WO2011049085A1 - Photocatalyst containing carbon nitride, method for producing same, and air purification method using the photocatalyst - Google Patents

Photocatalyst containing carbon nitride, method for producing same, and air purification method using the photocatalyst Download PDF

Info

Publication number
WO2011049085A1
WO2011049085A1 PCT/JP2010/068385 JP2010068385W WO2011049085A1 WO 2011049085 A1 WO2011049085 A1 WO 2011049085A1 JP 2010068385 W JP2010068385 W JP 2010068385W WO 2011049085 A1 WO2011049085 A1 WO 2011049085A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nitride
photocatalyst
graphite
treatment
aqueous solution
Prior art date
Application number
PCT/JP2010/068385
Other languages
French (fr)
Japanese (ja)
Inventor
泰三 佐野
浩士 竹内
信彰 根岸
力 平川
咲子 筒井
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Priority to JP2011537262A priority Critical patent/JP5582545B2/en
Publication of WO2011049085A1 publication Critical patent/WO2011049085A1/en

Links

Images

Classifications

    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8678Removing components of undefined structure
    • B01D53/8687Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • B01J35/613
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/202Alkali metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/70Non-metallic catalysts, additives or dopants
    • B01D2255/702Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/90Odorous compounds not provided for in groups B01D2257/00 - B01D2257/708
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/06Polluted air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4508Gas separation or purification devices adapted for specific applications for cleaning air in buildings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/802Visible light

Definitions

  • the present invention relates to a photocatalyst, a method for producing the photocatalyst, and an air purification method using the photocatalyst, and more particularly, to a photocatalyst having improved visible light responsiveness.
  • Titanium oxide is a typical example and exhibits a strong photocatalytic activity.
  • titanium oxide has a large band gap and does not absorb visible light that occupies most of the sunlight and is active only to ultraviolet light, it cannot fully utilize sunlight, and ultraviolet light is extremely weak. There were issues such as not functioning indoors. Therefore, various improvements have been made so that visible light can be used.
  • Patent Document 1 describes that a photocatalyst exhibiting a high photocatalytic action can be obtained by irradiation with visible light by mixing and baking ammonia or a substance that generates ammonia by heating and a titanium compound.
  • Patent Document 2 describes titanium hydroxide containing 3.3% or more of nitrogen, and a photocatalyst obtained by firing the titanium hydroxide.
  • semiconductors such as tungsten oxide are capable of absorbing visible light because they have a smaller band gap than titanium oxide, and are expected as visible light active photocatalysts (visible light responsive photocatalysts) ( Patent Documents 3 and 4). These visible light responsive photocatalysts often promote their activity using a promoter such as platinum, palladium, or copper compound.
  • Non-patent Document 1 graphite-like carbon nitride has been proposed (Non-patent Document 1). It has been known since the 1980s that this graphite-like carbon nitride powder can be synthesized by pyrolyzing melamine or cyanamide, but the catalytic action has not been studied until recently, and in fact, the graphite-like powder synthesized from melamine Even if carbon nitride is used as it is, there is almost no catalytic activity. However, the literature 1 reports that the activity is improved by supporting platinum or ruthenium and it can be used for water photolysis (hydrogen generation, oxygen generation). ing.
  • non-patent document 2 synthesizes ultrafine-grained graphite-like carbon nitride using silica as a template, and synthesizes graphite-like carbon nitride with a high specific surface area by removing silica with hydrofluoric acid.
  • the photocatalytic activity is not evaluated.
  • titanium oxide decomposes organic substances contained in the adhesive and paint, it is necessary to use an inorganic adhesive or paint that does not contain organic substances when titanium oxide is used. Furthermore, titanium oxide has good compatibility with inorganic materials such as glass and concrete, but has a problem that it has poor compatibility with organic materials.
  • Tungsten oxide-based semiconductors are expected to be visible light-responsive photocatalysts, but their price is about 10 times that of titanium oxide, and the supply is unstable because they are strategic substances. There is also. Further, the graphite-like carbon nitride powder does not have catalytic activity as it is, and some activation means is necessary. However, the activation means using platinum or ruthenium described in Non-Patent Document 1 is expensive, and hydrofluoric acid is used. There is a problem that the synthesis method of Non-Patent Document 2 used is dangerous.
  • the present invention has been made in view of the above circumstances, and provides a photocatalyst obtained by a cheaper and safer method and responsive to not only ultraviolet light but also visible light, and a method for producing the same. It is intended.
  • a photocatalyst comprising, as an active ingredient, powder obtained by subjecting graphite-like carbon nitride powder to an alkali treatment or an acid treatment.
  • the treatment is a heat treatment in an alkaline aqueous solution or an acidic aqueous solution.
  • the present invention it is possible to obtain a photocatalyst by an inexpensive and safe method, and the obtained photocatalyst can utilize the photocatalytic action using visible light even if the ultraviolet light is insufficient in the room. Therefore, titanium oxide and tungsten oxide currently used as photocatalysts can be replaced with inexpensive materials.
  • combination of graphite-like carbon nitride The figure which shows the electron spin resonance (ESR) spectrum of the graphite-like carbon nitride obtained by adding sodium hydroxide aqueous solution and heat-processing at 90 degreeC for 20 hours.
  • strength of the ESR signal observed in g 2.004 vicinity of the ESR spectrum of graphite-like carbon nitride, and the calcination temperature at the time of the synthesis
  • FIG 3 is a powder X-ray diffraction diagram of graphitic carbon nitride.
  • the figure which shows the enlarged part of the main peak in FIG. The figure which shows the profile of the NOx removal test by the graphite-like carbon nitride powder which heat-processed for 90 hours at 130 degreeC by adding sodium hydroxide aqueous solution.
  • the photocatalyst having visible light responsiveness of the present invention is characterized in that its photocatalytic activity is improved by treating graphite-like carbon nitride powder in an alkaline aqueous solution or an acidic aqueous solution. That is, by treating the graphite-like carbon nitride in an alkaline solution or an acidic solution, the specific surface area is increased and the photocatalytic activity is improved.
  • the present invention will be described in more detail using specific measurement results.
  • Graphite-like carbon nitride was synthesized as follows. 30 g of melamine (manufactured by Wako Pure Chemical Industries, Ltd.) is placed in an alumina crucible, covered, baked in an electric furnace at 550 ° C. for 1 hour, the product is ground in a mortar, and then placed in a crucible again for 550 hours. Baked at °C. The resulting yellow powder was ground in a mortar to obtain graphite-like carbon nitride powder.
  • melamine manufactured by Wako Pure Chemical Industries, Ltd.
  • the alkali treatment of graphite-like carbon nitride was performed as follows. 1.0 g of the graphite-like carbon nitride powder and 100 ml of a 0.10 mol / l aqueous solution of sodium hydroxide (Wako Pure Chemical Industries) are placed in a crucible made of Teflon (registered trademark), and sodium hydroxide is utilized using an ultrasonic generator. Was dissolved. At this time, the sodium hydroxide concentration was 0.1 mol / l, and the pH at room temperature was 13. When changing the pH of the solution, the concentration of sodium hydroxide was appropriately changed.
  • a Teflon crucible was placed in a stainless steel jacket and heated while stirring with a magnetic stirrer. The temperature was measured using a thermocouple at the top of the stainless steel jacket, and the temperature was adjusted using a temperature controller, slidac, and mantle heater. After heating at a predetermined temperature for 20 hours, it was allowed to cool to room temperature. The suspension in the Teflon crucible was centrifuged to obtain a precipitate.
  • the acid treatment of graphite-like carbon nitride was performed as follows. 1.0 g of graphite-like carbon nitride powder obtained by baking the melamine and 100 ml of 0.2 mol / l hydrochloric acid (Wako Pure Chemical Industries) were placed in a Teflon crucible and stirred using an ultrasonic generator. . When changing the pH of the solution, the amount of concentrated hydrochloric acid was appropriately changed.
  • an acid other than hydrochloric acid for example, sulfuric acid or nitric acid
  • concentration of an acid reagent manufactured by Wako Pure Chemical Industries, Ltd.
  • Wako Pure Chemical Industries, Ltd. the concentration of an acid reagent added as appropriate was adjusted so that the hydrogen ion concentration was comparable.
  • a Teflon crucible was placed in a stainless steel jacket and heated while stirring with a magnetic stirrer. The temperature was measured using a thermocouple at the top of the stainless steel jacket, and the temperature was adjusted using a temperature controller, slidac, and mantle heater. After heating at a predetermined temperature for 20 hours, it was allowed to cool to room temperature. The suspension in the Teflon crucible was centrifuged to obtain a precipitate. The process of washing the precipitate with water by adding 30 ml of water to the precipitate and stirring and centrifuging was repeated several times to obtain acid-treated graphite-like carbon nitride.
  • FIG. 1 shows the specific surface area ( ⁇ ) of graphite-like carbon nitride powder obtained by baking melamine at different temperatures for 2 hours in the production of the above-mentioned graphite-like carbon nitride powder, and the graphite-like carbon nitride powder is hydroxylated.
  • the specific surface area was measured by a multipoint BET method using nitrogen as an adsorbate.
  • FIG. 2 shows the NOx removal rate ( ⁇ ) of the graphite-like carbon nitride powder obtained by baking the melamine at different temperatures for 2 hours, and the aqueous solution of sodium hydroxide (concentration 0.1 mol / wt). It is a figure which shows the relationship between NOx removal rate ((circle)) of the graphite-like carbon nitride powder obtained by adding L) and heat-processing at 90 degreeC for 20 hours, and a calcination temperature. The NOx removal rate was measured as follows.
  • 0.2 g of the treated g-C 3 N 4 was suspended in a small amount of water, the whole amount was applied to a glass plate having a width of 50 mm and a length of 100 mm, and dried at 50 ° C. to prepare a photocatalyst test piece.
  • the test piece was installed in a photocatalytic reaction vessel shown in JIS R1701-1, covered with a Pyrex (registered trademark) lid, and simulated polluted air containing 1.0 ppm of NO gas was circulated at 1.0 L / min. .
  • the humidity was 6% at 25 ° C.
  • the NO and NO 2 gas concentrations in the simulated contaminated air coming out of the reaction vessel were measured with a chemiluminescent NOx measuring device (manufactured by MonitorLabs, 8840). Light from a white fluorescent lamp (Toshiba FL10W) was irradiated to the photocatalyst sample piece at an intensity of 6000 Lx through an ultraviolet light removal filter (Sumitex LF-39 manufactured by Sumitomo Chemical), and the photocatalytic action was observed.
  • a chemiluminescent NOx measuring device manufactured by MonitorLabs, 8840.
  • Light from a white fluorescent lamp (Toshiba FL10W) was irradiated to the photocatalyst sample piece at an intensity of 6000 Lx through an ultraviolet light removal filter (Sumitex LF-39 manufactured by Sumitomo Chemical), and the photocatalytic action was observed.
  • NOx concentration (the sum of NO gas concentration and NO 2 gas concentration) is obtained and ⁇ [NOx concentration when light is not irradiated] ⁇ [NOx concentration when light is irradiated] ⁇ / ⁇ [light is irradiated NOx concentration when not present] ⁇ ⁇ 100 was defined as the NOx removal rate.
  • the sample that was not treated with an aqueous sodium hydroxide solution (hereinafter referred to as “NaOH treatment”) showed a low NOx removal rate regardless of the firing temperature.
  • the NOx removal rate was higher than that before the NaOH treatment, and the NOx removal rate was the highest especially around 550 ° C. From these results, in the method for producing graphite-like carbon nitride described above, graphite-like carbon nitride obtained by firing a carbon nitride raw material in the range of 450 ° C. to 650 ° C., preferably 500 ° C. to 600 ° C.
  • the graphite-like carbon nitride having a high photocatalytic activity can be obtained by treating this in an alkaline aqueous solution. Further, as apparent from the results of FIGS. 1 and 2, it was found that the photocatalytic activity does not increase only by increasing the BET area. This is considered to be related to the radical generation ability described below.
  • ESR Electron spin resonance
  • the composition of the obtained graphite-like carbon nitride varies depending on the firing temperature, but 0.4 ⁇ x ⁇ 0.6. 1.4 ⁇ y ⁇ 3.1 and 0.1 ⁇ z ⁇ 2.5.
  • the results of X-ray diffraction described later showed that the layered compound was like a graphite-like carbon nitride-like, so that incomplete C 3 with defects such as amino groups was present. N 4 was identified.
  • cyanamide is used as a raw material for carbon nitride, or when cyanamide, melamine, and urea are mixed, almost the same results are obtained, so a raw material for carbon nitride other than melamine may be used. A plurality of carbon nitride raw materials may be mixed.
  • each graphite-like carbon nitride obtained by firing at 520 ° C. to 650 ° C. is subjected to the above-mentioned NaOH treatment to obtain graphite-like carbon nitride having an enhanced photocatalytic activity.
  • Table 1 below shows the measurement results of the NOx removal rate and the BET area with the g-C 3 N 4 powder obtained by the various alkali treatments and acid treatments described above.
  • HCl treatment Treatment with hydrochloric acid (hereinafter referred to as “HCl treatment”) was effective when performed at a hydrochloric acid concentration of 0.2 mol / l (pH ⁇ 1), but was effective at a hydrochloric acid concentration of 0.02 mol / l (pH of about 2).
  • HCl treatment Treatment with hydrochloric acid
  • pH ⁇ 1 hydrochloric acid concentration of 0.2 mol / l
  • the hydrochloric acid concentration of 0.02 mol / l pH of about 2
  • the effect was small at 110 ° C. From this, it is considered that a high hydrogen ion concentration and a temperature exceeding 110 ° C. are necessary.
  • the specific surface area is increased to 20 m 2 / g or more regardless of either the alkali treatment or the acid treatment. It is considered that gC 3 N 4 particles were miniaturized by acid treatment or alkali treatment, and the photocatalyst was remarkably improved.
  • FIG. 5 is a diagram showing visible ultraviolet diffuse reflection spectra of gC 3 N 4 and titanium oxide.
  • a broken line indicates a spectrum of titanium oxide (ST-01), and a dotted line indicates an alkali-treated g-
  • the spectrum of C 3 N 4 the solid line is the spectrum of untreated g-C 3 N 4 .
  • Measurement was performed by attaching a diffuse reflection spectrum measurement attachment (ISR-3100) to a visible ultraviolet absorption spectrometer (Shimadzu UV-3600). Barium sulfate was used as a reference substance.
  • titanium oxide absorbs light of about 400 nm or less and can be used for the photocatalytic reaction, and g-C 3 N 4 can absorb visible light having a longer wavelength (up to about 500 nm). Even when NaOH was added and heat-treated, there was no significant change.
  • FIG. 6 is an X-ray powder diffraction pattern of gC 3 N 4 , which was measured with a RU-300 manufactured by RIGAKU.
  • untreated g-C 3 N 4 deionized water, g-C 3 N 4 and 20 hours of heat treatment at 0.99 ° C.
  • aqueous sodium hydroxide was heated at 0.99 ° C. 20 hours g- C 3 N 4 , g-C 3 N 4 that has been heat-treated at 150 ° C. for 20 hours in an aqueous HCl solution.
  • FIG. 7 is a diagram showing an enlarged portion of the main peak, where the solid line indicates untreated g—C 3 N 4 and the broken line indicates NaOH-treated g—C 3 N 4 . 6 and 7, there is a peak peculiar to the layered compound at 27 to 28 °, and it can be seen from the position of this peak that the average of the layer spacing is calculated to be about 3.3 cm, and is gC 3 N 4 .
  • FIG. 9 even when a sodium hydroxide aqueous solution is added and heated, there is almost no change in the diffraction pattern, but in FIG. 7 where the main peak is enlarged, a slight difference is seen.
  • a sodium hydroxide solution is the best, and a potassium hydroxide solution can also be used.
  • a sodium hydroxide solution having a concentration of 1.4 mol / l was used, most of the g-C 3 N 4 was denatured and the recovery rate was lowered, so the concentration was preferably 1.0 mol / l or less, more preferably Uses an alkaline aqueous solution having a concentration of 0.5 mol / l or less.
  • an aqueous solution of a strong acid can be used, but the pH is preferably 1 or less.
  • the treatment with these aqueous solutions is effective to some extent even at room temperature, but the effect is large when performed at 70 ° C. or higher, but the recovery rate of g-C 3 N 4 decreases when it exceeds 130 ° C. It is preferable to process at a temperature not exceeding ° C. Furthermore, the temperature which does not exceed 110 degreeC is preferable. Since activity does not improve even when heated in pure water, it is necessary to heat-treat in an acidic or alkaline aqueous solution.
  • FIG. 8 is a diagram showing a profile of a NOx removal test using gC 3 N 4 powder that was heated for 90 hours at 130 ° C. with an aqueous sodium hydroxide solution (concentration 0.1 mol / L).
  • FIG. 3 is a view showing a profile of a NOx removal test using g-C 3 N 4 powder which was heated at 150 ° C. for 2 hours with hydrochloric acid (concentration 0.2 mol / L) added.
  • the dotted line indicates the NO concentration
  • the dashed line indicates the NO 2 concentration
  • the solid line indicates the NO x (sum of NO and NO 2 ) concentration
  • the horizontal dotted line indicates the initial concentration of NO x .
  • the concentration of NO decreases while the light is applied, and the concentration returns to the original level when the light irradiation is stopped, indicating that a photocatalytic reaction is occurring.
  • Part of NO becomes NO 2 and further becomes HNO 3 and is adsorbed on the photocatalyst and removed from the circulating gas.
  • the area of the portion surrounded by the initial concentration and NOx line corresponds to the removed NOx amount.
  • FIG. 10 shows the NOx removal rate of gC 3 N 4 obtained by adding a sodium hydroxide aqueous solution (concentration 0.1 mol / L) and heat-treating at 90 ° C. for 20 hours, and the wavelength of irradiated light.
  • the horizontal axis represents the transmission limit wavelength of the filter. It was confirmed that gC 3 N 4 can use even visible light having a wavelength near 500 nm. Moreover, since the NOx removal rate with a 345 nm filter is higher than the NOx removal rate with a 400 nm filter, it was confirmed that ultraviolet rays can also be used.
  • FIG. 11 is a diagram showing the relationship between the heating temperature and the NOx removal rate when a sodium hydroxide aqueous solution (concentration 0.1 mol / L) is added and heat-treated for 20 hours.
  • the dotted line in the drawing indicates the NO x removal rate if untreated.
  • a high NOx removal rate is exhibited when the temperature is about 90 ° C. to 130 ° C., and may decrease when the temperature reaches 150 ° C.
  • FIG. 12 is a diagram showing the relationship between the heating time and the NOx removal rate when a sodium hydroxide aqueous solution (concentration 0.1 mol / L) is added and heat treatment is performed at 110 ° C. A high NOx removal rate was exhibited in about 20 hours, and decreased when heated for 90 hours.
  • FIG. 13 is a diagram showing the relationship between the heating temperature and the recovery rate when a sodium hydroxide aqueous solution (concentration: 0.1 mol / L) is added and heat-treated for 20 hours.
  • the recovery rate was defined as (g-C 3 N 4 weight after heat treatment) / (weight before heat treatment) ⁇ 100.
  • a part of g-C 3 N 4 is dissolved by the heat treatment, and is refined and cannot be precipitated in the centrifuge, so that the recoverable amount is reduced. Above 110 ° C., the recovery rate was significantly reduced.
  • Figure 14 is the untreated g-C 3 N 4 powder, and an aqueous solution of sodium hydroxide (concentration 0.1 mol / L) was added to the obtained by 20 hours of heat treatment at 90 °C g-C 3 N 4
  • the measurement was performed as follows. 0.2 g of NaOH-treated g—C 3 N 4 was suspended in a small amount of water, the whole amount was applied to a glass plate having a width of 50 mm and a length of 100 mm, and dried at 50 ° C. to prepare a photocatalyst test piece.
  • the test piece was placed in a photocatalytic reaction vessel shown in JIS R1701-1, covered with a Pyrex lid, and simulated contaminated air containing about 2 ppm of acetaldehyde was circulated at 0.5 L / min. The humidity was 6% at 25 ° C.
  • the concentration of acetaldehyde in the simulated contaminated air coming out of the reaction vessel was measured with a gas chromatograph (GC-14B manufactured by Shimadzu) equipped with an FID type detector. For calibration of the gas chromatograph, 5 ppm acetaldehyde standard gas was used.
  • the CO 2 concentration was measured with an infrared absorption CO 2 meter (41C manufactured by Thermoelectron).
  • FIG. 15 is a graph showing the results of a toluene photocatalytic purification test using g-C 3 N 4 powder obtained by adding HCl and heat-treating at 150 ° C. for 2 hours. The measurement was performed in the same manner as the above-mentioned photocatalytic purification test for acetaldehyde.
  • a gas containing toluene was brought into contact with the photocatalyst without exposure to light, the concentration decreased due to adsorption. The concentration gradually approached the introduced concentration, so when exposed to light, the concentration decreased slightly, and at the same time the generation of CO 2 was confirmed (not shown), indicating that toluene was decomposed.
  • Table 3 shows the results of the toluene removal test.
  • Untreated g-C 3 N 4 powder could not remove (decompose) toluene.
  • the g-C 3 N 4 powder of NaOH treatment, g-C 3 N 4 powder of HCl treatment decomposes the toluene was generate CO 2.
  • the graphite-like carbon nitride powder with improved photocatalytic activity of the present invention can be used as a photocatalytic material by applying it to any substrate, and when this material is used, the energy of light is used to produce air. Can be purified. This material can also be used to decompose acetaldehyde, toluene, and NOx, and can also be used to decompose similar compounds.

Abstract

Disclosed is a photocatalyst which is responsive to visible light and can be obtained at lower cost than conventional photocatalysts by a safe method. Also disclosed is a method for producing the photocatalyst. The photocatalyst which is responsive to visible light is characterized by containing, as an active ingredient, a powder that is obtained by subjecting a graphite-like carbon nitride powder to an alkali treatment or an acid treatment. The alkali treatment or acid treatment is preferably a heat treatment that is carried out in an alkaline aqueous solution or an acidic aqueous solution. A visible light-responsive photocatalyst obtained by the method has a specific surface area of not less than 20 m2/g and significantly improved photoactivity.

Description

窒化炭素を含む光触媒及びその製造方法並びに該光触媒を用いた空気浄化方法Photocatalyst containing carbon nitride, method for producing the same, and air purification method using the photocatalyst
 本発明は、光触媒及びその製造方法並びに該光触媒を用いた空気浄化方法に関し、特に、可視光応答性が改良された光触媒に関する。 The present invention relates to a photocatalyst, a method for producing the photocatalyst, and an air purification method using the photocatalyst, and more particularly, to a photocatalyst having improved visible light responsiveness.
 近年、空気浄化を行う技術が研究されており、太陽光や室内光によって環境汚染物質を分解除去することが可能な光触媒が注目され、その研究が精力的に行われている。
 酸化チタンはその代表的なものであり、強力な光触媒活性を示す。しかしながら、酸化チタンは、バンドギャップが大きくて太陽光の大部分を占める可視光が吸収されず、紫外光にのみに活性なため、太陽光を十分に利用することができない、紫外光が極めて弱い室内では機能しない、などの課題があった。そこで、可視光を利用することができるように、いろいろな改良がなされている。
 例えば、特許文献1では、アンモニアまたは加熱によりアンモニアを生成する物質と、チタン化合物を混合して焼成することにより、可視光の照射で高い光触媒作用を示す光触媒が得られるとしている。また、特許文献2では、窒素を3.3%以上含む水酸化チタン、それを焼成して得られる光触媒体が記載されている。
In recent years, air purification techniques have been studied, and photocatalysts capable of decomposing and removing environmental pollutants by sunlight and room light have attracted attention, and their research has been vigorously conducted.
Titanium oxide is a typical example and exhibits a strong photocatalytic activity. However, since titanium oxide has a large band gap and does not absorb visible light that occupies most of the sunlight and is active only to ultraviolet light, it cannot fully utilize sunlight, and ultraviolet light is extremely weak. There were issues such as not functioning indoors. Therefore, various improvements have been made so that visible light can be used.
For example, Patent Document 1 describes that a photocatalyst exhibiting a high photocatalytic action can be obtained by irradiation with visible light by mixing and baking ammonia or a substance that generates ammonia by heating and a titanium compound. Patent Document 2 describes titanium hydroxide containing 3.3% or more of nitrogen, and a photocatalyst obtained by firing the titanium hydroxide.
 これに対し、酸化タングステンなどの半導体は、酸化チタンと比較してバンドギャップが小さいために可視光を吸収することができ、可視光活性な光触媒(可視光応答性光触媒)として期待されている(特許文献3、4)。これらの可視光応答性光触媒は、白金やパラジウム、銅化合物などの助触媒を利用して活性を促進させることが多い。 On the other hand, semiconductors such as tungsten oxide are capable of absorbing visible light because they have a smaller band gap than titanium oxide, and are expected as visible light active photocatalysts (visible light responsive photocatalysts) ( Patent Documents 3 and 4). These visible light responsive photocatalysts often promote their activity using a promoter such as platinum, palladium, or copper compound.
 また、近年、グラファイト状窒化炭素が提案されている(非特許文献1)。このグラファイト状窒化炭素の粉末は、メラミンまたはシアナミドを熱分解することで合成できることが80年代から知られているが、触媒作用は近年まで研究されておらず、実際、メラミンから合成されたグラファイト状窒化炭素をそのまま使っても、ほとんど触媒活性はないが、前記文献1では、白金やルテニウムを担持することで活性が向上し、水の光分解(水素発生、酸素発生)に利用できると報告している。 In recent years, graphite-like carbon nitride has been proposed (Non-patent Document 1). It has been known since the 1980s that this graphite-like carbon nitride powder can be synthesized by pyrolyzing melamine or cyanamide, but the catalytic action has not been studied until recently, and in fact, the graphite-like powder synthesized from melamine Even if carbon nitride is used as it is, there is almost no catalytic activity. However, the literature 1 reports that the activity is improved by supporting platinum or ruthenium and it can be used for water photolysis (hydrogen generation, oxygen generation). ing.
 一方、グラファイト状窒化炭素については、非特許文献2に、シリカをテンプレートとして超微粒子のグラファイト状窒化炭素を合成し、シリカをフッ酸で除去することにより、高比表面積のグラファイト状窒化炭素を合成する手法が記載されているが、光触媒活性については評価していない。また、特許文献5、6には、MOH水溶液(M=K,Na,Li)或いは鉱酸で処理したものが、優れた蛍光特性或いは潤滑特性を示すことが記載されているが、光触媒活性については何ら記載されていない。 On the other hand, as for graphite-like carbon nitride, non-patent document 2 synthesizes ultrafine-grained graphite-like carbon nitride using silica as a template, and synthesizes graphite-like carbon nitride with a high specific surface area by removing silica with hydrofluoric acid. However, the photocatalytic activity is not evaluated. Patent Documents 5 and 6 describe that a solution treated with an MOH aqueous solution (M = K, Na, Li) or a mineral acid exhibits excellent fluorescence characteristics or lubrication characteristics. Is not described at all.
特開2002-166179号公報JP 2002-166179 A 特開2001-335321号公報JP 2001-335321 A 特開2009-61426号公報JP 2009-61426 A 特開2008-149312号公報JP 2008-149312 A 特開平02-206619号公報Japanese Patent Laid-Open No. 02-206619 特開平02-300233号公報Japanese Patent Laid-Open No. 02-300273
 前述のとおり、酸化チタンを用いた光触媒においては、窒素をドープすることにより、可視光を利用することができるようにしているが、その効率は未だ低くて充分とはいえず、建材やフィルター、薄膜に加工すると、活性が著しく低下するという問題がある。また、酸化チタンは、接着剤や塗料に含まれる有機物を分解するため、酸化チタンを用いる場合には有機物を含まない、無機系の接着剤や塗料を用いる必要があった。さらに、酸化チタンは、ガラスやコンクリートなどの無機系の材料との相性は良かったが、有機系の材料とは相性が悪いという問題もある。 As described above, in the photocatalyst using titanium oxide, it is possible to use visible light by doping nitrogen, but its efficiency is still low and it cannot be said that construction materials and filters, When processing into a thin film, there exists a problem that activity falls remarkably. In addition, since titanium oxide decomposes organic substances contained in the adhesive and paint, it is necessary to use an inorganic adhesive or paint that does not contain organic substances when titanium oxide is used. Furthermore, titanium oxide has good compatibility with inorganic materials such as glass and concrete, but has a problem that it has poor compatibility with organic materials.
 また、酸化タングステン系半導体は、可視光応答性光触媒として期待されるが、その価格が酸化チタンの約10倍と、高価であり、また、戦略物質であるために供給が不安定であるという問題もある。
 さらに、グラファイト状窒化炭素粉末は、そのままでは触媒活性がなく、何らかの活性化手段が必要であるが、非特許文献1記載の白金やルテニウムを用いる活性化手段は高価であり、また、フッ酸を用いる非特許文献2の合成方法は危険であるという問題がある。
Tungsten oxide-based semiconductors are expected to be visible light-responsive photocatalysts, but their price is about 10 times that of titanium oxide, and the supply is unstable because they are strategic substances. There is also.
Further, the graphite-like carbon nitride powder does not have catalytic activity as it is, and some activation means is necessary. However, the activation means using platinum or ruthenium described in Non-Patent Document 1 is expensive, and hydrofluoric acid is used. There is a problem that the synthesis method of Non-Patent Document 2 used is dangerous.
 本発明は、上記の事情に鑑みてなされたものであって、より安価でかつ安全な方法で得られ、紫外光のみならず可視光にも応答性を有する光触媒及びその製造方法を提供することを目的とするものである。 The present invention has been made in view of the above circumstances, and provides a photocatalyst obtained by a cheaper and safer method and responsive to not only ultraviolet light but also visible light, and a method for producing the same. It is intended.
 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、グラファイト状窒化炭素粉末を、アルカリ処理又は酸処理することにより、光触媒活性を向上できるという知見を得た。
 本発明はこれらの知見に基づいて完成に至ったものであり、本発明によれば、以下の発明が提供される。
[1]グラファイト状窒化炭素の粉末を、アルカリ処理又は酸処理して得られた粉末を有効成分とすることを特徴とする光触媒。
[2]前記処理が、アルカリ性水溶液又は酸性水溶液中での加熱処理であることを特徴とする前記[1]の光触媒。
[3]比表面積が20m/g以上であることを特徴とする前記[1]~[2]の光触媒。
[4]可視光応答性を有することを特徴とする前記[1]~[3]の光触媒。
[5]グラファイト状窒化炭素の粉末を、アルカリ処理又は酸処理して光触媒活性を向上させることを特徴とする、グラファイト状窒化炭素を主成分とする光触媒の製造方法。
[6]前記処理が、アルカリ性水溶液又は酸性水溶液中での加熱処理であることを特徴とする前記[5]の光触媒の製造方法。
[7]前記[1]~[4]のいずれかの光触媒を用いて、空気中の汚染物質及び/又は悪臭を分解除去することを特徴とする空気浄化方法。
As a result of intensive studies to achieve the above object, the present inventors have found that the photocatalytic activity can be improved by subjecting the graphite-like carbon nitride powder to an alkali treatment or an acid treatment.
The present invention has been completed based on these findings, and according to the present invention, the following inventions are provided.
[1] A photocatalyst comprising, as an active ingredient, powder obtained by subjecting graphite-like carbon nitride powder to an alkali treatment or an acid treatment.
[2] The photocatalyst according to [1], wherein the treatment is a heat treatment in an alkaline aqueous solution or an acidic aqueous solution.
[3] The photocatalyst according to the above [1] to [2], wherein the specific surface area is 20 m 2 / g or more.
[4] The photocatalyst according to any one of [1] to [3] above, which has visible light responsiveness.
[5] A method for producing a photocatalyst comprising graphite-like carbon nitride as a main component, wherein the graphite-like carbon nitride powder is subjected to alkali treatment or acid treatment to improve photocatalytic activity.
[6] The method for producing a photocatalyst according to [5], wherein the treatment is a heat treatment in an alkaline aqueous solution or an acidic aqueous solution.
[7] A method for purifying air, comprising using the photocatalyst of any one of [1] to [4] to decompose and remove pollutants and / or bad odors in the air.
 本発明によれば、安価でかつ安全な方法で光触媒を得ることができ、しかも、得られた光触媒は、室内で紫外光が不足していても、可視光を用いて光触媒作用を利用することができるため、現在光触媒として利用されている酸化チタンや酸化タングステンを、安価な材料で代替することができる。 According to the present invention, it is possible to obtain a photocatalyst by an inexpensive and safe method, and the obtained photocatalyst can utilize the photocatalytic action using visible light even if the ultraviolet light is insufficient in the room. Therefore, titanium oxide and tungsten oxide currently used as photocatalysts can be replaced with inexpensive materials.
原料のメラミンを2時間焼成して得られたグラファイト状窒化炭素のBET面積、及びさらにNaOHを添加して90℃で20時間加熱処理することにより得られたグラファイト状窒化炭素のBET面積と、グラファイト状窒化炭素の合成時の焼成温度の関係を示す図。BET area of graphite-like carbon nitride obtained by firing raw material melamine for 2 hours, and BET area of graphite-like carbon nitride obtained by further adding NaOH to heat treatment at 90 ° C. for 20 hours, and graphite The figure which shows the relationship of the calcination temperature at the time of the synthesis | combination of a shape carbon nitride. 原料のメラミンを2時間焼成して得られたグラファイト状窒化炭素のNOx除去率、及びさらにNaOHを添加して90℃で20時間加熱処理することにより得られたグラファイト状窒化炭素のNOx除去率と、グラファイト状窒化炭素の合成時の焼成温度の関係を示す図。NOx removal rate of graphite-like carbon nitride obtained by firing raw material melamine for 2 hours, and NOx removal rate of graphite-like carbon nitride obtained by adding NaOH and heating at 90 ° C. for 20 hours The figure which shows the relationship of the calcination temperature at the time of the synthesis | combination of graphite-like carbon nitride. 水酸化ナトリウム水溶液を添加して90℃で20時間加熱処理することにより得られたグラファイト状窒化炭素の電子スピン共鳴(ESR)スペクトルを示す図。The figure which shows the electron spin resonance (ESR) spectrum of the graphite-like carbon nitride obtained by adding sodium hydroxide aqueous solution and heat-processing at 90 degreeC for 20 hours. グラファイト状窒化炭素のESRスペクトルのg=2.004付近に観測されたESRシグナルの積分強度と、グラファイト状窒化炭素の合成時の焼成温度の関係を示す図。The figure which shows the relationship between the integrated intensity | strength of the ESR signal observed in g = 2.004 vicinity of the ESR spectrum of graphite-like carbon nitride, and the calcination temperature at the time of the synthesis | combination of graphite-like carbon nitride. グラファイト状窒化炭素と酸化チタンの可視紫外拡散反射スペクトルを示す図。The figure which shows the visible ultraviolet diffuse reflection spectrum of graphite-like carbon nitride and titanium oxide. グラファイト状窒化炭素の粉末X線回折図。Fig. 3 is a powder X-ray diffraction diagram of graphitic carbon nitride. 図6におけるメインピークの拡大部分を示す図。The figure which shows the enlarged part of the main peak in FIG. 水酸化ナトリウム水溶液を添加して130℃で90時間加熱処理したグラファイト状窒化炭素粉末によるNOx除去試験のプロファイルを示す図。The figure which shows the profile of the NOx removal test by the graphite-like carbon nitride powder which heat-processed for 90 hours at 130 degreeC by adding sodium hydroxide aqueous solution. 塩酸を添加して150℃で2時間加熱処理したグラファイト状窒化炭素粉末によるNOx除去試験のプロファイルを示す図。The figure which shows the profile of the NOx removal test by the graphite-like carbon nitride powder which added hydrochloric acid and heat-processed at 150 degreeC for 2 hours. 水酸化ナトリウム水溶液を添加して90℃で20時間加熱処理することにより得られたグラファイト状窒化炭素のNOx除去率と、照射した光の波長の関係を示す図。The figure which shows the relationship between the NOx removal rate of the graphite-like carbon nitride obtained by adding sodium hydroxide aqueous solution and heat-processing at 90 degreeC for 20 hours, and the wavelength of the irradiated light. 水酸化ナトリウム水溶液を添加して20時間加熱処理したときの加熱温度とNOx除去率の関係を示す図。The figure which shows the relationship between heating temperature when adding sodium hydroxide aqueous solution, and heat-processing for 20 hours, and a NOx removal rate. 水酸化ナトリウム水溶液を添加して110℃で加熱処理したときの加熱時間とNOx除去率の関係を示す図。The figure which shows the relationship between heating time when adding sodium hydroxide aqueous solution, and heat-processing at 110 degreeC, and a NOx removal rate. 水酸化ナトリウム水溶液を添加して20時間加熱処理したときの加熱温度と回収率の関係を示す図。The figure which shows the relationship between heating temperature when a sodium hydroxide aqueous solution is added and heat-processed for 20 hours, and a recovery rate. 未処理のグラファイト状窒化炭素粉末と、水酸化ナトリウム水溶液を添加して90℃で20時間加熱処理して得られたグラファイト状窒化炭素粉末による、アセトアルデヒドの光触媒浄化試験結果を示す図。The figure which shows the photocatalyst purification test result of acetaldehyde by the untreated graphite-like carbon nitride powder and the graphite-like carbon nitride powder obtained by adding sodium hydroxide aqueous solution and heat-processing at 90 degreeC for 20 hours. 塩酸を添加して150℃で2時間加熱処理して得られたグラファイト状窒化炭素粉末による、トルエンの光触媒浄化試験結果を示す図。The figure which shows the photocatalyst purification test result of toluene by the graphite-like carbon nitride powder obtained by adding hydrochloric acid and heat-processing at 150 degreeC for 2 hours.
 本発明の、可視光応答性を有する光触媒は、グラファイト状窒化炭素の粉末を、アルカリ性水溶液中又は酸性水溶液中で処理することにより、その光触媒活性を向上させることを特徴とするものである。
 すなわち、グラファイト状窒化炭素は、アルカリ性溶液中又は酸性溶液中で処理することで、比表面積が増大し、その光触媒活性が向上する。
 以下、本発明について、具体的な測定結果を用いてより詳細に説明する。
The photocatalyst having visible light responsiveness of the present invention is characterized in that its photocatalytic activity is improved by treating graphite-like carbon nitride powder in an alkaline aqueous solution or an acidic aqueous solution.
That is, by treating the graphite-like carbon nitride in an alkaline solution or an acidic solution, the specific surface area is increased and the photocatalytic activity is improved.
Hereinafter, the present invention will be described in more detail using specific measurement results.
 (グラファイト状窒化炭素粉末の製造)
 グラファイト状窒化炭素は次のようにして合成した。
 メラミン(和光純薬製)30gを、アルミナ製るつぼに入れて蓋をし、550℃の電気炉で1時間焼成し、生成物を乳鉢で磨り潰した後、再びるつぼに入れてさらに1時間550℃で焼成した。得られる黄色の粉末を乳鉢で磨り潰し、グラファイト状窒化炭素粉末を得た。
(Production of graphite-like carbon nitride powder)
Graphite-like carbon nitride was synthesized as follows.
30 g of melamine (manufactured by Wako Pure Chemical Industries, Ltd.) is placed in an alumina crucible, covered, baked in an electric furnace at 550 ° C. for 1 hour, the product is ground in a mortar, and then placed in a crucible again for 550 hours. Baked at ℃. The resulting yellow powder was ground in a mortar to obtain graphite-like carbon nitride powder.
 (グラファイト状窒化炭素のアルカリ処理)
 グラファイト状窒化炭素のアルカリ処理は、次のようにして行った。
 前記のグラファイト状窒化炭素粉末1.0g、0.10mol/lの水酸化ナトリウム(和光純薬)水溶液100mlを、テフロン(登録商標)製るつぼに入れ、超音波発生器を利用して水酸化ナトリウムを溶解させた。この時の水酸化ナトリウム濃度は0.1mol/l、室温でのpHは13であった。溶液のpHを変える場合には水酸化ナトリウムの濃度を適宜変更した。テフロン製るつぼをステンレス製ジャケットに入れ、マグネッチックスターラーで攪拌しながら加熱した。温度はステンレスジャケットの上部で熱電対を用いて測定し、温度調節器、スライダック、マントルヒーターを用いて温度を調節した。所定の温度で20時間加熱した後、放冷して室温とした。テフロン製るつぼ内の懸濁液を遠心分離し、沈殿物を得た。沈殿物に30mlの水を加えて攪拌し、超遠心分離機(クボタ製マイクロ冷却遠心機モデル3700、20000gで10分)で遠心分離することにより沈殿物を水洗する過程を数回くりかえし、アルカリ処理したグラファイト状窒化炭素を得た。
(Alkali treatment of graphitic carbon nitride)
The alkali treatment of graphite-like carbon nitride was performed as follows.
1.0 g of the graphite-like carbon nitride powder and 100 ml of a 0.10 mol / l aqueous solution of sodium hydroxide (Wako Pure Chemical Industries) are placed in a crucible made of Teflon (registered trademark), and sodium hydroxide is utilized using an ultrasonic generator. Was dissolved. At this time, the sodium hydroxide concentration was 0.1 mol / l, and the pH at room temperature was 13. When changing the pH of the solution, the concentration of sodium hydroxide was appropriately changed. A Teflon crucible was placed in a stainless steel jacket and heated while stirring with a magnetic stirrer. The temperature was measured using a thermocouple at the top of the stainless steel jacket, and the temperature was adjusted using a temperature controller, slidac, and mantle heater. After heating at a predetermined temperature for 20 hours, it was allowed to cool to room temperature. The suspension in the Teflon crucible was centrifuged to obtain a precipitate. Add 30 ml of water to the precipitate, stir, and repeat the process of washing the precipitate with water several times by centrifuging with an ultracentrifuge (Kubota micro-cooled centrifuge model 3700, 20000 g for 10 minutes), and then alkali treatment Graphitic carbon nitride was obtained.
 (グラファイト状窒化炭素の酸処理)
 グラファイト状窒化炭素の酸処理は、次のようにして行った。
 前記のメラミンを焼成して得られたグラファイト状窒化炭素粉末1.0g及び0.2mol/lの塩酸(和光純薬)100mlを、テフロン製るつぼに入れ、超音波発生器を利用して攪拌した。溶液のpHを変える場合には濃塩酸の量を適宜変更した。塩酸以外の酸、例として硫酸や硝酸、を用いる場合には、同程度の水素イオン濃度となるように適宜加える酸試薬(和光純薬製)の濃度を調節した。テフロン製るつぼをステンレス製ジャケットに入れ、マグネッチックスターラーで攪拌しながら加熱した。温度はステンレスジャケットの上部で熱電対を用いて測定し、温度調節器、スライダック、マントルヒーターを用いて温度を調節した。所定の温度で20時間加熱した後、放冷して室温とした。テフロン製るつぼ内の懸濁液を遠心分離し、沈殿物を得た。沈殿物に30mlの水を加えて攪拌し、遠心分離することにより沈殿物を水洗する過程を数回くりかえし、酸処理したグラファイト状窒化炭素を得た。
(Acid treatment of graphite-like carbon nitride)
The acid treatment of graphite-like carbon nitride was performed as follows.
1.0 g of graphite-like carbon nitride powder obtained by baking the melamine and 100 ml of 0.2 mol / l hydrochloric acid (Wako Pure Chemical Industries) were placed in a Teflon crucible and stirred using an ultrasonic generator. . When changing the pH of the solution, the amount of concentrated hydrochloric acid was appropriately changed. When using an acid other than hydrochloric acid, for example, sulfuric acid or nitric acid, the concentration of an acid reagent (manufactured by Wako Pure Chemical Industries, Ltd.) added as appropriate was adjusted so that the hydrogen ion concentration was comparable. A Teflon crucible was placed in a stainless steel jacket and heated while stirring with a magnetic stirrer. The temperature was measured using a thermocouple at the top of the stainless steel jacket, and the temperature was adjusted using a temperature controller, slidac, and mantle heater. After heating at a predetermined temperature for 20 hours, it was allowed to cool to room temperature. The suspension in the Teflon crucible was centrifuged to obtain a precipitate. The process of washing the precipitate with water by adding 30 ml of water to the precipitate and stirring and centrifuging was repeated several times to obtain acid-treated graphite-like carbon nitride.
 図1は、前述のグラファイト状窒化炭素粉末の製造において、メラミンを異なる温度で2時間焼成して得られたグラファイト状窒化炭素粉末の比表面積(□)、及びそのグラファイト状窒化炭素粉末に水酸化ナトリウム水溶液(濃度0.1mol/L)を添加して90℃で20時間加熱処理することにより得られたグラファイト状窒化炭素粉末の比表面積(○)と、焼成温度の関係を示す図である。
 なお、比表面積の測定には窒素を吸着質として用いる多点BET法を利用した。測定にはカンタクローム社製Autosorb-1を用いた。約0.2gの試料を試料ホルダーに入れ、120℃で1時間脱気処理をした後、BET面積を測定した。
 図1から、より高温で焼成することにより、BET面積の大きなグラファイト状窒化炭素粉末を調製することができることが分かる。
FIG. 1 shows the specific surface area (□) of graphite-like carbon nitride powder obtained by baking melamine at different temperatures for 2 hours in the production of the above-mentioned graphite-like carbon nitride powder, and the graphite-like carbon nitride powder is hydroxylated. It is a figure which shows the relationship between the specific surface area ((circle)) of the graphite-like carbon nitride powder obtained by adding sodium aqueous solution (concentration 0.1 mol / L), and heat-processing at 90 degreeC for 20 hours, and a calcination temperature.
The specific surface area was measured by a multipoint BET method using nitrogen as an adsorbate. For the measurement, Autosorb-1 manufactured by Cantachrome was used. About 0.2 g of a sample was placed in a sample holder, deaerated at 120 ° C. for 1 hour, and then the BET area was measured.
From FIG. 1, it can be seen that a graphite-like carbon nitride powder having a large BET area can be prepared by firing at a higher temperature.
 図2は、前記のメラミンを異なる温度で2時間焼成して得られたグラファイト状窒化炭素粉末のNOx除去率(□)、及びそのグラファイト状窒化炭素粉末に水酸化ナトリウム水溶液(濃度0.1mol/L)を添加して90℃で20時間加熱処理することにより得られたグラファイト状窒化炭素粉末のNOx除去率(○)と、焼成温度の関係を示す図である。
 なお、NOx除去率の測定は次のようにして行った。
 0.2gの前記処理したg-Cを少量の水に懸濁させ、幅50mm、長さ100mmのガラス板に全量を塗布し、50℃で乾燥させて光触媒試験片を調製した。試験片をJIS R1701-1に示された光触媒反応容器に設置し、パイレックス(登録商標)製のフタをして、NOガスを1.0ppm含む模擬汚染空気を1.0L/minで流通させた。湿度は25℃で6%とした。反応容器から出てくる模擬汚染空気中のNOおよびNOガス濃度を、化学発光式のNOx測定器(MonitorLabs社製8840)で測定した。白色蛍光灯(東芝製FL10W)の光を、紫外光除去フィルター(住友化学製スミペックスLF-39)を通して、6000Lxの強度で光触媒試料片に照射し、光触媒作用を観測した。NOx濃度(NOガス濃度とNOガス濃度の和)を求め、{[光を照射していないときのNOx濃度]-[光を照射したときのNOx濃度]}/{[光を照射していないときのNOx濃度]}×100をNOx除去率とした。
FIG. 2 shows the NOx removal rate (□) of the graphite-like carbon nitride powder obtained by baking the melamine at different temperatures for 2 hours, and the aqueous solution of sodium hydroxide (concentration 0.1 mol / wt). It is a figure which shows the relationship between NOx removal rate ((circle)) of the graphite-like carbon nitride powder obtained by adding L) and heat-processing at 90 degreeC for 20 hours, and a calcination temperature.
The NOx removal rate was measured as follows.
0.2 g of the treated g-C 3 N 4 was suspended in a small amount of water, the whole amount was applied to a glass plate having a width of 50 mm and a length of 100 mm, and dried at 50 ° C. to prepare a photocatalyst test piece. The test piece was installed in a photocatalytic reaction vessel shown in JIS R1701-1, covered with a Pyrex (registered trademark) lid, and simulated polluted air containing 1.0 ppm of NO gas was circulated at 1.0 L / min. . The humidity was 6% at 25 ° C. The NO and NO 2 gas concentrations in the simulated contaminated air coming out of the reaction vessel were measured with a chemiluminescent NOx measuring device (manufactured by MonitorLabs, 8840). Light from a white fluorescent lamp (Toshiba FL10W) was irradiated to the photocatalyst sample piece at an intensity of 6000 Lx through an ultraviolet light removal filter (Sumitex LF-39 manufactured by Sumitomo Chemical), and the photocatalytic action was observed. NOx concentration (the sum of NO gas concentration and NO 2 gas concentration) is obtained and {[NOx concentration when light is not irradiated] − [NOx concentration when light is irradiated]} / {[light is irradiated NOx concentration when not present]} × 100 was defined as the NOx removal rate.
 図2に示すとおり、水酸化ナトリウム水溶液による処理(以下、「NaOH処理」という。)をしていない試料では、焼成温度によらず低いNOx除去率を示した。NaOH処理後の試料の場合には、NaOH処理前よりも高いNOx除去率を示し、特に550℃付近で最もNOx除去率が高くなった。
 これらの結果から、先に記載したグラファイト状窒化炭素の製造方法において、窒化炭素の原料を、450℃から650℃、好ましくは500℃から600℃の範囲で焼成することにより得たグラファイト状窒化炭素を、アルカリ性水溶液中で処理することにより、光触媒活性の高いグラファイト状窒化炭素を得られることが分かる。
 また、図1及び2の結果から明らかなように、BET面積が大きいだけでは光触媒活性は大きくならないことが分かった。このことは、次に述べるラジカル生成能力も関係していると考えられる。
As shown in FIG. 2, the sample that was not treated with an aqueous sodium hydroxide solution (hereinafter referred to as “NaOH treatment”) showed a low NOx removal rate regardless of the firing temperature. In the case of the sample after the NaOH treatment, the NOx removal rate was higher than that before the NaOH treatment, and the NOx removal rate was the highest especially around 550 ° C.
From these results, in the method for producing graphite-like carbon nitride described above, graphite-like carbon nitride obtained by firing a carbon nitride raw material in the range of 450 ° C. to 650 ° C., preferably 500 ° C. to 600 ° C. It can be seen that the graphite-like carbon nitride having a high photocatalytic activity can be obtained by treating this in an alkaline aqueous solution.
Further, as apparent from the results of FIGS. 1 and 2, it was found that the photocatalytic activity does not increase only by increasing the BET area. This is considered to be related to the radical generation ability described below.
 (グラファイト状窒化炭素の電子スピン共鳴(ESR)のスペクトル)
 水酸化ナトリウム水溶液(濃度0.1mol/L)を添加して90℃で20時間加熱処理することにより得られたグラファイト状窒化炭素の電子スピン共鳴(ESR)スペクトルを、日本電子製TE300ESRスペクトロメーターを用いて液体窒素温度で測定した。
 図3は、その結果を示すものであり、暗所でも不対電子の存在を示すESRシグナル強度がg=2.003~2.005付近に観測された。可視光を5分間照射するとESRシグナル強度が増大し、不対電子の量が増大したことを示した。さらに、光の照射を中止すると、ESRシグナルは暗所での強度に戻った。このように、可視光の照射により、光触媒反応を開始させる不対電子の量が増大することが確認された。
(Electron spin resonance (ESR) spectrum of graphitic carbon nitride)
An electron spin resonance (ESR) spectrum of graphite-like carbon nitride obtained by adding a sodium hydroxide aqueous solution (concentration 0.1 mol / L) and heat-treating at 90 ° C. for 20 hours was measured using a JEOL TE300 ESR spectrometer. And measured at liquid nitrogen temperature.
FIG. 3 shows the result, and an ESR signal intensity indicating the presence of unpaired electrons was observed in the vicinity of g = 2.003 to 2.005 even in the dark. Irradiation with visible light for 5 minutes increased the ESR signal intensity, indicating an increased amount of unpaired electrons. Furthermore, when the light irradiation was stopped, the ESR signal returned to the intensity in the dark place. Thus, it was confirmed that the amount of unpaired electrons for initiating the photocatalytic reaction is increased by irradiation with visible light.
 図4は、前記のメラミンを異なる温度で2時間焼成して得られたグラファイト状窒化炭素粉末について、前記と同様にして測定した、g=2.004付近に観測されたESRシグナルの積分強度と、焼成温度の関係を示すものである。
 550℃付近で焼成して得られたグラファイト状窒化炭素に比較的多くの不対電子が存在し、不対電子が存在しやすい性質を有していることが確認された。
FIG. 4 shows the integrated intensity of the ESR signal observed around g = 2.004, measured in the same manner as described above for the graphite-like carbon nitride powder obtained by firing the melamine at different temperatures for 2 hours. This shows the relationship of the firing temperature.
It was confirmed that the graphite-like carbon nitride obtained by firing at around 550 ° C. has a relatively large number of unpaired electrons and has the property that unpaired electrons are likely to exist.
 (グラファイト状窒化炭素の元素分析)
 窒化炭素の原料を550℃で焼成して得られたグラファイト状窒化炭素の元素分析を行った。その結果、組成をC4+xと表記すると、x=0.52、y=1.74.z=0.17と求められた。C/N比は0.66であり、完全なC(x=y=z=0)の理論値の0.75よりも小さかった。
 また、窒化炭素の原料の焼成温度を520℃~650℃の間で変化させると、得られたグラファイト状窒化炭素の組成は、焼成温度によって差があるが、0.4<x<0.6、1.4<y<3.1、0.1<z<2.5の範囲にあった。
 いずれの場合も、後述のX線回折の結果(図6、7参照)は、グラファイト状窒化炭素様の層状化合物であることを示したので、アミノ基などの欠陥が存在する不完全なCであると同定された。
 また、窒化炭素の原材料としてシアナミドを用いた場合や、シアナミドとメラミンと尿素を混合した場合にも、ほぼ同様の結果が得られたことから、メラミン以外の窒化炭素の原材料を用いても良いし、複数の窒化炭素の原材料を混合しても良い。
(Elemental analysis of graphitic carbon nitride)
Elemental analysis of graphitic carbon nitride obtained by firing a carbon nitride raw material at 550 ° C. was performed. As a result, when the composition is expressed as C 3 N 4 + x H y O z , x = 0.52, y = 1.74. It was determined that z = 0.17. The C / N ratio was 0.66, which was smaller than the theoretical value 0.75 of perfect C 3 N 4 (x = y = z = 0).
Further, when the firing temperature of the carbon nitride raw material is changed between 520 ° C. and 650 ° C., the composition of the obtained graphite-like carbon nitride varies depending on the firing temperature, but 0.4 <x <0.6. 1.4 <y <3.1 and 0.1 <z <2.5.
In either case, the results of X-ray diffraction described later (see FIGS. 6 and 7) showed that the layered compound was like a graphite-like carbon nitride-like, so that incomplete C 3 with defects such as amino groups was present. N 4 was identified.
Also, when cyanamide is used as a raw material for carbon nitride, or when cyanamide, melamine, and urea are mixed, almost the same results are obtained, so a raw material for carbon nitride other than melamine may be used. A plurality of carbon nitride raw materials may be mixed.
 次に、前記520℃~650℃で焼成して得られた、それぞれのグラファイト状窒化炭素に、前述のNaOH処理をして光触媒活性が高められたグラファイト状窒化炭素を得、それらについて、元素分析を行ったところ、0.48<x<0.55、1.4<y<2.7、0.3<z<0.7の範囲にあった。
 これらの結果から、完全なCの組成(x=y=z=0)よりも、やや窒素が過剰であり、水素と酸素を含んだ組成のグラファイト状窒化炭素様の化合物がより高い光触媒活性を有していることが分かった。
Next, each graphite-like carbon nitride obtained by firing at 520 ° C. to 650 ° C. is subjected to the above-mentioned NaOH treatment to obtain graphite-like carbon nitride having an enhanced photocatalytic activity. As a result, 0.48 <x <0.55, 1.4 <y <2.7, and 0.3 <z <0.7.
From these results, the graphite-like carbon nitride-like compound of the composition containing hydrogen and oxygen is slightly higher than the complete composition of C 3 N 4 (x = y = z = 0). It was found to have photocatalytic activity.
 以上のことから、以下に述べる各実施例では、窒化炭素の原料を550℃で焼成して得られたグラファイト状窒化炭素を用いた。
 なお、以下、本明細書において、グラファイト状窒化炭素を、単に「g-C」と表記こととするが、前述の不完全な組成のg-Cを含むものとする。
From the above, in each Example described below, graphite-like carbon nitride obtained by firing a carbon nitride raw material at 550 ° C. was used.
Hereinafter, in this specification, the graphitic carbon nitride, but simply to be referred to as "g-C 3 N 4" is intended to include g-C 3 N 4 incomplete composition described above.
 下記の表1は、前記の種々のアルカリ処理及び酸処理で得られたg-C粉末による、NOx除去率とBET面積の測定結果を示すものである。 Table 1 below shows the measurement results of the NOx removal rate and the BET area with the g-C 3 N 4 powder obtained by the various alkali treatments and acid treatments described above.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、従来の方法で得られる、未処理のg-C(添加物無し)のNOx除去効率は3.9%だった。水のみを加えて加熱しても、NOx除去率は向上しなかった。NOx除去試験の結果の詳細については、後に図で示す。
 各種の添加物を加え、加熱処理を約20時間行い、得られた沈殿を水で洗浄して光触媒試料を得たところ、高いNOx除去率が得られた。特に、水酸化ナトリウム水溶液を加えて90℃~130℃で加熱処理すると、30%以上の高いNOx除去活性が得られた。
 NaOH処理の後は、蒸留水で試料を洗浄したほうが、高いNOx除去率が得られた。これは、Naイオンが多量に残っていると、NOxの酸化が阻害されると考えられる。ただし、洗浄回数が少なくても、NaOH処理をする前より明らかにNOx除去率が高められているため、洗浄は必須ではないと思われる。また、8回水洗した試料の除去率は低かったので、洗いすぎると除去率が低下すると思われる。
 塩酸による処理(以下、「HCl処理」という。)は、塩酸濃度0.2mol/l(pH<1)で行うと効果があったが、塩酸濃度0.02mol/l(pH約2)では効果が見られなかった。pH<1の場合でも、110℃では効果が小さかった。このことから、高い水素イオン濃度と110℃を超える温度が必要であると考えられる。
 これらの処理によって、NOx除去率が増大する時には、アルカリ処理、酸処理のいずれかによらず、比表面積が20m/g以上に増大していた。酸処理やアルカリ処理によりg-C粒子が微小化され、光触媒が著しく向上したと考えられる。
As is apparent from Table 1, the NOx removal efficiency of untreated g-C 3 N 4 (without additive) obtained by the conventional method was 3.9%. Even when only water was added and heated, the NOx removal rate did not improve. Details of the results of the NOx removal test will be shown later in the drawings.
Various additives were added, heat treatment was performed for about 20 hours, and the resulting precipitate was washed with water to obtain a photocatalyst sample. As a result, a high NOx removal rate was obtained. In particular, when a sodium hydroxide aqueous solution was added and heat-treated at 90 ° C. to 130 ° C., a high NOx removal activity of 30% or more was obtained.
After the NaOH treatment, a higher NOx removal rate was obtained by washing the sample with distilled water. This is considered that oxidation of NOx is inhibited when a large amount of Na ions remain. However, even if the number of times of cleaning is small, the NOx removal rate is clearly higher than before the NaOH treatment, and thus cleaning is not considered essential. Moreover, since the removal rate of the sample washed with water 8 times was low, it seems that the removal rate is lowered if it is washed too much.
Treatment with hydrochloric acid (hereinafter referred to as “HCl treatment”) was effective when performed at a hydrochloric acid concentration of 0.2 mol / l (pH <1), but was effective at a hydrochloric acid concentration of 0.02 mol / l (pH of about 2). Was not seen. Even at pH <1, the effect was small at 110 ° C. From this, it is considered that a high hydrogen ion concentration and a temperature exceeding 110 ° C. are necessary.
When the NOx removal rate is increased by these treatments, the specific surface area is increased to 20 m 2 / g or more regardless of either the alkali treatment or the acid treatment. It is considered that gC 3 N 4 particles were miniaturized by acid treatment or alkali treatment, and the photocatalyst was remarkably improved.
 図5は、g-Cと酸化チタンの可視紫外拡散反射スペクトルを示す図であって、図中、破線は、酸化チタン(ST-01)のスペクトル、点線は、アルカリ処理したg-Cのスペクトル、実線は、未処理g-Cのスペクトルである。可視紫外吸収スペクトロメータ(島津製UV-3600)に、拡散反射スペクトル測定用アタッチメント(ISR-3100)を取り付けて測定した。参照物質には硫酸バリウムを用いた。
 図から明らかなように、酸化チタンは約400nm以下の光を吸収して光触媒反応に利用でき、g-Cはより長い波長の可視光(約500nmまで)を吸収できる。NaOHを添加して加熱処理しても、大きく変化はしなかった。
FIG. 5 is a diagram showing visible ultraviolet diffuse reflection spectra of gC 3 N 4 and titanium oxide. In the figure, a broken line indicates a spectrum of titanium oxide (ST-01), and a dotted line indicates an alkali-treated g- The spectrum of C 3 N 4 , the solid line is the spectrum of untreated g-C 3 N 4 . Measurement was performed by attaching a diffuse reflection spectrum measurement attachment (ISR-3100) to a visible ultraviolet absorption spectrometer (Shimadzu UV-3600). Barium sulfate was used as a reference substance.
As is apparent from the figure, titanium oxide absorbs light of about 400 nm or less and can be used for the photocatalytic reaction, and g-C 3 N 4 can absorb visible light having a longer wavelength (up to about 500 nm). Even when NaOH was added and heat-treated, there was no significant change.
 図6は、g-Cの粉末X線回折図であり、RIGAKU製RU-300で測定した。図中、下から順に、未処理g-C、イオン交換水中、150℃で20時間加熱処理したg-C、水酸化ナトリウム水溶液中、150℃で20時間加熱したg-C、HCl水溶液中、150℃で20時間加熱処理したg-Cを示す。
 図7は、そのメインピークの拡大部分を示す図であり、実線は、未処理g-C、破線は、NaOH処理したg-Cを示す。
 図6、7から、27~28°に層状化合物に特有のピークがあり、このピークの位置から層間隔の平均は約3.3Åと算出され、g-Cであることが分かる。図9において、水酸化ナトリウム水溶液を加えて加熱しても回折図にはほとんど変化が見られないが、メインピークを拡大した図7では、わずかに差が見られる。ピークの低角側の回折強度が減少しており、層間隔の大きな成分が、NaOH処理により取り除かれている。この結果と、比表面積が増大した結果から、凝集しているg-Cの中で、層間隔が大きく弱い部位が、NaOH処理によって破壊され、微細化されたことが分かる。
FIG. 6 is an X-ray powder diffraction pattern of gC 3 N 4 , which was measured with a RU-300 manufactured by RIGAKU. In the figure, in order from the bottom, untreated g-C 3 N 4, deionized water, g-C 3 N 4 and 20 hours of heat treatment at 0.99 ° C., aqueous sodium hydroxide was heated at 0.99 ° C. 20 hours g- C 3 N 4 , g-C 3 N 4 that has been heat-treated at 150 ° C. for 20 hours in an aqueous HCl solution.
FIG. 7 is a diagram showing an enlarged portion of the main peak, where the solid line indicates untreated g—C 3 N 4 and the broken line indicates NaOH-treated g—C 3 N 4 .
6 and 7, there is a peak peculiar to the layered compound at 27 to 28 °, and it can be seen from the position of this peak that the average of the layer spacing is calculated to be about 3.3 cm, and is gC 3 N 4 . In FIG. 9, even when a sodium hydroxide aqueous solution is added and heated, there is almost no change in the diffraction pattern, but in FIG. 7 where the main peak is enlarged, a slight difference is seen. The diffraction intensity on the low angle side of the peak is reduced, and the component having a large layer spacing is removed by NaOH treatment. From this result and the result of the increase in specific surface area, it can be seen that in the agglomerated gC 3 N 4 , the portion where the layer spacing is large and weak was destroyed and refined by NaOH treatment.
 以上のとおり、本発明に用いるアルカリ性水溶液としては、水酸化ナトリウム溶液が最も良く、水酸化カリウム溶液も用いることができる。1.4 mol/lの濃度の水酸化ナトリウム溶液を用いると、大部分のg-Cが変質して回収率が低下したため、好ましくは1.0 mol/l以下の濃度、さらに好ましくは0.5 mol/l以下の濃度のアルカリ性水溶液を用いる。酸性水溶液としては、強酸の水溶液が使用できるが、pH1以下にすることが好ましい。
 また、これらの水溶液による処理は室温で行ってもある程度効果があるが、70℃以上で行うと効果が大きいが、130℃を超えるとg-Cの回収率が低下するため、150℃を超えない温度で処理することが好ましい。さらに110℃を超えない温度が好ましい。純水中で加熱しても活性は向上しないので、酸性またはアルカリ性水溶液中で加熱処理する必要がある。
As described above, as the alkaline aqueous solution used in the present invention, a sodium hydroxide solution is the best, and a potassium hydroxide solution can also be used. When a sodium hydroxide solution having a concentration of 1.4 mol / l was used, most of the g-C 3 N 4 was denatured and the recovery rate was lowered, so the concentration was preferably 1.0 mol / l or less, more preferably Uses an alkaline aqueous solution having a concentration of 0.5 mol / l or less. As the acidic aqueous solution, an aqueous solution of a strong acid can be used, but the pH is preferably 1 or less.
In addition, the treatment with these aqueous solutions is effective to some extent even at room temperature, but the effect is large when performed at 70 ° C. or higher, but the recovery rate of g-C 3 N 4 decreases when it exceeds 130 ° C. It is preferable to process at a temperature not exceeding ° C. Furthermore, the temperature which does not exceed 110 degreeC is preferable. Since activity does not improve even when heated in pure water, it is necessary to heat-treat in an acidic or alkaline aqueous solution.
 (NOx除去試験)
 以下、NOx除去試験の結果を図に示す。
 図8は、水酸化ナトリウム水溶液(濃度0.1mol/L)を添加して、130℃で90時間加熱処理したg-C粉末によるNOx除去試験のプロファイルを示す図であり、図9は、塩酸(濃度0.2mol/L)を添加して、150℃で2時間加熱処理したg-C粉末によるNOx除去試験のプロファイルを示す図である。
 図中、点線は、NO濃度、1点破線は、NO濃度、実線は、NO(NOとNOの和)濃度、水平の点線は、NOの初期濃度を示している。
 いずれの場合も、光を当てている間NOの濃度が低下し、光照射を止めると濃度が元に戻ることから、光触媒反応が起こっていることが分かる。NOの一部はNOになり、さらにHNOとなって光触媒に吸着し、流通ガス中から取り除かれる。初期濃度とNOxの線で囲まれた部分の面積が、取り除かれたNOx量に相当する。
(NOx removal test)
The results of the NOx removal test are shown in the figure below.
FIG. 8 is a diagram showing a profile of a NOx removal test using gC 3 N 4 powder that was heated for 90 hours at 130 ° C. with an aqueous sodium hydroxide solution (concentration 0.1 mol / L). FIG. 3 is a view showing a profile of a NOx removal test using g-C 3 N 4 powder which was heated at 150 ° C. for 2 hours with hydrochloric acid (concentration 0.2 mol / L) added.
In the figure, the dotted line indicates the NO concentration, the dashed line indicates the NO 2 concentration, the solid line indicates the NO x (sum of NO and NO 2 ) concentration, and the horizontal dotted line indicates the initial concentration of NO x .
In either case, the concentration of NO decreases while the light is applied, and the concentration returns to the original level when the light irradiation is stopped, indicating that a photocatalytic reaction is occurring. Part of NO becomes NO 2 and further becomes HNO 3 and is adsorbed on the photocatalyst and removed from the circulating gas. The area of the portion surrounded by the initial concentration and NOx line corresponds to the removed NOx amount.
 図10は、水酸化ナトリウム水溶液(濃度0.1mol/L)を添加して90℃で20時間加熱処理することにより得られたg-CのNOx除去率と、照射した光の波長の関係を示した図である。光源として200Wのキセノンランプを用い、短波長の光をカットオフするフィルターのカットオフ波長を変えながら、NOx除去率を測定した。横軸はフィルターの透過限界波長を示す。g-Cは500nm付近の波長の可視光までを利用できることが確認された。また、400nmのフィルターでのNOx除去率よりも345nmのフィルターでのNOx除去率が高いことから、紫外線も利用できることが確認された。 FIG. 10 shows the NOx removal rate of gC 3 N 4 obtained by adding a sodium hydroxide aqueous solution (concentration 0.1 mol / L) and heat-treating at 90 ° C. for 20 hours, and the wavelength of irradiated light. FIG. Using a 200 W xenon lamp as the light source, the NOx removal rate was measured while changing the cutoff wavelength of a filter that cuts off short-wavelength light. The horizontal axis represents the transmission limit wavelength of the filter. It was confirmed that gC 3 N 4 can use even visible light having a wavelength near 500 nm. Moreover, since the NOx removal rate with a 345 nm filter is higher than the NOx removal rate with a 400 nm filter, it was confirmed that ultraviolet rays can also be used.
 図11は、水酸化ナトリウム水溶液(濃度0.1mol/L)を添加して20時間加熱処理したときの加熱温度とNOx除去率の関係を示す図である。なお、図中の点線は、未処理の場合のNO除去率を示している。
 図から明らかなように、90℃から130℃程度が高いNOx除去率を示し、150℃になると低下する場合がある。
FIG. 11 is a diagram showing the relationship between the heating temperature and the NOx removal rate when a sodium hydroxide aqueous solution (concentration 0.1 mol / L) is added and heat-treated for 20 hours. The dotted line in the drawing indicates the NO x removal rate if untreated.
As is apparent from the figure, a high NOx removal rate is exhibited when the temperature is about 90 ° C. to 130 ° C., and may decrease when the temperature reaches 150 ° C.
 図12は、水酸化ナトリウム水溶液(濃度0.1mol/L)を添加して110℃で加熱処理したときの加熱時間とNOx除去率の関係を示す図である。
 20時間程度で高いNOx除去率を示し、90時間加熱すると低下した。
FIG. 12 is a diagram showing the relationship between the heating time and the NOx removal rate when a sodium hydroxide aqueous solution (concentration 0.1 mol / L) is added and heat treatment is performed at 110 ° C.
A high NOx removal rate was exhibited in about 20 hours, and decreased when heated for 90 hours.
 図13は、水酸化ナトリウム水溶液(濃度0.1mol/L)を添加して20時間加熱処理したときの加熱温度と回収率の関係を示す図である。回収率は(加熱処後のg-C重量)/(加熱処理前の重量)×100で定義した。
 加熱処理により一部のg-Cが溶解するとともに、微細化されて遠心分離器では沈殿させることができないため、回収できる量が減少する。110℃を超えると、回収率は著しく低くなった。
FIG. 13 is a diagram showing the relationship between the heating temperature and the recovery rate when a sodium hydroxide aqueous solution (concentration: 0.1 mol / L) is added and heat-treated for 20 hours. The recovery rate was defined as (g-C 3 N 4 weight after heat treatment) / (weight before heat treatment) × 100.
A part of g-C 3 N 4 is dissolved by the heat treatment, and is refined and cannot be precipitated in the centrifuge, so that the recoverable amount is reduced. Above 110 ° C., the recovery rate was significantly reduced.
 図14は、未処理のg-C粉末、及び水酸化ナトリウム水溶液(濃度0.1mol/L)を添加して90℃で20時間加熱処理して得られたg-C粉末による、アセトアルデヒドの光触媒浄化試験結果を示す図である。
 測定は次のようにして行った。0.2gのNaOH処理したg-Cを少量の水に懸濁させ、幅50mm、長さ100mmのガラス板に全量を塗布し、50℃で乾燥させて光触媒試験片を調製した。試験片をJIS R1701-1に示された光触媒反応容器に設置し、パイレックス製のフタをして、アセトアルデヒドを約2ppm含む模擬汚染空気を0.5L/minで流通させた。湿度は25℃で6%とした。反応容器から出てくる模擬汚染空気中のアセトアルデヒド濃度を、FID式検出器を備えたガスクロマトグラフ(島津製GC-14B)で測定した。ガスクロマトグラフの校正には5ppmのアセトアルデヒド標準ガスを用いた。CO濃度は赤外吸収式のCO計(Thermoelectron社製41C)で測定した。白色蛍光灯(東芝製FL10W)の光を、紫外光除去フィルター(住友化学製スミペックスLF-39)を通して、6000Lxの強度で光触媒試料片に照射し、光触媒作用を観測した。このフィルターにより、380nm未満の紫外光の強度は、0.1%未満になる。{[光を照射していないときのアセトアルデヒド濃度]-[光を照射したときのアセトアルデヒド濃度]}/[光を照射していないとアセトアルデヒド濃度]×100をアセトアルデヒド除去率とした。
 光照射を時間ゼロで開始すると、水酸化ナトリウム水溶液を添加して加熱処理して得られたg-C粉末を用いた場合(△)にはアセトアルデヒド濃度が低下し、同時にCOが発生し、光触媒反応によりアセトアルデヒドがCOにまで酸化された。一方、未処理のg-Cを用いた場合(○)にはほとんどアセトアルデヒド濃度が低下せず、COの発生量も少なかった。
Figure 14 is the untreated g-C 3 N 4 powder, and an aqueous solution of sodium hydroxide (concentration 0.1 mol / L) was added to the obtained by 20 hours of heat treatment at 90 g-C 3 N 4 It is a figure which shows the photocatalyst purification test result of acetaldehyde by powder.
The measurement was performed as follows. 0.2 g of NaOH-treated g—C 3 N 4 was suspended in a small amount of water, the whole amount was applied to a glass plate having a width of 50 mm and a length of 100 mm, and dried at 50 ° C. to prepare a photocatalyst test piece. The test piece was placed in a photocatalytic reaction vessel shown in JIS R1701-1, covered with a Pyrex lid, and simulated contaminated air containing about 2 ppm of acetaldehyde was circulated at 0.5 L / min. The humidity was 6% at 25 ° C. The concentration of acetaldehyde in the simulated contaminated air coming out of the reaction vessel was measured with a gas chromatograph (GC-14B manufactured by Shimadzu) equipped with an FID type detector. For calibration of the gas chromatograph, 5 ppm acetaldehyde standard gas was used. The CO 2 concentration was measured with an infrared absorption CO 2 meter (41C manufactured by Thermoelectron). Light from a white fluorescent lamp (Toshiba FL10W) was irradiated to the photocatalyst sample piece at an intensity of 6000 Lx through an ultraviolet light removal filter (Sumitex LF-39 manufactured by Sumitomo Chemical), and the photocatalytic action was observed. With this filter, the intensity of ultraviolet light of less than 380 nm is less than 0.1%. {[Concentration of acetaldehyde when not irradiated with light] − [Concentration of acetaldehyde when irradiated with light]} / [Concentration of acetaldehyde when irradiated with no light] × 100 was defined as an acetaldehyde removal rate.
When light irradiation is started at time zero, the concentration of acetaldehyde decreases when g-C 3 N 4 powder obtained by adding a sodium hydroxide aqueous solution and heat-treating (Δ), and at the same time, CO 2 is reduced. Acetaldehyde was oxidized to CO 2 by photocatalysis. On the other hand, when untreated g—C 3 N 4 was used (◯), the acetaldehyde concentration was hardly lowered and the amount of CO 2 generated was small.
 同様にして塩酸(濃度0.2mol/L)を添加して、150℃で20時間加熱処理して得られたg-Cによるアセトアルデヒドの光触媒浄化試験を行い、表2に結果をまとめた。
 アセトアルデヒド除去率は、NaOH処理をした試料で4.9%、HCl処理をした試料で14.9%、未処理のg-C試料で0.3%だった。CO発生量についても、水酸化ナトリウム水溶液または塩酸を添加した試料で有意に高い値を示し、光触媒活性が向上したことをした。
Similarly, a photocatalytic purification test of acetaldehyde with g-C 3 N 4 obtained by adding hydrochloric acid (concentration 0.2 mol / L) and heat-treating at 150 ° C. for 20 hours was conducted, and the results are summarized in Table 2. It was.
The removal rate of acetaldehyde was 4.9% for the sample treated with NaOH, 14.9% for the sample treated with HCl, and 0.3% for the untreated g-C 3 N 4 sample. The amount of CO 2 generated was also significantly higher in the sample to which an aqueous sodium hydroxide solution or hydrochloric acid was added, indicating that the photocatalytic activity was improved.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 図15は、HCl添加して150℃で2時間加熱処理して得られたg-C粉末による、トルエンの光触媒浄化試験結果を示す図である。
 測定は、前述のアセトアルデヒドの光触媒浄化試験と同様にして行った。
 光を当てない状態でトルエンを含むガスを光触媒に接触させると吸着により濃度が減少した。徐々に濃度が導入濃度に近づいてきたので光を当てると、わずかだが濃度が減少し、同時にCOの発生が確認され(図省略)、トルエンが分解されたことを示した。
 表3に、トルエン除去試験結果を示す。
 未処理のg-C粉末はトルエンを除去(分解)できなかった。一方、NaOH処理をしたg-C粉末と、HCl処理をしたg-C粉末はトルエンを分解し、COを発生した。
FIG. 15 is a graph showing the results of a toluene photocatalytic purification test using g-C 3 N 4 powder obtained by adding HCl and heat-treating at 150 ° C. for 2 hours.
The measurement was performed in the same manner as the above-mentioned photocatalytic purification test for acetaldehyde.
When a gas containing toluene was brought into contact with the photocatalyst without exposure to light, the concentration decreased due to adsorption. The concentration gradually approached the introduced concentration, so when exposed to light, the concentration decreased slightly, and at the same time the generation of CO 2 was confirmed (not shown), indicating that toluene was decomposed.
Table 3 shows the results of the toluene removal test.
Untreated g-C 3 N 4 powder could not remove (decompose) toluene. On the other hand, the g-C 3 N 4 powder of NaOH treatment, g-C 3 N 4 powder of HCl treatment decomposes the toluene was generate CO 2.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本発明の光触媒活性を向上させたグラファイト状窒化炭素の粉末を、何らかの基材に塗布することで、光触媒材料として利用することができ、この材料を用いると、光のエネルギーを利用して、空気を浄化することができる。また、この材料は、アセトアルデヒド、トルエン、NOxの分解に利用でき、類似の化合物の分解にも使える。 The graphite-like carbon nitride powder with improved photocatalytic activity of the present invention can be used as a photocatalytic material by applying it to any substrate, and when this material is used, the energy of light is used to produce air. Can be purified. This material can also be used to decompose acetaldehyde, toluene, and NOx, and can also be used to decompose similar compounds.

Claims (7)

  1.  グラファイト状窒化炭素の粉末を、アルカリ処理又は酸処理して得られた粉末を有効成分とすることを特徴とする光触媒。 A photocatalyst comprising, as an active ingredient, powder obtained by subjecting graphite-like carbon nitride powder to an alkali treatment or an acid treatment.
  2.  前記処理が、アルカリ性水溶液又は酸性水溶液中での加熱処理であることを特徴とする請求項1に記載の光触媒。 The photocatalyst according to claim 1, wherein the treatment is a heat treatment in an alkaline aqueous solution or an acidic aqueous solution.
  3.  比表面積が20m/g以上であることを特徴とする請求項1又は2に記載の光触媒。 The photocatalyst according to claim 1 or 2, wherein the specific surface area is 20 m 2 / g or more.
  4.  可視光応答性を有することを特徴とする請求項1~3のいずれか1項に記載の光触媒。 The photocatalyst according to any one of claims 1 to 3, which has visible light responsiveness.
  5.  グラファイト状窒化炭素の粉末を、アルカリ処理又は酸処理して光触媒活性を向上させることを特徴とする、グラファイト状窒化炭素を主成分とする光触媒の製造方法。 A method for producing a photocatalyst comprising graphite-like carbon nitride as a main component, wherein the graphite-like carbon nitride powder is subjected to alkali treatment or acid treatment to improve photocatalytic activity.
  6.  前記処理が、アルカリ性水溶液又は酸性水溶液中での加熱処理であることを特徴とする請求項5に記載の光触媒の製造方法。 The method for producing a photocatalyst according to claim 5, wherein the treatment is a heat treatment in an alkaline aqueous solution or an acidic aqueous solution.
  7.  請求項1~4のいずれか1項に記載の光触媒を用いて、空気中の汚染物質及び/又は悪臭を分解除去することを特徴とする空気浄化方法。 An air purification method comprising decomposing and removing pollutants and / or odors in the air using the photocatalyst according to any one of claims 1 to 4.
PCT/JP2010/068385 2009-10-20 2010-10-19 Photocatalyst containing carbon nitride, method for producing same, and air purification method using the photocatalyst WO2011049085A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011537262A JP5582545B2 (en) 2009-10-20 2010-10-19 Photocatalyst containing carbon nitride, method for producing the same, and air purification method using the photocatalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-241049 2009-10-20
JP2009241049 2009-10-20

Publications (1)

Publication Number Publication Date
WO2011049085A1 true WO2011049085A1 (en) 2011-04-28

Family

ID=43900308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068385 WO2011049085A1 (en) 2009-10-20 2010-10-19 Photocatalyst containing carbon nitride, method for producing same, and air purification method using the photocatalyst

Country Status (2)

Country Link
JP (1) JP5582545B2 (en)
WO (1) WO2011049085A1 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012200698A (en) * 2011-03-28 2012-10-22 Daicel Corp Photocatalyst and oxidation method for organic compound using the same
CN103623856A (en) * 2013-12-10 2014-03-12 福州大学 Spherical mesoporous carbon nitride photocatalyst with multistage nano structure
CN106111174A (en) * 2016-06-17 2016-11-16 中国矿业大学(北京) G C3N4/ kaolinite composite photo-catalyst and preparation method thereof
JP2017100923A (en) * 2015-12-03 2017-06-08 国立研究開発法人産業技術総合研究所 Metal composite carbon nitride for deodorization and method for producing the same
CN109011868A (en) * 2018-08-08 2018-12-18 中国科学院城市环境研究所 A kind of catalyst system and its application and purification method and purification system
CN110013869A (en) * 2019-02-19 2019-07-16 武汉理工大学 A kind of azotized carbon nano piece load titanium carbide quantum dot and its preparation method and application
CN110560119A (en) * 2019-08-14 2019-12-13 华东理工大学 Preparation and application of potassium-doped inverse opal carbon nitride photocatalyst
CN110665532A (en) * 2019-10-25 2020-01-10 广东石油化工学院 Nitrogen defect g-C3N4Photocatalyst, preparation method and application thereof
CN111111727A (en) * 2019-12-12 2020-05-08 西安建筑科技大学 Ternary magnetic composite visible light catalytic nano material and preparation method and application thereof
CN111203260A (en) * 2020-02-25 2020-05-29 广州中国科学院沈阳自动化研究所分所 Monoatomic palladium-supported carbon nitride catalyst, preparation thereof and application thereof in removing NO
WO2020127559A1 (en) * 2018-12-19 2020-06-25 Heidelbergcement Ag A cementitious composition with photocatalytic activity
CN111659271A (en) * 2020-03-18 2020-09-15 闽南师范大学 Dissolving system and dissolving method for dissolving graphite phase carbon nitride
JP2020152609A (en) * 2019-03-20 2020-09-24 株式会社日本触媒 Method for producing graphitic carbon nitride and novel graphitic carbon nitride
CN111974436A (en) * 2020-09-23 2020-11-24 中国科学技术大学 Graphite-phase carbon nitride and preparation method thereof, and method for producing hydrogen by photocatalytic water
CN112058298A (en) * 2020-09-03 2020-12-11 上海工程技术大学 Preparation method of high-concentration alkali solution modified carbon nitride
CN112142023A (en) * 2020-09-16 2020-12-29 复旦大学 Preparation method of ionized carbon nitride
CN112264077A (en) * 2020-11-16 2021-01-26 东北电力大学 Preparation method of full-spectrum response nonmetal modified carbon nitride photocatalyst
CN113134382A (en) * 2021-04-28 2021-07-20 广西科技师范学院 Preparation method of graphite-phase carbon nitride-cadmium sulfide composite photocatalyst
CN113289659A (en) * 2021-05-25 2021-08-24 西安工程大学 Preparation method and application of sulfonic functional group modified carbon nitride photocatalytic material
CN113289665A (en) * 2021-06-23 2021-08-24 淮北师范大学 Heterojunction photocatalyst and preparation method thereof
CN114700101A (en) * 2022-04-02 2022-07-05 桂林理工大学 Defect-rich g-C with high visible light catalytic activity3N4Preparation method of nano material
CN114907042A (en) * 2022-05-26 2022-08-16 福建工程学院 Photocatalytic steel slag floating concrete and preparation method thereof
CN115069288A (en) * 2022-07-08 2022-09-20 海南师范大学 Na/C-loaded composite material 3 N 4 Preparation method and application of photocatalytic biochar composite material
CN115672371A (en) * 2022-10-27 2023-02-03 南京工程学院 Preparation method of aminated graphite-phase carbon nitride nanosheet and application of aminated graphite-phase carbon nitride nanosheet in carbon dioxide reduction
WO2023128493A1 (en) * 2021-12-30 2023-07-06 울산대학교 산학협력단 Method for producing graphitic carbon nitride by using hard template method for decomposition of organic contaminants

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017004164T5 (en) * 2016-08-22 2019-05-23 Sabic Global Technologies B.V. MESOPOROUS CARBONITRIDE MATERIAL BASED ON TRIAZOL AND UREA

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008200653A (en) * 2007-02-22 2008-09-04 Asahi Kasei Corp New exhaust gas cleaning method
WO2008126799A1 (en) * 2007-04-05 2008-10-23 National Institute For Materials Science Mesoporous carbon nitride material and process for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008200653A (en) * 2007-02-22 2008-09-04 Asahi Kasei Corp New exhaust gas cleaning method
WO2008126799A1 (en) * 2007-04-05 2008-10-23 National Institute For Materials Science Mesoporous carbon nitride material and process for producing the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
X.CHEN ET AL.: "Ordered Mesoporous SBA-15 Type Graphitic Carbon Nitride: A Semiconductor Host Structure for Photocatalytic Hydrogen Evolution with Visible Light", CHEMISTRY OF MATERIALS, vol. 21, no. 18, 22 September 2009 (2009-09-22), pages 4093 - 4095 *
X.WANG ET AL.: "A metal-free polymeric photocatalyst for hydrogen production from water under visible light", NATURE MATERIALS, vol. 8, no. 1, January 2009 (2009-01-01), pages 76 - 80, XP055263770, DOI: doi:10.1038/nmat2317 *
X.WANG ET AL.: "Polymer Semiconductors for Artificial Photosynthesis: Hydrogen Evolution by Mesoporous Graphitic Carbon Nitride with Visible Light", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 131, no. 5, 11 February 2009 (2009-02-11), pages 1680 - 1681 *

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012200698A (en) * 2011-03-28 2012-10-22 Daicel Corp Photocatalyst and oxidation method for organic compound using the same
CN103623856A (en) * 2013-12-10 2014-03-12 福州大学 Spherical mesoporous carbon nitride photocatalyst with multistage nano structure
JP2017100923A (en) * 2015-12-03 2017-06-08 国立研究開発法人産業技術総合研究所 Metal composite carbon nitride for deodorization and method for producing the same
CN106111174A (en) * 2016-06-17 2016-11-16 中国矿业大学(北京) G C3N4/ kaolinite composite photo-catalyst and preparation method thereof
CN109011868A (en) * 2018-08-08 2018-12-18 中国科学院城市环境研究所 A kind of catalyst system and its application and purification method and purification system
WO2020127559A1 (en) * 2018-12-19 2020-06-25 Heidelbergcement Ag A cementitious composition with photocatalytic activity
CN110013869A (en) * 2019-02-19 2019-07-16 武汉理工大学 A kind of azotized carbon nano piece load titanium carbide quantum dot and its preparation method and application
CN110013869B (en) * 2019-02-19 2022-03-11 武汉理工大学 Carbon nitride nanosheet loaded titanium carbide quantum dot and preparation method and application thereof
JP2020152609A (en) * 2019-03-20 2020-09-24 株式会社日本触媒 Method for producing graphitic carbon nitride and novel graphitic carbon nitride
JP7267793B2 (en) 2019-03-20 2023-05-02 株式会社日本触媒 Method for producing graphitic carbon nitride and novel graphitic carbon nitride
CN110560119A (en) * 2019-08-14 2019-12-13 华东理工大学 Preparation and application of potassium-doped inverse opal carbon nitride photocatalyst
CN110665532A (en) * 2019-10-25 2020-01-10 广东石油化工学院 Nitrogen defect g-C3N4Photocatalyst, preparation method and application thereof
CN111111727A (en) * 2019-12-12 2020-05-08 西安建筑科技大学 Ternary magnetic composite visible light catalytic nano material and preparation method and application thereof
CN111203260A (en) * 2020-02-25 2020-05-29 广州中国科学院沈阳自动化研究所分所 Monoatomic palladium-supported carbon nitride catalyst, preparation thereof and application thereof in removing NO
CN111203260B (en) * 2020-02-25 2022-10-25 广州中国科学院沈阳自动化研究所分所 Monoatomic palladium-supported carbon nitride catalyst, preparation thereof and application thereof in removing NO
CN111659271B (en) * 2020-03-18 2022-06-14 闽南师范大学 Dissolving system and dissolving method for dissolving graphite phase carbon nitride
CN111659271A (en) * 2020-03-18 2020-09-15 闽南师范大学 Dissolving system and dissolving method for dissolving graphite phase carbon nitride
CN112058298A (en) * 2020-09-03 2020-12-11 上海工程技术大学 Preparation method of high-concentration alkali solution modified carbon nitride
CN112142023A (en) * 2020-09-16 2020-12-29 复旦大学 Preparation method of ionized carbon nitride
CN112142023B (en) * 2020-09-16 2022-12-20 复旦大学 Preparation method of ionized carbon nitride
CN111974436B (en) * 2020-09-23 2021-07-06 中国科学技术大学 Graphite-phase carbon nitride and preparation method thereof, and method for producing hydrogen by photocatalytic water
CN111974436A (en) * 2020-09-23 2020-11-24 中国科学技术大学 Graphite-phase carbon nitride and preparation method thereof, and method for producing hydrogen by photocatalytic water
CN112264077A (en) * 2020-11-16 2021-01-26 东北电力大学 Preparation method of full-spectrum response nonmetal modified carbon nitride photocatalyst
CN113134382A (en) * 2021-04-28 2021-07-20 广西科技师范学院 Preparation method of graphite-phase carbon nitride-cadmium sulfide composite photocatalyst
CN113289659A (en) * 2021-05-25 2021-08-24 西安工程大学 Preparation method and application of sulfonic functional group modified carbon nitride photocatalytic material
CN113289659B (en) * 2021-05-25 2023-09-01 西安工程大学 Preparation method and application of sulfonic functional group modified carbon nitride photocatalytic material
CN113289665A (en) * 2021-06-23 2021-08-24 淮北师范大学 Heterojunction photocatalyst and preparation method thereof
WO2023128493A1 (en) * 2021-12-30 2023-07-06 울산대학교 산학협력단 Method for producing graphitic carbon nitride by using hard template method for decomposition of organic contaminants
CN114700101A (en) * 2022-04-02 2022-07-05 桂林理工大学 Defect-rich g-C with high visible light catalytic activity3N4Preparation method of nano material
CN114700101B (en) * 2022-04-02 2023-10-13 桂林理工大学 Defect-rich g-C with high visible light catalytic activity 3 N 4 Method for preparing nano material
CN114907042A (en) * 2022-05-26 2022-08-16 福建工程学院 Photocatalytic steel slag floating concrete and preparation method thereof
CN115069288A (en) * 2022-07-08 2022-09-20 海南师范大学 Na/C-loaded composite material 3 N 4 Preparation method and application of photocatalytic biochar composite material
CN115672371A (en) * 2022-10-27 2023-02-03 南京工程学院 Preparation method of aminated graphite-phase carbon nitride nanosheet and application of aminated graphite-phase carbon nitride nanosheet in carbon dioxide reduction
CN115672371B (en) * 2022-10-27 2024-03-29 南京工程学院 Preparation method of aminated graphite phase carbon nitride nanosheets and application of aminated graphite phase carbon nitride nanosheets in reduction of carbon dioxide

Also Published As

Publication number Publication date
JPWO2011049085A1 (en) 2013-03-14
JP5582545B2 (en) 2014-09-03

Similar Documents

Publication Publication Date Title
JP5582545B2 (en) Photocatalyst containing carbon nitride, method for producing the same, and air purification method using the photocatalyst
Irandost et al. Fabrication of highly visible active N, S co-doped TiO2@ MoS2 heterojunction with synergistic effect for photocatalytic degradation of diclofenac: mechanisms, modeling and degradation pathway
JP5582527B2 (en) Method for producing graphitic carbon nitride
JP6521317B2 (en) Metal complexed carbon nitride for deodorization and manufacturing method thereof
Sano et al. Activation of graphitic carbon nitride (gC 3 N 4) by alkaline hydrothermal treatment for photocatalytic NO oxidation in gas phase
Huang et al. Effect of carbon doping on the mesoporous structure of nanocrystalline titanium dioxide and its solar-light-driven photocatalytic degradation of NO x
Tryba et al. A new route for preparation of TiO2-mounted activated carbon
Moon et al. Preparation and characterization of the Sb-doped TiO2 photocatalysts
CN101678345B (en) Titanium oxide photocatalyst and method for producing the same
Li et al. Low-temperature preparation and characterization of nanocrystalline anatase TiO2
JP4878141B2 (en) Composite photocatalyst
Min et al. Lanthanum and boron co-doped BiVO4 with enhanced visible light photocatalytic activity for degradation of methyl orange
KR101318743B1 (en) Tungsten oxide photocatalyst and method for producing the same
JP2007216223A (en) Photocatalytic material having semiconductor properties, and its manufacturing method and use
Zhang et al. Floating photocatalysts based on loading Bi/N-doped TiO 2 on expanded graphite C/C (EGC) composites for the visible light degradation of diesel
Mironyuk et al. Ways to improve the efficiency of ТіО2-based photocatalysts
CN110665531A (en) Pt/g-C3N4/CeO2Composite photocatalyst and preparation method and application thereof
JP2009131760A (en) Photocatalytic body, its producing method and its use
RU2627496C1 (en) Method for producing photocatalizer based on a mechanoactivated powder of zinc oxide
JP4150712B2 (en) Visible light-activated photocatalyst and process for producing the same
KR101817855B1 (en) Photocatalyst for water treatment containing graphene oxide supported with Ag doped zinc oxide, preparation method thereof and using thereof
Amalraj et al. Photocatalytic degradation of quinalphos and profenofos pesticides using UV irradiated TiO2 nanoparticles—a kinetic study
JP5298282B2 (en) Method for producing titanium oxide particles
Štengl et al. Impact of Ge4+ ion as structural dopant of Ti4+ in anatase: crystallographic translation, photocatalytic behavior, and efficiency under UV and VIS irradiation
Górska et al. Photocatalytic activity and surface properties of carbon-doped titanium dioxide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10824934

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011537262

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 10824934

Country of ref document: EP

Kind code of ref document: A1