WO2011066741A1 - 不停车收费***、车载单元及车载单元的数据通信方法 - Google Patents

不停车收费***、车载单元及车载单元的数据通信方法 Download PDF

Info

Publication number
WO2011066741A1
WO2011066741A1 PCT/CN2010/074179 CN2010074179W WO2011066741A1 WO 2011066741 A1 WO2011066741 A1 WO 2011066741A1 CN 2010074179 W CN2010074179 W CN 2010074179W WO 2011066741 A1 WO2011066741 A1 WO 2011066741A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
wake
controller
unit
frequency signal
Prior art date
Application number
PCT/CN2010/074179
Other languages
English (en)
French (fr)
Inventor
冷卫杰
高燕
李龙
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP10834174.4A priority Critical patent/EP2503710B1/en
Publication of WO2011066741A1 publication Critical patent/WO2011066741A1/zh

Links

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07BTICKET-ISSUING APPARATUS; FARE-REGISTERING APPARATUS; FRANKING APPARATUS
    • G07B15/00Arrangements or apparatus for collecting fares, tolls or entrance fees at one or more control points
    • G07B15/06Arrangements for road pricing or congestion charging of vehicles or vehicle users, e.g. automatic toll systems
    • G07B15/063Arrangements for road pricing or congestion charging of vehicles or vehicle users, e.g. automatic toll systems using wireless information transmission between the vehicle and a fixed station

Definitions

  • the invention relates to the field of short-range communication, and particularly relates to an electronic toll collection system (ETC) and a corresponding data communication method of an on-board unit and an on-board unit.
  • ETC electronic toll collection system
  • ETC Electronic Toll Collection
  • the national standard for non-stop charging belongs to the equipment specification of the Ministry of Communications' network charging technical standard, and is a technical standard applied to expressway tolls for non-stop charging.
  • the standard mainly specifies two equipment specifications, the On Board Unit (OBU) and the Road Side Unit (RSU), which specifies the Dedicated Short Range Communication Protocol (DSRC).
  • OBU On Board Unit
  • RSU Road Side Unit
  • DSRC Dedicated Short Range Communication Protocol
  • the roadside unit is set in the toll lane.
  • the vehicle unit is installed inside the vehicle, and adopts a two-chip label scheme of an IC card plus controller (CPU), wherein the IC card is used to store information such as an account number, a balance, a transaction record, and an entry number; the controller is used to store Information such as vehicle physical parameters such as vehicle owners and models provides communication guarantee for the vehicle unit and the roadside unit.
  • IC card is used to store information such as an account number, a balance, a transaction record, and an entry number
  • the controller is used to store Information such as vehicle physical parameters such as vehicle owners and models provides communication guarantee for the vehicle unit and the roadside unit.
  • the roadside unit and the onboard unit of the existing non-stop charging system are provided with an antenna oscillator, and the onboard unit can actively communicate with the roadside unit to modulate and receive the frequency signal sent from the roadside unit.
  • the vehicle unit needs to be equipped with a battery. How to reduce the power consumption of the vehicle unit has been a subject of research in the technical field without affecting the ability of the vehicle unit and the roadside unit communication service. Summary of the invention
  • the main object of the present invention is to provide a non-stop that achieves low power consumption and improved service life.
  • the charging system and the corresponding data communication method of the onboard unit and the onboard unit are to provide a non-stop that achieves low power consumption and improved service life.
  • the technical problem of the present invention is solved by the following technical solutions:
  • the data communication method of the vehicle-mounted unit specifically includes the following steps: The vehicle-mounted unit receives the wake-up frequency signal; the vehicle-mounted unit presets the wake-up frequency of the wake-up frequency signal and the vehicle-mounted unit The response frequency is matched; when the response frequency of the onboard unit matches the wakeup frequency of the wakeup frequency signal, the onboard unit establishes data communication with the roadside unit.
  • the controller of the vehicle unit uses a low primary frequency when matching the wake-up frequency signal.
  • the clock source of the timer for calculating the square wave period of the wake-up frequency signal is the same as the low-main frequency of the controller.
  • the controller is in a low power mode when non-transaction; the controller uses a low primary frequency when matching the wake-up frequency signal; the controller uses a high primary frequency when establishing a data communication transaction with the roadside unit, thereby Further reduce power consumption from the overall operating mode.
  • the response frequency is set to a range of 12-16 kHz.
  • the matching process is as follows: The controller of the vehicle unit detects and calculates the square wave period of the wake-up frequency signal. When the calculated square wave period of the wake-up frequency signal falls within the square wave period range of the set response frequency, the matching is successful.
  • the invention also relates to an onboard unit connected to a roadside unit, the onboard unit comprising a signal receiving unit for receiving a wake-up frequency signal, a data receiving link for establishing data communication with the roadside unit, and a controller, respectively
  • the signal receiving unit is connected to the data receiving link, and the controller is configured to match the wake-up frequency of the wake-up frequency signal with a preset response frequency of the on-board unit, and when the response frequency matches the wake-up frequency of the wake-up frequency signal, control the The data receiving link establishes data communication with the roadside unit.
  • the circuit board of the vehicle unit is set to: an RF power switch is connected between the controller and the data receiving link connection, and the controller is further configured to: control the RF power switch to be turned on when the response frequency matches the wake-up frequency of the wake-up frequency signal When the mismatch does not match, the RF power switch is turned off.
  • the controller adopting the low power mode in the non-transaction mode adopts a low main frequency when matching the wake-up frequency signal, and adopts a high main frequency when establishing a data communication transaction with the roadside unit.
  • the clock source of the timer for calculating the square wave period of the wake-up frequency signal inside the controller is the same as the main frequency of the controller.
  • the response frequency ranges from 12 to 16 kHz
  • the controller is further configured to: detect at least two square wave periods of the wake-up frequency signal, and calculate a square wave period of the wake-up frequency signal; When the square wave period of the wake-up frequency signal is within the range of the square wave period of the set response frequency, the matching is successful.
  • the present invention further relates to a power consumption reduction non-stop charging system comprising an onboard unit and a roadside unit, the onboard unit establishing data communication with the roadside unit when the wakeup frequency of the received wakeup frequency signal matches the set response frequency.
  • the beneficial effects of the present invention compared with the prior art are: 1) the data communication method of the onboard unit of the present invention, the premise that the controller of the onboard unit strictly limits the response frequency; the controller of the onboard unit receives the wakeup frequency signal When the wake-up frequency matches the set response frequency, data communication is established with the roadside unit. Therefore, other communication data signals and unsatisfactory wake-up frequency signals cannot activate the controller to establish data communication with the roadside unit, which greatly reduces the data communication.
  • the false wake-up rate of the vehicle unit reduces unnecessary power consumption and increases the service life of the vehicle unit; 2)
  • the controller adopts a low primary frequency such as 1 when matching the wake-up frequency signal.
  • the clock source of the timer when matching the wake-up frequency signal, the clock source of the timer is the same as the low frequency of the controller of 1 megahertz. Therefore, the controller also operates at a low main frequency to further reduce the power consumption of the controller during matching;
  • the controller In the data communication method of the onboard unit of the present invention, the controller is in a low power mode when the transaction is not in use, the controller When establishing a data communication transaction with the roadside unit, a higher main frequency such as 16 MHz is used, thereby further reducing the power consumption from the overall working mode of the vehicle unit; 4) in the data communication method of the onboard unit of the present invention, When the controller matches the wake-up frequency signal, the clock source of the timer is the same as the low main frequency of the controller, which reduces power consumption on the other hand.
  • the controller detects at least two square wave periods of the wake-up frequency signal, thereby realizing accurate calculation of the detected wake-up frequency signal Square wave period.
  • FIG. 1 is a hardware block diagram of an onboard unit according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of a vehicle-based unit false wake-up matching process according to an embodiment of the present invention. detailed description
  • the onboard unit adopts the passive receiving mode, so the onboard unit must be able to be awakened at multiple frequency points required by the national standard. After waking up, the onboard unit sets a corresponding frequency point according to the received data of the roadside unit to communicate with the drive test unit. Since the wake-up of the on-board unit is a broadband wake-up, in theory, where the wireless communication signal is relatively strong, it is likely to cause a false wake-up of the on-board unit.
  • the signal strength of the transmitted signal is continuously adjusted by the signal source, and it is detected that the vehicle unit can be erroneously awakened around the 900 MHz, 800 MHz, and 2.4 GHz frequency points, and the frequency is close to the frequency range of 5 GHz. Units are more likely to be woken up by mistake. It can be seen that for on-board units that receive broadband, the false wake-up phenomenon is more common in long-term use. Therefore, the service life of the onboard unit can be increased by reducing the power consumption of the onboard unit at the time of false wakeup.
  • the invention relates to a non-stop charging system for reducing false wake-up, including an on-board unit (OBU) and a roadside unit (RSU).
  • the onboard unit includes a signal receiving unit, a controller 10, and a data receiving link 30.
  • the signal receiving unit is an antenna 50 for receiving a wake-up frequency signal;
  • the controller 10 controls the start of data communication with the roadside unit;
  • the controller 10 has a set response frequency, and the controller 10 and the signal receiving unit and the data receiving link respectively 30, the controller 10 is configured to determine whether the wake-up frequency of the wake-up frequency signal matches the preset response frequency of the onboard unit, and when the response frequency matches the wake-up frequency, control the data receiving link 30 and the road side.
  • the unit establishes data communication.
  • an on-board unit includes an IC chip (not labeled), a controller 10, and an antenna 50 as a signal receiving unit.
  • the controller 10 of the onboard unit sets the response frequency.
  • the circuit board of the onboard unit is configured to: the controller 10 is connected to the wakeup link 20, and the controller 10 is connected to the data receiving link 30, and the data receiving link 30 is connected to the RF power switch controlled by the controller 10. 40.
  • the controller 10 controls the RF power switch 40 to be turned on when determining that the wake-up frequency signal is a 14 kHz square wave modulated signal, that is, the wake-up frequency matches the set response frequency, otherwise the RF power switch 40 is controlled to be turned off. .
  • the controller 10 determines that the received wake-up frequency signal matches the modulated signal of the 14 kHz square wave required by the national standard, the controller 10 controls the RF power switch 40 to be turned on, so that the vehicle unit establishes data communication with the roadside unit.
  • the response frequency ranges from 12 kHz to 16 kHz.
  • the onboard unit when the vehicle carrying the onboard unit is away from the toll booth equipped with the roadside unit, the onboard unit is in the low power consumption mode.
  • the vehicle runs over the induction line side unit to send the sensing line of the wake-up frequency signal and the data signal.
  • the roadside unit transmits the wakeup frequency signal and the data signal, and the onboard unit first detects and matches the wakeup frequency signal.
  • the onboard unit can be awakened by a 14 kHz square wave modulation signal or by a modulated wireless communication data signal.
  • the 14 kHz square wave modulated signal requires 15-17 square wave periods.
  • the on-board unit can only wake up if it can only be modulated by the 14 kHz square wave wake-up frequency signal, and can reduce the power as much as possible when matching the modulated 14 kHz wake-up frequency signal. Now reduce the purpose of false wake-up power consumption.
  • the controller 10 uses a low primary frequency such as 1 megahertz when matching the wake-up frequency signal.
  • the clock source of the internal timer of the controller is the same as the low frequency of the controller of 1 megahertz. It is easier to calculate the wake-up square wave period. Therefore, the controller also operates at a low main frequency to further reduce the power consumption of the controller at the time of matching.
  • the clock source of the controller's timer is the same as the low frequency of the controller 10. On the one hand, the power consumption is reduced, and on the other hand, the square wave period of the received frequency signal is calculated and judged.
  • the 14 kHz wake-up frequency signal can be received by the controller, ie the microcontroller.
  • the controller is a single chip capable of switching between a low power mode and a normal mode.
  • the wake-up frequency signal received by the controller should be a certain number so that the controller can have time to modulate, match and process.
  • the circuit design of the onboard unit is as follows: The wake-up link and the data receiving link are separately opened and connected to the controller.
  • the controller's wake-up response needs to be fast enough to receive the wake-up frequency signal in time. In this example, when the controller wakes up, no other devices other than the controller are needed, which reduces power consumption.
  • the power consumption of the vehicle unit wake-up depends mainly on the power consumption of the wake-up matching.
  • the power consumption of the microcontroller is the total power consumption of the vehicle unit when waking up.
  • all power consumption at wake-up includes the power consumption of the wake-up link and the power consumption of the microcontroller, the controller.
  • the power consumption of the wake-up link is very low and can be ignored.
  • the power consumption of a single-chip microcomputer is proportional to its working frequency. Therefore, the MCU can work at a very low frequency that can match the 14 kHz wake-up frequency signal, so that power consumption can be reduced.
  • the power consumption of the controller 10 at a dominant frequency of 1 MHz is about 100 microamperes, and the power consumption is already low, which can greatly reduce the battery consumption during a false wakeup. Consumption.
  • a lower dominant frequency can also be selected, but considering the addition of the wake-up match, the actual transaction cannot be affected, that is, after the addition of the wake-up frequency signal is matched, the range of the transaction cannot be limited. Still have to keep the original trading range unchanged. Therefore, since there is a certain fluctuation in the reception of the wireless signal, it is not strictly limited in the range of matching. If the main frequency is too low, the matching will be too strict, so it is proved by practice that the 1 Hz main frequency is more suitable.
  • the controller 10 is in a low power mode when the non-transaction (that is, the time when the onboard unit is not close to the roadside unit, when the onboard unit is in the sleep state), the controller establishes data in the roadside unit.
  • Communication transactions use a higher frequency of normal operation, such as 16 MHz, to further reduce power consumption from the overall operating mode of the vehicle unit.
  • the data communication method of the onboard unit involved in this example generally includes the following steps: The controller of the onboard unit sets the response frequency;
  • the controller of the onboard unit establishes data communication with the roadside unit when the wakeup frequency of the received wakeup frequency signal matches the set response frequency.
  • the data communication method of the onboard unit in this example is based on the premise that the controller 10 of the onboard unit strictly limits the response frequency; the controller 10 of the onboard unit only matches the wakeup frequency of the received wakeup frequency signal and the set response frequency.
  • the roadside unit establishes data communication. Therefore, other communication data signals and unsatisfactory wake-up frequency signals cannot activate the controller to establish data communication with the roadside unit, which greatly reduces the false wake-up rate of the vehicle unit and reduces unnecessary power consumption.
  • the matching idea of the 14 kHz wake-up frequency signal is: calculating the square wave period of the wake-up frequency signal by waking up the clock width of the square wave period of the frequency signal.
  • the wake-up frequency signal matches the response frequency because it has no phase difference in the square wave itself, that is, the number of cycles from the start of the transition should be 14 kHz to wake up the square wave period of the frequency signal, so the matching is relatively simple.
  • the key points of the implementation of the match are as follows: 1) Matching 4 saturation problems for 14 kHz wake-up frequency signals. For more accurate matching, set the time recorded by the timer after matching the two complete square wave periods. Dividing this time by 2 is the square wave period of the detected wake-up frequency signal. If the time satisfies the time condition of the square wave period of the two 14 kHz wake-up frequency signals, that is, the square wave period of the wake-up frequency signal after the timer calculation is around 73 microseconds, the matching is considered successful. In this example, after the calculation, the square wave period of the wake-up frequency signal is in the range of 63 microseconds to 83 microseconds, and the matching is considered successful.
  • the controller 10 After the vehicle unit receives the wake-up frequency signal, the controller 10 starts to match the received wake-up frequency signal with a preset response frequency. Due to problems such as signal propagation over the air and RF link demodulation, as well as other device accuracy, there are some errors in the resulting wake-up square wave frequency. Therefore, in this example, if the wake-up frequency signal is within the range of the set response frequency of 12-16 kHz, the match is considered successful.
  • the controller 10 When the period of the received 14 kHz wake-up square wave matches, first set the controller 10 to operate at a low main frequency, in this case 1 megahertz, which saves the controller's power consumption as much as possible.
  • the main frequency can be set according to the software algorithm, so as not to affect the wake-up sensitivity of the vehicle unit, so that the actual work of the vehicle unit is not affected by the introduction of the function.
  • set the timer clock source is 1 megahertz of the controller's running clock, which is the same as the controller's main frequency. Then start to wake up the square wave match of the frequency signal.
  • the signal receiving unit of the onboard unit such as the antenna 50, receives the wake-up frequency signal and sends it to the controller 10 via the wake-up link 20.
  • step S201 the controller 10 receives the wake-up frequency signal and wakes up, and enters an active state operation. This Only the controller 10 is in the power-on state, and the other circuits remain in the power-off state.
  • the controller 10 is set to operate in a low frequency operating mode, in this case 1 megahertz. Also, a timer is set inside the controller, and the clock source of the timer is the same as the clock frequency of the controller.
  • Step S202 The loop check controller 10 has a signal pin level connected to the wake-up link, and starts to count the number of transitions when there is a jump, and determines whether to time out when there is no jump. And the matching process is exited when the timeout expires, that is, the process goes to step S207; if it is not timed, the process returns to step S202. Since the matching standard 14 kHz square wave time is approximately 73 microseconds, the timeout period is set to one hundred microseconds.
  • step S203 when a jump is detected, the process goes to step S203; when it is within a predetermined time (200 microseconds in this example), no jump is detected, that is, it is a false wake-up, and the process goes to step S207.
  • a predetermined time 200 microseconds in this example
  • Steps S203 ⁇ 204 if there is a jump, determine whether it is the first jump, if yes, clear the timer when the jump is detected for the first time, and after clearing, the timer starts timing, and the control
  • the device starts to record the number of transitions.
  • the first transition is not recorded in the jump variable; otherwise, the jump variable is recorded, that is, the current jump variable is incremented by 1.
  • Step S205 Determine whether the number of hops reaches 4 times, and if yes, go to step S206. Otherwise, the process returns to step S202.
  • the hop count reaches 4 times, indicating that the timer has recorded the square wave period of the two wake-up frequency signals.
  • Step S206 determining whether the square wave period of the two consecutive wake-up frequency signals matches the square wave period of the 14 kHz response frequency set by the controller, and if it is matched, indicating that the correct wake-up square wave is received, performing steps S207; Otherwise, the match is considered to have failed, and the process proceeds to step S208.
  • Step S207 setting the frequency at which the controller 10 enters normal operation, in this example, 16 MHz, setting the input and output states of each pin and the initial output level, setting the timer clock source, starting the operation after the setting is completed, and passing The RF power switch 40 turns on the RF link power. Start working normally.
  • step S208 it is considered that the on-board unit is erroneously awake, and in order to save energy consumption, the controller 10 is immediately set to enter a sleep state and transition to a low power consumption mode.
  • the controller 10 is immediately set to enter a sleep state and transition to a low power consumption mode.
  • the hardware circuit design separates the data receiving link from the vehicle unit wake-up link, which provides conditions for the software to achieve 14 kHz wake-up frequency signal matching on the premise that only the wake-up link works, so that For the purpose of power saving, because the data receiving link has higher performance and needs to be powered on, the data reception is started after it is determined that the data is correctly awakened, and the power consumption of the power-on operation due to the false wake-up can be completely avoided.
  • a low main frequency is used, which is 1 megahertz in the present embodiment, further reducing the power consumption of the on-vehicle unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Business, Economics & Management (AREA)
  • Finance (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Devices For Checking Fares Or Tickets At Control Points (AREA)
  • Transceivers (AREA)

Description

不停车收费***、 车载单元及车载单元的数据通信方法 技术领域
本发明涉及短程通信领域, 具体涉及一种不停车收费*** (Electronic Toll Collection, ETC ) 以及相应的车载单元和车载单元的数据通信方法。 背景技术
随着短程通信技术的发展, 为了提高高速公路收费通行的效率, 不停 车收费***( Electronic Toll Collection, ETC )得到越来越广泛的运用。
不停车收费(ETC )的国家标准, 属于交通部联网收费技术标准中关于 设备规范的部分, 是应用于高速公路收费实现不停车收费的技术标准。 标 准主要规定了车载单元( On Board Unit, OBU )以及路侧单元( Road Side Unit RSU ) 两个设备规范, 规定了专用短程通信协议( DSRC )。 其中路侧单元 设置在收费车道。 车载单元则安装在车辆内部, 采用 IC 卡加控制器(即 CPU ) 的双片式标签方案, 其中, 该 IC卡用来存帐号、 余额、 交易记录和 出入口编号等信息; 该控制器用来存车主、 车型等车辆物理参数等信息, 为车载单元和路侧单元提供通信保障。
现有不停车收费***的路侧单元和车载单元都设置有天线振荡器, 车 载单元可主动与路侧单元通信, 调制并接收从路侧单元发出的频率信号。 在此情况下, 车载单元都需要装设电池。 如何在不影响车载单元和路侧单 元通信服务能力前提下, 减少车载单元的功耗一直是本技术领域研究的课 题。 发明内容
本发明的主要目的是: 提供一种实现低功耗和提高使用寿命的不停车 收费***以及相应的车载单元和车载单元的数据通信方法。
本发明的技术问题是通过以下技术方案予以解决的: 一种车载单元的 数据通信方法, 具体包括以下步驟: 车载单元接收唤醒频率信号; 车载单 元将唤醒频率信号的唤醒频率与车载单元预先设定的响应频率进行匹配; 当车载单元的响应频率与唤醒频率信号的唤醒频率匹配时, 该车载单元与 路侧单元建立数据通信。
为了降低功耗, 车载单元的控制器在匹配唤醒频率信号时采用低主频。 为了便于计算唤醒频率信号的周期, 匹配时用于计算唤醒频率信号的 方波周期的定时器的时钟源和控制器的低主频相同。
为了进一步降低功耗, 该控制器在非交易时处于低功耗模式; 控制器 在匹配唤醒频率信号时采用低主频; 控制器在和路侧单元建立数据通信交 易时采用高主频, 从而从整体工作模式上进一步降低功耗。
本发明的实施方式中,该响应频率的范围设定为 12-16千赫兹。 匹配的 过程为: 车载单元的控制器检测并计算唤醒频率信号的方波周期, 当计算 的唤醒频率信号的方波周期落在设定响应频率的方波周期范围内时, 匹配 成功。
本发明还涉及一种车载单元, 与路侧单元相连, 该车载单元包括信号 接收单元, 用于接收唤醒频率信号; 数据接收链路, 用于与路侧单元建立 数据通信; 控制器, 分别与信号接收单元和数据接收链路连接, 该控制器 用于将唤醒频率信号的唤醒频率与该车载单元的预先设定的响应频率进行 匹配, 当响应频率与唤醒频率信号的唤醒频率匹配时, 控制该数据接收链 路与路侧单元建立数据通信。
该车载单元的电路布设为: 该控制器和数据接收链路连接之间连接有 射频电源开关, 该控制器进一步用于: 在响应频率与唤醒频率信号的唤醒 频率匹配时控制射频电源开关接通, 不匹配时控制射频电源开关断开。 优选地, 非交易时采用低功耗模式的控制器在匹配唤醒频率信号时采 用低主频, 在与路侧单元建立数据通信交易时采用高主频。
优选地, 所述控制器在匹配唤醒频率信号时, 控制器内部的用于计算 唤醒频率信号的方波周期的定时器的时钟源和控制器的主频相同。
优选地,所述响应频率的范围为 12-16千赫兹,所述控制器进一步用于: 检测唤醒频率信号的至少两个方波周期, 并用于计算唤醒频率信号的方波 周期; 当计算的唤醒频率信号的方波周期在设定的响应频率的方波周期范 围内时, 匹配成功。
本发明进一步涉及的降低功耗的不停车收费***, 包括车载单元和路 侧单元 , 该车载单元在接收的唤醒频率信号的唤醒频率和设定的响应频率 匹配时与路侧单元建立数据通信。
本发明与现有技术相比的有益效果是: 1 )本发明车载单元的数据通信 方法, 其前提是车载单元的控制器严格限定响应频率; 该车载单元的控制 器在接收的唤醒频率信号的唤醒频率和设定的响应频率匹配时才与路侧单 元建立数据通信, 因此, 其它通信数据信号以及不符合要求的唤醒频率信 号都无法激活控制器与路侧单元建立数据通信, 极大降低了车载单元的误 唤醒率, 减少了不必要的功耗, 增加了车载单元的使用寿命; 2 )在本发明 车载单元的数据通信方法中,控制器在匹配唤醒频率信号时采用低主频如 1 兆赫兹, 在匹配唤醒频率信号时, 定时器的时钟源和控制器的 1 兆赫兹低 主频相同, 因此, 控制器也工作在低主频下以进一步降低匹配时控制器的 功耗; 3 )在本发明车载单元的数据通信方法中, 控制器在非交易时处于低 功耗模式, 该控制器在和路侧单元建立数据通信交易时采用正常工作的较 高主频如 16兆赫兹,从而从车载单元整体的工作模式上更进一步降低功耗; 4 )在本发明车载单元的数据通信方法中, 控制器在匹配唤醒频率信号时, 其定时器的时钟源和控制器的低主频相同, 一方面降低了功耗, 另一方面 也方便计算和判断接收的频率信号的方波周期; 5 )在本发明车载单元的数 据通信方法中, 控制器检测唤醒频率信号的至少两个方波周期, 从而实现 精确计算检测的唤醒频率信号的方波周期。 附图说明
图 1为本发明实施例的车载单元的硬件框图;
图 2为本发明实施例的车载单元误唤醒匹配过程的流程图。 具体实施方式
下面结合具体实施例和附图对本发明的实施方式作进一步详细说明。 经研究, 在车载单元的实际使用当中, 主要的电量消耗不是在正常交 易中, 而是车载单元的误唤醒, 以及电池在各种条件下的放电变化等等原 因。 其中误唤醒是电池电量消耗的主要原因之一。
根据国家标准, 车载单元采用被动接收模式, 因此车载单元必须在国 标要求的多个频点下都能够被唤醒。 唤醒后, 车载单元根据接收到的路侧 单元的数据设置相应的频点以与路测单元进行通信。 由于车载单元的唤醒 是宽频唤醒, 因此, 理论上在无线通信信号比较强的地方, 很有可能造成 车载单元的误唤醒。
在实验室的测试中, 通过信号源不断地调整发送信号的信号强度, 检 测到车载单元在 900MHz, 800MHz, 2.4GHz频点周围, 都能被误唤醒, 在 接近 5GHz的范围的频点,车载单元更容易被误唤醒。 由此看出对于宽频接 收的车载单元, 误唤醒现象在长时间的使用中是较为普遍的。 因此, 通过 降低误唤醒时的车载单元的功耗可以增加车载单元的使用寿命。
本发明涉及的降低误唤醒的不停车收费***, 包括车载单元(OBU ) 和路侧单元(RSU )。 该车载单元包括信号接收单元、 控制器 10和数据接 收链路 30。 本例中信号接收单元为天线 50, 其用于接收唤醒频率信号; 数 据接收链路 30在车载单元被唤醒后, 由控制器 10控制开始和路侧单元进 行数据通信; 控制器 10具有设定的响应频率, 该控制器 10分别与信号接 收单元和数据接收链路 30连接, 该控制器 10用于判断唤醒频率信号的唤 醒频率与该车载单元的预先设定的响应频率是否匹配, 当该响应频率与唤 醒频率匹配时, 控制该数据接收链路 30与路侧单元建立数据通信。
请参考图 1 , 本发明涉及的车载单元, 包括 IC芯片 (未标识)、 控制器 10以及作为信号接收单元的天线 50。 该车载单元的控制器 10设定响应频 率。 其中, 该车载单元的电路布设为: 控制器 10和唤醒链路 20连接, 并 且该控制器 10和数据接收链路 30连接, 该数据接收链路 30连接受控于控 制器 10的射频电源开关 40。该控制器 10在判断唤醒频率信号为 14千赫兹 方波的调制信号, 亦即唤醒频率与设定的响应频率匹配时, 控制该射频电 源开关 40接通, 否则控制该射频电源开关 40断开。 该控制器 10在判断接 收的唤醒频率信号和国标要求的 14千赫兹方波的调制信号匹配时, 控制射 频电源开关 40接通, 使车载单元与路侧单元建立数据通信。
本实施方式中, 该响应频率范围为 12千赫兹到 16千赫兹。
本例中, 携带有车载单元的车辆在远离装设有路侧单元的收费站时, 车载单元处于低功耗模式。 车辆在靠近收费站时, 碾过启动路侧单元发送 唤醒频率信号和数据信号的感应线。 路侧单元发送唤醒频率信号和数据信 号, 车载单元先检测和匹配唤醒频率信号。
根据国家不停车收费技术要求, 车载单元可以被 14千赫兹的方波的调 制信号唤醒, 也可以被通过调制的无线通信的数据信号唤醒。 为了满足车 载单元对接收的唤醒频率信号调制要求, 该 14千赫兹的方波调制信号, 要 求为 15-17个方波周期。
车载单元如果严格要求只能被调制的 14千赫兹的方波唤醒频率信号唤 醒, 并在匹配调制的 14千赫兹的唤醒频率信号时尽可能降低功率就可以实 现降低误唤醒功耗的目的。
该控制器 10在匹配唤醒频率信号时采用低主频如 1兆赫兹, 在匹配唤 醒频率信号时, 控制器内部定时器的时钟源和控制器的 1 兆赫兹低主频相 同, 这样设置使得在计算唤醒方波周期的时候更为容易。 因此, 控制器也 工作在低主频下以进一步降低匹配时控制器的功耗。 另外, 控制器的定时 器的时钟源和控制器 10的低主频相同, 一方面降低了功耗, 另一方面也方 便计算和判断接收的频率信号的方波周期。
要达到降低误唤醒率和减少功耗的目的, 首先在硬件设计上, 要保证
14千赫兹唤醒频率信号能够被控制器, 亦即单片机接收到。 本实施方式中, 控制器为能够实现低功耗模式和正常模式切换的单片机。 控制器接收到的 唤醒频率信号应达到一定数量, 以便控制器能够有时间进行调制、 匹配和 处理。 本例中, 车载单元的电路设计为: 唤醒链路与数据接收链路分开设 计, 分别接入到控制器上。 控制器的唤醒响应需要足够快, 以便能够及时 接收到唤醒频率信号。 本例中的控制器在唤醒匹配时, 除控制器以外完全 不需要其他器件配合, 从而降低了功耗。
基于上述车载单元的硬件设计, 车载单元唤醒的功耗主要取决于唤醒 匹配的功耗。 在使用单片机通过软件的方法判断是否是 14千赫兹唤醒频率 信号时, 单片机功耗就是车载单元在唤醒时的全部功耗。 本例中, 在唤醒 时的全部功耗包括唤醒链路的功耗和单片机亦即控制器的功耗。 唤醒链路 的功耗非常低, 是可以忽略的。 通常单片机的功耗与其工作主频是成正比 关系的,因此使单片机工作在能够匹配 14千赫兹唤醒频率信号的极低频率, 就可以达到降低功耗的目的。
实险证明, 在控制器 10工作在主频为 1兆赫兹的情况下, 就可以完成 14千赫兹唤醒频率信号的匹配。通常,控制器 10在 1兆赫兹的主频下的功 耗大约在百微安培级别, 功耗已经较低, 能够大大降低误唤醒时的电池消 耗。 为了 14千赫兹唤醒频率信号的匹配, 还可以选择更低的主频, 但是考 虑到唤醒匹配的加入, 不能影响实际的交易, 即在加入唤醒频率信号匹配 后, 不能使得交易的范围受到限制, 仍要保持原有的交易范围不变。 因此 由于无线信号接收时存在一定波动, 在匹配的范围上, 就不能限制得很严 格。 而主频太低会导致匹配过于严格, 因此经过实践验证, 1兆赫兹的主频 较为合适。
本例中, 该控制器 10在非交易 (亦即, 车载单元未接近路侧单元的时 段, 此时车载单元处于休眠状态) 时处于低功耗模式, 该控制器在和路侧 单元建立数据通信交易时采用正常工作的较高主频如 16兆赫兹, 从而从车 载单元整体的工作模式上更进一步降低功耗。
本例中涉及的车载单元的数据通信方法, 大致包括以下步驟: 车载单元的控制器设定响应频率;
该车载单元的控制器在接收的唤醒频率信号的唤醒频率和设定的响应 频率匹配时与路侧单元建立数据通信。
本例中车载单元的数据通信方法, 其前提是车载单元的控制器 10严格 限定响应频率; 该车载单元的控制器 10在接收的唤醒频率信号的唤醒频率 和设定的响应频率匹配时才与路侧单元建立数据通信。 因此, 其它通信数 据信号以及不符合要求的唤醒频率信号都无法激活控制器与路侧单元建立 数据通信, 极大降低了车载单元的误唤醒率, 减少了不必要的功耗。
该 14千赫兹唤醒频率信号的匹配思路是: 通过数唤醒频率信号的方波 周期的时钟宽度, 从而计算唤醒频率信号的方波周期。 唤醒频率信号在匹 配响应频率时, 因为其是方波本身没有相位差别, 即无论从那个跳变开始 数周期都应该为 14千赫兹唤醒频率信号的方波周期, 因此在匹配上比较简 单。
匹配的实现重点主要如下: 1) 关于 14千赫兹唤醒频率信号的匹配 4青度问题。 为了更准确匹配, 设定在匹配了完整的两个方波周期后取定时器记录的时间,将该时间除以 2 即为检测到的唤醒频率信号的方波周期。 如果该时间满足两个 14千赫兹唤 醒频率信号的方波周期的时间条件, 即定时器计算后得出唤醒频率信号的 方波周期在 73微秒周围时, 则认为匹配成功。 本例中, 计算后得出唤醒频 率信号的方波周期在 63微秒到 83微秒的范围时, 即可认为匹配成功。
2) 如果跳变数达到 4次, 说明已经检测到连续两个方波周期。
3) 在车载单元接收到唤醒频率信号后, 控制器 10开始将收到的唤醒 频率信号与预先设定的响应频率进行匹配。 由于信号经过空中传播和射频 链路解调, 以及其他器件精度等问题, 会使得得到的唤醒方波频率存在一 些误差。 因此, 本例中判断唤醒频率信号如果落在设定的响应频率 12-16 千赫兹的范围之内, 即可认为匹配成功。
4) 当收到的 14千赫兹唤醒方波的周期匹配时,首先设置控制器 10工 作在低主频下, 本例为 1 兆赫兹, 这样尽可能地节省了控制器的功耗, 在 实际中可以根据软件算法繁简设置主频, 以便不影响车载单元的唤醒灵敏 度, 从而不会因为本功能引入而影响车载单元的实际工作。 然后设置定时 器时钟源, 该定时器的时钟源为控制器的运行时钟 1 兆赫兹, 即与控制器 的主频相同。 接着开始唤醒频率信号的方波匹配。
5) 关于在匹配过程中超时时间的设置。 由于匹配标准的 14千赫兹唤 醒频率信号的方波周期时间大约是 73微秒, 因此超时时间设置为百微秒即 可。
参考图 2, 车载单元匹配的具体流程如下:
车载单元的信号接收单元如天线 50, 接收到唤醒频率信号, 并通过唤 醒链路 20送入控制器 10。
步驟 S201、控制器 10收到唤醒频率信号被唤醒, 进入激活态运行。 此 时只有控制器 10处于上电状态, 其他电路仍保持关电状态。设置控制器 10 运行在低主频工作模式, 本例中为 1 兆赫兹。 并且, 在控制器内部设置定 时器, 且定时器的时钟源与控制器的主频相同。
步驟 S202、循环检查控制器 10与唤醒链路连接的信号管脚电平是否有 跳变, 有跳变时开始数跳变次数, 无跳变时判断是否超时。 并在超时时退 出匹配过程, 即转到步驟 S207; 未超时时返回步驟 S202。 由于匹配标准的 14千赫兹方波时间大约是 73微秒, 因此超时时间设置为百微秒。
具体地, 检测到跳变时, 即转到步驟 S203; 当在规定时间内 (本例为 200微秒), 都没有检测到跳变, 即说明是一次误唤醒, 则转到步驟 S207。
步驟 S203~204、 如果有跳变, 判断是否是第一次跳变, 如果是, 则在 第一次检测到跳变时清零定时器, 并在清零之后, 定时器开始计时, 且控 制器开始记录跳变数, 这里, 第一次跳变并不记入跳变数; 否则, 记录跳 变数, 即将当前跳变数加 1。
步驟 S205、 判断跳变数是否达到 4次, 如果是, 则转到步驟 S206。 否 则, 返回步驟 S202。 跳变数到达 4次, 表明定时器已记录了两个唤醒频率 信号的方波周期。
步驟 S206、 判断连续两个唤醒频率信号的方波周期与控制器设定的 14 千赫兹响应频率的方波周期是否匹配, 如果已经匹配, 说明接收到的是正 确的唤醒方波, 则执行步驟 S207; 否则, 认为匹配失败, 进入步驟 S208。
步驟 S207、 设置控制器 10进入正常工作的频率, 本例为 16兆赫兹, 设置各管脚的输入输出状态以及初始的输出电平、 设置定时器时钟源并在 设置完成后开始运行、 以及通过射频电源开关 40打开射频链路电源。 开始 正常工作。
步驟 S208、 认为车载单元是误唤醒, 为节省能耗立刻设置控制器 10 进入休眠状态, 转入低功耗模式。 在本实施方式中, 有以下两个优势:
一方面是硬件电路设计上将数据接收链路与车载单元唤醒链路分开设 置, 这为软件在只有唤醒链路工作的前提下实现 14千赫兹的唤醒频率信号 匹配提供了条件, 这样就能起到省电的目的, 因为数据接收链路性能更高 需要加电运行, 在确定被正确唤醒后才启动数据接收, 能够完全避免因为 误唤醒而加电运行的这部分功耗。
另一方面是在实现 14千赫兹的唤醒频率信号匹配过程中, 使用了低主 频, 本实施方式中为 1兆赫兹, 进一步降低了车载单元的功耗。 能认定本发明的具体实施只局限于这些说明。 对于本发明所属技术领域的 普通技术人员来说, 在不脱离本发明构思的前提下, 还可以做出若干简单 推演或替换, 都应当视为属于本发明的保护范围。

Claims

权利要求书
1、 一种车载单元的数据通信方法, 其特征在于, 该方法包括: 车载单元接收唤醒频率信号;
车载单元将唤醒频率信号的唤醒频率与车载单元预先设定的响应频率 进行匹配; 当所述车载单元的响应频率与唤醒频率信号的唤醒频率匹配时, 所述车载单元与路侧单元建立数据通信。
2、 根据权利要求 1所述的车载单元的数据通信方法, 其特征在于, 所 述车载单元包括控制器, 所述控制器在非交易时采用低功耗模式, 所述控 制器在匹配唤醒频率信号时采用低主频, 所述控制器在和路侧单元建立数 据通信交易时转换为高主频。
3、 根据权利要求 2所述的车载单元的数据通信方法, 其特征在于, 所 述控制器在匹配唤醒频率信号时, 控制器内部的用于计算唤醒频率信号的 方波周期的定时器的时钟源和控制器的主频相同。
4、 根据权利要求 3所述的车载单元的数据通信方法, 其特征在于, 所 述响应频率的范围为 12-16千赫兹;
所述匹配为: 车载单元的控制器检测并计算唤醒频率信号的方波周期, 当计算的唤醒频率信号的方波周期在设定的响应频率的方波周期范围内 时, 匹配成功。
5、 一种车载单元, 与路侧单元相连, 其特征在于, 该车载单元包括: 信号接收单元、 数据接收链路和控制器; 其中,
信号接收单元, 用于接收唤醒频率信号;
数据接收链路, 用于与路侧单元建立数据通信;
控制器, 分别与信号接收单元和数据接收链路连接, 用于将唤醒频率 信号的唤醒频率与所述车载单元的预先设定的响应频率进行匹配, 当所述 响应频率与唤醒频率信号的唤醒频率匹配时, 控制所述数据接收链路与路 侧单元建立数据通信。
6、 根据权利要求 5所述的车载单元, 其特征在于, 所述控制器和数据 接收链路之间连接有射频电源开关;
所述控制器进一步用于: 在响应频率与唤醒频率信号的唤醒频率匹配 时控制所述射频电源开关接通, 不匹配时控制所述射频电源开关断开。
7、 根据权利要求 5或 6所述的车载单元, 其特征在于, 非交易时采用 低功耗模式的控制器在匹配唤醒频率信号时采用低主频, 在与路侧单元建 立数据通信交易时采用高主频。
8、 根据权利要求 7所述的车载单元, 其特征在于, 所述控制器在匹配 唤醒频率信号时, 控制器内部的用于计算唤醒频率信号的方波周期的定时 器的时钟源和控制器的主频相同。
9、 根据权利要求 8所述的车载单元, 其特征在于, 所述响应频率的范 围为 12-16千赫兹,所述控制器进一步用于:检测唤醒频率信号的至少两个 方波周期, 并用于计算唤醒频率信号的方波周期; 当计算的唤醒频率信号 的方波周期在设定的响应频率的方波周期范围内时, 匹配成功。
10、 一种不停车收费***, 包括车载单元和路侧单元, 其特征在于, 所述车载单元包括: 信号接收单元、 数据接收链路和控制器; 其中,
信号接收单元, 用于接收唤醒频率信号;
数据接收链路, 用于和路侧单元建立数据通信;
控制器, 分别与信号接收单元和数据接收链路连接, 用于将唤醒频 率信号与所述车载单元的预先设定的响应频率进行匹配, 当所述响应频 率与唤醒频率信号匹配时, 控制所述数据接收链路与路侧单元建立数据 通信。
11、 根据权利要求 10所述的不停车收费***, 其特征在于, 所述控制 器和数据接收链路之间连接有射频电源开关, 所述控制器进一步用于: 在 响应频率与唤醒频率信号匹配时控制所述射频电源开关接通 , 不匹配时控 制所述射频电源开关断开。
12、 根据权利要求 10或 11所述的不停车收费***, 其特征在于, 非 交易时采用低功耗模式的控制器在匹配唤醒频率信号时采用低主频, 在与 路侧单元建立数据通信交易时采用高主频。
13、 根据权利要求 12所述的不停车收费***, 其特征在于, 所述控制 器在匹配唤醒频率信号时, 控制器内部的用于计算唤醒频率信号的方波周 期的定时器的时钟源和控制器的主频相同。
14、 根据权利要求 13所述的不停车收费***, 其特征在于, 所述响 应频率的范围为 12-16千赫兹;
所述控制器进一步用于: 检测唤醒频率信号的至少两个方波周期, 并计算唤醒频率信号的方波周期; 当计算的唤醒频率信号的方波周期在 设定的响应频率的方波周期范围内时, 匹配成功。
PCT/CN2010/074179 2009-12-01 2010-06-21 不停车收费***、车载单元及车载单元的数据通信方法 WO2011066741A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10834174.4A EP2503710B1 (en) 2009-12-01 2010-06-21 Electronic toll collection system, on-board unit and data communication method for on-board unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910188547.8 2009-12-01
CN200910188547.8A CN102082587B (zh) 2009-12-01 2009-12-01 一种车载单元的数据通信方法及***

Publications (1)

Publication Number Publication Date
WO2011066741A1 true WO2011066741A1 (zh) 2011-06-09

Family

ID=44088352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/074179 WO2011066741A1 (zh) 2009-12-01 2010-06-21 不停车收费***、车载单元及车载单元的数据通信方法

Country Status (3)

Country Link
EP (1) EP2503710B1 (zh)
CN (1) CN102082587B (zh)
WO (1) WO2011066741A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103377391A (zh) * 2012-04-12 2013-10-30 深圳市金溢科技有限公司 具有定点通信功能的电子标签及通信***和方法
CN104732595A (zh) * 2015-04-10 2015-06-24 成都锐奕信息技术有限公司 节能型路边监控设备
CN110827425A (zh) * 2019-09-30 2020-02-21 北京握奇数据股份有限公司 一种obu的智能检卡读卡的方法和装置
CN111158943A (zh) * 2019-12-20 2020-05-15 航天信息股份有限公司 故障诊断方法及装置,存储介质,电子设备
CN111277285A (zh) * 2020-03-12 2020-06-12 深圳成谷科技有限公司 一种射频芯片信号接收方法、装置以及***
CN112203255A (zh) * 2020-09-11 2021-01-08 北京万集科技股份有限公司 车载单元的控制方法和***、存储介质及电子装置
CN114362844A (zh) * 2021-12-29 2022-04-15 北京万集科技股份有限公司 天线装置、用于诊断车载单元故障的方法及相关产品
CN114463869A (zh) * 2022-02-16 2022-05-10 深圳市金溢科技股份有限公司 一种电子不停车多制式***及其工作方法
CN115061448A (zh) * 2022-05-11 2022-09-16 中国第一汽车股份有限公司 一种淋雨工况下整车静电流测试方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103107776B (zh) * 2011-11-14 2015-09-09 殷明 一种超低功耗的带通鉴频器及其鉴频方法
CN103177479B (zh) * 2011-12-20 2015-09-30 北京北大千方科技有限公司 一种路侧设备和路侧设备中的数据处理方法
CN103793944A (zh) * 2012-10-30 2014-05-14 山东搜宇信息科技有限公司 车载台唤醒电路及其唤醒方法
CN103812605B (zh) * 2012-11-15 2018-10-23 电信科学技术研究院 车联网中的数据播发控制和数据播发方法及设备
CN104217229B (zh) * 2013-06-04 2017-06-16 深圳市金溢科技股份有限公司 高唤醒灵敏度卡、obu、obu组件及通信方法
CN104348482B (zh) * 2013-08-05 2017-10-13 博通集成电路(上海)有限公司 电路、校准装置及该电路中的方法
CN103729895A (zh) * 2013-09-24 2014-04-16 深圳市金溢科技有限公司 唤醒电子标签的方法、装置及***
CN104574528B (zh) * 2013-11-26 2017-03-08 深圳市金溢科技股份有限公司 一种唤醒接收电路及车载单元
CN103617655A (zh) * 2013-12-09 2014-03-05 赵生捷 基于可见光通信的道口收费装置以及收费***
CN104714620B (zh) * 2013-12-12 2019-02-15 中兴通讯股份有限公司 一种调整智能终端唤醒频率的方法及装置
CN108038924B (zh) * 2017-12-08 2021-04-06 北京云星宇交通科技股份有限公司 一种防止复合通行卡被误唤醒的方法及***
CN109934943A (zh) * 2017-12-19 2019-06-25 北京聚利科技股份有限公司 降低obu功耗的方法和装置
CN108711197B (zh) * 2018-05-24 2021-09-17 北京握奇智能科技有限公司 一种对车载单元的功率进行自适应调整的方法和设备
CN110689634B (zh) * 2019-11-26 2021-12-14 交通运输部路网监测与应急处置中心 适用于货车etc车道***的通信方法及车道***
CN111417095A (zh) * 2020-03-27 2020-07-14 深圳复芯微科技有限公司 低功耗的通信方法、装置及设备
US11638237B2 (en) * 2020-11-16 2023-04-25 Qualcomm Incorporated Geometry-based listen-before-talk (LBT) sensing for traffic-related physical ranging signals
CN112738768B (zh) * 2020-12-22 2024-01-12 三川在线(杭州)信息技术有限公司 车载***及其通信方法
CN113365224B (zh) * 2021-06-03 2022-08-05 星觅(上海)科技有限公司 一种车辆通行异常的检测方法、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1214489A (zh) * 1997-08-31 1999-04-21 三星电子株式会社 无线自动识别终端的自动唤醒装置和通信方法
CN1667653A (zh) * 2004-03-09 2005-09-14 上海华虹集成电路有限责任公司 用于高速公路收费***的车载单元
CN101256681A (zh) * 2008-03-24 2008-09-03 上海轶龙应用软件开发有限公司 一种高速公路电子不停车收费装置
CN101299280A (zh) * 2008-06-06 2008-11-05 深圳市金溢科技有限公司 双制式etc路侧设备及其通信方法
CN101458830A (zh) * 2008-11-05 2009-06-17 南京理工大学 不停车收费***车载单元智能电源管理实现装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5471212A (en) * 1994-04-26 1995-11-28 Texas Instruments Incorporated Multi-stage transponder wake-up, method and structure
US5525992A (en) * 1994-11-14 1996-06-11 Texas Instruments Deutschland Gmbh Method and system for conserving power in a recognition system
US5825007A (en) * 1996-05-06 1998-10-20 Jesadanont; Mongkol Automatic non-computer network no-stop collection of expressway tolls by prepaid cards and method: pay according to category of vehicle and the distance it travels
US6611785B1 (en) * 1998-09-14 2003-08-26 Kabushiki Kaisha Saginomiya Seisakusho Flowmeter, flow detecting switch, control method of flowmeter, control method of flow detecting switch, and recording medium having recorded a control program
JP4076490B2 (ja) * 2003-10-30 2008-04-16 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 直交検波方法および装置並びにmri装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1214489A (zh) * 1997-08-31 1999-04-21 三星电子株式会社 无线自动识别终端的自动唤醒装置和通信方法
CN1667653A (zh) * 2004-03-09 2005-09-14 上海华虹集成电路有限责任公司 用于高速公路收费***的车载单元
CN101256681A (zh) * 2008-03-24 2008-09-03 上海轶龙应用软件开发有限公司 一种高速公路电子不停车收费装置
CN101299280A (zh) * 2008-06-06 2008-11-05 深圳市金溢科技有限公司 双制式etc路侧设备及其通信方法
CN101458830A (zh) * 2008-11-05 2009-06-17 南京理工大学 不停车收费***车载单元智能电源管理实现装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103377391B (zh) * 2012-04-12 2017-02-08 深圳市金溢科技股份有限公司 具有定点通信功能的电子标签及通信***和方法
CN103377391A (zh) * 2012-04-12 2013-10-30 深圳市金溢科技有限公司 具有定点通信功能的电子标签及通信***和方法
CN104732595A (zh) * 2015-04-10 2015-06-24 成都锐奕信息技术有限公司 节能型路边监控设备
CN110827425A (zh) * 2019-09-30 2020-02-21 北京握奇数据股份有限公司 一种obu的智能检卡读卡的方法和装置
CN111158943B (zh) * 2019-12-20 2024-03-22 航天信息股份有限公司 故障诊断方法及装置,存储介质,电子设备
CN111158943A (zh) * 2019-12-20 2020-05-15 航天信息股份有限公司 故障诊断方法及装置,存储介质,电子设备
CN111277285A (zh) * 2020-03-12 2020-06-12 深圳成谷科技有限公司 一种射频芯片信号接收方法、装置以及***
CN112203255A (zh) * 2020-09-11 2021-01-08 北京万集科技股份有限公司 车载单元的控制方法和***、存储介质及电子装置
CN112203255B (zh) * 2020-09-11 2024-04-09 北京万集科技股份有限公司 车载单元的控制方法和***、存储介质及电子装置
CN114362844A (zh) * 2021-12-29 2022-04-15 北京万集科技股份有限公司 天线装置、用于诊断车载单元故障的方法及相关产品
CN114463869A (zh) * 2022-02-16 2022-05-10 深圳市金溢科技股份有限公司 一种电子不停车多制式***及其工作方法
CN114463869B (zh) * 2022-02-16 2024-03-22 深圳市金溢科技股份有限公司 一种电子不停车多制式***及其工作方法
CN115061448A (zh) * 2022-05-11 2022-09-16 中国第一汽车股份有限公司 一种淋雨工况下整车静电流测试方法

Also Published As

Publication number Publication date
CN102082587B (zh) 2015-05-20
EP2503710A1 (en) 2012-09-26
EP2503710B1 (en) 2018-09-05
CN102082587A (zh) 2011-06-01
EP2503710A4 (en) 2014-12-31

Similar Documents

Publication Publication Date Title
WO2011066741A1 (zh) 不停车收费***、车载单元及车载单元的数据通信方法
US6198913B1 (en) Automatic wake-up device for radio automatic recognition terminal and communication method using the terminal
CN201876920U (zh) 一种电子标签唤醒装置
US20060100001A1 (en) Backscatter communication device wake-up methods, communication device wake-up methods, and radio frequency identification device wake-up methods
US9741232B2 (en) Portable device searching device, portable device searching method, portable device searching program
CN101458830B (zh) 不停车收费***车载单元智能电源管理实现装置
CN102034128A (zh) 一种有源临时限速标签及其信号处理方法
CN107862231B (zh) 一种防止电子标签误唤醒***
CN103310492B (zh) 一种灵敏度校准***及其校准方法
CN201229597Y (zh) 一种具有双重唤醒模式的rfid电子标签
CN102833826A (zh) 实现智能休眠的dsrc***车载终端和实现方法
CN103729895A (zh) 唤醒电子标签的方法、装置及***
CN103226169A (zh) 一种用于无线唤醒电路的方波检测器
CN103313365B (zh) 远程控制计量***
CN104574529A (zh) 提高车载单元唤醒性能的方法及实现该方法的车载单元
CN108541049B (zh) 唤醒复合通行卡的方法及复合通行卡
CN111818480B (zh) 一种obu测试方法和***
CN101216990A (zh) 一种轮胎气压/温度检测***
CN201166867Y (zh) 一种路侧装置
KR20100083389A (ko) 전원 절전형 차량용 단말기 및 전원 절전형 차량용 단말기 제어 방법
CN104318633A (zh) 一种基于uhf rfid的etc***的obu结构
CN111417095A (zh) 低功耗的通信方法、装置及设备
CN106209281B (zh) 无线传感器网络rssi衰减模型实地校准装置及方法
CN103824435A (zh) 一种在射频抄表过程中延长电表待机时间的方法以及通过射频方式收发用电数据的方法
CN207233003U (zh) 高灵敏度复合通行卡

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10834174

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010834174

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE