WO2011055455A1 - パイル布帛及びその製造方法 - Google Patents

パイル布帛及びその製造方法 Download PDF

Info

Publication number
WO2011055455A1
WO2011055455A1 PCT/JP2009/069054 JP2009069054W WO2011055455A1 WO 2011055455 A1 WO2011055455 A1 WO 2011055455A1 JP 2009069054 W JP2009069054 W JP 2009069054W WO 2011055455 A1 WO2011055455 A1 WO 2011055455A1
Authority
WO
WIPO (PCT)
Prior art keywords
pile
fiber
ground
fibers
texture
Prior art date
Application number
PCT/JP2009/069054
Other languages
English (en)
French (fr)
Inventor
西田宗平
三好正明
楠和也
徳本裕幸
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to KR1020127009811A priority Critical patent/KR101389764B1/ko
Priority to EA201290302A priority patent/EA023898B1/ru
Priority to US13/504,027 priority patent/US20120219751A1/en
Priority to JP2011539240A priority patent/JP5461572B2/ja
Priority to CN200980162337.XA priority patent/CN102597348B/zh
Priority to UAA201205889A priority patent/UA101779C2/ru
Priority to EP09851107.4A priority patent/EP2500455B1/en
Priority to PCT/JP2009/069054 priority patent/WO2011055455A1/ja
Priority to CN2010206111537U priority patent/CN201942838U/zh
Publication of WO2011055455A1 publication Critical patent/WO2011055455A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D27/00Woven pile fabrics
    • D03D27/12Woven pile fabrics wherein pile tufts are inserted during weaving
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/02Pile fabrics or articles having similar surface features
    • D04B1/025Pile fabrics or articles having similar surface features incorporating loose fibres, e.g. high-pile fabrics or artificial fur
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/587Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads adhesive; fusible
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D27/00Woven pile fabrics
    • D03D27/02Woven pile fabrics wherein the pile is formed by warp or weft
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B1/00Weft knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B1/02Pile fabrics or articles having similar surface features
    • D04B1/04Pile fabrics or articles having similar surface features characterised by thread material
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B21/00Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B21/02Pile fabrics or articles having similar surface features
    • D04B21/04Pile fabrics or articles having similar surface features characterised by thread material
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/04Heat-responsive characteristics
    • D10B2401/041Heat-responsive characteristics thermoplastic; thermosetting
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2403/00Details of fabric structure established in the fabric forming process
    • D10B2403/01Surface features
    • D10B2403/011Dissimilar front and back faces
    • D10B2403/0111One hairy surface, e.g. napped or raised
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/23907Pile or nap type surface or component
    • Y10T428/2395Nap type surface

Definitions

  • the present invention relates to a pile fabric that prevents hair loss of pile fibers and a method for producing the same.
  • a pile fabric is known as a fabric having an appearance resembling a fur under the names of imitation fur, fake fur, bore and the like. They are made from pile knitted fabrics and pile fabrics. In the case of a knitted pile, it is knitted mainly by a seal milling machine and a sliver knit machine (circular knitting machine), and both are cut piled. When knitting with a double raschel machine of a warp knitting machine, knitting is performed by forming the ground texture double and simultaneously tying the binding yarn between the ground textures and cutting the middle of the binding yarn.
  • Non-Patent Document 1 Non-Patent Document 1
  • these woven and knitted fabrics have a problem that they have a lot of hair loss. If there is a lot of hair loss, it will adhere to the inner garment or drop off on the floor, making it look bad and sanitary.
  • Patent Document 1 proposals for mixing low-melting fibers with pile fibers
  • Patent Documents 2 to 3 proposals for mixing low-melting fibers with ground yarns constituting the ground texture
  • both of these proposals heat the entire fabric at a temperature equal to or higher than the melting point of the low-melting fiber, so that the entire ground texture or the pile fiber is also fused, resulting in a rough texture. is there.
  • the present invention provides a pile fabric in which only a specific portion of the pile fabric is fused to prevent the pile fibers from falling out without damaging the texture, and a method for manufacturing the pile fabric.
  • the pile fabric of the present invention is a pile fabric that includes a ground structure and pile fibers that are entangled with the ground yarn constituting the ground structure and are raised on the surface of the ground structure, and the pile fiber is an acrylic fiber and an acrylic fiber. At least one fiber selected from the group consisting of: the pile fiber has a softening point lower than that of the fiber constituting the ground texture, and the ground texture is a pile fiber entangled with the ground yarn constituting the ground texture At least a part of the pile fibers outside the ground yarn constituting the fabric is fused, and the pile fibers raised on the surface of the ground structure are not fused.
  • the method for producing a pile fabric of the present invention is a method for producing a pile fabric including a ground structure and pile fibers that are entangled with the ground yarn constituting the ground structure and are raised on the surface of the ground structure, It is at least one fiber selected from the group consisting of acrylic fiber and acrylic fiber, and the pile fiber has a softening point lower than that of the fiber constituting the ground texture, and the softening point of the pile fiber from the back side of the ground texture Of the pile fibers entangled with the ground yarn constituting the ground texture, by contact heating and pressing at a temperature lower than the softening point of the fiber constituting the ground texture, the outer side of the ground yarn constituting the ground texture is outside. At least a part of the pile fibers is fused, and the pile fibers raised on the surface of the ground structure are not fused.
  • the pile fiber is at least one fiber selected from the group consisting of acrylic fiber and acrylic fiber, and at least a part of the pile fiber outside the ground yarn constituting the ground structure is fused, Since the pile fibers raised on the surface of the ground tissue are not fused, it is possible to prevent the pile fibers from coming off without damaging the texture.
  • the method for producing a pile fabric of the present invention comprises forming a ground structure by contact heating and pressing at a temperature not lower than the softening point of the pile fiber and lower than the softening point of the fiber constituting the ground structure from the back side of the ground structure. Since only the limited portion outside the ground yarn to be fused is fused, and the pile fibers raised on the surface of the ground texture are not fused, the pile fibers can be prevented from coming off without impairing the texture.
  • FIG. 1 is a schematic explanatory view of a pile fabric in one embodiment of the present invention.
  • FIG. 2 is a knitting diagram of a bore knitted fabric in one embodiment of the present invention.
  • FIG. 3 is a knitting diagram of a sliver knit in one embodiment of the present invention.
  • FIG. 4 is a manufacturing process diagram in one embodiment of the present invention.
  • FIG. 5 is a scanning electron microscope (SEM) photograph (magnification 50) showing the thickness of pile fibers outside the ground yarn constituting the ground structure in one embodiment of the present invention.
  • FIG. 6 is a graph showing the relationship between the thickness of pile fibers on the outer side of the ground yarn constituting the ground structure and hair loss in one embodiment of the present invention.
  • SEM scanning electron microscope
  • the pile fabric of the present invention is a pile fabric including pile fibers that are entangled with the ground structure and the ground yarn constituting the ground structure (hereinafter, also simply referred to as ground thread) and are raised on the surface of the ground structure.
  • This pile fabric can be produced using a seal milling machine, a sliver knit machine (circular knitting machine), a bore machine (circular knitting machine), a double raschel machine, a velvet loom, a moquette loom, or the like.
  • a high pile, a bore pile, a tuft carpet, etc. are mentioned, A high pile and a bore pile are preferable and a high pile is more preferable.
  • the pile fiber has a softening point lower than that of the fiber constituting the ground structure (hereinafter, also simply referred to as the ground structure constituting fiber), and among the pile fibers entangled with the ground yarn, at least a part of the pile fibers outside the ground yarn. Are piled up, and the pile fibers raised on the surface of the ground structure are not fused.
  • the means is not particularly limited as long as at least a part of the pile fibers outside the ground yarn can be fused.
  • the above-mentioned ground texture is higher than the softening point of the pile fibers from the back side of the ground structure, that is, the back side of the pile fabric. It is preferable to perform contact heating and pressing at a temperature lower than the softening point of the constituent fibers.
  • the outer side of the ground yarn constituting the ground structure is the back side when the surface on which the pile fibers are raised is the surface, and is outside the ground yarn.
  • the pile fiber entangled with the ground yarn may include some fibers that have bite into the ground yarn, but the remaining portion is present outside the ground yarn.
  • the pile fiber is at least one fiber selected from the group consisting of acrylic fiber and acrylic fiber.
  • the pile fiber is at least one fiber selected from the group consisting of acrylic fiber and acrylic fiber
  • a pile fabric having an excellent texture can be obtained.
  • a thermoplastic fiber is used as a pile fiber, the pile fiber on the surface of the pile fabric is usually melted if a polishing process is performed at a temperature higher than the melting point of the thermoplastic fiber, and a pile fabric having a good appearance and texture is obtained. Absent. Further, when polishing is performed at a temperature lower than the melting point of the thermoplastic fiber, the pile fabric on the surface of the pile fabric is not crimped, so that a pile fabric having a good appearance and texture cannot be obtained.
  • the softening point Polishing can be performed at the following temperature, for example, 150 to 160 ° C. Therefore, when at least one fiber selected from the group consisting of acrylic fiber and acrylic fiber is used as the pile fiber, the pile fiber on the surface of the pile fabric is not fused in the polishing process and has a good appearance and texture. A pile fabric is obtained. If the pile fibers include, in addition to acrylic fibers and acrylic fibers, thermoplastic fibers having a softening point of 160 ° C.
  • low melting point polyester fibers having a softening point of 160 ° C. or lower such as low melting point polyester fibers having a softening point of 160 ° C. or lower, a polishing process at 150 to 160 ° C.
  • the low melting point polyester fiber on the surface of the pile fabric is melted, and it is difficult to obtain a pile fabric having a good appearance and texture.
  • the pile fiber is not particularly limited as long as the softening point is lower than the fibers constituting the ground structure, but the difference between the softening points of the ground structure constituting fiber and the pile fiber is preferably 10 ° C. or more, more preferably It is 20 ° C. or higher, particularly preferably 30 ° C. or higher. If there is a difference of 10 ° C. or more, it is easier to fuse only at least a part of the fibers outside the ground yarn constituting the ground structure and not to pile up pile fibers raised on the surface of the ground structure. Become.
  • the whole pile fiber may be a fiber that softens at a predetermined temperature, or may be a mixed fiber of fibers that soften at different temperatures.
  • the pile fiber is a mixed fiber of fibers that soften at different temperatures, 20% by weight (wt%) or more of the fibers that soften at a relatively low temperature are mixed, and the fibers that soften at a relatively low temperature are mixed. It is preferable to fuse.
  • the softening point is the softening temperature before melting or decomposition.
  • the softening point of acrylic fibers is 190 to 232 ° C.
  • the softening point of acrylic fibers is 150 to 220 ° C.
  • Literature value a Chemical Dictionary”, Kyoritsu Shuppan, pages 727 to 729, issued June 1, 1993, hereinafter “ Literature value ”).
  • An acrylic fiber refers to a fiber containing 85% by weight or more of acrylonitrile.
  • the acrylic fiber refers to a fiber composed of a polymer containing acrylonitrile in an amount of 35% by weight to less than 85% by weight and other copolymerizable monomer in an amount of 15% by weight to 65% by weight.
  • the other copolymerizable monomers include vinyl halides and vinylidene halides typified by vinyl chloride, vinylidene chloride, vinyl bromide, vinylidene bromide, allyl sulfonic acid, methallyl sulfonic acid, styrene sulfone.
  • Sulfonic acid-containing monomers represented by acids, isoprenesulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid and the like, and metal salts and amine salts thereof, acrylic acid and methacrylic acid, and lower alkyl esters thereof, N or N, N-alkyl-substituted aminoalkyl esters and glycidyl esters, acrylamide and methacrylamide and their N- or N, N-alkyl-substituted products, carboxyl group-containing vinyl monomers represented by acrylic acid, methacrylic acid, itaconic acid and the like, and
  • Them Typical examples include anionic vinyl monomers such as thorium, potassium and ammonium salts, cationic vinyl monomers including quaternized aminoalkyl esters of acrylic acid and methacrylic acid, or vinyl group-containing lower alkyl ethers and vinyl acetate.
  • vinyl group-containing lower carboxylic acid esters and styrene These monomers can be used alone or in admixture of two or more. Among these, it is preferable to use one or more monomers selected from the group consisting of vinyl halides, vinylidene halides and metal salts of sulfonic acid-containing monomers, and selected from the group consisting of vinyl chloride, vinylidene chloride and sodium styrenesulfonate. More preferably, one or more monomers are used. Moreover, it is preferable to use a modacrylic fiber as the acrylic fiber.
  • the modacrylic fiber is an acrylic fiber containing 35% by weight or more and less than 85% by weight, and a total of 15% by weight or more and 65% by weight of one or more monomers selected from the group consisting of vinyl chloride and vinylidene chloride and other copolymerizable monomers.
  • % Is a fiber composed of a polymer containing no more than%.
  • the pile fibers outside the ground yarn are fused and pressure-bonded.
  • the pile fabric of the present invention it is preferable that all pile fibers outside the ground yarn are fused and pressure-bonded. This is because a more excellent hair removal prevention effect can be obtained.
  • the thickness of the pile fiber outside the ground yarn that is fused and pressed is preferably 300 ⁇ m or less, more preferably 250 ⁇ m or less, and particularly preferably 200 ⁇ m or less.
  • the thickness of the pile fibers outside the ground yarn is 300 ⁇ m or less, the pile fibers are fused and fixed with sufficient strength.
  • the thickness of the pile fiber outside the said ground yarn is measured as follows, for example. First, after fixing only the pile front surface with an adhesive so that the pile shape does not collapse when the pile fabric is cut, it is cut perpendicularly to the knitting direction of the ground yarn.
  • the cutting line is a position which crosses the loop of the ground yarn, and is shown by, for example, the II line in FIG.
  • the back surface of the ground structure is turned up (as if FIG. 1 is reversed), and the cross section is observed with a scanning electron microscope (SEM) at a magnification of 50.
  • SEM scanning electron microscope
  • the thickness measurement when observing the cross section using a scanning electron microscope (SEM), when it is difficult to distinguish the ground yarn from the pile fiber, for example, an optical microscope or a laser microscope that can be observed at a magnification of 50 or more May be used to distinguish the ground yarn from the pile fiber.
  • SEM scanning electron microscope
  • the back surface of the pile fabric is preferably impregnated with a backing resin.
  • the backing resin is impregnated, it is possible to prepare the nap of the pile fibers before the step of contact heating and pressing from the back side of the ground structure, that is, the back side of the pile fabric.
  • the backing resin latexes such as acrylic ester resins and polyurethane resins, emulsions, dispersions and the like can be used.
  • the amount of impregnation of the backing resin is, for example, about 50 g / m 2 as a resin solid content concentration in order to prevent hair loss, but the present invention has an effect of preventing hair loss due to fusion of specific portions of the pile fiber. Therefore, it may be about 1 ⁇ 2 to 3 of the above normal impregnation amount. That is, it is only necessary to impregnate about 17 to 25 g / m 2 in terms of resin solid concentration. Polishing of the pile fiber is performed before fusing a specific portion of the pile fiber. At this time, the fiber can be temporarily fixed using a backing resin so that the fiber does not fall off. Therefore, the resin impregnation amount may be small.
  • the manufacturing method of the pile fabric of this invention includes the process of carrying out contact heating pressurization from the back surface side of a ground structure at the temperature more than the softening point of the said pile fiber, and less than the softening point of a ground structure constituent fiber.
  • the contact heating and pressurization is preferably performed by a heating roll or a hot plate. If it is a heating roll or a hot plate, a short contact heating treatment can be performed, and only at least a part of the pile fibers outside the ground yarn can be fused and crimped. And since the pile fiber on the surface of the pile fabric is not heated so as to melt, the pile fibers raised on the surface of the ground structure are not fused.
  • the pile fiber when the pile fiber is a mixed fiber of fibers that soften at different temperatures, the pile fiber softens at a relatively high temperature above the softening point of the pile fiber that softens at a relatively low temperature from the back side of the ground structure. It is preferable to perform contact heating and pressing at a temperature lower than the softening point of the pile fiber, and fuse the pile fiber that is softened at a relatively low temperature. It is easy to obtain a pile fabric that can prevent hair loss and has an excellent texture.
  • the napped pile fiber side is cooled when contact heating and pressurization is performed from the back side of the ground structure and / or after contact heating and pressurization. Moreover, it is preferable to cool from the back surface side of the said ground structure, after carrying out contact heating and pressurization from the back surface side of the said ground structure.
  • the cooling means preferably cools the raised surface of the pile fiber with a cooling roll in which water having a water temperature of 30 ° C. or less is passed. With such cooling, dimensional stability can be maintained and thermal damage to the pile fibers can be reduced.
  • the above-mentioned ground tissue constituting fiber is not particularly limited as long as it has a softening point higher than that of the above-mentioned pile fiber, but synthetic fiber made of polyester resin such as polyethylene terephthalate, cotton and the like can be used.
  • one or more fibers selected from the group consisting of acrylic fibers and acrylic fibers are used as the pile fibers. It is preferable to use acrylic fibers or mixed fibers of acrylic fibers and acrylic fibers.
  • acrylic fiber the following fibers can be preferably used.
  • Vinyl chloride-acrylonitrile fiber for example, Kaneka Corporation, trade name “Kanekaron”, softening point 150 to 220 ° C., literature value
  • Vinylidene chloride-acrylonitrile fiber softening point 150-220 ° C, literature value
  • acrylic fibers for example, trade name “Exlan K691” manufactured by Exlan Corporation, Softening point 190 to 232 ° C., literature value.
  • FIG. 1 is a schematic explanatory view of a pile fabric in one embodiment of the present invention.
  • the pile fabric 5 includes a ground yarn 1 and a pile fiber 2 that is entangled with the ground yarn 1 and spreads on the surface of the ground structure to form a napped pile 3.
  • at least a part of the pile fiber 2 is fused outside the ground yarn 1 to form a fused portion 4, and is crimped to the ground yarn 1.
  • the back surface of the pile fabric 5 may be impregnated with a backing resin.
  • Fig. 2 is a knitting diagram of a bore knitted fabric.
  • the pile fabric 25 includes a ground yarn 21 and pile fibers 22 that are entangled with the ground yarn 21 and spread on the surface of the ground texture to form a raised pile.
  • FIG. 3 is a knitting diagram of a sliver knit.
  • the pile fabric 35 includes a ground yarn 31 and pile fibers 32 that are entangled with the ground yarn 31 and spread on the surface of the ground structure to form a raised pile. In either case, the surface opposite to the napped pile side, that is, the back surface of the pile fabric is subjected to contact heating and pressure treatment, and the pile fibers outside the ground yarn are fused.
  • FIG. 4 is a manufacturing process diagram in one embodiment of the present invention.
  • the processing apparatus 10 used in this method includes a heating roll 11 coated with a fluororesin such as polytetrafluoroethylene, a cooling rubber roll 12 that pressurizes the heating roll 11 and allows 30 ° C. cooling water to flow inside, a cooling roll Metal cooling rolls 13 and 14 that pressurize the rubber roll 12 and allow 30 ° C. cooling water to flow therein, and a guide roll 15 are included.
  • the pile fabric raw fabric 18 is led out from the container 16 and supplied so that the back surface 18b is in contact with the heating roll and the front surface (napped pile side) 18a is in contact with the cooling rubber roll 12.
  • the pile fabric 5 that has been processed is stored in a container 17.
  • the contact heating and pressurizing process is not limited to the processing apparatus shown in FIG. 4, and is performed using an apparatus, a hot plate, and other apparatuses in which a part of the configuration of the processing apparatus shown in FIG. 4 is changed. Also good.
  • the heating temperature is, for example may be less than the softening point of and locations tissue constituent fibers than the softening point of the pile fibers
  • pressure is 0.01 ⁇ 100Kgf / cm 2 at a linear pressure
  • the speed is preferably 0.1 to 20 m / min
  • the heater contact time is preferably 1 to 60 seconds.
  • the applied pressure is 0.05 to 7 kgf / cm 2 in terms of linear pressure and the heater contact time is 2 to 10 seconds.
  • the pile fabric of the present invention preferably has a hair loss of 0.6 g / m 2 or less, and more preferably 0.3 g / m 2 or less.
  • the surface of the pile fabric is a rubber brush (trade name “prescale mat” 5 mm (grain diameter), 4 cm long, 10.5 cm wide, manufactured by Fuji Film), while applying a constant load of 600g load (14.3kg / cm 2), stroke width 30 cm, 10 times in the forward direction of the fur, rubbed 10 times in the reverse direction, the hair loss was collected with an adhesive tape, and the weight per 1 m 2 It is obtained by converting to.
  • Hair removal amount The surface of the pile fabric is a rubber brush (trade name “Prescale mat” 5 mm (diameter of grain), length 4 cm, width 10.5 cm, manufactured by Fuji Film Co., Ltd.), 600 g load (14.3 kg) / Cm 2 ) While applying a constant load of 30 cm, rubbing 10 cm in the forward direction and 10 times in the reverse direction of the bristles, recovering the hair loss with adhesive tape, converting the weight into 1 m 2 and removing the hair The amount.
  • hair loss was evaluated in four ranks as follows. A: 0.3 g / m 2 or less (very good level) B: More than 0.3 g / m 2 and 0.6 g / m 2 or less (good level) C: 0.6 g / m 2 to 1.0 g / m 2 or less (slightly defective level) D: exceeding 1.0 g / m 2 (defect level)
  • Softening point 1 g of each fiber used in the following production example was opened, placed on a hot plate heated to an arbitrary temperature, and pressed at a pressure of 0.07 kgf / cm 2 for 3 seconds. The temperature at which each single fiber softened and joined to form a plate was defined as the softening point of the fiber.
  • the thickness of the pile fiber outside the ground yarn composing the ground structure Only the pile surface was fixed with an adhesive so that the pile shape did not collapse when cutting the pile fabric, and then cut perpendicular to the knitting direction of the ground yarn .
  • the cutting line is a position which crosses the loop of the ground yarn, and is shown by, for example, the II line in FIG.
  • the back surface of the ground structure is turned up (as if FIG. 1 is reversed), and the cross section is observed with a scanning electron microscope (SEM) at a magnification of 50.
  • SEM scanning electron microscope
  • Pile fiber (1) Trade name “Kanekaron AH” (hereinafter simply referred to as AH), acrylic fiber (vinyl chloride-acrylonitrile fiber) manufactured by Kaneka Corporation, softening point 180-190 ° C., fineness 3.3 deci tex (Hereinafter referred to as dtex.) (2) Trade name “Kanekalon FHS” (hereinafter simply referred to as FHS), Kaneka Corporation acrylic fiber (vinyl chloride-acrylonitrile fiber), softening point 180-190 ° C., fineness 2.2 dtex (3) Trade name “Kanekaron RMK (801)” (hereinafter simply referred to as RMK (801)), acrylic fiber (vinyl chloride-acrylonitrile fiber) manufactured by Kaneka Corporation, softening point 180 to 190 ° C., fineness 12 dtex (4) Trade name “Kanekalon SL” (hereinafter simply referred to as “SL”), manufactured by Kaneka Corporation, softening point 180
  • acrylic fiber vinyl chloride-acrylonitrile fiber
  • softening point 180-190 ° C. fineness 2.2 dtex
  • Trade name “Tetron SD” Teijin polyester composite fiber
  • softening point 90-100 ° C. fineness 4.4 dtex
  • Product name “Unitika 1680”, manufactured by Unitika Ltd. polyester composite fiber, softening point 220 ° C., fineness 3.3 dtex
  • Ground tissue constituent fiber (1) Polyester fiber yarn A multifilament having a total fineness of 334 dtex (a fiber yarn in which two filaments having a fineness of 167 dtex made of 50 polyester single fibers were aligned) was used. The softening point is 258 ° C. (2) Cotton yarn Two spun yarns having a cotton count of 40 were aligned and used. Cotton has no softening point and decomposes at high temperatures.
  • Production Examples 1 to 30 In Production Examples 1 to 30, Production Examples 1, 7, 13, 19, 23, and 27 are comparative examples, and other production examples are Examples.
  • a sliver knit machine circular knitting machine
  • pile fabrics of Production Examples 1 to 30 were knitted.
  • the number of loops of the wales of the ground texture was 16 to 17 / inch
  • the number of loops of the course was 22 to 33 / inch
  • the other conditions were as shown in Table 1 below.
  • the back surface of the pile fabric was impregnated with a backing resin.
  • Example product 25 g / m 2 comparative examples were impregnated with 50 g / m 2 and then dried.
  • the pile fibers on the surface of the pile fabric were arranged by polishing, brushing and shearing. Specifically, first, polishing is performed twice at 155 ° C., then brushing is performed twice, followed by polishing once at 150 ° C., 145 ° C., 130 ° C., and 120 ° C., and then shearing is performed 2 times. Lastly, polishing was performed twice at 100 ° C. Then, except the comparative example, the back surface of the pile fabric was contact-heat-pressed using the hot plate.
  • the conditions for the contact heating and pressure treatment are as shown in Table 1 below.
  • Production Examples 1 to 6 use the same pile fiber and ground yarn
  • Production Example 1 is a comparative example in which no contact heating and pressing treatment is performed
  • Production Examples 2 to 6 are different contact heating and pressing. It is the Example which processed.
  • Production Examples 7 to 12 use the same pile fiber and ground yarn
  • Production Example 7 is a comparative example in which contact heating and pressure treatment is not performed
  • Production Examples 8 to 12 are different from each other in contact heating and heating. It is the Example which performed the pressurization process.
  • Production Examples 13 to 18 use the same pile fiber and ground yarn.
  • Production Example 13 is a comparative example in which contact heating and pressure treatment is not performed.
  • Production Examples 14 to 18 are different from each other in contact heating and heating. It is the Example which performed the pressurization process.
  • Production Examples 19 to 22 use the same pile fiber and ground yarn
  • Production Example 19 is a comparative example in which contact heating and pressure treatment is not performed
  • Production Examples 20 to 22 are different from each other in contact heating. It is the Example which performed the pressurization process.
  • Production Examples 23 to 26 use the same pile fiber and ground yarn.
  • Production Example 23 is a comparative example in which contact heating and pressure treatment is not performed.
  • Production Examples 24 to 26 are different from each other in contact heating. It is the Example which performed the pressurization process.
  • Production Examples 27 to 30 use the same pile fiber and ground yarn
  • Production Example 27 is a comparative example in which contact heating and pressure treatment is not performed
  • Production Examples 28 to 30 are different from each other in contact heating. It is the Example which performed the pressurization process.
  • Production Examples 31 to 40 The piles of Production Examples 31 to 35 were manufactured in the same manner as Production Examples 1 to 30 except that a pile fiber sliver made of acrylic fibers shown in Table 2 below was used and contact heating and pressure treatment was performed under the conditions shown in Table 2 below. A fabric was obtained. Further, Production Examples 1 to 30 except that the above-described cotton yarn was used as the ground yarn, a pile fiber sliver made of acrylic fibers shown in Table 2 below was used, and contact heating and pressure treatment was performed under the conditions shown in Table 2 below. In the same manner, pile fabrics of Production Examples 36 to 40 were obtained.
  • Production Examples 31 to 35 use the same pile fiber and ground yarn
  • Production Example 31 is a comparative example in which contact heating and pressurizing treatment is not performed
  • Production Examples 32 to 34 are respectively the softening points of pile fibers.
  • This is a comparative example in which contact heating and pressurizing treatment is performed at a predetermined temperature lower than that
  • Production Example 35 is an example in which contact heating and pressurizing treatment is performed at a predetermined temperature equal to or higher than the softening point of the pile fiber.
  • Production Examples 36 to 40 use the same pile fiber and ground yarn
  • Production Example 36 is a comparative example in which contact heating and pressure treatment is not performed
  • Production Examples 37 to 40 are different from each other in contact heating. It is the Example which performed the pressurization process.
  • Production Examples 41 to 52 Using a pile fiber sliver composed of acrylic fiber and acrylic fiber mixed fiber shown in Table 3 below, except that contact heating and pressure treatment was performed under the conditions shown in Table 3 below, the same as in Production Examples 1 to 30, Pile fabrics of Production Examples 41 to 52 were obtained.
  • Production Examples 41 to 44 use the same pile fiber and ground yarn.
  • Production Example 41 is a comparative example in which contact heating and pressurizing treatment is not performed, and Production Examples 42 to 44 are different from each other in contact heating and pressing. It is the Example which processed.
  • Production Examples 45 to 48 use the same pile fiber and ground yarn, Production Example 45 is a comparative example in which contact heating and pressurizing treatment is not performed, and Production Examples 46 to 48 each have different contact heating.
  • Production Examples 49 to 52 use the same pile fiber and ground yarn
  • Production Example 49 is a comparative example in which contact heating and pressure treatment is not performed
  • Production Examples 50 to 52 are different from each other in contact heating. It is the Example which performed the pressurization process. In the examples, any contact heating and pressure treatment was performed at a temperature not lower than the softening point of the acrylic fiber and lower than the softening point of the acrylic fiber.
  • Tables 1 to 3 below show the results of the hair loss of the pile fabrics of Production Examples 1 to 52, the evaluation of the hair loss, and the texture and the thickness of the pile fibers outside the ground yarn (hereinafter also simply referred to as thickness). .
  • * indicates a comparative example, and the same applies to the following.
  • Production Example 1 (Comparative Example), Production Example 5 (Example), Production Example 7 (Comparative Example), Production Example 11 (Example), Production Example 13 (Comparative Example), Production Example 17 (Example)
  • SEM scanning electron microscope
  • Production Example 53 A pile fabric of Production Example 53 was obtained in the same manner as Production Example 26 except that the backing resin was not impregnated.
  • Table 4 shows the results such as the amount of hair loss, evaluation of hair loss, texture and thickness of the pile fabric of Production Example 53.
  • Table 4 also shows the results of Production Example 23 (Comparative Example). From comparison between Production Example 23 (Comparative Example) and Production Example 53 (Example), it can be seen that the amount of hair loss is greatly reduced without impregnation with the backing resin. That is, it can be seen that the amount of hair loss is greatly reduced only by the contact heating and pressurization treatment on the back surface of the ground texture.
  • Production Examples 54-55 Using the above-mentioned polyester fiber yarn as the ground yarn, using pile fibers made of mixed fibers of acrylic fibers shown in Table 5 below, the pile fabrics of Production Examples 54 and 55 were produced in the same manner as the ordinary bore pile production method. Obtained. Table 5 below shows the results of contact heating and pressure treatment on the back surface of the ground structure of the bore pile, and the results of hair loss, hair loss evaluation, texture, thickness, and the like. Production Examples 54 and 55 use the same pile fiber and ground yarn, Production Example 54 is a comparative example that is not subjected to contact heating and pressurizing treatment, and Production Example 55 is subjected to contact heating and pressurizing treatment. This is an example.
  • Production Examples 60 to 95 A polyester fiber yarn was used as the ground yarn, and a low-melting polyester fiber shown in Table 7 below or a mixed fiber of low-melting polyester fiber and acrylic fiber was used as the pile fiber, and contact heating and pressure treatment was performed under the conditions shown in Table 7 below. Except for the above, pile fabrics of Production Examples 60 to 95 were obtained in the same manner as Production Examples 1 to 30. Table 7 below shows the results of the contact heating and pressure treatment, the amount of hair loss, the evaluation of hair loss, the texture, the thickness, and the like. Production Examples 60 to 95 are all comparative examples.
  • Production Examples 96 to 107 A polyester fiber yarn was used as the ground yarn, and a low-melting polyester fiber shown in Table 8 below or a mixed fiber of low-melting polyester fiber and acrylic fiber was used as the pile fiber, and contact heating and pressure treatment was performed under the conditions shown in Table 8 below. Except for the above, pile fabrics of Production Examples 96 to 107 were obtained in the same manner as Production Examples 1 to 30. Table 8 below shows the results of the contact heating and pressure treatment conditions, the amount of hair loss, the evaluation of hair loss, the texture, the thickness, and the like. Production examples 96 to 107 are all comparative examples.
  • the present invention prevents pile fibers from slipping out and is excellent in texture, and can be applied to pile fabrics such as faux fur, bore pile, car seat, and carpet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Knitting Of Fabric (AREA)
  • Woven Fabrics (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Laminated Bodies (AREA)

Abstract

 パイル布帛の特定の部分のみを融着することにより、風合いを損なわずにパイル繊維の毛抜けを防止したパイル布帛及びその製造方法を提供する。 本発明のパイル布帛は、地組織と、前記地組織を構成する地糸1に絡みかつ地組織の表面に立毛するパイル繊維2を含むパイル布帛5であって、パイル繊維2はアクリル繊維及びアクリル系繊維からなる群から選ばれる少なくとも一つの繊維であり、パイル繊維2は前記地組織を構成する繊維よりも軟化点が低く、地組織を構成する地糸1に絡んだパイル繊維2のうち、地組織を構成する地糸1より外側の少なくとも一部のパイル繊維2は融着され、地組織の表面に立毛するパイル繊維2は融着していない。また、本発明のパイル布帛の製造方法は、地組織の裏面側からパイル繊維2の軟化点以上かつ前記地組織を構成する繊維の軟化点未満の温度で接触加熱加圧する工程を含む。

Description

パイル布帛及びその製造方法
 本発明は、パイル繊維の毛抜けを防止したパイル布帛及びその製造方法に関する。
 従来からパイル布帛は、イミテーションファー又はフェイクファー、ボア等の名称で毛皮に似せた外観の布帛として知られている。これらはパイル編物、パイル織物から作られる。編みパイルの場合は、主としてシールフライス機、スライバーニット機(丸編機)で編み立てられ、いずれもカットパイルされている。たて編機のダブルラッシェル機で編み立てる場合は、地組織をダブルで形成すると同時に地組織間に接結糸を絡ませて、接結糸の中間をカットすることにより編成される。製織法の場合は、ベルベット織機、モケット織機を使用して上下2枚の地組織とこの間に接結糸を絡ませ、上下の基布の間をナイフでカットすることにより、2枚の織物を同時に織り上げる(非特許文献1)。しかし、これらの織編物は共通して抜け毛が多いという問題がある。抜け毛が多いと、中着に付着したり、床に脱落して見映えが悪く、衛生的にも問題がある。
 このような抜け毛を防止するため、パイル繊維に低融点繊維を混合する提案(特許文献1)、地組織を構成する地糸に低融点繊維を混合する提案(特許文献2~3)等がある。しかし、これらの提案はいずれも布帛全体を上記低融点繊維の融点以上の温度にて加熱するため、地組織全体又はパイル繊維も融着してしまい、粗硬な風合いになってしまうという問題がある。
特開平6-081248号公報 特開2000-314048号公報 特開平7-048765号公報
繊維学会遍「第3版繊維便覧」,丸善,平成16年12月15日発行、341-342頁
 本発明は、上記従来の問題を解決するため、パイル布帛の特定の部分のみを融着することにより、風合いを損なわずにパイル繊維の毛抜けを防止したパイル布帛及びその製造方法を提供する。
 本発明のパイル布帛は、地組織と、上記地組織を構成する地糸に絡みかつ上記地組織の表面に立毛するパイル繊維を含むパイル布帛であって、上記パイル繊維はアクリル繊維及びアクリル系繊維からなる群から選ばれる少なくとも一つの繊維であり、上記パイル繊維は上記地組織を構成する繊維よりも軟化点が低く、上記地組織を構成する地糸に絡んだパイル繊維のうち、上記地組織を構成する地糸より外側の少なくとも一部のパイル繊維は融着され、上記地組織の表面に立毛するパイル繊維は融着していないことを特徴とする。
 本発明のパイル布帛の製造方法は、地組織と、上記地組織を構成する地糸に絡みかつ上記地組織の表面に立毛するパイル繊維を含むパイル布帛の製造方法であって、上記パイル繊維はアクリル繊維及びアクリル系繊維からなる群から選ばれる少なくとも一つの繊維であり、上記パイル繊維は上記地組織を構成する繊維よりも軟化点が低く、上記地組織の裏面側から上記パイル繊維の軟化点以上かつ上記地組織を構成する繊維の軟化点未満の温度で接触加熱加圧することにより、上記地組織を構成する地糸に絡んだパイル繊維のうち、上記地組織を構成する地糸より外側の少なくとも一部のパイル繊維を融着させ、上記地組織の表面に立毛するパイル繊維は融着させないことを特徴とする。
 本発明のパイル布帛は、パイル繊維がアクリル繊維及びアクリル系繊維からなる群から選ばれる少なくとも一つの繊維であり、地組織を構成する地糸より外側の少なくとも一部のパイル繊維は融着され、地組織の表面に立毛するパイル繊維は融着していないことにより、風合いを損なわずにパイル繊維の毛抜けを防止できる。また、本発明のパイル布帛の製造方法は、地組織の裏面側からパイル繊維の軟化点以上、かつ地組織を構成する繊維の軟化点未満の温度で接触加熱加圧することにより、地組織を構成する地糸より外側の限られた部分のみを融着させ、地組織の表面に立毛するパイル繊維は融着させないため、風合いを損なわずにパイル繊維の毛抜けを防止できる。
図1は本発明の一実施例におけるパイル布帛の概略説明図である。 図2は本発明の一実施例におけるボア編物の編み立て図である。 図3は本発明の一実施例におけるスライバーニットの編み立て図である。 図4は本発明の一実施例における製造工程図である。 図5は本発明の一実施例における地組織を構成する地糸より外側のパイル繊維の厚みを示す走査型電子顕微鏡(SEM)の写真(倍率50)である。 図6は本発明の一実施例における地組織を構成する地糸より外側のパイル繊維の厚みと抜け毛の関係を示すグラフである。
 本発明のパイル布帛は、地組織と、上記地組織を構成する地糸(以下において、単に地糸とも記す。)に絡みかつ上記地組織の表面に立毛するパイル繊維を含むパイル布帛である。このパイル布帛は、シールフライス機、スライバーニット機(丸編機)、ボア機(丸編機)、ダブルラッシェル機、ベルベット織機、モケット織機等を用いて作製できる。本発明のパイル布帛としては、特に限定されないが、ハイパイル、ボアパイル及びタフトカーペット等が挙げられ、ハイパイル及びボアパイルが好ましく、ハイパイルがより好ましい。
 パイル繊維は地組織を構成する繊維(以下において、単に地組織構成繊維とも記す。)よりも軟化点が低く、地糸に絡んだパイル繊維のうち、地糸より外側の少なくとも一部のパイル繊維は融着され、上記地組織の表面に立毛するパイル繊維は融着していない。この手段としては、地糸より外側の少なくとも一部のパイル繊維を融着できればよく特に限定されないが、地組織の裏面側、即ちパイル布帛の裏面側からパイル繊維の軟化点以上、かつ上記地組織構成繊維の軟化点未満の温度で接触加熱加圧することが好ましい。
 本発明において、地組織を構成する地糸より外側とは、パイル繊維が立毛している面を表面としたとき、裏面側であって、地糸より外側のことである。また、地糸に絡むパイル繊維は、一部の繊維が地糸に食い込んでいる場合もあるが、残りの部分が地糸より外側に存在していれば、これを含む。
 上記パイル繊維はアクリル繊維及びアクリル系繊維からなる群から選ばれる少なくとも一つの繊維である。パイル繊維がアクリル繊維及びアクリル系繊維からなる群から選ばれる少なくとも一つの繊維であることにより、風合いに優れたパイル布帛が得られる。熱可塑性繊維をパイル繊維として用いる場合、通常、熱可塑性繊維の融点以上の温度でポリッシング加工を行うと、パイル布帛表面のパイル繊維は溶融してしまい良好な外観、風合いを有するパイル布帛が得られない。また、熱可塑性繊維の融点以下の温度でポリッシング加工を行うと、パイル布帛表面のパイル繊維の捲縮が伸びないため良好な外観、風合いを有するパイル布帛が得られない。これに対して、アクリル繊維とアクリル系繊維の捲縮は、軟化点以下の温度でも伸びるため、パイル繊維にアクリル繊維及びアクリル系繊維からなる群から選ばれる少なくとも1つの繊維を用いる場合、軟化点以下の温度、例えば150~160℃でポリッシング加工を行うことができる。それゆえ、パイル繊維にアクリル繊維及びアクリル系繊維からなる群から選ばれる少なくとも1つの繊維を用いる場合、ポリッシング加工でパイル布帛表面のパイル繊維が融着することがなく、良好な外観、風合いを有するパイル布帛が得られる。そして、パイル繊維がアクリル繊維及びアクリル系繊維以外に、軟化点が160℃以下の熱可塑性繊維、例えば軟化点が160℃以下の低融点ポリエステル繊維等を含むと、150~160℃でのポリッシング加工時に、パイル布帛表面の低融点ポリエステル繊維が溶融してしまい、良好な外観、風合いを有するパイル布帛を得られにくい。
 上記パイル繊維は地組織を構成する繊維よりも軟化点が低ければよく特に限定されないが、上記地組織構成繊維と上記パイル繊維の軟化点の差は、好ましくは10℃以上であり、より好ましくは20℃以上、特に好ましくは30℃以上である。10℃以上の差があると、上記地組織を構成する地糸より外側の少なくとも一部の繊維のみを融着させ、上記地組織の表面に立毛するパイル繊維を融着させないことがより容易となる。
 上記パイル繊維は全量所定の温度で軟化する繊維であっても良く、異なる温度で軟化する繊維の混合繊維であってもよい。そして、パイル繊維が異なる温度で軟化する繊維の混合繊維である場合は、相対的に低い温度で軟化する繊維を20重量%(wt%)以上混合し、相対的に低い温度で軟化する繊維を融着させることが好ましい。
 本発明において、軟化点とは、融解又は分解する前の軟化温度である。例えばアクリル繊維の軟化点は190~232℃、アクリル系繊維の軟化点は150~220℃である(「化学大辞典」、共立出版、727~729頁、1993年6月1日発行。以下「文献値」という。)。アクリル繊維とは、アクリロニトリルを85重量%以上含む繊維をいう。また、アクリル系繊維とは、アクリロニトリルを35重量%以上85重量%未満と、その他の共重合可能なモノマーを15重量%以上65重量%以下含む重合体から構成される繊維をいう。ここで、その他の共重合可能なモノマーとは、塩化ビニル、塩化ビニリデン、臭化ビニル、臭化ビニリデン等に代表されるハロゲン化ビニル及びハロゲン化ビニリデン、アリルスルホン酸、メタリルスルホン酸、スチレンスルホン酸、イソプレンスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸等に代表されるスルホン酸含有モノマー並びにこれらの金属塩類及びアミン塩類、アクリル酸及びメタクリル酸並びにそれらの低級アルキルエステル、NまたはN,N-アルキル置換したアミノアルキルエステル及びグリシジルエステル、アクリルアミド及びメタクリルアミド並びにそれらのN又はN,N-アルキル置換体、アクリル酸、メタクリル酸及びイタコン酸等に代表されるカルボキシル基含有ビニル単量体及びそれらのナトリウム、カリウム又はアンモニウム塩等のアニオン性ビニル単量体、アクリル酸及びメタクリル酸の4級化アミノアルキルエステルをはじめとするカチオン性ビニル単量体、或いはビニル基含有低級アルキルエーテル、酢酸ビニルに代表されるビニル基含有低級カルボン酸エステル、スチレン等を挙げることができる。これらのモノマーを単独又は2種以上混合して用いることができる。この中でも、ハロゲン化ビニル、ハロゲン化ビニリデン及びスルホン酸含有モノマーの金属塩類からなる群から選ばれる一種以上のモノマーを用いることが好ましく、塩化ビニル、塩化ビニリデン及びスチレンスルホン酸ナトリウムからなる群から選ばれる一種以上のモノマーを用いることがより好ましい。また、アクリル系繊維としては、モダアクリル繊維を用いることが好ましい。モダアクリル繊維とは、アクリロニトリルを35重量%以上85重量%未満含み、塩化ビニル及び塩化ビニリデンからなる群から選ばれる一種以上のモノマーと、その他の共重合可能なモノマーを合計で15重量%以上65重量%以下含む重合体から構成される繊維をいう。
 本発明のパイル布帛において、上記地糸より外側の少なくとも一部のパイル繊維は融着されかつ圧着されている。ここで、圧着されているとは、例えば、図5の接触加熱加圧処理した後の製造例5、11及び17のパイル布帛のSEM写真に示しているように、パイル繊維の1本1本がおのおの融着結合、又はパイル繊維の1本1本が纏まって塊を形成し、かつ平滑化していることをいう。また、本発明のパイル布帛において、上記地糸より外側の全てのパイル繊維が融着されかつ圧着されていることが好ましい。より優れた毛抜け防止効果が得られるからである。
 上記融着かつ圧着されている地糸より外側のパイル繊維の厚みは、好ましくは300μm以下、より好ましくは250μm以下、特に好ましくは200μm以下である。上記地糸より外側のパイル繊維の厚みが300μm以下であれば、パイル繊維同士が十分な強度で融着固定される。また、本発明において、上記地糸より外側のパイル繊維の厚みは、例えば、下記のように測定する。先ず、パイル布帛の切断時にパイル形状が崩れないようにパイル表部のみを接着剤で固定した後、地糸の編み方向に対して垂直に切断する。切断線は地糸のループを横断する位置であり、例えば図3において、I-I線で示されている。次に、地組織の裏面を上側にして(図1を逆転させたようになる)、断面を走査型電子顕微鏡(SEM)を用い、倍率50で観察して、例えば図5において平行線19aと19b間の最短距離で示された厚みを測定する。10箇所測定して得た平均値を厚みとする。
 なお、厚みの測定において、走査型電子顕微鏡(SEM)を用いて断面を観察する際に、地糸とパイル繊維を区別しにくい場合は、例えば50以上の倍率で観察できる光学顕微鏡又はレーザー顕微鏡等を平行して使用することにより、地糸とパイル繊維を区別してもよい。
 本発明において、パイル布帛の裏面には、バッキング樹脂が含浸されていることが好ましい。バッキング樹脂が含浸されていると、地組織の裏面側、即ちパイル布帛の裏面側から接触加熱加圧する工程より前に、パイル繊維の立毛を整える処理が可能となる。
 上記バッキング樹脂としては、アクリル酸エステル系樹脂、ポリウレタン系樹脂等のラテックス、エマルジョン、ディスパージョン等を使用することができる。バッキング樹脂の含浸量は、毛抜け防止のため、樹脂固形分濃度で一例として、通常は50g/m程度含浸させるが、本発明はパイル繊維の特定箇所の融着による毛抜け防止作用があるため、上記通常の含浸量の1/2~1/3程度でよい。即ち、樹脂固形分濃度で17~25g/m程度含浸させるだけでよい。パイル繊維の特定箇所の融着前にパイル繊維のポリッシング加工をするが、このときに繊維が脱落しないようにバッキング樹脂を使用して仮固定することができる。したがって、樹脂含浸量は少なくてよい。
 次に本発明のパイル布帛の製造方法について説明する。本発明のパイル布帛の製造方法は、地組織の裏面側から上記パイル繊維の軟化点以上、かつ地組織構成繊維の軟化点未満の温度で接触加熱加圧する工程を含む。これにより、上記地糸に絡んだパイル繊維のうち、上記地糸より外側の少なくとも一部のパイル繊維は融着されかつ圧着される。上記接触加熱加圧は、加熱ロール又はホットプレートにより行うことが好ましい。加熱ロール又はホットプレートであれば、短時間の接触加熱処理ができ、上記地糸より外側の少なくとも一部のパイル繊維のみを融着し、圧着できる。そして、パイル布帛表面のパイル繊維が溶融するほどの加熱はしないため、地組織の表面に立毛するパイル繊維は融着しない。
 また、上記パイル繊維が異なる温度で軟化する繊維の混合繊維である場合は、地組織の裏面側から相対的に低い温度で軟化するパイル繊維の軟化点以上、かつ相対的に高い温度で軟化するパイル繊維の軟化点未満の温度で接触加熱加圧処理をし、相対的に低い温度で軟化するパイル繊維を融着させることが好ましい。毛抜けを防止できるうえ、風合いに優れたパイル布帛が得られやすい。
 上記地組織の裏面側から接触加熱加圧する際及び/又は接触加熱加圧した後、上記立毛パイル繊維側は冷却することが好ましい。また、上記地組織の裏面側から接触加熱加圧した後、上記地組織の裏面側から冷却することが好ましい。上記冷却手段は、パイル繊維の立毛面は水温30℃以下の水を通水させた冷却ロールで冷却することが好ましい。このような冷却をすると、寸法安定が保持でき、かつパイル繊維への熱ダメージも軽減させることができる。
 上記地組織構成繊維としては、上記パイル繊維より軟化点が高ければよく特に限定されないが、ポリエチレンテレフタレート等のポリエステル樹脂からなる合成繊維及びコットン等を用いることができる。
 本発明において、地組織構成繊維に例えばポリエチレンテレフタレート(PET、軟化点約258℃)繊維を用いる場合、パイル繊維としては、アクリル系繊維及びアクリル繊維からなる群から選ばれる一つ以上の繊維を用いることができ、アクリル系繊維又はアクリル系繊維及びアクリル繊維の混合繊維を用いることが好ましい。また、アクリル系繊維としては、好ましくは以下の繊維を用いることができる。
(1)塩化ビニル-アクリロニトリル系繊維(例えば株式会社カネカ製、商品名“カネカロン”、軟化点150~220℃、文献値)
(2)塩化ビニリデン-アクリロニトリル系繊維(軟化点150~220℃、文献値)
 本発明において、地組織構成繊維に例えばコットン(木綿)(軟化点なし)繊維を使用した場合、パイル繊維として好ましく使用できるのは、アクリル繊維(例えば株式会社エクスラン製、商品名“エクスランK691”、軟化点190~232℃、文献値)である。
 以下図面を用いて説明する。図1は本発明の一実施例におけるパイル布帛の概略説明図である。パイル布帛5は、地糸1と、地糸1に絡み地組織の表面で開繊され立毛パイル3を形成しているパイル繊維2で構成される。加えて、パイル布帛5の裏面において、地糸1の外側でパイル繊維2の少なくとも一部は融着されて融着部4を構成し、地糸1に圧着されている。また、パイル布帛5の裏面にはバッキング樹脂が含浸されていてもよい。
 図2はボア編物の編み立て図である。このパイル布帛25は、地糸21と、地糸21に絡み地組織の表面で開繊され立毛パイルを形成しているパイル繊維22で構成される。図3はスライバーニットの編み立て図である。このパイル布帛35は、地糸31と、地糸31に絡み地組織の表面で開繊され立毛パイルを形成しているパイル繊維32で構成される。いずれも立毛パイル側とは反対の面、即ちパイル布帛の裏面が接触加熱加圧処理され、地糸の外側のパイル繊維は融着されている。
 図4は本発明の一実施例における製造工程図である。この方法に使用する加工装置10は、ポリテトラフルオロエチレン等のフッ素樹脂をコーティングした加熱ロール11と、加熱ロール11に加圧し、内部に30℃の冷却水が通水する冷却ゴムロール12と、冷却ゴムロール12に加圧し、内部に30℃の冷却水が通水する金属冷却ロール13,14と、ガイドロール15を含む。パイル布帛原反18は容器16から導き出され、裏面18bが加熱ロールに接触し、表面(立毛パイル側)18aが冷却ゴムロール12に接触するように供給する。加工の終了したパイル布帛5は、容器17に収納される。なお、接触加熱加圧処理は、図4に示した加工装置に限定されず、図4に示した加工装置の一部の構成を変更した装置、ホットプレート、及びその他の装置を用いて行ってもよい。接触加熱加圧処理において、加熱温度は例えばパイル繊維の軟化点以上かつ地組織構成繊維の軟化点未満であればよく、加圧力は線圧で0.01~100Kgf/cm、原反の供給速度は0.1~20m/分、ヒーター接触時間は1~60秒間であることが好ましい。また、パイル布帛の表面のダメージを軽減するという観点から、加圧力は線圧で0.05~7Kgf/cm、ヒーター接触時間は2~10秒間であることがより好ましい。
 本発明のパイル布帛は、毛抜け量が0.6g/m以下であることが好ましく、0.3g/m以下であることがより好ましい。本発明において、毛抜け量は、パイル布帛の表面をゴム製の刷毛(商品名“プレスケールマット”5mm(粒の直径)、縦4cm、横10.5cm、富士フィルム社製)を使用し、600g荷重(14.3kg/cm)の一定荷重をかけながら、ストローク幅30cm、毛並の順方向に10回、逆方向に10回こすり、粘着テープで抜け毛を回収し、その重量を1mあたりに換算して得られるものである。
 以下実施例により本発明をさらに具体的に説明する。なお、本発明は下記の実施例に限定されるものではない。
 <測定方法>
1.毛抜け量
 パイル布帛の表面をゴム製の刷毛(商品名“プレスケールマット”5mm(粒の直径)、縦4cm、横10.5cm、富士フィルム社製)を使用し、600g荷重(14.3kg/cm)の一定荷重をかけながら、ストローク幅30cm、毛並の順方向に10回、逆方向に10回こすり、粘着テープで抜け毛を回収し、その重量を1mあたりに換算して毛抜け量とした。
2.毛抜け評価
 毛抜け量に基いて、以下のように4段階のランクで毛抜け評価を行った。
A:0.3g/m以下(非常に良好なレベル)
B:0.3g/mを超え0.6g/m以下(良好なレベル)
C:0.6g/mを超え1.0g/m以下(やや不良レベル)
D:1.0g/mを超える(不良レベル)
3.軟化点
 下記製造例で用いる各々の繊維1gを開繊し、任意の温度に加熱したホットプレート上に置き、圧力0.07Kgf/cmで3秒間加圧した時に、ホットプレートと接触した面の単繊維がそれぞれ軟化して結合し板状になる時の温度を繊維の軟化点とした。
4.地組織を構成する地糸より外側のパイル繊維の厚み
 パイル布帛の切断時にパイル形状が崩れないようにパイル表部のみを接着剤で固定した後、地糸の編み方向に対して垂直に切断した。切断線は地糸のループを横断する位置であり、例えば図3において、I-I線で示されている。次に、地組織の裏面を上側にして(図1を逆転させたようになる)、断面を走査型電子顕微鏡(SEM)を用い、倍率50で観察して、例えば図5において平行線19aと19b間の最短距離で示された厚みを測定した。10箇所測定して得た平均値を厚みとする。
5.風合い
 下記のように4段階のランクで風合いを評価した。
A:地組織の表面に立毛するパイル繊維には融着はなく、熱処理をしないパイル布帛と同等レベル
B:ランクAに比べるとやや劣るが地組織の表面に立毛するパイル繊維には融着はなく、実用的には問題ないレベル
C:やや粗硬であり、実用的に問題あり(不合格)
D:極めて粗硬であり、実用化できない(不合格)
 <製造例で使用した繊維>
1.パイル繊維
(1)商品名“カネカロンAH”(以下において、単にAHと記す。)、株式会社カネカ製
 アクリル系繊維(塩化ビニル-アクリロニトリル系繊維)、軟化点180~190℃、繊度3.3deci tex(以下においてdtexと記す。)
(2)商品名“カネカロンFHS”(以下において、単にFHSと記す。)、株式会社カネカ製
 アクリル系繊維(塩化ビニル-アクリロニトリル系繊維)、軟化点180~190℃、繊度2.2dtex
(3)商品名“カネカロンRMK(801)”(以下において、単にRMK(801)と記す。)、株式会社カネカ製
 アクリル系繊維(塩化ビニル-アクリロニトリル系繊維)、軟化点180~190℃、繊度12dtex
(4)商品名“カネカロンSL”(以下において、単にSLと記す。)、株式会社カネカ製
 アクリル系繊維(塩化ビニル-アクリロニトリル系繊維)、軟化点180~190℃、繊度3.3dtex
(5)商品名“K691”、株式会社エクスラン製
 アクリル繊維、軟化点250~260℃、繊度3.3dtex
(6)商品名“カネカロンCC”(以下において、単にCCと記す。)、株式会社カネカ製
 アクリル系繊維(塩化ビニル-アクリロニトリル系繊維)、軟化点180~190℃、繊度3.3dtex
(7)商品名“カネカロンfmu”(以下において、単にfmuと記す。)、株式会社カネカ製
 アクリル系繊維(塩化ビニル-アクリロニトリル系繊維)、軟化点180~190℃、繊度1.5dtex
(8)商品名“カネカロンMS”(以下において、単にMSと記す。)、株式会社カネカ製
 アクリル系繊維(塩化ビニル-アクリロニトリル系繊維)、軟化点180~190℃、繊度5.0dtex
(9)商品名“カネカロンMCS”(以下において、単にMCSと記す。)、株式会社カネカ製
 アクリル系繊維(塩化ビニル-アクリロニトリル系繊維)、軟化点180~190℃、繊度2.2dtex
(10)商品名“テトロンSD”、帝人製
 ポリエステル複合繊維、軟化点90~100℃、繊度4.4dtex
(11)商品名“ユニチカ1680”、ユニチカ株式会社製
 ポリエステル複合繊維、軟化点220℃、繊度3.3dtex
2.地組織構成繊維(地糸)
(1)ポリエステル繊維糸
 トータル繊度334dtexのマルチフィラメント(50本のポリエステル単繊維からなる繊度167dtexのフィラメントを2本引き揃えた繊維糸)を使用した。軟化点は258℃である。
(2)木綿糸
 綿番手40番の紡績糸を2本引き揃えて使用した。木綿は軟化点がなく、高温で分解する。
 (製造例1~30)
 製造例1~30において、製造例1、7、13、19、23及び27は比較例であり、その他の製造例は実施例である。フェイクファーを作製するためのスライバーニット機(丸編機)を使用して、地糸として上記のポリエステル繊維糸を使い、それぞれ、下記表1に示すアクリル系繊維からなるパイル繊維スライバー(10~14g/m)を供給し、製造例1~30のパイル布帛を編み立てた。地組織のウェールのループ数は16~17個/インチ、コースのループ数は22~33個/インチとし、その他は下記表1に示した条件とした。次に、上記パイル布帛の裏面にバッキング樹脂を含浸させた。バッキング樹脂はアクリル酸エステルを主成分とする乳化共重合体ラテックスを使用し、ラテックス濃度が40wt%の水溶液(乳化物)とし、樹脂固形分濃度で実施例品は25g/m、比較例品は50g/m含浸付着させ、その後乾燥させた。次に、パイル布帛の表面のパイル繊維をポリッシング、ブラッシング及びシャーリングにより整えた。具体的には、先ずは155℃でポリッシングを2回行い、次にブラッシングを2回行い、続いて150℃、145℃、130℃及び120℃でそれぞれ1回ずつポリッシングを行い、その後シャーリングを2回行い、最後に100℃でポリッシングを2回行った。その後、比較例以外は、ホットプレートを用いて、パイル布帛の裏面を接触加熱加圧処理した。接触加熱加圧処理の条件は、下記表1に示したとおりである。
 製造例1~6は、同様のパイル繊維と地糸を用いており、製造例1は接触加熱加圧処理をしていない比較例であり、製造例2~6は、それぞれ異なる接触加熱加圧処理をした実施例である。また、製造例7~12は、同様のパイル繊維と地糸を用いており、製造例7は接触加熱加圧処理をしていない比較例であり、製造例8~12は、それぞれ異なる接触加熱加圧処理をした実施例である。また、製造例13~18は、同様のパイル繊維と地糸を用いており、製造例13は接触加熱加圧処理をしていない比較例であり、製造例14~18は、それぞれ異なる接触加熱加圧処理をした実施例である。また、製造例19~22は、同様のパイル繊維と地糸を用いており、製造例19は接触加熱加圧処理をしていない比較例であり、製造例20~22は、それぞれ異なる接触加熱加圧処理をした実施例である。また、製造例23~26は、同様のパイル繊維と地糸を用いており、製造例23は接触加熱加圧処理をしていない比較例であり、製造例24~26は、それぞれ異なる接触加熱加圧処理をした実施例である。また、製造例27~30は、同様のパイル繊維と地糸を用いており、製造例27は接触加熱加圧処理をしていない比較例であり、製造例28~30は、それぞれ異なる接触加熱加圧処理をした実施例である。
 (製造例31~40)
 下記表2に示すアクリル繊維からなるパイル繊維スライバーを用い、下記表2に示す条件で接触加熱加圧処理を行った以外は、製造例1~30と同様にして、製造例31~35のパイル布帛を得た。また、地糸として上記の木綿糸を用い、下記表2に示すアクリル繊維からなるパイル繊維スライバーを用い、下記表2に示す条件で接触加熱加圧処理を行った以外は、製造例1~30と同様にして、製造例36~40のパイル布帛を得た。製造例31~35は、同様のパイル繊維と地糸を用いており、製造例31は接触加熱加圧処理をしていない比較例であり、製造例32~34は、それぞれパイル繊維の軟化点未満の所定の温度で接触加熱加圧処理をした比較例であり、製造例35は、パイル繊維の軟化点以上の所定の温度で接触加熱加圧処理をした実施例である。また、製造例36~40は、同様のパイル繊維と地糸を用いており、製造例36は接触加熱加圧処理をしていない比較例であり、製造例37~40は、それぞれ異なる接触加熱加圧処理をした実施例である。
 (製造例41~52)
 下記表3に示すアクリル系繊維及びアクリル繊維の混合繊維からなるパイル繊維スライバーを用い、下記表3に示す条件で接触加熱加圧処理を行った以外は、製造例1~30と同様にして、製造例41~52のパイル布帛を得た。製造例41~44は、同様のパイル繊維と地糸を用いており、製造例41は接触加熱加圧処理をしていない比較例であり、製造例42~44は、それぞれ異なる接触加熱加圧処理をした実施例である。また、製造例45~48は、同様のパイル繊維と地糸を用いており、製造例45は接触加熱加圧処理をしていない比較例であり、製造例46~48は、それぞれ異なる接触加熱加圧処理をした実施例である。また、製造例49~52は、同様のパイル繊維と地糸を用いており、製造例49は接触加熱加圧処理をしていない比較例であり、製造例50~52は、それぞれ異なる接触加熱加圧処理をした実施例である。なお、実施例において、いずれの接触加熱加圧処理も、アクリル系繊維の軟化点以上かつアクリル繊維の軟化点未満の温度で行った。
 製造例1~52のパイル布帛の毛抜け量、毛抜け評価、及び風合い並びに地糸より外側のパイル繊維の厚み(以下において、単に厚みとも記す。)の結果を下記表1~3に示した。なお、表1~3において、*印は比較例を示しており、以下においても同様である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 また、製造例1(比較例)、製造例5(実施例)、製造例7(比較例)、製造例11(実施例)、製造例13(比較例)、製造例17(実施例)のパイル布帛の走査型電子顕微鏡(SEM)写真(倍率50)を図5に示した。図5において、19a-19bは地糸より外側のパイル繊維の厚みを示している。図5には、その厚みと毛抜け量も示されている。図5から、接触加熱加圧処理により、地組織構成繊維より外側のパイル繊維の厚みは数分の一になっていること及び毛抜け量は大幅に減少していることが分かる。
 また、表1~3の結果から、パイル繊維の軟化点以上かつ地組織構成繊維の軟化点未満の温度での接触加熱加圧処理により、地組織構成繊維より外側の少なくとも一部のパイル繊維が融着され、圧着されている実施例品は、毛抜けが少なく、風合いも良好であることが分かる。また、上記融着され、圧着された地糸より外側のパイル繊維の厚みが300μm以下である実施例品は、毛抜けが少なく、風合いも良好であった。なお、地糸より外側の少なくとも一部のパイル繊維が融着され、圧着されていることは、図5のようなSEM写真(倍率50)により確認できた。
 さらに、表1~3の結果から、地糸より外側のパイル繊維の厚みと抜け毛の関係をまとめると、図6に示すグラフのようになった。図6から、上記地糸より外側のパイル繊維の厚みが300μm以下であると毛抜け量は大幅に減少していることが分かる。
 (製造例53)
 バッキング樹脂を含浸させないこと以外は、製造例26と同様にして、製造例53のパイル布帛を得た。下記表4に製造例53のパイル布帛の毛抜け量、毛抜け評価、風合い及び厚み等の結果を示した。なお、表4には、製造例23(比較例)の結果も併せて示した。製造例23(比較例)と製造例53(実施例)の比較から、バッキング樹脂を含浸させなくても、毛抜け量は大幅に減少していることが分かる。即ち、地組織の裏面の接触加熱加圧処理のみで、毛抜け量は大幅に減少していることが分かる。
Figure JPOXMLDOC01-appb-T000004
 (製造例54~55)
 地糸として上記のポリエステル繊維糸を用い、下記表5に示すアクリル系繊維の混合繊維からなるパイル繊維を用い、通常のボアパイルの製造方法と同様の方法で、製造例54及び55のパイル布帛を得た。下記表5に、ボアパイルの地組織の裏面に接触加熱加圧処理をした場合の条件並びに毛抜け量、毛抜け評価、風合い及び厚み等の結果を示した。なお、製造例54及び55は、同様のパイル繊維と地糸を用いており、製造例54は接触加熱加圧処理をしていない比較例であり、製造例55は、接触加熱加圧処理をした実施例である。
Figure JPOXMLDOC01-appb-T000005
 表5から明らかなのように、ボアパイルは梳毛糸でニットされる為、厚みが元々薄く、毛抜け量が少ないが、接触加熱加圧処理により、厚みがもっと薄くなり、それゆえ毛抜け量ももっと少なくなる傾向がある。なお、製造例において、製造例54及び55以外は、全てハイパイルの製造例である。
 (製造例56~59)
 地糸として上記のポリエステル繊維糸を用い、下記表6に示すパイル繊維を用い、図4に示した加工装置を用いて下記表6に示した条件で接触加熱加圧処理をした以外は、製造例16と同様にして、製造例56~59のパイル布帛を得た。下記表6に、接触加熱加圧処理の条件並びに毛抜け量、毛抜け評価、風合い及び厚み等の結果を示した。なお、表6に製造例13の結果も合わせて示した。
Figure JPOXMLDOC01-appb-T000006
 表6の結果から分かるように、接触加熱加圧処理時の圧力が増加すると毛抜け防止効果がより優れる一方、風合いが劣る傾向があり、接触加熱加圧処理時の圧力が、0.01~100Kgf/cmの範囲内において、毛抜け防止効果も風合いも優れる。
 (製造例60~95)
 地糸としてポリエステル繊維糸を用い、パイル繊維として下記表7に示す低融点ポリエステル繊維又は低融点ポリエステル繊維とアクリル繊維の混合繊維を用い、下記表7に示す条件で接触加熱加圧処理を行った以外は、製造例1~30と同様にして、製造例60~95のパイル布帛を得た。下記表7に、接触加熱加圧処理の条件並びに毛抜け量、毛抜け評価、風合い及び厚み等の結果を示した。なお、製造例60~95は、いずれも比較例である。
Figure JPOXMLDOC01-appb-T000007
 表7から、パイル繊維における低融点ポリエステル繊維“テトロンSD”の含有量が25重量%未満であると、低融点ポリエステル繊維の軟化点以上かつアクリル繊維の軟化点未満の温度で接触加熱加圧処理しても、毛抜け防止効果が得られないことが分かる。また、パイル繊維における低融点ポリエステル“テトロンSD”の含有量が25重量%を超える場合、接触加熱加圧処理時の温度が高くなるに伴い毛抜けは抑制される傾向にあるが、風合いが悪いことが分かる。また、パイル繊維に低融点ポリエステル繊維“テトロンSD”を含有させると、パイル布帛の製造時のポリッシング加工工程で、低融点ポリエステル繊維が溶融してしまい、良好な外観が得られなかった。
 (製造例96~107)
 地糸としてポリエステル繊維糸を用い、パイル繊維として下記表8に示す低融点ポリエステル繊維又は低融点ポリエステル繊維とアクリル繊維の混合繊維を用い、下記表8に示す条件で接触加熱加圧処理を行った以外は、製造例1~30と同様にして、製造例96~107のパイル布帛を得た。下記表8に、接触加熱加圧処理の条件並びに毛抜け量、毛抜け評価、風合い及び厚み等の結果を示した。なお、製造例96~107は、いずれも比較例である。
Figure JPOXMLDOC01-appb-T000008
 表8から、パイル繊維における低融点ポリエステル繊維“ユニチカ1680”の含有量が20重量%以下の場合、低融点ポリエステル繊維の軟化点以上かつアクリル繊維の軟化点未満の温度で接触加熱加圧処理しても、顕著な毛抜け防止効果が得られないことが分かる。
 (製造例108)
 地糸としてポリエステル繊維糸を用い、パイル繊維として低融点ポリエステル繊維“ユニチカ1680”の含有量が20重量%を超える低融点ポリエステル繊維“ユニチカ1680”とアクリル繊維“K691”の混合繊維を用い、製造例108のパイル布帛の製造を試みたが、パイル布帛に加工することができなかった。アクリル繊維及びアクリル系繊維と比較して、低融点ポリエステル繊維“ユニチカ1680”はコシが強く、即ち短繊維の弾性が強く、捲縮も強く、ボリューム感もあるため、パイル繊維における低融点ポリエステル繊維“ユニチカ1680”の含有量が20重量%を超えると、パイル布帛の加工性が悪くなると思われる。また、ポリッシング工程で低融点ポリエステル繊維“ユニチカ1680”の捲縮が伸びず、パイル繊維における低融点ポリエステル繊維“ユニチカ1680”の含有量が20重量%を超えると、その後のブラッシング加工において、抵抗が強く、巻きつきが発生するなどの困難が生じて、パイル布帛の加工性が悪くなると思われる。
 本発明は、パイル繊維の毛抜けが防止されているうえ、風合いにも優れ、フェイクファー、ボアパイル、カーシート、カーペット等のパイル布帛全体に適用できる。
1,21,31 地糸
2,22,32 パイル繊維
3 立毛パイル
4 融着部
5,25,35 パイル布帛
10 加工装置
11 加熱ロール
12 冷却ゴムロール
13,14 金属冷却ロール
15 ガイドロール
16,17 容器
18 パイル布帛原反
18a パイル布帛原反表面
18b パイル布帛原反裏面

Claims (10)

  1.  地組織と、前記地組織を構成する地糸に絡みかつ前記地組織の表面に立毛するパイル繊維を含むパイル布帛であって、
     前記パイル繊維はアクリル繊維及びアクリル系繊維からなる群から選ばれる少なくとも一つの繊維であり、前記パイル繊維は前記地組織を構成する繊維よりも軟化点が低く、
     前記地組織を構成する地糸に絡んだパイル繊維のうち、前記地組織を構成する地糸より外側の少なくとも一部のパイル繊維は融着され、前記地組織の表面に立毛するパイル繊維は融着していないことを特徴とするパイル布帛。
  2.  前記地組織を構成する地糸より外側の融着されたパイル繊維は圧着されており、前記融着かつ圧着された前記地組織を構成する地糸より外側のパイル繊維の厚みは300μm以下である請求項1に記載のパイル布帛。
  3.  前記パイル繊維は毛抜けが防止されている請求項1又は2に記載のパイル布帛。
  4.  前記パイル布帛の裏面には、バッキング樹脂が含浸されている請求項1~3のいずれか1項に記載のパイル布帛。
  5.  前記パイル布帛は、ハイパイル又はボアパイルである請求項1~4のいずれか1項に記載のパイル布帛。
  6.  地組織と、前記地組織を構成する地糸に絡みかつ前記地組織の表面に立毛するパイル繊維を含むパイル布帛の製造方法であって、
     前記パイル繊維はアクリル繊維及びアクリル系繊維からなる群から選ばれる少なくとも一つの繊維であり、前記パイル繊維は前記地組織を構成する繊維よりも軟化点が低く、
     前記地組織の裏面側から前記パイル繊維の軟化点以上かつ前記地組織を構成する繊維の軟化点未満の温度で接触加熱加圧することにより、前記地組織を構成する地糸に絡んだパイル繊維のうち、前記地組織を構成する地糸より外側の少なくとも一部のパイル繊維を融着させ、前記地組織の表面に立毛するパイル繊維は融着させないことを特徴とするパイル布帛の製造方法。
  7.  前記接触加熱加圧が、加熱ロール又はホットプレートにより行われる請求項6に記載のパイル布帛の製造方法。
  8.  前記地組織の裏面側から接触加熱加圧する際及び/又は接触加熱加圧した後、前記立毛パイル繊維側を冷却する請求項6又は7に記載のパイル布帛の製造方法。
  9.  前記地組織の裏面側から接触加熱加圧した後、前記地組織の裏面側から冷却する請求項6~8のいずれか1項に記載のパイル布帛の製造方法。
  10.  前記パイル布帛の裏面にバッキング樹脂を含浸し、前記パイル繊維を開繊して整えた後に、前記地組織の裏面側から接触加熱加圧する請求項6~9のいずれか1項に記載のパイル布帛の製造方法。
PCT/JP2009/069054 2009-11-09 2009-11-09 パイル布帛及びその製造方法 WO2011055455A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020127009811A KR101389764B1 (ko) 2009-11-09 2009-11-09 파일 포백 및 그 제조 방법
EA201290302A EA023898B1 (ru) 2009-11-09 2009-11-09 Ворсовый материал и способ его изготовления
US13/504,027 US20120219751A1 (en) 2009-11-09 2009-11-09 Pile fabric and process for producing same
JP2011539240A JP5461572B2 (ja) 2009-11-09 2009-11-09 パイル布帛及びその製造方法
CN200980162337.XA CN102597348B (zh) 2009-11-09 2009-11-09 绒头布帛及其制造方法
UAA201205889A UA101779C2 (ru) 2009-11-09 2009-11-09 Ворсистый материал и способ его производства
EP09851107.4A EP2500455B1 (en) 2009-11-09 2009-11-09 Pile fabric and process for producing same
PCT/JP2009/069054 WO2011055455A1 (ja) 2009-11-09 2009-11-09 パイル布帛及びその製造方法
CN2010206111537U CN201942838U (zh) 2009-11-09 2010-11-09 绒头布帛

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/069054 WO2011055455A1 (ja) 2009-11-09 2009-11-09 パイル布帛及びその製造方法

Publications (1)

Publication Number Publication Date
WO2011055455A1 true WO2011055455A1 (ja) 2011-05-12

Family

ID=43969698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069054 WO2011055455A1 (ja) 2009-11-09 2009-11-09 パイル布帛及びその製造方法

Country Status (8)

Country Link
US (1) US20120219751A1 (ja)
EP (1) EP2500455B1 (ja)
JP (1) JP5461572B2 (ja)
KR (1) KR101389764B1 (ja)
CN (2) CN102597348B (ja)
EA (1) EA023898B1 (ja)
UA (1) UA101779C2 (ja)
WO (1) WO2011055455A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014054543A1 (ja) * 2012-10-02 2014-04-10 株式会社カネカ ハイパイル布帛及びその製造方法
JPWO2017022625A1 (ja) * 2015-07-31 2018-05-31 株式会社カネカ パイル布帛及びその製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10368606B2 (en) * 2014-04-15 2019-08-06 Nike, Inc. Resilient knitted component with wave features
CN108350649A (zh) * 2015-11-05 2018-07-31 帝斯曼知识产权资产管理有限公司 制造纺织产品的方法、该纺织产品的用途、该纺织产品本身以及用于应用该方法的装置
CN105951284B (zh) * 2016-07-20 2018-08-03 海安启弘纺织科技有限公司 一种防窜毛绒布的生产工艺
CN106167951B (zh) * 2016-08-18 2019-02-15 浙江真爱毯业科技有限公司 一种兔绒拉舍尔毛毯的生产工艺
JP6521092B2 (ja) * 2016-09-30 2019-05-29 三菱ケミカル株式会社 保温性に優れた織物
CN107440644A (zh) * 2017-08-29 2017-12-08 芜湖立新清洁用品有限公司 一种餐饮行业擦拭用超细纤维的抹布
TWI757684B (zh) * 2020-01-31 2022-03-11 三芳化學工業股份有限公司 刷毛織物及其製法
CN112593336B (zh) * 2020-12-08 2023-02-24 江苏新凯盛企业发展有限公司 一种皮毛一体布及生产工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681248A (ja) 1992-09-01 1994-03-22 Kanegafuchi Chem Ind Co Ltd 熱融着性合成繊維を含有するパイル製品
JPH06128840A (ja) * 1992-10-15 1994-05-10 Unitika Ltd ポリエステルカットパイル織編物
JPH0748765A (ja) 1993-08-06 1995-02-21 Toyobo Co Ltd パイル編地
JPH09268457A (ja) * 1996-03-28 1997-10-14 Mitsubishi Rayon Co Ltd パイル布帛の製造方法
JPH09324347A (ja) * 1996-05-31 1997-12-16 Kanebo Ltd 立毛布帛
JP2000314048A (ja) 1999-04-30 2000-11-14 Matsuoka Orimono Kk パイル織編物

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3790997A (en) * 1968-09-20 1974-02-12 Du Pont Process of producing random three-dimensional crimped acrylic fibers
US3616137A (en) * 1969-11-03 1971-10-26 Kessler Products Co Inc Pile weatherstripping with monofilament thermoplastic backing
GB1352311A (en) * 1970-01-20 1974-05-08 Du Pont Coated yarns
EP0030566B1 (en) * 1979-12-06 1986-07-30 Toray Industries, Inc. Pile fabric
US4426415A (en) * 1981-12-11 1984-01-17 V&L Manufacturing Company, Inc. Tufted carpeting, especially artificial turf, with tufts stitched through multiple layers of pre-woven backing material of differing gauge
JPH0663158B2 (ja) * 1984-03-27 1994-08-17 鐘淵化学工業株式会社 パイル組成物
JPS6131242A (ja) * 1984-07-24 1986-02-13 日産自動車株式会社 内装品
US4668552A (en) * 1986-07-28 1987-05-26 Collins & Aikman Corporation Wrap yarns having low-melt binder strands and pile fabrics formed therefrom and attendant processes
US4705706A (en) * 1986-09-16 1987-11-10 Avco Synthetic Turf Production Distribution, Inc. Tufted carpeting having stitches thermally bonded to backing
IE890122L (en) * 1988-02-23 1989-08-23 Minnesota Mining & Mfg Sheet material used to form portions of fasteners
US5525393A (en) * 1988-06-29 1996-06-11 Raab; Hans Method for the manufacture of a plush-type cleaning cloth and cleaning cloth or cleaning glove thereby obtained
JPH05117975A (ja) * 1991-10-23 1993-05-14 Suminoe Textile Co Ltd パイル布帛の毛倒れ防止用処理剤、処理方法および処理されたパイル布帛
CA2094875A1 (en) * 1992-05-01 1993-11-02 James A. Corbin Tufted fabric
ZA933072B (en) * 1992-05-01 1994-10-30 Hoechst Celanese Corp A tufted fabric.
JPH062240A (ja) * 1992-06-13 1994-01-11 Kawashima Textile Manuf Ltd モケット
US5498459A (en) * 1993-02-22 1996-03-12 E. I. Du Pont De Nemours And Company Method and apparatus for making a pile article and the products thereof
WO1995006771A1 (en) * 1993-09-01 1995-03-09 Fibertex A/S Low-stretch and dimensionally stable floor covering
US5556684A (en) * 1994-02-04 1996-09-17 Forero; Miguel Manufacturing process for synthetic fiber carpets fixed by fusion at regular intervals with crest or tufts, without using glues or using small amounts of glues, where threads do not loosen and thus obtaining the carpets
US5536551A (en) * 1994-07-18 1996-07-16 Jps Automotive Method for binding tufts
US5604009A (en) * 1994-12-02 1997-02-18 Synthetic Industries, Inc. Non-adhesive bonded tufted carpet and method for making the same
DE19506038A1 (de) * 1995-02-22 1996-08-29 Hoechst Trevira Gmbh & Co Kg Verformbare, hitzestabilisierbare textile Schlingenpolware
DE19506037A1 (de) * 1995-02-22 1996-08-29 Hoechst Trevira Gmbh & Co Kg Verformbare, hitzestabilisierbare textile Polware
CN1161507C (zh) * 1996-05-31 2004-08-11 钟渊化学工业株式会社 用于制备绒毛制品的梳条、绒毛制品及其制备方法
US20050042412A1 (en) * 1996-12-31 2005-02-24 Bruner Jeffrey W. Composite elastomeric yarns and fabric
US6828003B2 (en) * 1999-07-02 2004-12-07 Malden Mills Industries, Inc. Velour fabric articles having flame retardance and improved dynamic insulation performance
US6658835B1 (en) * 2000-11-28 2003-12-09 Honeywell International Inc. Untwisted wrapped singles yarns and carpets manufactured therefrom
US6837278B2 (en) * 2002-03-13 2005-01-04 Kim William B Method for making a blanket having a high pile density and a blanket made therefrom
US6647601B2 (en) * 2002-03-13 2003-11-18 William B. Kim Method for making a blanket having a high pile density and a blanket made therefrom
US20040079468A1 (en) * 2002-09-13 2004-04-29 Reisdorf Raymond Joseph Process for producing carpet
JP3895272B2 (ja) * 2002-12-24 2007-03-22 Ykk株式会社 繊維製面ファスナー
JP2005320654A (ja) * 2004-05-10 2005-11-17 Teijin Fibers Ltd 新規外観パイル布帛およびカーシート
NL1026245C2 (nl) * 2004-05-21 2005-11-22 Klieverik Heli Bv Werkwijze voor het vervaardigen van tapijt.
EP1764009B1 (en) * 2004-06-17 2010-12-15 Kuraray Fastening Co., Ltd. Hook-and-loop fastener made of fabric
WO2006079511A1 (en) * 2005-01-27 2006-08-03 Colbond B.V. Tufted nonwoven and bonded nonwoven
CN101472510A (zh) * 2006-04-27 2009-07-01 莫赫地毯公司 热熔块状地毯及其制备方法
US20070270064A1 (en) * 2006-05-22 2007-11-22 Aseere Lester M Carpet primary backing having enhanced tufting and tuft securing characteristics
JP5340146B2 (ja) * 2006-07-15 2013-11-13 ボナー ベスローテン フェンノートシャップ タフテッド不織布及びボンデッド不織布
ATE548511T1 (de) * 2006-08-18 2012-03-15 Mondo Spa Kunstrasen und verfahren zu seiner herstellung
DE102006050704A1 (de) * 2006-10-24 2008-04-30 Maltzahn Carpets Gmbh Verfahren zum Herstellen eines Teppichs und nach dem Verfahren hergestellter Teppich
EP2093317A1 (en) * 2006-12-04 2009-08-26 Seiren Co., Ltd Pile fabric
JP4925006B2 (ja) * 2007-01-12 2012-04-25 Tbカワシマ株式会社 パイル布帛

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681248A (ja) 1992-09-01 1994-03-22 Kanegafuchi Chem Ind Co Ltd 熱融着性合成繊維を含有するパイル製品
JPH06128840A (ja) * 1992-10-15 1994-05-10 Unitika Ltd ポリエステルカットパイル織編物
JPH0748765A (ja) 1993-08-06 1995-02-21 Toyobo Co Ltd パイル編地
JPH09268457A (ja) * 1996-03-28 1997-10-14 Mitsubishi Rayon Co Ltd パイル布帛の製造方法
JPH09324347A (ja) * 1996-05-31 1997-12-16 Kanebo Ltd 立毛布帛
JP2000314048A (ja) 1999-04-30 2000-11-14 Matsuoka Orimono Kk パイル織編物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Encyclopaedia Chimica", 1 June 1993, KYORITSU SHUPPAN CO., LTD., pages: 727 - 729
"Fiber Handbook third edition", 15 December 2004, MARUZEN, pages: 341 - 342

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014054543A1 (ja) * 2012-10-02 2014-04-10 株式会社カネカ ハイパイル布帛及びその製造方法
JPWO2017022625A1 (ja) * 2015-07-31 2018-05-31 株式会社カネカ パイル布帛及びその製造方法

Also Published As

Publication number Publication date
KR101389764B1 (ko) 2014-04-29
JPWO2011055455A1 (ja) 2013-03-21
EP2500455B1 (en) 2020-05-06
EA201290302A1 (ru) 2012-10-30
EP2500455A4 (en) 2014-01-01
US20120219751A1 (en) 2012-08-30
UA101779C2 (ru) 2013-04-25
EA023898B1 (ru) 2016-07-29
EP2500455A1 (en) 2012-09-19
CN102597348A (zh) 2012-07-18
CN102597348B (zh) 2015-04-08
KR20120102042A (ko) 2012-09-17
JP5461572B2 (ja) 2014-04-02
CN201942838U (zh) 2011-08-24

Similar Documents

Publication Publication Date Title
JP5461572B2 (ja) パイル布帛及びその製造方法
JP5266062B2 (ja) パイル布帛
JP7281174B2 (ja) 芯鞘型複合熱接着性繊維
JP2007063680A (ja) 車両シート用丸編地
JP2012233284A (ja) ハイパイル布帛およびその製造方法
JP5277077B2 (ja) 織物の製造方法
JP5140017B2 (ja) 耳部ほつれ防止織物
JP5650274B2 (ja) 熱融着性複合糸およびこれを用いた織編物
JP2015232184A (ja) ハイパイル布帛及びその製造方法
JP2005188003A (ja) 透明芯地用基布およびその製造方法
JP2006200099A (ja) 立毛パイル布帛及びその製造方法
JP6672307B2 (ja) パイル布帛及びその製造方法
JP6128984B2 (ja) ポリエステル仮撚低融着糸および多層構造織編物
JP2002054036A (ja) 捲縮ポリエステル繊維およびその製造方法
JP2016123419A (ja) ループ面ファスナー用生機およびループ面ファスナーの製造方法およびループ面ファスナー
CN104695159B (zh) 绒头布帛的加工装置
WO2024053516A1 (ja) 雄型面ファスナ機能性布帛、雌型面ファスナ機能性布帛、雄雌一対の面ファスナ、及び、雄型面ファスナ機能性布帛、雌型面ファスナ機能性布帛の製造方法
JP7283995B2 (ja) 織物及びその製造方法
JP7299236B2 (ja) ループ状係合素子を有する面ファスナー及びその製造方法
JP3530303B2 (ja) 高空隙構造加工糸およびそれよりなる布帛
JP5032425B2 (ja) 太さ斑を有するポリエステルモノフィラメントおよびその製造方法および布帛および繊維製品
JPWO2020138029A1 (ja) ニット編み用紐及びニット製品
JP2004052142A (ja) 特殊加工糸
JP2007077549A (ja) カットパイルカーペットおよびその製造方法
JP2004091999A (ja) 人工皮革用不織布

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980162337.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09851107

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011539240

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127009811

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13504027

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009851107

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 201290302

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: A201205889

Country of ref document: UA