。 The second lens group G2 includes, in order from the object side, a biconcave negative lens L21, a cemented negative lens formed by cementing a biconcave negative lens L22 and a positive meniscus lens L23 having a convex surface facing the object side. It is configured.
 第3レンズ群G3は、物体側から順に、両凸形状の正レンズL31と、物体側に凸面を向けた負メニスカスレンズL32と両凸形状の正レンズL33との接合よりなる接合正レンズとから構成されている。 The third lens group G3 includes, in order from the object side, a biconvex positive lens L31, and a cemented positive lens formed by cementing a negative meniscus lens L32 having a convex surface toward the object side and a biconvex positive lens L33. It is configured.
 第4レンズ群G4は、物体側から順に、正の屈折力を有する第11レンズ群G4aと、負の屈折力を有する第12レンズ群G4bと、正の屈折力を有する第13レンズ群G4cとから構成されている。 The fourth lens group G4 includes, in order from the object side, an eleventh lens group G4a having a positive refractive power, a twelfth lens group G4b having a negative refractive power, and a thirteenth lens group G4c having a positive refractive power. It is composed of
 第11レンズ群G4aは、物体側から順に、物体側に凸面を向けた正メニスカスレンズL41と物体側に凸面を向けた負メニスカスレンズL42との接合よりなる接合正レンズから構成されている。 The eleventh lens group G4a is composed of, in order from the object side, a cemented positive lens composed of a positive meniscus lens L41 having a convex surface facing the object side and a negative meniscus lens L42 having a convex surface facing the object side.
 第12レンズ群G4bは、物体側から順に、像面I側に凸面を向けた正メニスカスレンズL43と両凹形状の負レンズL44との接合よりなる接合負レンズから構成されている。 The twelfth lens group G4b includes, in order from the object side, a cemented negative lens formed by cementing a positive meniscus lens L43 having a convex surface toward the image plane I side and a biconcave negative lens L44.
 第13レンズ群G4cは、像面I側に凸面を向けた正メニスカスレンズL45から構成されている。 The thirteenth lens group G4c is composed of a positive meniscus lens L45 having a convex surface directed toward the image plane I side.
 以下の表2に第2実施例に係る顕微鏡用ズームレンズの諸元値を示す。 Table 2 below shows specification values of the zoom lens for a microscope according to the second example.
(表2)第2実施例
 
(レンズデータ)
面番号       r       d       nd      νd
物面         ∞
1)        91.226     2.0     1.80454    39.58
2)        40.601     3.7     1.49782     82.52
3)        -87.866     0.2
4)        35.309     2.5     1.49782    82.52
5)        57.954     (可変)
6)        -80.849     1.5     1.83481     42.72
7)        22.652     2.5
8)       -109.856      1.0      1.67025     57.53
9)        13.908       2.2     1.80518     25.41
10)              69.587       (可変)
11> (絞り)        ∞          (可変)
12)              65.818         2.0         1.59319        67.87
13)            -189.737         0.2
14)              35.488         1.5         1.80384        33.89
15)              19.685         2.6         1.49782        82.52
16)             -68.032       (可変)
17)              12.935         3.0         1.48749        70.41
18)             337.055         1.5         1.74810        52.30
19)              22.591        18.866 
20)             -70.712         2.0         1.62004        36.27
21)              -5.747         1.5         1.80411        46.55
22)              10.889        16.529
23)            -161.088         2.7         1.61720        54.01
24)             -17.582
像面              ∞
 
(各種データ)
ズーム比 (Z) 15.0
     低倍端状態  中間焦点距離状態  高倍端状態
β           0.7            2.7              10.5 
f          35            135               525
FNO      11.65          14.56             25.09 
Y           4.45           4.45              4.45
Bf        16.00          16.00             16.00
d5          10.69191       35.75734          47.15302 
d10         39.83384       14.76841           3.37273 
d11         42.85259       28.38675           3.34255 
d16          2.47741       16.94325          41.98745
 
 
(ズームレンズ群データ)
群   始面    f
1        1      79.0 
2        6     -17.5 
3       12      38.0
4       17    -120.41 
11      17     112.41
12      20      -8.43 
13      23      31.75 
 
(条件式対応値)
(1)d1W/|f2| =0.611
(2)|f1/f2| =4.51 
(3)Z0.5=3.873<V2=4.969<Z0.6 =5.078 
(4)d11/d12=1.141   
(5)d11/|f4| =0.157 
 
(Table 2) Second Example
(Lens data)
Surface number r d nd νd
Object ∞
1) 91.226 2.0 1.80454 39.58
2) 40.601 3.7 1.49782 82.52
3) -87.866 0.2
4) 35.309 2.5 1.49782 82.52
5) 57.954 (variable)
6) -80.849 1.5 1.83481 42.72
7) 22.652 2.5
8) -109.856 1.0 1.67025 57.53
9) 13.908 2.2 1.80518 25.41
10) 69.587 (variable)
11> (Aperture) ∞ (Variable)
12) 65.818 2.0 1.59319 67.87
13) -189.737 0.2
14) 35.488 1.5 1.80384 33.89
15) 19.685 2.6 1.49782 82.52
16) -68.032 (variable)
17) 12.935 3.0 1.48749 70.41
18) 337.055 1.5 1.74810 52.30
19) 22.591 18.866
20) -70.712 2.0 1.62004 36.27
21) -5.747 1.5 1.80411 46.55
22) 10.889 16.529
23) -161.088 2.7 1.61720 54.01
24) -17.582
Image plane ∞

(Various data)
Zoom ratio (Z) 15.0
Low magnification end state Intermediate focal length state High magnification end state β 0.7 2.7 10.5
f 35 135 525
FNO 11.65 14.56 25.09
Y 4.45 4.45 4.45
Bf 16.00 16.00 16.00
d5 10.69191 35.75734 47.15302
d10 39.83384 14.76841 3.37273
d11 42.85259 28.38675 3.34255
d16 2.47741 16.94325 41.98745


(Zoom lens group data)
Group start surface f
1 1 79.0
2 6 -17.5
3 12 38.0
4 17 -120.41
11 17 112.41
12 20 -8.43
13 23 31.75

(Values for conditional expressions)
(1) d1W / | f2 | = 0.611
(2) | f1 / f2 | = 4.51
(3) Z 0.5 = 3.873 <V2 = 4.969 <Z 0.6 = 5.078
(4) d11 / d12 = 1.141
(5) d11 / | f4 | = 0.157
 図5A-図5Cは、第2実施例に係る顕微鏡用ズームレンズの無限遠合焦状態における諸収差図であり、図5Aは低倍端状態、図5Bは中間焦点距離状態、図5Cは高倍端状態の各諸収差図をそれぞれ示す。 FIGS. 5A to 5C are graphs showing various aberrations of the microscope zoom lens according to the second example in the infinite focus state. FIG. 5A is a low magnification end state, FIG. 5B is an intermediate focal length state, and FIG. Each aberration diagram in the end state is shown.
 各諸収差図より、本第2実施例に係る顕微鏡用ズームレンズは、低倍端状態、中間焦点距離状態、および高倍端状態の各状態において、諸収差を良好に補正し、優れた結像性能を有することがわかる。ズーム比15倍という高ズーム比を有しつつも、低倍端状態での物体側テレセントリック性を確保している。 From the various aberration diagrams, the zoom lens for a microscope according to the second example corrects various aberrations well in each of the low magnification end state, the intermediate focal length state, and the high magnification end state, and has excellent imaging. It can be seen that it has performance. While having a high zoom ratio of 15 times, the object side telecentricity at the low magnification end state is ensured.
 本実施例に係る顕微鏡用ズームレンズは、例えば、図6および以下の表3に諸元値を示す対物レンズと組み合わせて使用することができる。 The zoom lens for a microscope according to the present embodiment can be used in combination with, for example, an objective lens having specification values shown in FIG. 6 and Table 3 below.
 図6は、この対物レンズのレンズ構成を示す図である。 FIG. 6 is a diagram showing a lens configuration of the objective lens.
 (表3)
 
(レンズデータ)
面番号     r        d        nd        νd
 物面       ∞
 1)      -14.400     1.60      1.65412      39.68
 2)      -19.900     0.10
 3)       24.500     4.30      1.72342      37.95
 4)      423.036     1.20      1.61340      44.27
 5)       39.904     2.10
 6)      296.026     1.20      1.83481      42.72
 7)       20.657     8.10      1.43425      95.00
 8)      -32.011     0.35
 9)      101.559     3.80      1.49782      82.52
10)      -40.270 
像面        ∞
 
(各種データ)
焦点距離=50
最大NA=0.2
作動距離=30.28
 
(Table 3)

(Lens data)
Surface number r d nd νd
Object ∞
1) -14.400 1.60 1.65412 39.68
2) -19.900 0.10
3) 24.500 4.30 1.72342 37.95
4) 423.036 1.20 1.61340 44.27
5) 39.904 2.10
6) 296.026 1.20 1.83481 42.72
7) 20.657 8.10 1.43425 95.00
8) -32.011 0.35
9) 101.559 3.80 1.49782 82.52
10) -40.270
Image plane ∞

(Various data)
Focal length = 50
Maximum NA = 0.2
Working distance = 30.28
 図7は、実施形態に係る顕微鏡用ズームレンズを備えた顕微鏡の光学系を示す図である。 FIG. 7 is a diagram illustrating an optical system of a microscope including the zoom lens for a microscope according to the embodiment.
 物体1からの光は、図6に示す如き対物レンズ2で平行光に変換された後、ズームレンズ3で変倍すると同時に像面Iに物体の像を形成する。そして、例えば、この像を不図示の接眼レンズを介して観察者が観察したり、像面にCCD等の撮像素子Iである撮像手段を配置して、モニタを介して観察する。像面にCCD等の撮像手段を配置した場合、金属の標本や機械部品(例えば歯車)等の比較的大きな物体を広い視野で良好に観察することができる。 The light from the object 1 is converted into parallel light by the objective lens 2 as shown in FIG. 6 and then zoomed by the zoom lens 3 and simultaneously forms an image of the object on the image plane I. Then, for example, an observer observes this image through an eyepiece (not shown), or an imaging unit such as an imaging device I such as a CCD is arranged on the image plane and observed through a monitor. When an imaging means such as a CCD is disposed on the image plane, a relatively large object such as a metal specimen or a mechanical part (for example, a gear) can be observed well with a wide field of view.

Claims (7)

  1.  対物レンズからの略平行光を受光し、撮像素子の撮像面に結像させる顕微鏡用ズームレンズであって、
     物体側から順に、正の屈折力を有る第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群とを有し、
     前記第4レンズ群は、物体側から順に、正の屈折力を有する第11レンズ群と、負の屈折力を有する第12レンズ群と、正の屈折力を有する第13レンズ群とからなり、
     低倍端状態から高倍端状態への変倍に際し、前記第2レンズ群と前記第3レンズ群とが光軸方向に沿って移動し、
     以下の条件を満足することを特徴とする顕微鏡用ズームレンズ。
     0.4 < d1W/|f2| < 0.7
     0.9 < d11/d12< 1.2
    ただし、
    d1W:低倍端状態における前記第1レンズ群の最も像側のレンズ面と前記第2レンズ群の最も物体側のレンズ面との間隔
     f2:前記第2レンズ群の焦点距離
     d11:前記第11レンズ群の最も像側のレンズ面と前記第12レンズ群の最も物体側のレンズ面との間隔
     d12:前記第12レンズ群の最も像側のレンズ面と前記第13レンズ群の最も物体側のレンズ面との間隔
    A microscope zoom lens that receives substantially parallel light from an objective lens and forms an image on an imaging surface of an imaging device,
    In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens having a negative refractive power And having a group
    The fourth lens group includes, in order from the object side, an eleventh lens group having a positive refractive power, a twelfth lens group having a negative refractive power, and a thirteenth lens group having a positive refractive power,
    Upon zooming from the low magnification end state to the high magnification end state, the second lens group and the third lens group move along the optical axis direction,
    A zoom lens for a microscope characterized by satisfying the following conditions.
    0.4 <d1W / | f2 | <0.7
    0.9 <d11 / d12 <1.2
    However,
    d1W: Distance between the most image side lens surface of the first lens group and the most object side lens surface of the second lens group in the low magnification end state f2: Focal length of the second lens group d11: The eleventh The distance between the lens surface closest to the image side of the lens group and the lens surface closest to the object side of the twelfth lens group d12: the lens surface closest to the image side of the twelfth lens group and the lens surface closest to the object side Distance from lens surface
  2.  以下の条件を満足することを特徴とする請求項1に記載の顕微鏡用ズームレンズ。
     0.05 < d11/|f4| < 0.2
     ただし、
     d11:前記第11レンズ群の最も像側のレンズ面と前記第12レンズ群の最も物体側のレンズ面との間隔
     f4:前記第4レンズ群の焦点距離
    The zoom lens for a microscope according to claim 1, wherein the following condition is satisfied.
    0.05 <d11 / | f4 | <0.2
    However,
    d11: Distance between the most image side lens surface of the eleventh lens group and the most object side lens surface of the twelfth lens group f4: Focal length of the fourth lens group
  3.  以下の条件を満足することを特徴とする請求項1又は2に記載の顕微鏡用ズームレンズ。
      |f1/f2| > 4.5
     ただし、
     f1:前記第1レンズ群の焦点距離
    The zoom lens for a microscope according to claim 1, wherein the following condition is satisfied.
    | F1 / f2 |> 4.5
    However,
    f1: Focal length of the first lens group
  4.  以下の条件を満足することを特徴とする請求項1又は2に記載の顕微鏡用ズームレンズ。
       Z0.5< V2 < Z0.6
    ただし、
     Z:前記顕微鏡用ズームレンズのズーム比
     V2:前記第2レンズ群の変倍率
    The zoom lens for a microscope according to claim 1, wherein the following condition is satisfied.
    Z 0.5 <V2 <Z 0.6
    However,
    Z: Zoom ratio of the microscope zoom lens V2: Variable magnification of the second lens group
  5.  前記第2レンズ群の最も物体側のレンズ面は、凹面形状であることを特徴とする請求項1又は2に記載の顕微鏡用ズームレンズ。 3. The microscope zoom lens according to claim 1, wherein the most object side lens surface of the second lens group has a concave shape.
  6.  低倍端状態から高倍端状態への変倍に際し、前記第2レンズ群は物体側から像側へのみ移動し、前記第3レンズ群は像側から物体側へのみ移動することを特徴とする請求項1又は2に記載の顕微鏡用ズームレンズ。 In zooming from the low magnification end state to the high magnification end state, the second lens group moves only from the object side to the image side, and the third lens group moves only from the image side to the object side. The zoom lens for microscopes according to claim 1 or 2.
  7.  対物レンズと、請求項1又は2に記載の顕微鏡用ズームレンズとを備えることを特徴とする顕微鏡。 A microscope comprising: an objective lens; and the zoom lens for a microscope according to claim 1 or 2.
PCT/JP2010/071346 2009-12-09 2010-11-30 Zoom lens for microscope, and microscope WO2011070943A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011545176A JP5278558B2 (en) 2009-12-09 2010-11-30 Microscope zoom lens, microscope
CN2010800458397A CN102576147A (en) 2009-12-09 2010-11-30 Zoom lens for microscope, and microscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009279683 2009-12-09
JP2009-279683 2009-12-09

Publications (1)

Publication Number Publication Date
WO2011070943A1 true WO2011070943A1 (en) 2011-06-16

Family

ID=44145488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/071346 WO2011070943A1 (en) 2009-12-09 2010-11-30 Zoom lens for microscope, and microscope

Country Status (3)

Country Link
JP (1) JP5278558B2 (en)
CN (1) CN102576147A (en)
WO (1) WO2011070943A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157470A1 (en) * 2012-04-17 2013-10-24 オリンパス株式会社 Microscope objective lens
EP3203292A4 (en) * 2014-10-03 2018-06-06 Sony Corporation Medical-use stereoscopic microscope optical system and medical-use observation device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105137583B (en) * 2015-07-08 2017-11-14 宁波舜宇仪器有限公司 Micro objective
WO2018076330A1 (en) * 2016-10-31 2018-05-03 中国科学院长春光学精密机械与物理研究所 Finite conjugate distance optical zoom system with adjustable object distance
CN117706726A (en) * 2022-09-08 2024-03-15 Oppo广东移动通信有限公司 Optical lens, camera device and electronic device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001154092A (en) * 1999-11-24 2001-06-08 Nikon Corp Afocal zoom lens, and microscope provided with the same
JP2004004827A (en) * 2002-05-10 2004-01-08 Leica Microsystems (Schweiz) Ag Afocal zoom system used in microscope

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0782150B2 (en) * 1986-11-05 1995-09-06 株式会社ニコン Telephoto zoom lens

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001154092A (en) * 1999-11-24 2001-06-08 Nikon Corp Afocal zoom lens, and microscope provided with the same
JP2004004827A (en) * 2002-05-10 2004-01-08 Leica Microsystems (Schweiz) Ag Afocal zoom system used in microscope

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157470A1 (en) * 2012-04-17 2013-10-24 オリンパス株式会社 Microscope objective lens
EP3203292A4 (en) * 2014-10-03 2018-06-06 Sony Corporation Medical-use stereoscopic microscope optical system and medical-use observation device

Also Published As

Publication number Publication date
JPWO2011070943A1 (en) 2013-04-22
JP5278558B2 (en) 2013-09-04
CN102576147A (en) 2012-07-11

Similar Documents

Publication Publication Date Title
JP4978119B2 (en) High zoom ratio zoom lens
JP5328284B2 (en) Zoom lens and imaging apparatus having the same
JP3606548B2 (en) 3 group zoom lens
JP4819414B2 (en) Zoom lens and imaging apparatus having the same
JP6579997B2 (en) Optical system and imaging apparatus having the same
JP3230523B2 (en) Internal focusing zoom lens
US8144394B2 (en) Stereoscopic imaging optical system
JP2006058584A (en) Zoom lens and imaging device incorporating it
JP2012093548A (en) Variable power optical system, optical instrument with variable power optical system, and manufacturing method for variable power optical system
JP4061152B2 (en) Zoom photography optics
JP5278558B2 (en) Microscope zoom lens, microscope
WO2014041873A1 (en) Zoom lens system and electronic imaging device provided with same
JP5127352B2 (en) Zoom lens and imaging apparatus having the same
JP6548782B1 (en) Zoom lens
JP6503383B2 (en) Zoom imaging device
JP2009175509A (en) Zoom lens and image pickup apparatus including the same
JP4426236B2 (en) Endoscope objective optical system
JP2003207722A (en) Finder and optical equipment using it
WO2019131748A1 (en) Lens system and imaging device
JP4794935B2 (en) Zoom lens
JP4817551B2 (en) Zoom lens
JPH0634883A (en) Super wide-angle variable power zoom lens
JP4517422B2 (en) Afocal zoom lens and microscope equipped with the lens
JP6716215B2 (en) Imaging device
JP2013054191A (en) Zoom lens

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080045839.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10835865

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011545176

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10835865

Country of ref document: EP

Kind code of ref document: A1