WO2011052028A1 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
WO2011052028A1
WO2011052028A1 PCT/JP2009/068348 JP2009068348W WO2011052028A1 WO 2011052028 A1 WO2011052028 A1 WO 2011052028A1 JP 2009068348 W JP2009068348 W JP 2009068348W WO 2011052028 A1 WO2011052028 A1 WO 2011052028A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
engine
fuel injection
internal combustion
combustion engine
Prior art date
Application number
PCT/JP2009/068348
Other languages
English (en)
French (fr)
Inventor
横山 友
雅樹 沼倉
Original Assignee
トヨタ自動車 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車 株式会社 filed Critical トヨタ自動車 株式会社
Priority to CN200980152327.8A priority Critical patent/CN102713211B/zh
Priority to EP09850808.8A priority patent/EP2405118A4/en
Priority to JP2011510603A priority patent/JP4957869B2/ja
Priority to US13/255,180 priority patent/US8910617B2/en
Priority to PCT/JP2009/068348 priority patent/WO2011052028A1/ja
Publication of WO2011052028A1 publication Critical patent/WO2011052028A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0223Variable control of the intake valves only
    • F02D13/0234Variable control of the intake valves only changing the valve timing only
    • F02D13/0238Variable control of the intake valves only changing the valve timing only by shifting the phase, i.e. the opening periods of the valves are constant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/3445Details relating to the hydraulic means for changing the angular relationship
    • F01L2001/34453Locking means between driving and driven members
    • F01L2001/34469Lock movement parallel to camshaft axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2800/00Methods of operation using a variable valve timing mechanism
    • F01L2800/01Starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2800/00Methods of operation using a variable valve timing mechanism
    • F01L2800/03Stopping; Stalling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2800/00Methods of operation using a variable valve timing mechanism
    • F01L2800/05Timing control under consideration of oil condition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D2013/0292Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation in the start-up phase, e.g. for warming-up cold engine or catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/021Engine temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/023Temperature of lubricating oil or working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/36Controlling fuel injection of the low pressure type with means for controlling distribution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a control device for an internal combustion engine.
  • variable valve timing device that changes the valve timing of an engine valve such as an intake valve or an exhaust valve by making the rotational phase of the camshaft relative to the crankshaft variable has been put into practical use.
  • the variable valve timing device includes a variable valve timing mechanism having a first rotating body that is drivingly connected to the crankshaft and a second rotating body that is drivingly connected to the camshaft. The valve timing is changed by changing the relative rotation phase of the camshaft with respect to the crankshaft by relatively rotating the first rotating body and the second rotating body by hydraulic pressure or the like.
  • valve timing is fixed to the phase between the most retarded phase and the most advanced phase, which is the range in which the relative rotational phase can be changed, excluding both ends of the same range (hereinafter referred to as the intermediate lock phase)
  • intermediate lock phase the range in which the relative rotational phase can be changed, excluding both ends of the same range
  • Patent Document 1 discloses that the variable valve timing mechanism is controlled so that its relative rotational phase is an intermediate lock phase during engine startup. If the relative rotational phase is not the intermediate lock phase during engine startup, the variable valve timing mechanism is controlled so that the same phase becomes the intermediate lock phase.
  • the fuel may not be ignited. Then, when the same fuel adheres to the spark plug, the ignition performance of the spark plug is lowered, and the startability of the engine may be deteriorated.
  • control is performed so that fuel injection is not started until it is determined that the relative rotation phase of the variable valve timing mechanism has become the intermediate lock phase.
  • the determination is performed by monitoring whether the valve timing is fixed at the intermediate lock phase.
  • the monitoring of the valve timing as described above is performed by calculating the current relative rotational phase of the variable valve timing mechanism from the crank angle detected by the crank position sensor and the cam angle detected by the cam position sensor. .
  • an electromagnetic pickup type sensor is used as the crank position sensor and cam position sensor as described above.
  • an electromagnetic pickup type sensor there is a method of providing a convex tooth portion on the circumference of a timing rotor connected to a crankshaft and detecting the same tooth portion of a rotating timing rotor. is there.
  • crank position sensor and the cam position sensor cannot be kept normal unless the rotational speeds of the crankshaft and the camshaft are not less than a predetermined value. That is, detection of the crank angle and the cam angle by the crank position sensor or the cam position sensor is not normally performed unless the rotation speed of the crankshaft or the camshaft is equal to or higher than a predetermined value.
  • the relative rotation phase of the variable valve timing mechanism cannot be detected by the crank position sensor and the cam position sensor. Therefore, when the relative rotation phase is changed to the intermediate lock phase during engine startup, it may not be possible to detect whether or not the same phase has been changed to the intermediate lock phase. As a result, when the fuel injection start timing is controlled to be delayed until it is determined that the same phase has been changed to the intermediate lock phase, the fuel injection is normally started because the determination is not performed normally. Therefore, the startability of the engine may be deteriorated.
  • the present invention has been made in view of such a situation, and an object of the present invention is an internal combustion engine that can ensure engine startability when the valve timing is not in the intermediate lock phase during engine start. It is to provide a control device.
  • the internal combustion engine includes a fuel injection device that injects fuel into the internal combustion engine, a crankshaft, a camshaft that opens and closes an engine valve of the internal combustion engine, and a valve timing variable device that varies a valve timing of the engine valve. And comprising.
  • the variable valve timing device includes a variable valve timing mechanism, an intermediate lock mechanism, a relative rotation phase detection unit, and a phase change unit.
  • the variable valve timing mechanism includes a first rotating body that is drivingly connected to the crankshaft and a second rotating body that is drivingly connected to the camshaft, and includes a first rotating body and a second rotating body.
  • the valve timing is made variable by changing the relative rotation phase by hydraulic control.
  • the intermediate lock mechanism is a phase between the changeable range of the relative rotation phase and excluding both ends of the changeable range, and the internal combustion engine can be started when the relative rotation phase is in the phase.
  • the relative rotational phase is fixed to such an intermediate lock phase.
  • the relative rotation phase detection unit detects the relative rotation phase.
  • the relative rotation phase detector includes a cam angle sensor that can detect a rotation angle of the camshaft when the rotation speed of the camshaft is equal to or greater than a predetermined value, and a rotation angle of the crankshaft that is equal to or greater than a predetermined value. And a crank angle sensor capable of detecting the rotation angle of the crankshaft.
  • the relative rotation phase detection unit calculates the relative rotation phase from the rotation angle of the camshaft and the rotation angle of the crankshaft detected by the cam angle sensor and the crank angle sensor, respectively.
  • the phase change unit changes the relative rotation phase to the intermediate lock phase so that the relative rotation phase becomes the intermediate lock phase during startup of the internal combustion engine.
  • the control device for the internal combustion engine delays the fuel injection start timing of the fuel injection device.
  • the fuel injection device is controlled so that the timing at which fuel injection is started is delayed during engine startup. Therefore, when the relative rotation phase is changed to the intermediate lock phase by the phase changing unit during engine startup, the amount of fuel injected between the start of cranking and the end of the change is, for example, It is reduced compared to the amount of fuel that is injected from the start of ranking. As a result, the possibility that the spark plug is wetted by the fuel injected until the relative rotational phase is changed to the intermediate lock phase at which the engine can be started and the ignition performance of the spark plug is reduced is suppressed. Thereby, the startability of the engine is ensured.
  • the fuel of the previous fuel injection device is compared to when the relative rotation phase is the intermediate lock phase. Delay injection start time.
  • the relative rotation phase between the first rotating body and the second rotating body that is, the relative rotation phase of the valve timing variable mechanism is not the intermediate lock phase, the intermediate lock phase.
  • the fuel injection device is controlled so that the timing at which the fuel injection is started is delayed.
  • the amount of fuel injected before the relative rotation phase is changed to the intermediate lock phase by the phase changing unit during engine startup is reduced as compared with the case where the fuel injection start timing is not delayed.
  • the risk of ignition performance of the spark plug due to the spark plug being wetted by the injected fuel before the relative rotational phase is changed to the intermediate lock phase at which the engine can be started is suppressed. Thereby, the startability of the engine is ensured.
  • the relative rotation phase based on the relative rotation phase during the previous operation of the internal combustion engine, it is determined that the relative rotation phase is not in the intermediate lock phase during the current start of the internal combustion engine.
  • the crankshaft and the camshaft need to have a predetermined rotation speed or more.
  • the relative rotational phase may not be detected because the rotational speed is low.
  • the relative rotation phase of the variable valve timing mechanism during the current start is not in the intermediate lock phase. Therefore, during the current start of the engine, if the relative rotation phase is not the intermediate lock phase, the fuel injection by the fuel injection device can be delayed compared to the case of the intermediate lock phase, and the startability of the engine is ensured. .
  • the control device delays the fuel injection start timing in accordance with the hydraulic oil temperature of the valve timing variable device during startup of the internal combustion engine. In one aspect of the present invention, the control device delays the fuel injection start timing when the hydraulic fluid temperature of the valve timing variable device during startup of the internal combustion engine is low compared to when the hydraulic fluid temperature is high.
  • the viscosity of the hydraulic oil has a correlation with the hydraulic oil temperature.
  • the phase changing unit changes the phase of the first rotating body and the second rotating body toward the intermediate lock phase
  • the time required for this phase change is It changes according to the oil temperature. Therefore, by delaying the fuel injection start timing in accordance with the hydraulic oil temperature during engine start-up, the time until fuel injection start is shortened, ensuring startability of the engine and starting fuel injection as early as possible. Can complete the startup.
  • the hydraulic oil has a higher viscosity when the oil temperature is low than when it is high. Therefore, when the hydraulic oil temperature is low, the time required for the phase changing unit to change the relative rotational phase between the first rotating body and the second rotating body to the intermediate lock phase is shorter than when the hydraulic oil temperature is high. become longer. Therefore, when the hydraulic oil temperature is low, the fuel injection start timing is delayed compared to when the hydraulic oil temperature is high, thereby ensuring the startability of the engine and starting the fuel injection as soon as possible to complete the engine startup. can do.
  • the control device delays the fuel injection start timing in accordance with the hydraulic oil temperature of the valve timing variable device during the previous operation of the internal combustion engine. In one aspect of the present invention, the control device delays the fuel injection start timing when the hydraulic fluid temperature of the valve timing variable device during the previous operation of the internal combustion engine is low compared to when the hydraulic fluid temperature is high. .
  • the amount of hydraulic oil remaining in the variable valve timing mechanism becomes the resistance of relative rotation between the first rotating body and the second rotating body by the phase changing unit.
  • the hydraulic oil remaining inside the variable valve timing mechanism during operation of the engine flows out and decreases after the engine is stopped.
  • the amount of hydraulic oil flowing out at this time is generally small when the viscosity of the hydraulic oil is high and large when the viscosity of the hydraulic oil is low. That is, the amount of hydraulic oil remaining inside the variable valve timing mechanism during engine startup varies according to the viscosity of the hydraulic oil during the previous engine operation.
  • the viscosity of the hydraulic oil has a correlation with the hydraulic oil temperature, so that the time until the start of fuel injection is delayed by delaying the fuel injection start timing according to the hydraulic oil temperature during the previous operation of the engine. While shortening and ensuring startability of the engine, fuel injection can be started as early as possible to complete the start of the engine.
  • the hydraulic oil has a higher viscosity when the oil temperature is low than when it is high. For this reason, when the hydraulic oil temperature at the previous stop is low, the amount of hydraulic oil remaining in the valve timing variable mechanism during the next start is larger than when the hydraulic oil temperature is high, so the time required for the phase change by the phase change unit is longer. Become. Therefore, when the hydraulic oil temperature is low, the fuel injection start timing is delayed compared to when the hydraulic oil temperature is high, thereby ensuring the startability of the engine and starting the fuel injection as soon as possible to complete the engine startup. can do.
  • the hydraulic oil temperature is estimated based on a parameter correlated with the hydraulic oil temperature.
  • the hydraulic oil temperature can be calculated based on, for example, a cooling water temperature sensor or an intake air temperature sensor. Therefore, with the above configuration, there is no need to newly provide components such as an oil temperature sensor, and an increase in the number of components can be suppressed.
  • the control device delays the fuel injection start timing in accordance with a cooling water temperature of the internal combustion engine. In one aspect of the present invention, the control device delays the fuel injection start timing when the cooling water temperature of the internal combustion engine is low compared to when the cooling water temperature is high.
  • the coolant temperature has a correlation with the hydraulic oil temperature.
  • the hydraulic oil temperature and the viscosity of the hydraulic oil have a correlation, and as described above, the time required for the valve timing variable mechanism to change the phase to the intermediate lock phase varies depending on the viscosity. . Therefore, by delaying the fuel injection start timing in accordance with the coolant temperature, the time until the start of fuel injection is shortened and the startability of the engine is secured, and the fuel injection is started as soon as possible to complete the engine start. be able to.
  • the hydraulic oil temperature is also higher than when the cooling water temperature is low. Therefore, when the cooling water temperature during start-up of the internal combustion engine is low, the fuel injection is started as early as possible while ensuring the startability of the engine by delaying the fuel injection start timing compared to when the cooling water temperature is high. You can start and complete the start of the engine.
  • control device is configured such that when the relative rotational phase during the previous operation of the internal combustion engine is far from the intermediate lock phase, the fuel is more fuel than when the relative rotational phase is closer to the intermediate lock phase. Delay injection start time.
  • the phase change is more when the distance between the same phase during startup and the intermediate lock phase is far than when it is close Takes time.
  • FIG. 3 The figure which shows the whole structure of the internal combustion engine provided with the control apparatus which concerns on 1st Embodiment of this invention.
  • the figure which shows the valve timing variable mechanism of FIG. FIG. 3 is a cross-sectional view taken along the line DB-DB in FIG. 2, where (a) is a cross-sectional view when the relative rotational phase of the vane rotor is at the most retarded phase, and (b) is a relative rotational phase of the vane rotor near the intermediate lock phase. (C) is sectional drawing when the relative rotational phase of a vane rotor exists in an intermediate
  • the flowchart which shows the fuel-injection start timing control procedure based on 1st Embodiment.
  • the flowchart which shows the fuel-injection start timing control procedure based on 3rd Embodiment of this invention.
  • the figure which shows the relationship between the cooling water temperature during the start-up of an engine, and the delay time of fuel-injection start time based on 3rd Embodiment of this invention.
  • the map which shows the relationship between the delay time of the fuel injection start time based on a modification, the hydraulic oil temperature during engine starting, and the hydraulic oil temperature during the last driving
  • an injector 17 that injects fuel toward the intake passage is provided in the intake passage provided in the cylinder head 13 of the internal combustion engine 1.
  • An electronic control device 71 is connected to the injector 17.
  • the injector 17 functions as a fuel injection device.
  • the electronic control unit 71 Various information detected by the crank position sensor 72, the cam position sensor 73, the intake air temperature sensor 74, and the cooling water temperature sensor 75 is input to the electronic control unit 71. Then, the electronic control unit 71 outputs a command related to an appropriate fuel injection amount to the injector 17 based on these pieces of information.
  • the electronic control device 71 functions as a control device for the internal combustion engine.
  • the intake camshaft 22 provided in the cylinder head 13 is provided with a hydraulic valve timing variable mechanism 30 that changes the valve timing of the intake valve 21.
  • the hydraulic mechanism 50 that drives the variable valve timing mechanism 30 includes a hydraulic oil control valve 52 (hereinafter referred to as “OCV”), and an electronic control unit 71 is connected to the OCV 52.
  • OCV hydraulic oil control valve
  • the relative rotation phase of the variable valve timing mechanism 30 during engine operation is processed by inputting the crank angle and intake cam angle detected by the crank position sensor 72 and the cam position sensor 73 to the electronic control unit 71. Is calculated by The crank position sensor 72, the cam position sensor 73, and the electronic control unit 71 function as the relative rotation phase detection unit.
  • the crank position sensor 72 is an electromagnetic pickup type sensor. The function will be described below. Convex teeth are provided on the circumference of a timing rotor (not shown) connected to the crankshaft 16.
  • the crank position sensor 72 is provided on the same plane as the timing rotor and is directed toward the center of the rotor. Here, due to the rotation of the rotor, the distance between the crank position sensor 72 and the rotor changes depending on the tooth portion provided on the circumference of the rotor.
  • the crank position sensor 72 detects the rotation of the crankshaft 16 by monitoring the electromotive force generated in the coil portion provided in the crank position sensor 72 due to this change. Further, the teeth provided on the rotor are not provided uniformly over the entire circumference. By monitoring this non-uniform portion, the rotation angle of the crankshaft 16 is detected.
  • the function of the cam position sensor 73 is the same.
  • crank angle can be detected by the crank position sensor 72 when the rotational speed of the crankshaft 16 is equal to or higher than a predetermined value.
  • intake cam angle can be detected by the cam position sensor 73 when the rotational speed of the intake camshaft 22 is equal to or higher than a predetermined value.
  • the state of the OCV 52 is changed based on a command output from the electronic control unit 71. Is done. As a result of the change, the supply and discharge of hydraulic oil to and from the variable valve timing mechanism 30 is controlled, so that the valve timing of the intake valve 21 is changed to the target valve timing.
  • FIG. 2 shows a planar structure of the variable valve timing mechanism 30 with the cover 34 shown in FIG. 3A removed from the housing body 32.
  • an arrow RA indicates the rotation direction of the camshaft 22 and the sprocket 33 (hereinafter “rotation direction RA”).
  • variable valve timing mechanism 30 is synchronized with the housing rotor 31 that rotates in synchronization with the crankshaft 16 and is fixed to the end of the intake camshaft 22 by a bolt 45. And the vane rotor 35 that rotates.
  • the housing rotor 31 is connected to the crankshaft 16 via a timing chain (not shown), and rotates in synchronization with the shaft.
  • the housing rotor 31 is assembled inside the sprocket 33 to be integrated therewith.
  • a housing main body 32 that rotates in a manner and a cover 34 attached to the main body 32 are included.
  • the vane rotor 35 is disposed in a space in the housing main body 32 and is accommodated in a space formed by the main body 32 and the cover 34.
  • the housing main body 32 is provided with three partition walls 31A that protrude toward the vane rotor 35 in the radial direction.
  • the vane rotor 35 is provided with three vanes 36 that project toward the housing body 32 and divide the three vane storage chambers 37 between the partition walls 31A into an advance chamber 38 and a retard chamber 39, respectively.
  • the advance chamber 38 is located behind the vane 36 in the rotation direction RA of the intake camshaft 22 in one vane storage chamber 37, and is used for the hydraulic timing of the variable valve timing mechanism 30 by the hydraulic mechanism 50.
  • the volume changes according to the supply / discharge state.
  • the retard chamber 39 is located on the front side in the rotation direction RA of the intake camshaft 22, and similarly the volume changes according to the supply / discharge state of the hydraulic oil.
  • variable valve timing mechanism 30 changes the valve timing by changing the relative rotation phase of the vane rotor 35 with respect to the housing rotor 31 based on the above configuration.
  • the rotation phase of the vane rotor 35 is the phase in the most forward direction in the rotational direction RA (hereinafter, “most advanced angle phase”).
  • the valve timing is set to the most advanced timing.
  • the vane rotor 35 rotates to the retard side to the control limit with respect to the housing rotor 31, that is, the rotation phase of the vane rotor 35 is the phase at the most rearward side in the rotational direction RA (hereinafter, “the most retarded angle phase”).
  • the valve timing is set to the most retarded timing.
  • the relative rotation between the housing rotor 31 and the vane rotor 35 is locked to an intermediate lock phase between the most retarded phase and the most advanced angle phase but excluding both ends, thereby fixing the valve timing.
  • An “intermediate lock mechanism” is provided.
  • the intermediate lock phase for example, a phase corresponding to a valve timing at which the engine can be started is set.
  • the intermediate lock mechanism operates based on the supply of hydraulic oil from the hydraulic mechanism 50.
  • the housing The rotor 31 and the vane rotor 35 are engaged with each other to fix the valve timing to the intermediate lock phase.
  • the intermediate lock mechanism includes a lock pin 42 provided on the vane 36 and moving with respect to the vane 36, and a pin oil passage provided on the vane 36. 66, a lock pin accommodating chamber 40 through which hydraulic oil is supplied and discharged, a biasing spring 44 that is also provided in the vane 36 and pushes the lock pin 42 in one direction, and a lock hole 41 provided in the housing rotor 31. Including.
  • the lock pin 42 is projected from the vane 36 (hereinafter referred to as a protruding direction) and pulled into the vane 36 (hereinafter referred to as Operation).
  • the hydraulic pressure in the lock pin accommodating chamber 40 acts on the lock pin 42 in the accommodating direction.
  • the force of the urging spring 44 acts on the lock pin 42 in the protruding direction.
  • the engine When there is an intermediate lock request, for example, the engine is in an idle state. Normally, the engine is stopped after the engine is idle. Therefore, the valve timing variable mechanism 30 is locked to the intermediate lock phase when the engine is in an idle state, so that the valve timing is fixed to the intermediate lock phase during the next engine start. .
  • variable valve timing device includes a ratchet groove 43 as a phase changing unit.
  • FIG. 3 (a) shows a state in which the engine is stopped when the valve timing variable mechanism 30 is in the most retarded phase.
  • torque is generated alternately on the advance side and the retard side on the intake camshaft 22 by cranking (hereinafter referred to as “alternating torque”).
  • alternating torque the vane rotor 35 is swung to the advance side and the retard side with respect to the housing rotor 31 by the alternating torque.
  • the lock pin 42 urged from the vane 36 to the housing rotor 31 once enters the ratchet groove 43 when the vane rotor 35 is swung to the advance side.
  • the state at this time is shown in FIG.
  • valve timing variable device 30 of the present embodiment even when the valve timing is not fixed to the intermediate lock phase at the previous engine stop, the valve timing is fixed to the intermediate lock phase during the next engine start. It has become.
  • the engine cannot be started until the phase of the device 30 is changed to the intermediate lock phase.
  • the valve timing since the valve timing is located on the retard side, the air-fuel mixture cannot be sufficiently compressed, and the air-fuel mixture is not ignited, so the engine may not be started.
  • the spark plug 18 when fuel is injected from the injector 17, the spark plug 18 is wetted by the fuel, and the ignition performance of the plug 18 deteriorates.
  • the valve timing is changed to a timing corresponding to the intermediate lock phase. Even if this is the case, the engine cannot be started without igniting the air-fuel mixture. Therefore, in the present embodiment, when the engine is started with the variable valve timing mechanism 30 not in the intermediate lock phase, the injector 17 is controlled so that the start timing of fuel injection is delayed.
  • the processing procedure of the control is shown in FIG.
  • This process is performed when an engine start command is issued.
  • the electronic control unit 71 determines whether or not the relative rotational phase of the valve timing variable mechanism 30 is the intermediate lock phase during the previous operation of the engine (S110).
  • the relative rotational phase detection unit that detects the relative rotational phase cannot detect the relative rotational phase unless the rotational speeds of the crankshaft 16 and the intake camshaft 22 are equal to or higher than a predetermined value.
  • the electronic control unit 71 determines whether or not the relative rotation phase of the variable valve timing mechanism 30 during the previous operation is an intermediate lock phase.
  • the relative rotation phase of the variable valve timing mechanism 30 detected continuously during engine operation is stored in the electronic control unit 71.
  • the last stored relative rotation phase during the previous engine operation is stored until the next engine start.
  • step S110 If it is determined in step S110 that the relative rotation phase of the valve timing variable mechanism 30 is not the intermediate lock phase when the engine is stopped last time, the electronic control unit 71 determines that the current relative rotation phase is the intermediate lock phase. Estimate not. Therefore, in order to ensure the startability of the engine, the valve timing variable mechanism 30 needs to be phase-changed to the intermediate lock phase. At this time, even if the fuel is injected from the injector during the phase change, the air-fuel mixture composed of the fuel and the intake air may not be ignited. As a result, the ignition plug may be wetted by the fuel, which may make it impossible to start the engine. Therefore, when the relative rotation phase of the variable valve timing mechanism 30 is changed to the intermediate lock phase, it is necessary to control the fuel injection start timing to be delayed as compared with the case where the relative rotation phase is not changed.
  • step S120 the coolant temperature THW and the ambient temperature TO detected by the coolant temperature sensor 75 and the ambient temperature sensor 76 are input to the electronic control unit 71, and the electronic control unit 71 detects the current hydraulic oil temperature T1 of the variable valve timing mechanism 30. Is estimated.
  • step S130 based on the hydraulic oil temperature T1 estimated in step S120, the electronic control unit 71 determines the delay time D1 of the fuel injection start timing. Based on the delay time D1, the electronic control unit 71 executes a delay process of the fuel injection start timing in step S140.
  • FIG. 5 shows the relationship between the current hydraulic oil temperature T1 and the delay time D1 of the fuel injection start timing. As shown in FIG. 5, the delay time D1 of the fuel injection start timing is set to be long when the hydraulic oil temperature T1 is low.
  • valve timing variable mechanism 30 hydraulic oil that has operated the mechanism 30 during the previous engine operation remains. This hydraulic oil becomes a resistance when the mechanism 30 is phase-shifted to the intermediate lock phase during engine startup.
  • the hydraulic oil temperature is low, the viscosity of the hydraulic oil increases and the resistance increases. Accordingly, when the hydraulic oil temperature is low, the time required for the phase change of the valve timing variable mechanism 30 to the intermediate lock phase becomes long.
  • the fuel injection start timing is controlled to be slower than when it is high, so that wetting of the spark plug by the injected fuel is suppressed. At the same time, the engine can be started as early as possible.
  • FIG. 6 is a diagram showing a timing chart of the present embodiment.
  • cranking is started while the engine is starting.
  • the mechanism 30 is phase-shifted from the same phase to the intermediate lock phase toward the advance side.
  • the phase change at this time is that the intake camshaft 22 is oscillated by the alternating torque during cranking, and the phase change to the retard side of the oscillation is restricted by the ratchet groove 43.
  • the delay time D1 which is a time later than the time required for the valve timing variable mechanism 30 to advance to the intermediate lock phase by the above operation and is as early as possible, is the map shown in FIG. Is estimated from By delaying the fuel injection start timing by the delay time D1, the engine is controlled so that start-up is completed as soon as possible while ensuring startability.
  • the injector is controlled so that the fuel injection start timing is delayed.
  • the amount of fuel injected before the relative rotation phase is changed to the intermediate lock phase is reduced as compared with the case where the fuel injection start timing is not delayed.
  • the risk that the engine is not started due to the spark plug being wetted by the injected fuel until the relative rotational phase is changed to the intermediate lock phase and the ignition performance of the spark plug being lowered is suppressed.
  • the relative rotation phase detection unit of the variable valve timing mechanism 30 cannot detect the relative rotation phase of the mechanism 30 unless the rotation speeds of the crankshaft 16 and the intake camshaft 22 are equal to or higher than a predetermined value. Therefore, these rotational speeds are low during engine startup, and the relative rotational phase of the variable valve timing mechanism 30 during engine startup may not be detected. Therefore, in the present embodiment, the electronic control unit 71 stores the same relative rotational phase during the previous engine operation, and reads the stored relative rotational phase during the current engine start, so that the current relative rotational phase is read. It is determined whether or not the phase is an intermediate lock phase.
  • the relative rotational phase detection unit of the variable valve timing mechanism 30 cannot detect the relative rotational phase of the mechanism 30 unless the rotational speeds of the crankshaft 16 and the intake camshaft 22 are equal to or higher than a predetermined value. Therefore, when the engine is started, these rotational speeds are low.
  • the electronic control unit 71 sets the relative rotation phase to the middle. It may not be possible to determine whether or not the phase has been changed to the lock phase. Therefore, in this embodiment, the fuel injection start timing is delayed according to the oil temperature of the hydraulic oil.
  • the relative rotation phase of the valve timing variable mechanism 30 is changed to the intermediate lock phase by the phase changing unit. Before being changed, the fuel injection is suppressed from starting.
  • the fuel injection start timing is delayed when the hydraulic oil temperature is low compared to when the hydraulic oil temperature is high.
  • the hydraulic oil generally has a lower viscosity than when it is high, and as a result, it takes time to change the phase by the phase changing unit. Therefore, by the above control, it is possible to start the engine by starting fuel injection as early as possible while ensuring startability of the engine.
  • the oil temperature of the hydraulic oil is estimated from the engine coolant temperature and the outside air temperature. Thereby, it is not necessary to newly provide a member for detecting the oil temperature, such as an oil temperature sensor, and an increase in the number of parts is suppressed. (Second Embodiment) Next, a second embodiment of the present invention will be described focusing on differences from the first embodiment described above.
  • the fuel injection start timing is configured to be delayed according to the hydraulic oil temperature during startup.
  • the fuel injection start timing is configured to be delayed according to the hydraulic oil temperature and the relative rotation phase of the valve timing variable mechanism 30 during the previous operation of the engine, and the following points are different. .
  • step S120 after estimating the current hydraulic oil temperature in step S120, the delay time D1 of the fuel injection start timing in step S130 based on the hydraulic oil temperature. Was to decide.
  • step S220 to step S260 during the previous engine operation, in particular, from the hydraulic oil temperature detected last and the relative rotation phase of the valve timing variable mechanism 30, The delay time D3 is determined.
  • step S220 the electronic control unit 71 reads the hydraulic oil temperature T2 detected last during the previous operation of the engine.
  • step S230 the electronic control unit 71 determines the delay time D2 of the fuel injection start timing based on the hydraulic oil temperature T2.
  • FIG. 8 shows the relationship between the hydraulic oil temperature T2 during the previous engine operation and the delay time D2 of the fuel injection start timing. As shown in FIG. 8, the delay time D2 of the fuel injection start timing is set to be longer when the hydraulic oil temperature T2 is low than when it is high.
  • variable valve timing mechanism 30 becomes a resistance when the mechanism 30 is phase-shifted to the intermediate lock phase during engine startup. Further, when there is a large amount of remaining hydraulic oil, the resistance force due to the hydraulic oil increases.
  • the amount of hydraulic oil flowing out from the valve timing variable mechanism 30 after the engine is stopped correlates with the viscosity of the hydraulic oil.
  • the viscosity of the hydraulic oil is higher when the hydraulic oil temperature is lower than when it is high.
  • the fuel injection start timing is controlled to be delayed when the hydraulic oil temperature T2 is low compared to when it is high.
  • the electronic control unit 71 reads the relative rotational phase of the valve timing variable mechanism 30 stored in the electronic control unit 71 when the engine was stopped last time.
  • the electronic control unit 71 obtains a correction value d1 for correcting the delay time calculated in step S230 based on the same phase.
  • the electronic control unit 71 reads the relative rotation phase of the valve timing variable mechanism 30 detected in the previous operation of the engine, particularly the last detected in step S240, and the delay time correction graph shown in FIG. From this, the correction value d1 of the fuel injection start timing delay time D2 is calculated.
  • the electronic control unit 71 integrates the delay time D2 and the correction value d1 to obtain the fuel injection start timing delay time D3.
  • the reason why the fuel injection start timing delay time D2 is corrected in this way is as follows. That is, it is because the time required for the variable valve timing mechanism 30 to change the phase to the intermediate lock phase during startup varies depending on the distance between the relative rotational phase of the mechanism 30 and the intermediate lock phase during startup.
  • step S270 the electronic control unit 71 delays the fuel injection start timing by the delay time D3. Therefore, the engine is controlled so that the start is completed as early as possible while the startability is ensured.
  • the following advantages can be obtained. (6) Inside the valve timing variable mechanism 30 during start-up, there is hydraulic oil that has operated the mechanism 30 during the previous engine operation, and this hydraulic oil is the relative rotational phase of the mechanism 30 during start-up. Becomes a resistance when the phase is changed to the intermediate lock phase. This resistance increases as the amount of hydraulic oil increases. The amount of hydraulic oil flowing out from the variable valve timing mechanism 30 after the previous engine stop is smaller when the viscosity of the hydraulic oil is high than when it is low. Further, the viscosity of the hydraulic oil generally has a correlation with the oil temperature of the hydraulic oil. Therefore, the startability of the engine can be ensured by delaying the fuel injection start timing in accordance with the oil temperature of the hydraulic oil during the previous operation.
  • the fuel injection start timing is delayed when the hydraulic oil temperature during the previous operation is low compared to when the hydraulic oil temperature is high.
  • the hydraulic oil generally has a lower viscosity when the oil temperature is low than when it is high. Therefore, if the hydraulic oil temperature during the previous operation is low, the amount of hydraulic oil flowing out from the variable valve timing mechanism 30 after the stop is smaller than when the hydraulic oil temperature is high. As a result, it takes time to change the phase by the phase changing unit during the next start. Therefore, by the above control, it is possible to start the engine by starting fuel injection as early as possible while ensuring startability of the engine.
  • the fuel injection start timing is configured to be delayed according to the hydraulic oil temperature during start-up or previous engine operation. In the present embodiment, the fuel injection start timing is delayed according to the coolant temperature THW during engine startup.
  • the electronic control unit 71 determines the delay time D4 in step S330.
  • FIG. 11 shows the relationship between the coolant temperature during engine startup and the delay time D4 of the fuel injection start timing.
  • the delay time D4 is determined so that the delay time D4 becomes longer than when the coolant temperature THW is high. This is because when the coolant temperature THW is low, it is considered that the current hydraulic oil temperature is also low, and therefore it is predicted that the resistance of the hydraulic oil to the change of the relative rotation phase of the variable valve timing mechanism 30 is large.
  • step S340 the electronic control unit 71 performs delay control of the fuel injection start timing based on the delay time D4.
  • the coolant temperature THW correlates with the hydraulic oil temperature.
  • the time required for changing the relative rotational phase of the variable valve timing mechanism 30 varies depending on the hydraulic oil temperature. Therefore, by controlling the injector 17 so as to delay the fuel injection start timing in accordance with the coolant temperature THW, it is possible to start the engine by starting the fuel injection as early as possible while ensuring the startability of the engine. .
  • each said embodiment can also be changed and implemented as follows.
  • the fuel injection start timing is delayed.
  • the fuel injection start timing is delayed regardless of the same phase during engine startup. You may do it.
  • fuel injection may not be started immediately, but may be started after a predetermined time has elapsed.
  • the predetermined time may be changed based on parameters such as the oil temperature is the coolant temperature, and the relative rotational phase of the valve timing variable mechanism 30 during the previous engine operation. Even in such a case, the problem of the present application can be solved.
  • the fuel injection start timing is changed according to the hydraulic oil temperature during the current or previous engine operation or the coolant temperature THW.
  • the fuel injection start timing may be delayed regardless of the hydraulic oil temperature. Also in this case, the advantages (1) and (2) can be obtained.
  • the fuel injection start timing is delayed compared to when the hydraulic oil temperature is high.
  • the time required for the phase change does not take a long time when the oil temperature is low compared to when the oil temperature is high, it is not necessary to delay as described above.
  • the advantages (1) to (3) and (5) to (6) and (8) can be obtained by using the oil temperature as one of the parameters for estimating the time required for the phase change.
  • the fuel injection start timing is delayed compared to when it is high.
  • the cooling water temperature THW is low and the time required for phase change does not take a long time compared to when the cooling water temperature THW is high, it is not necessary to delay as described above.
  • the effects (1) to (2) and (9) can be obtained by using the cooling water temperature THW as one of the parameters for estimating the time required for the phase change.
  • the operating oil temperature of the engine is estimated on the basis of a parameter correlated therewith.
  • a device for detecting the operating oil temperature directly such as an oil temperature sensor may be provided. Good.
  • the delay time of the fuel injection start timing is calculated from the hydraulic oil temperature during engine startup.
  • the hydraulic oil temperature or valve timing variable mechanism during the previous engine operation is calculated. 30 relative rotational phases may be taken into account.
  • the delay time is calculated based on a map as shown in FIG. Such calculation makes it possible to complete the start of the engine as soon as possible while ensuring the startability of the engine.
  • the fuel injection start timing is delayed from the hydraulic oil temperature during the previous operation of the engine and the current relative rotation phase of the valve timing variable mechanism 30.
  • the delay time of the fuel injection start timing may be obtained only from the hydraulic oil temperature when the engine is stopped last time.
  • the determination as to whether or not the intermediate lock phase is engaged is performed, for example, as follows.
  • the hydraulic oil is controlled so that the lock pin 42 protrudes when an intermediate lock request is output.
  • the target relative rotational phase of the variable valve timing mechanism 30 is set so as to be farther from the intermediate lock phase when viewed from the current phase.
  • the relative rotational phase is the target relative rotational phase
  • the lock pin 42 is not engaged with the lock hole 41, and the vane rotor 35 has passed through the intermediate lock phase. It is determined that it is not locked to the intermediate lock phase.
  • the intermediate lock flag 1 is stored in the electronic control unit 71. Otherwise, the intermediate lock flag 0 is stored in the electronic control unit 71.
  • the electronic control unit 71 stores the flag even after the engine is stopped.
  • variable valve timing mechanism 30 Thereafter, by reading the flag during engine startup, it is determined whether or not the variable valve timing mechanism 30 was fixed at the intermediate lock phase during the previous operation of the engine. If the relative rotation phase is not fixed to the intermediate lock phase, the relative rotation phase of the mechanism 30 may not be the intermediate lock phase. Therefore, the injector 17 is controlled so that the fuel injection start timing is delayed. You may do it.
  • the time until the relative rotation phase of the variable valve timing mechanism 30 is changed to the intermediate lock phase is estimated from the oil temperature or the like, and the fuel injection start timing is delayed by at least the same time. It was like that. However, even if the relative rotation phase is changed to the intermediate lock phase, when the lock pin 42 is not inserted into the lock hole 41 and the mechanism 30 is not fixed, fuel is injected and combustion is started. There is a risk that the mechanism 30 will flutter violently and the mechanism 30 may be damaged. Therefore, the time until the lock pin 42 is inserted into the lock hole 41 may be estimated, and the fuel injection start timing may be delayed at least at the same time.
  • the intermediate lock mechanism is controlled by the OCV, but may be controlled by a separately provided hydraulic control mechanism such as an oil switching valve.
  • variable valve timing mechanism 30 a part of the variable valve timing mechanism 30 is connected to the intake camshaft 22, but may be connected to the exhaust camshaft 24. Further, a variable valve timing mechanism connected to the intake camshaft 22 and a variable valve timing mechanism connected to the exhaust camshaft 24 may be provided.
  • crankshaft 16 and the housing rotor 31 are connected so as to rotate synchronously, and the intake camshaft 22 and the vane rotor 35 are connected so as to rotate synchronously.
  • the combination is not limited to this. Further, the above is given as an example of the valve timing mechanism, and it is a matter of course that the configuration in which the valve timing is variable by other mechanisms is not excluded.
  • Lock pin storage chamber 41 ... Lock hole, 42 ... Lock pin, 43 ... Ratchet groove, 44 ... Biasing spring, 45 ... bolt, 50 ... hydraulic mechanism, 51 ... oil pump, 52 ... hydraulic oil control valve, 60 ... oil passage, 61 ... suction Oil passage, 62 ... Supply oil passage, 63 ... Discharge oil passage, 64 ... Advance oil passage, 65 ... Delay oil passage, 66 ... Pin oil passage, 71 ... Electronic control device, 72 ... Crank position sensor, 73 ... Cam Position sensor, 74 ... intake air temperature sensor, 75 ... cooling water temperature sensor, 76 ... outside air temperature sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Valve Device For Special Equipments (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

 機関が始動される際に、クランクシャフトに駆動連結された第1回転体とカムシャフトに駆動連結された第2回転体との相対回転位相が中間ロック位相でなければ、該相対回転位相が前記中間ロック位相であるときに比べて、燃料噴射開始時期を遅らせる。遅らせる時間としては、例えば、機関の始動中のバルブタイミング機構の作動油温や、機関の前回停止時の同油温に応じて決定する。その結果、内燃機関の始動性を確保しつつ、できるだけ早期に機関の始動を完了することができる。

Description

内燃機関の制御装置
 本発明は、内燃機関の制御装置に関する。
 周知のように、内燃機関の吸気通路や燃焼室内には燃料噴射装置(以下、インジェクタという)及び点火プラグが設けられている。
 また、クランクシャフトに対するカムシャフトの回転位相を可変とすることで、吸気バルブや排気バルブといった機関バルブのバルブタイミングを変更するバルブタイミング可変装置が実用化されている。このバルブタイミング可変装置には、クランクシャフトに駆動連結された第1回転体とカムシャフトに駆動連結された第2回転体とを有するバルブタイミング可変機構が備えられている。そして、油圧などによって第1回転体と第2回転体とが相対回転されることにより、クランクシャフトに対するカムシャフトの相対回転位相を変更することで、バルブタイミングが変更されるようになっている。
 また、上記相対回転位相の変更可能範囲である最遅角位相と最進角位相との間の範囲であって、同範囲の両端を除く位相(以下、中間ロック位相という)にバルブタイミングを固定する「中間ロック機構」を備えたバルブタイミング可変装置も知られている。
 特許文献1には、機関の始動中には、バルブタイミング可変機構をその相対回転位相が中間ロック位相であるように制御することが開示されている。機関の始動中において、相対回転位相が中間ロック位相でない場合は、同位相が中間ロック位相となるようにバルブタイミング可変機構が制御される。
 このとき、同位相が中間ロック位相に変更されるまでの間に燃料噴射が行われても、同燃料に着火されないことがある。そして、点火プラグに同燃料が付着することにより、点火プラグの点火性能が低下し、機関の始動性が悪化する虞がある。
 そこで、特許文献1では、バルブタイミング可変機構の相対回転位相が中間ロック位相となったことが判定されるまで、燃料噴射が開始されないように制御される。なお、同判定は、バルブタイミングが中間ロック位相に固定されているか否かを監視することによって行われる。
特開2001-41012号公報
 上述のようなバルブタイミングの監視は、クランクポジションセンサによって検出されるクランク角と、カムポジションセンサによって検出されるカム角とから、バルブタイミング可変機構の現在の相対回転位相を算出することによって行われる。
 上記のようなクランクポジションセンサやカムポジションセンサとしては、例えば電磁ピックアップ式のセンサが用いられる。
 電磁ピックアップ式センサを用いたクランク角検出方法の例としては、クランクシャフトに連結されるタイミングロータの円周上に凸上の歯部を設け、回転するタイミングロータの同歯部を検出する方法がある。
 そして、クランクポジションセンサ及びカムポジションセンサの検出精度は、クランクシャフト及びカムシャフトの回転速度が所定値以上でなければ正常に保たれない。すなわち、クランクポジションセンサやカムポジションセンサによるクランク角及びカム角の検出は、クランクシャフトやカムシャフトの回転速度が所定値以上でなければ正常に行われない。
 ここで、内燃機関の始動中、例えばクランキング中は、クランクシャフト及びカムシャフトの回転速度は低い。そのため、内燃機関の始動中においては、クランクポジションセンサ及びカムポジションセンサによっては、バルブタイミング可変機構の相対回転位相を検出できない虞がある。したがって、機関の始動中において、同相対回転位相を中間ロック位相に変更するとき、同位相が中間ロック位相に変更されたか否かを検出することができない虞がある。その結果、燃料噴射の開始時期が、同位相が中間ロック位相に変更されたことを判定するまで遅らせるように制御される場合、同判定が正常に行われないため、燃料噴射が正常に開始されず、機関の始動性が悪化する虞がある。
 本発明はこのような実情に鑑みてなされたものであり、その目的は、機関の始動中にバルブタイミングが中間ロック位相にないときに、機関の始動性を確保することのできる、内燃機関の制御装置を提供することにある。
 上記目的を達成するため、本発明に従う内燃機関の制御装置が提供される。前記内燃機関は、前記内燃機関に燃料を噴射する燃料噴射装置と、クランクシャフトと、前記内燃機関の機関バルブを開閉動作させるカムシャフトと、前記機関バルブのバルブタイミングを可変とするバルブタイミング可変装置と、を備える。該バルブタイミング可変装置は、バルブタイミング可変機構と、中間ロック機構と、相対回転位相検出部と、位相変更部と、を含む。前記バルブタイミング可変機構は、前記クランクシャフトに駆動連結された第1回転体と、前記カムシャフトに駆動連結された第2回転体とを含み、前記第1回転体と前記第2回転体との相対回転位相を油圧制御にて変更することにより前記バルブタイミングを可変とする。前記中間ロック機構は、前記相対回転位相の変更可能範囲の間でかつ該変更可能範囲の両端を除く位相であって、前記相対回転位相が該位相にあるときには前記内燃機関の始動が可能であるような中間ロック位相に、前記相対回転位相を固定する。前記相対回転位相検出部は、前記相対回転位相を検出する。前記相対回転位相検出部は、前記カムシャフトの回転速度が所定値以上のときに該カムシャフトの回転角を検出することのできるカム角センサと、前記クランクシャフトの回転速度が所定値以上のときに該クランクシャフトの回転角を検出することのできるクランク角センサとを含む。前記相対回転位相検出部は、前記カム角センサ及び前記クランク角センサによってそれぞれ検出される、前記カムシャフトの回転角と前記クランクシャフトの回転角とから前記相対回転位相を算出する。前記位相変更部は、前記内燃機関の始動中には前記相対回転位相が前記中間ロック位相となるように、前記相対回転位相を前記中間ロック位相に変更する。前記内燃機関の制御装置は、前記燃料噴射装置の燃料噴射開始時期を遅らせる。
 上記構成によれば、機関の始動中に、燃料噴射装置は燃料噴射が開始される時期が遅れるように制御される。
 そのため、機関の始動中、位相変更部によって相対回転位相が中間ロック位相に変更される場合に、例えばクランキングが開始されてから当該変更が終了するまでの間に噴射される燃料量が、クランキング開始時から噴射される場合の燃料量に比べて減少される。その結果、相対回転位相が機関始動可能である中間ロック位相に変更されるまでの間に噴射された燃料によって、点火プラグが濡らされ、点火プラグの点火性能が低下する虞が抑制される。それにより、機関の始動性が確保される。
 本発明の一態様では、前記内燃機関の始動中に、前記相対回転位相が前記中間ロック位相でなければ、前記相対回転位相が前記中間ロック位相であるときに比べて、前期燃料噴射装置の燃料噴射開始時期を遅らせる。
 上記構成によれば、機関の始動中に、第1回転体と第2回転体との相対回転位相、すなわちバルブタイミング可変機構の相対回転位相が、中間ロック位相でなければ、中間ロック位相であるときに比べて、燃料噴射装置は燃料噴射が開始される時期が遅れるように制御される。
 そのため、機関の始動中に位相変更部によって相対回転位相が中間ロック位相に変更されるまでの間に噴射される燃料量が、燃料噴射開始時期を遅らせない場合に比べて減少される。その結果、相対回転位相が機関始動可能である中間ロック位相に変更されるまでの間に噴射された燃料に点火プラグが濡らされることによる、点火プラグの点火性能の虞が抑制される。それにより、機関の始動性が確保される。
 本発明の一態様では、前記内燃機関の前回運転中における前記相対回転位相に基づき、前記内燃機関の今回の始動中に前記相対回転位相が前記中間ロック位相にないことを判定する。
 相対回転位相検出部によって相対回転を検出するためには、クランクシャフト及びカムシャフトがそれぞれ所定の回転速度以上である必要がある。ここで、機関の始動中、例えばクランキング中などは、同回転速度が低いために、前記相対回転位相を検出できない場合がある。
 上記構成によれば、前回運転中、例えば前回停止のさいにおけるバルブタイミング可変機構の相対回転位相によって、今回始動中におけるバルブタイミング可変機構の相対回転位相が中間ロック位相にないことが判定される。したがって、機関の今回始動中に、前記相対回転位相が中間ロック位相でなければ、中間ロック位相である場合に比べて燃料噴射装置による燃料噴射を遅らせることができ、機関の始動性が確保される。
 本発明の一態様では、前記制御装置は、前記内燃機関の始動中における前記バルブタイミング可変装置の作動油温に応じて、前記燃料噴射開始時期を遅らせる。
 本発明の一態様では、前記制御装置は、前記内燃機関の始動中における前記バルブタイミング可変装置の作動油温が低いときには、該作動油温が高いときに比べて、燃料噴射開始時期を遅らせる。
 油圧制御によるバルブタイミング可変機構の場合、その内部には作動油が存在する。そしてこの作動油は、位相変更部による第1回転体と第2回転体との相対回転の抵抗となる。そのため、機関の始動中にバルブタイミングが中間ロック位相まで変更されるのに要する時間は、バルブタイミング可変機構内部に存在する作動油の状態によって変化する。具体的には、作動油の粘度及び量によって変化する。
 作動油の粘度は、作動油温と相関を有するところ、位相変更部によって第1回転体と第2回転体とが中間ロック位相に向けて位相変更されるとき、この位相変更に要する時間は作動油温に応じて変化する。そこで、燃料噴射開始時期を機関の始動中の作動油温に応じて遅らせることによって燃料噴射開始までの時間を短くし、機関の始動性を確保しつつ、できるだけ早期に燃料噴射を開始して機関の始動を完了することができる。
 また、一般的に作動油は、油温が低いときには高いときに比べて粘度が高くなる。そのため、作動油温が低いときには、作動油温が高いときに比べて、位相変更部によって第1回転体と第2回転体との相対回転位相が中間ロック位相に変更されるのに要する時間は長くなる。したがって、作動油温が低いときには、作動油温が高いときに比べて燃料噴射開始時期を遅らせることによって、機関の始動性を確保しつつ、できるだけ早期に燃料噴射を開始して機関の始動を完了することができる。
 本発明の一態様では、前記制御装置は、前記内燃機関の前回運転中における前記バルブタイミング可変装置の作動油温に応じて、前記燃料噴射開始時期を遅らせる。
 本発明の一態様では、前記制御装置は、前記内燃機関の前回運転中における前記バルブタイミング可変装置の作動油温が低いときには、該作動油温が高いときに比べて、燃料噴射開始時期を遅らせる。
 バルブタイミング可変機構内部に残存する作動油の量が、位相変更部による第1回転体と第2回転体との相対回転の抵抗となることは上述の通りである。ここで、機関の運転中にバルブタイミング可変機構内部に残存する作動油は、機関の停止後外部に流出して減少する。このときの作動油の流出量は、一般的に作動油の粘度が高いときには少なく、作動油の粘度が低いときには多い。すなわち、機関の始動中にバルブタイミング可変機構内部に残存する作動油の量は、前回機関運転中の作動油の粘度に応じて変化する。
 したがって、上述のように作動油の粘度は作動油温と相関を有しているところ、燃料噴射開始時期を機関の前回運転中の作動油温に応じて遅らせることによって燃料噴射開始までの時間を短くし、機関の始動性を確保しつつ、できるだけ早期に燃料噴射を開始して機関の始動を完了することができる。
 また、一般的に作動油は、油温が低いときには高いときに比べて粘度が高くなる。そのため、前回停止時の作動油温が低いときには、高いときに比べて、次回始動中にバルブタイミング可変機構内部に残存する作動油の量が多いので、位相変更部による位相変更にかかる時間が長くなる。したがって、作動油温が低いときには、作動油温が高いときに比べて燃料噴射開始時期を遅らせることによって、機関の始動性を確保しつつ、できるだけ早期に燃料噴射を開始して機関の始動を完了することができる。
 本発明の一態様では、前記作動油温は、該作動油温に相関するパラメータに基づいて推定される。
 作動油温は、例えば冷却水温センサや吸気温センサ等に基づいて算出することができる。したがって、上記構成によって、油温センサ等の部品を新たに設ける必要がなく、部品点数の増加を抑制することができる。
 本発明の一態様では、前記制御装置は、前記内燃機関の冷却水温に応じて前記燃料噴射開始時期を遅らせる。
 本発明の一態様では、前記制御装置は、前記内燃機関の冷却水温が低いときには、前記冷却水温が高いときに比べて、燃料噴射開始時期を遅らせる。
 一般に、冷却水温度は作動油温と相関を有する。また、作動油温と、同作動油の粘度とは相関を有し、同粘度によって、バルブタイミング可変機構が中間ロック位相まで位相変更されるのに要する時間が変化するのは上述のとおりである。そこで、冷却水温度に応じて燃料噴射開始時期を遅らせることによって燃料噴射開始までの時間を短くし、機関の始動性を確保しつつ、できるだけ早期に燃料噴射を開始して機関の始動を完了することができる。
 また、一般的に、冷却水温度が高いときには、低いときに比べて、作動油温も高くなる。そこで、内燃機関の始動中における冷却水温度が低いときには、前記冷却水温度が高いときに比べて、燃料噴射開始時期を遅らせることによって、機関の始動性を確保しつつ、できるだけ早期に燃料噴射を開始して機関の始動を完了することができる。
 本発明の一態様では、前記制御装置は、前記内燃機関の前回運転中における前記相対回転位相が前記中間ロック位相から遠いときには、前記相対回転位相が前記中間ロック位相から近いときに比べて、燃料噴射開始時期を遅らせる。
 位相変更部によって第1回転体と第2回転体との相対回転位相を中間ロック位相まで変更するにあたって、始動中の同位相と中間ロック位相との距離が遠いときには、近いときよりも位相の変更には時間がかかる。そこで、上記構成により、機関の始動性を確保しつつ、できるだけ早期に燃料噴射を開始して機関の始動を完了することができる。
本発明の第1実施形態に係る制御装置を備えた内燃機関の全体構成を示す図。 図1のバルブタイミング可変機構を示す図。 図2のDB-DB線に沿う断面図であって、(a)はベーンロータの相対回転位相が最遅角位相にあるときの断面図、(b)はベーンロータの相対回転位相が中間ロック位相近傍にあるときの断面図、(c)はベーンロータの相対回転位相が中間ロック位相にあるときの断面図。 第1実施形態に係る、燃料噴射開始時期制御手順を示すフローチャート。 第1実施形態に係る、機関の始動中の作動油温と、燃料噴射開始時期のディレイ時間との関係を示す図。 第1実施形態に係る、機関の始動中のタイムチャート。 本発明の第2実施形態に係る、燃料噴射開始時期制御手順を示すフローチャート。 第2実施形態に係る、機関の前回運転中の作動油温と燃料噴射開始時期のディレイ時間との関係を示す図。 第2実施形態に係る、機関の前回運転中の相対回転位相と燃料噴射開始時期のディレイ時間補正値との関係を示す図。 本発明の第3実施形態に係る、燃料噴射開始時期制御手順を示すフローチャート。 本発明の第3実施形態に係る、機関の始動中の冷却水温と燃料噴射開始時期のディレイ時間との関係を示す図。 変形例に係る、燃料噴射開始時期のディレイ時間と、機関の始動中の作動油温及び機関の前回運転中の作動油温との関係を示すマップ。
(第1実施形態)
 図1~図6を参照して、本発明の内燃機関の制御装置を具体化した第1実施形態について説明する。
 図1に示されるように、内燃機関1のシリンダヘッド13に設けられた吸気通路には、同吸気通路に向けて燃料を噴射するインジェクタ17が設けられている。また、インジェクタ17には電子制御装置71が接続されている。このインジェクタ17は、燃料噴射装置として機能する。
 電子制御装置71にはクランクポジションセンサ72、カムポジションセンサ73、吸気温センサ74、冷却水温センサ75において検出された各種情報が入力される。そして、電子制御装置71は、これらの情報を基にインジェクタ17に対し適切な燃料噴射量に係る指令を出力する。同電子制御装置71は内燃機関の制御装置として機能する。
 シリンダヘッド13に備えられた吸気カムシャフト22には、吸気バルブ21のバルブタイミングを変更する油圧式のバルブタイミング可変機構30が設けられている。バルブタイミング可変機構30を駆動する油圧機構50には作動油制御弁52(以下、「OCV」)が備えられており、OCV52には電子制御装置71が接続されている。
 機関運転中のバルブタイミング可変機構30の相対回転位相、すなわちバルブタイミングは、クランクポジションセンサ72及びカムポジションセンサ73において検出されたクランク角及び吸気カム角が電子制御装置71に入力され処理されることによって算出される。これらのクランクポジションセンサ72、カムポジションセンサ73、電子制御装置71は、上記相対回転位相検出部として機能する。
 なお、クランクポジションセンサ72は電磁ピックアップ式センサである。以下、その機能を説明する。クランクシャフト16に連結される図示しないタイミングロータの円周上には、凸上の歯部が設けられている。クランクポジションセンサ72は、タイミングロータと同平面上に設けられ、同ロータの中心方向に向けられている。ここで、同ロータの回転によって、同クランクポジションセンサ72と同ロータとの距離が、同ロータの円周上に設けられた歯部によって変化する。この変化によってクランクポジションセンサ72に設けられたコイル部に生じる起電力を監視することによって、クランクポジションセンサ72はクランクシャフト16の回転を検知する。また、同ロータに設けられた歯部は、全円周に渡って均等に設けられているわけではない。この非均等部を監視することによって、クランクシャフト16の回転角が検出される。なお、カムポジションセンサ73の機能も同様である。
 ここで、クランクポジションセンサ72によるクランク角の検出は、クランクシャフト16の回転速度が所定値以上のときに可能となる。同様に、カムポジションセンサ73による吸気カム角の検出は、吸気カムシャフト22の回転速度が所定値以上のときに可能となる。これら所定値は、クランクポジションセンサ72及びカムポジションセンサ73の検出精度により決定される。
 そして、例えば機関の運転中に、上記相対回転位相検出部によって検出された現状のバルブタイミングと、目標バルブタイミングとが異なる場合、電子制御装置71から出力される指令に基づいてOCV52の状態が変更される。同変更により、バルブタイミング可変機構30に対する作動油の給排出が制御される結果、吸気バルブ21のバルブタイミングが、目標バルブタイミングに変更される。
 次に、図2及び図3を参照して、バルブタイミング可変装置について詳述する。図2には、ハウジング本体32から、図3(a)に示されるカバー34を取り外した状態でのバルブタイミング可変機構30の平面構造が示されている。また図2において、矢印RAはカムシャフト22及びスプロケット33の回転方向(以下、「回転方向RA」)を示す。
 図2に示されるように、バルブタイミング可変機構30は、クランクシャフト16に同期して回転するハウジングロータ31と、ボルト45によって吸気カムシャフト22の端部に固定されることにより同シャフトに同期して回転するベーンロータ35とを含む。
 ハウジングロータ31は、タイミングチェーン(図示略)を介してクランクシャフト16と連結されることにより同シャフトに同期して回転するスプロケット33と、このスプロケット33の内側に組みつけられてこれと一体をなす態様で回転するハウジング本体32と、この本体32に取り付けられるカバー34とを含む。
 ベーンロータ35は、ハウジング本体32内の空間に配置され、同本体32とカバー34とにより形成される空間に収容される。ハウジング本体32には、径方向においてベーンロータ35に向けて突出する3つの区画壁31Aが設けられている。ベーンロータ35には、ハウジング本体32に向けて突出し、区画壁31Aの間にある3つのベーン収容室37をそれぞれ進角室38及び遅角室39に区画する3つのベーン36が設けられている。
 進角室38は、1つのベーン収容室37内においてベーン36よりも吸気カムシャフト22の回転方向RAの後方側に位置するものであり、油圧機構50によるバルブタイミング可変機構30についての作動油の給排状態に応じて容積が変化する。一方、遅角室39は、吸気カムシャフト22の回転方向RAの前方側に位置し、同様に作動油の給排状態に応じて容積が変化する。
 具体的には、作動油が、ボルト45の周囲に設けられた油路から、進角油路64を通り進角室38に供給されることによって、進角室38の容積は拡大する。それにより、ベーンロータ35は進角側に回転される。一方、作動油が、ボルト45の周囲に設けられた油路から、遅角油路65を通り遅角室39に供給されることによって、遅角室39の容積が拡大する。それにより、ベーンロータ35は遅角側に回転される。また、これら進角油路64及び遅角油路65から、進角室38及び遅角室39内の作動油は排出されることもできる。このように、進角油路64及び遅角油路65を通じた作動油の供給又は排出の切換えは、OCV52によっておこなわれる。すなわち、進角油路64又は遅角油路65に供給油路62が接続されることによって、これら油路64又は65に作動油が供給される。また、進角油路64又は遅角油路65に排出油路63が接続されることによって、これら油路64又は65から作動油が排出される。
 バルブタイミング可変機構30は、上記の構成に基づいてハウジングロータ31に対するベーンロータ35の相対的な回転位相を変更することにより、バルブタイミングを変更する。
 なお、ベーンロータ35がハウジングロータ31に対して制御上の限界まで進角側に回転したとき、すなわちベーンロータ35の回転位相が最も回転方向RAの前方側の位相(以下、「最進角位相」)にあるとき、バルブタイミングは最も進角側のタイミングに設定される。逆に、ベーンロータ35がハウジングロータ31に対して制御上の限界まで遅角側に回転したとき、すなわちベーンロータ35の回転位相が最も回転方向RAの後方側の位相(以下、「最遅角位相」)にあるとき、バルブタイミングは最も遅角側のタイミングに設定される。
 バルブタイミング可変装置には、ハウジングロータ31とベーンロータ35との相対回転を、最遅角位相と最進角位相との間であって両端を除く中間ロック位相に係止して、バルブタイミングを固定する「中間ロック機構」が設けられている。同中間ロック位相としては、例えば、機関の始動が可能であるようなバルブタイミングに対応する位相が設定される。
 中間ロック機構は、油圧機構50からの作動油の供給に基づいて動作し、ハウジングロータ31に対するベーンロータ35の相対回転位相が中間ロック位相にあるときであって、中間ロック要求があるときに、ハウジングロータ31とベーンロータ35とを互いに係止してバルブタイミングを中間ロック位相に固定する。
 具体的には、中間ロック機構は、図3(a)に示されるように、ベーン36に設けられて同ベーン36に対して移動するロックピン42と、同じくベーン36に設けられてピン油路66から作動油が給排されるロックピン収容室40と、また同じくベーン36に設けられてロックピン42を一方向に押す付勢ばね44と、ハウジングロータ31に設けられたロック穴41とを含む。
 ロックピン42は、ロックピン収容室40の作動油の力と付勢ばね44の力との関係に基づいて、ベーン36から突出する方向(以下、突出方向)とベーン36に引込む方向(以下、収容方向)との間で動作する。ロックピン収容室40の油圧は、ロックピン42に対して収容方向に作用する。付勢ばね44の力は、ロックピン42に対して突出方向に作用する。そして、ロックピン42がロック穴41に突出され、同穴41に係合したときに、ハウジングロータ31とベーンロータ35とは中間ロック位相にて互いに係止される。
 中間ロック要求があるときとしては、例えば機関の運転状態がアイドル状態であるときがある。通常、機関がアイドル状態になった後に機関の運転は停止される。そこで、機関がアイドル状態であるときにバルブタイミング可変機構30が中間ロック位相に係止されることによって、次回機関始動中にバルブタイミングが中間ロック位相に固定された状態となっているようにできる。
 一方、エンジンストール等によって機関がアイドル状態を経ずに停止された場合、バルブタイミングが中間ロック位相にない状態で機関が停止される可能性がある。このとき、次回機関が始動されるさいには、バルブタイミングが中間ロック位相となるように位相変更される必要がある。そこで、本実施形態におけるバルブタイミング可変装置は、位相変更部としてのラチェット溝43を含む。
 図3(a)には、バルブタイミング可変機構30が最遅角位相にあるときに機関が停止された状態が示されている。機関が始動されると、クランキングにより、吸気カムシャフト22には進角側及び遅角側へ交互にトルクが発生する(以下、「交番トルク」)。このとき、同交番トルクにより、ベーンロータ35はハウジングロータ31に対して進角側及び遅角側に揺動される。すると、ベーン36からハウジングロータ31に付勢されたロックピン42は、ベーンロータ35が進角側に揺れたときに、ラチェット溝43にいったん入るようになる。このときの状態を図3(b)に示す。
 そして、この状態で再度交番トルクが作用すると、ベーンロータ35はラチェット溝43とロックピン42との噛み合いにより遅角方向への回転が制限されているため、進角側にのみさらに回転されて、最終的にはロックピン42がロック穴41に突出される。このときの状態を図3(c)に示す。
 このようにして本実施形態のバルブタイミング可変装置30では、前回機関停止時にバルブタイミングが中間ロック位相に固定されなかった場合でも、次回の機関始動中にバルブタイミングが中間ロック位相に固定されるようになっている。
 ここで、機関の始動中に上述のようにバルブタイミング可変装置30を中間ロック位相に位相変更する場合、同装置30が中間ロック位相に位相変更されるまでの間は機関を始動することができない虞がある。例えば、バルブタイミングが遅角側に位置するため、混合気を十分に圧縮することができず、同混合気が着火されないため、機関が始動されない場合がある。このようなとき、インジェクタ17から燃料が噴射されると、同燃料によって点火プラグ18が濡らされ、同プラグ18の点火性能が劣化し、結果としてバルブタイミングが中間ロック位相に対応するタイミングに変更されたとしても混合気に着火されずに機関の始動が不可能となる。そこで、本実施形態においては、バルブタイミング可変機構30が中間ロック位相にない状態で機関が始動されるさいには、インジェクタ17は、燃料噴射の開始時期が遅れるように制御される。同制御の処理手順を図4に示している。
 本処理は、機関の始動指令が生じたときに行われる。本処理が開始されるとまず、電子制御装置71は、機関の前回運転中に、バルブタイミング可変機構30の相対回転位相が中間ロック位相であったか否かを判定する(S110)。
 ここで、今回始動中におけるバルブタイミング可変機構30の相対回転位相が中間ロック位相であるか否かではなく、前回運転中の同相対回転位相が中間ロック位相であったか否かが判定されるのは、以下の理由による。
 すなわち、同相対回転位相を検出する相対回転位相検出部は、上述のように、クランクシャフト16及び吸気カムシャフト22の回転速度が所定値以上でなければ、同相対回転位相を検出することができない。ここで、機関の始動中、例えばクランキング時は、クランクシャフト16及び吸気カムシャフト22の回転速度が低いため、相対回転位相検出部によって、上記相対回転位相を検出できない場合がある。そこで、本実施形態においては、電子制御装置71は、前回運転中におけるバルブタイミング可変機構30の相対回転位相が、中間ロック位相であったか否かを判定する。
 具体的には、機関運転中に継続的に検出されるバルブタイミング可変機構30の相対回転位相が電子制御装置71に記憶される。そして、同相対回転位相のうち、前回機関運転中において最後に記憶された相対回転位相が、次回の機関始動のときまで保存される。ステップS110においては、この相対回転位相が中間ロック位相であるか否かが判定される。
 さて、ステップS110において、機関の前回停止のさいに、バルブタイミング可変機構30の相対回転位相が中間ロック位相でないと判定された場合、電子制御装置71は、現在の同相対回転位相は中間ロック位相でないと推定する。そのため、機関の始動性を確保するためにバルブタイミング可変機構30は中間ロック位相に位相変更される必要がある。このとき、同位相変更中の期間にインジェクタから燃料が噴射されても、同燃料と吸気とからなる混合気に着火されない場合がある。その結果、同燃料によって点火プラグが濡らされることによって、機関の始動が不能となる虞がある。したがって、バルブタイミング可変機構30の相対回転位相が中間ロック位相に変更されるときには、変更されない場合に比べて、燃料噴射開始時期が遅れるように制御される必要がある。
 ステップS120では、冷却水温センサ75及び外気温センサ76で検出された冷却水温THW及び外気温TOが電子制御装置71に入力され、電子制御装置71はバルブタイミング可変機構30の現在の作動油温T1を推定する。
 ついで、ステップS130では、ステップS120で推定された作動油温T1に基づいて、電子制御装置71は、燃料噴射開始時期のディレイ時間D1を決定する。同ディレイ時間D1に基づき、電子制御装置71は、ステップS140において燃料噴射開始時期のディレイ処理を実行する。
 図5には、現在の作動油温T1と燃料噴射開始時期のディレイ時間D1との関係が示されている。図5のように、燃料噴射開始時期のディレイ時間D1は、作動油温T1が低いときには長くなるように設定されている。
 バルブタイミング可変機構30の内部には、前回機関運転中に同機構30を動作していた作動油が残存している。この作動油は、機関の始動中に同機構30が中間ロック位相に位相変更されるときには抵抗となる。そして、作動油温が低いときには、同作動油の粘度は高くなり、同抵抗は大きくなる。したがって、作動油温が低いときには、バルブタイミング可変機構30が中間ロック位相まで位相変更されるのに要する時間は長くなる。
 そこで、本実施形態のように、燃料噴射開始時期が、作動油温T1が低いときには、高いときに比べて遅くなるよう制御されることによって、噴射された燃料による点火プラグの濡れが抑制されるとともに、できるだけ早期に機関が始動されることができる。
 図6は本実施形態のタイミングチャートを示す図である。図6に示されるように、機関の始動中にはクランキングが開始される。ここで、クランキングの開始時にバルブタイミング可変機構30の相対回転位相が最遅角位相であった場合、同位相から中間ロック位相に向けて、同機構30は進角側へ位相変更される。なお、このときの位相変更は、クランキング中に吸気カムシャフト22が交番トルクによって揺動されること、及びラチェット溝43によって同揺動のうち遅角側への位相変更が制限されることによってなされる。そして、上記動作によってバルブタイミング可変機構30が中間ロック位相まで進角するのに要する時間よりも遅い時期であって、かつ、できるだけ早期であるようなディレイ時間D1が、図5に示されたマップから推定される。このディレイ時間D1の分、燃料噴射開始時期がディレイされることによって、機関は始動性が確保されつつできるだけ早期に始動が完了するように制御される。
 以上説明したように、第1実施形態に係る内燃機関の制御装置によれば、以下の利点を得ることができる。
 (1)機関の始動中にバルブタイミング可変機構30の相対回転位相が中間ロック位相にないと判定されれば、インジェクタは、燃料噴射開始時期が遅れるように制御される。これにより、相対回転位相が中間ロック位相に変更されるまでの間に噴射される燃料量が、燃料噴射開始時期を遅らせない場合に比べて減少される。その結果、相対回転位相が中間ロック位相に変更されるまでの間に噴射された燃料によって、点火プラグが濡らされ点火プラグの点火性能が低下することで、機関が始動されなくなるといった虞が抑制される。
 (2)バルブタイミング可変機構30の相対回転位相検出部は、クランクシャフト16及び吸気カムシャフト22の回転速度が所定値以上でなければ、同機構30の相対回転位相を検出することができない。そのため、機関の始動中にはそれら回転速度が低く、機関の始動中におけるバルブタイミング可変機構30の相対回転位相が検出されない可能性がある。そこで、本実施形態では、電子制御装置71は、前回の機関運転中における同相対回転位相を記憶し、今回の機関始動中に、記憶された同相対回転位相を読み込むことによって、現在の相対回転位相が中間ロック位相であるか否かを判定する。
 (3)バルブタイミング可変機構30の相対回転位相検出部は、クランクシャフト16及び吸気カムシャフト22の回転速度が所定値以上でなければ、同機構30の相対回転位相を検出することができない。そのため、機関の始動中にはそれら回転速度が低く、機関の始動中にバルブタイミング可変機構30の相対回転位相を中間ロック位相まで位相変更するとき、電子制御装置71は、同相対回転位相が中間ロック位相に位相変更されたか否かを判定することができない場合がある。そこで、本実施形態では作動油の油温に応じて、燃料噴射開始時期を遅らせるようにしている。これにより、同相対回転位相が中間ロック位相に位相変更されたか否かを判定することができない場合であっても、上記位相変更部によってバルブタイミング可変機構30の相対回転位相が中間ロック位相に位相変更される前に、燃料噴射が開始されることが抑制される。
 (4)燃料噴射開始時期は、作動油温が低いときには、作動油温が高いときに比べて、遅らせるようにしている。作動油は、油温が低いときには、高いときに比べて、一般的に粘度が低く、その結果、位相変更部による位相変更に時間を要する。そのため、上記制御により、機関の始動性を確保しつつ、できるだけ早期に燃料噴射を開始して機関を始動することができる。
 (5)作動油の油温は、機関の冷却水温及び外気温から推定される。これにより、油温センサ等の、油温を検出するための部材を新たに設ける必要がなく、部品点数の増加が抑制される。
(第2実施形態)
 次に本発明の第2実施形態について、先に説明した第1実施形態との相違点を中心に説明する。
 第1実施形態では、燃料噴射開始時期を、始動中の作動油温に応じて遅らせるように構成されていた。本実施形態では、燃料噴射開始時期を、機関の前回運転中における、作動油温とバルブタイミング可変機構30の相対回転位相とに応じて遅らせるように構成されており、以下の点が異なっている。
 まず、前記第1実施形態では、先の図4に示したように、ステップS120で現在の作動油温を推定した後、同作動油温に基づいてステップS130で燃料噴射開始時期のディレイ時間D1を決定するようにしていた。これに対して第2実施形態では、図7に示すように、ステップS220~ステップS260において、前回機関運転中、特に最後に検出された作動油温及びバルブタイミング可変機構30の相対回転位相から、ディレイ時間D3を決定するようにしている。
 ステップS220では、電子制御装置71は、機関の前回運転中において最後に検出された作動油温T2を読み込む。そして、ステップS230では、電子制御装置71は、作動油温T2に基づいて、燃料噴射開始時期のディレイ時間D2を決定する。図8には、前回機関運転中の作動油温T2と燃料噴射開始時期のディレイ時間D2との関係が示されている。同図8のように、燃料噴射開始時期のディレイ時間D2は、作動油温T2が低いときには、高いときに比べて長くなるように設定されている。
 前述の通り、バルブタイミング可変機構30の内部に残存している作動油は、機関の始動中に同機構30が中間ロック位相に位相変更されるときには抵抗となる。また、残存している作動油が多いときには、同作動油による抵抗の力は強くなる。
 一方、機関が停止した後にバルブタイミング可変機構30内部から流出する作動油の量は、同作動油の粘度と相関がある。そして、作動油の粘度は、作動油の油温が低いときには高いときに比べて、高粘度となる。
 そこで、本実施形態では、燃料噴射開始時期が、作動油温T2が低いときには、高いときに比べて遅くなるように制御される。
 さらに、本実施形態では、ステップS240において、電子制御装置71は、前回機関停止のさいに電子制御装置71に格納された、バルブタイミング可変機構30の相対回転位相を読み込む。つづいて、ステップS250において、電子制御装置71は、同位相に基づいて、ステップS230で算出されたディレイ時間を補正する補正値d1を求める。具体的には、電子制御装置71は、ステップS240において読み込んだ、機関の前回運転中、特に最後に検出されたバルブタイミング可変機構30の相対回転位相と、図9に示されたディレイ時間補正グラフとから、燃料噴射開始時期ディレイ時間D2の補正値d1を算出する。そして、ステップS260において、電子制御装置71は、同ディレイ時間D2と同補正値d1とを積算し、燃料噴射開始時期ディレイ時間D3を求める。
 このように燃料噴射開始時期ディレイ時間D2が補正されるのは、以下の理由による。すなわち、始動中にバルブタイミング可変機構30が中間ロック位相まで位相変更されるのに要する時間は、始動中における同機構30の相対回転位相と中間ロック位相との距離によって変化するためである。
 最後に、電子制御装置71は、ステップS270にて、燃料噴射開始時期をディレイ時間D3だけ遅延させる。したがって、機関は始動性が確保されつつできるだけ早期に始動が完了するように制御される。
 以上説明したように、第2実施形態に係る内燃機関の制御装置によれば、以下の利点を得ることができる。
 (6)始動中におけるバルブタイミング可変機構30の内部には、前回機関運転中に同機構30を動作していた作動油が存在し、この作動油は、始動中に同機構30の相対回転位相が中間ロック位相に位相変更されるときの抵抗となる。この抵抗は、作動油の量が多いほど大きくなる。そして、前回機関停止後にバルブタイミング可変機構30から流出する作動油の量は、作動油の粘度が高いときには、低いときに比べて少なくなる。また、作動油の粘度は一般的に作動油の油温と相関を有する。そこで、前回運転中の作動油の油温に応じて燃料噴射開始時期を遅らせることによって、機関の始動性を確保することができる。
 (7)燃料噴射開始時期は、前回運転中の作動油温が低いときには、同作動油温が高いときに比べて、遅らせるようにしている。作動油は、油温が低いときには、高いときに比べて、一般的に粘度が低い。そのため、前回運転中の作動油温が低ければ、高い場合に比べて、停止後のバルブタイミング可変機構30からの作動油の流出量は少なくなる。その結果、次回始動中の位相変更部による位相変更に時間を要する。そのため、上記制御により、機関の始動性を確保しつつ、できるだけ早期に燃料噴射を開始して機関を始動することができる。
 (8)前回機関運転中におけるバルブタイミング可変機構30の相対回転位相が中間ロック位相から近いときには、遠いときに比べて、燃料噴射開始時期のディレイ時間が短くなるようにしている。これにより、早期に機関の始動を完了することができるようになる。
(第3実施形態)
 次に本発明の第3実施形態について、先に説明した第1実施形態及び第2実施形態との相違点を中心に説明する。
 第1及び第2実施形態では、燃料噴射開始時期を、始動中または前回機関運転中の作動油温に応じて遅らせるように構成されていた。本実施形態では、燃料噴射開始時期を、機関の始動中の冷却水温度THWに応じて遅らせるようにしている。
 具体的には、図10に示すように、電子制御装置71は、ステップS320において、冷却水温度THW1を検出した後、ステップS330において、ディレイ時間D4を決定する。
 図11には、機関始動中の冷却水温度と燃料噴射開始時期のディレイ時間D4との関係が示されている。図11に示されるように、冷却水温度THWが低いときには、高いときに比べて、ディレイ時間D4が長くなるように、ディレイ時間D4は決定される。これは、冷却水温度THWが低いときには、現在の作動油温も低いと考えられ、したがって、バルブタイミング可変機構30の相対回転位相の変更に対する作動油の抵抗が大きいと予測されるためである。
 そして、電子制御装置71は、ステップS340では、上記ディレイ時間D4に基づいて、燃料噴射開始時期のディレイ制御を行う。
 以上説明したように、第3実施形態に係る内燃機関の制御装置によれば、以下の利点を得ることができる。
 (9)冷却水温度THWは、作動油温と相関がある。そして、作動油温に応じて、バルブタイミング可変機構30の相対回転位相変更に要する時間は変化する。そこで、冷却水温度THWに応じて燃料噴射開始時期を遅らせるようにインジェクタ17を制御することによって、機関の始動性を確保しつつ、できるだけ早期に燃料噴射を開始して機関を始動することができる。
 (10)冷却水温度THWが低いときには、高いときに比べて、作動油温も高いと考えられる。そして、作動油温が低いときには、高いときに比べて、作動油の粘度が高いと考えられる。そこで、冷却水温度THWが低いときには、高いときに比べて、燃料噴射開始時期を遅らせるようにインジェクタ17を制御することによって、機関の始動性を確保しつつ、できるだけ早期に燃料噴射を開始して機関を始動することができる。
 なお、上記各実施形態は以下のように変更して実施することもできる。
 上記各実施形態では、機関の始動中に、バルブタイミング可変機構30の相対回転位相が中間ロック位相でないときに、燃料噴射開始時期を遅らせるようにしていた。しかし、機関の始動中に、バルブタイミング可変機構30の相対回転位相が中間ロック位相であるか否かが分からない場合には、機関の始動中における同位相にかかわらず、燃料噴射開始時期を遅らせるようにしてもよい。例えば、機関が始動されてクランキングが開始されたとき、即座に燃料噴射を開始せずに、所定時間が経過してから開始するようにしてもよい。なお、同所定時間を、油温は冷却水温、前回機関運転中のバルブタイミング可変機構30の相対回転位相といったパラメータに基づいて変更するようにしてもよい。このような場合も、本願の課題を解決することができる。
 上記各実施形態では、燃料噴射開始時期を、現在又は前回機関運転中の作動油温や、冷却水温度THWに応じて変更するようにしていた。しかし、油温の検出又は推定が困難であるような場合には、作動油温と無関係に、燃料噴射開始時期を遅らせるようにしてもよい。この場合も、上記(1)及び(2)の利点を得ることができる。
 上記第1及び第2実施形態では、作動油温が低いときには、高いときに比べて燃料噴射開始時期を遅らせるようにしていた。しかし、油温が低いときに、高いときに比べて位相変更に要する時間が長時間とはならないような場合は、上記のように遅らせなくともよい。この場合も、位相変更に要する時間を推定するパラメータの一つとして油温を用いることによって、上記(1)~(3)及び(5)~(6)及び(8)の利点が得られる。
 上記第3実施形態では、冷却水温度THWが低いときには、高いときに比べて燃料噴射開始時期を遅らせるようにしていた。しかし、冷却水温度THWが低いときに、高いときに比べて位相変更に要する時間が長時間とはならないような場合は、上記のように遅らせなくともよい。この場合も、位相変更に要する時間を推定するパラメータの一つとして冷却水温度THWを用いることによって、上記(1)~(2)及び(9)の効果が得られる。
 上記第1及び第2実施形態では、機関の作動油温を、これに相関するパラメータに基づいて推定するようにしていたが、油温センサ等の直接作動油温を検出する装置を設けてもよい。
 上記第1実施形態では、機関の始動中における作動油温から、燃料噴射開始時期のディレイ時間を算出するようにしていたが、これに加え、前回機関運転中における作動油温又はバルブタイミング可変機構30の相対回転位相を考慮するようにしても良い。例えば、前回機関運転中における作動油温を併せて考慮する場合、ディレイ時間の算出は、図12に示されるようなマップに基づいて行われる。このような算出により、機関の始動性を確保しつつ、できるだけ早期に機関の始動を完了することが可能となる。
 上記第2実施形態では、機関の前回運転中における作動油温と、現在のバルブタイミング可変機構30の相対回転位相とから、燃料噴射開始時期を遅らせるようにしていた。しかし、現在のバルブタイミング可変機構30の相対回転位相が推定できないような場合は、機関の前回停止のさいにおける作動油温のみから燃料噴射開始時期のディレイ時間を求めるようにしても良い。
 上記各実施形態では、機関の前回運転中におけるバルブタイミング可変機構30の相対回転位相が中間ロック位相でない場合、今回始動中における同機構30の相対回転位相が中間ロック位相でないと判定するようにしていた。しかし、前回機関運転中における同機構30の相対回転位相が中間ロック位相でなくとも、今回の機関の始動中までに、相対回転位相が中間ロック位相に変更されている可能性が高いような場合がある。例えば、前回機関停止完了後の作動油の流出に伴って、相対回転位相が自立的に中間ロック位相まで位相変更する場合である。そこで、前回運転中における同機構30の相対回転位相が上記のような位相であるときは、今回の機関の始動中に、同機構30の相対回転位相が中間ロック位相であるとみなすようにしてもよい。
 上記各実施形態では、機関の前回運転中におけるバルブタイミング可変機構30の相対回転位相が中間ロック位相でない場合、今回始動中における同機構30の相対回転位相が中間ロック位相でないと判定するようにしていた。しかし、機関の前回運転中におけるバルブタイミング可変機構30の相対回転位相を記憶することが困難である場合、機関の前回運転中に、同機構30の相対回転位相が中間ロック位相に係止されていたか否かのみを記憶するようにしても良い。
 なお、中間ロック位相に係止されているか否かの判断は、例えば次のようにしておこなわれる。すなわち、中間ロック要求が出力されたとき、ロックピン42が突出されるように作動油が制御される。そしてこのとき、バルブタイミング可変機構30の目標相対回転位相が、現在位相から見て、中間ロック位相よりも遠い位相となるように設定される。その結果、相対回転位相の変更が開始されて一定時間経過後の位相が中間ロック位相であれば、バルブタイミング可変機構30は中間ロック位相にて係止されていると判断される。一方、相対回転位相が目標相対回転位相であれば、ロックピン42はロック穴41に係合されずに、ベーンロータ35は中間ロック位相をすり抜けたということであり、したがって、バルブタイミング可変機構30は中間ロック位相に係止されていないと判断される。
 そして、上記判断によって中間ロック位相が係止されていると判断された場合は、中間ロックフラグ1が電子制御装置71に格納され、そうでない場合は中間ロックフラグ0が電子制御装置71に格納される。電子制御装置71には、機関の停止後も同フラグが記憶される。
 その後、機関の始動中に同フラグを読み込むことにより、機関の前回運転中にバルブタイミング可変機構30が中間ロック位相に固定されていたか否かが判定される。そして、相対回転位相が中間ロック位相に固定されていなければ、同機構30の相対回転位相は中間ロック位相でない可能性があることから、インジェクタ17は、燃料噴射開始時期が遅れるように制御されるようにしてもよい。
 上記第1及び第2実施形態では、バルブタイミング可変機構30の相対回転位相が中間ロック位相に変更されるまでの時間を油温等から推定し、少なくとも同時間分、燃料噴射開始時期をディレイさせるようにしていた。しかし、同相対回転位相が中間ロック位相に変更されても、ロックピン42がロック穴41に挿入されておらず、同機構30が固定されていない場合に燃料が噴射され燃焼が開始されると、同機構30が激しくバタつき、同機構30が損傷するといった虞がある。そこで、ロックピン42がロック穴41に挿入されるまでの時間を推定し、少なくとも同時間の分、燃料噴射開始時期をディレイさせるようにしてもよい。
 上記各実施形態において、中間ロック機構はOCVによって制御されるようにしていたが、オイルスイッチングバルブ等、別途設けられた油圧制御機構によって制御されるようにしてもよい。
 上記各実施形態において、バルブタイミング可変機構30の一部は吸気カムシャフト22に連結されるようにしていたが、排気カムシャフト24に連結されるようにしてもよい。また、吸気カムシャフト22に連結されるバルブタイミング可変機構と、排気カムシャフト24に連結されるバルブタイミング可変機構とをそれぞれ設けてもよい。
 上記各実施形態において、クランクシャフト16とハウジングロータ31とが同期して回転するように連結され、吸気カムシャフト22とベーンロータ35とが同期して回転するように連結されていたが、これら連結の組み合わせはこれに限られない。また、上記はバルブタイミング機構の一例として挙げたものであり、その他の機構によりバルブタイミングを可変とする構成を除外するものではないことは当然である。
 1…内燃機関、10…機関本体、11…シリンダブロック、12…オイルパン、13…シリンダヘッド、14…燃焼室、15…ピストン、16…クランクシャフト、17…インジェクタ、18…点火プラグ、21…吸気バルブ、22…吸気カムシャフト、23…排気バルブ、24…排気カムシャフト、30…バルブタイミング可変機構、31…ハウジングロータ、31A…区画壁、32…ハウジング本体、33…スプロケット、34…カバー、35…ベーンロータ、36…ベーン、37…ベーン収容室、38…進角室、39…遅角室、40…ロックピン収容室、41…ロック穴、42…ロックピン、43…ラチェット溝、44…付勢ばね、45…ボルト、50…油圧機構、51…オイルポンプ、52…作動油制御弁、60…油路、61…吸込油路、62…供給油路、63…排出油路、64…進角油路、65…遅角油路、66…ピン油路、71…電子制御装置、72…クランクポジションセンサ、73…カムポジションセンサ、74…吸気温センサ、75…冷却水温センサ、76…外気温センサ。

Claims (11)

  1.  内燃機関の制御装置であって、前記内燃機関は、
     前記内燃機関に燃料を噴射する燃料噴射装置と、
     クランクシャフトと、
     前記内燃機関の機関バルブを開閉動作させるカムシャフトと、
     前記機関バルブのバルブタイミングを可変とするバルブタイミング可変装置と、を備え、該バルブタイミング可変装置は、
      前記クランクシャフトに駆動連結された第1回転体と、前記カムシャフトに駆動連結された第2回転体とを含み、前記第1回転体と前記第2回転体との相対回転位相を油圧制御にて変更することにより前記バルブタイミングを可変とするバルブタイミング可変機構と、
      前記相対回転位相の変更可能範囲の間でかつ該変更可能範囲の両端を除く位相であって、前記相対回転位相が該位相にあるときには前記内燃機関の始動が可能であるような中間ロック位相に、前記相対回転位相を固定する中間ロック機構と、
      前記相対回転位相を検出する相対回転位相検出部であって、前記カムシャフトの回転速度が所定値以上のときに該カムシャフトの回転角を検出することのできるカム角センサと、前記クランクシャフトの回転速度が所定値以上のときに該クランクシャフトの回転角を検出することのできるクランク角センサとを含み、前記カム角センサ及び前記クランク角センサによってそれぞれ検出される、前記カムシャフトの回転角と前記クランクシャフトの回転角とから前記相対回転位相を算出する前記相対回転位相検出部と、
      前記内燃機関の始動中には前記相対回転位相が前記中間ロック位相となるように、前記相対回転位相を前記中間ロック位相に変更する位相変更部と、を含み、
     前記内燃機関の始動中に、前記燃料噴射装置の燃料噴射開始時期を遅らせる内燃機関の制御装置。
  2.  前記内燃機関の始動中に、前記相対回転位相が前記中間ロック位相でなければ、前記相対回転位相が前記中間ロック位相であるときに比べて、前期燃料噴射装置の燃料噴射開始時期を遅らせる請求項1に記載の制御装置。
  3.  前記内燃機関の前回運転中における前記相対回転位相に基づき、前記内燃機関の今回の始動中に前記相対回転位相が前記中間ロック位相にないことを判定する請求項1または2に記載の制御装置。
  4.  前記制御装置は、前記内燃機関の始動中における前記バルブタイミング可変装置の作動油温に応じて、前記燃料噴射開始時期を遅らせる請求項1~3のいずれかに記載の制御装置。
  5.  前記制御装置は、前記内燃機関の始動中における前記バルブタイミング可変装置の作動油温が低いときには、該作動油温が高いときに比べて、前記燃料噴射開始時期を遅らせる請求項1~3のいずれか一項に記載の制御装置。
  6.  前記制御装置は、前記内燃機関の前回運転中における前記バルブタイミング可変装置の作動油温に応じて、前記燃料噴射開始時期を遅らせる請求項1~3のいずれか一項に記載の制御装置。
  7.  前記制御装置は、前記内燃機関の前回運転中における前記バルブタイミング可変装置の作動油温が低いときには、該作動油温が高いときに比べて、燃料噴射開始時期を遅らせる請求項1~3のいずれか一項に記載の制御装置。
  8.  前記作動油温は、該作動油温に相関するパラメータに基づいて推定される請求項4~7のいずれか一項に記載の制御装置。
  9.  前記制御装置は、前記内燃機関の冷却水温に応じて前記燃料噴射開始時期を遅らせる請求項1~3のいずれか一項に記載の制御装置。
  10.  前記制御装置は、前記内燃機関の冷却水温が低いときには、前記冷却水温が高いときに比べて、燃料噴射開始時期を遅らせる請求項1~3及び9のいずれか一項に記載の制御装置。
  11.  前記制御装置は、前記内燃機関の前回運転中における前記相対回転位相が前記中間ロック位相から遠いときには、前記相対回転位相が前記中間ロック位相から近いときに比べて、燃料噴射開始時期を遅らせる請求項1~10のいずれか一項に記載の制御装置。
PCT/JP2009/068348 2009-10-26 2009-10-26 内燃機関の制御装置 WO2011052028A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN200980152327.8A CN102713211B (zh) 2009-10-26 2009-10-26 内燃机的控制装置
EP09850808.8A EP2405118A4 (en) 2009-10-26 2009-10-26 CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE
JP2011510603A JP4957869B2 (ja) 2009-10-26 2009-10-26 内燃機関の制御装置
US13/255,180 US8910617B2 (en) 2009-10-26 2009-10-26 Control device for internal combustion engine
PCT/JP2009/068348 WO2011052028A1 (ja) 2009-10-26 2009-10-26 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/068348 WO2011052028A1 (ja) 2009-10-26 2009-10-26 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
WO2011052028A1 true WO2011052028A1 (ja) 2011-05-05

Family

ID=43921472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068348 WO2011052028A1 (ja) 2009-10-26 2009-10-26 内燃機関の制御装置

Country Status (5)

Country Link
US (1) US8910617B2 (ja)
EP (1) EP2405118A4 (ja)
JP (1) JP4957869B2 (ja)
CN (1) CN102713211B (ja)
WO (1) WO2011052028A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022510328A (ja) * 2019-02-01 2022-01-26 日立Astemo株式会社 内燃機関の始動を制御するための装置および方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5900428B2 (ja) * 2013-07-09 2016-04-06 トヨタ自動車株式会社 内燃機関の制御装置
JP6646576B2 (ja) * 2013-11-15 2020-02-14 エーエスエムエル ネザーランズ ビー.ブイ. 放射源
CN106460714B (zh) * 2014-05-15 2019-12-31 日产自动车株式会社 内燃机的燃料喷射控制装置以及燃料喷射控制方法
KR101755466B1 (ko) * 2015-12-14 2017-07-07 현대자동차 주식회사 연속 가변 밸브 타이밍 장치의 림프홈 제어방법
KR101795306B1 (ko) * 2016-10-07 2017-11-07 현대자동차주식회사 차량 시동 제어 방법
US10316777B2 (en) * 2017-04-10 2019-06-11 GM Global Technology Operations LLC Method for heating a sliding camshaft actuator
DE112018007713T5 (de) 2018-11-15 2021-03-11 Weichai Power Co., Ltd. Verfahren und gerät zur phasendiagnose

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08326584A (ja) * 1995-05-30 1996-12-10 Toyota Motor Corp 内燃機関の始動制御装置
JP2000154749A (ja) * 1998-11-19 2000-06-06 Nissan Motor Co Ltd エンジンの始動制御装置
JP2000154753A (ja) * 1998-11-19 2000-06-06 Nissan Motor Co Ltd エンジンの始動制御装置
JP2001041012A (ja) 1999-07-30 2001-02-13 Toyota Motor Corp 内燃機関のバルブタイミング制御装置
JP2004052613A (ja) * 2002-07-18 2004-02-19 Hitachi Ltd エンジンの制御装置
JP2004308632A (ja) * 2003-04-10 2004-11-04 Toyota Motor Corp 内燃機関の始動制御装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002295275A (ja) * 2001-03-29 2002-10-09 Denso Corp バルブタイミング調整装置
JP2002309975A (ja) 2001-04-11 2002-10-23 Toyota Motor Corp 内燃機関の制御装置
JP3876648B2 (ja) * 2001-05-22 2007-02-07 日産自動車株式会社 エンジンのバルブタイミング制御装置
JP2003129806A (ja) 2001-10-24 2003-05-08 Hitachi Unisia Automotive Ltd 内燃機関のバルブタイミング制御装置
JP4049108B2 (ja) * 2004-03-02 2008-02-20 トヨタ自動車株式会社 バルブタイミング制御装置
JP4425155B2 (ja) * 2004-03-12 2010-03-03 日立オートモティブシステムズ株式会社 内燃機関のバルブタイミング制御装置
DE102004033894B4 (de) * 2004-07-14 2009-02-12 Daimler Ag Nockenwellenverstelleinrichtung
JP4802968B2 (ja) * 2006-10-24 2011-10-26 日産自動車株式会社 エンジンの吸気バルブタイミング制御装置
JP4743287B2 (ja) * 2009-02-04 2011-08-10 トヨタ自動車株式会社 可変動弁装置の制御装置
JP5240674B2 (ja) * 2009-05-12 2013-07-17 株式会社デンソー 内燃機関の可変バルブタイミング制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08326584A (ja) * 1995-05-30 1996-12-10 Toyota Motor Corp 内燃機関の始動制御装置
JP2000154749A (ja) * 1998-11-19 2000-06-06 Nissan Motor Co Ltd エンジンの始動制御装置
JP2000154753A (ja) * 1998-11-19 2000-06-06 Nissan Motor Co Ltd エンジンの始動制御装置
JP2001041012A (ja) 1999-07-30 2001-02-13 Toyota Motor Corp 内燃機関のバルブタイミング制御装置
JP2004052613A (ja) * 2002-07-18 2004-02-19 Hitachi Ltd エンジンの制御装置
JP2004308632A (ja) * 2003-04-10 2004-11-04 Toyota Motor Corp 内燃機関の始動制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2405118A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022510328A (ja) * 2019-02-01 2022-01-26 日立Astemo株式会社 内燃機関の始動を制御するための装置および方法
JP7182714B2 (ja) 2019-02-01 2022-12-02 日立Astemo株式会社 内燃機関の始動を制御するための装置および方法

Also Published As

Publication number Publication date
CN102713211B (zh) 2015-09-02
EP2405118A1 (en) 2012-01-11
JPWO2011052028A1 (ja) 2013-03-14
US20130025568A1 (en) 2013-01-31
EP2405118A4 (en) 2013-09-04
JP4957869B2 (ja) 2012-06-20
CN102713211A (zh) 2012-10-03
US8910617B2 (en) 2014-12-16

Similar Documents

Publication Publication Date Title
JP4957869B2 (ja) 内燃機関の制御装置
JP4701871B2 (ja) エンジンの制御装置
JP5030028B2 (ja) 内燃機関の可変バルブタイミング制御装置
JP4224944B2 (ja) 内燃機関のバルブタイミング制御装置
JP5569599B2 (ja) 内燃機関の制御装置
JP5257629B2 (ja) 内燃機関の可変バルブタイミング制御装置
JP2005299445A (ja) エンジンの停止始動制御装置
JP2004232539A (ja) エンジン回転停止制御装置
JP3755655B2 (ja) 内燃機関のバルブタイミング制御装置
JP3750936B2 (ja) 内燃機関のバルブタイミング制御装置
JP5408514B2 (ja) 内燃機関の可変バルブタイミング制御装置
WO2016072066A1 (ja) 内燃機関の制御装置
JP2011089463A (ja) バルブタイミング可変装置の制御装置
JP2002161766A (ja) 内燃機関のバルブタイミング制御装置
JP4228170B2 (ja) 内燃機関の可変バルブタイミング制御装置
JP4196876B2 (ja) エンジンの始動装置
JP2012041877A (ja) 内燃機関の可変動弁装置
JP2011179435A (ja) 内燃機関の燃焼制御装置
JP2000064862A (ja) 油圧式可変バルブタイミング機構の診断装置
JP6305243B2 (ja) 内燃機関の制御装置
JP5488481B2 (ja) 内燃機関の制御装置
JP2018112153A (ja) 内燃機関の制御装置
JP4386199B2 (ja) 可変バルブタイミング装置
JP5584797B1 (ja) 内燃機関のバルブタイミング制御装置
JP5987756B2 (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980152327.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011510603

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09850808

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13255180

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2009850808

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009850808

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE