WO2011065053A1 - 導光板、導光ユニット、照明装置、及び表示装置 - Google Patents

導光板、導光ユニット、照明装置、及び表示装置 Download PDF

Info

Publication number
WO2011065053A1
WO2011065053A1 PCT/JP2010/061553 JP2010061553W WO2011065053A1 WO 2011065053 A1 WO2011065053 A1 WO 2011065053A1 JP 2010061553 W JP2010061553 W JP 2010061553W WO 2011065053 A1 WO2011065053 A1 WO 2011065053A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light guide
guide plate
columnar
liquid crystal
Prior art date
Application number
PCT/JP2010/061553
Other languages
English (en)
French (fr)
Inventor
柴田 諭
豪 鎌田
内田 秀樹
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/389,607 priority Critical patent/US20120140513A1/en
Publication of WO2011065053A1 publication Critical patent/WO2011065053A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133616Front illuminating devices

Definitions

  • the present invention relates to a novel light guide plate, a light guide unit including the light guide plate, an illumination device, and a display device.
  • the light guide plate distributes the light in the in-plane direction by guiding the light incident from the light source in the plane of the light guide plate. Further, the light guide plate is usually provided with a light-reflective structure on the lower surface or the upper surface, and light is emitted from one surface of the light guide plate by reflecting light in the structure. It functions as a uniform surface light source.
  • B / L equipped with a light guide plate can be classified based on the difference in the light input method to the light guide plate.
  • B / L of a method in which light enters a light guide plate from a plurality of point light sources (for example, light emitting diodes: LEDs) arranged on an end surface (edge) of the light guide plate is B / L of a side light incident method.
  • the B / L of the method in which light is incident into the light guide from a plurality of point light sources arranged on the lower surface of the light guide plate (the light emitting surface and the back surface) is a direct type B / L L (see Patent Document 3).
  • the B / L described in Patent Document 1 is a light guide plate, an LED provided on the end face of the light guide plate, a reflector provided on the lower surface of the light guide plate, and a penetration provided in the vicinity of the LED so as to penetrate the light guide plate. Has holes.
  • a plurality of minute textures are formed on the lower surface of the light guide plate, and the lower surface functions as a light diffusion surface.
  • the end surface of the light guide plate in the vicinity of the LED is provided with a semi-cylindrical side surface reflecting portion for preventing light leakage from the end surface.
  • the B / L described in Patent Document 2 is provided on the light guide plate, the LED provided on the end face of the light guide plate, the reflection plate provided on the lower surface of the light guide plate, and the upper surface (light emitting side surface) of the light guide plate.
  • a light leakage modulator is provided. (See especially FIG. 7 of Patent Document 2).
  • the light leakage modulator is provided with a cylindrical low refractive index region in the high refractive index region, and the light leakage modulator propagates more light while limiting the light leakage effect farther from the LED. .
  • the B / L described in Patent Document 2 has a columnar low refractive index region disposed in a layer different from the light guide plate, and distributes light emitted from the light guide plate to the light leakage modulator in the in-plane direction (uniformly). It is a structure to make.
  • the B / L described in Patent Document 3 includes a light guide plate in which a hole or a protrusion is provided, and a side light emitting LED accommodated in a recess provided in the surface of the light guide plate. ing.
  • the side surface of the hole or projection is provided substantially perpendicular to the lower surface (bottom surface, not the light output side) of the light guide plate, and the angle of light emitted from the LED through the hole or projection. While maintaining the distribution, the inside of the light guide plate is guided and emitted to the outside (see FIGS. 14 and 23 of Patent Document 3).
  • the said hole part may penetrate the light guide plate, or may not penetrate.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2001-035229 (published on February 9, 2001)” Japanese Patent Publication “Japanese Patent Laid-Open No. 2002-222604 (published on August 9, 2002)” International pamphlet “WO 2006/107105 (published on October 12, 2006)”
  • the conventional B / L described in Patent Documents 1 to 3 has a common problem that it cannot be applied to a liquid crystal display device driven by area active.
  • the area active drive refers to a system in which a display unit such as a liquid crystal display device is driven by being divided into a plurality of regions for the purpose of improving display contrast.
  • the B / L described in Patent Document 1 is basically an invention related to a B / L for a mobile LCD (Liquid Crystal Display) using one LED, and only the structure near the light incident part of the LED is considered. Therefore, there is a problem that it is difficult to cope with an increase in area of a liquid crystal display device or the like.
  • the present invention has been made in view of the above-described problems, and has as its main object to provide a novel light guide plate, light guide unit, illumination device, and display device that can also be applied to area active drive.
  • a light guide unit in a light guide plate so as to face a light guide plate made of a light-transmitting base material and a direction intersecting the in-plane direction of the light guide plate. And a plurality of columnar regions having different refractive indexes from the translucent substrate, and a light extraction layer provided on one side of the light guide plate, the light extraction layer being incident from the light guide plate And a light reflecting member that reflects the light so that the light is emitted from the side facing away from the one surface of the light guide plate, and a shutter member that switches between transmission / non-transmission of light and transmission / scattering of light. It is characterized by that.
  • the light incident on the light guide plate is refracted when entering the plurality of columnar regions provided in the light guide plate, and changes its optical path in the in-plane direction of the light guide plate. Thereby, the light is distributed so as to spread in the in-plane direction of the light guide plate.
  • the light incident on the light extraction layer from the one surface side of the light guide plate selectively reaches the light reflecting member via the shutter member, and after being reflected by the light reflecting member, selectively passes again through the shutter member. The light is emitted from the light guide plate to the outside.
  • the distribution of light in the in-plane direction of the light guide plate and the selective emission (extraction) of light out of the surface of the light guide plate are performed by different layers.
  • the light distribution and the light emission to the outside can be controlled independently of each other. Therefore, for example, it is possible to provide a novel light guide unit that can be applied to a display device that is area active driven.
  • the present invention also provides an illumination device including the light guide unit and at least one primary light source disposed on an end surface of the light guide plate.
  • the present invention further provides a display device including the lighting device as a backlight.
  • the present invention further provides a novel light guide plate used for these light guide units and the like.
  • FIG. 1 is a perspective view showing a schematic configuration of a lighting device according to the present invention.
  • FIG. 2 is a top view illustrating a schematic configuration of the illumination device illustrated in FIG. 1.
  • FIG. 3 is a side view illustrating a schematic configuration of the illumination device illustrated in FIG. 1.
  • Each of (a) to (c) in FIG. 4 is a diagram showing an example of a detailed configuration of a light extraction layer provided in the illumination device shown in FIG.
  • the illumination device 10 of the present invention includes a light guide plate 1, a plurality of LEDs (Light Emitting Diodes) 2 as primary light sources, and a light extraction layer 7.
  • the light extraction layer 7 emits light incident from the light guide plate 1 to the outside of the light guide plate 1 to cause the illumination device 10 to function as a secondary light source. That is, the illuminating device 10 is provided with a mechanism (light guide plate 1) that guides light incident from the primary light source widely in the plane and a mechanism (light extraction layer 7) that extracts the guided light. Therefore, compared with the case where both mechanisms are realized by one configuration in the light guide plate, it is easier to control the extraction of the guided light.
  • the illumination device 10 in which the LED 2 that is the primary light source is not mounted is defined as a “light guide unit” that does not emit light by itself but guides light incident on the illumination device 10. Yes.
  • the light guide plate 1 is a flat plate member having a rectangular shape, for example, formed from a light-transmitting base material (light guide plate medium) known as a constituent material of the light guide plate, such as glass, acrylic resin, polycarbonate, or silicone resin. .
  • the light guide plate 1 includes four end surfaces 1c to 1f, an upper surface 1b, and a lower surface 1a. Of the four end faces 1c to 1f, one end face 1c is provided with a light source attachment portion 11 (see FIG. 2) for attaching a primary light source, and a plurality of LEDs 2 are attached to the light source attachment portion 11.
  • a cylindrical light reflecting material 5 is laid without gap so that the side faces thereof are in contact with each other. That is, at the end faces 1d to 1f, the light reflecting material 5 is arranged so that one light reflecting wall regularly protruding into the light guide plate 1 in a curved shape is formed.
  • the light reflecting material 5 is made of a material such as aluminum, silver, or a dielectric multilayer reflective film.
  • the light reflecting material 5 is configured by installing wire-like fine metal wires on the end faces 1 d to 1 f of the light guide plate 1.
  • the diameter of the fine metal wire is not particularly limited, but a wire having a diameter of about 50 ⁇ m to 100 ⁇ m is preferable from the viewpoint of easy manufacture.
  • fine metal wires such as nanowires can also be used as the light reflecting material 5.
  • a method for installing the fine metal wires it is possible to use a technique such as adhesion via resin or heat fusion. Further, a method in which a film on which fine metal wires are spread is manufactured in advance and pasted to the end face of the light guide plate via air can also be used.
  • the end faces 1 d to 1 f of the light guide plate 1 can be processed to have the same function as the light reflecting material 5. Specifically, for example, cylindrical through holes are formed in the end faces 1d to 1f of the light guide plate 1. Next, the end faces 1d to 1f are cut so that the cross-section of the through hole is substantially semicircular, and a reflective material such as aluminum, silver, or a dielectric multilayer reflective film is formed on the surface.
  • a plurality of columnar regions 4 (columnar regions) extending in a direction intersecting with the in-plane direction of the light guide plate 1 are formed.
  • the columnar region 4 is a region filled with a substance having a refractive index different from that of the translucent substrate.
  • the columnar region 4 is more specifically a through hole extending in a direction substantially perpendicular to the in-plane direction of the light guide plate 1.
  • the columnar region 4 has a higher refractive index than the translucent base material constituting the light guide plate 1.
  • the refractive index of the columnar region 4 is higher than the refractive index of the base material of the light guide plate 1. It is preferably 0.05 or more, more preferably 0.05 or more and 0.2 or less, and even more preferably 0.05 or more and 0.1 or less.
  • the base material of the light guide plate 1 is glass, acrylic resin, polycarbonate, or silicone resin
  • examples of the material that fills the columnar region 4 include resins such as epoxy acrylate, urethane acrylate, and polyfluorene, or metal oxidation of these resins. The thing which disperse
  • the in-plane direction of the light guide plate 1 indicates a direction horizontal to the upper surface 1b and the lower surface 1a in principle.
  • the horizontal direction refers to a plane that is equidistant from the upper surface 1b and the lower surface 1a (that is, the center surface of the light guide plate 1).
  • the columnar region 4 contributes to uniform light guiding in the plane of the light guide plate 1 and is regularly arranged with respect to the arrangement of the plurality of LEDs 2.
  • a plurality of columnar regions 4 are arranged along the arrangement direction of the plurality of LEDs 2 arranged on the end face 1c.
  • the plurality of columnar regions 4 arranged in the first row and the second row are arranged alternately (in a so-called staggered manner).
  • the columnar regions 4 constituting the second row are arranged so as to fill the gaps between the columnar regions 4 and 4 constituting the first row.
  • the arrangement of the columnar regions 4 between other adjacent rows is similarly performed.
  • the LED 2 attached to the end surface 1 c of the light guide plate 1 emits light 3 having strong directivity into the light guide plate 1.
  • the light 3 entering the light guide plate 1 is refracted when entering the columnar region 4 and changes its optical path in the in-plane direction of the light guide plate 1 (light after refraction is indicated by light 3a and 3b).
  • the light 3 is evenly distributed so as to spread in the in-plane direction of the light guide plate 1.
  • the columnar region 4 has a side surface that is substantially perpendicular to the in-plane direction of the light guide plate 1 (the upper surface 1 b that is the light exit surface). Therefore, the traveling direction of the light 3 to be guided in the thickness direction of the light guide plate is refracted and changed when it enters the columnar region 4 (see the light 3 in the figure), but again from the side surface of the columnar region 4.
  • the light path is preserved because it returns to its original angle when entering the light (see light 3 'in the figure). That is, the incident angle of the light 3 with respect to the light guide plate 1 is preserved as it is while the light 3 is guided through the light guide plate 1. Therefore, if the light guide plate 1 is used, the light 3 can be uniformly distributed only in the in-plane direction while maintaining the light guide conditions.
  • the light 3 distributed in the in-plane direction of the light guide plate 1 reaches the end faces 1d to 1f, the light 3 (stray light) is reflected on the side surfaces of the light reflecting material 5 and guided again in the light guide plate 1. To wave. Thereby, undesired light leakage (light loss) from the light guide plate 1 is prevented, so that the utilization efficiency of the light supplied from the primary light source (LED 2) is further improved.
  • the light extraction layer 7 is provided on the lower surface 1a (one surface) side of the light guide plate 1 and reflects light so that light incident from the light guide plate 1 is emitted from the upper surface 1b side facing away from the lower surface 1a.
  • a light reflecting member 8 is provided.
  • the light extraction layer 7 is provided between the light guide plate 1 and the light reflecting member 8 and includes a shutter member that can switch light transmission or non-transmission (light transmission state) or light transmission / scattering.
  • the light extraction layer 7 includes a light reflecting member 8 having a reflecting surface made of a light reflecting material such as aluminum, silver, or a dielectric multilayer reflecting film, and a liquid crystal layer (shutter) containing a liquid crystal material. Member) 9.
  • the light extraction layer 7 is arranged so that the light reflecting member 8 faces the light guide plate 1 with the liquid crystal layer 9 interposed therebetween.
  • the light extraction layer 7 has a plane area substantially the same as the lower surface 1 a of the light guide plate 1, and the light extraction layer 7 is provided so as to cover the entire lower surface 1 a of the light guide plate 1.
  • the light reflecting member 8 is a triangular columnar member extending in a direction along the alignment direction of the four columnar regions in the light guide plate 1 (that is, the alignment direction of the LEDs 2).
  • the bottom surface of the light reflecting member 8 has an isosceles triangular shape having one obtuse angle.
  • the plurality of light reflecting members 8 are fixed to the substrate 21 on the side surface facing the obtuse apex angle.
  • the plurality of light reflecting members 8 fixed to the substrate 21 are spread with no gap therebetween. Therefore, the plurality of light reflecting members 8 form a light-reflective continuous surface with continuous peaks and valleys on the substrate 21. That is, the illumination device 10 has a configuration in which the liquid crystal layer 9 is sandwiched between the light-reflecting continuous surface constituted by the plurality of light reflecting members 8 and the light guide plate 1.
  • the light 3 guided through the light guide plate 1 is incident on the light extraction layer 7.
  • most of the light 3 enters the light extraction layer 7 at the interface between the base material (low refractive region) of the light guide plate 1 and the light extraction layer 7, and the columnar region (high refractive region) 4 of the light guide plate 1.
  • Most of the light 3 is totally reflected at the interface between the light extraction layer 7 and the light guide plate 1.
  • the light incident on the light extraction layer 7 first reaches the liquid crystal layer 9.
  • the liquid crystal layer 9 forms a shutter that switches between transmitting and reflecting (not transmitting) the incident light 3 based on voltage application.
  • the shutter basically includes a liquid crystal layer 9, a pair of drive electrodes facing each other with the liquid crystal layer 9 interposed therebetween, and a liquid crystal drive circuit (not shown) for applying a voltage signal between the electrodes. Is done.
  • the shutter divides the liquid crystal layer 9 into a plurality of areas and independently drives (divided driving). Therefore, as shown in FIG. 3, the alignment state of the liquid crystal molecules changes in the region A where the voltage is applied in the liquid crystal layer 9 and the region B where no voltage is applied. For example, when using vertically aligned liquid crystal molecules, as shown in FIG. 3, in the region A, the liquid crystal molecules are aligned in a direction parallel to the light extraction layer 7, while in the region B, the liquid crystal molecules are It is oriented in a direction perpendicular to the light extraction layer 7.
  • the light incident on the region A of the liquid crystal layer 9 from the light guide plate 1 side is totally reflected by the liquid crystal molecules and then guided again in the light guide plate 1.
  • the light 3 is propagated in the light guide plate 1 while maintaining an incident angle (that is, a direction substantially horizontal to the in-plane direction of the light guide plate 1) and enters the light extraction layer 7. Accordingly, since the angle when the light is totally reflected by the liquid crystal molecules becomes relatively small, the light 3 incident again from the light extraction layer 7 into the light guide plate 1 is guided so as to spread uniformly in the in-plane direction of the light guide plate 1. Waved.
  • the light 3 incident on the region B of the liquid crystal layer 9 from the light guide plate 1 side passes between the liquid crystal molecules and reaches the light reflective continuous surface constituted by the light reflecting member 8. Subsequently, the light 3 is reflected by the continuous surface. Since this continuous surface has a repeating structure of peaks and valleys as described above, the light 3 is totally reflected at a steep angle. Therefore, the light 3 totally reflected by the continuous surface enters the light guide plate 1 at a steep angle. As a result, the light 3 is emitted from the upper surface 1 b of the light guide plate 1 without being guided in the in-plane direction through the light guide plate 1.
  • the illumination device 10 emits light only from the region on the light guide plate 1 corresponding to the region B of the liquid crystal layer 9.
  • the region on the light guide plate 1 corresponding to the region A of the liquid crystal layer 9 only light distribution (light guide) in the in-plane direction of the light guide plate 1 is substantially performed, and the light is transmitted to the outside. No light is emitted.
  • the illumination device 10 since the light distribution into the light guide plate 1 and the light emission outside the light guide plate 1 are performed in separate layers, the light distribution and the light to the outside are performed. Can be controlled independently of each other.
  • the illumination device 10 light can be emitted from the entire upper surface 1b of the light guide plate 1 through control by the light extraction layer 7, or light can be emitted only from a specific partial region on the upper surface 1b. it can. Therefore, the illumination device 10 can be a planar light source (backlight unit) that can be used for a liquid crystal display device that is area-actively driven.
  • the side light incident type and area active type B / L such as the lighting device 10, is superior in terms of cost reduction, power consumption, and thickness reduction of the device as compared with the conventional configuration.
  • the area active drive refers to a system in which a display unit such as a liquid crystal display device is driven by being divided into a plurality of regions for the purpose of improving display contrast.
  • the light extraction layer 7 and the light guide plate 1 included in the illumination device 10 both have a simple configuration, it is easy to increase the size. Therefore, it is possible to relatively easily cope with an increase in area of a liquid crystal display device using the illumination device 10 as a backlight.
  • the light extraction layer 7 is provided between the light reflection member that reflects the light incident from the light guide plate 1 and between the light guide plate and the light reflection member. Or a shutter member that switches light transmission / scattering, and is applicable to the present invention without particular limitation.
  • FIG. 4 is a cross-sectional view showing an example of a schematic configuration of the light extraction layer 7.
  • the light extraction layer 7 includes a liquid crystal layer 9 (shutter member) disposed between the pair of transparent substrates 33 and 36 and a plurality of light reflecting members provided on one surface of the light-shielding (light non-transmissive) support substrate 31. 8.
  • a liquid crystal driving electrode 34 and an alignment film 35 are laminated in this order on the surface facing the liquid crystal layer 9, and a voltage is applied between the electrodes 34 and 34.
  • the liquid crystal layer 9 functions as a shutter member.
  • the support substrate 31 is bonded to the transparent substrate 33 via the transparent adhesive resin layer 32 so that the surface on which the light reflecting member 8 is provided faces the transparent substrate 33.
  • the transparent substrate 36 is bonded to the light guide plate 1 (see FIG. 3) on the side facing away from the surface on which the liquid crystal layer 9 and the like are disposed.
  • Transmission or non-transmission of light incident on the light extraction layer 7 from the light guide plate 1 side is controlled in the liquid crystal layer 9, and a part of the light selectively reaches the light reflecting member 8. After the light is reflected by the light reflecting member 8, transmission or non-transmission is controlled again by the liquid crystal layer 9, and a part of the light selectively enters the light guide plate 1, and further to the outside of the light guide plate 1. It is taken out.
  • FIG. 4B is a cross-sectional view showing another example of the schematic configuration of the light extraction layer 7.
  • the light extraction layer 7 includes a liquid crystal layer 9 (shutter member) disposed between a support substrate 41 having a light shielding property and an insulating property and a transparent substrate 44, and comb-like electrodes 42 (light reflection member for driving a liquid crystal). (Also serves as).
  • a comb-tooth electrode 42 and an alignment film 43 are formed in this order on the surface of the support substrate 41 facing the liquid crystal layer 9.
  • An alignment film 43 is also formed on the surface of the transparent substrate 44 facing the liquid crystal layer 9.
  • the transparent substrate 44 is bonded to the light guide plate 1 (see FIG. 3) on the side facing away from the surface on which the liquid crystal layer 9 and the like are disposed.
  • two comb-teeth electrodes 42 form a pair, and are composed of linear portions 42b extending in parallel with each other and comb-teeth portions 42a extending perpendicularly from the straight portions 42b.
  • the comb-tooth portions 42a of the pair of comb-tooth electrodes 42 and 42 are arranged so as to engage with each other, and a voltage is applied to the liquid crystal layer 9.
  • the comb-tooth electrode 42 has at least the comb-tooth portion 42a in a triangular prism shape, and is formed of a light-reflecting metal such as aluminum or silver, for example, It also functions as a light reflecting member.
  • transmission or non-transmission of light incident on the light extraction layer 7 from the light guide plate 1 side is controlled by the liquid crystal layer 9, and a part of the light selectively reaches the comb electrode 42 that also serves as a light reflecting member. To do. After the light is reflected by the comb electrode 42, transmission or non-transmission is controlled again by the liquid crystal layer 9, and a part of the light selectively enters the light guide plate 1, and further to the outside of the light guide plate 1. It is taken out.
  • the columnar region 4 only needs to have a different refractive index from the base material of the light guide plate.
  • translucent materials such as epoxy acrylate, urethane acrylate, and polyfluorene are used.
  • a structure filled with a material can be exemplified.
  • the columnar region 4 may be a space filled with air.
  • the illumination device 10 an example using the liquid crystal layer 9 as a shutter member constituting the light extraction layer 7 is illustrated.
  • the shutter member is not particularly limited to this, and for example, an optical shutter of another aspect mounted on the lighting device can be used.
  • a columnar region is illustrated as the columnar region 4 provided in the light guide plate 1.
  • the shape is not limited to the columnar shape, and columnar regions having different shapes and / or sizes may be mixed in the same light guide plate 1 as necessary.
  • the columnar region 4 provided in the light guide plate 1 is not limited to the shape and size, and the arrangement form, the arrangement pitch, and the like are not particularly limited to those illustrated.
  • the shape of the columnar region 4 provided in the light guide plate 1 is not particularly limited, and examples thereof include a triangular columnar shape, a quadrangular columnar shape, an elliptical columnar shape, a cylindrical shape, and the like, and two or more types selected from these examples You may mix and use the columnar area
  • the size of the columnar region 4 is not particularly limited.
  • the equivalent diameter thereof is in the range of 300 ⁇ m or more and 1 mm or less, in the range of 1 mm or more and 5 mm or less, or in the range of 5 mm or more and 10 mm or less, etc. Is mentioned.
  • the size (equivalent diameter) of the columnar region 4 is 0.1 mm, 0.3 mm, 0.5 mm, or 1 mm.
  • the sizes of the plurality of columnar regions 4 included in one light guide plate 1 may be uniform or different from each other.
  • the size (equivalent diameter of the columnar regions 4) is increased. Is gradually increased, the size is gradually decreased, or the size is randomly distributed.
  • the arrangement form of the columnar regions 4 is not particularly limited, and examples thereof include an alignment state (staggered arrangement), a honeycomb arrangement, or a random arrangement as shown in FIG.
  • an alignment state staggered arrangement
  • a honeycomb arrangement or a random arrangement as shown in FIG.
  • six columnar regions 4 are arranged around one columnar region 4 so that the columnar regions 4 have a so-called hexagonal filling structure and surround the columnar region 4.
  • positions is mentioned.
  • the pitch between the columnar regions 4 is not particularly limited.
  • the pitch is in the range of 1 mm to 5 mm, in the range of 5 mm to 10 mm, or in the range of 10 mm to 20 mm.
  • the pitch may be a uniform pitch; or a pitch that gradually increases, gradually decreases, or is randomly distributed as the distance from the end surface 1c (primary light incident surface) of the light guide plate 1 to which the LEDs 2 are attached is increased. .
  • a 1 mm interval, a 5 mm interval, or a 10 mm interval may be used.
  • the refractive index of the columnar region 4 is preferably higher (larger) than the base material (glass, transparent resin, etc.) of the light guide plate, but may be lower (smaller).
  • the configuration of the columnar region 4 (whether it is filled with a light-transmitting material), a refractive index, a shape, a size, an arrangement form, as exemplified above , And pitch are used in any combination with each other.
  • a columnar region 4 having a shape, size, arrangement form, and pitch specifically set as follows was created.
  • the shape of the columnar region 4 is either a columnar shape or an elliptical columnar shape, the size (equivalent diameter) is 300 ⁇ m, and the arrangement form is a honeycomb shape (hexagonal filling structure).
  • the pitch is uniform at 1 mm, the refractive index of the base material (low refractive index resin) of the light guide plate 1 is 1.5, and the refractive index of the columnar region 4 (high refractive index resin) is 1.6.
  • the shape of the columnar region 4 is either a triangular prism shape or a quadrangular prism shape, its size (equivalent diameter) is 300 ⁇ m and uniform, its array form is a honeycomb shape (hexagonal filling structure), and its pitch is 1 mm.
  • the refractive index of the base material (low refractive index resin) of the light guide plate 1 is 1.5 and the refractive index of the columnar region 4 (high refractive index resin) is 1.6.
  • the side surface located on the primary light incident side is inclined with respect to the end surface 1c of the light guide plate 1 forming the primary light incident surface. (That is, the side surface of the columnar region 4 and the end surface 1c are not parallel to each other).
  • the columnar region 4 is symmetrical. More preferably, it is arranged so as to be visible. Thereby, light can be more evenly distributed in the light guide plate 1.
  • the columnar region 4 has a cylindrical shape and a polygonal columnar shape combined, and its size (equivalent diameter) is 300 ⁇ m and uniform, and its arrangement form is a honeycomb shape (hexagonal filling structure),
  • the pitch is uniform at 1 mm
  • the refractive index of the base material (low refractive index resin) of the light guide plate 1 is 1.5
  • the refractive index of the columnar region 4 is 1.6.
  • the columnar region 4 having a polygonal column shape is such that its side surface located on the primary light incident side is inclined with respect to the end surface 1c of the light guide plate 1 forming the primary light incident surface (that is, the side surface and the end surface of the columnar region 4).
  • the columnar regions 4 are arranged so that the columnar regions 4 appear to be symmetrical when viewed from the end face 1c side. Thereby, light can be more evenly distributed in the light guide plate 1.
  • the shape of the columnar region 4 is either a columnar shape or an elliptical columnar shape, the size (equivalent diameter) is 300 ⁇ m and uniform, the arrangement form is a honeycomb shape (hexagonal filling structure), and the pitch of the light guide plate 1 As the distance from the end surface 1c increases, the pitch gradually increases (sparsely), the refractive index of the base material (low refractive index resin) of the light guide plate 1 is 1.5, and the refractive index of the columnar region 4 (high refractive index resin) is.
  • the columnar regions 4 are arranged so that the vicinity of the portion (primary light incident portion) to which the LEDs 2 are attached is closest.
  • the modified configuration 3 is a configuration in which the pitch of the columnar regions 4 is reduced toward the end surface on the light incident surface side from the LED 2 in order to reduce unevenness in the amount of light of the LED 2, thereby further efficiently distributing light. It is.
  • Modified configuration 4 The shape of the columnar region 4 is either a columnar shape or an elliptical columnar shape, and its size (equivalent diameter) gradually decreases as the distance from the end surface 1c of the light guide plate 1 increases.
  • the pitch is uniform at 1 mm, the refractive index of the base material (low refractive index resin) of the light guide plate 1 is 1.5, and the refractive index of the columnar region 4 (high refractive index resin) is 1.6. . That is, in the modified configuration 4, the columnar region 4 is arranged such that the amount of light incident on the columnar region 4 decreases as the distance from the portion (primary light incident part) to which the LED 2 is attached is increased.
  • the modified configuration 4 is a configuration in which the light is distributed more efficiently as it is closer to the end surface on the light incident surface side from the LED 2 in order to reduce the unevenness of the light amount of the LED 2.
  • the columnar region 4 has either a cylindrical shape or an elliptical columnar shape, and its size (equivalent diameter) gradually increases as the distance from the end surface 1c of the light guide plate 1 increases.
  • the arrangement is a honeycomb shape (hexagonal filling structure),
  • the pitch gradually increases (becomes sparse) with increasing distance from the end face 1c of the light guide plate 1, and the refractive index of the base material (low refractive index resin) of the light guide plate 1 is 1.5 and the columnar region 4 (high refractive index resin). ) Is 1.6. That is, in the modified configuration 5, the columnar regions 4 are arranged so that the vicinity of the portion (primary light incident portion) to which the LED 2 is attached is closest and the size is minimized.
  • the display device of the present invention includes the illumination device 10 of the present invention as a backlight.
  • the type of the display device is not particularly limited as long as it is a display device using a backlight. Specific examples include a liquid crystal display device used for a television receiver, a display unit of a mobile phone, and the like. Among these, a liquid crystal display device used for a large television receiver is preferable because thinning and low power consumption are strongly demanded.
  • the lighting device 10 of the present invention can emit light from the entire upper surface 1b of the light guide plate 1 through the control of the light extraction layer 7, or a specific partial region on the upper surface 1b. It is also possible to emit light from only. Accordingly, the illumination device 10 can be a planar light source that can be applied to a liquid crystal display device that is area-active driven.
  • area active driving refers to a method of driving a display unit such as a liquid crystal display device by dividing it into a plurality of regions for the purpose of improving display contrast.
  • the light guide plate of the present invention is provided with a light guide plate (light guide plate 1) made of a light-transmitting base material, a direction that intersects the in-plane direction in the light guide plate, and the light-transmitting base material.
  • a light guide plate made of a light-transmitting base material, a direction that intersects the in-plane direction in the light guide plate, and the light-transmitting base material.
  • a configuration comprising a plurality of columnar regions (columnar regions 4) having different refractive indexes, and a primary light source (LED2) mounting portion (light source mounting portion 11) provided on the end face of the light guide plate.
  • the light guide plate of the present invention is a side light incident type light guide plate. Therefore, the number of necessary primary light sources can be further reduced as compared with the direct type light guide plate.
  • the plurality of columnar regions are substantially perpendicular to the in-plane direction of the light guide plate from the viewpoint that the light guide condition (light incident angle) in the light guide plate is maintained. It is preferable to have various side surfaces.
  • the light that is incident on the columnar region and refracted in the thickness direction of the light guide plate is refracted again when it is emitted from the columnar region (enters the light guide plate again).
  • the incident angle of light with respect to the light guide plate is preserved as it is.
  • the plurality of columnar regions have a higher refractive index than the translucent substrate.
  • the plurality of columnar regions are provided through the light guide plate from the viewpoint of easy manufacture.
  • the light extraction layer includes a liquid crystal layer as a shutter member and a light reflection member, and the light reflection member is disposed to face the light guide plate with the liquid crystal layer interposed therebetween. Is more preferable.
  • the light incident on the light extraction layer from the light guide plate reaches the light reflecting member via the liquid crystal layer driven by application of voltage.
  • the liquid crystal layer functions as a shutter, and allows light to reach the light reflecting member only in a desired region and emit the light to the outside of the light guide unit. Therefore, for example, it is possible to provide a novel light guide unit that can be applied to a display device that is area active driven.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)

Abstract

 照明装置(10)は、透光性の基材からなる導光板(1)と、導光板(1)の一面(下面(1a))側に設けられ、導光板(1)から入射した光(3)を、導光板(1)の一面に背向する面(上面(1b))側から出射するように光(3)を反射する光反射部材及び光の透過/非透過を切り替えるシャッター部材を備えた光取出し層(7)と、一次光源としてのLED(2)とを備えてなり、導光板(1)内には、その面内方向と交差する方向に設けられ、かつ透光性の上記基材とは屈折率が異なる複数の柱状領域(4)が形成されている。これによって、エリアアクティブ駆動にも対応可能な新規な導光ユニット、及び照明装置等が提供される。

Description

導光板、導光ユニット、照明装置、及び表示装置
 本発明は、新規な導光板、当該導光板を備えた導光ユニット、照明装置、及び表示装置に関する。
 液晶表示装置等に用いるバックライト(以下、B/Lと称する場合もある)として、近年、導光板を用いたものが多数採用されている。導光板は、光源から入射した光を当該導光板の面内で導波させることによって、当該光を面内方向に分配する。また、導光板には、通常、その下面又は上面に光反射性の構造物が設けられており、当該構造物において光を反射することによって導光板の一面から光を出射するので、導光板が均一な面光源として機能する。
 導光板を備えたB/Lは、当該導光板への入光方式の違いに基づいて分類されうる。例えば、導光板の端面(エッジ)に配置した複数の点光源(例えば、発光ダイオード:LED)から当該導光板内に光を入射する方式のB/Lは、サイド入光方式のB/Lと称される(特許文献1及び2参照)。一方で、導光板の下面(光を出射する面と背向する面)に配置された複数の点光源から当該導光内に光を入射する方式のB/Lは、直下型方式のB/Lと称される(特許文献3参照)。
 特許文献1に記載のB/Lは、導光板、導光板の端面に設けられたLED、当該導光板の下面に設けた反射板、及び導光板を貫通するようにLED近傍に設けられた貫通穴を備えている。また、導光板の上記下面には複数の微小なシボ等(光取出し用構造物)が形成されており、当該下面が光拡散面として機能している。さらに、LED近傍における導光板の端面には、当該端面からの光の漏出を防止するための半円柱側面形状の反射部が設けられている。そして、導光板の端部に設けたLEDから当該導光板内に入射した光は、上記貫通穴を通じて導光板の面内方向に効率的に分配されるとともに、導光板の上記下面において反射した光は、導光板の上面(光出射側面)から拡散光として出射する(特に、特許文献1の図1参照)。
 特許文献2に記載のB/Lは、導光板、導光板の端面に設けられたLED、当該導光板の下面に設けられた反射板、当該導光板の上面(光出射側面)に設けられた漏光モジュレータを備えている。(特に、特許文献2の図7参照)。漏光モジュレータには、高屈折率領域部内に円柱状の低屈折率領域部が設けられており、当該漏光モジュレータがLEDからより遠く離れたところまで漏光効果を制限しつつより多くの光を伝播させる。すなわち、特許文献2に記載のB/Lは、円柱状の低屈折率領域部が導光板と異なる層に設置されており、導光板から漏光モジュレータへ出射した光を面内方向へ分配(均一化)する構成である。
 特許文献3に記載のB/Lは、孔部又は突起部が内部に設けられた導光板と、当該導光板の面内に設けられた凹部内に収容されたサイド発光型のLEDとを備えている。上記の孔部又は突起部の側面は、導光板の下面(底面。光出射側ではない面)に対して略垂直に設けられており、当該孔部又は突起部によってLEDが出射した光の角度分布を保持しつつ、導光板内を導光させ、外部に出射する(特許文献3の図14、23参照)。なお、上記孔部は、導光板を貫通するものでも、貫通していないものであってもよい。
日本国公開特許公報「特開2001-035229号(2001年2月9日公開)」 日本国公開特許公報「特開2002-222604号(2002年8月9日公開)」 国際公開パンフレット「WO2006/107105号(2006年10月12日公開)」
 しかしながら、上記特許文献1~3に記載の従来のB/Lは、エリアアクティブ駆動される液晶表示装置等には対応できないという共通の問題点を有する。なお、エリアアクティブ駆動とは、表示のコントラストを向上させること等を目的として、液晶表示装置等の表示部を複数の領域に分割して駆動する方式のことを指す。
 すなわち、B/Lを上記エリアアクティブ駆動に対応させる場合、導光板内の導光条件を任意の領域において崩して当該導光板から光を出射させることが必要となる。すなわち、光を出射させない導光板の領域では、導光板の面内のみに光を分配させるように(すなわち面外に光が出射しないように)、導光条件を保存する必要がある。しかし、上記従来のB/Lでは、導光板の面内のみならず面外に出射する方向にも光路が変わってしまうために、光漏れの原因となる。
 これは、従来のB/Lでは、導光板面内での光の分配と、面外への出射とが、導光板の機能により同時に行われていることが原因である。すなわち、B/Lを上記エリアアクティブ駆動に対応させる場合、光の出射を行わない領域では、導光板の厚み方向(表示面方向)へは光路が変わらず、かつ導光板面内にのみ光を分配させることが必要となる一方、光の出射を行う領域では、導光板の厚み方向に光路を変えることが必要となる。
 また、特許文献1に記載のB/Lは、基本的に、LED1個を用いたモバイルLCD(Liquid Crystal Display)向けB/Lに関する発明であり、LEDの入光部近傍についての構造のみが考慮されているため、液晶表示装置等の大面積化への対応が困難であるという問題点も有する。
 また、特許文献3に記載のB/Lは、直下型方式であるため、必要なLEDの個数がサイド入光方式のB/Lと比較して多くなるという問題点も有する。また、特許文献1にも記載の通り、サイド発光型のLEDを用いた場合でも、当該LEDの上方への光の出射に対する対策を講じる必要があるという問題点も有する。
 本願発明は、上記課題に鑑みてなされたものであり、エリアアクティブ駆動にも対応可能な新規な導光板、導光ユニット、照明装置、及び表示装置を提供することを主たる目的とする。
 上記の課題を解決するために、本発明にかかる導光ユニットは、透光性の基材からなる導光板と、当該導光板の面内方向と交差する方向を向くように導光板内に設けられ、かつ上記透光性の基材とは屈折率が異なる複数の柱状の領域と、上記導光板の一面側に設けられた光取出し層と、を備え、光取出し層は、導光板から入射した光を、導光板の上記一面に背向する面側から出射するように光を反射する光反射部材、並びに光の透過/非透過又は光の透過/散乱を切り替えるシャッター部材を備えて構成されることを特徴としている。
 上記の構成によれば、導光板内に入射した光は、当該導光板内に設けられた複数の柱状の領域に入射した際に屈折して、導光板の面内方向においてその光路を変える。これにより、導光板の面内方向に広がるように光が分配される。一方、導光板の一面側から光取出し層に入射した光は、シャッター部材を介して選択的に光反射部材に到達し、当該光反射部材において反射した後に再びシャッター部材を介して、選択的に導光板から外部に出射する。
 すなわち、上記導光ユニットでは、導光板の面内方向への光の分配と、当該導光板の面外への光の選択的な出射(取り出し)とが、互いに異なる層により行われるため、当該光の分配と外部への光の出射とを互いに独立して制御可能となるという効果を奏する。よって、例えば、エリアアクティブ駆動する表示装置にも対応可能な、新規な導光ユニットを提供可能となる。
 本発明は、また、上記の導光ユニットと上記導光板の端面に配置された少なくとも一つの一次光源とを備えた照明装置を提供する。本発明はさらに、当該照明装置をバックライトとして備える表示装置を提供する。本発明はさらに、これら導光ユニット等に用いられる新規な導光板を提供する。
 本発明によれば、エリアアクティブ駆動にも対応可能な新規な導光ユニット等を提供可能となるという効果を奏する。
図1は、本発明に係る照明装置の概略構成を示す斜視図である。 図2は、図1に示す照明装置の概略構成を示す上面図である。 図3は、図1に示す照明装置の概略構成を示す側面図である。 図4中の(a)~(c)のそれぞれは、図1に示す照明装置が備える光取出し層の詳細構成の一例を示す図である。
 〔実施の形態1〕
 (導光ユニット、及び照明装置の基本構成)
 以下、図1から図3に基づき、本発明の導光板を備えた導光ユニット、及び照明装置の基本構成の一例を説明する。
 本発明の照明装置10は、導光板1と、一次光源としての複数のLED(発光ダイオード:Light Emitting Diode)2と、光取出し層7と、を備える。光取出し層7は、導光板1から入射した光を、当該導光板1外に出射して、照明装置10を二次光源として機能させる。すなわち、照明装置10は、一次光源から入射した光を面内に広く導波する機構(導光板1)と、導波された光を取出す機構(光取出し層7)とを別々に設けているため、導光板内の一構成にて両機構を実現する場合と比較して、導波された光の取出し制御がより容易となる。
 ここで、例えば、後述のように、導光板1表面の所望する領域のみから光が出射するように制御すれば、表示装置のエリアアクティブ駆動にも対応可能なバックライトユニットを提供可能となる。以下、照明装置10の詳細構造について説明する。なお、本実施の形態では、一次光源であるLED2を未搭載の状態の照明装置10を、自身では光を発しないが、自身に入射した光を導光する「導光ユニット」と定義している。
 導光板1は、ガラス、アクリル樹脂、ポリカーボネート、シリコーン樹脂、等、導光板の構成材料として公知な透光性の基材(導光板媒質)から形成された、例えば矩形形状をした平板部材である。導光板1は、4つの端面1c~1fと、上面1bと、下面1aと、を備える。4つの端面1c~1fのうち、1つの端面1cには、一次光源を取り付けるための光源取付部11(図2参照)が設けられており、当該光源取付部11に複数のLED2が取り付けられる。LED2が取り付けられていない3つの端面1d~1fには、円柱形状の光反射材5が互いにその側面を接するように隙間無く敷き詰められている。すなわち、端面1d~1fでは、導光板1内に向かって規則的に曲面状に突出した一枚の光反射壁が形成されるように、光反射材5が並べられる。光反射材5は、例えば、アルミニウム、銀、又は誘電体多層反射膜等の材料から構成される。
 より具体的には例えば、光反射材5は、導光板1の端面1d~1fに、ワイヤー状の金属細線を設置することによって構成される。金属細線の直径は特に限定されるものではないが、製造が容易であるという観点では、直径50μm~100μm程度のワイヤーが好ましい。またもちろん、ナノワイヤー等の微細な金属細線も光反射材5として利用可能である。金属細線の設置方法としては、樹脂を介した接着、熱融着等の手法を用いることができる。また、金属細線が敷き詰められたフィルムを予め製造しておき、導光板の端面に空気を介して張り合わせるという方法も用いる事ができる。
 なお、光反射材5を設ける代わりに、導光板1の端面1d~1fを加工して光反射材5と同等の機能を持たせることも可能である。具体的には例えば、導光板1の端面1d~1fに円柱状の貫通孔を形成する。次いで、端面1d~1fを、貫通孔の断面が略半円状になるように切断し、その表面に、アルミニウム、銀、又は誘電体多層反射膜等の反射材を成膜する。
 導光板1内には、導光板1の面内方向と交差する方向に伸びている、複数の柱状領域4(柱状の領域)が形成されている。柱状領域4は、透光性の基材とは屈折率の異なる物質で充填された領域である。本実施の形態において、柱状領域4は、より詳細には、導光板1の面内方向に対して略垂直な方向に伸びている貫通孔である。また、柱状領域4は、導光板1を構成する上記透光性の基材と比較して屈折率がより大きいことが好ましい。導光板1からの漏光の虞をより一層低減し、導光と光の分配とをより確実に両立させるという観点では、柱状領域4の屈折率は、導光板1の基材の屈折率よりも0.05以上大きいことが好ましく、0.05以上で0.2以下の範囲で大きいことがより好ましく、0.05以上で0.1以下の範囲で大きいことがより一層好ましい。導光板1の基材がガラス、アクリル樹脂、ポリカーボネート、又はシリコーン樹脂の場合、柱状領域4を充填する物質としては、例えば、エポキシアクリレート、ウレタンアクリレート、ポリフルオレン等の樹脂、又はこれら樹脂に金属酸化物のナノ粒子を分散させたものが挙げられる。
 なお、本明細書において、導光板1の面内方向とは、原則として上面1b及び下面1aと水平な方向を指す。ただし、上面1b及び下面1aが互いに水平ではない場合に、上面1b及び下面1aから等距離にある平面内(すなわち導光板1の中心面)に水平な方向を指す。
 上記の柱状領域4は、後述する通り、導光板1の面内における均一な光の導波に寄与しており、複数のLED2の配列に対して規則的に配列されている。端的には、端面1cに配列された複数のLED2の並び方向に沿って、複数の柱状領域4が配列される。ここで、LED2により近い柱状領域4の配列から順に、第一列、第二列、第三列、・・と称した場合、第一列に配列された複数の柱状領域4と、第二列に配列された複数の柱状領域4とは、互い違いに(いわゆる千鳥状に)配列されている。つまり、端面1c側から見た場合に、第二列を構成する柱状領域4は、第一列を構成する柱状領域4・4間の隙間を埋めるように配列される。第二列と第三列とのように、他の隣接する列間での柱状領域4の配置も同様に行われる。
 図2に示すように、導光板1の端面1cに取り付けたLED2は、導光板1内に指向性の強い光3を出射する。導光板1内に入射した光3は、柱状領域4に入射した際に屈折し、導光板1の面内方向においてその光路を変えるため(屈折後の光を、光3a・3bで示す)、導光板1の面内方向に広がるように光3が均等に分配される。
 加えて、図3に示すように、柱状領域4は、導光板1の面内方向(光出射面たる上面1b)に対して略垂直な側面を有する。そのため、導光する光3の導光板厚み方向における進行方向は、柱状領域4に入射した時点では屈折して変化するが(図中の光3参照)、柱状領域4の側面から再び導光板1内に入射する際に元の角度に戻る(図中の光3’参照)為、光路は保存される。すなわち、導光板1に対する光3の入射角は、当該光3が導光板1内を導波する間中、そのまま保存される。よって、導光板1を用いれば、導光条件を保ちながら、面内方向にのみ光3を均一に分配可能になる。
 一方、導光板1の面内方向に分配された光3が端面1d~1fに達すると、当該光3(迷光)は、光反射材5の側面において反射されて、再び導光板1内を導波する。これにより、導光板1からの不所望な漏光(光ロス)が防止されるので、一次光源(LED2)から供給された光の利用効率がより一層向上する。
 (光取出し層の構成)
 光取出し層7は、導光板1の下面1a(一面)側に設けられ、当該導光板1から入射した光を、当該下面1aに背向する上面1b側から出射するように、光を反射する光反射部材8を備えている。光取出し層7は、導光板1と光反射部材8との間に設けられ、光の透過若しくは非透過(光の透過状態)、又は光の透過/散乱を切り替え可能なシャッター部材を備えている。より具体的には、光取出し層7は、アルミニウム、銀、又は誘電体多層反射膜等の光反射性の材質からなる反射面を持つ光反射部材8と、液晶材料を含んだ液晶層(シャッター部材)9とを備えて構成される。そして、光反射部材8が液晶層9を挟んで導光板1と対向するように、光取出し層7が配置される。光取出し層7の平面積は、導光板1の下面1aと略同一の平面積を有しており、光取出し層7が、導光板1の下面1a全体を覆うように設けられている。
 光反射部材8は、導光板1内での柱状領域4列の並び方向(すなわち、LED2の並び方向)に沿う方向に延伸する三角柱状の部材である。光反射部材8の底面は、一つの頂角が鈍角な二等辺三角形状である。複数の光反射部材8は、鈍角な上記頂角に対向する側面において基板21に固定される。基板21に固定された複数の光反射部材8は互いに隙間なく敷きつめられている。そのため、複数の光反射部材8は、基板21上に、山及び谷が連続した光反射性の連続面を形成している。すなわち、照明装置10では、複数の光反射部材8により構成される光反射性の上記連続面と、導光板1との間に、液晶層9が挟持された構成をとる。
 光取出し層7には、導光板1内を導波した光3が入射する。ここで、導光板1の基材(低屈折領域)と光取出し層7との界面では、大部分の光3は光取出し層7に入射し、導光板1の柱状領域(高屈折領域)4と光取出し層7との界面では、大部分の光3は全反射し、導光板1内を導光する。
 光取出し層7に入射した光は、はじめに液晶層9に到達する。液晶層9は、入射した光3を透過させる又は反射する(透過させない)ことの切り替えを、電圧印加に基づき行うシャッターを構成している。シャッターは、端的には、液晶層9と、当該液晶層9を挟んで対向する一対の駆動電極と、当該電極間に電圧信号を印加する液晶駆動回路(図示せず)と、を含んで構成される。シャッターは、液晶層9を、複数の領域に分けて独立に駆動(分割駆動)する。よって、図3に示すように、液晶層9における電圧が印加された領域Aと、電圧が印加されない領域Bとにおいて、液晶分子の配向状態が変化する。例えば、垂直配向型の液晶分子を用いる場合は、図3に示すように、領域Aでは、液晶分子が、光取出し層7に平行な方向に配向する一方で、領域Bでは、液晶分子が、光取出し層7に垂直な方向に配向する。
 その結果、導光板1側から、液晶層9の領域Aに入射した光は、液晶分子により全反射された後に、再び導光板1内を導波する。光3は、導光板1内では入射時の角度(すなわち、導光板1の面内方向に略水平な方向)をほぼ保ったまま伝播されて、光取出し層7に入射する。よって、液晶分子により全反射される際の角度は比較的浅くなるので、光取出し層7から導光板1内に再び入射した光3は、導光板1の面内方向に均一に広がるように導波される。
 一方、導光板1側から、液晶層9の領域Bに入射した光3は、液晶分子間を通って、光反射部材8により構成される光反射性の上記連続面に到達する。続いて、光3は、当該連続面にて反射される。この連続面は、上記の通り山及び谷の反復構造を有しているため、光3を急角度に全反射する。よって、上記連続面で全反射された光3は、急角度をなして導光板1に入射する。その結果、光3は、当該導光板1内を面内方向に導波されずに、導光板1の上面1bから出射する。
 すなわち、照明装置10は、液晶層9の領域Bに対応する、導光板1上の領域のみから光を発する。一方で、液晶層9の領域Aに対応する、導光板1上の領域では、当該導光板1の面内方向への光の分配(導光)のみが実質的に行われて、外部への光の出射は行われない。
 以上のように、照明装置10では、導光板1内への光の分配と、導光板1外への光の出射とを別々の層にて行うために、当該光の分配と外部への光の出射とを互いに独立して制御可能となる。例えば、照明装置10では、光取出し層7での制御を通じて、導光板1の上面1b全体から光を出射することができるし、当該上面1bにおける特定の一部領域のみから光を出射することもできる。従って、照明装置10は、エリアアクティブ駆動される液晶表示装置等にも対応可能な面状光源(バックライトユニット)となりうる。照明装置10のような、サイド入光方式及びエリアアクティブ対応型のB/Lは、従来構成と比較して、装置の低コスト化、低消費電力化、及び薄型化の点において優位である。なお、エリアアクティブ駆動とは、表示のコントラストを向上させること等を目的として、液晶表示装置等の表示部を複数の領域に分割して駆動する方式のことを指す。
 また、照明装置10が備える光取出し層7、及び導光板1は何れも簡素な構成を採っているため、その大型化は容易である。よって、照明装置10をバックライトとして用いる液晶表示装置等の大面積化へも比較的容易に対応可能である。
 (光取出し層7の詳細構成例)
 次に、図4を用いて光取出し層7の詳細構成の例について説明する。ただし、光取出し層7は、図3を用いた説明の通り、導光板1から入射した光を反射する光反射部材、並びに導光板と光反射部材との間に設けられ光の透過/非透過、又は光の透過/散乱を切り替えるシャッター部材とを備えた構成であれば、特に限定されることなく本発明に適用可能である。
 図4中の(a)は、光取出し層7の概略構成の一例を示す断面図である。光取出し層7は、一対の透明基板33及び36間に配置された液晶層9(シャッター部材)と、遮光性(光非透過性)の支持基板31の一面に設けられた複数の光反射部材8とにより構成される。透明基板33及び36は何れも、液晶層9に対向する面に、液晶駆動用の電極34及び配向膜35がこの順に積層形成されており、電極34及び34間に電圧が印加されることによって、液晶層9をシャッター部材として機能させる。
 支持基板31は、光反射部材8が設けられた面が透明基板33と対向するように、透明接着樹脂層32を介して透明基板33に接着されている。透明基板36は、液晶層9等が配される面と背向する面側において導光板1(図3参照)に接着されている。
 導光板1側から光取出層7に入射した光は、液晶層9において透過又は非透過が制御され、当該光の一部が選択的に光反射部材8に到達する。光は、光反射部材8によって反射された後に、再び液晶層9にて透過又は非透過が制御され、当該光の一部が選択的に導光板1に入射し、さらに導光板1の外部に取り出される。
 また、図4中の(b)は、光取出し層7の概略構成の他の例を示す断面図である。光取出し層7は、遮光性及び絶縁性を有する支持基板41と透明基板44との間に配置された液晶層9(シャッター部材)、及び液晶駆動用のくし歯状電極42(光反射部材を兼ねる)により構成される。支持基板41における液晶層9と対向する面上に、くし歯電極42及び配向膜43がこの順に形成されている。また、透明基板44における液晶層9と対向する面上にも配向膜43が形成されている。透明基板44は、液晶層9等が配される面と背向する面側で導光板1(図3参照)に接着されている。
 図4中の(c)に示すように、くし歯電極42は2本で一対をなしており、互いに平行に伸びる直線部42bと、直線部42bから垂直に伸びるくし歯部42aとから構成される。一対をなすくし歯電極42・42のくし歯部42a同士は互いにかみ合う様に配置され、液晶層9に電圧を印加する。
 なお、図4中の(b)は、図4中の(c)におけるAA’を結ぶ線によって切断した断面図に相当する。図4中の(b)に示すように、くし歯電極42は、少なくともくし歯部42aが三角柱形状であって、例えば、アルミニウム、又は銀等の光反射性の金属で形成されることにより、光反射部材としても機能する。
 すなわち、導光板1側から光取出層7に入射した光は、液晶層9にて透過又は非透過が制御され、当該光の一部が選択的に光反射部材を兼ねるくし歯電極42に到達する。光は、くし歯電極42で反射された後に、再び液晶層9にて透過又は非透過が制御され、当該光の一部が選択的に導光板1に入射し、さらに導光板1の外部に取り出される。
 (導光ユニット、及び照明装置の変形的態様)
 なお、柱状領域4は、導光板の基材とは屈折率が異なっていればよく、具体的には、例えば、柱状領域4としては、エポキシアクリレート、ウレタンアクリレート、ポリフルオレン等の透光性の材料(但し、導光板の基材とは屈折率が異なる材料であり、より好ましくは導光板の基材より屈折率が大きな材料である)を充填した構造物を例示することができる。これに代えて、柱状領域4を空気で充填された空隙部としてもよい。
 また、照明装置10において、光取出し層7を構成するシャッター部材として液晶層9を利用したものを例示した。しかし、シャッター部材としては特にこれに限定されるものではなく、例えば照明装置に搭載された他の態様の光シャッターを用いることもできる。
 また、照明装置10において、導光板1に設けた柱状領域4として円柱状のものを例示した。しかし、その形状としては円柱状に限定されるものではなく、さらに、必要に応じて、同一の導光板1内に異なる形状、及び/又はサイズの柱状領域を混在させてもよい。また、導光板1に設けた柱状領域4は、その形状、サイズのみならず、その配列形態、配列のピッチ等も、図示したものに特に限定されるものではない。
 例えば、導光板1に設けた柱状領域4の形状としては、特に限定されないが、例えば三角柱状、四角柱状、楕円柱状、円柱状、等が例示され、これらの例示から選択される二種以上の形状を示す柱状領域4を混在させて用いてもよい。二種以上の形状を示す柱状領域4を混在させて用いる例として、円柱状のものと多角柱状(例えば四角柱状)のものとの組み合わせ、又は互いに異なる多角柱状のもの(例えば、三角柱状と四角柱状)の組み合わせ、が挙げられる。
 上記柱状領域4のサイズとしては、特に限定されないが、例えば、その等価直径が、300μm以上で1mm以下の範囲内、1mm以上で5mm以下の範囲内、又は5mm以上で10mm以下の範囲内、等が挙げられる。より具体的な例示としては、柱状領域4のサイズ(等価直径)が、0.1mm、0.3mm、0.5mm、又は1mmである。また、一枚の導光板1に含まれる複数の柱状領域4のサイズは均一であっても、互いに異なっていてもよい。複数の柱状領域4のサイズが互いに異なる例としては、具体的には例えば、LED2が取り付けられる導光板1の端面1c(一次光入射面)から遠ざかるに従って、サイズ(柱状領域4の等値直径)が徐々に大きくなる場合若しくはサイズが徐々に小さくなる場合、又はサイズがランダムに分布する場合、等が挙げられる。
 また、上記柱状領域4の配列形態としては、特に限定されないが例えば、図2に示すような整列状態(千鳥状の配置)、ハニカム状の配置、又はランダムな配置、等が挙げられる。なお、ハニカム状の配置の典型例としては、柱状領域4同士がいわゆる六方充填構造をとるように、一つの柱状領域4を中心に配置し、当該柱状領域4を取り囲むように6つの柱状領域4を配置する状態が挙げられる。
 また、上記柱状領域4間のピッチ(すなわち配置間隔)としては、特に限定されないが、例えば、1mm以上で5mm以下の範囲内、5mm以上で10mm以下の範囲内、又は10mm以上で20mm以下の範囲内、等が挙げられる。当該ピッチは、均等なピッチ;又はLED2が取り付けられる導光板1の端面1c(一次光入射面)から遠ざかるに従って、徐々に大きくなるピッチ若しくは徐々に小さくなるピッチ、又はランダムに分布するピッチでありうる。
 上記均等なピッチを採用する場合、具体的には例えば、1mm間隔、5mm間隔、又は10mm間隔等、とすればよい。
 また、上記柱状領域4の屈折率は、導光板の基材(ガラス、又は透明樹脂等)より高い(大きい)ことが好ましいが、より低い(小さい)ものであってもよい。
 そして、導光板1内で所望の光分布を得るために、上記例示した、柱状領域4の構成(空隙か、透光性の材料で充填されているか)、屈折率、形状、サイズ、配列形態、及びピッチは、相互に任意に組合わせて用いられる。
 (より具体的な、導光ユニット、及び照明装置の態様)
 図1から図3に示す照明装置10において、柱状領域4の形状、サイズ、配列形態、及びピッチを、具体的に、以下のように設定したものを作成した。
(1)基本構成
 柱状領域4の形状が円柱状又は楕円柱状の何れか一方であり、そのサイズ(等価直径)が300μmで均一であり、その配列形態がハニカム状(六方充填構造)であり、そのピッチが1mmで均一であり、導光板1の基材(低屈折率樹脂)の屈折率が1.5で柱状領域4(高屈折率樹脂)の屈折率が1.6である。
(2)変形的な構成1
 柱状領域4の形状が三角柱状又は四角柱状の何れか一方であり、そのサイズ(等価直径)が300μmで均一であり、その配列形態はハニカム状(六方充填構造)であり、そのピッチが1mmで均一であり、導光板1の基材(低屈折率樹脂)の屈折率が1.5で柱状領域4(高屈折率樹脂)の屈折率が1.6である。
四角柱状又は三角柱状(多角柱状)の柱状領域4を用いる場合は、一次光入射側(端面1c側)に位置するその側面が、一次光入射面をなす導光板1の端面1cに対して傾斜するように(すなわち、柱状領域4の側面と端面1cとが平行にならないように)配置されることが好ましく、端面1c側から一つの柱状領域4を見た場合に当該柱状領域4が左右対称に見えるように配置されることがより好ましい。これにより、導光板1内に光をより一層均等に分配することが可能となる。
(3)変形的な構成2
 柱状領域4の形状が円柱状のものと多角柱状のものとを組合わせて採用し、そのサイズ(等価直径)が300μmで均一であり、その配列形態はハニカム状(六方充填構造)であり、そのピッチが1mmで均一であり、導光板1の基材(低屈折率樹脂)の屈折率が1.5で柱状領域4(高屈折率樹脂)の屈折率が1.6である。
なお、多角柱状の柱状領域4は、一次光入射側に位置するその側面が、一次光入射面をなす導光板1の端面1cに対して傾斜するように(すなわち、柱状領域4の側面と端面1cとが平行にならないように)配置されることが好ましく、端面1c側から一つの柱状領域4を見た場合に当該柱状領域4が左右対称に見えるように配置されることがより好ましい。これにより、導光板1内に光をより一層均等に分配することが可能となる。
(4)変形的な構成3
 柱状領域4の形状が円柱状又は楕円柱状の何れか一方であり、そのサイズ(等価直径)が300μmで均一、その配列形態がハニカム状(六方充填構造)であり、そのピッチは導光板1の端面1cから遠ざかるに従ってピッチが徐々に大きくなり(疎になる)、導光板1の基材(低屈折率樹脂)の屈折率が1.5で柱状領域4(高屈折率樹脂)の屈折率が1.6である。
すなわち、変形的な構成3では、柱状領域4は、LED2が取り付けられる部分(一次光入射部)の近辺が最密となるように配置される。変形的な構成3は、LED2の光量ムラを低減するために、LED2からの光入射面側の端面に近いほど柱状領域4のピッチを小さくして、より一層光の分配を効率的に行う構成である。
(5)変形的な構成4
 柱状領域4の形状が円柱状又は楕円柱状の何れか一方であり、そのサイズ(等価直径)が導光板1の端面1cから遠ざかるに従って徐々に小さくなり、その配列形態がハニカム状(六方充填構造)であり、そのピッチが1mmで均一であり、導光板1の基材(低屈折率樹脂)の屈折率が1.5で柱状領域4(高屈折率樹脂)の屈折率が1.6である。
すなわち、変形的な構成4では、柱状領域4は、LED2が取り付けられる部分(一次光入射部)から遠ざかるに従って、柱状領域4に入射する光量が減少するように配置される。変形的な構成4は、LED2の光量ムラを低減するために、LED2からの光入射面側の端面に近いほど光の分配をより効率的に行う構成である。
(6)変形的な構成5
 柱状領域4の形状が円柱状又は楕円柱状の何れか一方、そのサイズ(等価直径)が導光板1の端面1cから遠ざかるに従って徐々に大きくなる、その配列形態はハニカム状(六方充填構造)、そのピッチは導光板1の端面1cから遠ざかるに従って徐々に大きくなる(疎になる)、かつ導光板1の基材(低屈折率樹脂)の屈折率が1.5で柱状領域4(高屈折率樹脂)の屈折率が1.6である。
すなわち、変形的な構成5では、柱状領域4は、LED2が取り付けられる部分(一次光入射部)の近辺が最密でかつサイズが最小となるように配置される。
 (本発明の表示装置)
 本発明の表示装置は、本発明の照明装置10をバックライトとして備えている。バックライトを用いる表示装置であれば、その種類が特に限定されないが、具体的には例えば、テレビジョン受像機、携帯電話の表示部等に用いられる液晶表示装置が挙げられる。これらの中でも、薄型化及び低消費電力化が強く求められるという理由から、大型のテレビジョン受像機に用いられる液晶表示装置が好適である。
 また、上記説明の通り、本発明の照明装置10は、光取出し層7での制御を通じて、導光板1の上面1b全体から光を出射することも出来るし、当該上面1bにおける特定の一部領域のみから光を出射することもできる。従って、照明装置10は、エリアアクティブ駆動される液晶表示装置等に対応可能な面状光源となりうる。なお、エリアアクティブ駆動とは、表示のコントラストを向上させる等の目的で、液晶表示装置等の表示部を複数の領域に分割して駆動する方式のことを指す。
 (本発明の導光板)
 本発明の導光板は、透光性の基材からなる導光板(導光板1)と、上記導光板内にその面内方向と交差する方向に設けられ、かつ上記透光性の基材とは屈折率が異なる複数の柱状の領域(柱状領域4)と、上記導光板の端面に設けられた一次光源(LED2)の取付け部(光源取付部11)と、を備える構成である。すなわち、本発明の導光板は、サイド入光方式の導光板である。よって、直下型の導光板と比較して、必要な一次光源の数をより一層低減することが可能となる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 (好ましい構成)
 本発明にかかる導光ユニットにおいては、導光板内における導光条件(光の入射角度)が維持されるという観点から、複数の上記柱状の領域は、導光板の面内方向に対して略垂直な側面を有していることが好ましい。
 すなわち、上記の構成によれば、柱状の領域に入射して導光板の厚み方向に屈折した光が、当該柱状の領域から出射する(導光板に再び入射する)際に再び屈折することによって、導光板に対する光の入射角度はそのまま保存される。
 本発明にかかる導光ユニットにおいて、導光板からの漏光を防止する観点から、複数の上記柱状の領域は、上記透光性の基材と比較して屈折率が大きいことがより好ましい。
 本発明にかかる導光ユニットにおいて、製造が容易であるとの観点から、複数の上記柱状の領域は、上記導光板を貫通して設けられていることが好ましい。
 本発明にかかる導光ユニットにおいて、上記光取出し層は、シャッター部材としての液晶層と光反射部材とを備えてなり、当該液晶層を挟んで光反射部材が導光板と対向配置されていることがより好ましい。
 上記の構成によれば、導光板から光取出し層に入射した光は、電圧の印加により駆動される液晶層を介して光反射部材に到達する。液晶層はシャッターとして機能し、所望する領域でのみ光を光反射部材にまで到達させて、当該光を導光ユニット外に出射させることができる。よって、例えば、エリアアクティブ駆動する表示装置にも対応可能な、新規な導光ユニットを提供可能となる。
 本発明によれば、エリアアクティブ駆動にも対応可能な新規な導光ユニット等を提供可能となる。
1   導光板
1c  端面
2   LED(一次光源)
4   柱状領域(柱状の領域)
7   光取出し層
8   光反射部材
9   液晶層(シャッター部材)
10  照明装置
11  光源取付部(取付け部)

Claims (9)

  1.  透光性の基材からなる導光板と、
     上記導光板内に、当該導光板の面内方向と交差する方向に設けられ、かつ上記透光性の基材とは屈折率が異なる複数の柱状の領域と、
     上記導光板の一面側に設けられた光取出し層と、を備え、
     上記光取出し層は、上記導光板から入射した光を、導光板の上記一面に背向する面側から出射するように当該光を反射する光反射部材、並びに導光板と光反射部材との間に設けられ光の透過/非透過、又は光の透過/散乱を切り替えるシャッター部材を備えて構成されることを特徴とする導光ユニット。
  2.  複数の上記柱状の領域は、上記導光板の面内方向に対して略垂直な側面を有することを特徴とする請求項1に記載の導光ユニット。
  3.  複数の上記柱状の領域は、上記透光性の基材と比較して屈折率が大きいことを特徴とする請求項1又は2に記載の導光ユニット。
  4.  複数の上記柱状の領域は、上記導光板に設けられている空隙部であることを特徴とする請求項1から3の何れか一項に記載の導光ユニット。
  5.  複数の上記柱状の領域は、上記導光板を貫通して設けられていることを特徴とする請求項1から4の何れか一項に記載の導光ユニット。
  6.  上記光取出し層は、電圧印加により駆動され上記シャッター部材として機能する液晶層と、上記光反射部材とを備えてなり、当該液晶層を挟んで当該光反射部材が上記導光板と対向配置されていることを特徴とする請求項1から5の何れか一項に記載の導光ユニット。
  7.  請求項1から6の何れか一項に記載の導光ユニットと、
     上記導光板の端面に配置された少なくとも一つの一次光源と、を備えてなることを特徴とする照明装置。
  8.  請求項7に記載の照明装置をバックライトとして備えることを特徴とする表示装置。
  9.  透光性の基材からなる導光板と、
     上記導光板内に、当該導光板の面内方向と交差する方向に設けられ、かつ上記透光性の基材とは屈折率が異なる複数の柱状の領域と、
     上記導光板の端面に設けられた一次光源の取付け部と、を備えることを特徴とする導光板。
PCT/JP2010/061553 2009-11-26 2010-07-07 導光板、導光ユニット、照明装置、及び表示装置 WO2011065053A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/389,607 US20120140513A1 (en) 2009-11-26 2010-07-07 Light guide plate, light guide unit, lighting device, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-269161 2009-11-26
JP2009269161 2009-11-26

Publications (1)

Publication Number Publication Date
WO2011065053A1 true WO2011065053A1 (ja) 2011-06-03

Family

ID=44066157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061553 WO2011065053A1 (ja) 2009-11-26 2010-07-07 導光板、導光ユニット、照明装置、及び表示装置

Country Status (2)

Country Link
US (1) US20120140513A1 (ja)
WO (1) WO2011065053A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018091865A (ja) * 2018-02-28 2018-06-14 浜松ホトニクス株式会社 光学プレート、光照射装置、光測定装置、光照射方法、及び、光測定方法
US10495804B2 (en) 2014-05-26 2019-12-03 Hamamatsu Photonics K.K. Optical plate, light irradiation device, light measurement device, light irradiation method, and light measurement method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8786643B2 (en) * 2009-07-07 2014-07-22 Dolby Laboratories Licensing Corporation Edge-lit local dimming displays, display components and related methods
US9442261B2 (en) * 2014-07-09 2016-09-13 Toshiba Medical Systems Corporation Devices for coupling a light-emitting component and a photosensing component
US9470834B2 (en) * 2014-12-01 2016-10-18 Shenzhen China Star Optoelectronics Technology Co., Ltd Light guide plate and manufacturing method thereof
DE202015000056U1 (de) * 2015-01-12 2015-04-24 Dieter Christandl Lichtleitblock mit Leuchtrahmen
CN104950517A (zh) * 2015-07-15 2015-09-30 深圳市华星光电技术有限公司 双面显示器
JP2019184635A (ja) * 2018-04-02 2019-10-24 シャープ株式会社 表示装置
KR102654290B1 (ko) * 2019-01-22 2024-04-03 삼성디스플레이 주식회사 라이트 유닛, 라이트 유닛의 제조 방법 및 라이트 유닛을 포함하는 표시 장치
US10775632B1 (en) 2019-10-30 2020-09-15 Rockwell Collins, Inc. Augmented reality light security shutter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06308543A (ja) * 1993-04-20 1994-11-04 Idemitsu Kosan Co Ltd 表示装置
JP2002175713A (ja) * 2000-09-26 2002-06-21 Matsushita Electric Works Ltd 面光源装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6909480B2 (en) * 2000-10-19 2005-06-21 Daicel Chemical Industries, Ltd. Anisotropic scattering sheet and its use
US8430548B1 (en) * 2004-11-17 2013-04-30 Fusion Optix, Inc. Enhanced light fixture with volumetric light scattering
WO2006055873A2 (en) * 2004-11-17 2006-05-26 Fusion Optix, Inc. Enhanced electroluminescent sign
WO2006055872A2 (en) * 2004-11-17 2006-05-26 Fusion Optix, Inc. Enhanced light fixture
JP2006256003A (ja) * 2005-03-16 2006-09-28 Honda Motor Co Ltd 構造板
US7542653B2 (en) * 2006-08-29 2009-06-02 Cisco Technology, Inc. Passive fiber organizer for mesh network node interconnections
JP2011123371A (ja) * 2009-12-11 2011-06-23 Toshiba Mobile Display Co Ltd 液晶シャッタ、液晶シャッタの駆動方法及び画像表示システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06308543A (ja) * 1993-04-20 1994-11-04 Idemitsu Kosan Co Ltd 表示装置
JP2002175713A (ja) * 2000-09-26 2002-06-21 Matsushita Electric Works Ltd 面光源装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10495804B2 (en) 2014-05-26 2019-12-03 Hamamatsu Photonics K.K. Optical plate, light irradiation device, light measurement device, light irradiation method, and light measurement method
JP2018091865A (ja) * 2018-02-28 2018-06-14 浜松ホトニクス株式会社 光学プレート、光照射装置、光測定装置、光照射方法、及び、光測定方法

Also Published As

Publication number Publication date
US20120140513A1 (en) 2012-06-07

Similar Documents

Publication Publication Date Title
WO2011065053A1 (ja) 導光板、導光ユニット、照明装置、及び表示装置
JP5360172B2 (ja) 面状光源装置およびこれを用いた表示装置
JP5202906B2 (ja) 液晶表示装置
TWI446066B (zh) 面光源裝置及液晶顯示裝置
JP5809629B2 (ja) 光導波路
JP4949278B2 (ja) 面状照明装置
US20100220484A1 (en) Slim waveguide coupling apparatus and method
WO2013005542A1 (ja) 照明装置および表示装置
WO2011080948A1 (ja) 導光ユニット、照明装置、及び表示装置
JP5071675B2 (ja) 照明装置および表示装置
WO2006073806A1 (en) Optical film having a surface with rounded structures
JP2009093173A (ja) 導光板とこれを備えるバックライト装置
JP2009289701A (ja) 照明装置、面光源装置、および液晶表示装置
JP6307587B2 (ja) 視野角の選択バックライトユニット
JPWO2010038516A1 (ja) 照明装置、面光源装置、および液晶表示装置
KR20170007568A (ko) 시야각 선택형 백 라이트 유닛
JP6422852B2 (ja) 超集光導光フィルム及びこれを利用した平板表示装置に使用する薄膜型バックライトユニット
KR20080021059A (ko) 조명 장치
WO2013008577A1 (ja) 照明装置及び表示装置
JP2010050003A (ja) 面発光装置及び画像表示装置
JP2008262906A (ja) バックライトユニット
JPWO2010095305A1 (ja) 照明装置、面光源装置、および、液晶表示装置
WO2019021952A1 (ja) 照明装置及び表示装置
WO2012060266A1 (ja) 調光素子、表示装置および照明装置
JP2005135815A (ja) 面状光源装置およびその面状光源装置を用いた表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10832900

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13389607

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10832900

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP