WO2011040637A1 - 無励磁作動型電磁ブレーキ制御装置及び方法 - Google Patents

無励磁作動型電磁ブレーキ制御装置及び方法 Download PDF

Info

Publication number
WO2011040637A1
WO2011040637A1 PCT/JP2010/067493 JP2010067493W WO2011040637A1 WO 2011040637 A1 WO2011040637 A1 WO 2011040637A1 JP 2010067493 W JP2010067493 W JP 2010067493W WO 2011040637 A1 WO2011040637 A1 WO 2011040637A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage wave
electromagnetic brake
type electromagnetic
triangular voltage
comparison
Prior art date
Application number
PCT/JP2010/067493
Other languages
English (en)
French (fr)
Inventor
正晴 丸野
大輔 松尾
一穂 古川
Original Assignee
三菱電機Fa産業機器株式会社
株式会社キトー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機Fa産業機器株式会社, 株式会社キトー filed Critical 三菱電機Fa産業機器株式会社
Priority to KR1020127007223A priority Critical patent/KR101320714B1/ko
Priority to CN201080043711.7A priority patent/CN102549294B/zh
Priority to EP10820747.3A priority patent/EP2484931B1/en
Priority to US13/498,105 priority patent/US8786997B2/en
Publication of WO2011040637A1 publication Critical patent/WO2011040637A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/14Actuating mechanisms for brakes; Means for initiating operation at a predetermined position
    • F16D65/16Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake
    • F16D65/18Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake adapted for drawing members together, e.g. for disc brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D5/00Braking or detent devices characterised by application to lifting or hoisting gear, e.g. for controlling the lowering of loads
    • B66D5/02Crane, lift hoist, or winch brakes operating on drums, barrels, or ropes
    • B66D5/24Operating devices
    • B66D5/30Operating devices electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D3/00Portable or mobile lifting or hauling appliances
    • B66D3/18Power-operated hoists
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P15/00Arrangements for controlling dynamo-electric brakes or clutches

Definitions

  • the present invention relates to a non-excitation operation type electromagnetic brake control device and method for controlling a non-excitation operation type electromagnetic brake used in a hoisting machine having an induction motor to a fastening state, an open state, or a holding state.
  • Non-excitation operation type electromagnetic brake control device that controls a non-excitation operation type electromagnetic brake to a fastening state, an open state, or a holding state has been proposed (for example, Patent Document 1).
  • non-excited operation type electromagnetic brake control the movable iron core is pushed by the spring force in the non-excited state where the brake is engaged, and is generated between the movable iron core and the brake disc and between the brake disc and the non-movable iron core.
  • the brake torque is generated by the frictional force.
  • the movable iron core is attracted toward the fixed iron core by the magnetic attraction force, the brake disk is brought into a free state, and the brake torque is eliminated.
  • the electric power for making the holding state after releasing the brake may be less than the electric power required when releasing the brake.
  • FIG. 6 is a circuit diagram of a conventional non-excitation operation type electromagnetic brake control device.
  • a non-excitation operation type electromagnetic brake control device 1 shown in FIG. 6 includes an AC power source 2, a brake coil 3, a triangular voltage wave generation unit 4, a comparison voltage wave generation unit 5, a comparison unit 6, and switches 7 and 8. And a control power supply unit 9 and diodes 10 and 11.
  • the brake coil 3 When the switch 8 is turned on in response to an instruction from the outside, the brake coil 3 generates a magnetic attractive force by being supplied with a current I from the AC power supply 2, and a non-excited operation type electromagnetic brake (not shown) is engaged from the engaged state. Leave it open. At this time, the current I flows from the brake coil 3 to the anode side of the diode 11. Further, the timer (38) starts measuring at the same time when the switch 8 is turned on. The timer (38) measures that a predetermined time has elapsed since the switch 8 was turned on. When a certain time has elapsed, the non-excitation actuating electromagnetic brake (not shown) is changed from the open state to the holding state.
  • the triangular voltage wave generation circuit 4 generates a triangular voltage wave formed by alternately arranging valleys and peaks having the same angle.
  • the triangular voltage wave generation circuit 4 is connected to the comparator 21, the CR unit 22 connected to the non-inverting input part of the comparator 21, and the input part of the triangular voltage wave generation circuit 4 as shown in FIG.
  • a resistor 24 having one end connected to the output part of the triangular voltage wave generation circuit 4 and the non-inverting input part of the comparator 21 and the other end connected to the output side of the comparator 21 and the resistor part 23;
  • the CR unit 22 has one end connected to the non-inverting input side of the comparator 21, the other end grounded, a capacitor 25 connected in parallel to the resistor 25, and one end connected to the inverting input side of the comparator 21. And a capacitor 27 having the other end connected to the other end of the resistor 25.
  • the resistor unit 23 has one end connected to the input unit of the triangular voltage wave generation circuit 4 and the other end connected to the non-inverting input side of the comparator 21, and one end connected to the input unit of the triangular voltage wave generation circuit 4.
  • the resistor 29 is connected, the other end is connected to the output side of the comparator 21, and one end is connected to the other end of the resistor 28, and the other end is connected to the other end of the resistor 29.
  • the output of the comparator 21 is high because the potential on the non-inverting input side of the comparator 21 is higher than the potential on the inverting input side.
  • the output of the comparator 21 becomes low.
  • the charging / discharging time of the capacitor 27 is determined by the CR value of the CR unit 22 and the resistance value of the resistor unit 23.
  • the comparison voltage wave generation unit 5 generates a comparison voltage wave based on the current I.
  • the comparison voltage wave generator 5 includes a shunt resistor 31 that detects the current I and converts the detected current I into a voltage to generate a comparison voltage wave.
  • the comparison unit 6 compares the triangular voltage wave value with the comparative voltage wave value when the non-excitation operation type electromagnetic brake (not shown) is in the holding state.
  • the comparison unit 6 includes a comparator 32 and a switching unit 33 composed of an npn-type transistor and a pnp-type transistor whose gates are connected to the output side of the comparator 32.
  • the switch 7 as a switching unit supplies the current I to the brake coil 3 when the triangular voltage wave value is larger than the comparative voltage wave value, and the brake coil 3 when the triangular voltage wave value is equal to or smaller than the comparative voltage wave value. Is switched so as to interrupt the supply of the current I to the motor, and the average current flowing through the brake coil 3 is reduced when the non-excitation operation type electromagnetic brake (not shown) is in the holding state.
  • the switch 7 is configured by a semiconductor element such as an IGBT (Insulated Gate Bipolar transistor), a Darlington transistor, a thyristor, or a TRIAC (registered trademark).
  • the control power supply unit 9 supplies power for starting the comparator 32, turning on / off the switch 7, and the like.
  • the control unit 9 includes a control power supply 34, a rectification unit 35 including four diodes, a resistor 36 connected between one end of the control power supply 34 and one end of the rectification unit 35, and a rectification unit 35. And a transformer 37 connected to the.
  • FIG. 8 is a graph showing the time change of the current flowing in the brake coil of the non-excitation operation type electromagnetic brake control device of FIG.
  • the current I1 from the AC power supply 2 is continuously supplied to the brake coil 3 during the time t1 when the non-excitation operation type electromagnetic brake (not shown) is in the open state.
  • the continuation and interruption of the current supply to the brake coil 3 by the switch 7 is a triangular voltage, as will be described later. It is switched every wave carrier period. Therefore, the average current I2 flowing through the brake coil during time t2 is smaller than the current I1 flowing through the brake coil during time t1.
  • FIG. 9 is a graph showing temporal changes of the triangular voltage wave and the comparative voltage wave generated in the non-excitation operation type electromagnetic brake control device of FIG. While the non-excitation actuating electromagnetic brake (not shown) is in the open state, the control power supply 9 controls the control voltage to charge the capacitors 26 and 27 of the triangular voltage wave generator 4 and raise the comparison voltage wave. Generate. On the other hand, when the non-excitation operation type electromagnetic brake (not shown) is in the holding state, the control voltage by the control power supply unit 9 is lowered to lower the comparison voltage wave, and the comparison voltage wave and the triangular voltage wave from the comparison unit 6 are reduced. Make a comparison.
  • the transistor 7 is turned on during the time ONduty when the triangular voltage wave is higher than the comparative voltage wave in one carrier period T of the triangular voltage wave, and the transistor 7 is turned off during the time OFFduty when the triangular voltage wave is equal to or lower than the comparative voltage wave. become.
  • the switch 7 when the triangular voltage wave value is larger than the comparative voltage wave value, the switch 7 is turned on to supply the current I to the brake coil 3, and the triangular voltage wave value is The average current flowing through the brake coil 3 can be reduced by turning off the switch 7 and interrupting the supply of the current I to the brake coil 3 when the voltage is equal to or lower than the comparison voltage wave value.
  • the carrier frequency of the triangular voltage wave generated by the non-excitation operation type electromagnetic brake control device shown in FIG. 6 is low (for example, 3 kHz or less), there is a disadvantage that vibration noise occurs. Therefore, it is necessary to set the carrier frequency of the triangular voltage wave to a predetermined value or higher (for example, 4 kHz or higher).
  • An object of the present invention is to provide a non-excitation actuated electromagnetic brake control apparatus and method capable of further reducing the average current flowing in the brake coil without vibration noise and frequent switching in the holding state of the non-excitation actuated electromagnetic brake. Is to provide.
  • a non-excitation operation type electromagnetic brake control device is a non-excitation operation type electromagnetic brake control device that controls a non-excitation operation type electromagnetic brake to a fastening state, an open state, or a holding state, and generates a magnetic attraction force. It is formed by alternately arranging a brake coil that makes the non-excitation actuating electromagnetic brake from the engaged state to the open state, a trough having a first angle, and a crest having a second angle smaller than the first angle.
  • a sharpened triangular voltage wave generator that generates a stepped sharpened triangular voltage wave
  • a comparative voltage wave generator that generates a comparative voltage wave based on the current flowing through the brake coil
  • a non-excited operation type electromagnetic brake A comparison unit for comparing the sharpened triangular voltage wave value with the comparative voltage wave value, and when the comparison unit determines that the sharp triangular voltage wave value is greater than the comparative voltage wave value,
  • a switching unit that switches the current supply to the brake coil when the comparison unit determines that the sharp triangular voltage wave value is equal to or less than the comparison voltage wave value.
  • a non-excitation operation type electromagnetic brake control method is a non-excitation operation type electromagnetic brake control method for controlling a non-excitation operation type electromagnetic brake to a fastening state, an open state, or a holding state, wherein a magnetic attraction force is applied to a brake coil. And generating a non-excitation actuating electromagnetic brake from the engaged state to the released state, and alternately forming a valley having a first angle and a peak having a second angle smaller than the first angle. Generating a stepped sharpened triangular voltage wave, generating a comparative voltage wave based on the current flowing through the brake coil, and a sharpened triangular voltage when the non-excitation actuated electromagnetic brake is in a holding state.
  • the average current flowing through the brake coil can be further reduced without vibration noise and frequent switching in the holding state of the non-excitation operation type electromagnetic brake.
  • FIG. 1 is a schematic view of a hoisting machine in which a non-excitation operation type electromagnetic brake control device according to the present invention is used.
  • FIG. 2 is a circuit diagram of a non-excitation operation type electromagnetic brake control device according to the present invention.
  • FIG. 3 is a circuit diagram of a sharpened triangular voltage wave generator used in the non-excitation operation type electromagnetic brake control device of FIG.
  • FIG. 4 is a graph showing the time change of the current flowing through the brake coil of the non-excitation operation type electromagnetic brake control device of FIG.
  • FIG. 5 is a graph showing temporal changes of the triangular voltage wave and the comparative voltage wave generated in the non-excitation operation type electromagnetic brake control device of FIG.
  • FIG. 1 is a schematic view of a hoisting machine in which a non-excitation operation type electromagnetic brake control device according to the present invention is used.
  • FIG. 2 is a circuit diagram of a non-excitation operation type electromagnetic brake control device according to the present invention.
  • FIG. 3
  • FIG. 6 is a circuit diagram of a conventional non-excitation operation type electromagnetic brake control device.
  • FIG. 7 is a circuit diagram of a sharpened triangular voltage wave generator used in the non-excitation operation type electromagnetic brake control device of FIG.
  • FIG. 8 is a graph showing the time change of the current flowing through the brake coil of the non-excitation operation type electromagnetic brake control device of FIG.
  • FIG. 9 is a graph showing temporal changes of the triangular voltage wave and the comparative voltage wave generated in the non-excitation operation type electromagnetic brake control device of FIG.
  • FIG. 1 is a schematic view of a hoisting machine in which a non-excitation operation type electromagnetic brake control device according to the present invention is used.
  • a hoisting machine 100 is attached to a traversing device 101 that can move in the direction of arrow a or b, and is supplied with power from a power source 102 such as a three-phase power source.
  • the hoisting machine 100 includes an induction motor 103 that performs winding in the direction of arrow c or lowering (rotation) in the direction of arrow d, a non-excitation actuating electromagnetic brake 104 that brakes the induction motor 103, and torque generated by the induction motor 103.
  • the hoisting machine 100 is provided with a non-excitation operation type electromagnetic brake control device 110 that controls the non-excitation operation type electromagnetic brake to a fastening state, an open state, or a holding state in accordance with an operation of the operation unit 109.
  • FIG. 2 is a circuit diagram of a non-excitation operation type electromagnetic brake control device according to the present invention.
  • the non-excitation operation type electromagnetic brake control device 110 shown in FIG. 2 includes an AC power supply 2, a brake coil 3, a sharpened triangular voltage wave generation unit 111, a comparison voltage wave generation unit 5, a comparison unit 6, and a switch 7. , 8, a control power supply unit 9, and diodes 10, 11.
  • the sharpened triangular voltage wave generation circuit 111 is a stepped sharpened triangular voltage wave formed by alternately arranging valleys having a first angle and peaks having a second angle smaller than the first angle. Is generated.
  • the sharpened triangular voltage wave generation circuit 111 includes comparators 121a and 121b, CR units 122a and 122b connected to the non-inverting inputs of the comparators 121a and 121b, and a sharpened triangle.
  • Resistors 123a and 123b connected to the input part of the voltage wave generation circuit 111, one end connected to the output part of the sharpened triangular voltage wave generation circuit 111 and the non-inverting input part of the comparators 121a and 121b, and the other end to the comparator 121a and 121b, and resistors 124a and 124b connected to the resistor portions 123a and 123b.
  • the CR section 122a has one end connected to the non-inverting input side of the comparator 121a, the other end grounded, the resistor 125a, the capacitor 126a connected in parallel to the resistor 125a, and one end connected to the inverting input side of the comparator 121a. And a capacitor 127a having the other end connected to the other end of the resistor 125a.
  • the resistor 123a has one end connected to the input of the sharpened triangular voltage wave generation circuit 111, the other end connected to the non-inverting input side of the comparator 121a, and one end sharpened triangular voltage wave generation circuit 111.
  • a resistor 129a having the other end connected to the output side of the comparator 121a, one end connected to the other end of the resistor 128a, and the other end connected to the other end of the resistor 129a, Have
  • the CR unit 122b has one end connected to the non-inverting input side of the comparator 121b, the other end connected to the resistor 125b, the capacitor 126b connected in parallel to the resistor 125b, and one end connected to the inverting input side of the comparator 121b. And a capacitor 127b having the other end connected to the other end of the resistor 125b.
  • the resistor 123b has one end connected to the input of the sharpened triangular voltage wave generation circuit 111, the other end connected to the non-inverting input side of the comparator 121b, and one end sharpened triangular voltage wave generation circuit 111.
  • a resistor 129b whose other end is connected to the output side of the comparator 121b, one end connected to the other end of the resistor 128b, and the other end connected to the other end of the resistor 129b, Have
  • the output of the comparator 121a becomes high because the potential on the non-inverting input side of the comparator 121a is higher than the potential on the inverting input side.
  • the output of the comparator 121a becomes low.
  • the charging / discharging time of the capacitor 127a is determined by the resistance values of the CR portion 122a and the resistance portion 123a.
  • the capacitor 127b when the capacitor 127b is not charged, since the potential on the non-inverting input side of the comparator 121b is higher than the potential on the inverting input side, the output of the comparator 121b becomes high. On the other hand, when the capacitor 127b is charged and the potential on the inverting input side of the comparator 121b exceeds the potential on the non-inverting input side, the output of the comparator 121b becomes low.
  • the charging / discharging time of the capacitor 127b is determined by the resistance values of the CR portion 122b and the resistance portion 123b.
  • the resistance value of the resistance part 123a is lower than the resistance value of the resistance part 123b
  • the CR value of the CR part 122a is lower than the CR value of the CR part 122b.
  • the crest portion is generated from a circuit unit including the comparator 121b, the CR unit 122b, the resistor unit 123b, and the resistor 124b, and is output from the sharpened triangular voltage wave generation circuit 111.
  • the peak portion of the triangular voltage wave generated from the circuit unit configured by the comparator 121b, the CR unit 122b, the resistor unit 123b, and the resistor 124b includes the comparator 121a, the CR unit 122a, the resistor unit 123a, and the resistor 124a.
  • an angle smaller than the valley portion of the triangular voltage wave generated from the circuit portion is generated from a circuit unit including the comparator 121b, the CR unit 122b, the resistor unit 123b, and the resistor 124b.
  • FIG. 4 is a graph showing the time change of the current flowing through the brake coil of the non-excitation operation type electromagnetic brake control device of FIG.
  • the current from the AC power source 2 is supplied to the brake coil 3 as in the case of the non-excitation actuating electromagnetic brake control device of FIG. I1 is continuously supplied.
  • the average current I3 flowing through the brake coil during the time t2 when the non-excitation operation type electromagnetic brake (not shown) is in the holding state is smaller than the average current I2, as will be described later.
  • FIG. 5 is a graph showing temporal changes of the triangular voltage wave and the comparative voltage wave generated in the non-excitation operation type electromagnetic brake control device of FIG. While the non-excitation actuating electromagnetic brake (not shown) is in the open state, the control power supply 9 controls the control voltage to charge the capacitors 26 and 27 of the triangular voltage wave generator 4 and raise the comparison voltage wave. Generate. On the other hand, when the non-excitation operation type electromagnetic brake (not shown) is in the holding state, the control voltage by the control power supply unit 9 is lowered to lower the comparison voltage wave, the comparison voltage wave by the comparison unit 6 and the sharpened triangular voltage wave Make a comparison.
  • the transistor 7 is turned on during the time ONduty when the triangular voltage wave is higher than the comparative voltage wave in one carrier period T of the triangular voltage wave, and the transistor 7 is turned off during the time OFFduty when the triangular voltage wave is equal to or lower than the comparative voltage wave. become.
  • the time Tb in which the sharpened triangular voltage wave generated by the sharpened triangular voltage wave generation unit 111 is higher than the comparative voltage wave the triangular voltage wave generated by the triangular voltage wave generation unit 4 is higher than the comparative voltage wave. Since the time Ta becomes shorter than the time Ta, the ratio of the time ON duty to the time OFF duty in one carrier cycle T in the non-excitation operation type electromagnetic brake control device of FIG. 2 is compared with that of the non-excitation operation type electromagnetic brake control device of FIG. Get smaller.
  • the carrier frequency is changed by changing the ratio of the time ON duty to the time OFF duty in one carrier cycle T. Therefore, the average current flowing through the brake coil 3 can be further reduced without causing vibration noise and frequent switching. That is, the average current I3 is smaller than the average current I2. Thus, frequent switching does not occur. Therefore, it is possible to suppress the loss of the switch 7 (semiconductor element) due to frequent switching and to reduce or omit a cooling device such as a fin for preventing heat generation due to frequent switching. it can.
  • the present invention is not limited to the above-described embodiment, and many changes and modifications are possible.
  • the non-excitation operation type electromagnetic brake control device according to the present invention is also applied to other devices in which the non-excitation operation type electromagnetic brake is used. Can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Braking Arrangements (AREA)
  • Elevator Control (AREA)

Abstract

 無励磁作動型電磁ブレーキの保持状態においてブレーキコイルに流れる平均電流を小さくするときに振動騒音及び頻繁なスイッチングが生じることがない無励磁作動型電磁ブレーキ制御装置及び方法を提供する。先鋭化三角電圧波生成部は、第1の角度を有する谷部及び第1の角度より小さい第2の角度を有する山部を交互に配置して形成された段付の先鋭化三角電圧波を生成する。比較電圧波生成部は、ブレーキコイルに流れる電流に基づいて比較電圧波を生成する。比較部は、無励磁作動型電磁ブレーキが保持状態であるときに先鋭化三角電圧波と比較電圧波とを比較する。スイッチは、先鋭三角電圧波が比較電圧波より大きいときにブレーキコイルへの電流の供給を行い、それ以外のときにブレーキコイルへの電流の供給を中断するよう切替を行う。

Description

無励磁作動型電磁ブレーキ制御装置及び方法
 本発明は、誘導電動機を有する巻上機等で用いられる無励磁作動型電磁ブレーキを締結状態、開放状態又は保持状態に制御する無励磁作動型電磁ブレーキ制御装置及び方法に関する。
 従来、無励磁作動型電磁ブレーキを締結状態、開放状態又は保持状態に制御する無励磁作動型電磁ブレーキ制御装置が提案されている(例えば、特許文献1)。無励磁作動型電磁ブレーキの制御では、ブレーキを締結状態にする非励磁状態において、ばね力により可動鉄心が押され、可動鉄心とブレーキディスクとの間及びブレーキディスクと反可動鉄心との間に発生する摩擦力によってブレーキトルクを発生している。また、ブレーキを開放状態にする励磁状態では、可動鉄心が磁気吸引力によって固定鉄心の方に吸引されてブレーキディスクがフリー状態になり、ブレーキトルクがなくなる。ブレーキを開放状態にするために可動鉄心を固定鉄心の方に吸引するときには大きな電力を必要とするが、可動鉄心を固定鉄心に吸引した後に可動鉄心を吸引した状態に保持するための電力、すなわち、ブレーキを開放状態にした後に保持状態にするための電力は、ブレーキを開放するときに必要とする電力より少なくてもよい。
 図6は、従来の無励磁作動型電磁ブレーキ制御装置の回路図である。図6に示す無励磁作動型電磁ブレーキ制御装置1は、交流電源2と、ブレーキコイル3と、三角電圧波生成部4と、比較電圧波生成部5と、比較部6と、スイッチ7,8と、制御電源部9と、ダイオード10,11と、を有する。
 ブレーキコイル3は、外部からの指示によってスイッチ8がオンになると交流電源2から電流Iが供給されることによって磁気吸引力を生成し、無励磁作動型電磁ブレーキ(図示せず)を締結状態から開放状態にする。この際、電流Iは、ブレーキコイル3からダイオード11のアノード側に流れる。また、スイッチ8がオンになるのと同時にタイマ(38)が計測を開始する。スイッチ8がオンになってから所定の時間経過したことがタイマ(38)によって計測され、一定時間経過すると、無励磁作動型電磁ブレーキ(図示せず)を開放状態から保持状態にする。
 三角電圧波生成回路4は、同一角度を有する谷部及び山部を交互に配置して形成された三角電圧波を生成する。このために、三角電圧波生成回路4は、図7に示すように、コンパレータ21と、コンパレータ21の非反転入力部に接続されたCR部22と、三角電圧波生成回路4の入力部に接続された抵抗部23と、一端が三角電圧波生成回路4の出力部及びコンパレータ21の非反転入力部に接続され、他端がコンパレータ21の出力側及び抵抗部23に接続された抵抗24と、を有する。
 CR部22は、一端がコンパレータ21の非反転入力側に接続され、他端が接地された抵抗25と、抵抗25に並列に接続されたコンデンサ26と、一端がコンパレータ21の反転入力側に接続され、他端が抵抗25の他端に接続されたコンデンサ27と、を有する。抵抗部23は、一端が三角電圧波生成回路4の入力部に接続され、他端がコンパレータ21の非反転入力側に接続された抵抗28と、一端が三角電圧波生成回路4の入力部に接続され、他端がコンパレータ21の出力側に接続された抵抗29と、一端が抵抗28の他端に接続され、他端が抵抗29の他端に接続された抵抗30と、を有する。
 コンデンサ27に電荷が充電されていないときには、コンパレータ21の非反転入力側の電位が反転入力側の電位より高いので、コンパレータ21の出力はハイとなる。一方、コンデンサ27に電荷が充電され、コンパレータ21の反転入力側の電位が非反転入力側の電位を超えると、コンパレータ21の出力はローとなる。コンデンサ27の充放電の時間は、CR部22のCR値及び抵抗部23の抵抗値によって決定される。
 比較電圧波生成部5は、電流Iに基づいて比較電圧波を生成する。このために、比較電圧波生成部5は、電流Iを検出し、検出した電流Iを電圧に変換して比較電圧波を生成するシャント抵抗31を有する。
 比較部6は、無励磁作動型電磁ブレーキ(図示せず)が保持状態であるときに三角電圧波値と比較電圧波値とを比較する。このために、比較部6は、コンパレータ32と、コンパレータ32の出力側にゲートが接続されたnpn型トランジスタ及びpnp型トランジスタからなるスイッチング部33と、を有する。
 切替部としてのスイッチ7は、三角電圧波値が比較電圧波値より大きいときにブレーキコイル3への電流Iの供給を行い、三角電圧波値が比較電圧波値以下であるときにブレーキコイル3への電流Iの供給を中断するよう切替を行い、無励磁作動型電磁ブレーキ(図示せず)が保持状態であるときにブレーキコイル3に流れる平均電流を小さくする。このために、スイッチ7は、IGBT(Insulated Gate Bipolar transistor)、ダーリントントランジスタ、サイリスタ、トライアック(登録商標)等の半導体素子によって構成される。
 制御電源部9は、コンパレータ32の起動、スイッチ7のオンオフ等のための電力を供給する。このために、制御部9は、制御電源34と、4個のダイオードからなる整流部35と、制御電源34の一端と整流部35の一端との間に接続された抵抗36と、整流部35に接続されたトランス37と、を有する。
 図8は、図6の無励磁作動型電磁ブレーキ制御装置のブレーキコイルに流れる電流の時間変化を示すグラフである。無励磁作動型電磁ブレーキ(図示せず)が開放状態である時間t1の間には、ブレーキコイル3には交流電源2からの電流I1が継続的に供給される。それに対し、無励磁作動型電磁ブレーキ(図示せず)が保持状態である時間t2の間には、後に説明するように、スイッチ7によりブレーキコイル3への電流の供給の継続及び中断が三角電圧波のキャリア周期ごとに切り替えられる。したがって、時間t1の間にブレーキコイルに流れる電流I1に比べて、時間t2の間にブレーキコイルに流れる平均電流I2は小さくなる。
 図9は、図6の無励磁作動型電磁ブレーキ制御装置で発生する三角電圧波及び比較電圧波の時間変化を示すグラフである。無励磁作動型電磁ブレーキ(図示せず)が開放状態である間には、三角電圧波生成部4のコンデンサ26,27を充電するとともに比較電圧波を上げるために制御電源部9により制御電圧を生成する。一方、無励磁作動型電磁ブレーキ(図示せず)が保持状態になると、制御電源部9による制御電圧を低下することによって比較電圧波を下げ、比較部6による比較電圧波と三角電圧波との比較を行う。三角電圧波の1キャリア周期Tのうち、三角電圧波が比較電圧波より高い時間ONdutyの間にトランジスタ7はオンになり、三角電圧波が比較電圧波以下の時間OFFdutyの間にトランジスタ7はオフになる。
 このように無励磁作動型電磁ブレーキの保持状態において、三角電圧波値が比較電圧波値より大きいときにスイッチ7をオンにしてブレーキコイル3への電流Iの供給を行い、三角電圧波値が比較電圧波値以下であるときにスイッチ7をオフにしてブレーキコイル3への電流Iの供給を中断することによって、ブレーキコイル3に流れる平均電流を小さくすることができる。
特開2009−14196号公報
 図6に示す無励磁作動型電磁ブレーキ制御装置で生成される三角電圧波のキャリア周波数が低い(例えば、3kHz以下)場合、振動騒音が生じるという不都合がある。したがって、三角電圧波のキャリア周波数を所定の値以上(例えば、4kHz以上)にする必要がある。
 キャリア周波数を高くし、三角電圧波の比較電圧波より高い時間を短くするために高精度な比較電圧波を形成し、三角電圧波の1キャリア周期Tのうちの時間OFFdutyに対する時間ONdutyの割合を小さくし、トランジスタ7がオンする時間が短くなり、ブレーキコイル3に流れる平均電流を更に小さくすることができる。しかしながら、三角電圧波のキャリア周波数が高くなるに従って、トランジスタ7のスイッチングが頻繁に生じるようになり、トランジスタ7を構成する半導体素子の損失が生じやすくなる。
 本発明の目的は、無励磁作動型電磁ブレーキの保持状態において、振動騒音及び頻繁なスイッチングが生じることなくブレーキコイルに流れる平均電流を更に小さくすることができる無励磁作動型電磁ブレーキ制御装置及び方法を提供することである。
 本発明による無励磁作動型電磁ブレーキ制御装置は、無励磁作動型電磁ブレーキを締結状態、開放状態又は保持状態に制御する無励磁作動型電磁ブレーキ制御装置であって、磁気吸引力を発生させて無励磁作動型電磁ブレーキを締結状態から開放状態にするブレーキコイルと、第1の角度を有する谷部及び第1の角度より小さい第2の角度を有する山部を交互に配置して形成された段付の先鋭化三角電圧波を生成する先鋭化三角電圧波生成部と、ブレーキコイルに流れる電流に基づいて比較電圧波を生成する比較電圧波生成部と、無励磁作動型電磁ブレーキが保持状態であるときに先鋭化三角電圧波値と比較電圧波値とを比較する比較部と、比較部により前記先鋭三角電圧波値が前記比較電圧波値より大きいと判断されたときにブレーキコイルへの電流の供給を行い、比較部により先鋭三角電圧波値が比較電圧波値以下であると判断されたときにブレーキコイルへの電流の供給を中断するよう切替を行う切替部と、を有する。
 本発明による無励磁作動型電磁ブレーキ制御方法は、無励磁作動型電磁ブレーキを締結状態、開放状態又は保持状態に制御する無励磁作動型電磁ブレーキ制御方法であって、ブレーキコイルに磁気吸引力を発生させて無励磁作動型電磁ブレーキを締結状態から開放状態にするステップと、第1の角度を有する谷部及び第1の角度より小さい第2の角度を有する山部を交互に配置して形成された段付の先鋭化三角電圧波を生成するステップと、ブレーキコイルに流れる電流に基づいて比較電圧波を生成するステップと、無励磁作動型電磁ブレーキが保持状態であるときに先鋭化三角電圧波値と比較電圧波値とを比較するステップと、先鋭三角電圧波値が比較電圧波値より大きい場合にはブレーキコイルへの電流の供給を行い、先鋭三角電圧波値が比較電圧波値以下である場合にはブレーキコイルへの電流の供給を中断するステップと、を有する。
 本発明によれば、無励磁作動型電磁ブレーキの保持状態において、振動騒音及び頻繁なスイッチングが生じることなくブレーキコイルに流れる平均電流を更に小さくすることができる。
 図1は、本発明による無励磁作動型電磁ブレーキ制御装置が用いられる巻上機の概略図である。
 図2は、本発明による無励磁作動型電磁ブレーキ制御装置の回路図である。
 図3は、図2の無励磁作動型電磁ブレーキ制御装置で用いられる先鋭化三角電圧波生成部の回路図である。
 図4は、図2の無励磁作動型電磁ブレーキ制御装置のブレーキコイルに流れる電流の時間変化を示すグラフである。
 図5は、図2の無励磁作動型電磁ブレーキ制御装置で発生する三角電圧波及び比較電圧波の時間変化を示すグラフである。
 図6は、従来の無励磁作動型電磁ブレーキ制御装置の回路図である。
 図7は、図6の無励磁作動型電磁ブレーキ制御装置で用いられる先鋭化三角電圧波生成部の回路図である。
 図8は、図6の無励磁作動型電磁ブレーキ制御装置のブレーキコイルに流れる電流の時間変化を示すグラフである。
 図9は、図6の無励磁作動型電磁ブレーキ制御装置で発生する三角電圧波及び比較電圧波の時間変化を示すグラフである。
 本発明による無励磁作動型電磁ブレーキ制御装置及び方法の実施の形態を、図面を参照しながら詳細に説明する。なお、図面中、同一構成要素には同一符号を付すものとする。
 図1は、本発明による無励磁作動型電磁ブレーキ制御装置が用いられる巻上機の概略図である。図1において、巻上機100は、矢印a又はb方向に移動可能な横行装置101に取り付けられており、3相電源のような電源102から電力が供給される。
 巻上機100は、矢印c方向の巻上げ又は矢印d方向の巻下げ(回転)を行う誘導電動機103と、誘導電動機103を制動する無励磁作動型電磁ブレーキ104と、誘導電動機103で発生したトルクを増幅する減速器105と、ワークを取り付け可能なフック106と、フックを接続したワイヤロープ107と、トルク増幅した減速器105でワイヤロープ107を巻上げ又は巻下げる胴巻108と、を有する。また、巻上機100には、操作部109の操作に応じて無励磁作動型電磁ブレーキを締結状態、開放状態又は保持状態に制御する無励磁作動型電磁ブレーキ制御装置110が設けられている。
 図2は、本発明による無励磁作動型電磁ブレーキ制御装置の回路図である。図2に示す無励磁作動型電磁ブレーキ制御装置110は、交流電源2と、ブレーキコイル3と、先鋭化三角電圧波生成部111と、比較電圧波生成部5と、比較部6と、スイッチ7,8と、制御電源部9と、ダイオード10,11と、を有する。
 先鋭化三角電圧波生成回路111は、第1の角度を有する谷部及び第1の角度より小さい第2の角度を有する山部を交互に配置して形成された段付の先鋭化三角電圧波を生成する。このために、先鋭化三角電圧波生成回路111は、図3に示すように、コンパレータ121a,121bと、コンパレータ121a,121bの非反転入力部に接続されたCR部122a,122bと、先鋭化三角電圧波生成回路111の入力部に接続された抵抗部123a,123bと、一端が先鋭化三角電圧波生成回路111の出力部及びコンパレータ121a,121bの非反転入力部に接続され、他端がコンパレータ121a,121bの出力側及び抵抗部123a,123bに接続された抵抗124a,124bと、を有する。
 CR部122aは、一端がコンパレータ121aの非反転入力側に接続され、他端が接地された抵抗125aと、抵抗125aに並列に接続されたコンデンサ126aと、一端がコンパレータ121aの反転入力側に接続され、他端が抵抗125aの他端に接続されたコンデンサ127aと、を有する。抵抗部123aは、一端が先鋭化三角電圧波生成回路111の入力部に接続され、他端がコンパレータ121aの非反転入力側に接続された抵抗128aと、一端が先鋭化三角電圧波生成回路111の入力部に接続され、他端がコンパレータ121aの出力側に接続された抵抗129aと、一端が抵抗128aの他端に接続され、他端が抵抗129aの他端に接続された抵抗130aと、を有する。
 CR部122bは、一端がコンパレータ121bの非反転入力側に接続され、他端が接地された抵抗125bと、抵抗125bに並列に接続されたコンデンサ126bと、一端がコンパレータ121bの反転入力側に接続され、他端が抵抗125bの他端に接続されたコンデンサ127bと、を有する。抵抗部123bは、一端が先鋭化三角電圧波生成回路111の入力部に接続され、他端がコンパレータ121bの非反転入力側に接続された抵抗128bと、一端が先鋭化三角電圧波生成回路111の入力部に接続され、他端がコンパレータ121bの出力側に接続された抵抗129bと、一端が抵抗128bの他端に接続され、他端が抵抗129bの他端に接続された抵抗130bと、を有する。
 コンデンサ127aに電荷が充電されていないときには、コンパレータ121aの非反転入力側の電位が反転入力側の電位より高いので、コンパレータ121aの出力はハイとなる。一方、コンデンサ127aに電荷が充電され、コンパレータ121aの反転入力側の電位が非反転入力側の電位を超えると、コンパレータ121aの出力はローとなる。コンデンサ127aの充放電の時間は、CR部122a及び抵抗部123aの抵抗値によって決定される。
 同様に、コンデンサ127bに電荷が充電されていないときには、コンパレータ121bの非反転入力側の電位が反転入力側の電位より高いので、コンパレータ121bの出力はハイとなる。一方、コンデンサ127bに電荷が充電され、コンパレータ121bの反転入力側の電位が非反転入力側の電位を超えると、コンパレータ121bの出力はローとなる。コンデンサ127bの充放電の時間は、CR部122b及び抵抗部123bの抵抗値によって決定される。
 図3において、抵抗部123aの抵抗値を抵抗部123bの抵抗値より低く、CR部122aのCR値をCR部122bのCR値より低くしている。このように抵抗部123a,123bの抵抗値及びCR部122a,122bのCR値を設定することにより、CR部122aの放充電の時間がCR部122bの放充電の時間と異なるようになる。その結果、三角電圧波の谷の部分は、コンパレータ121a、CR部122a、抵抗部123a及び抵抗124aから構成される回路部から生成されて先鋭化三角電圧波生成回路111から出力され、三角電圧波の山の部分は、コンパレータ121b、CR部122b、抵抗部123b及び抵抗124bから構成される回路部から生成されて先鋭化三角電圧波生成回路111から出力される。なお、コンパレータ121b、CR部122b、抵抗部123b及び抵抗124bから構成される回路部から生成される三角電圧波の山の部分は、コンパレータ121a、CR部122a、抵抗部123a及び抵抗124aから構成される回路部から生成される三角電圧波の谷の部分より小さい角度を有する。
 図4は、図2の無励磁作動型電磁ブレーキ制御装置のブレーキコイルに流れる電流の時間変化を示すグラフである。無励磁作動型電磁ブレーキ(図示せず)が開放状態である時間t1の間には、図6の無励磁作動型電磁ブレーキ制御装置の場合と同様にブレーキコイル3には交流電源2からの電流I1が継続的に供給される。一方、無励磁作動型電磁ブレーキ(図示せず)が保持状態である時間t2の間にブレーキコイルに流れる平均電流I3は、後に説明するように平均電流I2より小さくなる。
 図5は、図2の無励磁作動型電磁ブレーキ制御装置で発生する三角電圧波及び比較電圧波の時間変化を示すグラフである。無励磁作動型電磁ブレーキ(図示せず)が開放状態である間には、三角電圧波生成部4のコンデンサ26,27を充電するとともに比較電圧波を上げるために制御電源部9により制御電圧を生成する。一方、無励磁作動型電磁ブレーキ(図示せず)が保持状態になると、制御電源部9による制御電圧を低下して比較電圧波を下げ、比較部6による比較電圧波と先鋭化三角電圧波との比較を行う。三角電圧波の1キャリア周期Tのうち、三角電圧波が比較電圧波より高い時間ONdutyの間にトランジスタ7はオンになり、三角電圧波が比較電圧波以下の時間OFFdutyの間にトランジスタ7はオフになる。
 同一キャリア周期の場合、先鋭化三角電圧波生成部111によって生じた先鋭化三角電圧波が比較電圧波より高い時間Tbは、三角電圧波生成部4によって生じた三角電圧波が比較電圧波より高い時間Taよりも短くなるので、図2の無励磁作動型電磁ブレーキ制御装置における1キャリア周期Tのうちの時間OFFdutyに対する時間ONdutyの割合は、図6の無励磁作動型電磁ブレーキ制御装置に比べて小さくなる。したがって、本実施の形態によれば、無励磁作動型電磁ブレーキ(図示せず)が保持状態であるときに、1キャリア周期Tのうちの時間OFFdutyに対する時間ONdutyの割合を、キャリア周波数を変更することなく小さくすることができるので、振動騒音及び頻繁なスイッチングが生じることなくブレーキコイル3に流れる平均電流を更に小さくすることができる。すなわち、平均電流I3は、平均電流I2より小さくなる。このように頻繁なスイッチングが生じなくなるので、頻繁なスイッチングによるスイッチ7(半導体素子)の損失を抑制し、頻繁なスイッチングによる発熱を防止するためのフィン等の冷却装置を小さくし又は省略することができる。
 また、1キャリア周期Tのうちの時間OFFdutyに対する時間ONdutyの割合を小さくするために先鋭化三角電圧波を用いることによって、交流電源2の電圧変化により比較電圧波が変化しても比較電圧波に自動的にフィードバックがかかるようになる。その結果、交流電源2の電圧変化により無励磁作動型電磁ブレーキ(図示せず)の制動タイミングがずれることがなくなる。
 本発明は、上記実施の形態に限定されるものではなく、幾多の変更及び変形が可能である。例えば、本発明による無励磁作動型電磁ブレーキ制御装置を巻上機で用いる場合について説明したが、無励磁作動型電磁ブレーキが用いられる他の機器においても本発明による無励磁作動型電磁ブレーキ制御装置を用いることができる。

Claims (2)

  1.  無励磁作動型電磁ブレーキを締結状態、開放状態又は保持状態に制御する無励磁作動型電磁ブレーキ制御装置であって、
     磁気吸引力を発生させて前記無励磁作動型電磁ブレーキを締結状態から開放状態にするブレーキコイルと、
     第1の角度を有する谷部及び前記第1の角度より小さい第2の角度を有する山部を交互に配置して形成された段付の先鋭化三角電圧波を生成する先鋭化三角電圧波生成部と、
     前記ブレーキコイルに流れる電流に基づいて比較電圧波を生成する比較電圧波生成部と、
     前記無励磁作動型電磁ブレーキが保持状態であるときに前記先鋭化三角電圧波値と前記比較電圧波値とを比較する比較部と、
     前記比較部により前記先鋭三角電圧波値が前記比較電圧波値より大きいと判断されたときに前記ブレーキコイルへの電流の供給を行い、前記比較部により前記先鋭三角電圧波値が前記比較電圧波値以下であると判断されたときに前記ブレーキコイルへの電流の供給を中断するよう切替を行う切替部と、
     を有する無励磁作動型電磁ブレーキ制御装置。
  2.  無励磁作動型電磁ブレーキを締結状態、開放状態又は保持状態に制御する無励磁作動型電磁ブレーキ制御方法であって、
     ブレーキコイルに磁気吸引力を発生させて前記無励磁作動型電磁ブレーキを締結状態から開放状態にするステップと、
     第1の角度を有する谷部及び前記第1の角度より小さい第2の角度を有する山部を交互に配置して形成された段付の先鋭化三角電圧波を生成するステップと、
     前記ブレーキコイルに流れる電流に基づいて比較電圧波を生成するステップと、
     前記無励磁作動型電磁ブレーキが保持状態であるときに前記先鋭化三角電圧波値と前記比較電圧波値とを比較するステップと、
     前記先鋭三角電圧波値が前記比較電圧波値より大きい場合には前記ブレーキコイルへの電流の供給を行い、前記先鋭三角電圧波値が前記比較電圧波値以下である場合には前記ブレーキコイルへの電流の供給を中断するステップと、
     を有する無励磁作動型電磁ブレーキ制御方法。
PCT/JP2010/067493 2009-09-30 2010-09-29 無励磁作動型電磁ブレーキ制御装置及び方法 WO2011040637A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020127007223A KR101320714B1 (ko) 2009-09-30 2010-09-29 무여자 작동형 전자 브레이크 제어 장치 및 방법
CN201080043711.7A CN102549294B (zh) 2009-09-30 2010-09-29 无励磁工作型电磁制动器控制装置以及方法
EP10820747.3A EP2484931B1 (en) 2009-09-30 2010-09-29 Device and method for controlling power-off type electromagnetic brake
US13/498,105 US8786997B2 (en) 2009-09-30 2010-09-29 Non-excited operation type electromagnetic brake control device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-228554 2009-09-30
JP2009228554A JP5334785B2 (ja) 2009-09-30 2009-09-30 無励磁作動型電磁ブレーキ制御装置及び方法

Publications (1)

Publication Number Publication Date
WO2011040637A1 true WO2011040637A1 (ja) 2011-04-07

Family

ID=43826436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067493 WO2011040637A1 (ja) 2009-09-30 2010-09-29 無励磁作動型電磁ブレーキ制御装置及び方法

Country Status (6)

Country Link
US (1) US8786997B2 (ja)
EP (1) EP2484931B1 (ja)
JP (1) JP5334785B2 (ja)
KR (1) KR101320714B1 (ja)
CN (1) CN102549294B (ja)
WO (1) WO2011040637A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI124198B (fi) 2012-02-20 2014-04-30 Konecranes Oyj Jarrun valvonta
US9601918B2 (en) 2012-06-28 2017-03-21 General Electric Company Systems and methods for controlling acceleration of a power generator
US9407187B2 (en) 2012-06-28 2016-08-02 General Electric Company System and method for improving response time of a braking unit
US9413217B2 (en) 2012-06-28 2016-08-09 General Electric Company Electromagnetic braking systems and methods
CN104682801A (zh) * 2013-11-28 2015-06-03 株式会社开道 电磁制动控制装置
CN104743466B (zh) * 2013-12-31 2017-12-15 重庆顺心仪器设备有限公司 一种电梯抱闸电源
JP6851229B2 (ja) * 2017-03-10 2021-03-31 シャープ株式会社 ブレーキ制御装置、走行車両、およびブレーキ駆動方法
CN110554677B (zh) * 2018-06-01 2021-09-03 西门子(中国)有限公司 伺服电机监测数据的处理方法、装置、***和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS613058U (ja) * 1984-06-07 1986-01-09 マツダ株式会社 自動車の電磁サ−ボブレ−キ装置
JPH02203030A (ja) * 1989-01-31 1990-08-13 Okuma Mach Works Ltd 制動装置
JPH0661467U (ja) * 1993-02-01 1994-08-30 日本電気精器株式会社 電動ドライバの制御装置
JP2008131759A (ja) * 2006-11-21 2008-06-05 Fanuc Ltd ブレーキ付きモータを駆動し制動するモータ駆動装置
JP2009014196A (ja) 2006-12-28 2009-01-22 Harmonic Drive Syst Ind Co Ltd 無励磁作動型電磁ブレーキ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4352049A (en) * 1979-11-26 1982-09-28 Westinghouse Electric Corp. Brake control apparatus and method
US4516038A (en) * 1982-11-19 1985-05-07 Sundstrand Corporation Triangle wave generator
JPS613058A (ja) 1984-06-16 1986-01-09 Hitachi Constr Mach Co Ltd 超音波計測器の探触子位置検出方法
JP3148384B2 (ja) 1992-08-10 2001-03-19 日本放送協会 積層形固体撮像素子
JPH0939772A (ja) * 1995-08-02 1997-02-10 Unisia Jecs Corp アンチスキッドブレーキ用電磁弁の駆動装置
JP2004270875A (ja) 2003-03-11 2004-09-30 Yaskawa Electric Corp 直流電磁ブレーキ
FI122124B (fi) * 2006-07-04 2011-08-31 Abb Oy Menetelmä jarrukatkojan ohjaamiseksi, jarrukatkoja ja taajuusmuuttaja
JP4643670B2 (ja) * 2008-03-07 2011-03-02 株式会社東芝 電気車駆動装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS613058U (ja) * 1984-06-07 1986-01-09 マツダ株式会社 自動車の電磁サ−ボブレ−キ装置
JPH02203030A (ja) * 1989-01-31 1990-08-13 Okuma Mach Works Ltd 制動装置
JPH0661467U (ja) * 1993-02-01 1994-08-30 日本電気精器株式会社 電動ドライバの制御装置
JP2008131759A (ja) * 2006-11-21 2008-06-05 Fanuc Ltd ブレーキ付きモータを駆動し制動するモータ駆動装置
JP2009014196A (ja) 2006-12-28 2009-01-22 Harmonic Drive Syst Ind Co Ltd 無励磁作動型電磁ブレーキ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2484931A4 *

Also Published As

Publication number Publication date
KR101320714B1 (ko) 2013-10-21
US20120268856A1 (en) 2012-10-25
CN102549294B (zh) 2014-09-03
EP2484931A4 (en) 2016-01-13
CN102549294A (zh) 2012-07-04
EP2484931B1 (en) 2016-11-02
JP5334785B2 (ja) 2013-11-06
EP2484931A1 (en) 2012-08-08
JP2011075056A (ja) 2011-04-14
KR20120061903A (ko) 2012-06-13
US8786997B2 (en) 2014-07-22

Similar Documents

Publication Publication Date Title
JP5334785B2 (ja) 無励磁作動型電磁ブレーキ制御装置及び方法
JP5286184B2 (ja) 電力変換制御装置,電力変換装置及び電力変換制御方法
JP2013179741A (ja) ダイナミックブレーキ制御手段を備えるモータ駆動装置
JPH02184300A (ja) 車両用交流発電機の制御装置
TWI606670B (zh) 制動能源回收模組
JP2012249481A (ja) インバータ駆動装置
JP2008271612A (ja) モータ制御回路
EP3306804A1 (en) Dc-brushless-motor control device
JP2018042297A (ja) モータ制御装置および空気調和機
TWI452823B (zh) 馬達減速方法及應用該減速方法之馬達驅動裝置
JP2004523997A (ja) 発電機の負荷除去時過渡状態の加速
JP2012143075A (ja) 電力変換装置、および電力変換装置の過電流保護方法
TW201328167A (zh) 調整馬達轉速之方法及可調整轉速之馬達驅動電路
CN114123882B (zh) 单线圈bldc电机的制动
US10468992B2 (en) Auxiliary power supply device for electric rolling stock
JP3804341B2 (ja) インバータ制御電動機
WO2018150614A1 (ja) 誘導加熱装置および誘導加熱装置の駆動制御方法
WO2014013574A1 (ja) 電力変換器
JP6396562B1 (ja) リフティングマグネットの制御システム
JPH06100284A (ja) リフテイングマグネツト用電源装置
JP5875494B2 (ja) 電磁ブレーキ制御装置
US9590544B2 (en) Method for operating an electric motor and corresponding electric motor device
TWI277286B (en) Induction motor control method
TWI794894B (zh) 馬達控制裝置及其控制方法
JP5753035B2 (ja) インバータ装置及び当該装置用入力変圧器の突入電流低減方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080043711.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10820747

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127007223

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2010820747

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010820747

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13498105

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201001473

Country of ref document: TH