WO2011033646A1 - Steel sheet pair, laminated steel sheet and core of dynamo electric machine - Google Patents

Steel sheet pair, laminated steel sheet and core of dynamo electric machine Download PDF

Info

Publication number
WO2011033646A1
WO2011033646A1 PCT/JP2009/066334 JP2009066334W WO2011033646A1 WO 2011033646 A1 WO2011033646 A1 WO 2011033646A1 JP 2009066334 W JP2009066334 W JP 2009066334W WO 2011033646 A1 WO2011033646 A1 WO 2011033646A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel plate
electromagnetic steel
nonmagnetic
steel sheet
pair
Prior art date
Application number
PCT/JP2009/066334
Other languages
French (fr)
Japanese (ja)
Inventor
佳介 角田
雅彦 三林
出 山本
拓也 清水
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2009/066334 priority Critical patent/WO2011033646A1/en
Publication of WO2011033646A1 publication Critical patent/WO2011033646A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/04Details of the magnetic circuit characterised by the material used for insulating the magnetic circuit or parts thereof

Definitions

  • the present invention relates to a steel plate pair having insulating coatings on both sides and partially including nonmagnetic portions, and a laminated steel plate and a rotating electrical machine core using the steel plate pair.
  • the iron core has a portion that does not become an effective magnetic path due to the arrangement of coils and magnets.
  • a magnet 91 is attached to the rotor 90.
  • the peribridge portion 92 and the center bridge portion 93 in the rotor 90 do not serve as a path for the effective magnetic flux F.
  • the presence of an iron core in such a place rather deteriorates the magnetic performance of the rotating electrical machine due to leakage magnetic flux. Therefore, it is desirable to increase the magnetic resistance in such a place. Since the magnetic performance of the rotating electrical machine can be improved by increasing the magnetic resistance, the rotating electrical machine can be reduced in size.
  • Patent Document 1 discloses a technique for forming an austenite region by locally heating a corresponding portion of an iron core and then cooling it. That is, as the base material, a metastable austenitic stainless steel having a ferromagnetic martensite structure formed by cold rolling is used, and a part thereof is converted to a nonmagnetic austenitic structure by this method. Laser irradiation is cited as a means of local heating. Further, Patent Document 2 discloses that a target magnetic member is locally melted and a modifying element is added from the outside to be solid-dissolved to make it non-magnetic.
  • the present applicant has proposed a steel material that can be applied regardless of the material quality of the steel material other than the non-magnetic part, has a short processing time, and has a non-magnetic part having a predetermined depth structure (Japanese Patent Application No. 2008- 192468).
  • Japanese Patent Application No. 2008- 192468 Japanese Patent Application No. 2008- 192468
  • the present invention has been made to solve the above-described problems, and uses a steel material having insulating coatings on both sides, and a steel sheet that can be formed as desired with a short processing time and a nonmagnetic layer. It is an object to provide a pair, a laminated steel plate, and a rotating electrical machine core.
  • One aspect of the present invention made in order to solve the above-described problem is that a steel plate pair in which two steel plates having insulating coatings on both sides are overlapped, and each of the steel plates has the insulating coating and a part of the steel plate removed. And a removed portion from which the portion corresponding to the recessed portion of the insulating coating on the surface opposite to the recessed portion is removed, and the steel plates are overlapped so that the recessed portions face each other. And a nonmagnetic alloy layer is formed between the recesses.
  • reforming means changing the composition (characteristics) of the material constituting the member.
  • the steel sheet is partially modified in the vicinity of the nonmagnetic alloy, and the nonmagnetic alloy is modified substantially throughout. Then, the steel plate and the nonmagnetic alloy are joined at the same time as being reformed.
  • this steel plate pair magnetic flux is transmitted because it has a strong magnetic permeability in a portion other than where the concave portion is formed, while a nonmagnetic alloy layer suppresses the transmission of magnetic flux in the portion where the concave portion is formed. Magnetic flux leakage can be prevented. Moreover, since an insulation film exists between the steel plates, insulation between the steel plates is ensured. Furthermore, since each steel plate is superposed and modified so that the respective concave portions face each other, an unjoined portion does not occur in the steel plate pair, so that sufficient strength can be ensured.
  • each steel plate is modified by applying a pressure from each removing portion.
  • each steel plate has a removed portion from which the portion corresponding to the recess is removed from the insulating coating on the surface opposite to the recess. . Then, by reforming the steel plates by applying pressure, a part of the nonmagnetic alloy layer and a part of each steel plate are melted, so that the nonmagnetic alloy layer can be formed without gaps in both recesses. . Further, the nonmagnetic alloy layer can be formed in a short processing time.
  • the removal portion is concave with respect to the surface of each steel plate.
  • the removal portion is concave, so that a space is formed without the removal portions being in contact with each other. Insulation between the steel material pairs can be ensured. This makes it possible to reduce the energy loss due to the eddy current generated in the nonmagnetic alloy layer without re-applying the insulating coating on the removed part by configuring the laminated steel plate or the rotating electrical machine core using this steel plate pair. Can do.
  • the removal portion is concave, a part of the steel material deformed into a concave shape (surplus) escapes to the periphery of the concave portion, and the peripheral portion of the removal portion may rise. If it does so, the flatness of a steel plate pair will be lost and it will become difficult to laminate
  • the volume of the space formed by the recesses is larger than the volume of the nonmagnetic alloy layer.
  • a laminated steel plate or a rotating electrical machine core can be configured by stacking steel plate pairs without performing post-processing.
  • the removed portions may be laminated so as to face each other.
  • the nonmagnetic layer can be formed as desired, and sufficient insulation, performance and strength can be ensured.
  • the non-magnetic layer can be formed as desired by using a steel material having an insulating coating on both surfaces and a short processing time.
  • a laminated steel plate or a rotating electrical machine core in which a desired nonmagnetic layer is formed and sufficient insulation, performance, and strength are ensured can be obtained.
  • the rotating electrical machine according to the present embodiment is provided with a nonmagnetic portion created by the procedure described below as the peribridge portion 92 and the center bridge portion 93 of the rotor 90 shown in FIG.
  • the center bridge portion 93 is a location between the adjacent magnet attachment holes 94
  • the peribridge portion 92 is a location between the magnet attachment holes 94 and the outer peripheral edge.
  • Each of the rotor 90 and the stator 80 has a core formed by stacking a large number of electromagnetic steel plates, and the rotor 90 includes a rotor core 95 formed by stacking a large number of electromagnetic steel plate pairs 10 each having a nonmagnetic portion. Yes.
  • reforming means changing the composition (characteristics) of the material constituting the member.
  • the steel sheet is partially modified in the vicinity of the nonmagnetic alloy, and the nonmagnetic alloy is modified substantially throughout. And in this Embodiment, a steel plate and a nonmagnetic alloy are joined simultaneously with a modification
  • the nonmagnetic portion in the rotor 90 has a cross-sectional structure shown in FIG.
  • FIG. 2 is a cross-sectional view showing a part of the nonmagnetic portion of the rotor 90.
  • the nonmagnetic portion X shown in FIG. 2 is mainly formed by the nonmagnetic alloy layer 40 provided in the electromagnetic steel plate pair 10.
  • This electromagnetic steel plate pair 10 is obtained by superposing two electromagnetic steel plates 20 and 30 and partially modifying them. That is, as shown in FIG. 3, the electrical steel sheet pair 10 of the present embodiment includes the electrical steel sheet 20 having the insulating coating 21 on both surfaces and the electrical steel sheet 30 having the insulating coating 31 on both surfaces.
  • the electromagnetic steel plate 20 and the electromagnetic steel plate 30 are respectively provided with a recess 22 and a recess 32, and are superposed so that the recesses 22 and 32 are opposed to each other.
  • An alloy layer 40 is formed.
  • the electromagnetic steel sheets 20 and 30 are modified by the nonmagnetic alloy layer 40 formed so as to bite between the recesses 22 and 32. That is, the nonmagnetic alloy layer 40 and the electromagnetic steel plate 20 are modified at the contact surface, and the nonmagnetic alloy layer 40 and the electromagnetic steel plate 30 are modified at the contact surface.
  • the insulating coatings 21 and 31 are not interposed on the contact surface between the nonmagnetic alloy layer 40 and the electromagnetic steel plate 20 and the contact surface between the nonmagnetic alloy layer 40 and the electromagnetic steel plate 30.
  • the electromagnetic steel plate pair 10 when the electromagnetic steel plate pair 10 is manufactured, the insulating coating in this portion is removed.
  • the electromagnetic steel plate 20 and the electromagnetic steel plate 30 are in contact with each other through the insulating coatings 21 and 31 but are not joined.
  • the electromagnetic steel plates 20 and 30 are magnetic bodies, and the nonmagnetic alloy layer 40 is a nonmagnetic body.
  • the nonmagnetic alloy layer 40 is an austenitic nonmagnetic alloy layer formed by adding Fe and other alloy elements such as Ni and Cr to the main component. Therefore, an effective magnetic path in the nonmagnetic portion X can be only the thin steel layer portion of the electromagnetic steel sheet 20 and the electromagnetic steel sheet 30 sandwiching the nonmagnetic alloy layer 40. Thereby, in the nonmagnetic location X, only a very limited portion of the total thickness of the electromagnetic steel plate pair 10 can be a magnetic path. For this reason, magnetic resistance is large and it can be regarded as a substantially non-magnetic part, and leakage of magnetic flux can be suppressed.
  • the electric resistance of the nonmagnetic alloy layer 40 is high. That is, the nonmagnetic alloy layer 40 is higher in electrical resistance and magnetic resistance than the electromagnetic steel sheet 20 and the electromagnetic steel sheet 30.
  • film removal portions 23 and 33 from which the insulating films 21 and 31 of the respective electromagnetic steel sheets 20 and 30 are removed are formed. Yes.
  • These coating removal parts 23 and 33 are provided on the opposite side surface corresponding to the recessed parts 22 and 32 of the electromagnetic steel plates 20 and 30, and are concave with respect to the steel plate surfaces at other locations.
  • a large number of such electrical steel sheet pairs 10 are laminated so that the film removal unit 23 and the film removal unit 33 face each other, thereby forming the core 95 of the rotor 90.
  • the peribridge portion 92 and the center bridge portion 93 of the rotor 90 shown in FIG. 1 are configured to be nonmagnetic portions X shown in FIG.
  • the magnetic flux of the magnet 91 hardly passes through the peribridge portion 92 and the center bridge portion 93. Therefore, most of the magnetic flux of the magnet 91 becomes the effective magnetic flux F.
  • the portion other than the nonmagnetic portion X in the electromagnetic steel plate pair 10 is of a general Fe—Si type and has a very high magnetic permeability.
  • the magnetic efficiency of the rotating electrical machine of this embodiment is excellent. Insulation is ensured because an insulating film is interposed between the steel plates.
  • a space 96 is constituted by the film removal portions 23 and 33 formed in a concave shape, and insulation is ensured by this space.
  • a reference hole drilling step (step S10), an insulating film removing step (step S20), a recess forming step (step S30), a modified metal addition step (step S40), and a tying step (step) S50), a non-magnetic modification treatment process (step S60), a removal process (step S70), and a lamination process (step S80) are performed in order.
  • the electrical steel sheet pair 10 is manufactured from the reference drilling process to the non-magnetic modification treatment process (S10 to S60), and then the punching process and the laminating process (S70, S80) are performed, so that the rotor core is a laminated steel sheet. 95 is manufactured.
  • a surplus escape step is performed between the insulating film removing step and the recess forming step.
  • a reference hole serving as a reference for processing in the subsequent steps is formed on each of the electromagnetic steel sheets 20 and 30 having the insulating coatings 21 and 31 on both surfaces.
  • the reference hole is formed by wire cutting.
  • the steel plate pair 10a and the rotor core 95 for constituting the rotor core 95 can be manufactured with high accuracy.
  • the reference hole is formed by wire cutting, but may be formed by a press or the like.
  • the opposite side of the insulating coatings 21 and 31 provided in the electromagnetic steel plates 20 and 30 where the recesses 22 and 32 are formed is removed by polishing.
  • This polishing is performed by a polishing roller 52 as shown in FIG.
  • the insulating films 21 and 31 are removed by polishing or the like, but may be performed by etching or the like.
  • film removing portions 23 and 33 are formed on the electromagnetic steel plates 20 and 30 as shown in FIG. Thereby, in each electromagnetic steel plate 20, 30, the steel plate surface is exposed at the coating removal portions 23, 33.
  • the recesses 22 and 32 are formed on the opposite side of the film removing portions 23 and 33.
  • the recesses 22 and 32 are formed by cutting (for example, milling with an end mill).
  • the recesses 22 and 32 are portions that become spaces 42 into which the modified metal 40a is inserted.
  • the recesses 22 and 32 are both disk-shaped, and the diameter of the recess 22 is slightly larger than the diameter of the recess 32.
  • the depths of the recesses 22 and 23 are the same, and are about half the thickness of the electromagnetic steel plates 20 and 30.
  • the shape of the recess is not limited to a disc shape, and is not particularly limited as long as the depth is a uniform shape. What is necessary is just to set the magnitude
  • the recesses 22 and 32 are formed by cutting, but the recesses 22 and 32 may be formed by a press machine 54 as shown in FIG.
  • the insulating coating removing step (step S20) the insulating coatings 21 and 31 may be removed by disposing the polishing rollers 52 on both sides of each of the electromagnetic steel plates 20 and 30 so as to face each other.
  • an escape hole 55 that escapes the extra space generated when the concave portions 22 and 32 are formed may be provided using a press machine 54a.
  • the escape hole 55 is provided at a location to be the magnet attachment hole 94 (a portion processed in the punching process: see FIG. 20).
  • the surplus generated when the recesses 22 and 32 are formed by pressing can be released to the relief hole 55.
  • Flatness can be ensured. That is, the recesses 22 and 32 can be formed with high accuracy by pressing. Further, in the case of press molding, the recesses 22 and 32 can be formed in a short time as compared with the cutting process even if a surplus relief piercing process is provided.
  • the modified metal 40a forming the nonmagnetic alloy layer 40 is inserted into the recess of the electromagnetic steel sheet.
  • the modified metal 40 a is inserted into the recess 32 of the electromagnetic steel sheet 30.
  • the modified metal 40a is an austenitic nonmagnetic alloy in which Fe is a main component and Ni and Cr are added thereto, and is formed into a disk shape.
  • the diameter of the modified metal 40 a is the same as the diameter of the recess 32, and the height is twice the depth of the recess 32.
  • FIG. 12 is a cross-sectional view showing the AA cross section of FIG. Further, the melting point of the modified metal 40 a is slightly lower than the melting points of the electromagnetic steel sheet 20 and the electromagnetic steel sheet 30.
  • the insertion work can be efficiently performed by using a press machine 54.
  • a plate-like nonmagnetic alloy is disposed on the concave side of the electromagnetic steel plate 30 via a jig 56, and the plate-like nonmagnetic alloy is punched out by a press machine 54 to obtain a disc-shaped modified metal 40a.
  • a transfer device such as a chip mounter.
  • step S50 the electromagnetic steel sheet 20 is placed from above the electromagnetic steel sheet 30 in which the modified metal 40a is inserted into the recess 32.
  • a cross-sectional view at that time is shown in FIG. More specifically, the electromagnetic steel plate 20 is superimposed on the electromagnetic steel plate 30 such that the recess 22 of the electromagnetic steel plate 20 and the recess 32 of the electromagnetic steel plate 30 face each other. Thereby, the upper half of the modified metal 40a protruding from the upper surface of the electromagnetic steel sheet 30 is inserted into the recess 22 of the electromagnetic steel sheet 20 in the upper part of the drawing.
  • the modified metal 40 a is just fit between the electromagnetic steel sheet 20 and the electromagnetic steel sheet 30.
  • the CC cross section of FIG. 16 is shown in FIG. That is, the modified metal 40a is accommodated in the space 42 that the concave portion 22 and the concave portion 32 partition.
  • the volume of the space 42 is larger than the volume of the modified metal 40a.
  • the insulating coating 31 and the insulating coating 21 are in contact with the upper surface of the electromagnetic steel sheet 30 and the lower surface of the electromagnetic steel sheet 20 outside the recess 32 and the recess 22. That is, the steel material portions of the electromagnetic steel plate 20 and the electromagnetic steel plate 30 are not in direct contact with each other, but are in indirect contact with each other via the insulating coatings 21 and 31.
  • step S60 the electromagnetic steel sheet 20 and the electromagnetic steel sheet 30 are sandwiched between the electrodes 45 and 45.
  • the locations sandwiched between the electrodes 45, 45 are locations where the modified metal 40a is disposed, that is, the coating removal portions 23, 33.
  • the electrodes 45 and 45 are in direct contact with the steel plate surfaces of the electromagnetic steel plates 20 and 30.
  • electricity is passed between the electrodes 45, 45 in a pressurized state.
  • the pressure of pressurization is about 135 MPa
  • the current value is about 7.8 kA
  • the energization time is about 0.15 seconds.
  • FIG. 19 shows a state in which the modified metal 40 a has become a molten metal 41 together with a part of the electromagnetic steel sheet 20 and the electromagnetic steel sheet 30.
  • the film removal portions 23 and 33 of the electrical steel sheets 20 and 30 softened by energization of the electrodes 45 and 45 are formed into a concave shape (the shape of the tip of the electrode 45) by pressurization from the electrodes 45 and 45.
  • the vicinity of the periphery of the film removing portions 23 and 33 does not rise and become convex. This is because the volume of the space 42 formed by the concave portions 22 and 23 is larger than the volume of the modified metal 40a (nonmagnetic alloy layer 40).
  • the molten metal 41 starts to solidify.
  • the composition of the molten metal 41 is composed mainly of Fe and contains a considerable amount of Ni and Cr derived from the modified metal. For this reason, when the molten metal 41 solidifies, it becomes the nonmagnetic alloy layer 40 of an austenite phase.
  • the pressurization by the electrodes 45, 45 is not finished and is continuously performed. For this reason, when the molten metal 41 is solidified, no sinkhole is generated. Therefore, the electrical steel sheets 20 and 30 and the modified metal 40a (nonmagnetic alloy layer 40) are firmly modified, and sufficient strength can be ensured.
  • the pressurization by the electrodes 45, 45 is finished and the electrodes 45, 45 are separated from the electromagnetic steel plates 20, 30, the non-magnetic alloy layer 40 shown in FIG. A pair of electromagnetic steel sheets 10 formed into a concave shape is formed.
  • the nonmagnetic portion X (nonmagnetic alloy layer 40) is provided at a number of locations in the electromagnetic steel plate pair 10. That is, in the electromagnetic steel plate pair 10, the nonmagnetic portion X (nonmagnetic alloy layer 40) is provided in a portion that becomes the center bridge portion 93 and the peribridge portion 92 of the rotor 90.
  • the nonmagnetic portion X in order to form the electromagnetic steel plate pair 10 having the nonmagnetic portion X, only the portion to be the nonmagnetic portion X is heated, and it is not necessary to heat the entire electromagnetic steel plates 20 and 30. For this reason, power consumption can be reduced. Further, the nonmagnetic portion X can be formed in a short processing time in a manner similar to spot welding. Therefore, it is suitable for mass production.
  • the electrical steel sheet pair 10 having the nonmagnetic alloy layer 40 is processed into a predetermined shape. Since this processing is performed with reference to the reference hole, the magnetic steel sheet pair 10 can be processed into a predetermined shape with high accuracy.
  • the processing in this punching step is performed by wire cutting. Specifically, the electromagnetic steel plate pair 10 is processed into the shape of the rotor core 95. That is, as shown in FIG. 20, the magnetic steel plate pair 10 is processed into a donut-shaped disk shape, and a magnet attachment hole 94 is formed. At this time, the core-shaped electrical steel sheet pair 10a is processed so that the nonmagnetic portion X is located in a portion corresponding to the center bridge portion 93 and the peribridge portion 92. Of course, it may be removed by a press.
  • step S80 the electromagnetic steel plate pairs 10 are laminated to form a laminated steel plate.
  • the rotor core 95 shown in FIG. 2 in which the nonmagnetic portion X is provided in the peribridge portion 92 and the center bridge portion 93 is formed.
  • the magnet 91 is mounted (inserted and fixed) in the magnet mounting hole 94 of the rotor core 95, whereby the rotor 90 shown in FIG. 1 is completed.
  • the two steps of the above-described punching step and laminating step are provided, but this can also be performed in one step. That is, by performing the punching process by press punching instead of wire cutting, it can be punched into a predetermined shape and laminated, so that one process can be realized. Thereby, the production efficiency of the rotor core 95 can be improved.
  • the nonmagnetic portion X is formed in the peribridge portion 92 and the center bridge portion 93, the loss of the effective magnetic flux F can be reduced.
  • the nonmagnetic alloy layer 40 and each of the electromagnetic steel plates 20 and 30 are firmly modified at the nonmagnetic portion X of the electromagnetic steel plate pair 10, sufficient strength is ensured. For this reason, sufficient durability is ensured also in the rotor 90 using this electromagnetic steel plate pair 10.
  • an eddy current is generated in the electromagnetic steel sheet when the motor is used.
  • An eddy current is an eddy current generated in a metal by an electromagnetic induction effect. For this reason, the rotor 90 generates heat, resulting in energy loss. This energy loss is called eddy current loss. For this reason, in the motor, it is preferable to reduce this eddy current loss as much as possible. For this purpose, it is necessary to ensure insulation between the electrical steel sheets.
  • a space 96 is constituted by the film removing portions 23 and 33 formed in a concave shape in a portion where the insulating film does not exist between the electromagnetic steel plate pair 10 in the nonmagnetic portion X, and insulation is ensured by the space 96. ing. That is, sufficient insulation can be ensured without re-applying the insulating film to the film removing portions 23 and 33.
  • the rotor 90 can reduce eddy current loss.
  • the electrical steel sheet pair 10 having the nonmagnetic portion X includes the two electrical steel sheets 20 having the insulating coatings 21 and 31 on both surfaces via the nonmagnetic alloy layer 40. 30 are partially modified.
  • the electromagnetic steel plate pair 10 uses the electromagnetic steel plate 20 and the electromagnetic steel plate 30 as an effective magnetic path.
  • the nonmagnetic alloy layer 40 does not become an effective magnetic path.
  • the insulation coatings 21 and 31 ensure insulation between the steel plates.
  • the portions to be pressurized and energized by the electrodes 45 and 45 are the film removal portions 23 and 33 from which the insulating coatings 21 and 31 have been removed, the electrodes 45 and 45 are in direct contact with the steel material, so that unjoined portions are generated.
  • the nonmagnetic alloy layer 40 and the electromagnetic steel sheets 20 and 30 are firmly modified. Therefore, according to the electromagnetic steel sheet pair 10, the nonmagnetic alloy layer can be formed at a desired location, and strength, insulation, and an effective magnetic flux path can be ensured.
  • the diameter of the recess 22 formed in the electromagnetic steel sheet 20 positioned on the upper side is larger than the diameter of the modified metal 40a (diameter of the recess 32), but as shown in FIG.
  • the diameter of the recess 32 may be larger than the diameter of the modified metal 40a (the diameter of the recess 22). Further, as shown in FIG.
  • the modified metal 40b having a half thickness of the modified metal 40a is used as the modified metal, and is inserted into the recessed portions 22 and 32.
  • the electromagnetic steel plates 20 and 30 can be overlapped.
  • the modified metal 40b can be prevented from dropping from the recess 22 in the tying process.
  • the center bridge portion 93 and the peribridge portion 92 are illustrated as the locations where the nonmagnetic portion X is formed in the steel plate pair 10 constituting the rotor core 95.
  • the nonmagnetic portion X is formed.
  • the location to be performed is not limited to this, and may be only the center bridge portion 93 or only the peribridge portion 92.
  • the nonmagnetic portion X may be provided in only one of the center bridge portion 93 and the two peribridge portions 92. Even if the rotor core 95 is configured using any of these electromagnetic steel plates, the loss of magnetic flux in the rotor 90 can be reduced by the nonmagnetic portion X.
  • the use of the steel material pair 10 having the nonmagnetic portion X is not limited to the rotor core. That is, even a stator, a core of a transformer, or the like can be applied as long as it is effective to be partially non-magnetic.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

Provided are a pair of steel sheets, a laminated steel sheet, and a core for a dynamo electric machine, wherein a nonmagnetic layer can be formed as desired using a steel material having an insulating coating on the opposite sides in a short processing time. The pair of steel sheets, in which two electromagnetic steel sheets having an insulating coating on the opposite sides are stacked, each have a recess formed by removing a part of the insulating coating and the steel sheet, and a coating removed portion formed by removing a portion of the insulating coating on the surface opposite to the recess, said portion being corresponding to the recess, wherein the steel sheets are reformed while being stacked such that the recesses face each other, and a nonmagnetic alloy layer is formed between both recesses. A rotor core is constituted by laminating the pair of steel sheets such that the coating removed portions face each other.

Description

鋼板対、積層鋼板及び回転電機コアSteel plate pair, laminated steel plate and rotating electrical machine core
 本発明は、両面に絶縁被膜を有し部分的に非磁性の箇所を備える鋼板対、並びにその鋼板対を用いた積層鋼板及び回転電機コアに関するものである。 The present invention relates to a steel plate pair having insulating coatings on both sides and partially including nonmagnetic portions, and a laminated steel plate and a rotating electrical machine core using the steel plate pair.
 電動機や発電機などの回転電機に用いられる鉄心には一般に、高い透磁率が求められる。ところが、鉄心には部分的に、コイルや磁石の配置により有効磁気経路とならない箇所が存在する。例えば、図1に示すようなステータ80とロータ90を備える回転電機においては、ロータ90に磁石91が取り付けられている。このロータ90における、ペリブリッジ部92およびセンターブリッジ部93は、有効磁束Fの経路とはならない。このような箇所にも鉄心が存在していることは、むしろ漏れ磁束により回転電機の磁気性能を低下させている。そのため、このような箇所の磁気抵抗を高めることが望ましい。そして、磁気抵抗を高めることにより、回転電機の磁気性能を向上させることができるので回転電機の小型化を図ることもできる。 Generally, high magnetic permeability is required for iron cores used in rotating electrical machines such as electric motors and generators. However, the iron core has a portion that does not become an effective magnetic path due to the arrangement of coils and magnets. For example, in a rotating electrical machine including a stator 80 and a rotor 90 as shown in FIG. 1, a magnet 91 is attached to the rotor 90. The peribridge portion 92 and the center bridge portion 93 in the rotor 90 do not serve as a path for the effective magnetic flux F. The presence of an iron core in such a place rather deteriorates the magnetic performance of the rotating electrical machine due to leakage magnetic flux. Therefore, it is desirable to increase the magnetic resistance in such a place. Since the magnetic performance of the rotating electrical machine can be improved by increasing the magnetic resistance, the rotating electrical machine can be reduced in size.
 その一方、ロータ90は回転するため、ロータ90には遠心力が作用する。このため、ロータ90は、全体の強度を維持し磁石91を安定して保持する必要がある。従って、ペリブリッジ部92およびセンターブリッジ部93を空隙にするのは強度上好ましくない。 On the other hand, since the rotor 90 rotates, a centrifugal force acts on the rotor 90. For this reason, the rotor 90 needs to maintain the whole intensity | strength and hold | maintain the magnet 91 stably. Therefore, it is not preferable in terms of strength to make the peribridge portion 92 and the center bridge portion 93 a gap.
 そこで従来から、鉄心のうちこのような箇所を部分的に非磁性化することが行われている。例えば、特許文献1には、鉄心の該当箇所を局所的に加熱し、その後冷却することでオーステナイト領域を形成する技術が開示されている。すなわち、基材としては、準安定オーステナイト系ステンレス鋼を冷間圧延により強磁性のマルテンサイト組織としたものを用い、その一部を、この方法で非磁性のオーステナイト組織とするのである。局所的な加熱の手段としてはレーザー照射を挙げている。さらに特許文献2には、対象の磁性部材を局所的に溶融しつつ、外部から改質元素を添加して固溶させ、非磁性化することが開示されている。 Therefore, conventionally, such a portion of the iron core is partially demagnetized. For example, Patent Document 1 discloses a technique for forming an austenite region by locally heating a corresponding portion of an iron core and then cooling it. That is, as the base material, a metastable austenitic stainless steel having a ferromagnetic martensite structure formed by cold rolling is used, and a part thereof is converted to a nonmagnetic austenitic structure by this method. Laser irradiation is cited as a means of local heating. Further, Patent Document 2 discloses that a target magnetic member is locally melted and a modifying element is added from the outside to be solid-dissolved to make it non-magnetic.
特許第3507395号公報Japanese Patent No. 3507395 特開2001-93717号公報JP 2001-93717 A
 しかしながら、上記した従来の技術では、鉄心の主要部分にマルテンサイト化したオーステナイト系ステンレス鋼を用いるものでは、結晶形の歪み等のため、透磁率が一般的な電磁鋼板より劣り、最大磁束密度が不足する。また、溶融させた状態で改質元素を添加するものでは、長い処理時間を要するとともに、深さ方向の制御が困難で非磁性層を所望どおりに形成することができないという問題がある。また、改質元素を添加した分の体積増加により処理後の平坦性が悪いという問題もある。 However, in the conventional technique described above, in the case of using martensitic austenitic stainless steel for the main part of the iron core, the permeability is inferior to that of a general electromagnetic steel sheet due to crystal distortion and the maximum magnetic flux density. Run short. Further, when the modifying element is added in a melted state, there are problems that a long processing time is required and that the non-magnetic layer cannot be formed as desired because control in the depth direction is difficult. Further, there is a problem that the flatness after the treatment is poor due to the increase in volume by adding the modifying element.
 そのため、本出願人は、非磁性箇所以外の部分の鋼材の材質に関わらず適用でき、要処理時間が短く、決まった深さ方向構造の非磁性箇所を持つ鋼材を提案した(特願2008-192468)。ここで、この鋼材を回転電機コアとして使用するためには、回転電機コア内で生じる渦電流によるエネルギー損失をできるだけ低減すべく、各鋼材の両面に絶縁被膜を設けることが好ましい。ところが、上記した提案技術では、鋼材に絶縁被膜を設けることについては一切触れられていない。 Therefore, the present applicant has proposed a steel material that can be applied regardless of the material quality of the steel material other than the non-magnetic part, has a short processing time, and has a non-magnetic part having a predetermined depth structure (Japanese Patent Application No. 2008- 192468). Here, in order to use this steel material as a rotating electrical machine core, it is preferable to provide insulating coatings on both surfaces of each steel material in order to reduce energy loss due to eddy current generated in the rotating electrical machine core as much as possible. However, in the above-described proposed technology, there is no mention of providing an insulating coating on a steel material.
 そこで、本発明は上記した問題点を解決するためになされたものであり、両面に絶縁被膜を有する鋼材を用いて、要処理時間が短く、非磁性層を所望どおりに形成することができる鋼板対、積層鋼板、及び回転電機コアを提供することを課題とする。 Therefore, the present invention has been made to solve the above-described problems, and uses a steel material having insulating coatings on both sides, and a steel sheet that can be formed as desired with a short processing time and a nonmagnetic layer. It is an object to provide a pair, a laminated steel plate, and a rotating electrical machine core.
 上記課題を解決するためになされた本発明の一態様は、両面に絶縁被膜を有する2枚の鋼板を重ね合わせた鋼板対において、前記各鋼板は、前記絶縁被膜及び鋼板の一部が除去された凹部と、前記凹部とは反対面の前記絶縁被膜のうち前記凹部に対応する箇所が除去された除去部とを有し、前記各鋼板は、それぞれの前記凹部が対向するように重ね合わせられて改質されており、その両凹部間に非磁性合金層が形成されていることを特徴とする。 One aspect of the present invention made in order to solve the above-described problem is that a steel plate pair in which two steel plates having insulating coatings on both sides are overlapped, and each of the steel plates has the insulating coating and a part of the steel plate removed. And a removed portion from which the portion corresponding to the recessed portion of the insulating coating on the surface opposite to the recessed portion is removed, and the steel plates are overlapped so that the recessed portions face each other. And a nonmagnetic alloy layer is formed between the recesses.
 ここで、改質とは、部材を構成する材料の組成(特性)を変化させることである。鋼板は非磁性合金近傍で部分的に改質されており、非磁性合金は略全体にわたって改質されている。そして、鋼板と非磁性合金とは改質されると同時に接合される。 Here, reforming means changing the composition (characteristics) of the material constituting the member. The steel sheet is partially modified in the vicinity of the nonmagnetic alloy, and the nonmagnetic alloy is modified substantially throughout. Then, the steel plate and the nonmagnetic alloy are joined at the same time as being reformed.
 このため、この鋼板対では、凹部が形成された以外の部分において強い透磁率を有するため磁束を透過させる一方、凹部が形成された部分では非磁性合金層が磁束の透過を抑えるため局所的な磁束の漏れを防止することができる。また、各鋼板間には絶縁被膜が存在するため、鋼板間における絶縁が確保されている。さらに、各鋼板は、それぞれの凹部が対向するように重ね合わせられて改質されているので、鋼板対に未接合部が生じないため、十分な強度を確保することができる。 For this reason, in this steel plate pair, magnetic flux is transmitted because it has a strong magnetic permeability in a portion other than where the concave portion is formed, while a nonmagnetic alloy layer suppresses the transmission of magnetic flux in the portion where the concave portion is formed. Magnetic flux leakage can be prevented. Moreover, since an insulation film exists between the steel plates, insulation between the steel plates is ensured. Furthermore, since each steel plate is superposed and modified so that the respective concave portions face each other, an unjoined portion does not occur in the steel plate pair, so that sufficient strength can be ensured.
 上記した鋼板対において、前記各鋼板は、前記各除去部からの加圧通電により改質されていることが望ましい。 In the steel plate pair described above, it is preferable that each steel plate is modified by applying a pressure from each removing portion.
 このように加圧通電により鋼板を改質することができるのは、各鋼板が凹部とは反対面の絶縁被膜のうち凹部に対応する箇所が除去された除去部を有しているからである。そして、加圧通電により鋼板同士を改質することにより、非磁性合金層の一部と各鋼板の一部とが溶融するため、両凹部内に隙間なく非磁性合金層を形成することができる。また、非磁性合金層を短い処理時間で形成することができる。 The reason why the steel plates can be modified by applying pressure in this way is that each steel plate has a removed portion from which the portion corresponding to the recess is removed from the insulating coating on the surface opposite to the recess. . Then, by reforming the steel plates by applying pressure, a part of the nonmagnetic alloy layer and a part of each steel plate are melted, so that the nonmagnetic alloy layer can be formed without gaps in both recesses. . Further, the nonmagnetic alloy layer can be formed in a short processing time.
 また、上記した鋼板対において、前記除去部は、前記各鋼板の表面に対して凹状となっていることが望ましい。 Further, in the above steel plate pair, it is desirable that the removal portion is concave with respect to the surface of each steel plate.
 このように除去部が凹状にされていることにより、鋼板対を積層した場合、確実に除去部同士が接触せずに空間が形成されるため、除去部に絶縁被膜を再塗布しなくても鋼材対間における絶縁を確保することができる。これにより、この鋼板対を用いて積層鋼板又は回転電機コアを構成することにより、除去部に絶縁被膜を再塗布しなくても、非磁性合金層で発生する渦電流によるエネルギー損失を小さくすることができる。 Thus, when the steel plate pairs are stacked, the removal portion is concave, so that a space is formed without the removal portions being in contact with each other. Insulation between the steel material pairs can be ensured. This makes it possible to reduce the energy loss due to the eddy current generated in the nonmagnetic alloy layer without re-applying the insulating coating on the removed part by configuring the laminated steel plate or the rotating electrical machine core using this steel plate pair. Can do.
 ここで、除去部を凹状にすると、凹状に変形した鋼材の一部(余肉)が凹状部周縁に逃げてしまい、除去部の周縁部が盛り上がってしまうおそれがある。そうすると、鋼板対の平坦性が失われ、そのままでは積層することが困難となる。このため、盛り上がった部分を除去するための後工程が必要になってしまう。 Here, if the removal portion is concave, a part of the steel material deformed into a concave shape (surplus) escapes to the periphery of the concave portion, and the peripheral portion of the removal portion may rise. If it does so, the flatness of a steel plate pair will be lost and it will become difficult to laminate | stack as it is. For this reason, the post process for removing the raised part will be needed.
 そこで、この場合には、前記各凹部により形成された空間の容積が、前記非磁性合金層の体積よりも大きいことが好ましい。 Therefore, in this case, it is preferable that the volume of the space formed by the recesses is larger than the volume of the nonmagnetic alloy layer.
 こうすることにより、除去部周縁付近の鋼板が盛り上がることなく、除去部を凹状にすることができるからである。その結果、後処理を行うことなく、鋼板対を積層して積層鋼板あるいは回転電機コアを構成することができる。 This is because the removal portion can be made concave without causing the steel plate near the periphery of the removal portion to rise. As a result, a laminated steel plate or a rotating electrical machine core can be configured by stacking steel plate pairs without performing post-processing.
 そして、上記したいずれかの鋼板対を用いて、積層鋼板あるいは回転電機コアを構成する場合には、前記除去部同士が対向するように積層すればよい。 And when a laminated steel plate or a rotating electrical machine core is constituted by using any one of the steel plate pairs described above, the removed portions may be laminated so as to face each other.
 このような積層鋼板あるいは回転電機コアによれば、非磁性層を所望どおりに形成することができるとともに、十分な絶縁性と性能と強度を確保することができる。 According to such a laminated steel plate or rotating electrical machine core, the nonmagnetic layer can be formed as desired, and sufficient insulation, performance and strength can be ensured.
 本発明に係る鋼板対によれば、上記した通り、両面に絶縁被膜を有する鋼材を用いて、要処理時間が短く、非磁性層を所望どおりに形成することができる。そして、この鋼板対を使用することにより、所望どおりの非磁性層が形成され、十分な絶縁性と性能と強度とが確保された積層鋼板あるいは回転電機コアを得ることができる。 According to the steel plate pair according to the present invention, as described above, the non-magnetic layer can be formed as desired by using a steel material having an insulating coating on both surfaces and a short processing time. By using this steel plate pair, a laminated steel plate or a rotating electrical machine core in which a desired nonmagnetic layer is formed and sufficient insulation, performance, and strength are ensured can be obtained.
回転電機のロータにおける有効磁束の経路、及び有効磁束の経路とならない部位を説明する斜視図である。It is a perspective view explaining the site | part which does not become a path | route of the effective magnetic flux in the rotor of a rotary electric machine, and an effective magnetic flux. 実施の形態に係るロータにおける非磁性箇所の構造を示す断面図である。It is sectional drawing which shows the structure of the nonmagnetic location in the rotor which concerns on embodiment. 実施の形態に係るロータに用いる電磁鋼板対における非磁性箇所の構造を示す断面図である。It is sectional drawing which shows the structure of the nonmagnetic location in the electromagnetic steel plate pair used for the rotor which concerns on embodiment. 電磁鋼板対及びロータコアの製造手順を示すフローチャートである。It is a flowchart which shows the manufacture procedure of an electromagnetic steel plate pair and a rotor core. 絶縁被膜を除去している様子を模式的に示す図である。It is a figure which shows typically a mode that the insulating film is removed. 被膜除去部が形成された電磁鋼板を示す断面図である。It is sectional drawing which shows the electromagnetic steel plate in which the film removal part was formed. 凹部が形成された電磁鋼板を示す断面である。It is a cross section which shows the electromagnetic steel plate in which the recessed part was formed. 凹部をプレスで成形している様子を模式的に示す図である。It is a figure which shows typically a mode that the recessed part is shape | molded with the press. 凹部をプレスで成形する前に絶縁被膜が除去された電磁鋼板を示す断面図である。It is sectional drawing which shows the electromagnetic steel plate from which the insulating film was removed before shape | molding a recessed part with a press. 凹部をプレスで成形する前に設ける逃がし穴を形成している様子を模式的に示す図である。It is a figure which shows typically a mode that the relief hole provided before shape | molding a recessed part with a press is formed. 改質金属を電磁鋼板の凹部に挿入する様子を模式的に示す図である。It is a figure which shows typically a mode that a modified metal is inserted in the recessed part of an electromagnetic steel plate. 図11のAA断面を示す断面図である。It is sectional drawing which shows the AA cross section of FIG. 改質金属を電磁鋼板の凹部にプレスで挿入する様子を模式的に示す図である。It is a figure which shows typically a mode that a modified metal is inserted in the recessed part of an electromagnetic steel plate with a press. 2枚の電磁鋼板を抱き合わせる様子を模式的に示す図である。It is a figure which shows typically a mode that two electromagnetic steel plates are tied together. 図14のBB断面を示す断面図である。It is sectional drawing which shows the BB cross section of FIG. 2枚の電磁鋼板を抱き合わせた状態を模式的に示す図である。It is a figure which shows typically the state which tucked together two electromagnetic steel plates. 図16のCC断面を示す断面図である。It is sectional drawing which shows CC cross section of FIG. 加圧通電を行う電極で2枚の電磁鋼板を挟み込んだ状態を模式的に示す図である。It is a figure which shows typically the state which pinched | interposed two electromagnetic steel plates with the electrode which performs a pressurization electricity supply. 改質処理中の状態を模式的に示す図である。It is a figure which shows typically the state in process of a modification | reformation process. ロータコア形状に加工された電磁鋼板対の一部を示す平面図である。It is a top view which shows a part of electromagnetic steel plate pair processed into the rotor core shape. 電磁鋼板に設ける凹部の変形例を示す図である。It is a figure which shows the modification of the recessed part provided in an electromagnetic steel plate. 改質金属の変形例を示す図である。It is a figure which shows the modification of a modified metal.
 以下、本発明を具体化した形態について、添付図面を参照しつつ詳細に説明する。本形態に係る回転電機は、図1に示したロータ90のペリブリッジ部92およびセンターブリッジ部93として、以下に説明する手順で作成した非磁性箇所を備えたものである。センターブリッジ部93は、隣り合う磁石取り付け穴94の間の箇所であり、ペリブリッジ部92は、磁石取り付け穴94と外周縁との間の箇所である。ロータ90およびステータ80はいずれも、多数枚の電磁鋼板を積層してなるコアを有するものであり、ロータ90は非磁性箇所を備えた電磁鋼板対10を多数積層してなるロータコア95を備えている。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The rotating electrical machine according to the present embodiment is provided with a nonmagnetic portion created by the procedure described below as the peribridge portion 92 and the center bridge portion 93 of the rotor 90 shown in FIG. The center bridge portion 93 is a location between the adjacent magnet attachment holes 94, and the peribridge portion 92 is a location between the magnet attachment holes 94 and the outer peripheral edge. Each of the rotor 90 and the stator 80 has a core formed by stacking a large number of electromagnetic steel plates, and the rotor 90 includes a rotor core 95 formed by stacking a large number of electromagnetic steel plate pairs 10 each having a nonmagnetic portion. Yes.
 ここで、改質とは、部材を構成する材料の組成(特性)を変化させることである。鋼板は非磁性合金近傍で部分的に改質されており、非磁性合金は略全体にわたって改質されている。そして、本実施の形態においては、鋼板と非磁性合金とは改質されると同時に接合される。 Here, reforming means changing the composition (characteristics) of the material constituting the member. The steel sheet is partially modified in the vicinity of the nonmagnetic alloy, and the nonmagnetic alloy is modified substantially throughout. And in this Embodiment, a steel plate and a nonmagnetic alloy are joined simultaneously with a modification | reformation.
 まず、本形態のロータ90における非磁性箇所の構造を説明する。ロータ90における非磁性箇所は、図2に示す断面構造を有している。図2は、ロータ90の非磁性箇所の一部を示す断面図である。図2に示す非磁性箇所Xは、主として、電磁鋼板対10に備わる非磁性合金層40により形成されている。この電磁鋼板対10は、2枚の電磁鋼板20,30を重ね合わせ、部分的に改質したものである。すなわち、図3に示すように、本形態の電磁鋼板対10は、両面に絶縁被膜21を有する電磁鋼板20と、両面に絶縁被膜31を有する電磁鋼板30とを有するものである。 First, the structure of nonmagnetic portions in the rotor 90 of this embodiment will be described. The nonmagnetic portion in the rotor 90 has a cross-sectional structure shown in FIG. FIG. 2 is a cross-sectional view showing a part of the nonmagnetic portion of the rotor 90. The nonmagnetic portion X shown in FIG. 2 is mainly formed by the nonmagnetic alloy layer 40 provided in the electromagnetic steel plate pair 10. This electromagnetic steel plate pair 10 is obtained by superposing two electromagnetic steel plates 20 and 30 and partially modifying them. That is, as shown in FIG. 3, the electrical steel sheet pair 10 of the present embodiment includes the electrical steel sheet 20 having the insulating coating 21 on both surfaces and the electrical steel sheet 30 having the insulating coating 31 on both surfaces.
 そして、電磁鋼板20と電磁鋼板30とには、それぞれ凹部22と凹部32とが形成されており、これら凹部22,32が対向するように重ね合わせられており、凹部22,32間に非磁性合金層40が形成されている。そして、凹部間22,32間に食い込むように形成された非磁性合金層40によって電磁鋼板20,30が改質されている。つまり、非磁性合金層40と電磁鋼板20とが接触面で改質され、非磁性合金層40と電磁鋼板30とが接触面で改質されている。なお、非磁性合金層40と電磁鋼板20との接触面、および非磁性合金層40と電磁鋼板30との接触面には、絶縁被膜21および31は介在していない。後述するように、電磁鋼板対10の製造の際に、この部分における絶縁被膜は除去されるからである。一方、電磁鋼板20と電磁鋼板30とは、絶縁被膜21,31を介して接触しているが接合されていない。 The electromagnetic steel plate 20 and the electromagnetic steel plate 30 are respectively provided with a recess 22 and a recess 32, and are superposed so that the recesses 22 and 32 are opposed to each other. An alloy layer 40 is formed. The electromagnetic steel sheets 20 and 30 are modified by the nonmagnetic alloy layer 40 formed so as to bite between the recesses 22 and 32. That is, the nonmagnetic alloy layer 40 and the electromagnetic steel plate 20 are modified at the contact surface, and the nonmagnetic alloy layer 40 and the electromagnetic steel plate 30 are modified at the contact surface. The insulating coatings 21 and 31 are not interposed on the contact surface between the nonmagnetic alloy layer 40 and the electromagnetic steel plate 20 and the contact surface between the nonmagnetic alloy layer 40 and the electromagnetic steel plate 30. This is because, as will be described later, when the electromagnetic steel plate pair 10 is manufactured, the insulating coating in this portion is removed. On the other hand, the electromagnetic steel plate 20 and the electromagnetic steel plate 30 are in contact with each other through the insulating coatings 21 and 31 but are not joined.
 ここで、電磁鋼板対10の非磁性箇所Xにおいては、電磁鋼板20,30が磁性体であり、非磁性合金層40が非磁性体である。なお、非磁性合金層40は、Feを主成分としてそれにNi、Cr等の合金元素を添加してなる、オーステナイト相の非磁性の合金層である。よって、非磁性箇所Xにおいて有効な磁気経路となりうるのは、非磁性合金層40を挟み込んでいる電磁鋼板20及び電磁鋼板30の薄い鋼材層の部分だけである。これにより、非磁性箇所Xでは、電磁鋼板対10の全厚のうちごく限られた部分しか磁気経路となり得ない。このために磁気抵抗が大きく、実質的に非磁性の箇所と見ることができ、磁束の漏れを抑制することができる。 Here, in the nonmagnetic portion X of the electromagnetic steel plate pair 10, the electromagnetic steel plates 20 and 30 are magnetic bodies, and the nonmagnetic alloy layer 40 is a nonmagnetic body. The nonmagnetic alloy layer 40 is an austenitic nonmagnetic alloy layer formed by adding Fe and other alloy elements such as Ni and Cr to the main component. Therefore, an effective magnetic path in the nonmagnetic portion X can be only the thin steel layer portion of the electromagnetic steel sheet 20 and the electromagnetic steel sheet 30 sandwiching the nonmagnetic alloy layer 40. Thereby, in the nonmagnetic location X, only a very limited portion of the total thickness of the electromagnetic steel plate pair 10 can be a magnetic path. For this reason, magnetic resistance is large and it can be regarded as a substantially non-magnetic part, and leakage of magnetic flux can be suppressed.
 また、電磁鋼板対10において、その非磁性合金層40の電気抵抗が高い。つまり、非磁性合金層40は、電気抵抗及び磁気抵抗において電磁鋼板20及び電磁鋼板30より高いものである。 Moreover, in the electrical steel sheet pair 10, the electric resistance of the nonmagnetic alloy layer 40 is high. That is, the nonmagnetic alloy layer 40 is higher in electrical resistance and magnetic resistance than the electromagnetic steel sheet 20 and the electromagnetic steel sheet 30.
 さらに、電磁鋼板対10における非磁性合金層40(非磁性箇所X)の両側面には、各電磁鋼板20,30の絶縁被膜21,31が除去された被膜除去部23,33が形成されている。この被膜除去部23,33は、電磁鋼板20,30の凹部22,32に対応する反対側面に設けられており、他の箇所の鋼板表面に対して凹状になっている。 Further, on both side surfaces of the nonmagnetic alloy layer 40 (nonmagnetic portion X) in the electromagnetic steel sheet pair 10, film removal portions 23 and 33 from which the insulating films 21 and 31 of the respective electromagnetic steel sheets 20 and 30 are removed are formed. Yes. These coating removal parts 23 and 33 are provided on the opposite side surface corresponding to the recessed parts 22 and 32 of the electromagnetic steel plates 20 and 30, and are concave with respect to the steel plate surfaces at other locations.
 そして、このような電磁鋼板対10が、被膜除去部23と被膜除去部33とが対向するようにして多数枚積層されてロータ90のコア95が構成されている。このロータコア95では、図1に示したロータ90のペリブリッジ部92およびセンターブリッジ部93が、図2に示す非磁性箇所Xとなるようにされている。このため、ロータ90において、磁石91の磁束はほとんどペリブリッジ部92やセンターブリッジ部93を通らない。よって、磁石91の磁束のほとんどが有効磁束Fとなる。また、電磁鋼板対10のうち非磁性箇所X以外の部分は、一般的なFe-Si系のものであり、透磁率が非常に高い。したがって、本形態の回転電機の磁気効率は優れている。そして、各鋼板間には絶縁被膜が介在しているため絶縁が確保されている。なお、非磁性箇所Xにおける鋼板対間には絶縁被膜が存在しないが、凹状に形成された被膜除去部23,33によって空間96が構成されており、この空間により絶縁が確保されている。このように本形態では、磁気効率に優れた非磁性箇所を有し、各鋼材間における絶縁を確保した鋼板対、積層鋼板および回転電機コアが実現されている。 A large number of such electrical steel sheet pairs 10 are laminated so that the film removal unit 23 and the film removal unit 33 face each other, thereby forming the core 95 of the rotor 90. In the rotor core 95, the peribridge portion 92 and the center bridge portion 93 of the rotor 90 shown in FIG. 1 are configured to be nonmagnetic portions X shown in FIG. For this reason, in the rotor 90, the magnetic flux of the magnet 91 hardly passes through the peribridge portion 92 and the center bridge portion 93. Therefore, most of the magnetic flux of the magnet 91 becomes the effective magnetic flux F. Further, the portion other than the nonmagnetic portion X in the electromagnetic steel plate pair 10 is of a general Fe—Si type and has a very high magnetic permeability. Therefore, the magnetic efficiency of the rotating electrical machine of this embodiment is excellent. Insulation is ensured because an insulating film is interposed between the steel plates. In addition, although an insulation film does not exist between the steel plate pairs in the nonmagnetic portion X, a space 96 is constituted by the film removal portions 23 and 33 formed in a concave shape, and insulation is ensured by this space. As described above, in this embodiment, a steel plate pair, a laminated steel plate, and a rotating electrical machine core that have nonmagnetic portions with excellent magnetic efficiency and ensure insulation between the steel materials are realized.
 続いて、非磁性箇所を有する電磁鋼板対10及びロータコア95の製造方法について説明する。本形態では、図4に示すように、基準穴あけ工程(ステップS10)、絶縁被膜除去工程(ステップS20)、凹部形成工程(ステップS30)、改質金属添加工程(ステップS40)、抱き合わせ工程(ステップS50)、非磁性改質処理工程(ステップS60)、抜き工程(ステップS70)、及び積層工程(ステップS80)が順に実施される。そして、基準穴あけ工程から非磁性改質処理工程(S10~S60)までで電磁鋼板対10が製造され、その後、抜き工程及び積層工程(S70,S80)が実施されることにより積層鋼板であるロータコア95が製造される。なお、後述するように、絶縁被膜除去工程と凹部形成工程との間に、余肉逃がし穴抜き工程を実施する場合もある。 Then, the manufacturing method of the electromagnetic steel plate pair 10 and the rotor core 95 which have a nonmagnetic location is demonstrated. In this embodiment, as shown in FIG. 4, a reference hole drilling step (step S10), an insulating film removing step (step S20), a recess forming step (step S30), a modified metal addition step (step S40), and a tying step (step) S50), a non-magnetic modification treatment process (step S60), a removal process (step S70), and a lamination process (step S80) are performed in order. Then, the electrical steel sheet pair 10 is manufactured from the reference drilling process to the non-magnetic modification treatment process (S10 to S60), and then the punching process and the laminating process (S70, S80) are performed, so that the rotor core is a laminated steel sheet. 95 is manufactured. In addition, as will be described later, there is a case where a surplus escape step is performed between the insulating film removing step and the recess forming step.
 まず、基準穴あけ工程(ステップS10)では、両面に絶縁被膜21,31を有する電磁鋼板20,30のそれぞれに対して、後工程(ステップS20~S80)における加工の基準となる基準穴を形成する。本形態では、ワイヤカットにより基準穴を形成する。このような基準穴を形成しておくことにより、ロータコア95を構成するための鋼板対10a及びロータコア95を精度良く製造することができる。なお、本形態では、基準穴をワイヤカットにより形成しているが、プレス等によって形成するようにしてもよい。 First, in the reference drilling step (step S10), a reference hole serving as a reference for processing in the subsequent steps (steps S20 to S80) is formed on each of the electromagnetic steel sheets 20 and 30 having the insulating coatings 21 and 31 on both surfaces. . In this embodiment, the reference hole is formed by wire cutting. By forming such a reference hole, the steel plate pair 10a and the rotor core 95 for constituting the rotor core 95 can be manufactured with high accuracy. In this embodiment, the reference hole is formed by wire cutting, but may be formed by a press or the like.
 絶縁被膜除去工程(ステップS20)では、各電磁鋼板20,30に備わる各絶縁被膜21,31のうち凹部22,32が形成される反対側を、研磨により除去する。この研磨は、図5に示すように、研磨ローラ52により行われる。なお、本形態では、絶縁被膜21,31の除去を研磨等により行っているが、エッチング等によって行うようにしてもよい。そして、絶縁被膜除去工程が終了すると、図6に示すように、各電磁鋼板20,30に被膜除去部23,33が形成される。これにより、各電磁鋼板20,30では被膜除去部23,33において鋼板面が露出する。 In the insulating coating removing step (step S20), the opposite side of the insulating coatings 21 and 31 provided in the electromagnetic steel plates 20 and 30 where the recesses 22 and 32 are formed is removed by polishing. This polishing is performed by a polishing roller 52 as shown in FIG. In this embodiment, the insulating films 21 and 31 are removed by polishing or the like, but may be performed by etching or the like. When the insulating film removing step is completed, film removing portions 23 and 33 are formed on the electromagnetic steel plates 20 and 30 as shown in FIG. Thereby, in each electromagnetic steel plate 20, 30, the steel plate surface is exposed at the coating removal portions 23, 33.
 凹部形成工程(ステップS30)では、図7に示すように、被膜除去部23,33の反対面側に凹部22,32を形成する。本形態では、切削加工(例えば、エンドミルによるフライス加工など)により凹部22,32を形成する。この凹部22,32は、改質金属40aが挿入される空間42となる部分である。本形態では、凹部22,32はともに円板形状であり、凹部22の径が凹部32の径よりも若干大きい。凹部22,23の深さは同じであり、各電磁鋼板20,30の厚さの半分程度である。なお、凹部の形状は、円板形状に限らず、深さが均一な形状であれば特に限定はされない。凹部の大きさや形状は、形成したい非磁性箇所Xの領域に応じて設定すればよい。 In the recess forming step (step S30), as shown in FIG. 7, the recesses 22 and 32 are formed on the opposite side of the film removing portions 23 and 33. In this embodiment, the recesses 22 and 32 are formed by cutting (for example, milling with an end mill). The recesses 22 and 32 are portions that become spaces 42 into which the modified metal 40a is inserted. In this embodiment, the recesses 22 and 32 are both disk-shaped, and the diameter of the recess 22 is slightly larger than the diameter of the recess 32. The depths of the recesses 22 and 23 are the same, and are about half the thickness of the electromagnetic steel plates 20 and 30. The shape of the recess is not limited to a disc shape, and is not particularly limited as long as the depth is a uniform shape. What is necessary is just to set the magnitude | size and shape of a recessed part according to the area | region of the nonmagnetic location X to form.
 ここで本形態では、切削加工により凹部22,32を形成しているが、図8に示すように、プレス機54により凹部22,32を成形するようにしてもよい。この場合には、凹部22,32を成形する前に、図9に示すように、凹部成形部分の絶縁被膜21,31をあらかじめ除去しておくことが好ましい。具体的には、絶縁被膜除去工程(ステップS20)において、各電磁鋼板20,30の両面側に研磨ローラ52を対向配置して絶縁被膜21,31を除去すればよい。また、絶縁被膜除去工程(ステップS20)と凹部形成工程(ステップS30)との間に、余肉逃がし穴抜き工程を設けることが好ましい。具体的に余肉逃がし穴抜き工程において、図10に示すように、凹部22,32を成形する際に発生する余肉を逃がす逃がし穴55をプレス機54aを用いて設ければよい。この逃がし穴55は、磁石取り付け穴94となる箇所(抜き工程で加工される部分:図20参照)に設けられる。このような逃がし穴55を設けることにより、プレスにより凹部22,32を成形した際に発生する余肉を、逃がし穴55に逃がすことができるため、成形後の各電磁鋼板20,30における表面の平坦性を確保することができる。つまり、プレスによっても凹部22,32を精度良く形成することができる。また、プレス成形であれば余肉逃がし穴抜き加工工程を設けても、切削加工に比べ、凹部22,32を短時間で形成することができる。 In this embodiment, the recesses 22 and 32 are formed by cutting, but the recesses 22 and 32 may be formed by a press machine 54 as shown in FIG. In this case, before forming the recesses 22 and 32, as shown in FIG. 9, it is preferable to remove the insulating coatings 21 and 31 at the recess forming portions in advance. Specifically, in the insulating coating removing step (step S20), the insulating coatings 21 and 31 may be removed by disposing the polishing rollers 52 on both sides of each of the electromagnetic steel plates 20 and 30 so as to face each other. Moreover, it is preferable to provide a surplus escape step between the insulating film removing step (step S20) and the recess forming step (step S30). Specifically, as shown in FIG. 10, in the extra space escape hole punching step, an escape hole 55 that escapes the extra space generated when the concave portions 22 and 32 are formed may be provided using a press machine 54a. The escape hole 55 is provided at a location to be the magnet attachment hole 94 (a portion processed in the punching process: see FIG. 20). By providing such a relief hole 55, the surplus generated when the recesses 22 and 32 are formed by pressing can be released to the relief hole 55. Flatness can be ensured. That is, the recesses 22 and 32 can be formed with high accuracy by pressing. Further, in the case of press molding, the recesses 22 and 32 can be formed in a short time as compared with the cutting process even if a surplus relief piercing process is provided.
 改質金属添加工程(ステップS40)では、非磁性合金層40を形成する改質金属40aを電磁鋼板の凹部に挿入する。本形態では、図11及び図12に示すように、電磁鋼板30の凹部32に改質金属40aを挿入する。この改質金属40aは、Feを主成分としてそれにNi,Crを添加したオーステナイト相の非磁性合金であり、円板形状に成形されたものである。改質金属40aの径は凹部32の径と同じであり、高さは凹部32の深さの2倍である。なお、図12は、図11のAA断面を示す断面図である。また、改質金属40aの融点は、電磁鋼板20及び電磁鋼板30の融点よりもやや低い。 In the modified metal addition step (step S40), the modified metal 40a forming the nonmagnetic alloy layer 40 is inserted into the recess of the electromagnetic steel sheet. In this embodiment, as shown in FIGS. 11 and 12, the modified metal 40 a is inserted into the recess 32 of the electromagnetic steel sheet 30. The modified metal 40a is an austenitic nonmagnetic alloy in which Fe is a main component and Ni and Cr are added thereto, and is formed into a disk shape. The diameter of the modified metal 40 a is the same as the diameter of the recess 32, and the height is twice the depth of the recess 32. FIG. 12 is a cross-sectional view showing the AA cross section of FIG. Further, the melting point of the modified metal 40 a is slightly lower than the melting points of the electromagnetic steel sheet 20 and the electromagnetic steel sheet 30.
 ここで、改質金属40aを電磁鋼板の凹部に挿入する方法として特に制限はないが、図13に示すように、プレス機54を用いて行うと挿入作業を効率よく行うことができる。具体的には、電磁鋼板30の凹部側に治具56を介して板状の非磁性合金を配置し、プレス機54で板状の非磁性合金を打ち抜いて円板形状の改質金属40aを成形するとともに、凹部32内に挿入するようにすればよい。また、別の方法としては、チップマウンター等の搬送装置を用いて挿入することもできる。 Here, there is no particular limitation on the method of inserting the modified metal 40a into the recess of the electromagnetic steel sheet, but as shown in FIG. 13, the insertion work can be efficiently performed by using a press machine 54. Specifically, a plate-like nonmagnetic alloy is disposed on the concave side of the electromagnetic steel plate 30 via a jig 56, and the plate-like nonmagnetic alloy is punched out by a press machine 54 to obtain a disc-shaped modified metal 40a. What is necessary is just to make it insert in the recessed part 32 while shaping | molding. As another method, it can be inserted using a transfer device such as a chip mounter.
 抱き合わせ工程(ステップS50)では、図14に示すように、改質金属40aが凹部32に挿入された電磁鋼板30の上方から、電磁鋼板20を載せる。その際の断面図を図15に示す。より詳細には、電磁鋼板20の凹部22と電磁鋼板30の凹部32とが対向するように、電磁鋼板20が電磁鋼板30に重ね合わされる。これにより、電磁鋼板30の上面より突き出た改質金属40aの上半分が、図中上の電磁鋼板20の凹部22に挿入される。その結果、図16に示すように、改質金属40aは、電磁鋼板20と電磁鋼板30との間にちょうど収まる。ここで、図16のCC断面を図17に示す。つまり、凹部22と凹部32が仕切る空間42内に、改質金属40aが収容される。ここで、空間42の容積は、改質金属40aの体積よりも大きい。なお、電磁鋼板30の上側の表面と電磁鋼板20の下側の表面とは、凹部32及び凹部22の外側で絶縁被膜31と絶縁被膜21とが接している。つまり、電磁鋼板20と電磁鋼板30との鋼材部分は直接的に接しておらず、絶縁被膜21,31を介して間接的に接している。 In the tying process (step S50), as shown in FIG. 14, the electromagnetic steel sheet 20 is placed from above the electromagnetic steel sheet 30 in which the modified metal 40a is inserted into the recess 32. A cross-sectional view at that time is shown in FIG. More specifically, the electromagnetic steel plate 20 is superimposed on the electromagnetic steel plate 30 such that the recess 22 of the electromagnetic steel plate 20 and the recess 32 of the electromagnetic steel plate 30 face each other. Thereby, the upper half of the modified metal 40a protruding from the upper surface of the electromagnetic steel sheet 30 is inserted into the recess 22 of the electromagnetic steel sheet 20 in the upper part of the drawing. As a result, as shown in FIG. 16, the modified metal 40 a is just fit between the electromagnetic steel sheet 20 and the electromagnetic steel sheet 30. Here, the CC cross section of FIG. 16 is shown in FIG. That is, the modified metal 40a is accommodated in the space 42 that the concave portion 22 and the concave portion 32 partition. Here, the volume of the space 42 is larger than the volume of the modified metal 40a. The insulating coating 31 and the insulating coating 21 are in contact with the upper surface of the electromagnetic steel sheet 30 and the lower surface of the electromagnetic steel sheet 20 outside the recess 32 and the recess 22. That is, the steel material portions of the electromagnetic steel plate 20 and the electromagnetic steel plate 30 are not in direct contact with each other, but are in indirect contact with each other via the insulating coatings 21 and 31.
 非磁性改質処理工程(ステップS60)では、図18に示すように、電極45,45で電磁鋼板20と電磁鋼板30とを挟み込む。電極45,45で挟み込む箇所は、改質金属40aを配置した箇所、つまり被膜除去部23,33である。これにより、電極45,45は、電磁鋼板20,30の鋼板面に直接接触する。そして、電極45,45で電磁鋼板20と電磁鋼板30とを挟み込んだ後、加圧した状態で電極45,45間に通電する。 In the non-magnetic modification process (step S60), as shown in FIG. 18, the electromagnetic steel sheet 20 and the electromagnetic steel sheet 30 are sandwiched between the electrodes 45 and 45. The locations sandwiched between the electrodes 45, 45 are locations where the modified metal 40a is disposed, that is, the coating removal portions 23, 33. Thereby, the electrodes 45 and 45 are in direct contact with the steel plate surfaces of the electromagnetic steel plates 20 and 30. Then, after the electromagnetic steel sheet 20 and the electromagnetic steel sheet 30 are sandwiched between the electrodes 45, 45, electricity is passed between the electrodes 45, 45 in a pressurized state.
 ここで、加圧の圧力は135MPa程度とし、電流値は7.8kA程度、通電時間は0.15秒程度とする。これらの加圧通電の条件は、使用する電磁鋼板や改質金属の仕様(厚さや大きさ、材質など)により異なるため、実験等により最適な条件を決定しておけばよい。そして、加圧通電の抵抗発熱により、電気抵抗の高い改質金属40aが溶融するとともに、各電磁鋼板20,30の被膜除去部23,33が軟化する。このとき、改質金属40a、電磁鋼板20の凹部22周辺、及び電磁鋼板30の凹部32周辺が溶融し始める。改質金属40aが電磁鋼板20及び電磁鋼板30の一部とともに溶融金属41となった様子を図19に示す。 Here, the pressure of pressurization is about 135 MPa, the current value is about 7.8 kA, and the energization time is about 0.15 seconds. These pressurization energization conditions differ depending on the specifications (thickness, size, material, etc.) of the electromagnetic steel sheet and the reformed metal to be used, and therefore the optimum conditions may be determined by experiments. Then, the reformed metal 40a having a high electrical resistance is melted by the resistance heat generated by the energization of pressure, and the film removing portions 23 and 33 of the electromagnetic steel plates 20 and 30 are softened. At this time, the reformed metal 40a, the periphery of the recess 22 of the electromagnetic steel sheet 20, and the periphery of the recess 32 of the electromagnetic steel sheet 30 start to melt. FIG. 19 shows a state in which the modified metal 40 a has become a molten metal 41 together with a part of the electromagnetic steel sheet 20 and the electromagnetic steel sheet 30.
 また、電極45,45への通電により軟化した電磁鋼板20,30の被膜除去部23,33が、電極45,45からの加圧により凹状(電極45の先端部形状)に成形される。このとき、被膜除去部23,33の周縁付近が盛り上がって凸状になることはない。各凹部22,23で形成される空間42の容積が、改質金属40a(非磁性合金層40)の体積よりも大きくされているからである。 Further, the film removal portions 23 and 33 of the electrical steel sheets 20 and 30 softened by energization of the electrodes 45 and 45 are formed into a concave shape (the shape of the tip of the electrode 45) by pressurization from the electrodes 45 and 45. At this time, the vicinity of the periphery of the film removing portions 23 and 33 does not rise and become convex. This is because the volume of the space 42 formed by the concave portions 22 and 23 is larger than the volume of the modified metal 40a (nonmagnetic alloy layer 40).
 その後、電極45,45への通電が終了すると、溶融金属41が凝固し始める。この溶融金属41の組成は、Feを主成分とし、改質金属に由来するNi,Crを相当程度に含んだものとなっている。このため、溶融金属41が凝固すると、オーステナイト相の非磁性合金層40となる。電極45,45への通電が終了されても、電極45,45による加圧は終了しておらず継続して行われている。このため、溶融金属41が凝固していく際にひけ巣が生じない。従って、電磁鋼板20,30と改質金属40a(非磁性合金層40)との改質がしっかりと行われ、十分な強度を確保することができる。そして、電極45,45による加圧が終了して電極45,45が各電磁鋼板20,30から離されると、図3に示した、非磁性合金層40を有し被膜除去部23,33が凹状に成形された電磁鋼板対10が形成される。 Thereafter, when the energization of the electrodes 45, 45 is completed, the molten metal 41 starts to solidify. The composition of the molten metal 41 is composed mainly of Fe and contains a considerable amount of Ni and Cr derived from the modified metal. For this reason, when the molten metal 41 solidifies, it becomes the nonmagnetic alloy layer 40 of an austenite phase. Even when the energization of the electrodes 45, 45 is finished, the pressurization by the electrodes 45, 45 is not finished and is continuously performed. For this reason, when the molten metal 41 is solidified, no sinkhole is generated. Therefore, the electrical steel sheets 20 and 30 and the modified metal 40a (nonmagnetic alloy layer 40) are firmly modified, and sufficient strength can be ensured. When the pressurization by the electrodes 45, 45 is finished and the electrodes 45, 45 are separated from the electromagnetic steel plates 20, 30, the non-magnetic alloy layer 40 shown in FIG. A pair of electromagnetic steel sheets 10 formed into a concave shape is formed.
 なお、上記では1つの非磁性箇所Xに着目して説明を行ったが、実際には、非磁性箇所X(非磁性合金層40)は、電磁鋼板対10において多数箇所に設けられる。すなわち、電磁鋼板対10において、ロータ90のセンターブリッジ部93及びペリブリッジ部92となる部分に、非磁性箇所X(非磁性合金層40)がそれぞれ設けられる。 In the above description, the description has been made by paying attention to one nonmagnetic portion X, but actually, the nonmagnetic portion X (nonmagnetic alloy layer 40) is provided at a number of locations in the electromagnetic steel plate pair 10. That is, in the electromagnetic steel plate pair 10, the nonmagnetic portion X (nonmagnetic alloy layer 40) is provided in a portion that becomes the center bridge portion 93 and the peribridge portion 92 of the rotor 90.
 このように、非磁性箇所Xを有する電磁鋼板対10を形成するために、加熱するのは非磁性箇所Xとなるべき部分だけであり、電磁鋼板20,30の全体を加熱する必要がない。このため、消費電力が少なくて済む。また、スポット溶接と類似の要領で短い処理時間で非磁性箇所Xを形成することができる。このため量産にも適している。 Thus, in order to form the electromagnetic steel plate pair 10 having the nonmagnetic portion X, only the portion to be the nonmagnetic portion X is heated, and it is not necessary to heat the entire electromagnetic steel plates 20 and 30. For this reason, power consumption can be reduced. Further, the nonmagnetic portion X can be formed in a short processing time in a manner similar to spot welding. Therefore, it is suitable for mass production.
 抜き工程(ステップS70)では、非磁性合金層40を有する電磁鋼板対10が所定形状に加工される。この加工は、基準穴を基準にして行われるため、電磁鋼板対10を所定形状に精度良く加工することができる。本形態では、この抜き工程における加工を、ワイヤカットにより行う。具体的には、電磁鋼板対10をロータコア95の形状に加工する。すなわち、図20に示すように、電磁鋼板対10をドーナツ型の円板状に加工するとともに、磁石取り付け穴94を形成する。このとき、コア形状の電磁鋼板対10aにおいて、センターブリッジ部93及びペリブリッジ部92に相当する部分に非磁性箇所Xが位置するように加工される。もちろん、プレスで抜きを行ってもよい。 In the punching process (step S70), the electrical steel sheet pair 10 having the nonmagnetic alloy layer 40 is processed into a predetermined shape. Since this processing is performed with reference to the reference hole, the magnetic steel sheet pair 10 can be processed into a predetermined shape with high accuracy. In this embodiment, the processing in this punching step is performed by wire cutting. Specifically, the electromagnetic steel plate pair 10 is processed into the shape of the rotor core 95. That is, as shown in FIG. 20, the magnetic steel plate pair 10 is processed into a donut-shaped disk shape, and a magnet attachment hole 94 is formed. At this time, the core-shaped electrical steel sheet pair 10a is processed so that the nonmagnetic portion X is located in a portion corresponding to the center bridge portion 93 and the peribridge portion 92. Of course, it may be removed by a press.
 積層工程(ステップS80)では、電磁鋼板対10が積層されて、積層鋼板が形成される。これにより、図2に示した、非磁性箇所Xをペリブリッジ部92及びセンターブリッジ部93に設けたロータコア95が形成される。その後、このロータコア95の磁石取り付け穴94に磁石91が取り付けられる(挿入・固定される)ことにより、図1に示したロータ90が完成する。 In the laminating step (step S80), the electromagnetic steel plate pairs 10 are laminated to form a laminated steel plate. Thereby, the rotor core 95 shown in FIG. 2 in which the nonmagnetic portion X is provided in the peribridge portion 92 and the center bridge portion 93 is formed. Thereafter, the magnet 91 is mounted (inserted and fixed) in the magnet mounting hole 94 of the rotor core 95, whereby the rotor 90 shown in FIG. 1 is completed.
 ここで、本形態では、ロータコア95を製造するために、上記した抜き工程と積層工程との2工程を設けているが、これを1工程で行うこともできる。すなわち、抜き工程で行う加工をワイヤカットではなくプレス打ち抜きで行うことにより、所定形状に打ち抜くとともに積層することができるため一工程化することができる。これにより、ロータコア95の生産効率を向上させることができる。 Here, in the present embodiment, in order to manufacture the rotor core 95, the two steps of the above-described punching step and laminating step are provided, but this can also be performed in one step. That is, by performing the punching process by press punching instead of wire cutting, it can be punched into a predetermined shape and laminated, so that one process can be realized. Thereby, the production efficiency of the rotor core 95 can be improved.
 上記のようにして製造されたロータ90においては、ペリブリッジ部92及びセンターブリッジ部93に非磁性箇所Xが形成されているため、有効磁束Fのロスを減らすことができる。また、電磁鋼板対10の非磁性箇所Xにおいて、非磁性合金層40と各電磁鋼板20,30とがしっかりと改質されるため、十分な強度が確保されている。このため、この電磁鋼板対10を用いたロータ90においても十分な耐久性が確保されている。 In the rotor 90 manufactured as described above, since the nonmagnetic portion X is formed in the peribridge portion 92 and the center bridge portion 93, the loss of the effective magnetic flux F can be reduced. In addition, since the nonmagnetic alloy layer 40 and each of the electromagnetic steel plates 20 and 30 are firmly modified at the nonmagnetic portion X of the electromagnetic steel plate pair 10, sufficient strength is ensured. For this reason, sufficient durability is ensured also in the rotor 90 using this electromagnetic steel plate pair 10.
 そして、ロータ90では、モータの使用時に電磁鋼板内に渦電流が発生する。渦電流は、電磁誘導効果により金属内に発生する渦状の電流である。このため、ロータ90が発熱し、エネルギー損失を招くこととなる。このエネルギー損失を、渦電流損という。このため、モータにおいては、可能な限りこの渦電流損を小さくすることが好ましい。そのためには、電磁鋼板間で絶縁を確保することが必要となる。 In the rotor 90, an eddy current is generated in the electromagnetic steel sheet when the motor is used. An eddy current is an eddy current generated in a metal by an electromagnetic induction effect. For this reason, the rotor 90 generates heat, resulting in energy loss. This energy loss is called eddy current loss. For this reason, in the motor, it is preferable to reduce this eddy current loss as much as possible. For this purpose, it is necessary to ensure insulation between the electrical steel sheets.
 そこで、本形態のロータ90のロータコア95では、絶縁被膜21,31により各電磁鋼板20,30間における絶縁が確保されている。また、非磁性箇所Xにおける電磁鋼板対10間に絶縁被膜が存在しない部分には、凹状に形成された被膜除去部23,33によって空間96が構成されており、この空間96により絶縁が確保されている。つまり、被膜除去部23,33に絶縁被膜を再度塗布しなくても十分な絶縁性を確保することができる。このように、本形態のロータコア95においては、各電磁鋼板間における絶縁が十分に確保されていることから、ロータ90では、渦電流損を小さくすることができる。 Therefore, in the rotor core 95 of the rotor 90 of this embodiment, the insulation between the electromagnetic steel plates 20 and 30 is ensured by the insulating coatings 21 and 31. Further, a space 96 is constituted by the film removing portions 23 and 33 formed in a concave shape in a portion where the insulating film does not exist between the electromagnetic steel plate pair 10 in the nonmagnetic portion X, and insulation is ensured by the space 96. ing. That is, sufficient insulation can be ensured without re-applying the insulating film to the film removing portions 23 and 33. Thus, in the rotor core 95 of this embodiment, since sufficient insulation is ensured between the electromagnetic steel sheets, the rotor 90 can reduce eddy current loss.
 以上、詳細に説明したように本実施の形態に係る非磁性箇所Xを有する電磁鋼板対10は、非磁性合金層40を介して、両面に絶縁被膜21,31を有する2枚の電磁鋼板20,30を部分的に改質したものである。この電磁鋼板対10は、電磁鋼板20及び電磁鋼板30を有効な磁気経路とするものである。一方、非磁性合金層40は、有効な磁気経路とはならない。そして、絶縁被膜21,31により、各鋼板間における絶縁が確保されている。また、電極45,45によって加圧通電される箇所が、絶縁被膜21,31を除去した被膜除去部23,33であるので、電極45,45が鋼材に直接接触するため、未接合部が生じることなく非磁性合金層40と各電磁鋼板20,30とがしっかりと改質される。従って、電磁鋼板対10によれば、非磁性合金層を所望の箇所に形成するとともに、強度と、絶縁性と、有効な磁束経路とを確保することができる。 As described above in detail, the electrical steel sheet pair 10 having the nonmagnetic portion X according to the present embodiment includes the two electrical steel sheets 20 having the insulating coatings 21 and 31 on both surfaces via the nonmagnetic alloy layer 40. 30 are partially modified. The electromagnetic steel plate pair 10 uses the electromagnetic steel plate 20 and the electromagnetic steel plate 30 as an effective magnetic path. On the other hand, the nonmagnetic alloy layer 40 does not become an effective magnetic path. The insulation coatings 21 and 31 ensure insulation between the steel plates. In addition, since the portions to be pressurized and energized by the electrodes 45 and 45 are the film removal portions 23 and 33 from which the insulating coatings 21 and 31 have been removed, the electrodes 45 and 45 are in direct contact with the steel material, so that unjoined portions are generated. Without modification, the nonmagnetic alloy layer 40 and the electromagnetic steel sheets 20 and 30 are firmly modified. Therefore, according to the electromagnetic steel sheet pair 10, the nonmagnetic alloy layer can be formed at a desired location, and strength, insulation, and an effective magnetic flux path can be ensured.
 なお、上記した実施の形態は単なる例示にすぎず、本発明を何ら限定するものではなく、その要旨を逸脱しない範囲内で種々の改良、変形が可能であることはもちろんである。例えば、上記した実施の形態では、上側に位置する電磁鋼板20に形成する凹部22の径を改質金属40aの径(凹部32の径)よりも大きくしているが、図21に示すように、凹部32の径を改質金属40aの径(凹部22の径)よりも大きくしてもよい。
 また、図22に示すように、改質金属として上記した改質金属40aの半分の厚さ(各凹部22,32の厚さ)の改質金属40bを用いて、各凹部22,32に挿入した状態で各電磁鋼板20,30を重ね合わせることもできる。この場合には、上側に位置する電磁鋼板20の凹部22から改質金属40bが落下しないようにすることが必要である。例えば、凹部22と改質金属40bとの嵌め合い公差を管理することにより、抱き合わせ工程において、凹部22からの改質金属40bの落下を防止することができる。
It should be noted that the above-described embodiment is merely an example, and does not limit the present invention in any way, and various improvements and modifications can be made without departing from the scope of the invention. For example, in the above-described embodiment, the diameter of the recess 22 formed in the electromagnetic steel sheet 20 positioned on the upper side is larger than the diameter of the modified metal 40a (diameter of the recess 32), but as shown in FIG. The diameter of the recess 32 may be larger than the diameter of the modified metal 40a (the diameter of the recess 22).
Further, as shown in FIG. 22, the modified metal 40b having a half thickness of the modified metal 40a (thickness of the recessed portions 22 and 32) is used as the modified metal, and is inserted into the recessed portions 22 and 32. In this state, the electromagnetic steel plates 20 and 30 can be overlapped. In this case, it is necessary to prevent the modified metal 40b from dropping from the concave portion 22 of the electromagnetic steel sheet 20 located on the upper side. For example, by managing the fitting tolerance between the recess 22 and the modified metal 40b, the modified metal 40b can be prevented from dropping from the recess 22 in the tying process.
 また、上記した実施の形態では、ロータコア95を構成する鋼板対10に非磁性箇所Xを形成する箇所として、センターブリッジ部93及びペリブリッジ部92の場合を例示したが、非磁性箇所Xを形成する箇所はこれに限られず、センターブリッジ部93のみであってもよいし、ペリブリッジ部92のみであってもよい。あるいは、センターブリッジ部93と、2つのペリブリッジ部92のうちの片方だけに非磁性箇所Xを設けてもよい。これらいずれの電磁鋼板を用いてロータコア95を構成しても、非磁性箇所Xにより、ロータ90における磁束のロスを減らすことができる。 In the above-described embodiment, the center bridge portion 93 and the peribridge portion 92 are illustrated as the locations where the nonmagnetic portion X is formed in the steel plate pair 10 constituting the rotor core 95. However, the nonmagnetic portion X is formed. The location to be performed is not limited to this, and may be only the center bridge portion 93 or only the peribridge portion 92. Alternatively, the nonmagnetic portion X may be provided in only one of the center bridge portion 93 and the two peribridge portions 92. Even if the rotor core 95 is configured using any of these electromagnetic steel plates, the loss of magnetic flux in the rotor 90 can be reduced by the nonmagnetic portion X.
 また、非磁性箇所Xをもつ鋼材対10の用途はロータコアに限らない。つまり、ステータ、変圧器のコア等であっても、部分的に非磁性であることが有効であるものであれば適用可能である。 Moreover, the use of the steel material pair 10 having the nonmagnetic portion X is not limited to the rotor core. That is, even a stator, a core of a transformer, or the like can be applied as long as it is effective to be partially non-magnetic.
10 電磁鋼板対
20 電磁鋼板
21 絶縁被膜
22 凹部
23 被膜除去部
30  電磁鋼板
31  絶縁被膜
32  凹部
33  被膜除去部
40 非磁性合金層
40a 改質金属
42 空間
45 電極
80 ステータ
90 ロータ
91 磁石
92 ペリブリッジ部
93 センターブリッジ部
94 磁石取り付け穴
95 ロータコア
96 空間
F  有効磁束
X  非磁性箇所
 
DESCRIPTION OF SYMBOLS 10 Magnetic steel plate pair 20 Magnetic steel plate 21 Insulating coating 22 Recess 23 Coating removal part 30 Electrical steel plate 31 Insulating coating 32 Recess 33 Coating removal part 40 Nonmagnetic alloy layer 40a Modified metal 42 Space 45 Electrode 80 Stator 90 Rotor 91 Magnet 92 Peribridge Part 93 Center bridge part 94 Magnet mounting hole 95 Rotor core 96 Space F Effective magnetic flux X Non-magnetic part

Claims (6)

  1.  両面に絶縁被膜を有する2枚の鋼板を重ね合わせた鋼板対において、
     前記各鋼板は、
      前記絶縁被膜及び鋼板の一部が除去された凹部と、
      前記凹部とは反対面の前記絶縁被膜のうち前記凹部に対応する箇所が除去された除去部とを有し、
     前記各鋼板は、それぞれの前記凹部が対向するように重ね合わせられて改質されており、その両凹部間に非磁性合金層が形成されている
    ことを特徴とする鋼板対。
    In a steel plate pair in which two steel plates having insulating coatings on both sides are overlapped,
    Each of the steel plates is
    A recess from which a part of the insulating coating and the steel plate has been removed;
    A removal portion from which the portion corresponding to the concave portion of the insulating coating on the surface opposite to the concave portion is removed;
    Each steel plate is superposed and reformed so that the respective recesses face each other, and a nonmagnetic alloy layer is formed between both the recesses.
  2.  請求項1に記載する鋼板対において、
     前記各鋼板は、前記各除去部からの加圧通電により改質されている
    ことを特徴とする鋼板対。
    In the steel plate pair according to claim 1,
    Each said steel plate is modified | reformed by the pressurization electricity supply from each said removal part, The steel plate pair characterized by the above-mentioned.
  3.  請求項1又は請求項2に記載する鋼板対において、
     前記除去部は、前記各鋼板の表面に対して凹状となっている
    ことを特徴とする鋼板対。
    In the steel plate pair according to claim 1 or claim 2,
    The steel plate pair, wherein the removing portion is concave with respect to the surface of each steel plate.
  4.  請求項3に記載する鋼板対において、
     前記各凹部により形成された空間の容積が、前記非磁性合金層の体積よりも大きい
    ことを特徴とする鋼板対。
    In the steel plate pair according to claim 3,
    A steel plate pair, wherein a volume of a space formed by each of the recesses is larger than a volume of the nonmagnetic alloy layer.
  5.  請求項1から請求項4に記載するいずれか1つの鋼板対を、前記除去部同士が対向するように積層して構成したことを特徴とする積層鋼板。 A laminated steel sheet, wherein the steel sheet pair according to any one of claims 1 to 4 is laminated so that the removed portions face each other.
  6.  請求項1から請求項4に記載するいずれか1つの鋼板対を、前記除去部同士が対向するように積層して構成したことを特徴とする回転電機コア。 5. A rotating electrical machine core, wherein any one of the steel plate pairs according to claim 1 is laminated so that the removal portions face each other.
PCT/JP2009/066334 2009-09-18 2009-09-18 Steel sheet pair, laminated steel sheet and core of dynamo electric machine WO2011033646A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/066334 WO2011033646A1 (en) 2009-09-18 2009-09-18 Steel sheet pair, laminated steel sheet and core of dynamo electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/066334 WO2011033646A1 (en) 2009-09-18 2009-09-18 Steel sheet pair, laminated steel sheet and core of dynamo electric machine

Publications (1)

Publication Number Publication Date
WO2011033646A1 true WO2011033646A1 (en) 2011-03-24

Family

ID=43758272

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066334 WO2011033646A1 (en) 2009-09-18 2009-09-18 Steel sheet pair, laminated steel sheet and core of dynamo electric machine

Country Status (1)

Country Link
WO (1) WO2011033646A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60179434U (en) * 1984-05-11 1985-11-28 トヨタ自動車株式会社 laminated steel plate
JPH06277857A (en) * 1992-11-30 1994-10-04 Framatome Et Cogema <Fragema> Method of assembly
JPH10225770A (en) * 1997-02-14 1998-08-25 Sangyo Souzou Kenkyusho Welding equipment
JP2005088029A (en) * 2003-09-16 2005-04-07 Nissan Motor Co Ltd Spot welding method and device for galvanized steel sheet
WO2009028522A1 (en) * 2007-08-29 2009-03-05 Toyota Jidosha Kabushiki Kaisha Steel having non-magnetic portion, its producing method, and revolving electric core

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60179434U (en) * 1984-05-11 1985-11-28 トヨタ自動車株式会社 laminated steel plate
JPH06277857A (en) * 1992-11-30 1994-10-04 Framatome Et Cogema <Fragema> Method of assembly
JPH10225770A (en) * 1997-02-14 1998-08-25 Sangyo Souzou Kenkyusho Welding equipment
JP2005088029A (en) * 2003-09-16 2005-04-07 Nissan Motor Co Ltd Spot welding method and device for galvanized steel sheet
WO2009028522A1 (en) * 2007-08-29 2009-03-05 Toyota Jidosha Kabushiki Kaisha Steel having non-magnetic portion, its producing method, and revolving electric core

Similar Documents

Publication Publication Date Title
JP2011067027A (en) Steel plate pair, laminated steel plate, and method of manufacturing core of rotary electric machine
JP4626683B2 (en) Steel material having nonmagnetic portion, method for manufacturing the same, and rotating electric machine core
EP2600508B1 (en) Rotor for motor and method of manufacturing the same
CN111837314B (en) Radial gap type rotating electrical machine
JP2014079068A (en) Rotor core and method for manufacturing the same
JP5327257B2 (en) Winding core, electromagnetic component and method for manufacturing the same, and electromagnetic device
EP2600506A2 (en) Method for manufacturing stator for motor and stator for motor
WO2019064630A1 (en) Radial-gap-type rotary electric machine, and production device and production method for same
JP6056385B2 (en) Rotor for rotating machine and method for manufacturing rotor for rotating machine
WO2019065827A1 (en) Radial-gap-type rotary electric machine, production method for radial-gap-type rotary electric machine, production device for rotary electric machine teeth piece, and production method for rotary electric machine teeth member
JP6471831B2 (en) Permanent magnet type rotating electrical machine and manufacturing method thereof
JP6028506B2 (en) Laminated steel plate manufacturing method
JP2007151360A (en) Method of manufacturing laminate
US20230207179A1 (en) Magnetic core and magnetic component
WO2011033646A1 (en) Steel sheet pair, laminated steel sheet and core of dynamo electric machine
JP2011097749A (en) Method for manufacturing steel material with non-magnetically modified phase
JP2015198475A (en) rotor core
JP6350964B2 (en) Rotor core, rotor using the rotor core, and method of manufacturing rotor core
JP7247720B2 (en) Radial gap type rotary electric machine and method for manufacturing radial gap type rotary electric machine
KR101310973B1 (en) Method for manufacturing stator of electric machine using wire cutting and electric machine manufactured by the same
JP2020092139A (en) Stator core, motor, and manufacturing method of stator core
WO2023062743A1 (en) Laminated iron core manufacturing method and laminated iron core
JP2011083157A (en) Method of manufacturing steel plate having non-magnetic spot
JP2011097745A (en) Method for manufacturing steel material with non-magnetically modified phase
JP2021114868A (en) Manufacturing method of lamination iron core of electric machine and manufacturing method of the electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09849505

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09849505

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP