WO2011054150A1 - 利用重叠pcr定点突变的方法及其在筛选单克隆抗体中的应用 - Google Patents

利用重叠pcr定点突变的方法及其在筛选单克隆抗体中的应用 Download PDF

Info

Publication number
WO2011054150A1
WO2011054150A1 PCT/CN2009/074839 CN2009074839W WO2011054150A1 WO 2011054150 A1 WO2011054150 A1 WO 2011054150A1 CN 2009074839 W CN2009074839 W CN 2009074839W WO 2011054150 A1 WO2011054150 A1 WO 2011054150A1
Authority
WO
WIPO (PCT)
Prior art keywords
primer
site
mutation
affinity
monoclonal antibody
Prior art date
Application number
PCT/CN2009/074839
Other languages
English (en)
French (fr)
Inventor
刘庆法
吴希美
Original Assignee
无锡天演生物技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡天演生物技术有限公司 filed Critical 无锡天演生物技术有限公司
Publication of WO2011054150A1 publication Critical patent/WO2011054150A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • C12N15/1031Mutagenizing nucleic acids mutagenesis by gene assembly, e.g. assembly by oligonucleotide extension PCR
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries

Definitions

  • the present invention relates to the field of biotechnology, and in particular to a random mutagenesis method and its use in monoclonal antibody molecularization technology.
  • the monoclonal antibody molecular evolution technology mainly includes the acquisition of prototype monoclonal antibody molecules, artificial mutations and phage-based high-throughput screening.
  • the literature 1 has a detailed description. Very large-scale all-human monoclonal antibody library
  • the monoclonal antibody library technology was a revolutionary technology created by Huse WD and J McCafferty before and after 1990. Since then, scientists have used this technology to do a lot of work, building a variety of structural monoclonal antibody libraries or other libraries (Guang 10). But because of the limitations of this technology itself (mainly difficult to obtain affinity can reach For the development of therapeutic monoclonal antibodies, only Humira has been successful in the development of therapeutic monoclonal antibodies. In order to solve these problems, scientists have made various efforts, but no breakthrough progress has been made so far.
  • Hiroshi Tachibana Xunj ia Cheng, Katsuomi Watanabe, Masataka Takekoshi, Fumiko Maeda, Satoshi Aotsuka, Yoshimasa Kaneda, Tsutomu Takeuchi, and Seij i Ihara, 1999, Preparation of Recombinant Human Monoclonal Antibody Fab Fragments Specific for Entamoeba histolytica, Cl inical and Diagnostic Laboratory Immunology 6 (3): 383-387.
  • Trinucleotide phosphoramidites Ideal reagents for the synthesis of mixed ol igonucleotides for random mutagenesis. NAR. 22, 5600- 5607 (1994) . Summary of the invention
  • the object of the present invention is to overcome the deficiencies in the prior art and to provide a geese-type localized random mutation method and its application in molecular evolution technology of monoclonal antibodies.
  • One aspect of the present invention provides a geese-array localized random mutation method, comprising the following steps:
  • geese-type random localized mutation scheme is based on the geese array primer design shown in Figure 2.
  • the main points of the design are as follows:
  • the random mutation region and its flanking sequence were designated as the target sequence of random mutation PCR amplification, and the central primer, the left primer and the right primer of the target sequence were designed:
  • flanking sequence consists of a 5'-end and a 3'-end, and the length is not less than 20 bases, usually 20-40 bases, depending on the need for splicing with other sequences, preferably, flanking Restriction sites should be included in the sequence to meet the splicing requirements.
  • flanking sequences can be routinely determined by those skilled in the art by virtue of their needs.
  • the design of the central primer centered on the aliquot of the target sequence, with multiple bases on each side as central primers, and the central primer contains at most one mutation site.
  • the length of the left and right sequences of the primer center point is preferably such that the Tm value is 45 to 58 degrees, and the preferred range is 48 to 54 degrees.
  • the length of the central primer is about 38 to 60 bases, and the preferred range is 38 to 45. Bases.
  • Design of the left primer and the right primer Design the sequence center of the sequence with the left overlap extension PCR primer as the left primer, design the target gene center point with the right overlap extension PCR primer as the right primer, each left primer and right
  • the side primers each contain at most one mutation site.
  • the length of each of the left primer and the right primer is about 20-40 bases, and the length of the primer is preferably 45 to 58 degrees, and the preferred range is 48 to 54 degrees. .
  • the left primer, the right primer and the central primer together form a geese array as shown in Fig. 2.
  • flanking sequence should not contain mutation sites, and the mutation sites are only distributed at the specified random occurrence. Mutated area.
  • each mutant primer should have multiple primers with mutations, and each mutant primer contains only one mutation site, and the position or base sequence of the mutation site is different between different mutation primers. Mutation sites can be specified. The mutated base of the mutant primer at the mutation site may be set as needed, or may be a random mutation.
  • AGTCAGC (SEQ ID NO: 6)
  • the primer design and its overlapping relationship are shown in Fig. 1.
  • 2CT30 bases are taken as central primers, and the length is about 4CT60 bases, and the preferred range is 4CT45 bases.
  • a mutation can be designed at the central or near central.
  • the length of the sequence around the center point is preferably such that the Tm value is 45 to 58 degrees, and the preferred range is 48 to 54 degrees.
  • 1CT20 bases are taken on each side of the remaining mutation points, and the length of the primer should be 45 to 58 degrees, and the preferred range is 48 to 54 degrees.
  • the left primer, the right primer and the central primer are mixed for PCR, and an amplification sequence in which a random mutation occurs in the designated region is obtained.
  • the designated random mutation region is a continuous positive strand DNA sequence in the gene of interest, preferably containing 6-40 bases. Preferably, there are 21-40 bases.
  • the designated random mutation region can be determined according to the needs of the operator, such as the CDR region of the antibody gene, the domain of the enzyme molecule or the protein molecule, and the like.
  • a mutation site in the primer is a triple junction corresponding to a quasi-mutation codon in a specified random mutation sequence.
  • the base, the triplet at the mutation site can be any base combination different from the prototype, resulting in a random mutation in the amino acid encoded by the mutation site.
  • Primers involved in random mutation PCR contain at most one mutation site. The position or base sequence of the mutation site is different between different primers.
  • each mutant primer contains only one random mutation site, this allows a PCR reaction system containing multiple mutant primers to be easily amplified, compared to a PCR reaction system containing multiple random mutation sites. The success rate has been greatly improved.
  • each of the mutant primers of the present invention contains only one random mutation site, since the PCR reaction system contains a plurality of single-point random mutation primers, not only the single-point randomization of the final amplification product in the designated random mutation region Mutations can also occur with multiple random mutations.
  • the Tm value is at most 2 degrees out of phase. This design ensures that all primers are run under the same PCR conditions.
  • the second aspect of the present invention provides the use of the above-described wild-type localized random mutagenesis method in the molecular evolution technique of monoclonal antibodies.
  • the evolution of monoclonal antibody molecules can be achieved by combining the geese-domain localized random mutagenesis method with KA scanning and phage display technology.
  • a monoclonal antibody molecular evolution method comprising the steps of:
  • a specific antigen corresponding to the monoclonal antibody to be evolved is used as an affinity target, and a plurality of antibody clones capable of specifically binding to the antigen are selected from the antibody library.
  • the number of clones screened is at least 96.
  • the antibody library is selected from any one or a combination of a Fab or scFv antibody library of a source of a fully human antibody, a specific humanized, a murine source, a rabbit source, a camel source, a full artificial synthesis, or the like.
  • the fully human antibody library is preferably a fully humanized large scale antibody library.
  • the monoclonal antibody to be evolved may be a monoclonal antibody of various origins, such as a known monoclonal antibody, a monoclonal antibody selected from the antibody library, an antibody obtained from various mammalian hybridomas, and a spleen from a mammal. Or antibodies obtained from immune cells of peripheral blood, or antibodies that have evolved, and the like.
  • the monoclonal monoclonal antibody to be evolved is: a monoclonal antibody having the highest affinity for the antigen selected from the monoclonal antibody library, wherein the antigen corresponding to the target antibody is an affinity object. b.
  • the clone having the highest affinity means that the affinity of the antibody produced by the clone to the antigen corresponding to the antibody to be evolved (hereinafter referred to as affinity) is ranked first among the clones obtained in the step a.
  • affinity the affinity of the antibody produced by the clone to the antigen corresponding to the antibody to be evolved
  • the unit of the above-mentioned affinities is: the unit of the affinity of the highest affinity of the cloning, the optical density reading after the ELISA reaction with the specific antigen is at least 0.7 units, and the above The conditional clone is ranked first.
  • the affinities of the higher affinity cloning means that the optical density reading after the ELISA reaction with the specific antigen is at least 0.7 units lower than that of the clone with the lowest affinity in the clone with the second highest affinity.
  • the cloning of the above conditions is ranked first.
  • step b analyze the amino acid distribution in the same designated random mutation region (any CDR region) in these clones, select the immutable site of the region, and the variable site, and the variable site distinguishes It is an ineffective site for mutation, and a variable site related to affinity is the KA site.
  • Immutable sites Sites with the same amino acid in all clones or most clones (>80%) or the most affinity clones screened in step b are considered to be immutable sites.
  • Invalid mutation site A variable site that is not related to affinity.
  • the main feature of the null site of mutation is that the amino acid changes in the clone with the highest affinity obtained in step b are irregular.
  • it includes both non-polar amino acids (such as glycine, alanine, valine, leucine, isoleucine, phenylalanine, valine), as well as polar amino acids (such as tryptophan, Tyrosine, serine, cysteine, methionine, asparagine, glutamine, threonine), both acidic amino acids (such as aspartic acid, glutamic acid), but also basic amino acids (such as lysine) Acid, arginine, histidine), aromatic amino acids (such as tryptophan, tyrosine, phenylalanine), imino acids (valine), sulfur-containing amino acids (such as cysteine, methionine) .
  • non-polar amino acids such as glycine, alanine, va
  • Variable Sites Associated with Affinity Specify the site of the random mutation region remaining after the exclusion of the immutable site and the null site of the mutation.
  • the target sequence amplification product in which the KA site or the variable site is randomly mutated is obtained by the above-described wild-type localized random mutation method.
  • the mutation site is the triple base corresponding to the KA site or the variable site in step 1), and the designated random mutation region is any CDR region.
  • the antigen corresponding to the monoclonal antibody is used as an affinity target, and a plurality of clones capable of producing antibodies specific for binding to the antigen are selected from the mutation library, and clones having improved affinity compared to the monoclonal antibody to be evolved are selected. .
  • steps 1 and 2 are repeated prior to step 3 to obtain amplification products in which random mutations occur in different CDR regions.
  • the mutant PCR products of the three CDR regions of the heavy and light chains can be obtained separately, and the Fab structure with the target mutation in the CDR region can be obtained by overlapping PCR of the three mutant PCR products, and cloned into In the phage vector.
  • the vector can be pC0Mb3M.
  • step 4 the monoclonal antibody secreted by the clone having the highest affinity selected in step 4) is used as a prototype, and steps 1) to 4) are repeated to further evolve the monoclonal antibody.
  • the above-mentioned monoclonal antibody molecular evolution method is also called PAE (Programmed Artificial Evolution) technology, which is a labor established by core technicians based on years of technology accumulation and based on phage display technology.
  • PAE Programmed Artificial Evolution
  • the mAb molecule is engineered to meet the core technology of therapeutic monoclonal antibody requirements.
  • the technique of the present invention has many applications in the study of monoclonal antibodies, particularly therapeutic monoclonal antibodies. Modification of (1) existing therapeutic monoclonal antibodies or (2) candidate monoclonal antibodies found in the development process with certain specific defects that cannot be further developed as therapeutic monoclonal antibodies to achieve the following objectives:
  • the efficacy Due to the improvement of affinity and other changes in biological characteristics, the efficacy can be significantly improved. At the same dose, better results can be obtained, or a lower dose can be achieved by achieving the same effect.
  • the artificially evolved anti-human RANKL monoclonal antibody has an affinity of 38. 6 times higher than that of the domestic counterparts, and only needs 1/4 of the dose to obtain the same effect.
  • the affinity of the artificial evolution product for the target protein was not significantly improved, but the neutralizing ability was much improved, and its efficacy was also significantly improved.
  • the monoclonal antibody library technology can be used to humanize murine or other sources of monoclonal antibodies, so that the source of genetic material is minimized, thereby greatly reducing immunogenicity. So far, artificial evolution has been the most reliable and fastest method for humanization of monoclonal antibodies.
  • the prototype monoclonal antibody molecule from which the monoclonal antibody molecule evolved is derived from the human-derived ultra-large-scale antibody library HuLib.
  • the antibody library uses blood samples from about 3,000 healthy young people from 22 provinces or municipalities, including 16 ethnic groups, and has a full-scale, large-scale antibody library with full complexity and variability developed over three years. Its effective capacity Up to 10E11, it is theoretically possible to screen out the monoclonal antibodies of any antigen.
  • the detailed construction process is carried out in accordance with the method of Document 10.
  • Previously published human antibody libraries were established from samples of at least several individuals, and the richness of the variation was insufficient to meet the requirements for screening high-index candidate monoclonal antibodies. This is currently the only non-mutated, large-scale, fully human-derived antibody library from such a large sample.
  • This antibody library is the source of the molecular evolutionary prototype mAb of the present invention.
  • monoclonal antibodies of any antigen can be screened from the above antibody libraries.
  • 28 strains of anti-human G-CSF monoclonal antibody 21 strains of anti-human IL-11 monoclonal antibody, 6 strains of anti-human TNFa monoclonal antibody, and 17 strains of anti-human RANKL monoclonal antibody have been obtained.
  • the affinity of these monoclonal antibodies is distributed between 10E-6 and 10E-8M. Based on the available results, from this antibody library Monoclonal antibodies to obtain all antigens.
  • the monoclonal antibodies from the above antibody libraries have affinities typically ranging from 10E-6 to 10E-8M, and screening for candidate monoclonal antibodies with affinities of 10E-9M or higher is quite difficult.
  • the monoclonal antibodies screened from the library need to be further modified in conjunction with the PAE technique of the present invention to achieve the therapeutic monoclonal antibody requirements.
  • the design of the mutant primer is the key to obtaining the appropriate mutation.
  • the main points are as follows: (1) selecting an appropriate mutation point according to the purpose of the project, using the KA scanning method of the present invention; (2) determining the primer sequence based on the selected mutation point and the junction sequence.
  • item (1) is very important, and improper design can lead to failure to achieve the desired mutation.
  • the present invention is primarily an improvement in the selection of mutation points and the design of mutation schemes.
  • PCR, DNA ligation and plasmid DNA transformation involved in these three steps are mature technologies, but these three steps are not easy due to the special needs of large storage capacity. It is particularly worth mentioning that PCR often encounters great difficulties due to the large number of mutations in the primers.
  • the GCR method of the present invention largely solves this problem.
  • Third, efficient phage screening scheme Although phage display technology is very mature, how to select suitable clones from massive (10E1CT10E12) mutants is not a very easy task. Which kind of carrier and which specific screening scheme will affect the test will not only affect the test. Process, and will affect the test results. Literature 2, 5, 8, 10 provides a detailed panning solution.
  • the present invention provides a method for greatly reducing storage capacity requirements and enhancing effective mutations.
  • the fundamental point is that (1) screening high-quality candidate single-antigen molecules from the aforementioned fully human antibody library HuLib, the affinity should reach 10E-8mol/l or higher, thereby greatly reducing the pressure for subsequent improvement. (2) Reduce the null mutation.
  • the mutation sites that may be effective in the prototype are determined, and the obviously ineffective mutation sites are eliminated, so that the storage capacity requirement is greatly reduced. .
  • KA scanning method A large number of specific clones can be screened from the above antibody library, and five clones with the highest affinity, the second highest and the higher ones are selected for DNA sequencing.
  • the three types of clones should differ by an order of magnitude in terms of affinity (the optical density readings differ by about 0.7 units in the ELISA assay).
  • the distribution of amino acids in the three CDR regions can be analyzed. Those sites in which the amino acid is identical in all clones or in the vast majority of clones (>80%), especially in high affinity clones, are considered to be immutable sites, with the remainder being considered variable sites.
  • variable site irrelevant to the affinity is further identified from the variable site, and the variable site related to the affinity, that is, the KA site, can be determined.
  • the main feature of the null site of mutation is that the distribution of amino acids is irregular in the clones with the highest affinity.
  • the KA site is the remaining portion after excluding the immutable site and the null site of the mutation, and the number of amino acids has been greatly reduced.
  • mutations according to the localized random mutation scheme described below can greatly reduce the size of the mutant population, making the construction and screening operations easy.
  • the PAE technology adopts the Goose Array CDR-in random (GCR) mutation scheme, which has two advantages compared with other mutation schemes: 1 It can simultaneously perform multi-point mutations, and it is easy to create rich mutations; 2 Random combinations of primers can produce random combinations of multiple mutations, with mutation efficiencies at least 3 orders of magnitude higher than site-directed mutations; 3 mutated regions are defined (ie, localized), but mutations at specific sites within the region are random, Combines the dual advantages of site-directed mutagenesis and random mutation. (4) In the conventional random mutagenesis scheme, each primer has many mutation points, and PCR is often difficult to carry out, and the obtained products are often seriously deviated from the random arrangement. In this scenario, each primer only contains This can be avoided by including a mutation point.
  • GCR Goose Array CDR-in random
  • Figure 2 is a schematic diagram of a wild-type random mutation scheme.
  • This mutation design has the following characteristics: (1) Multiple point random mutations or multiple site-directed mutagenesis can be performed simultaneously in a given region. This method has only one mutation point per primer, but the position of the mutation point on the different primers corresponding to the prototype series is different. (2) It avoids the problem of complicated PCR in the general multi-point mutation method. Under normal circumstances, a good PCR product can be obtained by one PCR. (3) Effective mutation efficiency is two orders of magnitude higher than the usual random mutation or multiple site-directed mutation. (4) The PCR products are mostly heterozygous, and the homozygous process will be completed during the propagation of the transformed bacteria. Therefore, the requirements for conversion efficiency are relatively low. In the same conversion efficiency, the effective storage capacity is twice as high as the conventional method, which is of great significance in the subsequent database construction process.
  • Figure 1 Primer design for a typical sequence
  • Figure 2 Schematic diagram of the geese array PCR primer design
  • FIG. 3 Plasmid map of pC0Mb3M plasmid.
  • the vector was modified based on pC0Mb3H, and its two multiple cloning sites were different from the original vector, and the rest were not modified.
  • the vector's light chain sequencing primer was gcgattgcagtggcactggc (SEQ ID NO: 14) and the heavy chain sequencing bow was cctacggcagccgctggattg (SEQ ID NO: 15).
  • Figure 4 Anti-human TNFa antibody 7B4, 2H7, 4D3, 6F5, 3C9, 3H6, etc. 6 Fab clone affinity test results
  • Figure 6 Effect of anti-human RANKL antibody on osteoclast formation.
  • the data in the figure is the result of counting TRAP stained cells.
  • the ordinate is the number of osteoclasts formed;
  • the abscissa is the antibody concentration, and the range is as described in the text.
  • Figure 7 Optical density of anti-human CD20 mAb ELISA assay.
  • the post-evolved 3D7 has significantly higher affinity than the prototype 6B2 and the positive control Rituxan.
  • Figure 8 Anti-human CD20 monoclonal antibody internal killing test
  • Figure 9 Anti-human VEGF antibody affinity test results
  • Collect blood samples and cDNA synthesis Collect 1 ml of peripheral blood from 3000 people, mix them, and separate mononuclear cells with lymphocyte separation solution (produced by Tianjin Institute of Blood Research, Medical College).
  • the total mRNA of the cells was extracted from the isolated human peripheral blood lymphocytes using a kit of GIBC0.
  • the GIBC0 mRNA purification kit was used to purify, and the first strand of the cDNA was reverse transcribed using the mRNA obtained above as a template. The above steps are carried out according to the instructions provided by the manufacturer.
  • PCR primers are widely used as widely as possible in the design of primers.
  • multiple degenerate sites multi-sense sites were introduced into each primer sequence.
  • pC0Mb3M additional restriction sites involved in the following.
  • Primers for amplifying Kappa and lambda chains and heavy chain gamma chains Primers for the Fd region are shown in Table 1.
  • the primer sequence contains restriction sites for cloning.
  • the PCR amplification conditions were: lOOul system, positive and negative primers each for luM, 30 cycles (pre-denaturation for 2 minutes, 94C1 minutes, 50C2 minutes, 72C3 minutes, and extension for 1 minute).
  • the PCR product was 120V on a 1.2% agarose gel. Electrophoresis for about 20 minutes, tapping and gel purification. Then, after digestion with Ascl and Nhel or Sfi l and Notl, the first (light chain) and the (heavy chain) were ligated to the vector pC0Mb3M, and then E. col i TG1 was transformed. .
  • VLla VH4c:
  • VL2a Gamma heavy chain 3, primers (Spel) ctgagctcmackttataytgactcaaccg
  • VL2b FDG1:
  • VL3b FDG3:
  • Main cycle 94 degrees 20 seconds, 51 degrees 20 seconds, 72 degrees 15 seconds.
  • the PCR process was performed on a Thermocycler thermal cycler.
  • the polysyllabic code in the primer sequence is compiled according to the standard protocol published by the International Society of Biochemistry (IUB) Nomenclature Committee (NC).
  • the primers were all commissioned by Shanghai Biotech Co., Ltd. for synthesis.
  • H and L fragments with corresponding restriction sites at both ends were obtained and purified to remove primers and dNTPs.
  • the purified fragment was double-digested with the corresponding enzyme (both purchased from Promega) to produce a cohesive end which was ligated to the vector pC0Mb3M, and ligated to the vector after purification.
  • the phagemid vector pC0Mb3M itself contains a Sacl/Hindlll and Xhol/Spel restriction site, which can be ligated to the above PCR fragment.
  • the PCR fragment can be cloned into the corresponding site on the phagemid vector using conventional DNA ligase.
  • the adjacent position on the pC0Mb3M vector is the g 3 gene, and the Fab-g3p fusion gene can be expressed in the future.
  • coli cells were then cultured in S0BAG (S0B medium containing 100 mg/L ampicillin and 2% glucose) agar plates at a culture temperature of 30 ° C, in which E. coli cells transformed with the pCOMMb3M vector survived.
  • the electroporation was repeated to bring the capacity of the obtained antibody library to 1 X 10E11.
  • M13K07 helper phage purchased from Promega
  • shaken at 37 °C for 1 h centrifuged and resuspended in 10 ml 2 X YTAK (2 X YT containing 100 mg/L ampicillin and 70 g/ml kanamycin)
  • the medium was incubated overnight on a shaker and centrifuged at 1 500 X g for 15 min at 4 °C.
  • the collection supernatant is a fully human Fab phage display library. This was dispensed and stored at _20 °C in preparation for the next step of "panning" the library with specific antigens.
  • Example 2 Human B cell-derived whole human anti-human TNFa monoclonal antibody gene obtained In addition to the above pathways, certain antigens have other sources for obtaining a fully human monoclonal antibody gene, such as human leukocytes secreting anti-human TNFa monoclonal antibodies. .
  • 96-well plates were first coated with recombinant human TNF (Shanghai Xinbino Bioengineering Co., Ltd.), and 250 ng of the protein was used per well, and coated overnight. Then, it was blocked with 5% skim milk powder for 2 hours at room temperature, and the milk powder was prepared with pH 7.2 PBS. After washing, 100 ⁇ l of serum from different patients was added and incubated for 1 hour at room temperature. Peroxidase-labeled goat anti-human IgG was then added and allowed to stand at room temperature for 1 hour. After washing at least 5 times, TMD or other developer is added and treated at room temperature or 37 degrees for 20 minutes. Finally, a stop solution is added.
  • b) Add 6-10 times the cell volume of red blood cell lysate, mix gently by pipetting, and lyse for 1-2 minutes. For example, if the volume of the cell pellet is 1 ml, 6-10 ml of red blood cell lysate is added. This step can be performed at room temperature or 4 degrees. Note: For the blood of rats, lysis for 1-2 minutes is sufficient. For human peripheral blood, it is advisable to prolong the lysis time to 4-5 minutes, and occasionally shake it during the lysis process to promote erythrocyte lysis. c) Centrifuge at 400-500g for 5 minutes, discard the red supernatant. The centrifugation effect at 4 ° C is better.
  • red blood cell lysis is found to be incomplete, repeat steps 2 and 3 above. Usually very small amounts of red blood cells do not affect subsequent tests.
  • RNA obtained above as a substrate, ol i g0 -dT25 (commissioned by Shanghai Jierui Bioengineering Co., Ltd.) as a primer, and using MMLV reverse transcriptase (Invitrogen product, Cat. No. 28025-013) to obtain cDNA first chain.
  • PCR was carried out using the following primers and conditions, and the amplification enzyme used was ClonTech's Pfu to ensure that possible mutations were reduced during amplification.
  • PCR was carried out using the primers shown in Example 1 to amplify the heavy and light chains of the Fab structure.
  • Main cycle 94 degrees 20 seconds, 51 degrees 20 seconds, 72 degrees 15 seconds.
  • the PCR process was performed on a Thermocycler thermal cycler.
  • PCR was carried out in accordance with the above conditions. After completion, the product was identified on 1% agarose gel electrophoresis. The two PCR products were about 650 bp and 670 bp, respectively, which was consistent with the theoretical size. The fragment was recovered using Promega's Glue Recovery Kit and operated according to the manufacturer's instructions, yielding approximately 20 micrograms of DNA.
  • Example 3 Amylation of anti-human TNFa monoclonal antibody from a fully human antibody library was carried out based on the antibody libraries established in Examples 1 and 2, and the procedure of panning was as follows. In the panning and other processes, the Fab form of Humira was used as a positive control.
  • Resuscitated antibody library strain 1 ml was added to fresh LB medium 14 ml, and cultured at 37 °C for 16 hours in a 50 ml flask.
  • the cells obtained above were diluted to 100,000 cells/ml and cultured on a 1.5% agar plate to which 0.1% ampicillin was added to obtain a monoclonal antibody.
  • the clones on the above plates were cultured on 96-well deep well plates, one clone per well, for a total of 960 clones (10 96-well plates).
  • the wells with strong color reaction were determined based on the light absorption readings, and the corresponding clones of these wells were the affinity Fab monoclonal antibodies.
  • the monoclonal antibody in the phage display library obtained above is capable of binding to a specific antigen, and a monoclonal antibody having a high affinity is selected by a panning technique.
  • Enzyme-linked plates were coated with recombinant human TNF (rhTNF) antigen, blocked with BSA, incubated for 2 h, and washed with 50 ⁇ l phage antibody library (about 10E12 CFU) for 2 h after rinsing, TBST (Tris 50 ol/ L, NaCl 150mmol/L, Tween-20 0. 5%, BSA 1%, pH 7.5. 1) Wash once (5 times in the second round, 10 times in the third round, 5 minutes each time), The 50 ⁇ l eluate was used to recover the phage, the neutralization buffer was adjusted to neutral, and Ecol i TGl was infected for the next round of screening. A total of 3 rounds of screening were performed to remove phagemids without antigen binding ability.
  • a sandwich ELISA assay was performed to determine the antigen binding activity of the monoclonal antibody.
  • PBST KC1 2. 7mmol/L, Na2HP0410mmol/L, KH2P041. 8mol/ L, NaCl 137 mmol/L, Tween-20 0. 5%, pH 7.4
  • For the diluted phage monoclonal antibody incubate at 37 ° C for 2 h.
  • the plate was washed, HRP-labeled goat anti-M13 mAb (purchased from Pharmacia) was added, and the plate was washed with 1% Tween-20 in PBS at 37 °C, and the substrate solution was colored, and read at 595 nm on a plate reader. Light absorption. According to calculations, the positive rate is close to 20%. From the above clones, the five most influential ones were selected according to the optical density (readings > 2.2, at which time the positive control was about 2.8), five were medium (reading about 1.5) and five were lower. The clones (reading approximately 0.8) were cloned for DNA sequencing. The sequencing primers can use the sequence of the constant region portion of the Fab fragment.
  • Example 4 Design and implementation of molecular evolution scheme
  • Example 3 Based on the sequencing results of 20 clones in Example 3, the amino acid positions effective for mutation in each CDR were determined, i.e., KA scanning. Taking the heavy chain CDR1H as an example, the molecular evolution of other CDR regions can be carried out using the same methods and procedures.
  • TFPFLNH GFVFSCH TG-NKHI GNKVLSS Amino acid position P26 has no obvious dominant amino acid in the high affinity group, and the polarity, acidity and basicity of the amino acid at this site have little effect on the affinity, and it is regarded as an ineffective mutation site. Invalid mutation sites, when the number of quasi-mutation sites is large, the mutation operation may not be performed, but the mutation operation may be performed when the number of quasi-mutation sites is small.
  • the dominant amino acids of P27, P31 and P32 in the high affinity group are F, N and H, respectively, which are regarded as unchangeable sites;
  • P28 has no obvious dominant amino acid in the high affinity group, which is a mutated site;
  • P29 dominant amino acid is F , can not be changed, but has little effect on Q;
  • P30 high affinity group has no obvious dominant amino acid, which is a variable site;
  • P31 in the high affinity group, the dominant amino acid is H, which is an immutable site. Accordingly, it is determined that P27, P29, P31, and P32 are immutable sites, and P26, P28, and P30 are variable.
  • a wild-type localized random mutagenesis primer can be designed for the above sequence.
  • the sequence of the CDR1H (amino acid sequence PFPFANH) and its flanking regions is:
  • the primer design is:
  • CAATTCATCCAGTGGTTAGAGAA ⁇ AAAGCCACTAG (SEQ ID NO : 38)
  • NNN represents any triple base combination where the same position is different from the original sequence.
  • PCR is carried out using the above primer set to obtain a PCR product having a combination of different mutation sites.
  • the PCR combination of the primer set is as follows:
  • Main cycle 94 degrees 20 seconds, 51 degrees 20 seconds, 72 degrees 15 seconds.
  • the PCR process was performed on a Thermocycler thermal cycler.
  • the heavy and light chains of an antibody molecule each have three CDR regions, and each of them is mutated according to the above method, and the mutant fragments are respectively obtained, and then the fragments are spliced into a complete Fab heavy or light chain DNA molecule by conventional overlapping PCR. After inserting into the pC0Mb3M vector, the mixture was sieved according to the method of Example 3. Similarly, the Fab form of Humira was used as a positive control.
  • High affinity clones were identified by following the procedure of Example 3. Of the two 96-well plates, a total of 89 clones with optical densities > 3. 0 (the optical density reading of the positive control was 2.89, and the prototype reading was 2.27), of which 7H3 read 3.25 (equivalent to Affinity increased by about 13.58 times).
  • the CDR1H amino acid sequence of the prototype molecule is PFPFANH, and the sequence of the CDR1H region of 7H3 obtained after evolution is GFSFTNH.
  • Example 4 After the identification, the method of Example 4 can be used to prototype 7H3, and the sequencing results of 20 clones according to Example 3 are still used, and the CDR1L is analyzed by the method of Example 4, and the KA site is selected according to the password table.
  • the frame region on both sides of CDR1L was designed with geese-domain localized random mutagenic primers.
  • the original light chain of 7H3 clone was replaced by the corresponding restriction site, and then sieved according to the method of Example 3, and the panning was performed.
  • the affinity of the most affinity monoclonal antibody was about 40% higher than the 4E8 prototype. Further, the CDR2H, CDR3H, and CDR2 CDR3L regions can be further evolved in the same manner.
  • Example 5 Neutralizing ability identification after evolution of anti-human TNFa monoclonal antibody Using the fully human antibody library provided in Examples 1 and 2, Fab against human TNFa was screened by the method provided in Example 3. Further, the molecular anti-human TNFa monoclonal antibody 4E8 was subjected to multiple molecular evolution including CDR1, CDR2, and CDR3 evolution by the method provided in Example 4, and the optical density reading was obtained to be close to 3.5 (positive control was 2.75, prototype). for 2. 16) clones 7B4 and 2H7, the amino acid sequences of which are shown in the following table.
  • Example 6 Read the optical density data on the reader after dyeing with MTT. The data is plotted (see Figure 4 for the results). It can be seen from the experimental data that the neutralization ability of 7B4.2H7 is significantly higher than that of Humira Fab, and the other clones are roughly equivalent or slightly lower than Humira Fab.
  • Example 6 Neutralizing activity and affinity identification after evolution of anti-human RANKL monoclonal antibody According to the method of Example 3, recombinant human RA KL was used as an antigen (product of Orb i gen), and specific antibodies were screened from HuLib to obtain high ⁇ Affinity cloning 2G8, its ELISA optical density reading is 2.16.
  • the CDR regions of the heavy and light chains were molecularly evolved according to the method of Example 4, and the clones with the key technical indexes significantly higher than the positive control were obtained, and the ELISA optical density reading of 9H6 was 3.48, compared with the prototype 2G8. (Optical density is 2.16) Compared to the obvious improvement.
  • Figure 5 is the affinity data for the prototype molecule 2G8, the best affinity clone 9H6, and three other randomly selected clones, reflected in optical density. It can be seen from these data that the affinity distribution in the molecular population after molecular evolution is very wide, and some molecules have significantly higher affinity than the prototype.
  • Anti-human RANKL monoclonal antibody neutralizing activity inhibits the formation of osteoclasts
  • RAW264. 7 (ATCC No. TIB-71, Manassas, Va.) is a tumor-derived macrophage cell line induced by Abelson mouse leukemia virus, which can differentiate into osteoclasts in the presence of RANKL. Simonet et al. (1997, Cell 89 p. 309) and Lacey et al. (1998, Cell 93 p. 165) describe in detail the detection of osteoclasts in RAW cell culture in the presence of RAML.
  • RAW cells can be stimulated by ligands to differentiate into osteoclast-like cells, and their differentiation can be understood by detecting the activity of TRAP (Tartrate resistant acid phosphatase (TRAP). Therefore, anti-human RANKL single Anti-osteoporosis effects or bone damage can also be detected.
  • TRAP Sterate resistant acid phosphatase
  • TRAP converts para-nitrophosphate to para-nitrophenol, which can be quantified at 405 nm.
  • the activity of TRAP is a surrogate for osteoclast development and is associated with an optical density of 405 nm.
  • a set of optical densities and data on the concentration of anti-RANKL mAbs reflect the inhibition of osteoclast formation by monoclonal antibodies.
  • TRAP Tartrate acid phosphatase staining
  • Multi-core TRAP positive staining is broken bone
  • the characteristic signature of the cell which is the basis for the design of this experiment.
  • RAW 264. 7 cells were used as test materials, 1 ⁇ 10 4 cells/well were seeded in 24-well plates, cultured for 24 hours, and then treated with 50 ng/ml RANKL and different concentrations (10 ng to 500 ng/ml), cells were changed every 3 days. 1 time.
  • TRAP Day 6 anti-tartaric acid phosphatase staining (Sigma-Aldrich, 387-A, USA), cells were fixed in citrate/acetone solution for 1 minute, and incubation solution with naphthol AS BI phosphate as substrate Incubate for 1 hour at 37 °C, wash 3 times with distilled water, counterstain for 2 minutes with hematoxylin. After drying, the xylene is transparent, sealed with DPX (polystyrene + butyrate + xylene), and observed under light microscope.
  • TRAP-positive cells were osteoclasts, and the number of TRAP-positive multinucleated osteoclasts (3 nuclei) was counted by microscopy.
  • the test results are shown in Figure 4.
  • the concentrations of the monoclonal antibodies are: 0, 0. 001, 0. 01, 0. 05, 0. 1, 1. 0, 10.
  • Ong/ml o the anti-human RANKL single obtained by the present invention It has the ability to neutralize RANKL to stimulate osteoclast formation.
  • Example 7. Bioactivity and affinity identification after evolution of anti-human CD20 mAb. Referring to the method of Example 3, the specific antibody 7F2 was screened from HuLib using recombinant human CD20 as an antigen, and the heavy chain was carried out by the method of Example 4. The molecular evolution of the CDR regions of the light chain resulted in the clone 8G3 with key technical indicators significantly higher than the positive control.
  • Figure 7 shows the affinity of the prototype molecule 7F2, the evolved high-affinity molecule 8G3, the positive control Rituxan-Fab, and the negative control Humira-Fab as reflected by the ELISA optical density. It can be seen that the affinity of the evolved 8G3 is significantly higher than that of the original molecule 7F2, which is also significantly higher than that of the positive control. This will be further verified in the following bioactivity experiments.
  • Biological Activity Test The viable cell line was CD20 B lymphocyte tumor cell line DHL-4.
  • the negative control was anti-human Humira Fab humanized mAb and the positive control was Rituxan Fab.
  • Apoptosis was induced by the addition of anti-CD20 monoclonal antibody in vitro, and cell count and MTT assay were performed on days 5 to 7 after the addition of cells and monoclonal antibodies. See the table below for the results.
  • Humira Fab 98. 9 97. 8 97. 2 98. 1
  • DHL4 lymphoma cells were injected subcutaneously into immunodeficient mice according to the amount of 5 ⁇ 107 mice.
  • the injection was 8G3
  • the negative control was anti-human Humira Fab humanized monoclonal antibody.
  • the positive control was Rituxan Fab.
  • 5 mg per mouse was injected. Tumor size was measured on days 10, 20 and 30 after the injection, and the results are shown in Fig. 8.
  • Example 8 Identification of affinity after evolution of anti-human VEGF monoclonal antibody According to the method of Example 3, specific antibody was screened from HuLib using recombinant human VEGF as an antigen, and clone 3D7 having higher affinity was obtained. The molecular evolution of the CDR regions of the heavy and light chains was carried out by the method of Example 4, and the clone 6B2 whose key technical index was significantly higher than that of the positive control was obtained.
  • Figure 9 shows the prototype molecule 3D7, the evolved high-affinity molecule 6B2, the positive control Avastin-Fab, and the negative control Humira-Fab affinity data. It can be seen that the evolved 6B2 is significantly higher than the original molecule and the positive control. This will be further verified in the following bioactivity experiments. Physiological function research
  • a 96-well cell culture plate each well was added 0. 5ml containing 1X10 4 bovine adrenal vascular endothelial cells (available from the Cell Bank of the Chinese Academy of Sciences Shanghai Cell Biology Institute) culture medium and 200IU of VEGF (purchased from Shenzhen Jingmei Company, the same amount of VEGF was added alone on the fourth day to continue to stimulate the proliferation of bovine adrenal endothelial cells.
  • the concentration of the test sample and the positive control stock solution are both 500ug/ml.
  • the positive control was from Genentech 5 ⁇ After the RHFab V2 o diluted with a PBS dilution containing 0.2% gelatin to test the sample and the positive control, each well was added 0. 5ml test sample and positive control. 5 ⁇ The negative control well was added 0. 5ml cell culture solution. Each treatment is set to 3 repetitions. Incubate for 4 to 5 days in a 37 degree 5% CO 2 incubator.
  • c MTT assay Take 0.2 ml of the above treated cells, add 1/10 volume of 5 mg/ml MTT solution, and incubate at 37 °C for 30 minutes, then read the light absorption at 570 nm on the microplate reader.
  • the reference wavelength is 630 nm.
  • the skin was partially disinfected, the subcutaneous tumor mass was taken, the fibrous tissue was removed, and no hemorrhagic, non-necrotic tumor tissue was selected, and the small piece of the size of 0.2 mm 3 was cut with a sharp blade.
  • Another Wistar rat was anesthetized with sodium pentobarbital at 40 mg/kg intraperitoneally, and placed in the supine position. After the limbs were fixed on the surgical plate, the surgical area was disinfected with 75% alcohol, and the skin was cut in the abdomen. Left and right, use a tissue tweezers to poke the liver capsule into a small opening and embed the tumor mass along the tunnel. After the transplantation, the abdominal wall was sutured layer by layer, and the whole process was performed under aseptic conditions.
  • the arterial cannula was fixed on the 7th day after inoculation of the tumor with the method of Lindel l et al. After the abdominal anesthesia was fixed, the laparotomy was performed again (opening about 2 ⁇ 3 cm), the liver was exposed, and the maximum diameter (a) and minimum diameter of the tumor surface were measured. (b) Separation of the gastroduodenal artery, hepatic artery and hepatic artery, ligation of the distal end of the gastroduodenal artery.

Description

利用重叠 PCR定点突变的方法及其
在筛选单克隆抗体中的应用
技术领域
本发明涉及生物技术领域, 具体涉及一种随机突变方法及其在单克隆抗体分子进 化技术中的应用。
背景技术 (一) 治疗性单抗
自 1986 年第一个治疗性单抗药物诞生以来, 治疗性单抗的产业化已经获得巨大的成 功, 这可以从以下几个方面的数据得到阐明。
产品数量在急剧增加。在美国, 已有近 30个治疗性单抗类被批准上市, 已经进入临床 研究的, 目前进入临床研究的单抗共有 123件,其中 23件已进入 III期临床或新药申报 阶段; 新的进入临床研究的治疗性单抗药物还在快速增加。 正在开发的产品有 700多 个, 其中 240多个在不同国家进入临床。 单抗类药物已经占据正在研发的基因工程药 物的 30%以上。
市场规模在迅速扩大。 从市场情况来看, 根据过去二十年的情况来看, 治疗性单抗药 物每年的实际销售增长都明显超出了预期。据 DataMOnitor 2008年的数据, 早在 2003 年, 治疗性单抗已经形成了 72亿美元的销售。 2006年的销售达到 195亿美元, 2007 年为 263 亿美元, 预计 2008 年的销售规模将达到 350 亿美元以上, 年增长率高达 22. 88%。 至今已出现 12个重磅炸弹级的产品。 其中, Enbrel、 Humira Rituxan等 6 个产品年销售超过了 45亿美元。 DataMonitor预计, 2013年, 治疗性单抗市场容量超 过 500亿美元, 并会新出现 10到 12个重磅炸弹级的单抗药物, 使单抗药物达到一个 新的高峰。 由此可见, 无论是从产品研发趋势或是从市场角度, 治疗性单抗都保持了 高强度的超预期增长, 并且这种趋势仍将持续。 预计, 2008-2010 年上市的产品中还 有若干会有过 5亿美元的销售。
临床指征已全面覆盖。 从临床指征上看, 在早期, 治疗性单抗主要针对各种恶性肿瘤 和自身免疫疾病。 经过二十几年的发展, 单抗类药物的临床指征已经覆盖了各种恶性 肿瘤、 自身免疫、 心血管疾病、 感染性疾病等各种重要疾病, 其疗效突出, 副作用小 的特点使其占据了不可取代的地位。 特别是在恶性肿瘤和疑难杂症的治疗方面, 单抗 药物显示了前所未有的光明前景, 已经开创了基因工程药物研究的新时代。
特别值得指出的是, 近几年单抗药物在治疗老年性疾病, 例如帕金森病和阿兹海默症 方面也获得突破性进展, 引起了业内极大的关注。
至今, 在国内已经上市或进入临床的品种多为进口 (13种) 或仿制品 (15种), 国内 机构创新的只有 7种(上市 4种, 在临床 3种), 均属落后的鼠源或嵌合单抗, 缺乏竞 争力。 至今没有出现国内原创的重量级产品 (上海技术预见报告-生物技术研究报告, 2008年 6月)。
由于知识产权意识的不断加强, 仿制已无出路, 开发有自主知识产权的创新型单抗药 物是必然趋势 (上海预见报告)。
(二)、 获得候选单抗的方法 当前,国际上主要有 4种创新型单抗的研发平台,即①鼠源或以鼠源为基础的改造(嵌 合和人源化)、②以 CAT为代表的全人抗体库技术、③人源化小鼠和④单抗分子进化技 术。 第①种已经落后, 第②种成功率太低, 第③种过于复杂、 投入巨大、 前期工作耗 时长且费用高、 风险高。 第④种是近几年逐渐成熟的技术, 国外已有若干成功案例, 如 AME (CDR-grafting, US patent 7175996)、 Morphosys ( TRIM technology, 文献 23, US Patent 7432364) , Crucel l ( ) 等。 它以人工突变和噬菌体高通量筛选技术 为核心, 使现有单抗的技术指标得以提高。 这种技术操作简单、 成功率高、 风险小且 成本低, 成为今后创新型 tMab开发的核心技术之一。
(三)、 单抗库、 单抗分子进化技术 单抗分子人工进化技术主要包括原型单抗分子的获得、 人工突变和以噬菌体为基础的 高通量筛选。 这方面的情况, 文献 1广 20有详细描述。 超大规模全人源单抗库
单抗库技术是由 Huse WD和 J McCafferty等人在 1990年前后创立的一项具有革命性 意义的技术。 此后, 科学家们利用该技术进行了大量工作, 构建了多种结构的单抗库 或其它文库(广 10)。但是由于这种技术本身的局限性(主要是难以获得亲和力能达到 治疗性单抗要求的候选分子), 在治疗性单抗开发方面至今只有 Humira—个产品获得 成功。 为了解决这些问题, 科学家做了各种努力, 但至今未见突破性进展。
克服这种局限性的途径之一是构建超大规模单抗库(1, 2, 5, 8, 10), 以获得更加丰 富的变异, 从而提高获得高技术指标候选单抗的可能性。 但由于构建超大规模单抗库 实际操作上的难度很大, 直到目前仍未获得显著成效, 难以从任何规模的单抗库中直 接获得技术指标达到治疗性单抗要求的候选分子。 分子进化技术
为了解决上述问题,科学家在噬菌体展示技术的基础上发展了分子进化技术(1广 16), 在包括治疗性单抗开发方面获得了很大成功, 已有多个成功案例, 如 US Patent 6989250, 7575747, 7560112, 541033, 7317091, 7435799, 7175996所述。 值得指出 的是, 这些案例是以现有商业化的治疗性单抗作为原型分子的, 且其分子进化的突变 方案采用的是定点突变(21 )、随机突变(1广 15)、 shuffl ing ( 16, 20)、 CDR- grafting ( 17 ) 等方法, 有效突变效率低、 技术难度高、 工作量大, 且所获产物需要交叉许可 才能进行商业生产和销售。 高通量筛选技术一噬菌体展示
包括本发明在内的已有单抗人工分子进化技术都采用具海量筛选能力的噬菌体表面展 示技术, 从而方便地从大至 10E12群体中淘筛出所需的高亲和力克隆。 关于噬菌体展 示的筛选方法, 很多文献 (如文献 2, 5, 8, 10) 中有详细描述。 参考文献
1. Barbas CF, Bain JD, Hoekstra DM, et al. et al. 1992, Semisynthetic combinatorial antibody l ibraries: A chemical solution to the diversity problem ; PNAS 89 : 4457-4461 (1992) .
2. Griffiths, A. D. et al. , 1994, Isolation of high affinity human antibodies directly from large synthetic repertoires. EMB0 J. 13 : 3245-3260.
3. Hawkins RE, Russel l SJ, Winter G. 1992, By-passing immunisation. Human antibodies from synthetic repertoires of germl ine VH gene segments rearranged in vitro. Selection of phage antibodies by binding affinity. Mimicking affinity maturation. J Mol Biol. 226 (3) : 889-96 Huse, W. D. et al. , 1989, Generation of a Large Combinatorial Library of the Immunoglobul in Repertoire in Phage Lambda. Sci. 246: 1275-1281. Marks JD, Hoogenboom HR, Bonnert TP, McCafferty J, Griffiths AD, Winter G., 1991, By-passing immunization. Human antibodies from V-gene l ibraries displayed on phage. J Mol Biol. 5 ; 222 (3) : 581-97.
McCafferty, J. et al. , 1990, Phage antibodies: fi lamentous phage displaying antibody variable domains; Nature 348: 552-554 (1990) .
Rader C, Barbas CF, 1997, Phage display of combinatorial antibody l ibraries. Curr Opin Biotechnol. 8 (4) : 503- 8·
TJ Vaughan, AJ Wi l l iams, K Pritchard, JK. Osbourn, AR. Popel, JC. Earnshaw, John McCafferty, RA. Hodits, Jane Wi ltonl & Kevin S. Johnson, 1996, Human Antibodies with Sub-nanomolar Affinities Isolated from a Large Non- immunized Phage Display Library, Nature Biotech. , 14 : 309 - 314. Winter G, Griffiths AD, Hawkins RE, Hoogenboom HR. , 1994, Making antibodies by phage display technology. Annu Rev Immunol. , 12: 433-55.
Hiroshi Tachibana, Xunj ia Cheng, Katsuomi Watanabe, Masataka Takekoshi, Fumiko Maeda, Satoshi Aotsuka, Yoshimasa Kaneda, Tsutomu Takeuchi, and Seij i Ihara, 1999, Preparation of Recombinant Human Monoclonal Antibody Fab Fragments Specific for Entamoeba histolytica, Cl inical and Diagnostic Laboratory Immunology 6 ( 3 ) : 383 - 387。
Borrebaeck CA, Ohl in M., 2002, Antibody evolution beyond Nature. Nat Biotechnol. 20 (12) : 1189-90.
Juarez-Gonzalez VR, Riafio-Umbari la L, Quintero-Herndndez V, Olamendi-Portugal T, Ortiz-Leon M, Orti z E, Possani LD, Becerri l B. 2005, Directed evolution, phage display and combination of evolved mutants: a strategy to recover the neutral ization properties of the scFv version of BCF2 a neutral izing monoclonal antibody specific to scorpion toxin Cn2. J Mol Biol. 346 (5) : 1287-97.
Moore, J. C. et al., 1996, Directed evolution of a para-nitrobenzyl esterase for aqueous-organic solvents; Nature Biotechnol. 14 : 458-467. 14. Riano-Umbari la, L., Juarez-Gonzalez, V. R., Olamendi-Portugal, T., Orti z-Leon, M., Domingos Possani, L. , Becerri l, B. 2005, A strategy for the generation of specific human antibodies by directed evolution and phage display: an example of a single-chain antibody fragment that neutral izes a major component of scorpion venom, FEBS Journal, 272 (10) : 2591-2601.
15. Schier, R. et al., 1996, Isolation of Picomolar Affinity Anti-c-erbB-2 Single-chain Fv by Molecular Evolution of the Complementarity Determining Regions in the Center of the Antibody Binding Site; J. Mol. Biol. 263: 551-567.
16. Stemmer, W. P. C. , 1994, Rapid evolution of a protein in vitro by DNA shuffl ing ;
Nature 370 : 389-391 (1994) .
17. Daughtery, B. L. , et al. , 1991, Polymerase chain reaction faci l itates the cloning, CDR-graf ting, and rapid expression of a murine monoclonal antibody directed against the CD18 component of leukocyte integrins, NAR, 19 : 2471-2476.
18. Hayashi, N., et al. , 1994, Simultaneous Mutagenesis of Antibody CDR Regions by Overlap Extension and PCR, BioTech., 17 : 310 - 315.
19. Marks JD, Griffiths AD, Malmqvist M, Clackson TP, Bye JM, Winter G. 1992, By-passing immunization: bui lding high affinity human antibodies by chain shuffl ing. Biotechnology (N Y) . 10 (7) : 779- 83·
20. Stemmer, W. P. C., 1994, DNA shuffl ing by random fragmentation and reassembly :
In vitro recombination for molecular evolution ; PNAS 91 : 10747 - 10751.
21. Dower, W. J. et al. 1988, High efficiency transformation of E. col i by high voltage electroporation ; NAR 16 (13): 6127-6145.
22. Ho, S. N. et al., 1989, Site-directed mutagenesis by overlap extension using the polymerase chain reaction; Gene 77 : 51-59.
Virnekas, B., Ge, L., Pliickthun, A., Schneider, K. C., Wel lnhofer, G. & Moroney, S. E. Trinucleotide phosphoramidites: Ideal reagents for the synthesis of mixed ol igonucleotides for random mutagenesis. NAR. 22, 5600-5607 (1994) . 发明内容
本发明的目的是克服现有技术中的缺陷, 提供一种雁阵式定域随机突变方法及其 在单抗分子进化技术中的应用。
本发明一方面提供了一种雁阵式定域随机突变方法, 包括下列步骤:
1 ) 雁阵式突变引物的设计与合成:
雁阵式随机定域突变方案是以图 2所示的雁阵式引物设计为基础的。 该设计方案 的要点如下:
( 1 ) 雁阵式引物设计:
将指定发生随机突变区域及其侧翼序列作为随机突变 PCR扩增的目的序列, 并设计该目的序列的中央引物、 左侧引物及右侧引物:
侧翼序列包括 5 ' -端和 3 ' -端两部分, 长度根据与其他序列拼接的需求, 各取不少于 20个碱基的区域, 一般为 20-40个碱基, 较佳的, 侧翼序列中 应包括有限制性酶切位点以满足拼接需求。 侧翼序列可由本技术领域的技 术人员凭借需求, 按常规确定。
中央引物的设计: 以目的序列等分处为中心点, 两侧各取多个碱基作为中 央引物, 中央引物至多包含一个突变位点。 引物中心点左右序列的长度以 保持 Tm值在 45~58度为宜, 优选范围是 48~54度, 一般而言, 中央引物的 长度约为 38~60个碱基, 优选范围是 38~45个碱基。
左侧引物及右侧引物的设计: 设计目的序列中心点以左的重叠延伸 PCR引 物作为左侧引物, 设计目的基因中心点以右的重叠延伸 PCR引物作为右侧 引物, 各左侧引物与右侧引物均至多包含一个突变位点。 各左侧引物与右 侧引物的长度约为 20-40个碱基, 且引物的长度以保持与相邻引物的重叠 区域的 Tm值在 45~58度为宜, 优选范围是 48~54度。 左侧引物、 右侧引物 及中央引物共同组成如图 2所示的雁阵式。
无论目的序列的长短, 本技术领域的技术人员均可采用常规的引物设计软件 如 DNAStar软件, 设计出符合上述条件的引物。
一般来说, 侧翼序列中应不包含突变位点, 突变位点仅分布于指定发生随机 突变的区域。
上述所有的引物中应有多个引物带有突变, 并且每个突变引物仅含一个突变 位点, 在不同的突变引物间, 突变位点的位置或碱基序列不同。 突变位点可以指 定。 突变引物在突变位点的突变碱基可为根据需要设定, 也可以是随机突变。 ( 2) 引物合成: 引物合成时候, 中央引物可取正向或反向, 左侧引物均取正向, 右侧引物均取反向。 上述方法进一步图示说明如下: 假设下述原型序列有 5个以下划线表示 MCTM4五个需要突变的位点:
AGTCAGC (SEQ ID N0 : 6) 按照上述方法, 其引物设计及其 overlapping关系如图 1所示。 在其中央突变点 M0 两侧各取 2CT30个碱基作为中央引物, 其长度约为 4CT60个碱基, 优选范围是 4CT45 个碱基。 中央或近中央可设计 1个突变。 中心点左右序列的长度以保持 Tm值在 45~58 度为宜, 优选范围是 48~54度。 在其余各突变点两侧各取 1CT20个碱基, 引物的长度 应以保持与相邻引物的 overlapping区域的 Tm值在 45~58度为宜, 优选范围是 48~54 度。
2) 随机突变 PCR :
将上述左侧引物、 右侧引物及中央引物混合进行 overlapping PCR, 获得指定 区域发生随机突变的扩增序列。
overlapping PCR方法为已知技术,可参考文献: Wu G, JB Wolf, AF Brahim. S. Vadasz , M Gunasinghe, SJ Freeland, 2006, Simplified gene synthesis: A one-step approach to PCR-based gene construction, J. biotech., 124(3): 496-503 。
所述指定随机突变区域为目的基因中一段连续的正链 DNA序列, 优选含有 6-40 个碱基。 较佳的, 有 21-40个碱基。 指定随机突变区域可以根据操作者的需要确定, 如抗体基因的 CDR区、 酶分子或蛋白分子的 domain等。
所述引物中的一个突变位点为指定随机突变序列中一个拟突变密码子对应的三联 碱基, 突变位点上的三联碱基可以是与原型不同的任意碱基组合, 从而导致该突变位 点所编码的氨基酸的随机突变。
参与随机突变 PCR的引物均至多包含一个突变位点。 而不同的引物间, 突变位点 的位置或碱基序列不同。
由于每个突变引物均只含有一个随机突变位点, 这使得同时含有多种突变引物的 PCR反应体系能够容易进行扩增, 相比含有多个不定数随机突变位点的 PCR反应体系, 扩增的成功率获得了大大的提升。 此外, 尽管本发明的每个突变引物只含有一个随机 突变位点, 由于 PCR反应体系中含有多种单点随机突变引物, 因此在最后的扩增产物 在指定随机突变区域内不仅有单点随机突变, 也可以发生多点随机突变。
优选的, 引物间, 所述 Tm值至多相差 2度。 此设计可保证所有引物在同一 PCR 条件下进行。
本发明第二方面提供了上述雁阵式定域随机突变方法在单克隆抗体分子进化技术 中的应用。
通过将雁阵式定域随机突变方法与 KA扫描及噬菌体展示技术的结合,可以实现单 克隆抗体分子的进化。
本发明第三方面, 提供了一种单克隆抗体分子进化方法, 包括下列步骤:
1 ) KA扫描 (key amino acid screening,关键氨基酸扫描):
a. 以待进化单克隆抗体对应的特异性抗原为亲和对象,从抗体库中筛选出多个能 产生与该抗原特异性结合的抗体克隆。
较佳的, 筛选出的克隆数量至少为 96个。
所述抗体库选自全人源抗体库、 特异性人源化、 鼠源、 兔源、 骆驼源、 全人工合 成等来源的 Fab或 scFv抗体库中之任一或为二者的合并。所述全人源抗体库优选全人 源超大规模抗体库。
所述待进化单克隆抗体可以是各种来源的单克隆抗体, 如已知的单克隆抗体、 从 抗体库中淘选出的单抗、 各种哺乳动物杂交瘤获得的抗体、 从哺乳动物脾脏或外周血 的免疫细胞获得的抗体、 或者已经进化的抗体等。 较佳的, 待进化单克隆单抗为: 以 目标抗体对应的抗原为亲和对象, 从单克隆抗体库中筛选出的与该抗原亲和力最高的 单抗。 b. 从步骤 a获得的克隆中, 选出亲和力最高、 次高和较高的克隆各 5-10个, 进 行抗体 DNA测序。 亲和力最高的克隆是指:该克隆产生的抗体与待进化抗体对应的抗原的亲和力 (以后简称亲和力) 在经步骤 a获得的克隆中排位最前。 如 5个亲和力最高的克 隆即为亲和力排位为 1-5位的克隆, 10个亲和力最高的克隆即为亲和力排位为 1-10位的克隆。
亲和力次高的克隆是指:与所选亲和力最高的克隆中亲和力相对最低的克隆相 比, 在相同条件下与特异性抗原 ELISA反应后的光密度读数低至少 0. 7单位, 且 在满足上述条件的克隆中排位最前。
亲和力较高的克隆是指:与所选亲和力次高的克隆中亲和力相对最低的克隆相 比, 在相同条件下与特异性抗原 ELISA反应后的光密度读数低至少 0. 7单位, 且 在满足上述条件的克隆中排位最前。
c 根据步骤 b测序结果, 分析这些克隆中同一指定随机突变区域 (任一 CDR区) 中的氨基酸分布情况, 选择出该区域的不可变位点, 及可变位点, 可变位点又 区分为突变无效位点,及与亲和力有关的可变位点即 KA位点。
不可变位点: 在步骤 b筛选出的所有克隆或绝大多数克隆(〉80%)或亲和力最 高的克隆中氨基酸相同的位点视为不可变位点。
突变无效位点: 与亲和力无关的可变位点。突变无效位点的主要特征是, 在步 骤 b获得的亲和力最高的克隆中, 氨基酸的变化均无规律。 例如, 既包括非极性 氨基酸 (如甘氨酸、 丙氨酸、 缬氨酸、 亮氨酸、 异亮氨酸、 苯丙氨酸、 脯氨酸), 也包含极性氨基酸(如色氨酸、 酪氨酸、 丝氨酸、 半胱氨酸、 蛋氨酸、 天冬酰胺、 谷氨酰胺、 苏氨酸), 既有酸性氨基酸 (如天冬氨酸、 谷氨酸), 也有碱性氨基酸 (如赖氨酸、 精氨酸、 组氨酸)、 芳香族氨基酸(如色氨酸、 酪氨酸、 苯丙氨酸)、 亚氨基酸 (脯氨酸)、 含硫氨基酸 (如半胱氨酸、 蛋氨酸)。
与亲和力有关的可变位点:指定随机突变区域在排除了不可变位点和突变无效 位点后剩下的位点。
2 ) 雁阵式定域随机突变:
采用前述雁阵式定域随机突变方法获得 KA位点或可变位点发生随机突变的目 的序列扩增产物。 雁阵式定域随机突变时, 突变位点即为步骤 1 ) 中所述 KA位点或可变位点对 应的三联碱基, 所述指定发生随机突变区域为任一 CDR区。
3 ) 将步骤 2获得的 KA位点或可变位点发生随机突变的目的序列扩增产物与 该抗体其余部分的序列拼接成完整的 Fab重链或轻链的 DNA分子后,*** 到噬菌体载体中, 并转化入宿主细胞建成突变库;
4) 以待进化单抗对应的抗原为亲和对象,从突变库中筛选出多个能产生与该 抗原特异性结合的抗体的克隆,并选择出亲和力相比待进化单抗获得提高 的克隆。
较佳的, 在步骤 3前重复步骤 1和 2, 获得不同 CDR区发生随机突变的扩增产物。 通过同样的操作, 可以分别获得重链和轻链各自三个 CDR区的突变 PCR产物, 再通过 三个突变 PCR产物的 overlapping PCR即可获得在 CDR区带有目的突变的 Fab结构, 并克隆到噬菌体载体中。 载体可为 pC0Mb3M。
同样较佳的, 在步骤 4)后, 以步骤 4)选择出的亲和力最高的克隆分泌的单抗为 原型, 重复步骤 1 ) -4) 进一步进化单克隆抗体。
上述单克隆抗体分子进化方法我们又称其为 PAE ( Programmed Artificial Evolution, 即程序化人工进化技术)技术, 该技术是核心技术人员在多年技术积累的 基础上, 以噬菌体展示技术为基础建立的人工改造单抗分子, 从而使其能满足治疗用 单抗要求的核心技术。
PAE技术优势:
( 1 )速度快。 2-3个月即可获得性能明显提高的人工进化产物。
(2) 成功率高。 从理论上讲, 任何单抗都可以用这种方法改造, 而且多数情况下 可以获得比较理解的结果, 其亲和力、 中和能力或其他生物学特性有明显改善。 因 此, 利用这种方法进行治疗性单抗药物的开发风险大大降低。
( 3)应用范围广。 本发明所述技术在单抗, 特别是治疗性单抗研究上有多方面地 应用。 对(1 )现有治疗性单抗或者(2 )在研发过程中发现的带有某些特定缺陷而 不能作为治疗性单抗进一步开发的候选单抗进行改造, 以达到如下目的:
-提高亲和力: 国外一些公司和我们的研发工作已经证明, 利用分子进化技术可 以快速提高单抗的亲和力。作为治疗性单抗, 其亲和力有较高的要求, 目前业内公 认的指标是 InM以下,但目前多数治疗性单抗的亲和力均达到 0. InM或更高。在研 究开发过程中,许多单抗因为亲和力不够而不能够作为治疗性药物进行开发。我们 的研究发现, 人工进化可以使单抗的亲和力提高 1至 3个数量级。 因此, 利用人工 进化进一步改善治疗性单抗的亲和力是一条行之有效的快速方法。例如, 我们通过 人工进化, 获得了比原型单抗亲和力高近 300倍的抗人 TNFa单抗。
--提高疗效: 由于亲和力的提高以及其他方面生物学特性的改变, 其疗效可以得 到明显的提高。在同样剂量下, 可以获得更好的疗效, 或者达到同样的疗效可以使 用更低的剂量。我们在研究中曾经发现, 经人工进化的抗人 RANKL单抗亲和力比国 外同类产品提高了 38. 6倍, 只需要其 1/4的剂量即可获得同样的疗效。 我们的另 一案例中,人工进化产物对靶蛋白的亲和力未见明显提高,但其中和能力却提高很 多, 其疗效也明显提高。
- 降低副作用: 由于亲和力、 特异性等方面的提高以及其他方面生物学特性的改 变, 其副作用可以得到明显的降低。 其原因可能有(1 ) 由于剂量的降低 (2 )减少 了交叉反应。
-改变单抗的特性: 单抗分子的某些特性改变后, 更容易进行相关研究 (例如, 临床前研究中与小动物的兼容性) 或能更好地满足其他方面的需求。
--快速人源化: 利用单抗库技术可以对鼠源或其他来源的单抗进行人源化, 使外 源遗传物质减少到最低, 从而大大降低免疫原性。 到目前为止, 借助人工进化技术 是单抗人源化最可靠、 最快速的方法。
本发明优选的单克隆抗体分子进化方法详述如下:
单克隆抗体分子进化的原型单抗分子来源于全人源超大规模抗体库 HuLib。 该抗 体库采用来自 22个省区或直辖市、包括 16个民族的约 3000位健康青年人的血样,历 经 3 年研制的具有充分复杂性和变异性的全人源超大规模抗体库, 其有效容量高达 10E11 , 理论上可以从中筛选出任何抗原的单抗。 详细构建过程参照文献广 10的方法 进行。 此前已经发表的人源抗体库均为来自 1至少数几个个体的样本建立的, 其变异 的丰富程度不足以满足筛选高指标候选单抗的要求。 这是目前唯一来自如此大样本的 非突变超大规模全人源抗体库。 该抗体库是本发明所述分子进化原型单抗的来源。
理论上, 从上述抗体库中可以筛选出任何抗原的单抗。 至今已经从中获得了抗人 G-CSF单抗 28株、 抗人 IL-11单抗 21株、 抗人 TNFa单抗 6株、 抗人 RANKL单抗 17 株等。 这些单抗的亲和力分布在 10E-6~10E-8M。 根据已有的结果, 从这个抗体库中可 以获得所有抗原的单抗。
如同其它直接来自抗体库的单抗一样, 来自上述抗体库的单抗, 其亲和力也通常 在 10E-6~ 10E-8M, 筛选出达到 10E-9M或更高亲和力的候选单抗有相当难度。 为此, 需要结合本发明所述的 PAE技术对从该库中筛选出的单抗进行进一步改造, 使其能够 达到治疗性单抗的要求。
技术要点:
PAE 技术的要点主要有三个方面。 第一、 高效的突变设计。 突变引物的设计是能 否获得适当突变的关键。 其要点主要有: (1 ) 根据项目目的选择适当的突变点, 采用 本发明所述的 KA扫描法; (2)根据选定的突变点及交接序列确定引物序列。特别是第 ( 1 )项内容十分重要, 不妥的设计会导致无法获得理想的突变。本发明主要是在突变 点的选择和突变方案设计方面进行了改进。 第二、 大容量噬菌体展示库的建立。 人工 进化需要建立具有海量突变体的噬菌体库, 它由三个步骤构成, 即 PCR和高效连接和 转化。这三个步骤中涉及的 PCR、 DNA连接和质粒 DNA转化虽都是成熟技术, 但是由于 超大库容的特殊需要, 这三个步骤并不是轻而易举的。 特别值得提出的是, 由于引物 中还有大量突变, 其 PCR常常遇到很大的困难。 本发明的 GCR法在很大程度上解决了 这一问题。 第三、 高效的噬菌体淘筛方案。 噬菌体展示技术虽已很成熟, 但是如何从 海量(10E1CT10E12)的突变体中筛选出符合要求的克隆并不是一件十分轻松的事, 使 用哪种载体、 采用哪种具体的筛选方案不但会影响试验进程, 而且会影响试验结果。 文献 2, 5, 8, 10提供了详细的淘筛方案。
经过长期的工作, 我们建立的 PAE技术已经相当成熟, 在上述三个方面均已建立 程序化的实验操作体系, 能够保证试验的正常进行。 突变方案 人工进行基因突变的方法有很多种。 就 DNA分子水平上的突变方法而言, 使用比 较广泛的成熟技术有定点突变(21 )、随机突变(1广15)、 domain shuffling ( 16, 20)、 CDR-grafting ( 17) 等方法。 在单抗分子进化技术中要求既能获得尽量丰富的有效变 异, 又能避免对超大库容的需求。 变异丰度不足难以获得理想的突变体, 变异丰度过 大则对库容要求大幅度提高, 会极大地增加建库和淘筛的难度。 因此, 如何在获得足 够有效变异的前提下尽量降低对库容的要求, 是一个值得探索的问题。 本发明提供了一种能大幅度降低库容要求并提高有效突变的方法。其根本点在于, ( 1 ) 从前述全人抗体库 HuLib 中筛选高质量的候选单抗原型分子, 其亲和力应达到 10E-8mol/l或更高, 从而大大降低后续改进的压力。 (2) 降低无效突变。 根据关于单 抗分子结构的已有资料, 特别是同一抗原表位已有单抗的分子结构信息, 确定原型中 可能有效的突变位点, 剔除明显无效的突变位点, 使库容需求大幅度降低。 无效突变 点的确认可以通过下述的 KA扫描方法完成。 (3)采用下述的雁阵式突变方案,提高突 变效率和 PCR的可操作性, 降低对建库库容的要求, 使实际操作更容易进行。
KA扫描方法 从上述抗体库中可以筛选出大量特异性的克隆, 从中选出亲和力最高、 次高和较 高的克隆各 5个,进行 DNA测序。三类克隆在亲和力方面应相差一个数量级(在 ELISA 检测中光密度读数相差约 0. 7单位)。根据测序结果,可以分析三个 CDR区氨基酸的分 布情况。那些在所有克隆或绝大多数克隆(〉80%), 尤其是高亲和力克隆中氨基酸相同 的位点视为不可变位点, 其余的视为可变位点。 再根据氨基酸分布情况, 从可变位点 中进一步甄别出与亲和力无关的可变位点(突变无效), 即可确定与亲和力有关的可变 位点, 即 KA位点。突变无效位点的主要特征是, 在亲和力最高的克隆中氨基酸的分布 无规律。
KA位点是在排除了不可变位点和突变无效位点后剩下的部分, 氨基酸数量已大幅 度减少。 在此基础上按照下述的定域随机突变方案进行突变, 可以大大降低对突变群 体大小的要求, 使得建库和筛选操作很容易进行。
根据 15个克隆的氨基酸分布难以区分三类氨基酸时, 可适当增加克隆数量。 雁阵式定域随机突变
PAE技术采用了雁阵式定域随机 (Goose Array CDR- in random, GCR) 突变方案, 与其他突变方案相比有两个优势: ①可同时进行多点突变, 容易创造丰富的变异; ② 一组引物间的随机组合可产生多突变点的随机组合, 突变效率比定点突变高至少 3个 数量级; ③突变区域是确定的(即定域), 但区域内具***点的突变是随机的, 它结合 了定点突变和随机突变的双重优势。 (4) 常规的随机突变方案中每条引物都有很多突 变点, 往往 PCR很难进行, 所得产物往往严重偏离随机排列。 本方案中每条引物仅包 含一个突变点, 可避免这种情况。
图 2是雁阵式随机突变方案示意图。 这种突变设计有以下特点: (1 ) 可以在一个 指定区域内同时进行多点随机突变或多点定点突变。 该方法每条引物上只有一个突变 点, 但不同引物上对应于原型系列的突变点位置不同。 (2 ) 避免了一般多点突变方法 中复杂 PCR难度大的问题, 一般情况下一次 PCR即可获得良好的 PCR产物。 (3 ) 有效 突变效率比通常的随机突变或多点定点突变要高 2个数量级。 (4) PCR产物多是杂合 的, 其纯合过程将在转化后细菌的繁殖过程中完成。 因此, 对转化效率的要求相对较 低。 在同样转化效率情况下, 获得的有效库容比常规方法高 1倍, 这在后续的建库过 程中有重要意义。
附图说明
图 1 : 一个典型序列的引物设计;
图 2: 雁阵式 PCR引物设计示意图
*代表突变点, 引物设计中以 N表示, 可以是四种碱基的任意一种。 可以根据试 验设计要求确定四种碱基在该点的比例, 从而实现对突变群体在该点突变的控制。 图 3: pC0Mb3M质粒结构图。该载体是以 pC0Mb3H为基础改建的, 其两个多克隆位点与 原始载体不 同 , 其余部分未作修改。 该载体的轻链测序引物为 gcgattgcagtggcactggc (SEQ ID NO: 14), 重链测序弓 |物为 cctacggcagccgctggattg (SEQ ID NO : 15)。 图 4. 抗人 TNFa抗体 7B4、 2H7、 4D3、 6F5、 3C9、 3H6等 6个 Fab克隆亲和力试验结 果
图 5. 以光密度反映的原型分子 2G8、最好亲和力克隆 9H6以及另外三个随机挑选的克 隆的亲和力数据。 从这些数据中可以看出, 分子进化完成后的分子群体中亲和力分布 很宽, 且有一些分子的亲和力明显高于原型。
图 6: 抗人 RANKL抗体对破骨细胞形成的影响。 图中数据为 TRAP染色细胞的计数结果。 纵坐标为形成的破骨细胞数; 横坐标为抗体浓度, 范围如正文所述。
图 7: 抗人 CD20单抗 ELISA实验的光密度。 进化后的 3D7具有明显高于原型 6B2和阳 性对照 Rituxan的亲和力。
图 8: 抗人 CD20单抗内杀伤试验 图 9 抗人 VEGF抗体亲和力测定结果
具体实施方式
以下列举具体实施例以进一步阐述本发明, 应理解, 实例并非用于限制本发明的保护 范围。
以下列举了四个候选治疗性单抗的研制。并以抗人 TNFa单抗的研制为例说明本发明的 操作程序, 并说明四个治疗性单抗的生物活性鉴定情况。 实施例 1 全人源超大规模抗体库构建 全人源超大规模抗体库的构建参考文献广 10的方法进行。 具体操作如下:
1. 釆集血样和 cDNA合成 收集 3000人的外周血各 lml, 混合, 用淋巴细胞分离液 (医科院天津血研所生产) 分 离单个核细胞。 用 GIBC0公司的试剂盒, 从分离的人外周血淋巴细胞中提取细胞的总 mRNA。 用 GIBC0公司的 mRNA纯化试剂盒纯化, 以上述获得的 mRNA为模板, 反转录出 cDNA第一链。 以上步骤按照厂家提供的说明书进行。
2. PCR扩增
1. 引物设计
为了构建全人源 Fab抗体库, 在引物设计时, 尽可能使 PCR引物对人群具有广泛的通 用性。我们参照国内外已发表的多种人单抗基因家族序列中 Fv区两端较保守的区段序 列, 设计了人单抗 VH基因(hVH)、 VL基因(hVL)、 5 ' 端(back)、 3 ' 端(forward)引物。 为了进一步加强引物对人单抗 V区基因扩增的通用性, 在各引物序列中引入了多处简 并位点(多义位点)。根据所用载体 pC0Mb3M (加入了以下内容涉及到的限制酶切位点)。 扩增 Kappa和 lambda链的引物和重链 gamma链 Fd区域的引物设计为表 1所示。 引物 序列包含有用于克隆的限制性位点。
PCR扩增条件为: lOOul体系, 正反向引物各 luM, 30个循环 (预变性 2分钟, 94C1 分钟, 50C2分钟, 72C3分钟, 后延伸 1分钟)。 PCR产物在 1. 2%琼脂糖凝胶上 120V 电泳约 20分钟, 割胶并进行胶纯化。 然后, 用 Ascl和 Nhel或 Sfi l和 Notl 酶切处 理后先 (轻链) 后 (重链) 连接到载体 pC0Mb3M, 然后转化 E. col i TG1。 .
表 1. 扩增全人源 Fab片段的引物 (参考文献 10)。 引物方向为 5 ' -3 ' , 其中 M=A or C, Y= C or T, W =A or T, R=A or G, H=A, C, or T, S=5 C or G, K= T or G.
Figure imgf000017_0001
(Sad) gactcgagatggccccagtgtgaggtgcagc
(SEQ ID NO: 20)
VLla: VH4c:
ctgagctccagtctgysctgactcagccw gactcgagatggcccaggtgcagctacagsa (SEQ ID N0:7) (SEQ ID N0:21)
VLlb:
ctgagctccagtctgtgytgacgcagccg
(SEQ ID N0:8)
VL2a: Gamma heavy chain 3, primers (Spel) ctgagctcmackttataytgactcaaccg
(SEQ ID NO :9)
VL2b: FDG1:
ctgagctccagactgtggtaacycaggag ctactagttgtgtgagttttgtcacaagattt (SEQ ID NO: 10) (SEQ ID N0:22)
VL3a: FDG2:
ctgagctctcctatgwgctgactcagcca ctactagttttgcgctcaactgtcttgtccac (SEQ ID NO: 11) (SEQ ID N0:23)
VL3b: FDG3:
ctgagctctcttctgagctgactcaggac ctactagttgtgtgagttgtgtcaccaagtgg (SEQ ID NO: 12) (SEQ ID NO: 24)
FDG4:
ctactagttgggggaccatatttggactcaac (SEQ ID N0:25) 反应体系的组成:
成分 数量 (微升)
10X PCR反应缓冲液 10
25 mM Mg2S04 10
SuperPfu DNA聚合酶 (5单位 /微升) 1 引物 (2微克 /微升) 各 1微升, 共计 22微
灭菌三蒸水 至 100微升
b) 反应条件:
预变性: 94度 2分钟
主循环: 94度 20秒, 51度 20秒, 72度 15秒。
循环数: 20
后延伸: 72度 2分钟
PCR过程在 Thermocycler热循环仪上进行。
其中, 引物序列中的多义位点代号, 系根据国际生物化学学会(IUB)命名委员会 (NC) 公布的标准方案所编。 引物均委托上海生工公司进行合成。
3. PCR产物的回收及纯化 按照上述条件进行 PCR后, 将产物在 0. 8%琼脂糖凝胶上电泳进行鉴定, 发现有分子量 分别在 650bp左右和 670bp左右的两条条带, 用 Promega公司的胶回收试剂盒回收片 段, 操作按照厂家的说明书进行。
3. Fab重链和轻链 PCR片段克隆到 PC0Mb3M载体
按照上述条件进行 PCR后, 获得两端带有相应酶切位点的 H和 L片段, 进行纯化, 去 除引物和 dNTPs。 纯化后片段用相应的酶 (均购自 Promega公司) 进行双酶切, 产生 可与载体 pC0Mb3M相连接的粘性末端, 纯化后与载体连接。
噬菌粒载体 pC0Mb3M本身包含有 Sacl/Hindlll和 Xhol/Spel酶切位点, 可与上述 PCR 片段相连接。 可采用常规的 DNA连接酶, 将 PCR片段克隆进入噬菌粒载体上相应的位 点。 在 pC0Mb3M载体上其相邻位置是 g3基因, 将来可表达 Fab-g3p融合基因。
pC0Mb3M载体的构建方法: 以 Sacl/Hindlll/Xbal片段***到 pC0Mb3H的 Sacl/Xbal 位点, 形成的新载体即为 pC0Mb3M。 其图谱如图 3所示。 4. 转化、 建库
1升 LB培养液加入 1ml过夜培养的 TG1细胞, 培养至 0D值约 0. 3~0. 4, 4000rpm离心 收集细胞, 10 倍体积的冰纯水洗涤两次, 重悬于 1ml 含 2%的 Yeast Extract , l%polypeptone ImM MgC12的 lOmM Tris- HC1缓冲液 (pH8. 0) 中。 100 μ 1电击感受 态细胞加入连接过夜的 DNA样品 100ng, 电压为 10千伏进行电击, 将包含 Fab片段的 连接载体转染进入 E. coli TGI细胞。 然后将 E. coli细胞培养于 S0BAG (含 100 mg/L 氨苄青霉素和 2%葡萄糖的 S0B培养基)琼脂板,培养温度为 30°C,其中转化有 pC0Mb3M 载体的 E. coli细胞成活。 反复进行电转化, 使所获抗体库的容量达到 1 X 10E11。 以 2 X YTAG (含 100 mg/L 氨苄青霉素及 2%葡萄糖的 2 X YT 培养基) 稀释细菌至 0D600=0. 2; 再以 15 ml该悬液培养至对数生长期, 加入 lOEl lpfu的 M13K07辅助噬菌 体 (购自 Promega公司), 37°C振摇培养 1 h, 离心后重悬于 10 ml 2 X YTAK (含 100 mg/L氨苄青霉素及 70 g/ml卡那霉素的 2 X YT培养基), 摇床培养过夜, 于 4°C以 1 500 X g离心 15 min。 收集上清即为全人源 Fab噬菌体展示文库。 将其分装后于 _20°C 保存, 以备下一步以特异性抗原对文库进行 "panning" (淘筛)。 实施例 2 人 B细胞来源的全人源抗人 TNFa单抗基因获得 除了上述途径外, 某些抗原还有获得全人源单抗基因的其他来源, 例如分泌抗人 TNFa 单抗的人白细胞等。
1. 血样及其初步筛查
取活动性类风湿关节炎病人外周血 5毫升,用淋巴细胞分离液分离白细胞,进行培养, 根据 ELISA结果鉴定阳性克隆。
为了获得分泌抗人 TNFa的人 B细胞, 首先用重组人 TNF (上海欣百诺生物工程有限 公司)常规包被 96孔板, 每孔用该蛋白 250ng, 包被过夜。 然后, 用 5%脱脂奶粉室温 封闭 2小时, 奶粉用 pH7. 2 PBS配制。 洗涤后, 加入不同病人血清 100微升, 室温温 育 1小时。 然后加入过氧化物酶标记的羊抗人 IgG, 室温放置 1小时。 洗涤至少 5遍 后, 加入含 TMD或其他显色剂, 室温或 37度处理 20分钟。 最后, 加入终止液。 加入 的过氧化物显色底物加入 10分钟后, 用 50 1 1N的硫酸终止反应, 读取 450nm光密 度值。 选取阳性且 0D值高的血清作为获选血样。 2. 人外周血白细胞的分离
按照下述配方配制 10倍红细胞裂解液: 称取 NH4C1 80g, KHC03 10 g, Na4EDTA 3. 7 g,溶于 800 mL蒸馏水中,用 1N HC1 or IN NaOH调节 pH值用至 7. 2-7· 4,定容至 1000ml。 然后按照下述步骤分离外周血白细胞:
a) 取新鲜抗凝血, 400_500g离心 5分钟, 离心弃上清。
b) 加入 6-10倍细胞体积的红细胞裂解液, 轻轻吹打混匀, 裂解 1-2分钟。例如细 胞沉淀的体积为 lml, 则加入 6-10ml的红细胞裂解液。 本步骤在室温或 4度操 作均可。 注意: 对于鼠的血液, 裂解 1-2分钟已经足够, 对于人的外周血, 宜 延长裂解时间至 4-5分钟,并且裂解过程中宜适当偶尔摇动以促进红细胞裂解。 c) 400-500g离心 5分钟, 弃红色上清。 4°C离心效果更佳。
d) 如果发现红细胞裂解不完全, 可以重复上述步骤 2和步骤 3—次。 通常极微量 的红细胞不会影响后续的一些检测。
e) 洗涤 1-2次:加入适量 PBS、HBSS、生理盐水或无血清培养液,重悬沉淀, 400_500g 离心 2-3分钟, 弃上清。 可再重复 1次, 共洗涤 1-2次。 洗涤液的用量通常应 至少为细胞沉淀体积的 5倍, 4°C离心后所得沉淀即为白细胞。按照 lOOmg或 10E7 白细胞沉淀 1ml的比例加入 Trizol , 立即进行总 RNA抽提纯化或 _80°C保存备 用。
3. mRNA的分离
按照 TriZol (购自 Invitrogen, Cat. No. 12183-555) , ) 分离总 RNA, 过程按照厂家 说明书进行。 所得产物 -80°C保存备用。
用 Dynabeads mRNA Purification Kit (购自 Invitrogen, Cat. no. 610. 06 ) 分离纯化 mRNA o
4. PCR获得全人源抗人 TNF 单抗基因
以上述所得 mRNA为底物, ol ig0-dT25 (委托上海捷瑞生物工程公司合成)为引物, 用 MMLV反转录酶 (Invitrogen公司产品, Cat. No. 28025-013 ) 以获取 cDNA第一链。 上述操在均按照厂家说明书进行。用下述引物和条件进行 PCR,所用扩增酶为 ClonTech 的 Pfu以确保扩增过程中减少可能的突变。 用实施例 1所示引物进行 PCR以扩增 Fab 结构的重链和轻链。
PCR条件: a) 反应体系的组成:
成分 数量 (微升)
10X PCR反应缓冲液 10
25 mM Mg2S04 10
SuperPfu DNA聚合酶 (5单位 /微升) 1
引物 (2微克 /微升) 各 1微升, 共计 22微升 灭菌三蒸水 至 100微升
b) 反应条件:
预变性: 94度 2分钟
主循环: 94度 20秒, 51度 20秒, 72度 15秒。
循环数: 20
后延伸: 72度 2分钟
PCR过程在 Thermocycler热循环仪上进行。
c) 电泳鉴定与胶回收
按照上述条件进行 PCR。 完毕后将产物在 1%琼脂糖凝胶电泳上进行鉴定, 两个 PCR的 产物分别为约 650bp和 670bp左右, 与理论大小相符。 用 Promega公司的胶回收试剂 盒回收该片段, 操作按照厂家的说明书进行, 各得 DNA约 20微克。
以实施例一中所示方法, 把上述 PCR产物克隆到 pC0Mb3M中, 并转化、 建库。 实施例 3、 从全人源抗体库淘筛抗人 TNFa单抗 以实施例 1和 2建立的抗体库为基础进行,淘筛的操作步骤如下。淘筛及其他过程中, 以 Humira的 Fab形式作为阳性对照。
1. 复苏的抗体库菌株 1毫升加入新鲜 LB培养基 14毫升, 于 50毫升三角瓶中 37 度培养 16小时。
2. 12000rpm高速离心 10分钟, 转移上清至一个无菌的 50毫升离心管中, 保存备 用。 其滴度应在 2X10E11以上。 3. 以纯化的重组人 TNFa (由上海欣百诺公司提供) 为抗原, 常规方法包被 25毫 升细胞培养瓶。包被后的细胞瓶中加入不少于 3X10E10噬菌体颗粒, 37度温育 1小时。
4. 倒掉瓶中的液体, 用 10毫升加入了 l%TVeen-20的 PBS洗涤培养瓶 10次。
5. 在培养瓶中加入 1毫升对数期的 TG1细胞, 37度温育震荡培养 16小时。
6. 重复 6步, 共进行 4个重复循环。
7. 将上述获得的细胞稀释至 100000细胞 /ml后在加入 0. 1%氨苄青霉素的 1. 5%琼 脂平板上进行培养以获得单克隆。
8. 取上述平板上的克隆在 96孔深孔板上进行培养,每孔一个克隆,共作 960个克 隆 (10块 96孔板)。
9. 将上述深孔板在 96孔板离心机上 5000RPM离心 20分钟后, 将上清转移到新的 无菌深孔板, 封口后保藏于 4度备用。
10. 取 96孔板 10块, 每孔中加入 TNFa ( 10ug/ml ) 10微升常规包被后, 分别加入 上述保存的上清 10微升, 37度温育 1小时后用含有 l%TVeen-20的 PBS洗涤 20次。
11. 加入 1微升 HRP标记的羊抗 M13单抗, 37度温育 30分钟后用 l%TVeen-20的 PBS 洗涤 10次。
12. 加入含有 0. 025%DAB显色剂的 PBS 200微升和 1微升 1%的 H202, 37度温育显 色 20分钟后在读板机上读取 595纳米处的光吸收。
根据光吸收读数确定显色反应强的孔, 这些孔相对应的克隆即为亲和力较强的 Fab单 抗克隆。
本研究通过上述过程从实施例 1构建的库中筛选出了 415个阳性克隆, 根据读数确定 其中 5个亲和力最强的克隆。这 5个克隆分别接种在 100ml LB培养基中,在 37度 260rpm 条件下震荡培养 9 小时后加入终浓度为 ImM 的 IPTG 诱导培养 10 小时。 然后用 Pharmacia的 "重组人 scFv纯化***"参照厂家说明书分离纯化重组 Fab单抗蛋白。 抽提纯化的重组 Fab蛋白质用于亲和力研究。 亲和力研究证明, 在这 415个阳性克隆 中有 3个具有较高的亲和力, 它们是: 5H4、 9D2和 4E8。 其中, 4E8具有最高的亲和 力,此克隆将用在后续的研究。 上述得到的噬菌体展示文库中的单抗能够结合特异性的抗原, 通过淘选技术选择亲和 力高的单抗。 用重组人 TNF ( rhTNF) 抗原包被酶联板, BSA封闭, 温育 2 h, 洗板后 力口 50 μ 1噬菌体抗体库(约 10E12 CFU)温育 2 h, TBST( Tris 50隱 ol/L, NaCl 150mmol/L, Tween-20 0. 5%, BSA 1%, pH7. 5 ) 液洗 1次 (第 2轮洗 5次, 第 3轮后洗 10次, 每 次 5 min), 以 50 μ 1洗脱液回收噬菌体, 中和缓冲液调节 ρΗ至中性, 感染 Ecol i TGl , 进行下一轮筛选。 共进行 3轮筛选, 移走没有抗原结合能力的噬菌粒。
进行夹心 ELISA实验, 测定单抗的抗原结合活性。 加入 50 μ 1 200ng/ml的重组人 TNF ( rhTNF) 抗原包被酶联板, BSA封闭, 37 °C 温育 lh, 加入用 PBST (KC1 2. 7mmol/L, Na2HP0410mmol/L, KH2P041. 8mol/L, NaCl 137mmol/L, Tween-20 0. 5%, pH7. 4) 对倍 稀释的噬菌体单抗, 37°C孵育 2 h。洗板,加入 HRP标记的羊抗 M13单抗(购自 Pharmacia 公司), 37 °C 1 h o 用 l%Tween-20的 PBS洗板, 加底物液显色, 在读板机上读取 595 纳米处的光吸收。 根据计算,阳性率接近 20%。 从上述克隆中根据光密度挑选出 5个亲 和力最强的 (读数〉2. 2, 此时阳性对照约为 2. 8 ), 5个中等的 (读数约为 1. 5 ) 和 5 个较低的(读数约为 0. 8 )克隆抽取 DNA, 用于测序。 测序引物可以用 Fab片段恒定区 部分的序列。
用同样方法从实施例 2 的抗体库中筛选出的 5 个最高亲和力的克隆的读数也在 2. Γ2. 3 附近, 未见更高读数的克隆出现。 这说明, 这种所谓特异性抗体库来源的单 抗与本发明说述的抗体库来源的单抗在亲和力方面不具备优势。
根据测试结果, 选定从实施例 1抗体库获得的亲和力最高的 4E8号克隆用作以下的突 变研究。 实施例 4 分子进化方案设计与实施
1. 根据实施例 3中 20个克隆的测序结果, 确定各 CDR中突变有效的氨基酸位置, 即 KA扫描法。 以重链 CDR1H为例予以说明, 其他 CDR区的分子进化可采用同样方法 和步骤。
20个克隆重链 CDR1H氨基酸序列 (氨基酸位 26~32, 符号 ~代表缺失) 如下:
Figure imgf000024_0001
PFPFANH QFPFPNH GDPFSNH GKIFSTH
PFTFSNH LFVFSCH GCPFSNC GT SNK
VFPQVNT TFPFINH GQPFSCS GAPFSIH
GFPFSNH GFSFSNH GFTDSKT GGPFSNT
TFPFLNH GFVFSCH TG-NKHI GNKVLSS 氨基酸位点 P26在高亲和力组无明显优势氨基酸, 且该位点氨基酸的极性、酸碱性质、 特殊基团等对亲和力影响不大, 视为突变无效位点, 对突变无效位点, 在拟突变位点 数较多时,可以不对其进行突变操作,但拟突变位点数较少时可以进行突变操作。 P27、 P31和 P32在高亲和力组中的优势氨基酸分别为 F、 N和 H, 视为不可改变位点; P28 在高亲和力组中无明显优势氨基酸, 为可突变位点; P29优势氨基酸为 F, 不可改变, 但变为 Q影响不大; P30高亲和力组无明显优势氨基酸, 为可变位点; P31在高亲和力 组中优势氨基酸为 H, 为不可变位点。 据此, 确定 P27、 P29、 P31和 P32为不可变位 点, P26、 P28、 P30可变。
据此, 根据密码表、 CDR1H两侧的框架区可对上述序列设计雁阵式定域随机突变引物。 该 CDR1H (氨基酸序列为 PFPFANH) 及其两侧框架区的序列为:
( SEQ ID
N0 : 26 ) 由于剔出了不可变的和突变无效的位点, 使其可突变位点的数量由原来的 7个减少为 3个, 就大大降低了对库容的要求。 其效果可通过下述计算表示。 表: 突变点数与组合数的关系
突变点
排列数
2 400
3 8000
4 160000
5 3200000
6 64000000
7 1280000000
8 25600000000
9 5. 12E+11
10 1. 024E+13
11 2. 048E+14 12 4. 096E+15
13 8. 192E+16
14 1. 6384E+18
15 3. 2768E+19 就建库的技术难度而言, 10E7容量的库比较容易建立(对应 6个突变点),而建立 10E12 (对应 9~10个突变为点) 的库难度就很大了。
2. 在此基础上, 制定引物设计方案并设计引物
根据上述框架区和 CDR1H序列, 引物设计方案为:
Forward引物组:
CGGCTCAGCTGCGCTGCTAGTggctttcccttctctaaccac (原始序列)(SEQ ID NO : 27)
CGGCTCAGCTGCGCTGCTAGT誦 TTTCCCTTCTCT (SEQ ID NO : 34)
CAGCTGCGCTGCTAGTGGCTTT誦 TTCTCTAACCAC (SEQ ID NO : 35)
GCTAGTGGCTTTCCCTTC誦 AACCACTGGATGAATTG (中央引物) (SEQ ID
NO : 36)
Backward引物组:
CTGCCGGACCCAATTCATCCAgtggttagagaagggaaagcc (原始序列) (SEQ ID NO : 28)
CTGCCGGACCCAATTCATCCAGTGGTT誦 GAAGGGAAGC (SEQ ID NO : 37)
CAATTCATCCAGTGGTTAGAGAA誦 AAAGCCACTAG (SEQ ID NO : 38)
GTTAGAGAAGGGAAA誦 ACTAGCAGCGCAGCTGAGCCG (SEQ ID
NO : 39)
NNN表示同一位置与原始序列不同的任意三联碱基组合。
3. PCR, 建突变库
以上述引物组进行 PCR, 即可获得带有不同突变位点组合的 PCR产物。 引物组的 PCR 组合如下:
以上述中央引物、 左侧引物与右侧引物为引物进行 PCR。 a) 反应体系的组成:
25 mM Mg2S04 10
SuperPfu DNA聚合酶 (5单位 /微升) 1
引物 (2微克 /微升) 各 1微升 灭菌三蒸水 至 100微升 b) 反应条件:
预变性: 94度 2分钟
主循环: 94度 20秒, 51度 20秒, 72度 15秒。
循环数: 20
后延伸: 72度 2分钟
PCR过程在 Thermocycler热循环仪上进行。
一个抗体分子的重链和轻链各有三个 CDR区, 均按照上述方法分别进行突变, 分别获 得突变片段后, 再用常规 overlapping PCR把各片段拼接成完整的 Fab重链或轻链的 DNA分子,***到 pC0Mb3M载体后,再按照实施例 3的方法进行淘筛。同样地,用 Humira 的 Fab形式作为阳性对照。
4. 鉴定及结果
参照实施例 3的方法鉴定高亲和力克隆。两块 96孔板中,共得到 89个光密度〉 3. 0 (阳 性对照的光密度读数为 2. 89, 原型的读数为 2. 27 )的克隆, 其中 7H3读数达 3. 25 (相 当于亲和力提高约 13. 58倍)。
该原型分子的 CDR1H氨基酸序列为 PFPFANH, 进化后获得的 7H3 的 CDR1H区序列为 GFSFTNH。
鉴定完毕, 可采用实施例 4的方法以 7H3为原型,仍然采用根据实施例 3中 20个克隆 的测序结果,以实施例 4的方法对 CDR1L进行分析,选择出 KA位点,根据密码表、 CDR1L 两侧的框架区设计雁阵式定域随机突变引物, 经两轮 PCR后再相应酶切位点替换 7H3 克隆的原始的轻链, 再按照实施例 3的方法进行淘筛, 淘选出的亲和力最高的单抗的 亲和力比 4E8原型提高了约 40%。 还可以同样的方法进一步对 CDR2H、 CDR3H、 CDR2 CDR3L等区逐一进行进化。 实施例 5、 抗人 TNFa单抗进化后的中和能力鉴定 利用实施例 1和 2提供的全人源抗体库, 参照实施例 3提供的方法筛选出了抗人 TNFa 的 Fab。 又经实施例 4提供的方法, 对原型抗人 TNFa单抗 4E8进行了多次分子进化包 括 CDR1、 CDR2、 CDR3的进化,获得了光密度读数接近 3. 5 (阳性对照为 2. 75,原型为 2. 16 ) 的克隆 7B4和 2H7, 其氨基酸序列如下表所示。
Figure imgf000028_0001
通过以下方法检测从上述克隆纯化的 Fab单抗对人 TNFa的中和能力。
1. 取对数生长期的 L929细胞, 用消化液常规消化后充分分散细胞, 并用细胞培养 液稀释到 2 X 105细胞 /毫升。
2. 取 96孔板 4块, 每孔中加入 100微升细胞悬浮液, 5%C02培养箱中 37度培养 24 小时。
3. 用广 2 g/ml放线菌素 D和 0. 001微克 /毫升 TNFa标准品 (上海欣百诺生物科技 有限公司产品) 的细胞培养液将待测样品稀释至 10微克 /毫升、 1. 0微克 /毫升、 0. 1微克 /毫升、 0. 01微克 /毫升、 0. 001微克 /毫升、 0. 0001微克 /毫升和 0. 00001 微克 /毫升。
4. 每孔加入 100微升各种稀释度的样品, 每个稀释度 3个孔。 阴性对照只加入含 广 2 g/ml放线菌素 D的细胞培养液。 阳性对照中加入高剂量的 TNFa ( 2 g/ml ) 细胞培养液。
5. 5%(:02培养箱中 37度培养 24小时或更长。 培养时间根据阳性对照孔中的细胞全 部死亡确定。
6. 用 MTT染色后在读板机上读取光密度数据。 对数据进行作图 (结果见图 4)。 由试验数据可以看出, 7B4.2H7的中和能力明显高于 Humira Fab,其余克隆则与 Humira Fab大体相当或略低。 实施例 6、 抗人 RANKL单抗进化后的中和活性和亲和力鉴定 参照实施例 3的方法, 以重组人 RA KL为抗原 ( Orb i gen公司产品) 从 HuLib中淘筛 特异性抗体, 获得高亲和力克隆 2G8, 其 ELISA光密度读数为 2. 16。 参照实施例 4的 方法对重链及轻链的 CDR区进行分子进化, 获得了关键技术指标明显高于阳性对照的 克隆〉 10个, 其中 9H6的 ELISA光密度读数为 3. 48, 与其原型 2G8 (光密度为 2. 16 ) 相比有明显提高。
图 5是以光密度反映的原型分子 2G8、 最好亲和力克隆 9H6以及另外三个随机挑选的 克隆的亲和力数据。 从这些数据中可以看出, 分子进化完成后的分子群体中亲和力分 布很宽, 且有一些分子的亲和力明显高于原型。
根据测序获得的 DNA序列推测的原型分子 2G8轻链可变区的氨基酸序列( 108氨基酸) T I SRLEPEDFAVYYCQQRLNWPLTFGGGTKVE IK (SEQ ID NO : 32)
根据测序获得的 DNA序列推测的原型分子 2G8重链可变区的氨基酸序列( 122氨基酸)
SKNTLYLQMNSARLEDTSVYYCAKDPGTTVIMSWFDPWGQGTLVTVSS (SEQ ID NO : 33)
1. 抗人 RANKL单抗的中和活性一对破骨细胞形成过程的抑制作用
RAW264. 7 (ATCC No. TIB- 71, Manassas, Va. ) 是一个由 Abelson小鼠白血病病毒诱 导的肿瘤衍生的巨噬细胞株,在 RANKL存在时,该细胞系可分化成类破骨细胞。 Simonet 等 (1997, Cell 89 p. 309) 和 Lacey等 (1998, Cell 93 p. 165) 详细描述了在 RAML 存在时在 RAW细胞培养物中产生破骨细胞的检测方法。
RAW细胞可以由配体刺激从而分化成类破骨细胞, 其分化的情况可以通过检测 TRAP (抗 酒石酸盐酸性憐酸酶 (Tartrate resistant acid phosphatase, TRAP) 的活性来了解。 因此, 抗人 RANKL单抗对骨质疏松的影响或骨损伤也就可以检测了。
在一定量 (50 ng/ml ) RAML存在的情况下, 加入 10 ng/ml~150 ng/ml本发明制备的 的抗人 RANKL单抗, 对 RAW细胞培养 4天, 用 ara_硝基磷酸盐处理 5分钟后, 把培养 基从细胞吸出, 每孔中加入 120ul 0. 1M的柠檬酸缓冲液 (含 1 mL Triton X-100) 后, 室温处理 5分钟。 采用 QUIDEL Metra TRAP5b ELISA试剂盒 (QUIDEL公司产品编号: 8036) ,加入 100微升 PNPP溶液 ( 157. 8 mg酸性磷酸酶试剂 (Sigma 104-100) , 7. 2 ml酒石酸盐溶液 (Sigma cat. no. 387-3) 和 22. 8 ml柠檬酸缓冲液) , 室温处理 3到 5分钟。 最后, 加入 50ul 0. 5 M NaOH溶液终止反应。
TRAP可把 para-硝基磷酸盐转化成 para-硝基酚, 在 405nm波长下可对其进行光密度 定量。 TRAP的活性是破骨细胞发育的替代指标, 与 405nm的光密度相关。 一组光密度 与抗 RANKL单抗浓度的数据即可反映单抗抑制破骨细胞形成的情况。
中和作用测试: 采用抗酒石酸酸性磷酸酶 (TRAP)染色法。 多核 TRAP阳性染色是破骨细 胞的特征性标志, 这是设计本试验的基础。 以 RAW 264. 7 细胞为试验材料, 1 X 104细 胞 /孔接种于 24孔板, 培养 24小时后分别用 50 ng/ml RANKL和不同浓度 ( 10ng〜 500ng/ml ) , 细胞每 3 d换液 1次。 第 6天抗酒石酸酸性磷酸酶 (TRAP ) 染色(美国 Sigma-Aldrich公司, 387-A) , 细胞用柠檬酸盐 /丙酮溶液固定 1分钟, 在以萘酚 AS BI 磷酸盐作为底物的孵育液中 37度孵育 1小时, 蒸馏水洗 3次, 苏木素复染 2分钟, 干燥后 二甲苯透明, DPX (聚苯乙烯 +酞酸丁二酯 +二甲苯)封固, 光镜观察。 TRAP阳性细胞为破 骨细胞, 镜检计数 TRAP阳性多核破骨细胞 ( 3个核) 的数量。
试验结果见图 4。 单抗浓度分别为: 0, 0. 001, 0. 01, 0. 05, 0. 1, 1. 0, 10. Ong/ml o 从图中数据可以看出, 本发明获得的抗人 RANKL单抗具有良好的中和 RANKL刺激破骨 细胞形成的能力。 实施例 7、 抗人 CD20单抗进化后的生物活性和亲和力鉴定 参照实施例 3的方法, 以重组人 CD20为抗原从 HuLib中淘筛特异性抗体 7F2, 参照实 施例 4的方法进行重链及轻链的 CDR区分子进化, 获得了关键技术指标明显高于阳性 对照的克隆 8G3。
图 7是以 ELISA光密度反映的原型分子 7F2、 进化后的高亲和力分子 8G3、 阳性对照 Rituxan-Fab和阴性对照 Humira-Fab亲和力数据。 由此可以看出, 进化后的 8G3比原 型分子 7F2的亲和力提高明显提高, 比阳性对照也明显提高。 这在以下的生物活性实 验中将得到进一步验证。 生物活性试验 测活细胞株为 CD20 B淋巴细胞瘤细胞株 DHL-4。 阴性对照为抗人 Humira Fab人源化单 抗, 阳性对照为 Rituxan Fab。
体外加入抗 CD20单抗可诱导细胞凋亡, 加入细胞和单抗后第 5〜7天进行细胞计数和 MTT检测。 结果见下表。
表 2. 抗 CD20单抗的生物活性比较 (存活细胞%)
单抗浓度 (ug/ml )
1 10 50 100
Humira Fab 98. 9 97. 8 97. 2 98. 1
Rituxan Fab 68. 5 30. 4 18. 3 21. 1 8G3 61. 3 14. 6 8 8 从上述结果可以看出, 加入抗人 CD20单抗 RitusanFab和本发明的 8G3后, 存活 细胞数量明显减少, 而阴性对照则未见明显变化, 这说明上述单抗具有明显杀伤 CD20+阳性 B淋巴细胞的作用。 8G3的效果明显优于阳性对照。 抗人 CD20单抗内杀伤试验
DHL4 淋巴瘤细胞按照 5X107只小鼠的量皮下注射免疫缺陷性小鼠, 待肿瘤长至 0. 3X0. 3 以上时, 注射 8G3, 阴性对照为抗人 Humira Fab人源化单抗, 阳性对照 为 Rituxan Fab。 在第 10天按照每只小鼠 5毫克进行注射。 注射后第 10天、 第 20天和第 30天测量肿瘤的大小, 结果如图 8所示。
上述结果说明, 与阴性对照相比, 注射单抗后体内肿瘤的生长受到明显的抑制。 实施例 8、 抗人 VEGF单抗进化后的亲和力鉴定 参照实施例 3的方法, 以重组人 VEGF为抗原从 HuLib中淘筛特异性抗体,获得了亲和 力较高的克隆 3D7。 参照实施例 4的方法进行重链及轻链的 CDR区分子进化, 获得了 关键技术指标明显高于阳性对照的克隆 6B2。
图 9 是以光密度反映的原型分子 3D7、 进化后的高亲和力分子 6B2、 阳性对照 Avastin-Fab和阴性对照 Humira-Fab亲和力数据。 由此可以看出, 进化后的 6B2比原 型分子和阳性对照高均明显高。 这在以下的生物活性实验中将得到进一步验证。 生理功能研究
试验设计: 由于至今只发现血管内皮细胞对 VEGF 有特异的增殖反应, 本试验根据 Gospodarowicz D等的方法 (PNAS, 1989, 86 : 7311 ) 检测抗 VEGF单抗的生物学活性。 具体方法如下:
a.取 96孔细胞培养板一块,每孔中加入 0. 5ml含有 1X104牛肾上腺血管内皮细胞 (可 从中国科学院上海细胞生物学研究所细胞库获得) 培养液和 200IU的 VEGF (购 自深圳晶美公司),在第 4天单独加入同样量的 VEGF以持续刺激牛肾上腺内皮细 胞增殖。
b.待测样品和阳性对照储存液浓度均为 500ug/ml。 阳性对照为 Genentech公司的 RhuFab V2 o 用含有 0. 2%明胶的 PBS稀释液系列稀释待测样品和阳性对照后, 每 孔中加入 0. 5ml待测样品和阳性对照。 阴性对照孔加入 0. 5ml细胞培养液。每个 处理设 3次重复。 在 37度 5%C02培养箱中培养 4~5天。
c MTT检测:取经过上述处理的细胞 0. 2毫升,加入 1/10体积浓度为 5mg/ml的 MTT 溶液, 37度培养 30分钟后在酶标仪上读取 570nm处的光吸收。参考波长为 630nm。 结果分析:
表 3. 抗人 VEGF抗体对牛肾上腺血管内皮细胞的增殖作用
Figure imgf000032_0001
从上表可以看出, 本发明的人源抗人 VEGF单抗的生物活性, 比阳性对照 Avastin 明显高。 小鼠肝癌灌注治疗效果研究 大鼠移植性肝癌模型建立的方法
将皮下荷瘤大鼠断颈处死后, 局部消毒, 取皮下瘤块, 拨去纤维组织, 挑选无出血、 无坏死肿瘤组织, 用利刀片切成 0. 2 mm3大小的小块备用。 另取 Wistar大鼠, 以戊巴 比妥钠按 40 mg/kg腹腔注射麻醉, 取仰卧位, 四肢固定于手术板上后, 手术区用 75% 酒精消毒后, 在腹正中切开皮肤 10 mm左右, 用显微组织镊子将肝包膜戳一小口, 将 肿瘤块沿隧道嵌入。 移植完毕后逐层缝合腹壁, 伺养待用, 整个过程在无菌条件下进 行。
治疗方法
动脉插管参照 Lindel l等的方法肝脏接种瘤块后第 7 d, 大鼠腹腔麻醉后固定, 再次 剖腹 (开口约 2〜3 cm) , 暴露肝脏, 测量肿瘤表面最大径 (a)和最小径 (b), 分离胃十 二指肠动脉、肝动脉及肝固有动脉, 结扎胃十二指肠动脉的远端.以银夹暂时阻断肝总 动脉, 于手术显微镜下在胃十二指肠动脉上切一小口, 由此将外径约 0. 3 mm的特制导 管上行***肝固有动脉.待回血后, 按以下分组及剂量 (表 1)分别灌注相应制剂.灌注 后拔管、 结扎胃十二指肠动脉近端, 放开肝总动脉上的银夹, 逐层缝合切口后擦净伤 口、 外涂金霉素软膏, 分笼恒温、 自动供水供食伺养。
肿瘤生长率测定
每组部分大鼠于治疗后第 7 d处死, 再次测量肿瘤的最大径 (a)和最小径 (b), 按公式 计算肿瘤体积: V=ab2/2,再根据治疗前后的肿瘤体积计算肿瘤生长率 (GR=治疗后的肿 瘤体积 /治疗前的肿瘤体积)。
5组大鼠灌注前后的肿瘤体积及肿瘤生长率方差分析结果见表 4。治疗前各组肿瘤体积 之间均无显著性差异, 肝动脉灌注阴性对照, 所有大鼠的肿瘤均明显增大, 平均肿瘤 体积显著大于灌注前。灌注抗 Vegf单抗后, 肿瘤体积较治疗前亦明显增大, 但肿瘤生 长率低于对照组。 这说明, 灌注抗 VEGF单抗可以明显抑制肝肿瘤的生长。 表 4. 大鼠动脉灌注抗 VEGF单抗后肝肿瘤体积及肿瘤增长率( ± s, n=10)
Figure imgf000033_0001

Claims

权利要求
1. 一种雁阵式定域随机突变方法, 包括下列步骤:
1 ) 引物的设计与合成:
( 1 ) 雁阵式引物设计:
将指定发生随机突变区域及其侧翼序列作为随机突变 PCR扩增的目的序列, 并设 计该目的序列的中央引物、 左侧引物及右侧引物:
中央引物的设计: 以目的序列等分处为中心点,两侧各取多个碱基作为中央引物, 中央引物至多包含一个突变位点;
左侧引物及右侧引物的设计: 设计目的序列中心点以左的重叠延伸 PCR引物作为 左侧引物, 设计目的基因中心点以右的重叠延伸 PCR引物作为右侧引物, 各左侧 引物与右侧引物均至多包含一个突变位点;
( 2 ) 引物合成: 中央引物取正向或反向, 左侧引物均取正向, 右侧引物均取反 向;
2 ) 随机突变 PCR :
将步骤 1 )合成的左侧引物、 右侧引物及中央引物混合进行 overlapping PCR, 获得指定区域发生随机突变的扩增序列。
2. 如权利要求 1所述雁阵式定域随机突变方法, 其特征在于: 左侧引物、 右侧引物 及中央引物共同组成雁阵式。
3. 如权利要求 2所述雁阵式定域随机突变方法, 其特征在于: 所述中央引物中心点 左右序列的长度以 Tm值为 45_58°C设计; 所述左侧引物与右侧引物中相邻引物的 重叠区域的长度以 Tm值为 45-58度设计。
4. 如权利要求 3所述雁阵式定域随机突变方法,其特征在于: 参加同一随机突变 PCR 反应的引物间, Tm值至多相差 2°C。
5. 如权利要求 1-4中任一权利要求所述雁阵式定域随机突变方法, 其特征在于: 步 骤 1 )设计并合成的引物中,含有多个突变引物,每条突变引物仅含一个突变位点, 不同的突变引物间突变位点的位置或碱基序列不同。
6. 权利要求 1-5中任一权利要求所述雁阵式定域随机突变方法用于进化单克隆抗体 分子。
7. 一种单克隆抗体分子进化方法, 包括下列步骤:
1 ) KA扫描:
a. 以待进化单克隆抗体对应的特异性抗原为亲和对象,从抗体库中筛选出多个能 产生与该抗原特异性结合的抗体克隆;
b. 从步骤 a获得的克隆中, 选出亲和力最高、 次高和较高的克隆各 5-10个, 进 行抗体 DNA测序;
c 根据步骤 b测序结果,分析这些克隆中同一指定随机突变区域中的氨基酸分布 情况, 选择出该区域的不可变位点, 及可变位点, 可变位点又区分为突变无效 位点,及与亲和力有关的可变位点即 KA位点;
2 ) 雁阵式定域随机突变:
采用权利要求 1-5任一权利要求所述雁阵式定域随机突变方法获得 KA位点或 可变位点发生随机突变的目的序列扩增产物,
雁阵式定域随机突变时, 突变位点即为步骤 1 ) 中所述 KA位点或可变位点对 应的三联碱基, 所述指定发生随机突变区域为待进化单克隆抗体的任一 CDR区;
3 ) 将步骤 2 ) 获得的 KA位点或可变位点发生随机突变的目的序列扩增产物 拼接成完整的 Fab重链或轻链的 DNA分子后, ***到噬菌体载体中, 并转 化入宿主细胞建成突变抗体库;
4) 以待进化单抗对应的抗原为亲和对象,从突变库中筛选出多个能产生与该 抗原特异性结合的抗体的克隆,并选择出亲和力相比待进化单抗获得提高 的克隆。
8. 如权利要求 7所述单克隆抗体分子进化方法, 其特征在于, 所述步骤 1 ) 的 a中, 筛选出的克隆数量至少为 96个。
9. 如权利要求 7所述单克隆抗体分子进化方法, 其特征在于, 所述步骤 1 ) 的 b中, 所述亲和力最高的克隆是指: 该克隆产生的抗体与待进化抗体对应的抗原的亲和 力在经步骤 a获得的克隆中排位最前; 亲和力次高的克隆是指: 与所选亲和力最 高的克隆中亲和力相对最低的克隆相比, 在相同条件下与特异性抗原 ELISA反应 后的光密度读数低至少 0. 7单位, 且在满足上述条件的克隆中排位最前; 亲和力 较高的克隆是指: 与所选亲和力次高的克隆中亲和力相对最低的克隆相比, 在相 同条件下与特异性抗原 ELISA反应后的光密度读数低至少 0. 7单位, 且在满足上 述条件的克隆中排位最前。
10. 如权利要求 7所述单克隆抗体分子进化方法, 其特征在于, 所述步骤 1 ) 的 c中, 所述不可变位点为: 在步骤 b筛选出的所有克隆或绝大多数克隆或亲和力最高的 克隆中氨基酸相同的位点视为不可变位点; 所述突变无效位点为: 与亲和力无关 的可变位点。
11. 如权利要求 7-10中任一权利要求所述单克隆抗体分子进化方法, 其特征在于, 在 步骤 3) 前重复步骤 1 ) 和 2) , 获得不同 CDR区发生随机突变的扩增产物。
12. 如权利要求 7-10中任一权利要求所述单克隆抗体分子进化方法, 其特征在于, 在 步骤 4)后, 以步骤 4)选择出的亲和力最高的克隆分泌的单抗为原型, 重复步骤 1 ) -4) 进一步进化单克隆抗体。
PCT/CN2009/074839 2009-11-04 2009-11-06 利用重叠pcr定点突变的方法及其在筛选单克隆抗体中的应用 WO2011054150A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910198282.X 2009-11-04
CN200910198282.XA CN102051396B (zh) 2009-11-04 2009-11-04 雁阵式定域随机突变方法及其在单抗分子进化技术中的应用

Publications (1)

Publication Number Publication Date
WO2011054150A1 true WO2011054150A1 (zh) 2011-05-12

Family

ID=43956194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/074839 WO2011054150A1 (zh) 2009-11-04 2009-11-06 利用重叠pcr定点突变的方法及其在筛选单克隆抗体中的应用

Country Status (2)

Country Link
CN (1) CN102051396B (zh)
WO (1) WO2011054150A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102875678B (zh) * 2011-07-13 2014-08-06 无锡天演生物技术有限公司 全人源抗人cd20单抗分子及其应用
CN105274630A (zh) * 2015-11-25 2016-01-27 苏州泓迅生物科技有限公司 基于组合合成技术合成可控的人源化抗体库的方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1259961A (zh) * 1997-04-07 2000-07-12 基因技术股份有限公司 人源化抗体和制备人源化抗体的方法
CN1861799A (zh) * 2005-05-13 2006-11-15 中国科学院沈阳应用生态研究所 一种改进的重叠延伸pcr方法及其所获得的突变基因
CN101096669A (zh) * 2007-05-25 2008-01-02 华中农业大学 一种dna的多点定向突变方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1259961A (zh) * 1997-04-07 2000-07-12 基因技术股份有限公司 人源化抗体和制备人源化抗体的方法
CN1861799A (zh) * 2005-05-13 2006-11-15 中国科学院沈阳应用生态研究所 一种改进的重叠延伸pcr方法及其所获得的突变基因
CN101096669A (zh) * 2007-05-25 2008-01-02 华中农业大学 一种dna的多点定向突变方法

Also Published As

Publication number Publication date
CN102051396A (zh) 2011-05-11
CN102051396B (zh) 2014-07-16

Similar Documents

Publication Publication Date Title
JP6681131B2 (ja) 産生宿主における抗体/タンパク質パフォーマンス及び発現の同時で統合された選択及び進化
US10125198B2 (en) Method for mass humanization of non-human antibodies
US10829513B2 (en) Methods of protein evolution
JP6253986B2 (ja) コレクション及びその使用方法
JP2003516755A (ja) ショットガン走査、すなわち機能性タンパク質エピトープをマッピングするための組み合わせ方法
IE914504A1 (en) Optimization of binding proteins
WO2011109726A2 (en) Homologous multi-specific antibodies
EP3833685A1 (en) Antibody libraries with maximized antibody developability characteristics
CN111138533A (zh) 针对甲型肝炎病毒的单域抗体及其衍生蛋白
JP4171844B2 (ja) 超レパートリー人工抗体ライブラリー
WO2011054150A1 (zh) 利用重叠pcr定点突变的方法及其在筛选单克隆抗体中的应用
JP2005532825A (ja) ベネズエラウマ脳炎ウイルスに対するヒト化抗体
CN105849564B (zh) 靶向直向同源物的蛋白
WO2021247761A1 (en) Methods and compositions for in vitro affinity maturation of monoclonal antibodies
AU2018226408B2 (en) Novel methods of protein evolution

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09851034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC, EPO-FORM 1205A DATED 08.10.12

122 Ep: pct application non-entry in european phase

Ref document number: 09851034

Country of ref document: EP

Kind code of ref document: A1