WO2011061784A1 - Surface-treatment liquid for autodeposition coating of iron-based and/or zinc-based metal material and surface-treatment method - Google Patents

Surface-treatment liquid for autodeposition coating of iron-based and/or zinc-based metal material and surface-treatment method Download PDF

Info

Publication number
WO2011061784A1
WO2011061784A1 PCT/JP2009/006154 JP2009006154W WO2011061784A1 WO 2011061784 A1 WO2011061784 A1 WO 2011061784A1 JP 2009006154 W JP2009006154 W JP 2009006154W WO 2011061784 A1 WO2011061784 A1 WO 2011061784A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal material
film
iron
resin
autodeposition
Prior art date
Application number
PCT/JP2009/006154
Other languages
French (fr)
Japanese (ja)
Inventor
藤野孝洋
中山隆臣
高▲桑▼英樹
Original Assignee
日本パーカライジング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本パーカライジング株式会社 filed Critical 日本パーカライジング株式会社
Priority to PCT/JP2009/006154 priority Critical patent/WO2011061784A1/en
Publication of WO2011061784A1 publication Critical patent/WO2011061784A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • B05D7/142Auto-deposited coatings, i.e. autophoretic coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/088Autophoretic paints
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides

Definitions

  • the present invention selects materials for composite metal materials such as iron, zinc, zinc alloys and galvanized materials alone, or materials in which these dissimilar metals are joined, such as automobile parts, steel furniture, and home appliances.
  • the present invention relates to a self-deposited coating solution for depositing a smooth and normal coating by a chemical reaction, its processing method, and a metal material having the self-deposited coating.
  • the paint used for the metal material can be classified in various ways according to the coating method and components, and is selected according to the performance required for the material to be coated and the possible coating method.
  • the material to be coated has a complicated structure, such as an automobile body, it is important to secure the coating thickness inside the bag structure part, which is called throwing power.
  • Such a composition is an autodeposition composition. Or an autodeposition composition or an autodeposition composition.
  • the treatment liquid for depositing the organic coating film by these chemical reactions is effective for the iron-based material
  • the coating film could not be deposited on the zinc-based plated steel sheet.
  • zinc and aluminum have a lower standard oxidation-reduction potential than iron, so there is a difference in the amount of material etched by acid (hydrogen ions) in the treatment liquid.
  • acid (hydrogen ions) in the treatment liquid.
  • a large number of pinholes exist in the produced autodeposition coating.
  • a galvanized steel sheet especially a zinc-iron alloy-plated steel sheet called a galvanil (GA) steel sheet is etched unevenly, resulting in a large number of pinholes formed throughout the coating. .
  • GA galvanil
  • the autodeposition-type aqueous coating composition or autodeposition composition is a metal surface such as an iron-based metal, a zinc-based metal, an aluminum-based metal, and a magnesium-based metal. It is disclosed that a film is formed by contacting the surface of the film.
  • the treatment liquid formulations disclosed in these documents are applied to galvanized steel sheets, a large number of pinholes are generated, and film formation cannot be performed.
  • Patent Document 4 avoids pinholes generated during film formation on a galvanized steel sheet by using cystine or an aqueous cystine solution as an additive or pretreatment aqueous solution in an autodeposition treatment bath using a vinylidene chloride copolymer, respectively. To do. It is disclosed that cystine exhibits a sufficient effect when added in an amount of 25 ppm or more, and this acts as an inhibitor to suppress etching. However, as a result of investigations by the present inventors, no effect on the GA steel sheet was found.
  • Patent Document 6 it is disclosed that blisters can be greatly reduced by contacting an aqueous liquid wrinkle-preventing solution containing phosphonate ions, preferably aminophosphonate ions, prior to autoprecipitation.
  • phosphonate ions preferably aminophosphonate ions
  • the purpose of the present invention is to solve the problems of the prior art. That is, an autodeposition coating treatment solution for depositing a smooth and normal coating by a chemical reaction on iron / zinc alone or an alloy and plating material, or a composite metal material such as these dissimilar metal bonding materials without material selectivity And a processing method and autodeposition coated metal material.
  • the present inventors have found that the surface treatment liquid for autodeposition coating treatment, the autodeposition coating treatment method, and the iron-based and / or the self-deposition coating not present in the prior art.
  • the inventors have invented a zinc-based metal material. That is, the present invention relates to a water-dispersible or water-soluble autodeposition resin, ferric ions, fluorine element at least three times the molar concentration of ferric ions, and all iron ions present in the bath.
  • a surface treatment liquid for treating an autodeposition coating comprising 1 to 30000 mg / L of at least one element selected from the group consisting of:
  • Examples of the supply source of at least one element selected from the group consisting of Bi, Co, Cu, Mn, Ni, Pb, Pt, Sn, and Te include soluble salts, oxides, hydroxides, complexed substances, etc.
  • a complexing agent can be used for stabilizing each element in the treatment liquid.
  • complexing agents include ethylenediaminetetraacetic acid and its salts, 2-hydroxyethylethylenediaminetriacetic acid and its salts, 1,2-cyclohexanediaminetetraacetic acid and its salts, diethylenetriaminepentaacetic acid, Aminocarboxylic acids such as its salts, glycol ether diamine tetraacetic acid and its salts, nitrilotriacetic acid and its salts, iminoniacetic acid and its salts, triethylenetetramine hexaacetic acid and its salts, 1,3-propanediaminetetraacetic acid and its salts Phosphonic complexing agents such as hydroxyethylidene diphosphoric acid and its salt, nitrilotris (methylene phosphoric acid) and its salt, phosphonobutane tri
  • At least one of the water-dispersed or water-soluble organic resins that can be used in the present invention is a self-emulsifying type to which a hydrophilic group such as a sulfone group, a carboxyl group, a phenolic hydroxyl group, a hydroxyl group, or ethylene oxide is added as a hydrophilic group. Even if it is, the forced emulsification type
  • the water-dispersed or water-soluble organic resin that can be used in the present invention is a water-dispersed or water-soluble organic resin having a hydrophilic group having at least one selected from a sulfone group, a carboxyl group, a phenolic hydroxyl group, a hydroxyl group, and ethylene oxide.
  • the type of resin is polyvinylidene chloride resin, polyacrylic resin, epoxy resin, phenol resin, tannic acid, fluororesin, polyurethane resin, polyester resin, and further, polyvinylidene chloride resin, epoxy resin It is more preferable.
  • These water-dispersed or water-soluble organic resins are preferably 1 to 15% by mass in the treatment liquid.
  • the above-described resin composition of tannic acid is formed by blending the following substances.
  • a thermosetting water-soluble polyhydride in which at least one of hydrolyzable tannins (for example pentaploid tannin) and at least 2 moles of polyisocyanate in which one isocyanate is blocked with a blocking agent are combined with a polyol having a bisphenol A structure.
  • Self-emulsifying type blocked isocyanate in which polyether polyol is bonded to polyisocyanate in which one isocyanate is blocked with a blocking agent in advance (for example, Elastron H-38 manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and functional isocyanate.
  • the concentration of at least one of the tannins is preferably 1 to 5% as the solid content concentration in the aqueous solution, and the solid content of at least one of the tannins and at least one cross-linking agent is preferred.
  • the concentration ratio is preferably 1: 1 to 1:10.
  • the oxidizing agent is preferably at least one selected from perchloric acid, hypochlorous acid, dissolved oxygen, ozone, permanganic acid, and hydrogen peroxide.
  • the ferric ion is not particularly limited, and for example, iron powder, ferric chloride, ferric nitrate, ferric fluoride, ferric hydroxide, ferric phosphate and the like can be used.
  • fluorine element for example, hydrofluoric acid and its salt, hexafluorozirconic acid, hexafluorotitanic acid, hexafluorosilicic acid, hexafluorophosphoric acid and the like can be used.
  • an autodeposition coating treatment method for a metal material characterized in that an autodeposition coating is formed by removing excess surface treatment liquid and then performing a baking treatment.
  • the present invention provides an autodeposition coated iron system and / or zinc having an autodeposition coating layer deposited by the above-mentioned method, and the thickness of the autodeposition coating layer after baking is 5 to 50 ⁇ m Based metal material.
  • the self-deposited film obtained by the present invention is characterized in that a compound containing an element selected from the above is deposited in a reduced form, and contains 1 to 1000 mg / m 2 of the metal element. It is a coated iron-based and / or zinc-based metal material.
  • the surface treatment liquid for autodeposition coating treatment of the present invention it is possible to use iron, zinc, a zinc alloy and a galvanized material alone, or an iron and zinc light metal material without using other treatment liquids for pretreatment and posttreatment. With respect to composite metal materials combined with, there is no material selectivity, and a smooth and normal autodeposition coating can be deposited.
  • FIG. 1 shows a state of a film formation test of a dissimilar metal joint in the example.
  • the present inventors are present in a bath with one or more water-dispersible and water-soluble organic resins, ferric ions, at least three times the molar concentration of ferric ions as elemental fluorine.
  • a sufficient amount of oxidizing agent to oxidize and maintain all iron ions to ferric ions and at least selected from the group consisting of Bi, Co, Cu, Mn, Ni, Pb, Pt, Sn, Te By using a surface treatment liquid for autodeposition coating treatment characterized by compounding a compound containing one kind of element, it is possible to form an autodeposition coating on an iron-based material, a zinc-based material, and a material in which these materials are mixed. The film was made possible.
  • a preferable metal material in the present invention is an iron-based metal material and / or a zinc-based metal material.
  • the iron-based metal material refers to steel sheets such as cold-rolled steel sheets and hot-rolled steel sheets, and iron-based metals such as cast iron and sintered materials
  • the zinc-based metal material refers to hot-dip galvanized steel sheets, electric A galvanized steel sheet and a die-cast material such as a galvanized steel sheet and an alloy galvanized steel sheet (galvanel steel sheet and galvanium steel sheet) are shown.
  • the surface treatment solution for autodeposition coating treatment of the present invention contains at least one element selected from the group consisting of Bi, Co, Cu, Mn, Ni, Pb, Pt, Sn, Te, more preferably Bi, Cu, At least one element selected from the group consisting of Te, more preferably Te, is contained as a metal element in the range of 1 to 30000 mg / L, preferably 10 to 20000 mg / L, more preferably 50 to 10,000 mg / L. Since the standard oxidation-reduction potentials of iron (Fe) and zinc (Zn) are ⁇ 0.44 V and ⁇ 0.76 V, respectively, excessive etching with acid is performed when a zinc-based material is immersed in a conventional autodeposition treatment solution.
  • the autodeposition coating of the present invention is a mechanism in which the stability of the water-dispersible and water-soluble organic resin is lost by metal ions generated by etching of the metal material, and the organic coating is deposited. Etching leads to inhibition of the deposition of the organic coating on the iron material.
  • At least one of the elements selected from the above forms a compound or ion-reduced substance by the reduction reaction, and is deposited together with the autodeposition coating.
  • the standard redox potential on the surface of the metal substrate is preciously changed by the reduction-deposited substance, and the etching of zinc that has been preferentially etched by the acid becomes gentle.
  • iron is etched, and iron ions are eluted into the treatment liquid to form a self-deposited film on the iron material, and a uniform and normal organic film is formed even on the joint surface of iron and zinc.
  • the element selected from the above is less than 1 mg / L, a sufficient effect cannot be exerted on the formation of an autodeposition coating on a zinc-based material, such as generation of pinholes, and more than 30000 mg / L.
  • the amount is large, the aging stability of the autodeposition coating solution may be significantly reduced.
  • the compounds containing the elements selected from the above there are those in which a metal element is present in an aqueous solution in the form of a cation, and many organic resins having self-precipitation ability are chelated with these cations and insolubilized.
  • the autodeposition coating treatment liquid is stable without thickening, and therefore it can be adjusted with the addition amount that the treatment liquid can be formed.
  • a complexing agent suitable for each metal ion can be added to make the complexed product water-soluble or water-dispersed.
  • the surfactant that can be used is a surfactant having at least one selected from a sulfone group, a carboxyl group, a phenolic hydroxyl group, a hydroxyl group, and ethylene oxide as a hydrophilic group.
  • a surfactant having at least one selected from a sulfone group, a carboxyl group, a phenolic hydroxyl group, a hydroxyl group, and ethylene oxide as a hydrophilic group.
  • it is important for the dispersion in the treatment bath to reduce the particle size of the hardly soluble substance, and these are measured by a laser diffraction / scattering particle size distribution meter (LA-920: manufactured by Horiba).
  • the volume-converted 50% median diameter is preferably 5 ⁇ m or less.
  • the concentration of ferric ions is preferably 0.1 to 5 g / L, and more preferably 0.5 to 4.5 g / L.
  • the preferable range of fluorine element is at least 3 times the molar concentration of ferric ion.
  • Ferric ions are highly effective for etching the surface of the metal material to be coated.
  • the ferric ion concentration is 0.1 g / L or less, an etching reaction of iron necessary for self-deposition occurs. I can't.
  • the iron concentration increases because it is taken into the deposited autodeposition coating, and the amount of moisture taken into the coating together with iron ions increases.
  • the self-deposited film peels off in the subsequent water washing step.
  • the oxidizing agent is preferably at least one selected from perchloric acid, hypochlorous acid, dissolved oxygen, ozone, permanganic acid, and hydrogen peroxide.
  • Hydrogen peroxide is an oxidant suitable for the present invention because it is easily available and it is not necessary to consider the influence on the autodeposition treatment liquid because the by-product of its own reduction reaction is water.
  • the concentration of the oxidizing agent in the autodeposition treatment solution of the present invention can be controlled by the oxidation-reduction potential measured with a commercially available ORP electrode using a platinum electrode as a working electrode.
  • a slight excess of oxidizing agent is present in the treatment bath in a state where all ferrous ions are oxidized to ferric ions.
  • a preferable redox potential when hydrogen peroxide is taken as an example is at least 300 mV or more, preferably 350 mV or more. If it is lower than 300 mV, ferrous ions may be present in the treatment liquid, so that coordination with the fluorine element is not achieved, and as a result, the stability of the treatment liquid may be reduced.
  • An autodeposition coating treatment method for a metal material characterized in that a coating is formed by removing an aqueous solution and then performing a baking treatment.
  • the present invention provides an autodeposition coated metal material having an autodeposition coating layer deposited by the above method on the surface of the metal material, and the film thickness of the autodeposition coating layer after baking is 5 to 50 ⁇ m It is. If the film thickness is less than 5 ⁇ m, sufficient corrosion resistance cannot be obtained. When the film thickness exceeds 50 ⁇ m, appearance defects such as cracks and shrinkage may occur as the internal stress of the film increases.
  • the compound containing the element selected from the above is deposited together with the autodeposition coating in a reduced form.
  • the precipitation amount of the metal element (Bi, Co, Cu, Mn, Ni, Pb, Pt, Sn, Te) can be measured by fluorescent X-ray analysis, and the content of the metal element is 1 to 1000 mg. / m 2 is preferable, and the content of 5 to 500 mg / m 2 is more preferable, so that the effects of the present invention can be sufficiently exhibited.
  • the amount of metal element deposited is 1 mg / m 2 or less, pinholes appear in the autodeposited film, and when it is 1000 mg / m 2 or more, the appearance of the film may be deteriorated.
  • Example ⁇ Examples are given below together with comparative examples to specifically explain the effects of the surface treatment liquid for self-deposited coating of the present invention.
  • the to-be-treated metal material and degreasing agent used in the examples are arbitrarily selected from commercially available materials, and the combination of materials in the actual application of the surface treatment liquid for autodeposition coating of the present invention. It is not limited at all.
  • Examples 1-7, Comparative Examples 1-5 A commercially available alkaline degreasing agent, Fine Cleaner L4460 (manufactured by Nihon Parkerizing), diluted to 2% with water and heated to 40 ° C. was sprayed on a test plate with a spray device for degreasing treatment. The surface of the test plate after the degreasing treatment was washed with ion-exchanged water using a spray device to obtain a clean test plate surface.
  • Fine Cleaner L4460 manufactured by Nihon Parkerizing
  • the test plate whose surface was degreased and cleaned was made of polyvinylidene chloride resin emulsion Daran-SL143 (manufactured by WRGrace), iron powder (reagent), hydrofluoric acid (reagent), telluric acid (reagent) or copper nitrate (reagent). ) Or bismuth nitrate (reagent) or sodium bismutate (reagent) or tellurium oxide (reagent) or aluminum nitrate (reagent) or sodium nitrate (reagent) and hydrogen peroxide (reagent) and the self shown in Table 1 After immersing in the deposition coating solution, the substrate was immersed in ion exchange water and washed, and then baked at 110 ° C. for 20 minutes.
  • the immersion time in the autodeposition treatment solution was set so that the film thickness was 20 ⁇ m in each test plate.
  • the self-deposited film metal material obtained in each example was visually evaluated for the appearance of the film to determine whether the film was normal, such as the presence or absence of pinholes in the film.
  • the degreased CRS material and the GA material or EG material are brought into contact with each other, fixed with a resin clip, and then brought into contact with the autodeposition coating treatment liquid. The appearance of the film after baking was evaluated.
  • the amount of reduction deposit of the added metal compound was measured on the GA material and / or the CRS material film using a fluorescent X-ray analyzer ⁇ ZSX Primus II (manufactured by Rigaku Corporation) ⁇ . .
  • Examples 8-10 A commercially available alkaline degreasing agent, Fine Cleaner L4460 (manufactured by Nihon Parkerizing), diluted to 2% with water and heated to 40 ° C. was sprayed on a test plate with a spray device for degreasing treatment. The surface of the test plate after the degreasing treatment was washed with ion-exchanged water using a spray device to obtain a clean test plate surface.
  • the test plate whose surface was degreased and washed was polyacrylic resin emulsion Roplex WL-91 (Rohm & Hass), iron powder (reagent), hydrofluoric acid (reagent), telluric acid (reagent) or nitric acid.
  • the degreased CRS material and the GA material or EG material are brought into contact with each other, fixed with a resin clip, and then brought into contact with the autodeposition coating treatment liquid.
  • the appearance of the film after baking was evaluated.
  • the amount of reduction deposit of the added metal compound was measured on the GA material and / or the CRS material film using a fluorescent X-ray analyzer ⁇ ZSX Primus II (manufactured by Rigaku Corporation) ⁇ . .
  • Examples 11-13 A commercially available alkaline degreasing agent, Fine Cleaner L4460 (manufactured by Nihon Parkerizing), diluted to 2% with water and heated to 40 ° C. was sprayed on a test plate with a spray device for degreasing treatment. The surface of the test plate after the degreasing treatment was washed with ion-exchanged water using a spray device to obtain a clean test plate surface.
  • Fine Cleaner L4460 manufactured by Nihon Parkerizing
  • the test plate whose surface was degreased and washed was polyester resin emulsion pesresin A-120 (manufactured by Takamatsu Yushi), iron powder (reagent), hydrofluoric acid (reagent), telluric acid (reagent) or copper nitrate ( Reagent) or bismuth nitrate (reagent), and hydrogen peroxide (reagent), and then immersed in the autodeposition coating treatment solution shown in Table 3, then rinsed in ion-exchanged water and then baked at 180 ° C. for 20 minutes Went. The immersion time in the autodeposition treatment solution was set so that the film thickness was 20 ⁇ m in each test plate.
  • the self-deposited film metal material obtained in each example was visually evaluated for the appearance of the film to determine whether the film was normal, such as the presence or absence of pinholes in the film.
  • the degreased CRS material and the GA material or EG material are brought into contact with each other, fixed with a resin clip, and then brought into contact with the autodeposition coating treatment liquid.
  • the appearance of the film after baking was evaluated.
  • the amount of reduction deposit of the added metal compound was measured on the GA material and / or the CRS material film using a fluorescent X-ray analyzer ⁇ ZSX Primus II (manufactured by Rigaku Corporation) ⁇ . .
  • Examples 14 to 16 A commercially available alkaline degreasing agent, Fine Cleaner L4460 (manufactured by Nihon Parkerizing), diluted to 2% with water and heated to 40 ° C. was sprayed on a test plate with a spray device for degreasing treatment. The surface of the test plate after the degreasing treatment was washed with ion-exchanged water using a spray device to obtain a clean test plate surface.
  • the test plate whose surface was degreased and cleaned was made of polyurethane resin emulsion Takelac W-6020 (Mitsui Chemical Polyurethane), iron powder (reagent), hydrofluoric acid (reagent), telluric acid (reagent) or copper nitrate.
  • the degreased CRS material and the GA material or EG material are brought into contact with each other, fixed with a resin clip, and then brought into contact with the autodeposition coating treatment liquid.
  • the appearance of the film after baking was evaluated.
  • the amount of reduction deposit of the added metal compound was measured on the GA material and / or the CRS material film using a fluorescent X-ray analyzer ⁇ ZSX Primus II (manufactured by Rigaku Corporation) ⁇ . .
  • Examples 17 to 23 Comparative Examples 6 to 10
  • the surface of the test plate after the degreasing treatment was washed with ion-exchanged water using a spray device to obtain a clean test plate surface.
  • the test plate whose surface was degreased and washed was commercially available pentaploid tannin (trade name tannic acid AL: manufactured by Fuji Chemical Industry Co., Ltd.) and a commercially available water-soluble blocked isocyanate (trade name Elastron H-38: Daiichi Kogyo Seiyaku Co., Ltd.), and commercially available water-soluble blocked isocyanate (trade name Takenate WB-920: Mitsui Chemicals Polyurethane Co., Ltd.), iron powder (reagent), hydrofluoric acid (reagent) ), Telluric acid (reagent) or copper nitrate (reagent) or bismuth nitrate (reagent) or sodium bismuthate (reagent) or tellurium oxide (reagent) or aluminum nitrate (reagent) or sodium nitrate (reagent), and hydrogen peroxide ( After immersing in the autodeposition coating treatment solution shown in Table 5 prepared using Reagent), immersing in ion-exchanged water and then baking
  • the immersion time in the autodeposition treatment solution was set so that the film thickness was 20 ⁇ m in each test plate.
  • the self-deposited film metal material obtained in each example was visually evaluated for the appearance of the film to determine whether the film was normal, such as the presence or absence of pinholes in the film.
  • As a film formation test for dissimilar metal joints contact each degreased CRS material and GA material or EG material as shown in Fig. 1 and fix it with a resin clip. The coating appearance was evaluated. Further, when a normal film was formed, the amount of the reduced deposit of the additive metal compound was measured on the GA material and / or the CRS material film using a fluorescent X-ray analyzer.
  • Examples 24-30, Comparative Examples 11-15 A commercially available alkaline degreasing agent, Fine Cleaner L4460 (manufactured by Nihon Parkerizing), diluted to 2% with water and heated to 40 ° C. was sprayed on a test plate with a spray device for degreasing treatment. The surface of the test plate after the degreasing treatment was washed with ion-exchanged water using a spray device to obtain a clean test plate surface.
  • Fine Cleaner L4460 manufactured by Nihon Parkerizing
  • the test plate whose surface has been degreased and cleaned is a commercially available epoxy resin emulsion Adeka Resin EM-101-50 (made by ADEKA), iron powder (reagent), hydrofluoric acid (reagent), telluric acid (reagent) or Table prepared using copper nitrate (reagent) or bismuth nitrate (reagent) or sodium bismutate (reagent) or tellurium oxide (reagent) or aluminum nitrate (reagent) or sodium nitrate (reagent), and hydrogen peroxide (reagent).
  • the immersion time in the autodeposition treatment solution was set so that the film thickness was 20 ⁇ m in each test plate.
  • the self-deposited film metal material obtained in each example was visually evaluated for the appearance of the film to determine whether the film was normal, such as the presence or absence of pinholes in the film.
  • the degreased CRS material and the GA material or EG material are brought into contact with each other, fixed with a resin clip, and then brought into contact with the autodeposition coating treatment liquid.
  • the appearance of the film after baking was evaluated.
  • the amount of the reduced deposit of the added metal compound was measured on the GA material and / or the CRS material film using a fluorescent X-ray analyzer.
  • Table 7 shows the evaluation results of Examples 1 to 7 and Comparative Examples 1 to 5 when the resin is polyvinylidene chloride.
  • ⁇ 1 (mg / m 2) in the table means that it is below the detection limit in fluorescent X-ray analysis (the same applies to subsequent tables).
  • Examples 1 to 3 a normal film was deposited on all test plates of CRS material, GA material, and EG material and on the joint surface of CRS material and GA material or EG material at all levels.
  • Comparative Examples 1 and 2 pinholes occurred in the entire coating film in the GA material and the EG material.
  • Comparative Example 3 the treatment liquid gelled, and the film formation process could not be performed.
  • Examples 4 to 7 and Comparative Examples 4 to 5 when a compound suitable for the present invention was used, the effect on film formation by adding a reagent was confirmed (Examples 4 to 7). Pinholes were generated (Comparative Examples 4 to 5).
  • Table 8 shows the evaluation results of Examples 8 to 10 when the resin is polyacrylic.
  • Examples 8 to 10 the effect on the film formation by adding the reagent was confirmed at all levels.
  • a normal organic film was deposited on all test plates of CRS, GA, and EG and on the joint surface between the CRS material and the GA material or EG material.
  • Table 9 shows the evaluation results of Examples 11 to 13 when the resin is polyester.
  • Example 11 to 13 the effect on the film formation by adding the reagent was confirmed at all levels.
  • a normal organic film was deposited on all the test plates of CRS, GA, and EG and on the joint surface between the CRS material and the GA material or EG material.
  • Table 10 shows the evaluation results of Examples 14 to 16 when the resin is polyurethane.
  • Example 14 to 16 the effect on the film formation by adding the reagent was confirmed at all levels.
  • a normal organic film was deposited on all the test plates of CRS, GA, and EG and on the joint surface between the CRS material and the GA material or EG material.
  • Table 11 shows the evaluation results of Examples 17 to 23 and Comparative Examples 6 to 10 when the resin is tannic acid and isocyanate.
  • Examples 17 to 19 a normal film was deposited on all the test plates of the CRS material, the GA material, and the EG material and on the joint surface between the CRS material and the GA material or the EG material at all levels.
  • Comparative Examples 6 to 7 pinholes occurred in the entire coating film in the GA material and the EG material.
  • Comparative Example 8 the treatment liquid gelled, and the film formation process could not be performed.
  • Examples 20 to 23 and Comparative Examples 9 to 10 when a compound suitable for the present invention was used, the effect on the film formation by adding a reagent was confirmed (Examples 20 to 23). Pinholes were generated (Comparative Examples 9 to 10).
  • Table 12 shows the evaluation results of Examples 24 to 30 and Comparative Examples 11 to 15 when the resin is epoxy.
  • Examples 24 to 26 at all levels, a normal film was deposited on the test plates of all of the CRS material, the GA material, and the EG material and on the joint surface between the CRS material and the GA material or the EG material.
  • Comparative Examples 11 to 12 pinholes occurred in the entire coating film in the GA material and the EG material.
  • Comparative Example 13 the treatment liquid gelled, and the film formation process could not be performed.
  • Examples 27 to 30 and Comparative Examples 14 to 15 when a compound suitable for the present invention was used, the effect on the film formation by adding a reagent was confirmed (Examples 27 to 30). Pinholes were generated (Comparative Examples 14 to 15).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

Provided is a liquid for autodeposition coating to be used for depositing a smooth and normal coating film, through a chemical reaction, on a metal material, for example, a metal material comprising iron or zinc alone, an alloy material, a plated metal material or a composite metal material consisting of different kinds of such metals being bonded together, regardless of the material selectivity. The surface-treatment liquid for autodeposition coating, which is a treatment liquid comprising at least one kind of a water-dispersible or water-soluble organic resin (a), ferric ion (b), fluorine element (c) at a concentration at least 3-fold by mol higher than the ferric ion concentration, and an oxidizing agent (d) in an amount sufficient for oxidizing all of iron ion present in a bath into ferric ion and sustaining the same, is characterized by further containing 1-30000 mg/L of at least one element (e) selected from the group consisting of Bi, Co, Cu, Mn, Ni, Pb, Pt, Sn and Te.

Description

鉄系および/または亜鉛系金属材料への自己析出被膜処理用表面処理液、および表面処理方法Surface treatment liquid for autodeposition coating treatment on iron-based and / or zinc-based metal material, and surface treatment method
 本発明は、自動車部品やスチール家具、および家電製品のように、鉄や亜鉛もしくは亜鉛合金および亜鉛めっき材単独、またはこれら異種金属が接合された材料のような複合金属材料に対し、素材の選択性なく平滑で正常な被膜を化学反応で析出させるための自己析出被膜処理液、およびその処理方法、また自己析出被膜を有する金属材料に関する。 The present invention selects materials for composite metal materials such as iron, zinc, zinc alloys and galvanized materials alone, or materials in which these dissimilar metals are joined, such as automobile parts, steel furniture, and home appliances. The present invention relates to a self-deposited coating solution for depositing a smooth and normal coating by a chemical reaction, its processing method, and a metal material having the self-deposited coating.
 金属材料を使用した工業製品は、一部の特別な用途、および材料を除き、そのほとんどが塗装されている。塗装の目的は、美観の向上もさることながら、金属の宿命である酸化、すなわち腐食を防止することである。ここで、金属材料に用いられる塗料は、その塗装方法や成分で様々に分類することができ、被塗装材料に要求される性能や可能な塗装方法によって選定される。ここで、自動車車体のように、被塗装材料が複雑な構造を有する場合には、つきまわり性と称される袋構造部内部の塗膜厚の確保が重要である。 Most industrial products using metal materials are painted except for some special applications and materials. The purpose of painting is to prevent oxidation, that is, corrosion, which is the fate of metal, as well as improving aesthetics. Here, the paint used for the metal material can be classified in various ways according to the coating method and components, and is selected according to the performance required for the material to be coated and the possible coating method. Here, when the material to be coated has a complicated structure, such as an automobile body, it is important to secure the coating thickness inside the bag structure part, which is called throwing power.
 従来の電着塗装では、改良されてはいるものの、塗膜が電解によって析出し、析出した塗膜の電気抵抗によって塗膜がつきまわっていく機構上、初期に塗膜が析出する外板部と遅れて塗膜が析出する袋構造部内部との膜厚差の発生は避けて通れない。 Although it has been improved in conventional electrodeposition coating, the outer plate part where the coating film is deposited in the initial stage due to the mechanism in which the coating film is deposited by electrolysis and the coating film is caused by the electrical resistance of the deposited coating film However, the occurrence of a film thickness difference from the inside of the bag structure where the coating film is deposited with a delay cannot be avoided.
 そこで化学反応によって有機塗膜を析出させることで、外板部と袋構造内部の塗膜厚差の問題を解決すべく技術が古くから提案されており、このような組成物はオートデポジション組成物、または自己析出組成物、または自己沈着組成物と称されている。 Therefore, technology has been proposed for a long time to solve the problem of coating thickness difference between the outer plate and the bag structure by depositing an organic coating film by chemical reaction. Such a composition is an autodeposition composition. Or an autodeposition composition or an autodeposition composition.
 しかし、これらの化学反応で有機塗膜を析出させる処理液は、鉄系素材に対して有効であるものの、亜鉛系めっき鋼板に対して被膜を析出させることができなかった。本来、鉄系材料を対象に開発された処理液であり、鉄と比較して亜鉛やアルミニウムは標準酸化還元電位が低いために、処理液が有する酸(水素イオン)による素材のエッチング量に差が生じ、生成した自己析出被膜にピンホールが多数存在してしまう。亜鉛めっき系鋼板を例にすると、特にガルバニール(GA)鋼板と呼ばれる亜鉛-鉄の合金めっき鋼板などは、めっき層が不均一にエッチングされてしまうため、被膜全体にピンホールが多数生成してしまう。また、異なる金属材料が接触した場合、それぞれの金属元素の標準酸化還元電位に差異が生じるため、より卑な標準酸化還元電位を有する金属が選択的にエッチングされることになる。つまり、鉄系材料と亜鉛系材料が接触した部位では、鉄系金属への自己析出被膜の被覆が不完全なものになってしまう。 However, although the treatment liquid for depositing the organic coating film by these chemical reactions is effective for the iron-based material, the coating film could not be deposited on the zinc-based plated steel sheet. Originally developed for iron-based materials, zinc and aluminum have a lower standard oxidation-reduction potential than iron, so there is a difference in the amount of material etched by acid (hydrogen ions) in the treatment liquid. As a result, a large number of pinholes exist in the produced autodeposition coating. Taking a galvanized steel sheet as an example, especially a zinc-iron alloy-plated steel sheet called a galvanil (GA) steel sheet is etched unevenly, resulting in a large number of pinholes formed throughout the coating. . Further, when different metal materials come into contact with each other, a difference occurs in the standard oxidation-reduction potential of each metal element, so that a metal having a lower standard oxidation-reduction potential is selectively etched. That is, at the part where the iron-based material and the zinc-based material are in contact with each other, the coating of the autodeposition coating on the iron-based metal becomes incomplete.
 そこで、例えば、特許文献1や2,3によれば、自己析出型水性被覆組成物もしくは自己析出組成物は、金属表面、例えば鉄系金属、亜鉛系金属、アルミニウム系金属、およびマグネシウム系金属等の表面を接触させることにより被膜が生成すると開示されている。しかしながら、これらの文献で開示されている処理液の処方を亜鉛めっき鋼板に対して適用した場合、ピンホールが多数生成してしまい、成膜することができなかった。 Therefore, for example, according to Patent Documents 1 and 2, 3, the autodeposition-type aqueous coating composition or autodeposition composition is a metal surface such as an iron-based metal, a zinc-based metal, an aluminum-based metal, and a magnesium-based metal. It is disclosed that a film is formed by contacting the surface of the film. However, when the treatment liquid formulations disclosed in these documents are applied to galvanized steel sheets, a large number of pinholes are generated, and film formation cannot be performed.
 特許文献4は、塩化ビニリデン系コポリマーを用いた自己析出処理浴にシスチンもしくはシスチン水溶液を、それぞれ添加剤もしくは前処理水溶液として用いることで、亜鉛めっき鋼板上への成膜時に発生するピンホールを回避するものである。シスチンは25ppm以上の添加で充分な効果を発揮し、これがインヒビターとしてエッチングを抑える働きがあると開示されている。しかしながら、本発明者らが検討した結果、GA鋼板への効果は全く見られなかった。 Patent Document 4 avoids pinholes generated during film formation on a galvanized steel sheet by using cystine or an aqueous cystine solution as an additive or pretreatment aqueous solution in an autodeposition treatment bath using a vinylidene chloride copolymer, respectively. To do. It is disclosed that cystine exhibits a sufficient effect when added in an amount of 25 ppm or more, and this acts as an inhibitor to suppress etching. However, as a result of investigations by the present inventors, no effect on the GA steel sheet was found.
 特許文献5によれば、アセトキシヒドロキシム酸、2-、3-、および4-アミノ安息香酸、ポリエチレンイミン、1-ヒドロキシエチリデン-1,1-ジホスホン酸、アミノトリ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、2-チオフエンカルボン酸、ポリ(ビニルピロリドン)、カリウムアセチルアセトネート、およびアセトヒドロキシム酸から少なくとも1種が選ばれるピンホール防止添加剤の適量をフッ化水素酸水溶液に添加した浴で、自己析出ポリマー浴へ浸漬する前工程で浸漬処理を施すことにより、電気亜鉛めっき鋼板上へ平滑な被膜を析出させることが可能であると開示されている。しかしながら、この方法では処理工程が増えてしまうことになるうえ、本発明者らが検討した結果、GA鋼板上への効果は全く見られなかった。 According to Patent Document 5, acetoxyhydroxymic acid, 2-, 3-, and 4-aminobenzoic acid, polyethyleneimine, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), diethylenetriaminepenta ( Methylenephosphonic acid), 2-thiophenecarboxylic acid, poly (vinyl pyrrolidone), potassium acetylacetonate, and an appropriate amount of a pinhole prevention additive selected from acetohydroxymic acid are added to the hydrofluoric acid aqueous solution. It is disclosed that a smooth coating can be deposited on the electrogalvanized steel sheet by performing a dipping process in the previous step of dipping in an autodeposition polymer bath with the bath. However, this method increases the number of processing steps, and as a result of examination by the present inventors, no effect on the GA steel sheet was found.
 特許文献6によれば、ホスホン酸イオン、好ましくはアミノホスホン酸イオン含有水性液状疵防止溶液と、自己析出前に接触させることにより、ブリスターを大きく減少させることが可能であると開示されている。しかしながら、処理工程が増えてしまうことになるうえ、本発明者らが検討した結果、GA鋼板に対して完全にピンホールを抑制することは適わなかった。
特開2001-172560 特開2004-51725 特開2003-128876 特開平3-163176 特許3340209 特開平9-137278
According to Patent Document 6, it is disclosed that blisters can be greatly reduced by contacting an aqueous liquid wrinkle-preventing solution containing phosphonate ions, preferably aminophosphonate ions, prior to autoprecipitation. However, the number of processing steps increases, and as a result of investigations by the present inventors, it is not suitable to completely suppress pinholes in the GA steel sheet.
JP 2001-172560 A JP 2004-51725 A JP2003-128876 JP-A-3-163176 Patent 3340209 JP-A-9-137278
 本発明の目的は、従来技術の問題点を解決することである。すなわち、鉄・亜鉛単独もしくは合金およびめっき材、またはこれら異種金属接合材料のような複合金属材料に対し、素材の選択性なく平滑で正常な被膜を化学反応で析出させるための自己析出被膜処理液および処理方法および自己析出被覆金属材料を提供することである。 The purpose of the present invention is to solve the problems of the prior art. That is, an autodeposition coating treatment solution for depositing a smooth and normal coating by a chemical reaction on iron / zinc alone or an alloy and plating material, or a composite metal material such as these dissimilar metal bonding materials without material selectivity And a processing method and autodeposition coated metal material.
 本発明者らは前記課題を解決するための手段について鋭意検討した結果、従来技術にはない自己析出被膜処理用表面処理液、自己析出被膜処理方法、および自己析出被膜を有する鉄系および/または亜鉛系金属材料を発明するに至った。すなわち、本発明は水分散性または水溶性の自己析出樹脂と、第二鉄イオンと、少なくとも第二鉄イオンの三倍モル濃度のフッ素元素と、浴中に存在する全ての鉄イオンを第二鉄イオンに酸化しその酸化状態を維持するのに充分な量の酸化剤とを含有する処理液であって、更にBi、Co、Cu、Mn、Ni、Pb、Pt、Sn、Teよりなる群から選ばれる少なくとも1種の元素を1~30000mg/L含有することを特徴とする自己析出被膜処理用表面処理液である。 As a result of intensive studies on means for solving the above-mentioned problems, the present inventors have found that the surface treatment liquid for autodeposition coating treatment, the autodeposition coating treatment method, and the iron-based and / or the self-deposition coating not present in the prior art. The inventors have invented a zinc-based metal material. That is, the present invention relates to a water-dispersible or water-soluble autodeposition resin, ferric ions, fluorine element at least three times the molar concentration of ferric ions, and all iron ions present in the bath. A treatment liquid containing a sufficient amount of an oxidizing agent to oxidize to iron ions and maintain the oxidation state, and further comprising Bi, Co, Cu, Mn, Ni, Pb, Pt, Sn, Te A surface treatment liquid for treating an autodeposition coating, comprising 1 to 30000 mg / L of at least one element selected from the group consisting of:
 Bi、Co、Cu、Mn、Ni、Pb、Pt、Sn、Teよりなる群から選ばれる少なくとも1種の元素の供給源としては、前記元素の可溶性塩、酸化物、水酸化物、錯化物等を用いることができ、Bi(NO3)3、NaBiO3、Bi2O3、Co(NO3)3、Cu(NO3)2、CuSO4、Cu2O、CuO、Mn(OH)3、KMnO4、MnO2、NiO2、PbO2、H2(PtCl6)、Pt(NH3)2Cl2、Pt(NO2)2(NH3)2、SnCl4、SnO2、SnS2、TeO2、TeO3、H6TeO6、H2TeO3、K2TeO3、NaTeO3、BaTeO3、ZnTeO3、NaTeO4、K2H4TeO6、Na2H4TeO6から選ばれる少なくとも1種であることが好ましく、更にはBi(NO3)3、NaBiO3、Bi2O3、Cu(NO3)2、CuSO4、TeO2、TeO3、H6TeO6、H2TeO3、K2TeO3、NaTeO3、BaTeO3、ZnTeO3、NaTeO4、K2H4TeO6、Na2H4TeO6から選ばれる少なくとも1種であることが好ましく、更にはTeO2、TeO3、H6TeO6、H2TeO3、K2TeO3、Na2TeO3、BaTeO3、ZnTeO3、Na2TeO4、K2H4TeO6、Na2H4TeO6から選ばれる少なくとも1種であることが好ましい。 Examples of the supply source of at least one element selected from the group consisting of Bi, Co, Cu, Mn, Ni, Pb, Pt, Sn, and Te include soluble salts, oxides, hydroxides, complexed substances, etc. Bi (NO 3 ) 3 , NaBiO 3 , Bi 2 O 3 , Co (NO 3 ) 3 , Cu (NO 3 ) 2 , CuSO 4 , Cu 2 O, CuO, Mn (OH) 3 , KMnO 4 , MnO 2 , NiO 2 , PbO 2 , H 2 (PtCl 6 ), Pt (NH 3 ) 2 Cl 2 , Pt (NO 2 ) 2 (NH 3 ) 2 , SnCl 4 , SnO 2 , SnS 2 , TeO 2 , TeO 3 , H 6 TeO 6 , H 2 TeO 3 , K 2 TeO 3 , NaTeO 3 , BaTeO 3 , ZnTeO 3 , NaTeO 4 , K 2 H 4 TeO 6 , Na 2 H 4 TeO 6 It is preferable to be a seed, and further Bi (NO 3 ) 3 , NaBiO 3 , Bi 2 O 3 , Cu (NO 3 ) 2 , CuSO 4 , TeO 2 , TeO 3 , H 6 TeO 6 , H 2 TeO 3 , It is preferably at least one selected from K 2 TeO 3 , NaTeO 3 , BaTeO 3 , ZnTeO 3 , NaTeO 4 , K 2 H 4 TeO 6 , Na 2 H 4 TeO 6, and more preferably TeO 2 , TeO 3 , H 6 TeO 6 , H 2 TeO 3 , K 2 T It is preferably at least one selected from eO 3 , Na 2 TeO 3 , BaTeO 3 , ZnTeO 3 , Na 2 TeO 4 , K 2 H 4 TeO 6 , and Na 2 H 4 TeO 6 .
 ここで、前記化合物を本発明に適用する場合に、処理液中での各元素の安定化のために錯化剤を使用することが出来る。本発明において用いることが可能である錯化剤の例として、エチレンジアミン四酢酸とその塩、2-ヒドロキシエチルエチレンジアミン三酢酸とその塩、1,2-シクロヘキサンジアミン四酢酸とその塩、ジエチレントリアミン五酢酸とその塩、グリコールエーテルジアミン四酢酸とその塩、ニトリロ三酢酸とその塩、イミノニ酢酸とその塩、トリエチレンテトラミン六酢酸とその塩、1,3-プロパンジアミン四酢酸とその塩などのアミノカルボン酸系錯化剤や、ヒドロキシエチリデンニりん酸とその塩、ニトリロトリス(メチレンりん酸)とその塩、ホスホノブタン三酢酸とその塩、エチレンジアミン四(メチレンりん酸)とその塩などのホスホン系錯化剤や、グルコン酸とその塩、ヘプトグルコン酸とその塩、などが挙げられる。 Here, when the compound is applied to the present invention, a complexing agent can be used for stabilizing each element in the treatment liquid. Examples of complexing agents that can be used in the present invention include ethylenediaminetetraacetic acid and its salts, 2-hydroxyethylethylenediaminetriacetic acid and its salts, 1,2-cyclohexanediaminetetraacetic acid and its salts, diethylenetriaminepentaacetic acid, Aminocarboxylic acids such as its salts, glycol ether diamine tetraacetic acid and its salts, nitrilotriacetic acid and its salts, iminoniacetic acid and its salts, triethylenetetramine hexaacetic acid and its salts, 1,3-propanediaminetetraacetic acid and its salts Phosphonic complexing agents such as hydroxyethylidene diphosphoric acid and its salt, nitrilotris (methylene phosphoric acid) and its salt, phosphonobutane triacetic acid and its salt, ethylenediaminetetra (methylene phosphoric acid) and its salt And gluconic acid and its salt, heptogluconic acid and its salt, and the like.
 本発明に用いることが出来る水分散または水溶性の有機樹脂の少なくとも1種は、親水基としてスルホン基、カルボキシル基、フェノール性水酸基、水酸基、エチレンオキサイド等の親水基が付加された自己乳化型であっても、前記親水性官能基を有する界面活性剤を用いた強制乳化型もしくはこれらの併用型であっても良い。 At least one of the water-dispersed or water-soluble organic resins that can be used in the present invention is a self-emulsifying type to which a hydrophilic group such as a sulfone group, a carboxyl group, a phenolic hydroxyl group, a hydroxyl group, or ethylene oxide is added as a hydrophilic group. Even if it is, the forced emulsification type | mold using the surfactant which has the said hydrophilic functional group, or these combined type may be sufficient.
 本発明に用いることのできる水分散または水溶性有機樹脂は、親水基にスルホン基、カルボキシル基、フェノール性水酸基、水酸基、エチレンオキサイドから選ばれる少なくとも1種を有する水分散型または水溶性型有機樹脂であることが好ましく、樹脂の種類はポリ塩化ビニリデン樹脂、ポリアクリル樹脂、エポキシ樹脂、フェノール樹脂、タンニン酸、フッ素樹脂、ポリウレタン樹脂、ポリエステル樹脂が好ましく、更にはポリ塩化ビニリデン樹脂、エポキシ樹脂であることがより好ましい。また、これら水分散または水溶性有機樹脂は、処理液中に1~15質量%濃度であることが好ましい。 The water-dispersed or water-soluble organic resin that can be used in the present invention is a water-dispersed or water-soluble organic resin having a hydrophilic group having at least one selected from a sulfone group, a carboxyl group, a phenolic hydroxyl group, a hydroxyl group, and ethylene oxide. Preferably, the type of resin is polyvinylidene chloride resin, polyacrylic resin, epoxy resin, phenol resin, tannic acid, fluororesin, polyurethane resin, polyester resin, and further, polyvinylidene chloride resin, epoxy resin It is more preferable. These water-dispersed or water-soluble organic resins are preferably 1 to 15% by mass in the treatment liquid.
 ここで、前述のタンニン酸の樹脂構成は、次に示される物質を配合して成ることが好ましい。加水分解型タンニン類(例えば五倍子タンニン)の少なくとも1種と、予め一方のイソシアネートがブロック剤でブロックされた少なくとも2モルのポリイソシアネートをビスフェノールA構造を有するポリオールで結合した熱硬化可能な水溶性多官能ブロックイソシアネート(例えば第一工業製薬社製エラストロンH-38)の少なくとも1種と、予め一方のイソシアネートがブロック剤でブロックされたポリイソシアネートにポリエーテルポリオールを結合させた自己乳化型ブロックイソシアネート(例えば三井化学ポリウレタン社製タケネートWB-920)の少なくとも1種より構成されるものである。ここで、タンニン類の少なくとも1種の濃度が、水溶液中の固形分濃度として1~5%であることが好ましく、更に前記タンニン類の少なくとも1種と、少なくとも1種の架橋剤との固形分濃度比が1:1から1:10であることが好ましい。 Here, it is preferable that the above-described resin composition of tannic acid is formed by blending the following substances. A thermosetting water-soluble polyhydride in which at least one of hydrolyzable tannins (for example pentaploid tannin) and at least 2 moles of polyisocyanate in which one isocyanate is blocked with a blocking agent are combined with a polyol having a bisphenol A structure. Self-emulsifying type blocked isocyanate in which polyether polyol is bonded to polyisocyanate in which one isocyanate is blocked with a blocking agent in advance (for example, Elastron H-38 manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and functional isocyanate. It consists of at least one of Takenate WB-920) manufactured by Mitsui Chemicals Polyurethanes. Here, the concentration of at least one of the tannins is preferably 1 to 5% as the solid content concentration in the aqueous solution, and the solid content of at least one of the tannins and at least one cross-linking agent is preferred. The concentration ratio is preferably 1: 1 to 1:10.
 例えば、特許文献1および2のポリエステル樹脂、特許文献3のエポキシ樹脂、特許文献4のポリ塩化ビニリデン樹脂や特許文献5および6のポリアクリル樹脂においても、また、タンニン酸を用いた自己析出被膜においても、本発明を応用することが可能である。 For example, in the polyester resins of Patent Documents 1 and 2, the epoxy resin of Patent Document 3, the polyvinylidene chloride resin of Patent Document 4 and the polyacrylic resins of Patent Documents 5 and 6, and in the autodeposition coating using tannic acid It is also possible to apply the present invention.
 酸化剤は、過塩素酸、次亜塩素酸、溶存酸素、オゾン、過マンガン酸、過酸化水素から選ばれる少なくとも1種であることが好ましい。 The oxidizing agent is preferably at least one selected from perchloric acid, hypochlorous acid, dissolved oxygen, ozone, permanganic acid, and hydrogen peroxide.
 第二鉄イオンは、特に限定されず、例えば、鉄粉、塩化第二鉄、硝酸第二鉄、フッ化第二鉄、水酸化第二鉄、りん酸第二鉄などを用いることが出来る。 The ferric ion is not particularly limited, and for example, iron powder, ferric chloride, ferric nitrate, ferric fluoride, ferric hydroxide, ferric phosphate and the like can be used.
 フッ素元素は、例えば、フッ化水素酸とその塩やヘキサフルオロジルコニウム酸、ヘキサフルオロチタン酸、ヘキサフルオロケイ酸、ヘキサフルオロりん酸などを用いることができる。 As the fluorine element, for example, hydrofluoric acid and its salt, hexafluorozirconic acid, hexafluorotitanic acid, hexafluorosilicic acid, hexafluorophosphoric acid and the like can be used.
 また、本発明は、予め脱脂、水洗処理によって表面を清浄化した金属材料を、前記何れかの自己析出被膜処理用表面処理液と接触させた後、さらに水洗工程で該金属材料表面に付着した余剰な表面処理液を除去し、次いで焼付け処理を行うことによって、自己析出被膜を形成させることを特徴とする金属材料の自己析出被膜処理方法である。 In the present invention, after the metal material whose surface has been cleaned in advance by degreasing and washing treatment is brought into contact with any one of the above-described surface treatment liquids for autodeposition coating treatment, the metal material is further adhered to the surface of the metal material in a washing step. An autodeposition coating treatment method for a metal material, characterized in that an autodeposition coating is formed by removing excess surface treatment liquid and then performing a baking treatment.
 更に本発明は、前記方法によって析出した自己析出被膜層を有し、かつ焼付け形成後の自己析出被膜層の膜厚が5~50μmであることを特徴とする自己析出被覆鉄系および/または亜鉛系金属材料である。 Furthermore, the present invention provides an autodeposition coated iron system and / or zinc having an autodeposition coating layer deposited by the above-mentioned method, and the thickness of the autodeposition coating layer after baking is 5 to 50 μm Based metal material.
 本発明によって得られる自己析出被膜は、前記より選ばれる元素を含む化合物が還元された形態で析出することを特徴とし、その金属元素を1~1000mg/m2含有することを特徴とする自己析出被覆鉄系および/または亜鉛系金属材料である。 The self-deposited film obtained by the present invention is characterized in that a compound containing an element selected from the above is deposited in a reduced form, and contains 1 to 1000 mg / m 2 of the metal element. It is a coated iron-based and / or zinc-based metal material.
 本発明の自己析出被膜処理用表面処理液を用いることで、前処理および後処理に他の処理液を用いることなく、鉄、亜鉛もしくは亜鉛合金および亜鉛めっき材単独、または鉄と亜鉛軽金属の材料が組み合わされた複合金属材料に対して、素材の選択性がなく、平滑で正常な自己析出被膜を析出させることを可能にした。 By using the surface treatment liquid for autodeposition coating treatment of the present invention, it is possible to use iron, zinc, a zinc alloy and a galvanized material alone, or an iron and zinc light metal material without using other treatment liquids for pretreatment and posttreatment. With respect to composite metal materials combined with, there is no material selectivity, and a smooth and normal autodeposition coating can be deposited.
図1は、実施例における異種金属接合部の成膜試験の様子を示したものである。FIG. 1 shows a state of a film formation test of a dissimilar metal joint in the example.
 本発明者らは、1種もしくは2種以上の水分散性および水溶性の有機樹脂と、第二鉄イオンと、少なくとも第二鉄イオンの三倍モル濃度のフッ素元素と、浴中に存在する全ての鉄イオンを第二鉄イオンに酸化してそれを維持するに充分な量の酸化剤と、Bi、Co、Cu、Mn、Ni、Pb、Pt、Sn、Teよりなる群から選ばれる少なくとも1種の元素を含む化合物を配合してなることを特徴とする自己析出被膜処理用表面処理液を用いることで、鉄系材料および亜鉛系材料およびこれらが混在する材料への自己析出被膜の成膜を可能としたのである。 The present inventors are present in a bath with one or more water-dispersible and water-soluble organic resins, ferric ions, at least three times the molar concentration of ferric ions as elemental fluorine. A sufficient amount of oxidizing agent to oxidize and maintain all iron ions to ferric ions and at least selected from the group consisting of Bi, Co, Cu, Mn, Ni, Pb, Pt, Sn, Te By using a surface treatment liquid for autodeposition coating treatment characterized by compounding a compound containing one kind of element, it is possible to form an autodeposition coating on an iron-based material, a zinc-based material, and a material in which these materials are mixed. The film was made possible.
 本発明における好ましい金属材料は、鉄系金属材料および/または亜鉛系金属材料である。ここで、鉄系金属材料とは、冷延鋼板および熱間圧延鋼板等の鋼板や、鋳鉄、および焼結材等の鉄系金属を示し、亜鉛系金属材料とは、溶融亜鉛めっき鋼板、電気亜鉛めっき鋼板、合金亜鉛めっき鋼板(ガルバニール鋼板およびガルバリウム鋼板)等の亜鉛めっき系鋼板およびダイカスト材料を示す。 A preferable metal material in the present invention is an iron-based metal material and / or a zinc-based metal material. Here, the iron-based metal material refers to steel sheets such as cold-rolled steel sheets and hot-rolled steel sheets, and iron-based metals such as cast iron and sintered materials, and the zinc-based metal material refers to hot-dip galvanized steel sheets, electric A galvanized steel sheet and a die-cast material such as a galvanized steel sheet and an alloy galvanized steel sheet (galvanel steel sheet and galvanium steel sheet) are shown.
 本発明の自己析出被膜処理用表面処理液には、Bi、Co、Cu、Mn、Ni、Pb、Pt、Sn、Teよりなる群から選ばれる少なくとも1種の元素、更に好ましくはBi、Cu、Teからなる群から選ばれる少なくとも1種の元素、より好ましくはTeを、金属元素として1~30000mg/L、好ましくは10~20000mg/L、より好ましくは50~10000mg/Lの範囲で含有する。鉄(Fe)および亜鉛(Zn)の標準酸化還元電位はそれぞれ-0.44Vおよび-0.76Vであるために、亜鉛系材料を従来の自己析出処理液へ浸漬した場合、酸による過剰なエッチングが起こり、被膜に水素ガスによるピンホールを形成する。また、鉄と亜鉛の接合材料を自己析出被膜処理用表面処理液に浸漬した場合、亜鉛は鉄よりも標準酸化還元電位が卑なため、亜鉛材が選択的にエッチングされてしまう。本発明の自己析出被膜は、金属材料のエッチングにより生成する金属イオンによって水分散性および水溶性の有機樹脂の安定性が失われて有機被膜を析出する機構であるので、亜鉛材の選択的なエッチングは、鉄材上への有機被膜の析出を阻害することに繋がる。前記より選ばれる元素を含む化合物のすくなくとも1種を自己析出被膜用処理液へ添加することにより、亜鉛系材料を自己析出被膜処理用表面処理液へ浸漬したときに生成する水素ガスによるピンホールを抑制し、鉄と亜鉛の接合材料を自己析出被膜用処理液に浸漬した場合に起こる亜鉛材の選択的なエッチングを抑えることが可能になる。これは、前記より選ばれる元素を含む化合物のすくなくとも1種を自己析出被膜用処理液へ添加することにより、亜鉛材のエッチングにより発生した水素ガスとの間で電子の授受が起こるため、前記より選ばれる元素を含む化合物もしくはイオンの還元反応と水素の酸化反応が起こることによって亜鉛材上へ正常な被膜が形成される。さらに、前記より選ばれる元素のすくなくとも1種は、還元反応により化合物もしくはイオンの還元された物質が生成し、自己析出被膜とともに析出する。このとき、この還元析出された物質によって金属基板表面の標準酸化還元電位が貴に変化し、酸により優先的にエッチングされていた亜鉛のエッチングが緩やかになる。その結果、鉄がエッチングされ、処理液中へ鉄イオンが溶出することにより鉄材上への自己析出被膜が成膜し、鉄と亜鉛の接合面でも一様で正常な有機被膜が形成される。ここで、前記より選ばれる元素は、1mg/Lより少ない場合、ピンホールが発生する等、亜鉛系材料への自己析出被膜の成膜に対して充分な効果が発揮できず、30000mg/Lより多量である場合、自己析出被膜処理液の経時安定性が著しく低下する恐れがある。 The surface treatment solution for autodeposition coating treatment of the present invention contains at least one element selected from the group consisting of Bi, Co, Cu, Mn, Ni, Pb, Pt, Sn, Te, more preferably Bi, Cu, At least one element selected from the group consisting of Te, more preferably Te, is contained as a metal element in the range of 1 to 30000 mg / L, preferably 10 to 20000 mg / L, more preferably 50 to 10,000 mg / L. Since the standard oxidation-reduction potentials of iron (Fe) and zinc (Zn) are −0.44 V and −0.76 V, respectively, excessive etching with acid is performed when a zinc-based material is immersed in a conventional autodeposition treatment solution. Occurs, and pinholes are formed by hydrogen gas in the coating. In addition, when a bonding material of iron and zinc is immersed in a surface treatment solution for autodeposition coating treatment, zinc has a lower standard oxidation-reduction potential than iron, so that the zinc material is selectively etched. Since the autodeposition coating of the present invention is a mechanism in which the stability of the water-dispersible and water-soluble organic resin is lost by metal ions generated by etching of the metal material, and the organic coating is deposited. Etching leads to inhibition of the deposition of the organic coating on the iron material. By adding at least one compound containing an element selected from the above to the treatment solution for autodeposition coating, pinholes caused by hydrogen gas generated when the zinc-based material is immersed in the surface treatment solution for autodeposition coating treatment It is possible to suppress the selective etching of the zinc material that occurs when the bonding material of iron and zinc is immersed in the autodeposition coating treatment solution. This is because, by adding at least one of the compounds containing the elements selected from the above to the autodeposition coating treatment liquid, electrons are exchanged with the hydrogen gas generated by the etching of the zinc material. A normal film is formed on the zinc material by the reduction reaction of the compound or ion containing the selected element and the oxidation reaction of hydrogen. Furthermore, at least one of the elements selected from the above forms a compound or ion-reduced substance by the reduction reaction, and is deposited together with the autodeposition coating. At this time, the standard redox potential on the surface of the metal substrate is preciously changed by the reduction-deposited substance, and the etching of zinc that has been preferentially etched by the acid becomes gentle. As a result, iron is etched, and iron ions are eluted into the treatment liquid to form a self-deposited film on the iron material, and a uniform and normal organic film is formed even on the joint surface of iron and zinc. Here, when the element selected from the above is less than 1 mg / L, a sufficient effect cannot be exerted on the formation of an autodeposition coating on a zinc-based material, such as generation of pinholes, and more than 30000 mg / L. When the amount is large, the aging stability of the autodeposition coating solution may be significantly reduced.
 前記より選ばれる元素を含む化合物には金属元素が陽イオンの状態で水溶液中に存在するものがあり、自己析出能を有する有機樹脂は、これら陽イオンとキレートして不溶化するものが多い。しかしながら、陽イオンの量が少量である場合は、自己析出被膜処理液が増粘することなく安定であるため、処理液が成り立つ添加量で調整することが可能である。陽イオンの量が処理液が増粘するほど多量である場合、それぞれの金属イオンに適した錯化剤を添加し、錯化物として水溶化または水分散させることができる。 Among the compounds containing the elements selected from the above, there are those in which a metal element is present in an aqueous solution in the form of a cation, and many organic resins having self-precipitation ability are chelated with these cations and insolubilized. However, when the amount of the cation is small, the autodeposition coating treatment liquid is stable without thickening, and therefore it can be adjusted with the addition amount that the treatment liquid can be formed. When the amount of the cation is so large that the treatment liquid is thickened, a complexing agent suitable for each metal ion can be added to make the complexed product water-soluble or water-dispersed.
 前記より選ばれる元素を含む化合物が難溶性物質の場合、処理液中で安定に分散しにくい。そこで、本発明の処理液中で分散性を維持するために界面活性剤を用いることができる。このとき、使用できる界面活性剤は、親水基にスルホン基、カルボキシル基、フェノール性水酸基、水酸基、エチレンオキサイドから選ばれる少なくとも1種を有する界面活性剤である。また、該難溶性物質の粒子の大きさを小さくすることが処理浴中への分散において重要であり、これらはレーザー回折/散乱式粒度分布計(LA-920:Horiba社製)で測定したとき、体積換算の50%メディアン径として5μm以下であることが好ましい。 When the compound containing the element selected from the above is a hardly soluble substance, it is difficult to stably disperse in the treatment liquid. Therefore, a surfactant can be used to maintain dispersibility in the treatment liquid of the present invention. At this time, the surfactant that can be used is a surfactant having at least one selected from a sulfone group, a carboxyl group, a phenolic hydroxyl group, a hydroxyl group, and ethylene oxide as a hydrophilic group. In addition, it is important for the dispersion in the treatment bath to reduce the particle size of the hardly soluble substance, and these are measured by a laser diffraction / scattering particle size distribution meter (LA-920: manufactured by Horiba). The volume-converted 50% median diameter is preferably 5 μm or less.
 本発明における自己析出被膜処理液において、自己析出反応に使用されなかった余剰の第一鉄イオンは、酸化剤によって速やかに第二鉄イオンに酸化される。酸化された第二鉄イオンは、そのままでは自己析出処理液の安定性を損なう原因となり得るが、処理液中に含まれるフッ素原子が配位することによって、処理液の安定性が保たれる。 In the autodeposition coating treatment solution of the present invention, surplus ferrous ions that have not been used for the autodeposition reaction are rapidly oxidized to ferric ions by the oxidizing agent. Oxidized ferric ions can cause the stability of the autodeposition treatment liquid as it is, but the stability of the treatment liquid is maintained by coordination of fluorine atoms contained in the treatment liquid.
 ここで、前記自己析出反応が起こるためには第二鉄イオンの濃度は0.1~5g/Lであることが好ましく、より好ましくは0.5~4.5g/Lである。また、フッ素元素の好ましい範囲は第二鉄イオンの少なくとも三倍モル濃度である。第二鉄イオンは被塗物である金属材料表面のエッチングに高い効果を示しており、第二鉄イオン濃度が0.1g/L以下では、自己析出に必要な量の鉄のエッチング反応を起こすことができない。また、5g/Lよりも大きい場合には、析出した自己析出被膜に取り込まれるため鉄分濃度が上昇し、鉄イオンと共に塗膜中に取り込まれる水分量が増えるために、冷延鋼板等の鉄系素材に処理した場合に、自己析出被膜が後の水洗工程で剥離する不具合が生じる。 Here, in order for the self-deposition reaction to occur, the concentration of ferric ions is preferably 0.1 to 5 g / L, and more preferably 0.5 to 4.5 g / L. Moreover, the preferable range of fluorine element is at least 3 times the molar concentration of ferric ion. Ferric ions are highly effective for etching the surface of the metal material to be coated. When the ferric ion concentration is 0.1 g / L or less, an etching reaction of iron necessary for self-deposition occurs. I can't. Moreover, when it is larger than 5 g / L, the iron concentration increases because it is taken into the deposited autodeposition coating, and the amount of moisture taken into the coating together with iron ions increases. When processed into a raw material, there arises a problem that the self-deposited film peels off in the subsequent water washing step.
 前記酸化剤は、過塩素酸、次亜塩素酸、溶存酸素、オゾン、過マンガン酸、過酸化水素から選ばれる少なくとも1種であることが好ましい。過酸化水素は入手が容易であり、かつ自身の還元反応による副生成物が水であることから自己析出処理液に対する影響を考慮する必要がなく、本発明に好適な酸化剤である。 The oxidizing agent is preferably at least one selected from perchloric acid, hypochlorous acid, dissolved oxygen, ozone, permanganic acid, and hydrogen peroxide. Hydrogen peroxide is an oxidant suitable for the present invention because it is easily available and it is not necessary to consider the influence on the autodeposition treatment liquid because the by-product of its own reduction reaction is water.
 本発明の自己析出処理液における酸化剤の濃度は、白金電極を作用極に用いた市販のORP電極で測定される酸化還元電位で管理することができる。ここで、本発明の自己析出反応メカニズムからは、全ての第一鉄イオンを第二鉄イオンに酸化した状態で若干の余剰の酸化剤が処理浴に存在する状態が好ましい。酸化還元電位を選択した酸化剤によって与えられる値の最小値以上に保つことによって、前記状態を維持することが可能となる。ここで、過酸化水素を例にとった場合の好ましい酸化還元電位は、すくなくとも300mV以上であり、好ましくは350mV以上である。300mVより低い場合、第一鉄イオンが処理液中に存在しえるためにフッ素元素との配位に至らず、結果として処理液の安定性低下の原因となり得る。 The concentration of the oxidizing agent in the autodeposition treatment solution of the present invention can be controlled by the oxidation-reduction potential measured with a commercially available ORP electrode using a platinum electrode as a working electrode. Here, from the self-deposition reaction mechanism of the present invention, it is preferable that a slight excess of oxidizing agent is present in the treatment bath in a state where all ferrous ions are oxidized to ferric ions. By maintaining the oxidation-reduction potential at or above the minimum value given by the selected oxidant, it is possible to maintain the state. Here, a preferable redox potential when hydrogen peroxide is taken as an example is at least 300 mV or more, preferably 350 mV or more. If it is lower than 300 mV, ferrous ions may be present in the treatment liquid, so that coordination with the fluorine element is not achieved, and as a result, the stability of the treatment liquid may be reduced.
 本発明は、予め脱脂、水洗処理によって表面を清浄化した金属材料を、前記何れかの自己析出被膜処理用表面処理液と接触させた後、さらに水洗工程で該金属材料表面に付着した余剰な水溶液を除去し、次いで焼付け処理を行うことによって被膜を形成させることを特徴とする、金属材料の自己析出被膜処理方法である。 In the present invention, after the metal material whose surface has been cleaned in advance by degreasing and washing treatment is brought into contact with any one of the above-described surface treatment liquids for autodeposition coating treatment, the surplus adhered to the surface of the metal material in the washing step. An autodeposition coating treatment method for a metal material, characterized in that a coating is formed by removing an aqueous solution and then performing a baking treatment.
 さらに本発明は、金属材料表面に前記方法によって析出した自己析出被膜層を有し、かつ焼付け形成後の自己析出被膜層の膜厚が5~50μmであることを特徴とする自己析出被覆金属材料である。膜厚が5μmを下回ると充分な耐食性を得ることが出来ない。膜厚が50μmを上回ると、被膜の内部応力の増加に伴い、クラックや収縮といった外観不良が生じる恐れがある。 Furthermore, the present invention provides an autodeposition coated metal material having an autodeposition coating layer deposited by the above method on the surface of the metal material, and the film thickness of the autodeposition coating layer after baking is 5 to 50 μm It is. If the film thickness is less than 5 μm, sufficient corrosion resistance cannot be obtained. When the film thickness exceeds 50 μm, appearance defects such as cracks and shrinkage may occur as the internal stress of the film increases.
 本発明は、前記より選ばれる元素を含む化合物が、還元された形態で自己析出被膜とともに析出する。このとき、金属元素(Bi、Co、Cu、Mn、Ni、Pb、Pt、Sn、Te)の析出量は蛍光X線分析により測定することが可能であり、金属元素の含有量が1~1000mg/m2であることが好ましく、更に好ましくは5~500mg/m2含有することが、本発明の効果を充分に発揮することが出来る。金属元素の析出量が1mg/m2以下の場合、自己析出被膜にピンホールがあらわれ、1000mg/m2以上の場合、被膜の外観が悪化する恐れがある。 In the present invention, the compound containing the element selected from the above is deposited together with the autodeposition coating in a reduced form. At this time, the precipitation amount of the metal element (Bi, Co, Cu, Mn, Ni, Pb, Pt, Sn, Te) can be measured by fluorescent X-ray analysis, and the content of the metal element is 1 to 1000 mg. / m 2 is preferable, and the content of 5 to 500 mg / m 2 is more preferable, so that the effects of the present invention can be sufficiently exhibited. When the amount of metal element deposited is 1 mg / m 2 or less, pinholes appear in the autodeposited film, and when it is 1000 mg / m 2 or more, the appearance of the film may be deteriorated.
〔実施例〕
 以下に実施例を比較例と共に挙げ、本発明の自己析出被膜用表面処理液の効果を具体的に説明する。尚、実施例で使用した被処理金属材料、脱脂剤は、市販されている材料の中から任意に選定したものであり、本発明の自己析出被膜用表面処理液の実際の用途における材料の組合せをなんら限定するものではない。
〔Example〕
Examples are given below together with comparative examples to specifically explain the effects of the surface treatment liquid for self-deposited coating of the present invention. In addition, the to-be-treated metal material and degreasing agent used in the examples are arbitrarily selected from commercially available materials, and the combination of materials in the actual application of the surface treatment liquid for autodeposition coating of the present invention. It is not limited at all.
 実施例と比較例に用いた供試板の略号と内訳を示す。
・ CRS(冷延鋼板:JIS-G-3141)
・ GA(合金化溶融亜鉛めっき鋼板(鉄/亜鉛合金めっき鋼板):JIS-G-3302)
・ EG(電気亜鉛めっき鋼板:JIS-G-3313)
Abbreviations and breakdowns of test plates used in Examples and Comparative Examples are shown.
・ CRS (Cold rolled steel sheet: JIS-G-3141)
-GA (Alloyed hot-dip galvanized steel sheet (iron / zinc alloy-plated steel sheet): JIS-G-3302)
・ EG (electrogalvanized steel sheet: JIS-G-3313)
 実施例1~7、比較例1~5
 市販のアルカリ脱脂剤であるファインクリーナーL4460(日本パーカライジング製)を水で2%に希釈し40℃に加温した液を供試板にスプレー装置で噴霧し脱脂処理を行った。脱脂処理後の供試板表面を、スプレー装置を用いてイオン交換水で洗浄し、清浄な供試板表面を得た。前記、表面を脱脂洗浄した供試板を、ポリ塩化ビニリデン系樹脂エマルジョン Daran-SL143(W.R.Grace製)、鉄粉(試薬)、フッ化水素酸(試薬)、テルル酸(試薬)もしくは硝酸銅(試薬)もしくは硝酸ビスマス(試薬)もしくはビスマス酸ナトリウム(試薬)もしくは酸化テルル(試薬)もしくは硝酸アルミニウム(試薬)もしくは硝酸ナトリウム(試薬)、および過酸化水素(試薬)を用いて調製した表1に示す自己析出被膜処理液に浸漬した後、イオン交換水に浸漬水洗し、次いで110℃で20分間焼付けをおこなった。自己析出処理液への浸漬時間は、各供試板において、被膜厚が20μmとなるように設定した。各々の実施例で得られた自己析出被膜金属材料は、被膜にピンホールの有無など、被膜が正常であるかどうか、目視で被膜外観を評価した。また、異種金属接合部の成膜試験として、図1に示すようにそれぞれ脱脂したCRS材とGA材もしくはEG材を接触させ、樹脂製クリップで固定した後、自己析出被膜処理液へ接触させ、焼付け後の被膜外観を評価した。正常な被膜が生成したとき、GA材上及び又はCRS材の被膜を蛍光X線分析装置{ZSX Primus II(リガク社製)}を用いて、添加金属化合物の還元析出物の付着量を測定した。
Figure JPOXMLDOC01-appb-T000001
Examples 1-7, Comparative Examples 1-5
A commercially available alkaline degreasing agent, Fine Cleaner L4460 (manufactured by Nihon Parkerizing), diluted to 2% with water and heated to 40 ° C. was sprayed on a test plate with a spray device for degreasing treatment. The surface of the test plate after the degreasing treatment was washed with ion-exchanged water using a spray device to obtain a clean test plate surface. The test plate whose surface was degreased and cleaned was made of polyvinylidene chloride resin emulsion Daran-SL143 (manufactured by WRGrace), iron powder (reagent), hydrofluoric acid (reagent), telluric acid (reagent) or copper nitrate (reagent). ) Or bismuth nitrate (reagent) or sodium bismutate (reagent) or tellurium oxide (reagent) or aluminum nitrate (reagent) or sodium nitrate (reagent) and hydrogen peroxide (reagent) and the self shown in Table 1 After immersing in the deposition coating solution, the substrate was immersed in ion exchange water and washed, and then baked at 110 ° C. for 20 minutes. The immersion time in the autodeposition treatment solution was set so that the film thickness was 20 μm in each test plate. The self-deposited film metal material obtained in each example was visually evaluated for the appearance of the film to determine whether the film was normal, such as the presence or absence of pinholes in the film. In addition, as a film formation test of the dissimilar metal joint, as shown in FIG. 1, the degreased CRS material and the GA material or EG material are brought into contact with each other, fixed with a resin clip, and then brought into contact with the autodeposition coating treatment liquid. The appearance of the film after baking was evaluated. When a normal film was formed, the amount of reduction deposit of the added metal compound was measured on the GA material and / or the CRS material film using a fluorescent X-ray analyzer {ZSX Primus II (manufactured by Rigaku Corporation)}. .
Figure JPOXMLDOC01-appb-T000001
 実施例8~10
 市販のアルカリ脱脂剤であるファインクリーナーL4460(日本パーカライジング製)を水で2%に希釈し40℃に加温した液を供試板にスプレー装置で噴霧し脱脂処理を行った。脱脂処理後の供試板表面を、スプレー装置を用いてイオン交換水で洗浄し、清浄な供試板表面を得た。前記、表面を脱脂洗浄した供試板を、ポリアクリル系樹脂エマルジョンロープレックスWL-91(Rohm & Hass製)、鉄粉(試薬)、フッ化水素酸(試薬)、テルル酸(試薬)もしくは硝酸銅(試薬)もしくは硝酸ビスマス(試薬)、および過酸化水素(試薬)を用いて調製した表2に示す自己析出被膜処理液に浸漬した後、イオン交換水に浸漬水洗し、次いで180℃で20分間焼付けを行った。自己析出処理液への浸漬時間は、各供試板において、被膜厚が20μmとなるように設定した。各々の実施例で得られた自己析出被膜金属材料は、被膜にピンホールの有無など、被膜が正常であるかどうか、目視で被膜外観を評価した。また、異種金属接合部の成膜試験として、図1に示すようにそれぞれ脱脂したCRS材とGA材もしくはEG材を接触させ、樹脂製クリップで固定した後、自己析出被膜処理液へ接触させ、焼付け後の被膜外観を評価した。正常な被膜が生成したとき、GA材上及び又はCRS材の被膜を蛍光X線分析装置{ZSX Primus II(リガク社製)}を用いて、添加金属化合物の還元析出物の付着量を測定した。
Figure JPOXMLDOC01-appb-T000002
Examples 8-10
A commercially available alkaline degreasing agent, Fine Cleaner L4460 (manufactured by Nihon Parkerizing), diluted to 2% with water and heated to 40 ° C. was sprayed on a test plate with a spray device for degreasing treatment. The surface of the test plate after the degreasing treatment was washed with ion-exchanged water using a spray device to obtain a clean test plate surface. The test plate whose surface was degreased and washed was polyacrylic resin emulsion Roplex WL-91 (Rohm & Hass), iron powder (reagent), hydrofluoric acid (reagent), telluric acid (reagent) or nitric acid. After immersing in the autodeposition coating treatment solution shown in Table 2 prepared using copper (reagent) or bismuth nitrate (reagent) and hydrogen peroxide (reagent), immersing in ion exchange water and rinsing with water at 180 ° C. Bake for a minute. The immersion time in the autodeposition treatment solution was set so that the film thickness was 20 μm in each test plate. The self-deposited film metal material obtained in each example was visually evaluated for the appearance of the film to determine whether the film was normal, such as the presence or absence of pinholes in the film. In addition, as a film formation test of the dissimilar metal joint, as shown in FIG. 1, the degreased CRS material and the GA material or EG material are brought into contact with each other, fixed with a resin clip, and then brought into contact with the autodeposition coating treatment liquid. The appearance of the film after baking was evaluated. When a normal film was formed, the amount of reduction deposit of the added metal compound was measured on the GA material and / or the CRS material film using a fluorescent X-ray analyzer {ZSX Primus II (manufactured by Rigaku Corporation)}. .
Figure JPOXMLDOC01-appb-T000002
 実施例11~13
 市販のアルカリ脱脂剤であるファインクリーナーL4460(日本パーカライジング製)を水で2%に希釈し40℃に加温した液を供試板にスプレー装置で噴霧し脱脂処理を行った。脱脂処理後の供試板表面を、スプレー装置を用いてイオン交換水で洗浄し、清浄な供試板表面を得た。前記、表面を脱脂洗浄した供試板を、ポリエステル系樹脂エマルジョンペスレジンA-120(高松油脂製)、鉄粉(試薬)、フッ化水素酸(試薬)、テルル酸(試薬)もしくは硝酸銅(試薬)もしくは硝酸ビスマス(試薬)、および過酸化水素(試薬)を用いて調製した表3に示す自己析出被膜処理液に浸漬した後、イオン交換水に浸漬水洗し、次いで180℃で20分間焼付けを行った。自己析出処理液への浸漬時間は、各供試板において、被膜厚が20μmとなるように設定した。各々の実施例で得られた自己析出被膜金属材料は、被膜にピンホールの有無など、被膜が正常であるかどうか、目視で被膜外観を評価した。また、異種金属接合部の成膜試験として、図1に示すようにそれぞれ脱脂したCRS材とGA材もしくはEG材を接触させ、樹脂製クリップで固定した後、自己析出被膜処理液へ接触させ、焼付け後の被膜外観を評価した。正常な被膜が生成したとき、GA材上及び又はCRS材の被膜を蛍光X線分析装置{ZSX Primus II(リガク社製)}を用いて、添加金属化合物の還元析出物の付着量を測定した。
Figure JPOXMLDOC01-appb-T000003
Examples 11-13
A commercially available alkaline degreasing agent, Fine Cleaner L4460 (manufactured by Nihon Parkerizing), diluted to 2% with water and heated to 40 ° C. was sprayed on a test plate with a spray device for degreasing treatment. The surface of the test plate after the degreasing treatment was washed with ion-exchanged water using a spray device to obtain a clean test plate surface. The test plate whose surface was degreased and washed was polyester resin emulsion pesresin A-120 (manufactured by Takamatsu Yushi), iron powder (reagent), hydrofluoric acid (reagent), telluric acid (reagent) or copper nitrate ( Reagent) or bismuth nitrate (reagent), and hydrogen peroxide (reagent), and then immersed in the autodeposition coating treatment solution shown in Table 3, then rinsed in ion-exchanged water and then baked at 180 ° C. for 20 minutes Went. The immersion time in the autodeposition treatment solution was set so that the film thickness was 20 μm in each test plate. The self-deposited film metal material obtained in each example was visually evaluated for the appearance of the film to determine whether the film was normal, such as the presence or absence of pinholes in the film. In addition, as a film formation test of the dissimilar metal joint, as shown in FIG. 1, the degreased CRS material and the GA material or EG material are brought into contact with each other, fixed with a resin clip, and then brought into contact with the autodeposition coating treatment liquid. The appearance of the film after baking was evaluated. When a normal film was formed, the amount of reduction deposit of the added metal compound was measured on the GA material and / or the CRS material film using a fluorescent X-ray analyzer {ZSX Primus II (manufactured by Rigaku Corporation)}. .
Figure JPOXMLDOC01-appb-T000003
 実施例14~16
 市販のアルカリ脱脂剤であるファインクリーナーL4460(日本パーカライジング製)を水で2%に希釈し40℃に加温した液を供試板にスプレー装置で噴霧し脱脂処理を行った。脱脂処理後の供試板表面を、スプレー装置を用いてイオン交換水で洗浄し、清浄な供試板表面を得た。前記、表面を脱脂洗浄した供試板を、ポリウレタン系樹脂エマルジョンタケラックW-6020(三井化学ポリウレタン製)、鉄粉(試薬)、フッ化水素酸(試薬)、テルル酸(試薬)もしくは硝酸銅(試薬)もしくは硝酸ビスマス(試薬)、および過酸化水素(試薬)を用いて調製した表4に示す自己析出被膜処理液に浸漬した後、イオン交換水に浸漬水洗し、次いで180℃で20分間焼付けを行った。自己析出処理液への浸漬時間は、各供試板において、被膜厚が20μmとなるように設定した。各々の実施例で得られた自己析出被膜金属材料は、被膜にピンホールの有無など、被膜が正常であるかどうか、目視で被膜外観を評価した。また、異種金属接合部の成膜試験として、図1に示すようにそれぞれ脱脂したCRS材とGA材もしくはEG材を接触させ、樹脂製クリップで固定した後、自己析出被膜処理液へ接触させ、焼付け後の被膜外観を評価した。正常な被膜が生成したとき、GA材上及び又はCRS材の被膜を蛍光X線分析装置{ZSX Primus II(リガク社製)}を用いて、添加金属化合物の還元析出物の付着量を測定した。
Figure JPOXMLDOC01-appb-T000004
Examples 14 to 16
A commercially available alkaline degreasing agent, Fine Cleaner L4460 (manufactured by Nihon Parkerizing), diluted to 2% with water and heated to 40 ° C. was sprayed on a test plate with a spray device for degreasing treatment. The surface of the test plate after the degreasing treatment was washed with ion-exchanged water using a spray device to obtain a clean test plate surface. The test plate whose surface was degreased and cleaned was made of polyurethane resin emulsion Takelac W-6020 (Mitsui Chemical Polyurethane), iron powder (reagent), hydrofluoric acid (reagent), telluric acid (reagent) or copper nitrate. (Reagent) or bismuth nitrate (reagent) and hydrogen peroxide (reagent) prepared in the autodeposition coating treatment solution shown in Table 4 and then immersed in ion-exchanged water and then washed at 180 ° C. for 20 minutes Baking was performed. The immersion time in the autodeposition treatment solution was set so that the film thickness was 20 μm in each test plate. The self-deposited film metal material obtained in each example was visually evaluated for the appearance of the film to determine whether the film was normal, such as the presence or absence of pinholes in the film. In addition, as a film formation test of the dissimilar metal joint, as shown in FIG. 1, the degreased CRS material and the GA material or EG material are brought into contact with each other, fixed with a resin clip, and then brought into contact with the autodeposition coating treatment liquid. The appearance of the film after baking was evaluated. When a normal film was formed, the amount of reduction deposit of the added metal compound was measured on the GA material and / or the CRS material film using a fluorescent X-ray analyzer {ZSX Primus II (manufactured by Rigaku Corporation)}. .
Figure JPOXMLDOC01-appb-T000004
 実施例17~23、比較例6~10
 市販のアルカリ脱脂剤であるファインクリーナーL4460(日本パーカライジング製)を水で2%に希釈し40℃に加温した液を供試板にスプレー装置で噴霧し脱脂処理を行った。脱脂処理後の供試板表面を、スプレー装置を用いてイオン交換水で洗浄し、清浄な供試板表面を得た。前記、表面を脱脂洗浄した供試板を、市販の五倍子タンニン(商品名タンニン酸AL:富士化学工業(株)製)、架橋剤Aとして市販の水溶性ブロックイソシアネート(商品名エラストロンH-38:第一工業製薬(株)製)、および架橋剤Bとして市販の水溶性ブロックイソシアネート(商品名タケネートWB-920:三井化学ポリウレタン(株)製)、鉄粉(試薬)、フッ化水素酸(試薬)、テルル酸(試薬)もしくは硝酸銅(試薬)もしくは硝酸ビスマス(試薬)もしくはビスマス酸ナトリウム(試薬)もしくは酸化テルル(試薬)もしくは硝酸アルミニウム(試薬)もしくは硝酸ナトリウム(試薬)、および過酸化水素(試薬)を用いて調製した表5に示す自己析出被膜処理液に浸漬した後、イオン交換水に浸漬水洗し、次いで200℃で20分間焼付けを行った。自己析出処理液への浸漬時間は、各供試板において、被膜厚が20μmとなるように設定した。各々の実施例で得られた自己析出被膜金属材料は、被膜にピンホールの有無など、被膜が正常であるかどうか、目視で被膜外観を評価した。異種金属接合部の成膜試験として、図1に示すようにそれぞれ脱脂したCRS材とGA材もしくはEG材を接触させ、樹脂製クリップで固定した後、自己析出被膜処理液へ接触させ、焼付け後の被膜外観を評価した。また、正常な被膜が生成したとき、GA材上及び又はCRS材の被膜を蛍光X線分析装置を用いて、添加金属化合物の還元析出物の付着量を測定した。
Figure JPOXMLDOC01-appb-T000005
Examples 17 to 23, Comparative Examples 6 to 10
A commercially available alkaline degreasing agent, Fine Cleaner L4460 (manufactured by Nihon Parkerizing), diluted to 2% with water and heated to 40 ° C. was sprayed on a test plate with a spray device for degreasing treatment. The surface of the test plate after the degreasing treatment was washed with ion-exchanged water using a spray device to obtain a clean test plate surface. The test plate whose surface was degreased and washed was commercially available pentaploid tannin (trade name tannic acid AL: manufactured by Fuji Chemical Industry Co., Ltd.) and a commercially available water-soluble blocked isocyanate (trade name Elastron H-38: Daiichi Kogyo Seiyaku Co., Ltd.), and commercially available water-soluble blocked isocyanate (trade name Takenate WB-920: Mitsui Chemicals Polyurethane Co., Ltd.), iron powder (reagent), hydrofluoric acid (reagent) ), Telluric acid (reagent) or copper nitrate (reagent) or bismuth nitrate (reagent) or sodium bismuthate (reagent) or tellurium oxide (reagent) or aluminum nitrate (reagent) or sodium nitrate (reagent), and hydrogen peroxide ( After immersing in the autodeposition coating treatment solution shown in Table 5 prepared using Reagent), immersing in ion-exchanged water and then baking at 200 ° C. for 20 minutes. The immersion time in the autodeposition treatment solution was set so that the film thickness was 20 μm in each test plate. The self-deposited film metal material obtained in each example was visually evaluated for the appearance of the film to determine whether the film was normal, such as the presence or absence of pinholes in the film. As a film formation test for dissimilar metal joints, contact each degreased CRS material and GA material or EG material as shown in Fig. 1 and fix it with a resin clip. The coating appearance was evaluated. Further, when a normal film was formed, the amount of the reduced deposit of the additive metal compound was measured on the GA material and / or the CRS material film using a fluorescent X-ray analyzer.
Figure JPOXMLDOC01-appb-T000005
 実施例24~30、比較例11~15
 市販のアルカリ脱脂剤であるファインクリーナーL4460(日本パーカライジング製)を水で2%に希釈し40℃に加温した液を供試板にスプレー装置で噴霧し脱脂処理を行った。脱脂処理後の供試板表面を、スプレー装置を用いてイオン交換水で洗浄し、清浄な供試板表面を得た。前記、表面を脱脂洗浄した供試板を、市販のエポキシ系樹脂エマルジョンアデカレジンEM-101-50(ADEKA製)、鉄粉(試薬)、フッ化水素酸(試薬)、テルル酸(試薬)もしくは硝酸銅(試薬)もしくは硝酸ビスマス(試薬)もしくはビスマス酸ナトリウム(試薬)もしくは酸化テルル(試薬)もしくは硝酸アルミニウム(試薬)もしくは硝酸ナトリウム(試薬)、および過酸化水素(試薬)を用いて調製した表6に示す自己析出被膜処理液に浸漬した後、イオン交換水に浸漬水洗し、次いで180℃で20分間焼付けを行った。自己析出処理液への浸漬時間は、各供試板において、被膜厚が20μmとなるように設定した。各々の実施例で得られた自己析出被膜金属材料は、被膜にピンホールの有無など、被膜が正常であるかどうか、目視で被膜外観を評価した。また、異種金属接合部の成膜試験として、図1に示すようにそれぞれ脱脂したCRS材とGA材もしくはEG材を接触させ、樹脂製クリップで固定した後、自己析出被膜処理液へ接触させ、焼付け後の被膜外観を評価した。正常な被膜が生成したとき、GA材上及び又はCRS材の被膜を蛍光X線分析装置を用いて、添加金属化合物の還元析出物の付着量を測定した。
Figure JPOXMLDOC01-appb-T000006
Examples 24-30, Comparative Examples 11-15
A commercially available alkaline degreasing agent, Fine Cleaner L4460 (manufactured by Nihon Parkerizing), diluted to 2% with water and heated to 40 ° C. was sprayed on a test plate with a spray device for degreasing treatment. The surface of the test plate after the degreasing treatment was washed with ion-exchanged water using a spray device to obtain a clean test plate surface. The test plate whose surface has been degreased and cleaned is a commercially available epoxy resin emulsion Adeka Resin EM-101-50 (made by ADEKA), iron powder (reagent), hydrofluoric acid (reagent), telluric acid (reagent) or Table prepared using copper nitrate (reagent) or bismuth nitrate (reagent) or sodium bismutate (reagent) or tellurium oxide (reagent) or aluminum nitrate (reagent) or sodium nitrate (reagent), and hydrogen peroxide (reagent). After immersing in the autodeposition coating treatment solution shown in FIG. 6, it was immersed in ion-exchanged water and then baked at 180 ° C. for 20 minutes. The immersion time in the autodeposition treatment solution was set so that the film thickness was 20 μm in each test plate. The self-deposited film metal material obtained in each example was visually evaluated for the appearance of the film to determine whether the film was normal, such as the presence or absence of pinholes in the film. In addition, as a film formation test of the dissimilar metal joint, as shown in FIG. 1, the degreased CRS material and the GA material or EG material are brought into contact with each other, fixed with a resin clip, and then brought into contact with the autodeposition coating treatment liquid. The appearance of the film after baking was evaluated. When a normal film was formed, the amount of the reduced deposit of the added metal compound was measured on the GA material and / or the CRS material film using a fluorescent X-ray analyzer.
Figure JPOXMLDOC01-appb-T000006
 自己析出被膜金属材料の外観評価 Appearance evaluation of self-deposited coating metal materials
 実施例および比較例の外観評価を行った。表7に、樹脂がポリ塩化ビニリデンのとき、実施例1~7および比較例1~5の評価結果を示した。尚、表中の「<1(mg/m2)」は、蛍光X線分析における検出限界以下であることを意味する(それ以後の表でも同様)。
Figure JPOXMLDOC01-appb-T000007
The appearance evaluation of the examples and comparative examples was performed. Table 7 shows the evaluation results of Examples 1 to 7 and Comparative Examples 1 to 5 when the resin is polyvinylidene chloride. In addition, “<1 (mg / m 2)” in the table means that it is below the detection limit in fluorescent X-ray analysis (the same applies to subsequent tables).
Figure JPOXMLDOC01-appb-T000007
 実施例1~3は、全ての水準において、CRS材、GA材、EG材全ての供試板上およびCRS材とGA材もしくはEG材の接合面に対して、正常な被膜が析出した。比較例1~2は、GA材およびEG材において、被膜全体にピンホールが発生した。比較例3は、処理液がゲル化してしまい、成膜処理を行えなかった。実施例4~7および比較例4~5において、本発明に適する化合物を用いた場合、試薬添加による成膜への効果が確認され(実施例4~7)、適する化合物でない場合、被膜全体にピンホールが発生した(比較例4~5)。 In Examples 1 to 3, a normal film was deposited on all test plates of CRS material, GA material, and EG material and on the joint surface of CRS material and GA material or EG material at all levels. In Comparative Examples 1 and 2, pinholes occurred in the entire coating film in the GA material and the EG material. In Comparative Example 3, the treatment liquid gelled, and the film formation process could not be performed. In Examples 4 to 7 and Comparative Examples 4 to 5, when a compound suitable for the present invention was used, the effect on film formation by adding a reagent was confirmed (Examples 4 to 7). Pinholes were generated (Comparative Examples 4 to 5).
 表8に、樹脂がポリアクリルのとき、実施例8~10の評価結果を示した。
Figure JPOXMLDOC01-appb-T000008
Table 8 shows the evaluation results of Examples 8 to 10 when the resin is polyacrylic.
Figure JPOXMLDOC01-appb-T000008
 実施例8~10は、全ての水準において、試薬添加による成膜への効果が確認された。実施例8~10で、CRS、GA、EG全ての供試板上およびCRS材とGA材もしくはEG材の接合面に対して正常な有機被膜が析出した。 In Examples 8 to 10, the effect on the film formation by adding the reagent was confirmed at all levels. In Examples 8 to 10, a normal organic film was deposited on all test plates of CRS, GA, and EG and on the joint surface between the CRS material and the GA material or EG material.
 表9に、樹脂がポリエステルのとき、実施例11~13の評価結果を示した。
Figure JPOXMLDOC01-appb-T000009
Table 9 shows the evaluation results of Examples 11 to 13 when the resin is polyester.
Figure JPOXMLDOC01-appb-T000009
 実施例11~13は、全ての水準において、試薬添加による成膜への効果が確認された。実施例11~13で、CRS、GA、EG全ての供試板上およびCRS材とGA材もしくはEG材の接合面に対して正常な有機被膜が析出した。 In Examples 11 to 13, the effect on the film formation by adding the reagent was confirmed at all levels. In Examples 11 to 13, a normal organic film was deposited on all the test plates of CRS, GA, and EG and on the joint surface between the CRS material and the GA material or EG material.
 表10に、樹脂がポリウレタンのとき、実施例14~16の評価結果を示した。
Figure JPOXMLDOC01-appb-T000010
Table 10 shows the evaluation results of Examples 14 to 16 when the resin is polyurethane.
Figure JPOXMLDOC01-appb-T000010
 実施例14~16は、全ての水準において、試薬添加による成膜への効果が確認された。実施例14~16で、CRS、GA、EG全ての供試板上およびCRS材とGA材もしくはEG材の接合面に対して正常な有機被膜が析出した。 In Examples 14 to 16, the effect on the film formation by adding the reagent was confirmed at all levels. In Examples 14 to 16, a normal organic film was deposited on all the test plates of CRS, GA, and EG and on the joint surface between the CRS material and the GA material or EG material.
 表11に、樹脂がタンニン酸およびイソシアネートのとき、実施例17~23および比較例6~10の評価結果を示した。
Figure JPOXMLDOC01-appb-T000011
Table 11 shows the evaluation results of Examples 17 to 23 and Comparative Examples 6 to 10 when the resin is tannic acid and isocyanate.
Figure JPOXMLDOC01-appb-T000011
 実施例17~19は、全ての水準において、CRS材、GA材、EG材全ての供試板上およびCRS材とGA材もしくはEG材の接合面に対して、正常な被膜が析出した。比較例6~7は、GA材およびEG材において、被膜全体にピンホールが発生した。比較例8は、処理液がゲル化してしまい、成膜処理を行えなかった。実施例20~23および比較例9~10において、本発明に適する化合物を用いた場合、試薬添加による成膜への効果が確認され(実施例20~23)、適する化合物でない場合、被膜全体にピンホールが発生した(比較例9~10)。 In Examples 17 to 19, a normal film was deposited on all the test plates of the CRS material, the GA material, and the EG material and on the joint surface between the CRS material and the GA material or the EG material at all levels. In Comparative Examples 6 to 7, pinholes occurred in the entire coating film in the GA material and the EG material. In Comparative Example 8, the treatment liquid gelled, and the film formation process could not be performed. In Examples 20 to 23 and Comparative Examples 9 to 10, when a compound suitable for the present invention was used, the effect on the film formation by adding a reagent was confirmed (Examples 20 to 23). Pinholes were generated (Comparative Examples 9 to 10).
 表12に、樹脂がエポキシのとき、実施例24~30および比較例11~15の評価結果を示した。
Figure JPOXMLDOC01-appb-T000012
Table 12 shows the evaluation results of Examples 24 to 30 and Comparative Examples 11 to 15 when the resin is epoxy.
Figure JPOXMLDOC01-appb-T000012
 実施例24~26は、全ての水準において、CRS材、GA材、EG材全ての供試板上およびCRS材とGA材もしくはEG材の接合面に対して、正常な被膜が析出した。比較例11~12は、GA材およびEG材において、被膜全体にピンホールが発生した。比較例13は、処理液がゲル化してしまい、成膜処理を行えなかった。実施例27~30および比較例14~15において、本発明に適する化合物を用いた場合、試薬添加による成膜への効果が確認され(実施例27~30)、適する化合物でない場合、被膜全体にピンホールが発生した(比較例14~15)。 In Examples 24 to 26, at all levels, a normal film was deposited on the test plates of all of the CRS material, the GA material, and the EG material and on the joint surface between the CRS material and the GA material or the EG material. In Comparative Examples 11 to 12, pinholes occurred in the entire coating film in the GA material and the EG material. In Comparative Example 13, the treatment liquid gelled, and the film formation process could not be performed. In Examples 27 to 30 and Comparative Examples 14 to 15, when a compound suitable for the present invention was used, the effect on the film formation by adding a reagent was confirmed (Examples 27 to 30). Pinholes were generated (Comparative Examples 14 to 15).
 これらの結果より、前記より選ばれる元素を含む化合物を自己析出被膜処理用表面処理液へ適量添加することにより、鉄系鋼板および亜鉛系鋼板への自己析出被膜の正常な成膜の効果が得られることが明らかである。
 以上より、本発明の効果は明らかである。
From these results, by adding an appropriate amount of the compound containing the element selected from the above to the surface treatment solution for autodeposition coating treatment, the effect of normal film formation of the autodeposition coating on iron-based steel sheets and zinc-based steel sheets is obtained. It is clear that
From the above, the effects of the present invention are clear.

Claims (7)

  1.  水分散性または水溶性の有機樹脂の少なくとも1種(a)と、第二鉄イオン(b)と、少なくとも第二鉄イオンの三倍モル濃度のフッ素元素(c)と、浴中に存在する全ての鉄イオンを第二鉄イオンに酸化してそれを維持するに充分な量の酸化剤(d)とを含有する処理液であって、更にBi、Co、Cu、Mn、Ni、Pb、Pt、Sn、Teよりなる群から選ばれる少なくとも1種の元素(e)を1~30000mg/L含有することを特徴とする自己析出被膜処理用表面処理液。 At least one kind of water-dispersible or water-soluble organic resin (a), ferric ion (b), and fluorine element (c) at least three times the molar concentration of ferric ion are present in the bath. A treatment solution containing a sufficient amount of an oxidizing agent (d) to oxidize and maintain all iron ions to ferric ions, and Bi, Co, Cu, Mn, Ni, Pb, A surface treatment solution for autodeposition coating treatment, containing 1 to 30000 mg / L of at least one element (e) selected from the group consisting of Pt, Sn, and Te.
  2.  水分散または水溶性の有機樹脂の少なくとも1種(a)は、ポリ塩化ビニリデン樹脂、ポリアクリル樹脂、エポキシ樹脂、フェノール樹脂、タンニン酸、フッ素樹脂、ポリウレタン樹脂、ポリエステル樹脂から選ばれる少なくとも1種以上である請求項1の自己析出被膜処理用表面処理液。 At least one (a) of the water-dispersed or water-soluble organic resin is at least one selected from polyvinylidene chloride resin, polyacrylic resin, epoxy resin, phenol resin, tannic acid, fluorine resin, polyurethane resin, and polyester resin. The surface treatment solution for autodeposition coating treatment according to claim 1.
  3.  酸化剤(d)は、過塩素酸、次亜塩素酸、溶存酸素、オゾン、過マンガン酸、過酸化水素から選ばれる少なくとも1種である請求項1および2の自己析出被膜処理用表面処理液。 The surface treatment solution for autodeposition coating treatment according to claim 1 or 2, wherein the oxidizing agent (d) is at least one selected from perchloric acid, hypochlorous acid, dissolved oxygen, ozone, permanganic acid, and hydrogen peroxide. .
  4.  鉄系および/または亜鉛系金属材料への処理液である請求項1~3の何れか一項の自己析出被膜処理用表面処理液。 The surface treatment solution for autodeposition coating treatment according to any one of claims 1 to 3, which is a treatment solution for iron-based and / or zinc-based metallic materials.
  5.  予め脱脂、水洗処理によって表面を清浄化した金属材料を、請求項1から4の何れか一項に記載された表面処理液と接触させた後、さらに水洗工程で該金属材料表面に付着した余剰な表面処理液を除去し、次いで焼付け処理を行うことを特徴とする金属材料の自己析出被膜処理方法。 The surplus adhered to the surface of the metal material in the water washing step after the metal material whose surface has been previously cleaned by degreasing and water washing treatment is brought into contact with the surface treatment liquid according to any one of claims 1 to 4. A method for treating a self-deposited film of a metal material, comprising removing a surface treatment solution and then performing a baking treatment.
  6.  請求項5に記載された方法によって析出した自己析出被膜層を有し、かつ焼付け形成後の自己析出被膜層の膜厚が5~50μmであることを特徴とする自己析出被覆鉄系および/または亜鉛系金属材料。 A self-deposited coated iron system comprising an autodeposited coating layer deposited by the method according to claim 5 and having a film thickness of 5 to 50 μm after baking and / or Zinc-based metal material.
  7.  請求項6に記載された自己析出被膜層が、Bi、Co、Cu、Mn、Ni、Pb、Pt、Sn、Teよりなる群から選ばれる少なくとも1種の元素を1~1000mg/m2含有することを特徴とする自己析出被覆鉄系および/または亜鉛系金属材料。 The autodeposition coating layer according to claim 6 contains 1 to 1000 mg / m 2 of at least one element selected from the group consisting of Bi, Co, Cu, Mn, Ni, Pb, Pt, Sn, and Te. A self-deposited coated iron-based and / or zinc-based metal material.
PCT/JP2009/006154 2009-11-17 2009-11-17 Surface-treatment liquid for autodeposition coating of iron-based and/or zinc-based metal material and surface-treatment method WO2011061784A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/006154 WO2011061784A1 (en) 2009-11-17 2009-11-17 Surface-treatment liquid for autodeposition coating of iron-based and/or zinc-based metal material and surface-treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/006154 WO2011061784A1 (en) 2009-11-17 2009-11-17 Surface-treatment liquid for autodeposition coating of iron-based and/or zinc-based metal material and surface-treatment method

Publications (1)

Publication Number Publication Date
WO2011061784A1 true WO2011061784A1 (en) 2011-05-26

Family

ID=44059288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006154 WO2011061784A1 (en) 2009-11-17 2009-11-17 Surface-treatment liquid for autodeposition coating of iron-based and/or zinc-based metal material and surface-treatment method

Country Status (1)

Country Link
WO (1) WO2011061784A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3205494A4 (en) * 2014-10-06 2018-04-04 Toyo Seikan Group Holdings, Ltd. Coated metal plate and organic resin-coated coated metal plate
CN112011790A (en) * 2019-05-29 2020-12-01 北京铂阳顶荣光伏科技有限公司 Stainless steel foil blackening liquid for photovoltaic and blackening treatment method of stainless steel foil

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05214266A (en) * 1992-01-31 1993-08-24 Nippon Parkerizing Co Ltd Self-depositing water-based coating composition
JPH07132574A (en) * 1993-11-09 1995-05-23 Nippon Parkerizing Co Ltd Method for coating metal surface
JPH08173901A (en) * 1994-09-30 1996-07-09 Nippon Parkerizing Co Ltd Manufacture of metal base with protecting layer of corrosion-resistant self-deposition resin

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05214266A (en) * 1992-01-31 1993-08-24 Nippon Parkerizing Co Ltd Self-depositing water-based coating composition
JPH07132574A (en) * 1993-11-09 1995-05-23 Nippon Parkerizing Co Ltd Method for coating metal surface
JPH08173901A (en) * 1994-09-30 1996-07-09 Nippon Parkerizing Co Ltd Manufacture of metal base with protecting layer of corrosion-resistant self-deposition resin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3205494A4 (en) * 2014-10-06 2018-04-04 Toyo Seikan Group Holdings, Ltd. Coated metal plate and organic resin-coated coated metal plate
CN112011790A (en) * 2019-05-29 2020-12-01 北京铂阳顶荣光伏科技有限公司 Stainless steel foil blackening liquid for photovoltaic and blackening treatment method of stainless steel foil

Similar Documents

Publication Publication Date Title
JP4242827B2 (en) Metal surface treatment composition, surface treatment liquid, surface treatment method, and surface-treated metal material
CN101321894B (en) Wet on wet method and chrome-free acidic solution for the corrosion control treatment of steel surfaces
ES2730576T3 (en) Treatment fluid for metal surface treatment and surface treatment procedure
AU2008248694B2 (en) Preliminary metallizing treatment of zinc surfaces
WO2010001861A1 (en) Chemical conversion liquid for metal structure and surface treating method
US20180112313A1 (en) Method for nickel-free phosphating metal surfaces
JP5462467B2 (en) Chemical treatment solution for metal material and treatment method
KR20060126752A (en) Chrome-free passivating solution
JP5215043B2 (en) Metal surface treatment liquid and surface treatment method
JP2010090407A (en) Liquid for treating metal surface, and method for treating metal surface
EP3564408B1 (en) Chemical conversion treatment agent and chemical conversion coating production method
EP2708619A1 (en) Chemical conversion treatment agent for surface treatment of metal substrate, and surface treatment method of metal substrate using same
US20230203699A1 (en) Treated substrates
KR20070103492A (en) Surface-treated metallic material
JP2010090409A (en) Surface-treated metallic material, liquid for treating metallic surface, coated metallic material, and method of manufacturing them
WO2011061784A1 (en) Surface-treatment liquid for autodeposition coating of iron-based and/or zinc-based metal material and surface-treatment method
JP5827792B2 (en) Chemically treated iron-based materials
TW201715082A (en) Surface treating agent, method for surface treating and surface treated metal material
JPH07278891A (en) Pretreatment for coating of metal material
US20170137947A1 (en) Processes and compositions for improving corrosion performance of zirconium oxide pretreated zinc surfaces
JP4992385B2 (en) Organic resin-coated phosphate-treated zinc-based plated steel sheet and method for producing the same
EP3318659A1 (en) Surface treatment agent, surface treatment method, and surface treated metal material
JPS6179782A (en) Treatment of phosphate
US11566330B2 (en) Systems and methods for maintaining pretreatment baths
JP2011127141A (en) Metallic material whose surface is treated for electrodeposition coating and method for conversion coating

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09851410

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09851410

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP