WO2011051054A1 - Schaltanordnung zur erfassung eines schaltwegs in einem kraftfahrzeuggetriebe - Google Patents

Schaltanordnung zur erfassung eines schaltwegs in einem kraftfahrzeuggetriebe Download PDF

Info

Publication number
WO2011051054A1
WO2011051054A1 PCT/EP2010/063829 EP2010063829W WO2011051054A1 WO 2011051054 A1 WO2011051054 A1 WO 2011051054A1 EP 2010063829 W EP2010063829 W EP 2010063829W WO 2011051054 A1 WO2011051054 A1 WO 2011051054A1
Authority
WO
WIPO (PCT)
Prior art keywords
current sensor
measuring element
switching
eddy current
shift rail
Prior art date
Application number
PCT/EP2010/063829
Other languages
English (en)
French (fr)
Inventor
Stanislav Massini
Thomas Nehmeyer
Original Assignee
Schaeffler Technologies Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE200910051125 external-priority patent/DE102009051125A1/de
Priority claimed from DE200910059906 external-priority patent/DE102009059906A1/de
Application filed by Schaeffler Technologies Gmbh & Co. Kg filed Critical Schaeffler Technologies Gmbh & Co. Kg
Publication of WO2011051054A1 publication Critical patent/WO2011051054A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/68Inputs being a function of gearing status
    • F16H59/70Inputs being a function of gearing status dependent on the ratio established
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • F16H63/38Detents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/2006Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils
    • G01D5/202Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils by movable a non-ferromagnetic conductive element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/24Providing feel, e.g. to enable selection
    • F16H2061/242Mechanical shift gates or similar guiding means during selection and shifting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • F16H2063/3076Selector shaft assembly, e.g. supporting, assembly or manufacturing of selector or shift shafts; Special details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • F16H2063/3079Shift rod assembly, e.g. supporting, assembly or manufacturing of shift rails or rods; Special details thereof

Definitions

  • the invention relates to a shift arrangement for detecting a shift travel in a motor vehicle transmission.
  • Such a switching arrangement is intended to enable the position determination of a switching element, whereby switching operations can be easily and accurately controlled and monitored.
  • DE 10 2006 02 87 85 B3 discloses a non-contact method for detecting a switching path in the form of an arrangement with a sensor and a number of position sensors on a switching element designed as a switching rod.
  • the position encoders are formed by two permanent magnets, which are arranged on a common plate and positively cooperate via a recess with a projection formed on the switching rod.
  • the position sensors are precisely positioned to the shift rod.
  • the arrangement of the position encoders is carried out overall so that the position encoders are the position sensors fixed to the housing in the gear compartment. gen undergraduate prolifer, the position sensors, the position of the shift rod can be determined.
  • the use of magnets is essential, which serve with the position sensors for detecting the position of a switching element.
  • the use of a magnet poses problems such as temperature-related measurement inaccuracies or metal abrasion in the transmission, which can hinder the bearing and the frictionless movement of a switching element.
  • the magnets also require accurate positioning, so that usually a calibration of the arrangement is required.
  • DE 10 2007 044 425 A1 discloses a device for detecting the position of a shift fork, wherein the shift fork moves in a high-frequency field and this changes by means of a damping element.
  • the change in the high-frequency field leads to detuning a resonant circuit whose frequency change is detectable.
  • the device requires specially adapted shift forks and requires a separate resonant circuit detector for each shift fork.
  • the shift arrangement for detecting a shift travel in a motor vehicle transmission has an axially displaceable and axially displaceable shift rail, an eddy current sensor for detecting the axial position of the shift rail, and a measurement element influencing the measured values of the eddy current sensor, on or at the shift rail is arranged.
  • the invention is based on the consideration that in general through the use of non-contact sensors, the life and the reliability of the detection of a switching element can be increased.
  • a sensor for non-contact detection of the position of the shift rail an eddy current sensor is used.
  • the eddy current sensor is arranged with respect to the shift rail so that it detects their position in the axial direction.
  • Eddy current sensors are characterized in particular by the fact that they do not require magnets for measurement and even under problematic environmental conditions, such as in the presence of strong magnetic fields, at high temperatures and at a relatively high degree of contamination still show an acceptable accuracy. Due to the non-contact detection no mechanical contact between individual transmission components is necessary, so that a wear-free operation can be ensured. The use of magnets on the shift rail can be completely dispensed with. As a result, a more flexible transmission design is possible because a separation of the metal particle-containing oil from the sensor is no longer required lent.
  • a switching arrangement with an eddy current sensor for detecting a switching path thus offers a wear-free and very accurate measuring method for determining the position of a switching element which meets the high requirements.
  • the principle of eddy current measurement is based on the detection of the retroactivity of eddy currents.
  • eddy currents are induced by a changing magnetic field in an electrical conductor, which in turn cause the build-up of an opposing magnetic field.
  • the switching element moves between two positions, each corresponding to a switching position.
  • the eddy-current sensor thus has to detect the two positions of the switching element.
  • the generation of a constant magnetic field, with respect to which the switching element changes its position is sufficient.
  • an alternating magnetic field is generated by the eddy current sensor, which is weakened when a conductive measuring element or target is in the vicinity.
  • eddy currents are generated by the alternating field, which weaken the magnetic field. This attenuation is measurable and dependent on the distance between the eddy current sensor and the target.
  • the alternating magnetic field can be generated by means of an electromagnetic resonant circuit. This is measurably deprived of energy by the weakening of the magnetic field.
  • the term shift rail includes both rotatable shift shafts as additionally or exclusively axially movable shift rails.
  • the shift rail is usually made of a metallic material. In this respect, it can be used directly and without further aids as a target for the eddy current sensor.
  • a switching element is movably supported within a transmission and in particular in the switching unit.
  • an axial end of the shift rail is mounted in a bearing unit.
  • a bearing unit for storage, for example, a ne stored in a storage unit.
  • a rolling bearing or a plain bearing is provided.
  • the bearing unit with the mounted switching element is inserted into a transmission housing.
  • the cross-sectional contour of the shift rail can be round.
  • a shift rail is designed as a shift rail in the narrower sense with a deviating from a circle, rather flat cross-section.
  • a shift rail is made of a metal sheet.
  • known and easy-to-use manufacturing processes such as a punching offer. Due to the design of the switching element as a shift rail, in particular a shape advantageous for the eddy current sensor for the position detection can be easily made.
  • an electrically conductive target is required.
  • a target or measuring element is manufactured separately in one embodiment and attached to the shift rail. The attachment can be done for example by gluing or screwing.
  • the measuring element is specifically adaptable to the eddy current sensor used.
  • a separate measuring element does not have to deal with the specific requirements that the switching rail has to fulfill as such.
  • the shift rail is already made of an electrically conductive material, in particular of steel, and can therefore be used as a measuring element itself. The design of the shift rail as a measuring element simplifies the switching arrangement considerably.
  • the shift rail is formed with an inclined towards the eddy current sensor ramp contour.
  • the ramp contour is formed in particular at the location of the switching element on which the eddy current sensor is in operative connection with the switching element. Due to the inclination of the ramp contour relative to the eddy current sensor, the distance between the shift rail and the eddy current sensor changes with an axial displacement. By this radial change in distance, the axial position of the switching element can be determined with high accuracy. About the defined ramp, a relationship between the measured via the eddy current sensor radial distance and the axial position of the shift rail can be determined.
  • a ram with a constant pitch is provided for this purpose.
  • existing installation geometries or switch positions are taken into account via a specific ramp contour with different inclinations.
  • a shift rail with a rectangular cross-section can be made directly and with relatively little manufacturing effort with a correspondingly inclined ramp contour.
  • the measuring element is manufactured separately and at least rotatably connected to the shift rail.
  • a distortion of the shift rail by attaching the measuring element does not occur due to the relatively large mass of the shift rail.
  • the measuring element is arranged on a separate component such as a switching sleeve, which in turn is pressed or welded on the shift rail.
  • the switching sleeve advantageously takes several functions as a multi-functional sleeve. Thus, it can have switching fingers, switching guides and locking contours.
  • Such a shift sleeve can be inexpensively made of sheet metal or plastic, and the shift rail remains free of reworking.
  • the eddy-current sensor can be arranged along the entire switching element.
  • the eddy current sensor is positioned on a switching dome formed by the shift rail and its mounting.
  • the eddy-current sensor is advantageously fastened to the switching unit.
  • the position between the eddy current sensor and the shift rail during assembly of both components is already clearly defined.
  • the positioning of the two components relative to one another is already achieved before installation of the switching unit in a transmission.
  • the switching unit and the measuring sensors are integrated in a common housing, so that the module can be incorporated as a module in the transmission. The customer is thereby considerably easier to assemble.
  • the measuring element is formed as a sheet metal part having a constant cross section.
  • a contour is introduced into the sheet, which has a defined distance to the eddy current sensor in different switching positions. The change of the resonant circuit is thus effected by the geometric proximity of the measuring element.
  • the measuring element has a locally different thickness.
  • material can be removed by machining so that, depending on the orientation relative to the sensor, the measuring element changes the high-frequency field during switching, in addition to or solely on the basis of its varying material thickness.
  • the measuring element is constructed of different materials.
  • sections of plastic can alternate with those of aluminum or steel, for example, to detect relatively discrete changes.
  • metal-particle-containing plastic is also envisaged.
  • the measuring element additionally serves as a latching element of a shift lock.
  • the eddy current sensor is arranged on the shift dome or on the transmission housing so that it can detect all gear stages and in particular the neutral position.
  • a central selector shaft it interacts with a measuring element arranged on or on the selector shaft. If several switching rails are provided, each is equipped with its own measuring element, which can influence the recorded measured values. With such an arrangement, it is sufficient to use a relatively expensive eddy current sensor.
  • FIG. 1 shows a cross section through a schematic circuit arrangement with a bearing unit, a shift rail and an eddy current sensor
  • FIG. 2 shows a perspective view of a switching arrangement according to the invention with a switching element having a measuring sleeve and an eddy current sensor
  • FIG. 3 shows a cross section of the arrangement according to FIG. 2, 4 shows a first measuring element with an eddy current sensor
  • FIG. 5 shows a second measuring element
  • FIG. 6 shows a third measuring element.
  • FIG. 1 shows a cross section of a switching arrangement 1 with a bearing unit 3.
  • a shift rail 5 extending in an axial direction 4 is mounted.
  • the shift rail 5 is slidably held with its one axial end in the axial direction 4.
  • the shift rail 5 can be moved within the storage unit 3 over a distance of a few millimeters to centimeters in the axial direction 4 with respect to the neutral position.
  • the switching arrangement 1 is designed to detect an axial switching path of this shift rail 5.
  • an eddy current sensor 9 is attached to the bearing unit 3.
  • the eddy current sensor 9 is arranged with respect to the shift rail 5 so that it can detect a positional offset of the shift rail 5 in the axial direction 4.
  • the eddy current sensor 9 and the shift rail 5 are fixedly positioned relative to each other after insertion of the shift rail 5.
  • a complex alignment for calibration of the sensor 9 is not necessary. Due to the axial bearing of the shift rail 5 in the bearing unit 3, there are no movements of the shift rail 5 in the radial direction at this point.
  • the achievable measurement accuracy is insofar not affected by such, for example, in a switching operation occurring deflections.
  • the shift rail 5 is formed with a rectangular cross section and consists of a conductive steel. It is itself as a measuring element or Target for the eddy current sensor 9 is formed.
  • a defined ramp contour 1 1 a constant pitch.
  • the ramp is inclined in the axial direction 4 with respect to the eddy current sensor 9.
  • the ramp contour 1 1 is detectable by the eddy current sensor 9.
  • the roller bearing 15 serves for the axial mounting of the shift rail 5.
  • the cage-guided balls run inside on a mounted on the shift rail 5 inner plate 18 and the outside in a circular cylinder sleeve 19, which in a Bore of the storage unit 3 is inserted.
  • Such a roller bearing 15 allows good efficiency due to a low bearing friction and thus increases the shifting comfort, since it ensures a very smooth longitudinal guide of the shift rail 5.
  • the rolling bearing 15 offers a low and virtually load-independent friction.
  • the eddy current sensor 9 is provided with a plug 20 for power supply and the Meßabgriff. In order to protect the plug 20 from contamination, for example by oil, it is pulled out of the storage unit 3 to the front. After installation of the entire module in a transmission housing 27, the plug 20 is arranged outside the storage. In this way, the eddy current sensor 9 can also be easily contacted from the outside.
  • the eddy-current sensor 9 generates an alternating magnetic field via an electromagnetic resonant circuit. This field is determined by the Switched rail 5 weakened. In the shift rail 5 eddy currents are generated, which withdraw energy from the resonant circuit. This change in energy is measurable and dependent on the distance between the eddy current sensor 9 and the shift rail 5. In the present case, the radial distance 13 between the eddy current sensor 9 and the ramp contour 1 1 is detected and converted into an axial position of the shift rail 5.
  • Figures 2 and 3 show a switching sleeve 2, which is firmly or rotatably connected to a shift rail, not shown. For example, it can be blocked, pressed or welded.
  • the shift sleeve 2 is designed as a multi-functional onshülse and carries next to the measuring element 21 further switching elements such as a shift finger 6, a gate guide 7, which is arranged in the vicinity of the measuring element 21 and a locking contour 8 for locking with a Wegarretmaschine, not shown. Due to their larger lateral surface compared to the switching rail, the components 6, 7, 8, 21 can be arranged in a simple manner, without the shift rail being weakened.
  • FIGS. 4, 5 and 6 Various measuring elements 21 are shown in FIGS. 4, 5 and 6.
  • the measuring element 21 according to FIG. 4 is formed from sheet aluminum as a stamped stamped part with a ramp contour 11.
  • the ramp contour 1 1 has a direction of rotation extending in the direction of selection and aligned with the eddy current sensor 9 elevation 10, which marks the neutral path.
  • the elevation 10 merges relatively sharp-edged into radially lower regions 12, 14 in order to ensure reliable detection as soon as a switching operation takes place in the circumferential direction.
  • the elevation 10 is rounded, and the first region 12 and the second region 14 have a different radial height, so that the gear position is detectable.
  • a measuring element 21 with such rounded contours is suitable, in particular if it is made of steel, at the same time as a latching contour for a shift lock.
  • FIG. 6 shows a measuring element 21 made of metallized plastic with a central bead 16, which also identifies the neutral track.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Control Of Transmission Device (AREA)

Abstract

Die Erfindung betrifft eine Schaltanordnung (1) zur Erfassung eines Schaltweges in einem Kraftfahrzeuggetriebe, umfassend eine sich in einer axialen Richtung (4) erstreckende Schaltschiene (5), welche axial verschiebbar oder verdrehbar ist, einen Wirbelstromsensor (9) zur Erfassung der axialen Position der Schaltschiene (5) und ein die Messwerte des Wirbelstromsensors (9) beeinflussendes Messelement (21), das auf oder an der Schaltschiene (5) angeordnet ist.

Description

Bezeichnung der Erfindung
Schaltanordnung zur Erfassung eines Schaltwegs in einem
Kraftfahrzeuggetriebe
Beschreibung
Gebiet der Erfindung Die Erfindung betrifft eine Schaltanordnung zur Erfassung eines Schaltwegs in einem Kraftfahrzeuggetriebe. Eine derartige Schaltanordnung soll die Positionsbestimmung eines Schaltelements ermöglichen, wodurch Schaltvorgänge einfach und genau gesteuert und überwacht werden können. Hintergrund der Erfindung
Durch das Aufkommen automatisierter Schaltgetriebe und Doppelkupplungsgetriebe ist die Erfassung einer Schaltmuffenstellung und damit des Schaltwegs notwendig geworden. Insbesondere in Schaltanordnungen zum Schalten von Gangstufen eines automatisierten Stufengetriebes ist es wichtig, dass die Position eines Schaltelements genauestens erfasst wird. Allgemein können hierzu verschiedene Wege eingeschlagen werden.
DE 10 2006 02 87 85 B3 offenbart eine berührungslose Methode zur Erfassung eines Schaltwegs in Form einer Anordnung mit einem Sensor und einer Anzahl von Positionsgebern an einem als Schaltstange ausgebildeten Schaltelement. Die Positionsgeber sind durch zwei Permanentmagnete gebildet, die auf einem gemeinsamen Blech angeordnet sind und formschlüssig über eine Ausneh- mung mit einem an der Schaltstange ausgebildeten Vorsprung zusammenwirken. Somit sind die Positionsgeber präzise zur Schaltstange positioniert. Die Anordnung der Positionsgeber ist insgesamt so ausgeführt, dass die Positionsgeber den gehäusefest im Getrieberaum angeordneten Positionssensoren ge- genüberliegen. Mittels der Positionssensoren kann die Position der Schaltstange ermittelt werden.
Bei einer Anordnung gemäß der DE 10 2006 02 87 85 B3 ist allerdings die Verwendung von Magneten unerlässlich, die mit den Positionssensoren zur Erfassung der Position eines Schaltelements dienen. Die Verwendung eines Magneten bringt jedoch Probleme, wie beispielsweise temperaturbedingte Messungenauigkeiten oder Metallabrieb im Getriebe mit sich, wodurch die Lagerung und die reibungsfreie Bewegung eines Schaltelements behindert wer- den können. Die Magneten bedürfen ferner einer genauen Positionierung, so dass in der Regel eine Kalibrierung der Anordnung erforderlich ist.
DE 10 2007 044 425 A1 offenbart eine Vorrichtung zur Lageerfassung einer Schaltgabel, wobei die Schaltgabel sich in einem Hochfrequenzfeld bewegt und dieses mittels eines Bedämpfungselements verändert. Die Veränderung des Hochfrequenzfeldes führt zur Verstimmung eines Schwingkreises, dessen Frequenzveränderung detektierbar ist. Die Vorrichtung erfordert speziell ange- passte Schaltgabeln und benötigt für jede Schaltgabel einen separaten Schwingkreisdetektor.
Aufgabe der Erfindung
Es ist demnach eine Aufgabe der Erfindung, eine Schaltanordnung zur Messung eines Schaltwegs anzugeben, welche unter der Maßgabe einer möglichst einfachen Realisierbarkeit eine möglichst genaue Bestimmung der Gangpositionen erlaubt.
Lösung der Aufgabe Die Aufgabe der Erfindung wird erfindungsgemäß gelöst durch eine Anordnung mit der Merkmalskombination gemäß Anspruch 1 . Demnach weist die Schaltanordnung zur Erfassung eines Schaltwegs in einem Kraftfahrzeuggetriebe ein sich in einer axialen Richtung erstreckende und axial verschiebbare oder verdrehbare Schaltschiene, einen Wirbelstromsensor zur Erfassung der axialen Position der Schaltschiene und eine die Messwerte des Wirbelstromsensors beeinflussendes Messelement auf, das auf oder an der Schaltschiene angeordnet ist.
Die Erfindung geht von der Überlegung aus, dass generell durch die Verwendung von berührungslosen Sensoren die Lebensdauer und die Zuverlässigkeit der Detektierung eines Schaltelements erhöht werden kann. Als Sensor zur berührungslosen Erfassung der Position der Schaltschiene wird ein Wirbelstromsensor verwendet. Der Wirbelstromsensor ist dabei bezüglich der Schaltschiene so angeordnet, dass er deren Position in axialer Richtung erfasst. Durch die Integration eines die Messwerte des Wirbelstromsensors beeinflus- sendes Messelement wird erreicht, dass mit einem Wirbelstromsensor sicher alle Positionen der Schaltschiene detektierbar sind und bei geschickter Auswahl und Anordnung des Messelements für alle Schaltstellungen lediglich ein Wirbelstromsensor erforderlich ist. Wirbelstromsensoren zeichnen sich insbesondere dadurch aus, dass sie zur Messung keine Magnete benötigen und auch unter problematischen Umgebungsbedingungen, wie beispielsweise bei Anwesenheit starker Magnetfelder, bei hohen Temperaturen und bei einem relativ hohen Verschmutzungsgrad noch eine akzeptable Messgenauigkeit zeigen. Aufgrund der berührungslosen Erfassung ist kein mechanischer Kontakt zwischen einzelnen Getriebekomponenten nötig, so dass ein verschleißfreier Betrieb gewährleistet werden kann. Auf die Verwendung von Magneten an der Schaltschiene kann gänzlich verzichtet werden. Dadurch ist eine flexibleres Getriebedesign möglich, da eine Trennung des metallpartikelhaltigen Öls von dem Sensor nicht mehr erforder- lieh ist.
Durch die Nutzung eines Wirbelstromsensors kann auch unter erschwerten Bedingungen noch eine relativ hohe Messgenauigkeit erreicht werden. Hierbei kann insbesondere diese Genauigkeit ausgenutzt werden, um sicher und einfach die Schaltstellung in einem Kraftfahrzeuggetriebe zu erfassen. Eine Schaltanordnung mit einem Wirbelstromsensor zur Erfassung eines Schaltwegs bietet also eine verschleißfreie und sehr genaue Messmethode zur Be- Stimmung der Position eines Schaltelements an, die den hohen Anforderungen gerecht wird.
Das Prinzip der Wirbelstrommessung beruht auf der Detektion der Rückwirkung von Wirbelströmen. Hierbei werden durch ein sich änderndes Magnetfeld in einem elektrischen Leiter Wirbelströme induziert, die wiederum den Aufbau eines der Wirkung entgegen gerichteten magnetischen Feldes verursachen. Während eines Schaltvorgangs bewegt sich beispielsweise das Schaltelement zwischen zwei Positionen, die jeweils einer Schaltstellung entsprechen. Um eine Schaltposition bestimmen zu können, muss der Wirbelstromsensor somit die beiden Positionen des Schaltelements detektieren. Dazu genügt im einfachsten Fall die Erzeugung eines konstanten Magnetfeldes, gegenüber dem das Schaltelement seine Lage verändert. Üblicherweise wird jedoch durch den Wirbelstromsensor ein magnetisches Wechselfeld erzeugt, welches geschwächt wird, wenn sich ein leitendes Messelement oder Target in der Nähe befindet. In dem Messelement werden durch das Wechselfeld Wirbelströme erzeugt, die das Magnetfeld schwächen. Diese Schwächung ist messbar und abhängig vom Abstand zwischen Wirbelstromsensor und Target. Beispielsweise kann das magnetische Wechselfeld mittels eines elektromagnetischen Schwingkreises erzeugt werden. Diesem wird durch die Schwächung des Mag- netfeldes messbar Energie entzogen.
Die Begriff Schaltschiene umfasst sowohl verdrehbare Schaltwellen wie zusätzlich oder ausschließlich axial bewegliche Schaltstangen. Die Schaltschiene ist üblicherweise aus einem metallischen Werkstoff gefertigt. Insofern kann sie unmittelbar und ohne weitere Hilfsmittel als Target für den Wirbelstromsensor verwendet werden. Zur Durchführung von Schaltvorgängen ist ein solches Schaltelement innerhalb eines Getriebes und insbesondere in der Schalteinheit beweglich gehaltert. Üblicherweise ist hierbei ein axiales Ende der Schaltschiene in einer Lagereinheit gelagert. Zur Lagerung ist beispielsweise ein ne in einer Lagereinheit gelagert. Zur Lagerung ist beispielsweise ein Wälzlager oder ein Gleitlager vorgesehen. Die Lagereinheit mit dem gelagerten Schaltelement ist dabei in ein Getriebegehäuse eingesetzt. Die Querschnittskontur der Schaltschiene kann rund sein. Alternativ ist sie als eine Schaltschiene im engeren Sinne mit einem von einem Kreis abweichenden, eher flachen Querschnitt ausgebildet. Üblicherweise ist eine Schaltschiene aus einem Blech gefertigt. Zur Fertigung bieten sich bekannte und einfach zu handhabende Fertigungsprozesse, wie beispielsweise ein Ausstanzen an. Durch die Ausgestaltung des Schaltelements als eine Schaltschiene kann insbesondere eine für den Wirbelstromsensor vorteilhafte Formgebung für die Positionserfassung leicht vorgenommen werden.
Zur Abstandsmessung mittels eines Wirbelstromsensors ist, wie ausgeführt, ein elektrisch leitendes Target erforderlich. Ein solches Target oder Messelement ist in einer Ausführungsform separat gefertigt und an der Schaltschiene befestigt. Die Befestigung kann beispielsweise durch eine Klebung oder ein Aufschrauben erfolgen. Durch ein solches separates Messelement kann insbesondere auf die Anforderungen des Wirbelstromsensors Rücksicht genommen werden. Das Messelement ist spezifisch an den eingesetzten Wirbelstromsensor anpassbar. Mit einem separaten Messelement muss hierbei nicht auf die spezifischen Anforderungen eingegangen werden, die die Schaltschiene als solche erfüllen muss. Vorteilhafterweise ist die Schaltschiene jedoch bereits aus einem elektrisch leitfähigen Material, insbesondere aus Stahl, gefertigt und kann daher selbst als Messelement verwendet werden. Durch die Ausbildung der Schaltschiene als Messelement vereinfacht sich die Schaltanordnung erheblich. Der Montageaufwand ist nicht unerwünscht durch das Befestigen und Positionieren eines separaten Messelements erschwert. Auch kann der Platzaufwand gering gehalten werden. In einer weiter vorteilhaften Ausgestaltung der Erfindung ist die Schaltschiene mit einer in Richtung auf den Wirbelstromsensor geneigten Rampenkontur ausgebildet. Die Rampenkontur ist insbesondere an der Stelle des Schaltelements ausgebildet, an welcher der Wirbelstromsensor in Wirkverbindung mit dem Schaltelement steht. Durch die Neigung der Rampenkontur gegenüber dem Wirbelstromsensor verändert sich bei einer axialen Verschiebung der Abstand zwischen der Schaltschiene und dem Wirbelstromsensor. Durch diese radiale Abstandsänderung kann die axiale Position des Schaltelements mit hoher Genauigkeit ermittelt werden. Über die definierte Rampe lässt sich ein Bezug zwischen dem über den Wirbelstromsensor gemessenen Radialabstand und der axialen Position der Schaltschiene ermitteln. Insbesondere ist hierzu eine Rame mit einer konstanten Steigung vorgesehen. Alternativ werden vorhandene Einbaugeometrien oder Schaltpositionen über eine spezifische Rampenkontur mit verschiedenen Neigungen berücksichtigt. Eine Schaltschiene mit Rechteckquerschnitt kann direkt und mit relativ geringem Fertigungsaufwand mit einer entsprechend geneigten Rampenkontur gefertigt werden.
Alternativ ist das Messelement separat gefertigt und mit der Schaltschiene zumindest drehfest verbunden. Ein Verzug der Schaltschiene durch das Befesti- gen des Messelements tritt aufgrund der relativ großen Masse der Schaltschiene nicht auf. In einer Weiterbildung ist das Messelement auf einer separate Komponente wie eine Schalthülse angeordnet, die ihrerseits auf der Schaltschiene verpresst oder verschweißt ist. Die Schalthülse nimmt vorteilhafterweise als eine Multifunktionshülse mehrere Funktionen wahr. So kann sie Schalt- finger, Schaltführungen und Rastierkonturen aufweisen. Eine derartige Schalthülse kann kostengünstig aus Blech oder Kunststoff gefertigt werden, und die Schaltschiene bleibt frei von Nachbearbeitungen.
Grundsätzlich kann der Wirbelstromsensor entlang des gesamten Schaltele- ments angeordnet sein. Bevorzugt ist der Wirbelstromsensor aber an einem durch die Schaltschiene und ihre Lagerung gebildeten Schaltdom positioniert. Durch eine Anordnung des Wirbelstromsensors in unmittelbarer Nähe zur La- gerung bzw. zur Gassenführung wird der Messfehler bei der Erfassung der axialen Position des Schaltelements gering gehalten.
Zu einer möglichst einfachen Positionierung ist der Wirbelstromsensor vorteil- hafterweise an der Schalteinheit befestigt. Damit wird die Position zwischen dem Wirbelstromsensor und der Schaltschiene während der Montage beider Komponenten bereits eindeutig festgelegt. Insbesondere ist die Positionierung der beiden Komponenten zueinander schon vor einem Einbau der Schalteinheit in einem Getriebe erzielt. Idealerweise sind hierbei die Schalteinheit und die Messsensorik in einem gemeinsamem Gehäuse integriert, so dass die Baugruppe als Modul ins Getriebe eingebracht werden kann. Dem Kunden wird hierdurch die Montage erheblich erleichtert.
In einer Ausbildung der Erfindung ist das Messelement als ein Blechformteil ausgebildet, das einen konstanten Querschnitt aufweist. Durch Umformtechnik wird eine Kontur in das Blech eingebracht, die in unterschiedlichen Schaltstellungen einen jeweils definierten Abstand zum Wirbelstromsensor aufweist. Die Veränderung des Schwingkreises erfolgt somit durch die geometrische Nähe des Messelements.
In einer weiteren Ausbildung weist das Messelement eine lokal unterschiedliche Dicke auf. Beispielsweise kann durch spanabhebende Bearbeitung Material entfernt werden, so dass je nach Ausrichtung zum Sensor das Messelement beim Schalten zusätzlich oder allein aufgrund seiner variierenden Materialstär- ke das Hochfrequenzfeld verändert.
In einer weiteren Ausbildung ist das Messelement aus verschiedenen Materialien aufgebaut. So können sich Abschnitte aus Kunststoff mit solchen aus Aluminium bzw. Stahl abwechseln, um beispielsweise relativ diskrete Änderungen zu detektieren. Ebenfalls vorgesehen ist die Verwendung von metallpartikelhal- tigem Kunststoff. In einer Variante der Erfindung dient das Messelement zusätzlich als Rastelement einer Schaltarretierung. Mittels einer gegen ein Rastelement vorgespannten Schaltarretierung werden die einzelnen Gangstufen festgelegt, und ein Herausspringen des Ganges verhindert. Eine Integration durch mehrfache Ver- wendung der Rastkontur spart Bauteile und Bauraum ein.
Ebenfalls vorgesehen ist, dass der Wirbelstromsensor so am Schaltdom oder am Getriebegehäuse angeordnet ist, dass er alle Gangstufen und insbesondere die Neutralstellung detektieren kann. Bei einer Zentralschaltwelle wirkt er mit einem an oder auf der Schaltwelle angeordneten Messelement zusammen. Sind mehrere Schaltschienen vorgesehen, ist jede mit einem eigenen Messelement ausgestattet, das die aufgenommenen Messwerte beeinflussen kann. Bei einer derartigen Anordnung ist es ausreichend, einen relativ teuren Wirbelstromsensor zu verwenden. Insbesondere wenn es allein auf die Erfassung der Neutralstellung ankommt, ist es möglich, diese auf einfache Weise dadurch zu erfassen, dass das Hochfrequenzfeld durch kein Messelement verstimmt ist, so dass eine derartige Anordnung einfach und kostengünstig zu realisieren ist.
Kurze Beschreibung der Zeichnung
Im Folgenden werden Ausführungsbeispiele der Erfindung anhand von Zeichnungen näher erläutert. Dabei zeigen:
Fig. 1 einen Querschnitt durch eine schematische Schaltanordnung mit einer Lagereinheit, einer Schaltschiene und einem Wirbelstromsensor,
Fig. 2 eine perspektivische Ansicht einer erfindungsgemäßen Schaltanordnung mit einer ein Messelement aufweisenden Schalthülse und einem Wirbelstromsensor,
Fig 3 einen Querschnitt der Anordnung nach Fig. 2, Fig. 4 ein erstes Messelement mit einem Wirbelstromsensor
Fig. 5 ein zweites Messelement Fig. 6 ein drittes Messelement.
Ausführliche Beschreibung der Zeichnungen
Fig. 1 zeigt einen Querschnitt einer Schaltanordnung 1 mit einer Lagereinheit 3. In der Lagereinheit 3 ist eine sich in einer axialen Richtung 4 erstreckende Schaltschiene 5 gelagert. Im Bereich der Lagereinheit 3 ist die Schaltschiene 5 mit ihrem einen axialen Ende in axialer Richtung 4 verschiebbar gehalten. Im Rahmen eines Schaltvorgangs kann die Schaltschiene 5 innerhalb der Lagereinheit 3 über eine Distanz von einigen Millimetern bis Zentimetern in axia- ler Richtung 4 bezüglich der Neutralstellung bewegt werden. Die Schaltanordnung 1 ist zur Erfassung eines axialen Schaltwegs dieser Schaltschiene 5 ausgelegt.
Zur Erfassung der axialen Position der Schaltschiene 5 ist an der Lagereinheit 3 ein Wirbelstromsensor 9 befestigt. Der Wirbelstromsensor 9 ist bezüglich der Schaltschiene 5 so angeordnet, dass er einen Positionsversatz der Schaltschiene 5 in axialer Richtung 4 erfassen kann. Durch die Anbindung des Wirbelstromsensors 9 an die Lagereinheit 3 sind nach dem Einsetzen der Schaltschiene 5 der Wirbelstromsensor 9 und die Schaltschiene 5 fest zueinander positioniert. Eine aufwändige Ausrichtung zur Kalibrierung des Sensors 9 ist nicht notwendig. Aufgrund der axialen Lagerung der Schaltschiene 5 in der Lagereinheit 3 gibt es an dieser Stelle keine Bewegungen der Schaltschiene 5 in radialer Richtung. Die erzielbare Messgenauigkeit wird insofern durch solche, beispielsweise bei einem Schaltvorgang auftretende Auslenkungen nicht beeinflusst.
Die Schaltschiene 5 ist mit einem rechteckigen Querschnitt ausgebildet und besteht aus einem leitfähigen Stahl. Sie ist selbst als ein Messelement oder Target für den Wirbelstromsensor 9 ausgebildet. Zu einer genauen Erfassung der axialen Position ist die Schaltschiene 5 entlang der axialen Richtung 4 mit einer definierten Rampenkontur 1 1 einer konstanten Steigung ausgestaltet. Die Rampe ist hierzu in axialer Richtung 4 gegenüber dem Wirbelstromsensor 9 geneigt. Mit anderen Wort wird die Rampenkontur 1 1 durch den Wirbelstromsensor 9 erfassbar. Bei einer axialen Verschiebung der Schaltschiene 5 verändert sich aufgrund der Neigung der Rampenkontur 1 1 der radiale Abstand 13 zwischen den beiden Komponenten. Durch diese messbare Abstandsänderung wird eine hohe Messgenauigkeit des axialen Versatzes der Schaltschiene 5 erzielt. Über die Neigung der Rampenkontur 1 1 ist eine Umrechnung des mittels des Wirbelstromsensors 1 1 gemessenen radialen Abstands 13 zur Schaltschiene 5 in deren axiale Position möglich.
Die Lagereinheit 3 umfasst ein Wälzlager 15 mit als Kugeln ausgebildeten Wälzkörpern 17. Das Wälzlager 15 dient der axialen Lagerung der Schaltschiene 5. Die käfiggeführten Kugeln laufen innen auf einem an der Schaltschiene 5 angebrachten Innenblech 18 und außen in einer kreisrunden Zylinderhülse 19, welche in einer Bohrung der Lagereinheit 3 steckt. Ein solches Wälzlager 15 ermöglicht einen guten Wirkungsgrad aufgrund einer geringen Lagerreibung und erhöht damit den Schaltkomfort, da es für eine sehr leichtgängige Längsführung der Schaltschiene 5 sorgt. Das Wälzlager 15 bietet eine geringe und nahezu lastunabhängige Reibung.
Der Wirbelstromsensor 9 ist mit einem Stecker 20 zur Energieversorgung und zum Messabgriff versehen. Um den Stecker 20 vor Verschmutzungen, zum Beispiel durch Öl, zu schützen, ist dieser aus der Lagereinheit 3 nach vorne herausgezogen. Nach dem Einbau des gesamten Moduls in ein Getriebegehäuse 27 ist der Stecker 20 außerhalb der Lagerung angeordnet. Auf diese Weise kann der Wirbelstromsensor 9 zudem leicht von außen kontaktiert wer- den.
Der Wirbelstromsensor 9 erzeugt vorliegend ein magnetisches Wechselfeld über einen elektromagnetischen Schwingkreis. Dieses Feld wird durch die Schaltschiene 5 geschwächt. In der Schaltschiene 5 werden Wirbelströme erzeugt, die dem Schwingkreis Energie entziehen. Diese Energieänderung ist messbar und abhängig vom Abstand zwischen dem Wirbelstromsensor 9 und der Schaltschiene 5. Vorliegend wird dabei der radiale Abstand 13 zwischen dem Wirbelstromsensor 9 und der Rampenkontur 1 1 erfasst und in eine axiale Position der Schaltschiene 5 umgerechnet.
Figuren 2 und 3 zeigen eine Schalthülse 2, die mit einer nicht dargestellten Schaltschiene fest oder drehfest verbindbar ist. Sie kann beispielsweise ver- stemmt, verpresst oder verschweißt sein. Die Schalthülse 2 ist als Multifunkti- onshülse ausgebildet und trägt neben dem Messelement 21 weitere Schaltelemente wie einen Schaltfinger 6, eine Gassenführung 7, die in der Nähe des Messelements 21 angeordnet ist und eine Rastkontur 8 zum Verrasten mit einer nicht dargestellten Schaltarretierung. Durch ihre im Vergleich zur Schalt- schiene größeren Mantelfläche lassen sich die Bauteile 6, 7, 8, 21 auf einfache Weise anordnen, ohne dass die Schaltschiene geschwächt wird.
Verschiedene Messelemente 21 sind in den Figuren 4, 5 und 6 dargestellt. Das Messelement 21 nach Figur 4 ist aus Aluminiumblech als Stanzprägeteil mit einer Rampenkontur 1 1 geformt. Längs der Wählrichtung weist die Rampenkontur 1 1 eine in Wählrichtung verlaufende und auf den Wirbelstromsensor 9 ausgerichtete Erhebung 10 auf, die die Neutralgasse markiert. Die Erhebung 10 geht relativ scharfkantig in radial tiefer gelegene Bereiche 12, 14 über, um eine sichere Erkennung zu gewährleisten, sobald ein Schaltvorgang in Um- fangsrichtung erfolgt. In Figur 5 ist die Erhebung 10 verrundet ausgebildet, und der erste Bereich 12 und der zweite Bereich 14 weisen eine unterschiedliche radiale Höhe auf, so dass auch die Gangstellung detektierbar ist. Ein Messelement 21 mit derart verrundeten Konturen eignet sich, insbesondere wenn es aus Stahl gefertigt ist, gleichzeitig als Rastkontur für eine Schaltarretierung. Figur 6 zeigt ein Messelement 21 aus metallisiertem Kunststoff mit einer Zentralsicke 16, die ebenfalls die Neutralgasse kennzeichnet. Liste der Bezugszahlen Schaltanordnung
Schalthülse
Lagereinheit
axiale Richtung
Schaltschiene
Schaltfinger
Gassenführung
Rastkontur
Wirbelstromsensor
Erhebung
Rampenkontur
erster Bereich
Abstand
zweiter Bereich
Wälzlager
Zentralsicke
Wälzkörper
Innenblech
Zylinderhülse
Stecker
Messelement
Getriebegehäuse

Claims

Patentansprüche
1 . Schaltanordnung (1 ) zur Erfassung eines Schaltweges in einem Kraftfahr- zeuggetriebe, umfassend eine sich in einer axialen Richtung (4) erstreckende Schaltschiene (5), welche axial verschiebbar oder verdrehbar ist, einen Wirbelstromsensor (9) zur Erfassung der axialen Position der Schaltschiene (5) und ein die Messwerte des Wirbelstromsensors (9) beeinflussendes Messelement (21 ), das auf oder an der Schaltschiene (5) angeordnet ist.
2. Schaltanordnung (1 ) nach Anspruch 1 , wobei das Messelement (21 ) ein separat von der Schaltschiene (5) ausgebildetes Bauteil ist.
3. Schaltanordnung (1 ) nach Anspruch 1 , wobei das Messelement (21 ) als ein Stanzprägeteil ausgebildet ist.
4. Schaltanordnung (1 ) nach Anspruch 1 , wobei das Messelement (21 ) eine Rampenkontur (1 1 ) aufweist.
5. Schaltanordnung (1 ) nach Anspruch 4, wobei das Messelement (21 ) als ein verformtes Metallblech konstanter Dicke ausgebildet ist.
6. Schaltanordnung (1 ) nach Anspruch 4, wobei die Rampenkontur (1 1 ) durch unterschiedliche Materialstärken gebildet ist.
7. Schaltanordnung (1 ) nach Anspruch 1 , wobei das Messelement (21 ) unterschiedliche Materialien aufweist.
8. Schaltanordnung (1 ) nach Anspruch 1 , wobei das Messelement (21 ) auf einer auf der Schaltschiene (5) drehfest angeordneten Schalthülse () befestigt ist. Schaltanordnung (1 ) nach Anspruch 1 , wobei der Wirbelstromsensor (9) in ein Arretierelement () integriert ist, das gegen das Messelement (21 ) vorgespannt ist.
Schaltanordnung (1 ) nach Anspruch 1 , wobei der Wirbelstromsensor (9) und das Messelement (21 ) so zueinander angeordnet sind, dass die De- tektion aller Gänge ermöglicht ist.
PCT/EP2010/063829 2009-10-28 2010-09-21 Schaltanordnung zur erfassung eines schaltwegs in einem kraftfahrzeuggetriebe WO2011051054A1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE200910051125 DE102009051125A1 (de) 2009-10-28 2009-10-28 Lageranordnung zur Erfassung eines Schaltwegs in einem Kraftfahrzeuggetriebe
DE102009051125.3 2009-10-28
DE200910059906 DE102009059906A1 (de) 2009-12-21 2009-12-21 Schaltanordnung zur Erfassung eines Schaltwegs in einem Kraftfahrzeuggetriebe
DE102009059906.1 2009-12-21

Publications (1)

Publication Number Publication Date
WO2011051054A1 true WO2011051054A1 (de) 2011-05-05

Family

ID=42988537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/063829 WO2011051054A1 (de) 2009-10-28 2010-09-21 Schaltanordnung zur erfassung eines schaltwegs in einem kraftfahrzeuggetriebe

Country Status (1)

Country Link
WO (1) WO2011051054A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106066145A (zh) * 2016-06-12 2016-11-02 柳州上汽汽车变速器有限公司 汽车变速器换挡机构检具
CN112469929A (zh) * 2018-07-23 2021-03-09 雷诺股份公司 用于检测变速箱内部控制装置的位置的装置
DE102013218708B4 (de) 2012-09-24 2022-07-14 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Verfahren zum Bestimmen einer Position zweier Aktuatorkolben

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29923146U1 (de) * 1999-12-24 2000-03-30 INA Wälzlager Schaeffler oHG, 91074 Herzogenaurach Schaltvorrichtung für ein Wechselgetriebe von Fahrzeugen
DE19908091A1 (de) * 1999-02-25 2000-08-31 Zahnradfabrik Friedrichshafen Einrichtung zum Erfassen eines Drehwinkels
DE102005034865A1 (de) * 2005-07-26 2007-02-01 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Stellvorrichtung für ein Getriebe
DE102007032972A1 (de) * 2007-07-16 2009-01-29 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Messvorrichtung und Verfahren zur Erfassung einer axialen Verschiebung einer Welle
DE102008015613A1 (de) * 2008-03-26 2009-10-01 Schaeffler Kg Anordnung zur Lagerung einer Schaltschiene
WO2010057758A1 (de) * 2008-11-20 2010-05-27 Schaeffler Technologies Gmbh & Co. Kg Vorrichtung zur erkennung von schaltzuständen eines beweglichen schaltungs- und stellelements

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19908091A1 (de) * 1999-02-25 2000-08-31 Zahnradfabrik Friedrichshafen Einrichtung zum Erfassen eines Drehwinkels
DE29923146U1 (de) * 1999-12-24 2000-03-30 INA Wälzlager Schaeffler oHG, 91074 Herzogenaurach Schaltvorrichtung für ein Wechselgetriebe von Fahrzeugen
DE102005034865A1 (de) * 2005-07-26 2007-02-01 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Stellvorrichtung für ein Getriebe
DE102007032972A1 (de) * 2007-07-16 2009-01-29 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Messvorrichtung und Verfahren zur Erfassung einer axialen Verschiebung einer Welle
DE102008015613A1 (de) * 2008-03-26 2009-10-01 Schaeffler Kg Anordnung zur Lagerung einer Schaltschiene
WO2010057758A1 (de) * 2008-11-20 2010-05-27 Schaeffler Technologies Gmbh & Co. Kg Vorrichtung zur erkennung von schaltzuständen eines beweglichen schaltungs- und stellelements

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013218708B4 (de) 2012-09-24 2022-07-14 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Verfahren zum Bestimmen einer Position zweier Aktuatorkolben
CN106066145A (zh) * 2016-06-12 2016-11-02 柳州上汽汽车变速器有限公司 汽车变速器换挡机构检具
CN106066145B (zh) * 2016-06-12 2018-11-23 柳州上汽汽车变速器有限公司 汽车变速器换挡机构检具
CN112469929A (zh) * 2018-07-23 2021-03-09 雷诺股份公司 用于检测变速箱内部控制装置的位置的装置

Similar Documents

Publication Publication Date Title
DE102010056271B4 (de) Sensoranordnung zur Erfassung sowohl der Axial- als auch der Drehstellung einer in Längsrichtung verschieblichen und drehbaren Welle
EP2350480B1 (de) Vorrichtung umfassend ein betätigungselement eines zahnräderwechselgetriebes
EP2304274B1 (de) Verfahren zum kalibrieren eines positionssensors in einem kraftfahrzeuggetriebe
DE102010018773A1 (de) Zentralausrücker
WO2011051054A1 (de) Schaltanordnung zur erfassung eines schaltwegs in einem kraftfahrzeuggetriebe
EP2263028B1 (de) Anordnung zur lagerung einer schaltschiene mit sensor zur positionsbeseitigung
DE102009037500A1 (de) Vorrichtung zum Bestimmen von Zuständen eines Getriebes
DE102009059906A1 (de) Schaltanordnung zur Erfassung eines Schaltwegs in einem Kraftfahrzeuggetriebe
WO2010046218A1 (de) Sensorschalteinheit
EP2379915B1 (de) Vorrichtung zur lageerkennung eines beweglichen schaltelements
DE102008008727A1 (de) Lager mit Positionsgeber
DE102010011833A1 (de) Schaltvorrichtung eines Kraftfahrzeugwechselgetriebes
DE102009051125A1 (de) Lageranordnung zur Erfassung eines Schaltwegs in einem Kraftfahrzeuggetriebe
DE102010034282A1 (de) Schaltvorrichtung für ein Zahnräderwechselgetriebe
EP2467625B1 (de) Anordnung zur lagerung einer schaltschiene
DE102009032558A1 (de) Schalteinheit eines Kraftfahrzeugschaltgetriebes
WO2011018283A1 (de) Sensorschalteinheit, aretierung für eine sensorschalteinheit und verfahren zur verminderung von temperaturabhängigen relativen positionsänderungen eines sensors und eines signalgebers
DE102020126396B4 (de) Schaltelement und Schaltvorrichtung mit einem Schaltelement
DE102008063600A1 (de) Sensorarretierung
EP2235601A1 (de) Schalteinheit und verfahren zu ihrer herstellung
DE102011003554A1 (de) Schaltstangeneinheit
DE102008053194A1 (de) Schalteinheit
WO2009143830A2 (de) Lagervorrichtung mit positionsgeber
DE102010035187A1 (de) Schaltstange eines Kraftfahrzeuggetriebes
WO2011020670A1 (de) Sensorlager zur lagerung eines getriebestellelements

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10757076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10757076

Country of ref document: EP

Kind code of ref document: A1