WO2019064630A1 - Radial-gap-type rotary electric machine, and production device and production method for same - Google Patents

Radial-gap-type rotary electric machine, and production device and production method for same Download PDF

Info

Publication number
WO2019064630A1
WO2019064630A1 PCT/JP2018/007577 JP2018007577W WO2019064630A1 WO 2019064630 A1 WO2019064630 A1 WO 2019064630A1 JP 2018007577 W JP2018007577 W JP 2018007577W WO 2019064630 A1 WO2019064630 A1 WO 2019064630A1
Authority
WO
WIPO (PCT)
Prior art keywords
amorphous metal
metal foil
rotor
teeth
radial gap
Prior art date
Application number
PCT/JP2018/007577
Other languages
French (fr)
Japanese (ja)
Inventor
榎本 裕治
博洋 床井
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to CN201880058581.0A priority Critical patent/CN111052545B/en
Publication of WO2019064630A1 publication Critical patent/WO2019064630A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies

Definitions

  • the present invention relates to a radial gap type rotary electric machine, a device for manufacturing the same, and a method of manufacturing the same, and more particularly to a radial gap type rotary electric machine using amorphous metal for an iron core, a device for manufacturing the same and a method of manufacturing the same.
  • a high efficiency is required for a rotating electric machine (motor) used as a power source of an industrial machine or for driving an automobile.
  • a rotating electric machine used as a power source of an industrial machine or for driving an automobile.
  • it is common to use a low loss material as a material to be used or a design that uses a high energy product permanent magnet.
  • the motor loss mainly consists of copper loss, iron loss and mechanical loss, and once the output characteristics (rotation speed and torque) of the required specifications are determined, mechanical loss is uniquely determined, so the design to reduce iron loss and copper loss Is important.
  • the copper loss is mainly determined by the relation between the coil resistance value and the current, and the cooling is designed to suppress the reduction in the coil resistance value and the reduction in the residual magnetic flux density of the magnet. Iron loss can be reduced by the soft magnetic material used.
  • an electromagnetic steel sheet is adopted for the core portion, and a different level of loss is used depending on the thickness, the content of Si and the like.
  • Soft magnetic materials include iron-based amorphous metals with higher magnetic permeability and lower core loss than electromagnetic steel sheets, and high-performance materials such as finemets and nanocrystalline materials. Is very thin, 0.025 mm, and has a Vickers hardness of about 900, and is more than five times harder than a magnetic steel sheet, which causes many problems in manufacturing the motor at low cost.
  • the amorphous metal is limited to the use in the same cross section core of a two rotor type axial gap motor.
  • the stator In the stator of this two-rotor axial gap motor, the stator is configured at the axial center, and the stator iron core and the coil wound around it are not fastened as a structure to the motor housing, and the floating island structure It becomes.
  • the floating island-shaped stator core and coil are fixed to the housing by resin molding.
  • this structure can be designed to withstand the torque reaction force of the motor up to a certain degree and the thermal stress at the time of temperature rise, the motor is different due to the difference in linear expansion coefficient between resin and coil, resin and iron core or housing material.
  • the size and temperature conditions that can be used are limited.
  • U.S. Pat. No. 5,959,095 discloses a bulk amorphous metal magnetic component for use in a high efficiency electric motor having a polyhedral shape and including multiple amorphous metal strip layers.
  • Patent Document 1 discloses that the amorphous metal strip material is cut into a plurality of cut strips having a predetermined length, which are stacked to form bars of the amorphous metal strip material, subjected to annealing, and then stacked. Methods have been proposed for impregnating with epoxy resin, curing, and cutting the stacked bars to a predetermined length to provide a plurality of multifaceted magnetic components having a predetermined three-dimensional shape.
  • Patent Document 2 in a method of manufacturing an amorphous laminated core by punching and laminating core pieces from an amorphous thin plate material, the required portions of the core pieces are punched out of the amorphous thin plate material and connecting holes are formed.
  • the die hole is removed from the die hole, and the die hole is stacked from the lower side on the back and forth movable pedestal to a desired thickness, the pedestal is retracted from below the die hole and the laminated core stacked on the pedestal is held
  • a manufacturing method of an amorphous laminated iron core is disclosed, which is characterized by constraining, injecting, filling and connecting an adhesive connecting agent to the connecting hole of the laminated iron core.
  • Patent Document 2 shows an example in which a predetermined motor core shape is hollowed out by a progressive remittance type as in the case where the magnetic steel sheet is hollowed out in the core of the motor.
  • shape processing can be carried out by punching, since the amorphous foil strip is too thin to be able to perform caulking fastening between the plates realized by the magnetic steel sheet, using an adhesive in a state of being laminated on a jig
  • a method has been proposed in which a predetermined hole of the core is injected and laminated and fixed.
  • patent document 1 The application method of the amorphous metal to the radial gap type rotating electric machine shown in the above-mentioned patent documents 1 and 2 has problems, such as an apparatus for performing special machining in the manufacture, and time-consuming processing etc. Moreover, in patent document 1, it fixes to a housing, after impregnating a bulk amorphous metal bar to an epoxy resin and hardening
  • the amorphous metal is pressed and laminated in Patent Document 4, since the thickness of the amorphous metal is 1/10 or less of that of the magnetic steel sheet, the number of times of pressing 10 times is required. In addition, since the amorphous metal is five times as hard as the electromagnetic steel sheet, the influence on the mold is five times. Therefore, compared to the electromagnetic steel sheet, the influence on the mold is 50 times or more, and usually the manufacture is performed while re-grinding the mold about every 2 million times, but it is 1/50 or less This results in a significant increase in manufacturing costs.
  • An object of the present invention is to provide a radial gap type rotary electric machine using an amorphous metal which can realize high efficiency and is excellent in productivity, a manufacturing apparatus thereof and a manufacturing method thereof.
  • the present invention provides a rotor including a rotation axis and a rotor core rotating around the rotation axis, and a stator including a stator core disposed opposite to the rotor core.
  • the stator core has an annular shape, and a back yoke having a plurality of recesses provided along the inner periphery, and one end thereof is engaged with the recess and the other end is directed to the rotor core
  • a radial gap type rotating electric machine having protruding teeth, wherein the teeth are made of amorphous metal.
  • the present invention fixes a rotor including a rotation axis and a rotor core rotating around the rotation axis, and a stator core including a stator core disposed facing the rotor core.
  • the stator core has an annular shape, and a back yoke having a plurality of recesses provided along the inner periphery, and one end is joined to the recess and the other end is directed to the rotor core
  • the teeth have a cutting station for shearing a material sheet of amorphous metal foil strips into a trapezoidal shape.
  • the cutting station has two shear blades that can reciprocate at different angles with respect to the material sheet of the amorphous metal foil strip in a direction perpendicular to the material sheet of the amorphous metal foil strip and to the width direction of the material sheet of the amorphous metal foil strip. It is characterized in that a trapezoidal-shaped leg is produced by means of a blade, and a trapezoidal-shaped amorphous metal foil strip can be produced.
  • the present invention fixes a rotor including a rotation axis and a rotor core rotating around the rotation axis, and a stator core including a stator core disposed facing the rotor core.
  • the stator core has a ring shape, and a back yoke having a plurality of recesses provided along the inner periphery, and one end thereof is joined to the recess and the other end is on the rotor core
  • a method of manufacturing a radial gap type rotating electrical machine having a stack of amorphous metal foil bands having trapezoidal shapes the material sheet of the amorphous metal foil bands is formed into an amorphous metal foil band having trapezoidal shapes.
  • the trapezoidal leg is formed by two shearing blades that can reciprocate at different angles with respect to the material sheet of the amorphous metal foil strip in the direction perpendicular to the material sheet of the amorphous metal foil strip and to the width direction of the material sheet of the amorphous metal foil strip. It is characterized in that it has a configuration capable of producing and producing a trapezoidal-shaped amorphous metal foil strip.
  • FIG. 4B A perspective view showing an example of a back yoke A perspective view showing another example of the back yoke A perspective view schematically showing a stator core in which coils are concentratedly wound on teeth The perspective view which expands the teeth of FIG.
  • FIG. 7A Top view of a portion of FIG. 7A A perspective view showing details of a resin bobbin The perspective view which provided the coil conductor 4 in FIG. 8A Sectional drawing which shows typically an example of the rotor of this invention Sectional view schematically showing another example of the rotor of the present invention A perspective view schematically showing an example of an apparatus for cutting a material sheet of an amorphous metal foil strip Top view of FIG. 10A The cross-sectional schematic diagram which shows the other example (outer-rotor type
  • FIG. 11A is a cross-sectional view taken along line AB
  • FIG. 1 is a schematic view showing an example (inner rotor type) of a radial gap type rotary electric machine of the present invention.
  • the radial gap type rotating electrical machine 100a of the present invention is opposed to a rotor 110 including a rotating shaft 101, a rotor core 103 rotating around the rotating shaft 101, and a rotor core 103.
  • It comprises a stator 111 comprising a stator core 104 arranged.
  • the rotor 110 includes a bearing 102 in addition to the rotating shaft 101 and the rotor core 103.
  • the stator 111 also includes a coil 105 in addition to the stator core 104.
  • the rotating electrical machine 100 a includes a housing 106 in addition to the rotor 110 and the stator 111.
  • FIG. 2A is a schematic view showing the top surface of the stator core of FIG. 1, and FIG. 2B is an enlarged view of a part of FIG. 2A.
  • stator iron core 104 has back yoke 2 having an annular shape, and teeth having one end joined to back yoke 2 and the other end projecting toward rotor core 103 (stator core Have teeth.
  • the back yoke 2 is provided with a plurality of recesses 20 along the inner periphery, and one end of the tooth 1 is fitted in the recesses 20.
  • the back yoke 2 and the teeth 1 are separate members, they can be made of different materials. That is, an amorphous metal with low core loss is applied to the teeth 1, and an electromagnetic steel sheet that is easier to process than the amorphous metal is used for the back yoke 2 to realize a highly productive structure while using the amorphous metal. can do.
  • FIG. 3A is a perspective view schematically showing the teeth of FIG. 2A
  • FIG. 3B is a view schematically showing an upper surface of the teeth of FIG. 2A
  • the teeth 1 are made of a laminate of a plurality of amorphous metal foil strips.
  • the recess 20 of the back yoke 2 has such a shape that the end on the long side of the tooth 1 can be joined, and the tooth 1 has a shape that is tapered from the back yoke 2 toward the rotor 110. Therefore, the teeth 1 do not come off the rotor 110 side (gap side (inner side)).
  • the material of the amorphous metal is not particularly limited.
  • Metglas 2605HB1M composition: Fe-Si-B
  • Metglas 2605SA1 composition: Fe-Si-B
  • Metglas 2605S3A composition: Fe-Si
  • Metglas 2705M composition: Co-Fe-Ni-Si-B-Mo
  • Metglas described above is a registered trademark of Metglas Incorporated, a group company of Hitachi Metals, Ltd.
  • FIG. 4A is a perspective view showing the teeth of FIG. 3A in detail
  • FIG. 4B is a perspective view showing some of the teeth and back yoke of FIG. 3A in detail
  • 4C is a top view of FIG. 4B.
  • the end opposite to the end of the tooth 1 joined to the back yoke 2 is accommodated in a resin bobbin 3 and friction in the lamination direction of the laminated body It is held.
  • An amorphous metal foil strip and a bobbin made of resin are used as a teeth block 40.
  • the back yoke 2 is comprised by the laminated body of what was pierced by the press, such as a magnetic steel plate, a cold rolled steel sheet (SPCC), etc.
  • the thickness of the electromagnetic steel plate or cold-rolled steel plate constituting the back yoke 2 can be freely selected. For example, it can be 0.2 mm, 0.35 mm or 0.5 mm.
  • the coil conductor (winding) 4 is disposed in a gap (slot) of the bobbin 3 made of resin. That is, since the coil conductor 4 is disposed between two adjacent resin bobbins 3, core insulation is secured by the resin bobbin 3.
  • FIG. 5 is a perspective view showing an example of the back yoke.
  • the back yoke 2 is divided into blocks including, for example, 4 slots (30 °), and these are arranged in an annular shape to constitute the back yoke 2a.
  • FIG. 6 is a perspective view showing another example of the back yoke.
  • FIG. 6 shows an example of a wound iron core back yoke 2b wound in an edgewise coil shape.
  • a back yoke having such a shape is provided with a die for hollowing out a recess on one side of a fixed width electromagnetic steel plate, a slot is formed, and an iron core is wound in an edgewise coil shape according to the slot. Made. In this method, the yield can be made higher than in the case of dividing as shown in FIG.
  • FIG. 7A is a perspective view schematically showing a stator core in which coils are concentratedly wound on teeth.
  • 7B is a perspective view enlarging the teeth of FIG. 7A
  • FIG. 7C is a top view of a part of FIG. 7A.
  • FIG. 7A shows a structure in which tooth 1 is assembled to each of the 46 slots.
  • FIG. 7B shows a structure in which a coil conductor having a flat cross section is wound in a concentrated manner on the outside of a resin bobbin 3.
  • FIG. 7A shows a state in which the amorphous tooth block integrated with the winding of FIG. 7B is assembled to the back yoke 2.
  • FIG. 7C since the coils are concentratedly wound, the coil conductors (winding conductors) disposed in the slots have a structure in which those wound on adjacent teeth are disposed adjacent to each other.
  • FIG. 8A is a perspective view showing the details of a bobbin made of resin
  • FIG. 8B is a perspective view in which a coil conductor is provided in FIG. 8A.
  • the coil conductor 4 is disposed on the outer side of the resin-made bobbin 3 holding the teeth 1, but usually, the core and the adjacent coil are insulated by insulating paper or the like.
  • the resin bobbin shown in FIGS. 8A and 8B is provided with a plurality of protrusions 30 extending along the axial direction of the rotation shaft on the side surface of the resin bobbin 3 and can hold the coil conductor 4 between the adjacent protrusions 30. Have the following configuration.
  • the distance between the coil conductors 4 is reliably made to prevent the coil conductors 4 from coming in contact with each other. Thereby, since a gap is formed between the coil conductors 4, a cooling method of injecting a cooling oil into the gap can be adopted.
  • stator configured as described above has a core back portion that is a general ring-shaped iron core, it is mechanical such as shrink fitting, clearance fitting, or screwing in a housing having the same ring shape. It becomes possible to fix by the fastening method. For this reason, since it does not hold
  • the contact area between the housing and the iron core is larger than that of the two-rotor axial gap motor, and heat conduction between metals is significantly improved.
  • the radial gap type motor can reduce the diameter of the rotor, it is a motor suitable for increasing the speed, and by increasing the speed, the mechanical output can be improved even with the same torque.
  • the frequency is increased by the speedup, since the core loss can be reduced by the high frequency characteristics (low loss characteristics) of the amorphous, the overall efficiency of the motor can also be improved.
  • the amorphous metal foil strip can be used at a yield of 100% from the material sheet, the material cost can be reduced.
  • the radial gap type rotary electric machine according to the present invention is applicable to a heat resistance temperature class F which can be used as a power source of a motor for driving an automobile or an industrial apparatus for a vehicle.
  • FIG. 9A is a cross-sectional view schematically showing an example of the rotor of the present invention
  • FIG. 9B is a cross-sectional view schematically showing another example of the rotor of the present invention.
  • 9A and 9B show a 16 pole magnet rotor.
  • the rotors 110a and 110b have an annular shape, and the fixing member 8 provided around the rotation shaft 101, the outer frame 7 forming the outer periphery, and one end thereof are fixed.
  • the rotors 110a and 110b have a resin bobbin 3 and a key 5 in addition to the above-described configuration.
  • the rotor 110 b of FIG. 9B is one obtained by further dividing the teeth 1 constituting one pole of FIG. 9A.
  • the inner angle on the inner peripheral side of the tooth 1 is reduced.
  • the fixing member 8 be made of a nonmagnetic material in order to reduce the leakage flux at the inner side of the rotor.
  • a centrifugal-resistant member member arrange
  • CFRP Carbon Fiber Reinforced Plastic
  • SUS cover can be used as an example of the centrifugal force resistant member 7.
  • FIG. 11A is a schematic cross-sectional view showing another example (outer rotor type) of the radial gap type rotary electric machine of the present invention
  • FIG. 11B is a cross-sectional view along line AB of FIG. 11A.
  • an inner rotor type radial gap type rotating electrical machine is taken as an example, but the present invention is not limited to this, and the present invention is an outer rotor type radial gap type rotating motor shown in FIGS. 11A and 11B. It may be an electric machine. That is, the teeth block described above can be used for the stator core 104 of the outer rotor type radial gap type rotating electrical machine 100b. The above-mentioned amorphous teeth block can be used for the rotor core 103 as well.
  • FIG. 10A is a perspective view schematically showing an example of an apparatus for cutting an amorphous metal material sheet
  • FIG. 10B is a top view of FIG. 11A.
  • the cutting device 120 comprises a feed roller 10 for feeding out the material sheet 15 of the amorphous metal foil band, a cutting stage 16 for cutting the material sheet 15 of the amorphous metal foil band, and a material sheet of the amorphous metal foil band.
  • a cutting blade (upper blade 13a and lower blade 13b) for cutting 15 into a trapezoidal shape, an upper plate 14 for supporting the upper blade 13a, and a base plate 11 for supporting the cutting stage 16 and laminating amorphous metal foil strips after cutting.
  • the material sheet 15 of the amorphous metal foil strip is supplied to the cutting stage 16 at equal pitches by the feed roller 10.
  • the material sheet of the amorphous metal foil band delivered to the cutting stage 16 is sheared by the upper blade 13 a and the lower blade 13 b and laminated on the base plate 11 to manufacture the laminate 1. According to such a method, since the cutting blade has a simple shape, it is easy to attach to and remove from the mold, and inexpensive and easy to carry out maintenance such as regrinding. The manufacturing cost can be sufficiently suppressed.
  • the cutting stage 16 It is also possible to move the cutting stage 16 with a mechanical cam or the like to cut the amorphous foil strip at an angle. Furthermore, sufficient production speed can be expected even by a method in which the amorphous metal foil strip is intermittently fed by the feed roller 10 and the mold is operated by an electric slide in synchronization with the intermittent feeding operation.
  • the cutting speed can be expected to be about 200 SPM, and by supplying a plurality of stacked amorphous foil band material sheets 15, production can be performed at a production speed at which commercial effects can be expected.
  • the stacked body 1 stacked on the base plate 11 is controlled so as to have a predetermined axial length (height) by management of the number of amorphous metal foil bands constituting the laminated body 1 or by a method such as weight management, and alignment After that, the teeth block can be completed by inserting into a resin bobbin.
  • the present invention is not limited to the embodiments described above, but includes various modifications.
  • the embodiments described above are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
  • part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • Tees block 100a Radial gap Type rotary electric machine (inner rotor type), 100b: radial gap type rotary electric machine (outer rotor type), 101: rotary shaft, 102: bearing, 103: rotor core, 104: stator core, 105: coil, 110, 110a , 110b ... rotor, 111 ... stator, 120 ... amorphous metal foil strip cutting device.

Abstract

Provided is a radial-gap-type rotary electric machine that uses an amorphous metal that makes it possible to achieve high efficiency and has excellent producibility. Also provided are a production device and a production method for the radial-gap-type rotary electric machine. A radial-gap-type rotary electric machine that is characterized by comprising: a rotor that includes a rotary shaft and a rotor core that rotates around the rotor shaft; and a stator that includes a stator core that is arranged to face the rotor core. The radial-gap-type rotary electric machine is also characterized in that the stator core has: an annular back yoke (2) that has a plurality of recesses that are provided along the inner circumference thereof; and teeth (1) that are fitted into the recesses at one end and protrude toward the rotor core at the other. The radial-gap-type rotary electric machine is also characterized in that the teeth (1) comprise an amorphous metal.

Description

ラジアルギャップ型回転電機、その製造装置及びその製造方法Radial gap type rotary electric machine, manufacturing apparatus thereof and manufacturing method thereof
 本発明は、ラジアルギャップ型回転電機、その製造装置及びその製造方法に関し、特に鉄心にアモルファス金属を利用するラジアルギャップ型回転電機、その製造装置及びその製造方法に関する。 The present invention relates to a radial gap type rotary electric machine, a device for manufacturing the same, and a method of manufacturing the same, and more particularly to a radial gap type rotary electric machine using amorphous metal for an iron core, a device for manufacturing the same and a method of manufacturing the same.
 産業機械の動力源や自動車駆動用として用いられる回転電機(モータ)は、高効率化が求められる。モータの高効率化は、使用する材料に低損失な物を利用したり、高エネルギー積の永久磁石を用いたりする設計が一般的である。 BACKGROUND ART A high efficiency is required for a rotating electric machine (motor) used as a power source of an industrial machine or for driving an automobile. In order to increase the efficiency of the motor, it is common to use a low loss material as a material to be used or a design that uses a high energy product permanent magnet.
 モータの損失は、主に銅損と鉄損及び機械損からなり、要求仕様の出力特性(回転数とトルク)が決まると、機械損は一意に決まるため、鉄損と銅損を低減する設計が重要となる。銅損は、主にコイルの抵抗値と電流の関係で決まり、冷却によってコイル抵抗値の低減や、磁石の残留磁束密度の低下の低下を抑えるような設計を行う。鉄損は、使用する軟磁性材料によって低減が可能である。一般的なモータでは鉄心部分には電磁鋼板が採用されており、その厚みやSiの含有量などによって損失レベルが異なるものが利用されている。 The motor loss mainly consists of copper loss, iron loss and mechanical loss, and once the output characteristics (rotation speed and torque) of the required specifications are determined, mechanical loss is uniquely determined, so the design to reduce iron loss and copper loss Is important. The copper loss is mainly determined by the relation between the coil resistance value and the current, and the cooling is designed to suppress the reduction in the coil resistance value and the reduction in the residual magnetic flux density of the magnet. Iron loss can be reduced by the soft magnetic material used. In a general motor, an electromagnetic steel sheet is adopted for the core portion, and a different level of loss is used depending on the thickness, the content of Si and the like.
 軟磁性材料には、電磁鋼板よりも透磁率が高く、鉄損が低い鉄基アモルファス金属や、ファインメット及びナノ結晶材料等の高機能材料が存在するが、これらの材料系では、その板厚が0.025mmと非常に薄く、また、ビッカース硬度が900程度であり、電磁鋼板の5倍以上に硬い等、モータを安価に製造する上での課題が多い。 Soft magnetic materials include iron-based amorphous metals with higher magnetic permeability and lower core loss than electromagnetic steel sheets, and high-performance materials such as finemets and nanocrystalline materials. Is very thin, 0.025 mm, and has a Vickers hardness of about 900, and is more than five times harder than a magnetic steel sheet, which causes many problems in manufacturing the motor at low cost.
 従来、アキシャルギャップ型のモータにアモルファス金属を適用された例が報告されているが、アモルファス金属は2ロータ型アキシャルギャップモータの同一断面鉄心での使用に限られる。この2ロータ型アキシャルギャップモータの固定子は、軸方向中心に固定子が構成され、その固定子鉄心や、その周囲に巻回したコイルが、構造物としてモータのハウジングに締結されず、浮島構造となる。この浮島状の固定子鉄心及びコイルは樹脂モールドによってハウジングに固定されている。この構造は、ある程度までのモータのトルク反力や、温度上昇時の熱応力に耐える設計は可能であるが、樹脂とコイル、樹脂と鉄心やハウジング材料等との線膨張係数の違いによって、モータの大きさや使用できる温度条件などが制限されてしまう。 Conventionally, an example in which an amorphous metal is applied to an axial gap type motor has been reported, but the amorphous metal is limited to the use in the same cross section core of a two rotor type axial gap motor. In the stator of this two-rotor axial gap motor, the stator is configured at the axial center, and the stator iron core and the coil wound around it are not fastened as a structure to the motor housing, and the floating island structure It becomes. The floating island-shaped stator core and coil are fixed to the housing by resin molding. Although this structure can be designed to withstand the torque reaction force of the motor up to a certain degree and the thermal stress at the time of temperature rise, the motor is different due to the difference in linear expansion coefficient between resin and coil, resin and iron core or housing material. The size and temperature conditions that can be used are limited.
 そこで、上述したアキシャルギャップ型の問題を解決すべく、ラジアルギャップ型のモータにアモルファス金属を利用することが考えられる。特許文献1には、多面体形状を有し且つ複数のアモルファス金属ストリップ層を含む、高効率の電動モータで使用するためのバルクアモルファス金属磁気構成要素が開示されている。特許文献1には、アモルファス金属ストリップ材料を所定の長さを持つ複数の切断ストリップに切断し、これを積み重ねたアモルファス金属ストリップ材料のバーを形成し、アニール処理を施した後、積み重ねたバーをエポキシ樹脂で含浸し、硬化させ、積み重ねたバーを所定の長さに切断し、所定の立体的形状を持つ多面形形状の複数の磁気構成要素を提供する方法が提案されている。 Therefore, in order to solve the above-mentioned axial gap type problem, it is conceivable to use an amorphous metal for a radial gap type motor. U.S. Pat. No. 5,959,095 discloses a bulk amorphous metal magnetic component for use in a high efficiency electric motor having a polyhedral shape and including multiple amorphous metal strip layers. Patent Document 1 discloses that the amorphous metal strip material is cut into a plurality of cut strips having a predetermined length, which are stacked to form bars of the amorphous metal strip material, subjected to annealing, and then stacked. Methods have been proposed for impregnating with epoxy resin, curing, and cutting the stacked bars to a predetermined length to provide a plurality of multifaceted magnetic components having a predetermined three-dimensional shape.
 また、特許文献2には、アモルファス薄板材から鉄心片を打抜き積層しアモルファス積層鉄心を製造する方法において、アモルファス薄板材から鉄心片の所要箇所を打抜き形成するとともに連結用穴を形成し、鉄心片をダイ孔に外形抜きし、ダイ孔を下方から臨み進退自在な受け台上に所望積厚まで積層し、受け台をダイ孔の下方より後退させるとともに該受け台に積層された積層鉄心を把持拘束し、該積層鉄心の連結用穴に接着連結剤を注入充填し連結することを特徴とするアモルファス積層鉄心の製造方法が開示されている。特許文献2では、電磁鋼板でモータのコアをプレス内抜きするのと同様に順送金型によって、所定のモータコア形状を内抜きする例が示されている。この例では、打抜きで形状加工はできるが、アモルファス箔帯が薄すぎるために電磁鋼板で実現されている板間のカシメ締結が出来ないため、治具に積層された状態で接着剤を用いてコアの所定の穴に注入して積層固着する方法が提案されている。 Further, according to Patent Document 2, in a method of manufacturing an amorphous laminated core by punching and laminating core pieces from an amorphous thin plate material, the required portions of the core pieces are punched out of the amorphous thin plate material and connecting holes are formed. The die hole is removed from the die hole, and the die hole is stacked from the lower side on the back and forth movable pedestal to a desired thickness, the pedestal is retracted from below the die hole and the laminated core stacked on the pedestal is held A manufacturing method of an amorphous laminated iron core is disclosed, which is characterized by constraining, injecting, filling and connecting an adhesive connecting agent to the connecting hole of the laminated iron core. Patent Document 2 shows an example in which a predetermined motor core shape is hollowed out by a progressive remittance type as in the case where the magnetic steel sheet is hollowed out in the core of the motor. In this example, although shape processing can be carried out by punching, since the amorphous foil strip is too thin to be able to perform caulking fastening between the plates realized by the magnetic steel sheet, using an adhesive in a state of being laminated on a jig A method has been proposed in which a predetermined hole of the core is injected and laminated and fixed.
特開2013-21919号公報JP, 2013-21919, A 特開2003-309952号公報Japanese Patent Application Laid-Open No. 2003-309952
 上述した特許文献1及び2に示されるラジアルギャップ型回転電機へのアモルファス金属の適用方法は、その製造に特殊な機械加工を行うための装置や、加工に時間がかかりすぎるなどの課題がある。また、特許文献1では、バルクアモルファス金属バーをエポキシ樹脂に含浸し、硬化してからハウジングに固定している。この構造は、上述したアキシャルギャップ型のモータと同様、樹脂とコイル、樹脂と鉄心やハウジング材料等との線膨張係数の違いによって、モータの大きさや使用できる温度条件等が制限されてしまう。 The application method of the amorphous metal to the radial gap type rotating electric machine shown in the above-mentioned patent documents 1 and 2 has problems, such as an apparatus for performing special machining in the manufacture, and time-consuming processing etc. Moreover, in patent document 1, it fixes to a housing, after impregnating a bulk amorphous metal bar to an epoxy resin and hardening | curing it. In this structure, as in the axial gap type motor described above, the difference in linear expansion coefficient between the resin and the coil, the resin, the iron core, the housing material and the like limits the size of the motor and usable temperature conditions.
 さらに、特許文献4ではアモルファス金属をプレスして積層しているが、アモルファス金属は厚みが電磁鋼板の1/10以下であるため、10倍のプレス回数が必要となる。また、アモルファス金属は、電磁鋼板の5倍硬いため、金型に与える影響が5倍となる。したがって、電磁鋼板に比べて、金型への影響は50倍以上となり、通常は約200万回毎に金型の再研磨を行いながら製造を行うが、それが1/50以下となるために大幅に製造コストの上昇を招いてしまう。1分間に180SPM(shot per minutes)のスピードでプレスを行なった場合では、約1ヶ月で200万回を迎えるが、同一速度でプレスを行った場合には、生産タクトは枚数の関係から10倍かかり、金型の再研磨は、1日たたないで研磨しなければならないことになる。大型の金型のダイ、パンチの研磨には、プレス装置からの金型積み降ろしなどの手間も含めて多くの工数がかかるため、この条件での生産は現実的でない事がわかる。 Furthermore, although the amorphous metal is pressed and laminated in Patent Document 4, since the thickness of the amorphous metal is 1/10 or less of that of the magnetic steel sheet, the number of times of pressing 10 times is required. In addition, since the amorphous metal is five times as hard as the electromagnetic steel sheet, the influence on the mold is five times. Therefore, compared to the electromagnetic steel sheet, the influence on the mold is 50 times or more, and usually the manufacture is performed while re-grinding the mold about every 2 million times, but it is 1/50 or less This results in a significant increase in manufacturing costs. When pressing at a speed of 180 SPM (shots per minutes) per minute, it reaches 2 million times in about one month, but when pressing at the same speed, the production tact is 10 times because of the number of sheets It takes, and re-grinding of the mold will have to be polished in one day. It can be understood that the production under such conditions is not realistic because it takes a lot of man-hours, including time-consuming operations such as die loading and unloading from a pressing device, for polishing a large mold die and punch.
 以上述べた通り、アモルファス金属を用いたラジアルギャップ型のモータの製造について、実用レベルで製造できる構造とその製造装置及び製造方法が見出されていないのが実情であった。 As described above, in the manufacture of a radial gap type motor using an amorphous metal, it has been found that a structure that can be manufactured at a practical level and an apparatus and method for manufacturing the same have not been found.
 本発明は、上記事情に鑑み、高い効率を実現でき、かつ、生産性に優れたアモルファス金属を使用したラジアルギャップ型回転電機、その製造装置及びその製造方法を提供することを目的とする。 An object of the present invention is to provide a radial gap type rotary electric machine using an amorphous metal which can realize high efficiency and is excellent in productivity, a manufacturing apparatus thereof and a manufacturing method thereof.
 本発明は、上記課題を解決するため、回転軸と、回転軸の周りに回転する回転子鉄心とを含む回転子と、回転子鉄心に対向して配置された固定子鉄心を含む固定子とを備え、上記固定子鉄心は、円環形状を有し、内周に沿って設けられた複数の凹部を有するバックヨークと、一端が凹部に篏合され、他端が回転子鉄心に向かって突出したティースとを有し、該ティースはアモルファス金属からなることを特徴とするラジアルギャップ型回転電機を提供する。 In order to solve the above problems, the present invention provides a rotor including a rotation axis and a rotor core rotating around the rotation axis, and a stator including a stator core disposed opposite to the rotor core. The stator core has an annular shape, and a back yoke having a plurality of recesses provided along the inner periphery, and one end thereof is engaged with the recess and the other end is directed to the rotor core There is provided a radial gap type rotating electric machine having protruding teeth, wherein the teeth are made of amorphous metal.
 また、本発明は、上記課題を解決するため、回転軸と、回転軸の周りに回転する回転子鉄心とを含む回転子と、回転子鉄心に対向して配置された固定子鉄心を含む固定子とを備え、固定子鉄心は、円環形状を有し、内周に沿って設けられた複数の凹部を有するバックヨークと、一端が凹部に篏合され、他端が回転子鉄心に向かって突出したティースとを有し、ティースは台形形状のアモルファス金属箔帯の積層体からなるラジアルギャップ型回転電機の製造装置において、アモルファス金属箔帯の素材シートを台形形状にせん断する切断ステーションを備えたラジアルギャップ型回転電機の製造装置を提供する。上記切断ステーションは、アモルファス金属箔帯の素材シートに対して垂直な方向及びアモルファス金属箔帯の素材シートの幅方向に対して互いに異なる角度で往復可能な2台のせん断刃を有し、このせん断刃によって台形形状の脚を作製し、台形形状のアモルファス金属箔帯を作製可能な構成を有することを特徴とする。 Further, in order to solve the above-mentioned problems, the present invention fixes a rotor including a rotation axis and a rotor core rotating around the rotation axis, and a stator core including a stator core disposed facing the rotor core. The stator core has an annular shape, and a back yoke having a plurality of recesses provided along the inner periphery, and one end is joined to the recess and the other end is directed to the rotor core In a manufacturing apparatus of a radial gap type rotating electrical machine having a stack of amorphous metal foil strips in trapezoidal shape, the teeth have a cutting station for shearing a material sheet of amorphous metal foil strips into a trapezoidal shape. An apparatus for manufacturing a radial gap type rotary electric machine is provided. The cutting station has two shear blades that can reciprocate at different angles with respect to the material sheet of the amorphous metal foil strip in a direction perpendicular to the material sheet of the amorphous metal foil strip and to the width direction of the material sheet of the amorphous metal foil strip. It is characterized in that a trapezoidal-shaped leg is produced by means of a blade, and a trapezoidal-shaped amorphous metal foil strip can be produced.
 また、本発明は、上記課題を解決するため、回転軸と、回転軸の周りに回転する回転子鉄心とを含む回転子と、回転子鉄心に対向して配置された固定子鉄心を含む固定子とを備え、固定子鉄心は、円環形状を有し、内周に沿って設けられた複数の凹部を有するバックヨークと、一端が凹部に篏合され、他端が前記回転子鉄心に向かって突出したティースとを有し、ティースは台形形状のアモルファス金属箔帯の積層体からなるラジアルギャップ型回転電機の製造方法において、アモルファス金属箔帯の素材シートを台形形状のアモルファス金属箔帯にせん断する切断工程を有するラジアルギャップ型回転電機の製造方法を提供する。上記切断工程は、アモルファス金属箔帯の素材シートに対して垂直な方向及びアモルファス金属箔帯の素材シートの幅方向に対して互いに異なる角度で往復可能な2台のせん断刃によって台形形状の脚を作製し、台形形状のアモルファス金属箔帯を作製可能な構成を有することを特徴とする。 Further, in order to solve the above-mentioned problems, the present invention fixes a rotor including a rotation axis and a rotor core rotating around the rotation axis, and a stator core including a stator core disposed facing the rotor core. The stator core has a ring shape, and a back yoke having a plurality of recesses provided along the inner periphery, and one end thereof is joined to the recess and the other end is on the rotor core In a method of manufacturing a radial gap type rotating electrical machine having a stack of amorphous metal foil bands having trapezoidal shapes, the material sheet of the amorphous metal foil bands is formed into an amorphous metal foil band having trapezoidal shapes. Provided is a manufacturing method of a radial gap type rotary electric machine having a cutting process of shearing. In the cutting step, the trapezoidal leg is formed by two shearing blades that can reciprocate at different angles with respect to the material sheet of the amorphous metal foil strip in the direction perpendicular to the material sheet of the amorphous metal foil strip and to the width direction of the material sheet of the amorphous metal foil strip. It is characterized in that it has a configuration capable of producing and producing a trapezoidal-shaped amorphous metal foil strip.
 本発明のより具体的な構成は、特許請求の範囲に記載される。 More specific configurations of the present invention are described in the claims.
 本発明によれば、高い効率を実現でき、かつ、生産性に優れたアモルファス金属を使用したラジアルギャップ型回転電機、その製造装置及びその製造方法を提供することができる。 According to the present invention, it is possible to provide a radial gap type rotary electric machine using an amorphous metal which can realize high efficiency and is excellent in productivity, an apparatus for manufacturing the same, and a method of manufacturing the same.
 上述した以外の課題、構成及び効果は以下の実施形態の説明により明らかにされる。 Problems, configurations, and effects other than those described above will be apparent from the description of the embodiments below.
本発明のラジアルギャップ型回転電機の一例(インナーロータ型)を示す模式図Schematic diagram showing an example (inner rotor type) of the radial gap type rotating electric machine of the present invention 図1の固定子鉄心の上面を示す模式図A schematic view showing the upper surface of the stator core of FIG. 1 図2Aの一部を拡大する図The figure which expands a part of FIG. 2A 図2Aのティースを模式的に示す斜視図The perspective view which shows the teeth of FIG. 2A typically 図2Aのティースの上面を模式的に示す図The figure which shows the upper surface of the teeth of FIG. 2A typically 図3Aのティースを詳細に示す斜視図A perspective view showing the teeth of FIG. 3A in detail 図3Aのティース及びバックヨークの一部を詳細に示す斜視図The perspective view which shows a part of teeth and back yoke of Drawing 3A in detail. 図4Bの上面図Top view of FIG. 4B バックヨークの一例を示す斜視図A perspective view showing an example of a back yoke バックヨークの他の例を示す斜視図A perspective view showing another example of the back yoke ティースにコイルを集中巻きした固定子鉄心を模式的に示す斜視図A perspective view schematically showing a stator core in which coils are concentratedly wound on teeth 図7Aのティースを拡大する斜視図The perspective view which expands the teeth of FIG. 7A 図7Aの一部の上面図Top view of a portion of FIG. 7A 樹脂製のボビンの詳細を示す斜視図A perspective view showing details of a resin bobbin 図8Aにコイル導体4を設けた斜視図The perspective view which provided the coil conductor 4 in FIG. 8A 本発明の回転子の一例を模式的に示す断面図Sectional drawing which shows typically an example of the rotor of this invention 本発明の回転子の他の例を模式的に示す断面図Sectional view schematically showing another example of the rotor of the present invention アモルファス金属箔帯の素材シートを切断する装置の一例を模式的に示す斜視図A perspective view schematically showing an example of an apparatus for cutting a material sheet of an amorphous metal foil strip 図10Aの上面図Top view of FIG. 10A 本発明のラジアルギャップ型回転電機の他の例(アウターロータ型)を示す断面模式図The cross-sectional schematic diagram which shows the other example (outer-rotor type | mold) of the radial gap type rotary electric machine of this invention 図11AのAB線断面図FIG. 11A is a cross-sectional view taken along line AB
 以下、図面等を用いて、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described using the drawings and the like.
 [ラジアルギャップ型回転電機]
 図1は本発明のラジアルギャップ型回転電機の一例(インナーロータ型)を示す模式図である。図1に示すように、本発明のラジアルギャップ型回転電機100aは、回転軸101と、回転軸101の周りに回転する回転子鉄心103を含む回転子110と、回転子鉄心103に対向して配置された固定子鉄心104を含む固定子111を備える。回転子110は、回転軸101及び回転子鉄心103の他に軸受102を含む。また、固定子111は、固定子鉄心104の他にコイル105を含む。回転電機100aは、回転子110及び固定子111の他に筐体106を含む。
[Radial gap type electric rotating machine]
FIG. 1 is a schematic view showing an example (inner rotor type) of a radial gap type rotary electric machine of the present invention. As shown in FIG. 1, the radial gap type rotating electrical machine 100a of the present invention is opposed to a rotor 110 including a rotating shaft 101, a rotor core 103 rotating around the rotating shaft 101, and a rotor core 103. It comprises a stator 111 comprising a stator core 104 arranged. The rotor 110 includes a bearing 102 in addition to the rotating shaft 101 and the rotor core 103. The stator 111 also includes a coil 105 in addition to the stator core 104. The rotating electrical machine 100 a includes a housing 106 in addition to the rotor 110 and the stator 111.
 図2Aは図1の固定子鉄心の上面を示す模式図であり、図2Bは図2Aの一部を拡大する図である。図2Aに示すように、固定子鉄心104は、円環形状を有するバックヨーク2と、一端がバックヨーク2に篏合され、他端が回転子鉄心103に向かって突出したティース(固定子コアティース)1を有する。図2Bに示すように、バックヨーク2には内周に沿って複数の凹部20が設けられており、この凹部20にティース1の一端が嵌合されている。 FIG. 2A is a schematic view showing the top surface of the stator core of FIG. 1, and FIG. 2B is an enlarged view of a part of FIG. 2A. As shown in FIG. 2A, stator iron core 104 has back yoke 2 having an annular shape, and teeth having one end joined to back yoke 2 and the other end projecting toward rotor core 103 (stator core Have teeth. As shown in FIG. 2B, the back yoke 2 is provided with a plurality of recesses 20 along the inner periphery, and one end of the tooth 1 is fitted in the recesses 20.
 本発明では、バックヨーク2とティース1を別の部材としていることから、別の材料で構成することができる。すなわち、ティース1には鉄損の低いアモルファス金属を適用し、バックヨーク2にはアモルファス金属よりも加工しやすい電磁鋼板を使用することで、アモルファス金属を使用しながらも生産性の高い構造を実現することができる。 In the present invention, since the back yoke 2 and the teeth 1 are separate members, they can be made of different materials. That is, an amorphous metal with low core loss is applied to the teeth 1, and an electromagnetic steel sheet that is easier to process than the amorphous metal is used for the back yoke 2 to realize a highly productive structure while using the amorphous metal. can do.
 図3Aは図2Aのティースを模式的に示す斜視図であり、図3Bは図2Aのティースの上面を模式的に示す図である。図3A及び図3Bに示すように、ティース1は、複数枚のアモルファス金属箔帯の積層体からなる。例えば、厚さ0.025mmのアモルファス金属箔帯を回転軸方向に1200枚積層し、高さh=30mmとした積層体をティース1として使用することができる。 FIG. 3A is a perspective view schematically showing the teeth of FIG. 2A, and FIG. 3B is a view schematically showing an upper surface of the teeth of FIG. 2A. As shown in FIGS. 3A and 3B, the teeth 1 are made of a laminate of a plurality of amorphous metal foil strips. For example, it is possible to use a laminated body in which 1,200 sheets of an amorphous metal foil strip having a thickness of 0.025 mm are laminated in the rotation axis direction and the height h = 30 mm as the teeth 1.
 図3Bに示すように、ティース1を構成するアモルファス金属箔帯は、一対の底辺(長辺と短辺)が平行で、長辺と短辺との間の一対の辺(脚)がなす角度θは、バックヨーク2の内周の一周360°を固定子鉄心のスロット数で除した角度を有する。例えば、スロット数を48とすると、θ=360°÷48=7.5°となる。バックヨーク2の凹部20は、ティース1の長辺側の端部が篏合可能な形状を有しており、ティース1はバックヨーク2から回転子110に向かって先細りとなる形状を有する。したがって、ティース1が回転子110側(ギャップ側(内側))に抜ける事が無い構造となる。 As shown in FIG. 3B, in the amorphous metal foil strip constituting teeth 1, an angle formed by a pair of bottom sides (long side and short side) being parallel and a pair of sides (legs) between the long side and the short side being formed. θ has an angle obtained by dividing 360 ° around the inner periphery of the back yoke 2 by the number of slots of the stator core. For example, if the number of slots is 48, then θ = 360 ° ÷ 48 = 7.5 °. The recess 20 of the back yoke 2 has such a shape that the end on the long side of the tooth 1 can be joined, and the tooth 1 has a shape that is tapered from the back yoke 2 toward the rotor 110. Therefore, the teeth 1 do not come off the rotor 110 side (gap side (inner side)).
 アモルファス金属の材料に特に限定は無いが、例えば日立金属株式会社製のMetglas 2605HB1M(組成:Fe-Si-B)、Metglas 2605SA1(組成:Fe-Si-B)、Metglas 2605S3A(組成:Fe-Si-B-Cr)及びMetglas 2705M(組成:Co-Fe-Ni-Si-B-Mo)を用いることが好ましい。上述した「Metglas」は、日立金属株式会社のグループ会社であるMetglas Incorporatedの登録商標である。 The material of the amorphous metal is not particularly limited. For example, Metglas 2605HB1M (composition: Fe-Si-B), Metglas 2605SA1 (composition: Fe-Si-B), Metglas 2605S3A (composition: Fe-Si) manufactured by Hitachi Metals, Ltd. It is preferred to use -B-Cr) and Metglas 2705M (composition: Co-Fe-Ni-Si-B-Mo). “Metglas” described above is a registered trademark of Metglas Incorporated, a group company of Hitachi Metals, Ltd.
 ティース1の構造についてより詳細に説明する。図4Aは図3Aのティースを詳細に示す斜視図であり、図4Bは図3Aのティース及びバックヨークの一部を詳細に示す斜視図である。また、図4Cは図4Bの上面図である。図4A~図4Cに示すように、ティース1のバックヨーク2と篏合されている端部と反対側の端部は樹脂製のボビン3に収納されており、積層体の積層方向の摩擦で保持されている。このような構成によって、1200枚のアモルファス箔帯を積層した場合であっても、アモルファス金属箔帯がばらばらにならずに保持することができる。アモルファス金属箔帯と樹脂製のボビンとをティースブロック40とする。 The structure of the tooth 1 will be described in more detail. 4A is a perspective view showing the teeth of FIG. 3A in detail, and FIG. 4B is a perspective view showing some of the teeth and back yoke of FIG. 3A in detail. 4C is a top view of FIG. 4B. As shown in FIGS. 4A to 4C, the end opposite to the end of the tooth 1 joined to the back yoke 2 is accommodated in a resin bobbin 3 and friction in the lamination direction of the laminated body It is held. With such a configuration, even in the case where 1200 amorphous foil bands are laminated, the amorphous metal foil bands can be held without being separated. An amorphous metal foil strip and a bobbin made of resin are used as a teeth block 40.
 図4Bに示すように、バックヨーク2は、電磁鋼板や冷間圧延鋼板(cold rolled steel sheet;SPCC)等をプレスで打抜きしたものの積層体で構成される。バックヨーク2を構成する電磁鋼板や冷間圧延鋼板の板厚は自由に選択することができる。例えば、0.2mm、0.35mm又は0.5mmにすることができる。バックヨーク2を構成する部分(コアバック部分)は、強度を優先した厚めの設計とする場合、磁束密度がティース1よりも低くなるため、鉄損の高い材料で構成することもできる。例えば、板厚0.5mmの電磁鋼板を60枚積層することでティース1と同様の積層高さh´=30mmとすることができる。 As shown to FIG. 4B, the back yoke 2 is comprised by the laminated body of what was pierced by the press, such as a magnetic steel plate, a cold rolled steel sheet (SPCC), etc. As shown in FIG. The thickness of the electromagnetic steel plate or cold-rolled steel plate constituting the back yoke 2 can be freely selected. For example, it can be 0.2 mm, 0.35 mm or 0.5 mm. The portion (core back portion) constituting the back yoke 2 can be made of a material having a high core loss because the magnetic flux density is lower than that of the teeth 1 when the thickness is designed to give priority to strength. For example, by laminating 60 electromagnetic steel sheets having a thickness of 0.5 mm, the lamination height h ′ = 30 mm similar to that of the teeth 1 can be obtained.
 図4Cに示すように、樹脂製のボビン3の隙間(スロット)にコイル導体(巻線)4が配置される。すなわち、コイル導体4は、隣接する2つの樹脂製のボビン3の間に配置されるため、樹脂製のボビン3でコア絶縁が確保される。 As shown in FIG. 4C, the coil conductor (winding) 4 is disposed in a gap (slot) of the bobbin 3 made of resin. That is, since the coil conductor 4 is disposed between two adjacent resin bobbins 3, core insulation is secured by the resin bobbin 3.
 図5はバックヨークの一例を示す斜視図である。バックヨーク2は、例えば4スロット(30°)を含むブロックに分割されており、これらを円環状に配置してバックヨーク2aを構成している。図6はバックヨークの他の例を示す斜視図である。図6では、エッジワイズコイル状に巻き回された巻鉄心型のバックヨーク2bの例を示した。このような形状のバックヨークは、例えば、定幅の電磁鋼板の片側に凹部を内抜きする金型を設け、スロットを形成し、そのスロットに合わせて鉄心をエッジワイズコイル状に巻き取る方法で製作される。この方法では、図5のように分割する場合よりも歩留まりを高く製造することができる。 FIG. 5 is a perspective view showing an example of the back yoke. The back yoke 2 is divided into blocks including, for example, 4 slots (30 °), and these are arranged in an annular shape to constitute the back yoke 2a. FIG. 6 is a perspective view showing another example of the back yoke. FIG. 6 shows an example of a wound iron core back yoke 2b wound in an edgewise coil shape. For example, a back yoke having such a shape is provided with a die for hollowing out a recess on one side of a fixed width electromagnetic steel plate, a slot is formed, and an iron core is wound in an edgewise coil shape according to the slot. Made. In this method, the yield can be made higher than in the case of dividing as shown in FIG.
 図7Aはティースにコイルを集中巻きした固定子鉄心を模式的に示す斜視図である。また、図7Bは図7Aのティースを拡大する斜視図であり、図7Cは図7Aの一部の上面図である。図7Aはティース1を46スロットの各スロットに組付けした構造を示している。図7Bは、樹脂製のボビン3の外側に平角断面を有するコイル導体を集中巻きとして巻き回した構造を示している。図7Aは、図7Bの巻線と一体となったアモルファスティースブロックをバックヨーク2に組付けた状態を示している。図7Cに示すように、コイルが集中巻きとなるので、スロットに配置されるコイル導体(巻線導体)は、隣り合うティースに巻かれたものが隣り合って配置される構造となる。 FIG. 7A is a perspective view schematically showing a stator core in which coils are concentratedly wound on teeth. 7B is a perspective view enlarging the teeth of FIG. 7A, and FIG. 7C is a top view of a part of FIG. 7A. FIG. 7A shows a structure in which tooth 1 is assembled to each of the 46 slots. FIG. 7B shows a structure in which a coil conductor having a flat cross section is wound in a concentrated manner on the outside of a resin bobbin 3. FIG. 7A shows a state in which the amorphous tooth block integrated with the winding of FIG. 7B is assembled to the back yoke 2. As shown in FIG. 7C, since the coils are concentratedly wound, the coil conductors (winding conductors) disposed in the slots have a structure in which those wound on adjacent teeth are disposed adjacent to each other.
 図8Aは樹脂製のボビンの詳細を示す斜視図であり、図8Bは図8Aにコイル導体を設けた斜視図である。上述したように、ティース1を保持する樹脂製のボビン3の外側にはコイル導体4が配置されるが、通常、鉄心や隣り合うコイルとの間を絶縁紙等によって絶縁している。図8A及び図8Bに示す樹脂製ボビンは、樹脂製のボビン3の側面に、回転軸の軸方向に沿って伸びる複数の突起30を設け、隣接する突起30の間にコイル導体4を保持可能な構成を有している。このような構成によってコイル導体4間の距離を確実に空け、コイル導体4同士が接触することが無いようにしている。これにより、コイル導体4間には隙間ができるため、その隙間に冷却用の油を注入する冷却方式を採用できる。 FIG. 8A is a perspective view showing the details of a bobbin made of resin, and FIG. 8B is a perspective view in which a coil conductor is provided in FIG. 8A. As described above, the coil conductor 4 is disposed on the outer side of the resin-made bobbin 3 holding the teeth 1, but usually, the core and the adjacent coil are insulated by insulating paper or the like. The resin bobbin shown in FIGS. 8A and 8B is provided with a plurality of protrusions 30 extending along the axial direction of the rotation shaft on the side surface of the resin bobbin 3 and can hold the coil conductor 4 between the adjacent protrusions 30. Have the following configuration. With such a configuration, the distance between the coil conductors 4 is reliably made to prevent the coil conductors 4 from coming in contact with each other. Thereby, since a gap is formed between the coil conductors 4, a cooling method of injecting a cooling oil into the gap can be adopted.
 上記のように構成された固定子は、コアバック部分が一般的な円環形状の鉄心であるため、同じ円環形状を有するハウジングに焼き嵌めや、隙間嵌め又はネジ留めのような機械的な締結方法で固定することが可能となる。このため、樹脂を介した保持でなくなるため、温度上昇に伴う部材間の線膨張係数差による熱応力の問題が解消される。 Since the stator configured as described above has a core back portion that is a general ring-shaped iron core, it is mechanical such as shrink fitting, clearance fitting, or screwing in a housing having the same ring shape. It becomes possible to fix by the fastening method. For this reason, since it does not hold | maintain via resin, the problem of the thermal stress by the linear expansion coefficient difference between the members accompanying a temperature rise is eliminated.
 また、本発明のラジアルギャップ型回転電機は、2ロータ型アキシャルギャップモータに比べてハウジングと鉄心の接触面積が大きく、金属間の熱伝導となるため大幅に放熱性が改善される。もともと磁束密度の高い固定子コアティース部がアモルファス鉄心に置き換わることで、モータの鉄損を大幅に低減することができる。 Further, in the radial gap type rotating electrical machine of the present invention, the contact area between the housing and the iron core is larger than that of the two-rotor axial gap motor, and heat conduction between metals is significantly improved. By replacing the stator core teeth having a high magnetic flux density with an amorphous core, iron loss of the motor can be significantly reduced.
 ラジアルギャップ型モータは、回転子の径が小さくできるので、高速化に向いているモータであり、高速化することによってトルク同一でも機械的な出力を向上することができる。高速化によって周波数が高くなるが、アモルファスの高周波特性(低損失特性)により、鉄損を低減できるので、モータの総合的な効率も向上する事ができる。さらに、アモルファス金属箔帯は、素材シートから歩留まり100%で使用することができるので、素材費の低減にもつながる。 Since the radial gap type motor can reduce the diameter of the rotor, it is a motor suitable for increasing the speed, and by increasing the speed, the mechanical output can be improved even with the same torque. Although the frequency is increased by the speedup, since the core loss can be reduced by the high frequency characteristics (low loss characteristics) of the amorphous, the overall efficiency of the motor can also be improved. Furthermore, since the amorphous metal foil strip can be used at a yield of 100% from the material sheet, the material cost can be reduced.
 本発明のラジアルギャップ型回転電機は、自動車駆動用モータや、車載用産業用機器の動力源として使用可能なF種の耐熱温度クラスに適用可能な物である。 The radial gap type rotary electric machine according to the present invention is applicable to a heat resistance temperature class F which can be used as a power source of a motor for driving an automobile or an industrial apparatus for a vehicle.
 次に、図4Aに示すティースブロック40を回転子鉄心に適用した例について説明する。上述したティースブロック40は、固定子鉄心のみならず、回転子鉄心にも適用することができる。図9Aは本発明の回転子の一例を模式的に示す断面図であり、図9Bは本発明の回転子の他の例を模式的に示す断面図である。図9A及び図9Bは、16極の磁石回転子を示している。図9A及び図9Bに示すように、回転子110a,110bは、円環形状を有し、回転軸101の周りに設けられた固定部材8と、外周を構成する外枠7と、一端が固定部材8に固定され、他端が外枠7に固定されたティース1及び永久磁石6とを有する。ティース1はアモルファス金属箔帯の積層体からなり、永久磁石6とティース1が回転子110a,110bの周方向に交互に配置されている。すなわち、永久磁石6は、回転子110a,110bにおいてスポーク状に配置されている。回転子110a,110bは、上述した構成の他に、樹脂製のボビン3、及びキー5を有する。 Next, an example in which the teeth block 40 shown in FIG. 4A is applied to a rotor core will be described. The teeth block 40 described above can be applied not only to the stator core but also to the rotor core. FIG. 9A is a cross-sectional view schematically showing an example of the rotor of the present invention, and FIG. 9B is a cross-sectional view schematically showing another example of the rotor of the present invention. 9A and 9B show a 16 pole magnet rotor. As shown in FIGS. 9A and 9B, the rotors 110a and 110b have an annular shape, and the fixing member 8 provided around the rotation shaft 101, the outer frame 7 forming the outer periphery, and one end thereof are fixed. It has a tooth 1 and a permanent magnet 6 fixed to the member 8 and fixed to the outer frame 7 at the other end. The teeth 1 are formed of a laminate of amorphous metal foil strips, and permanent magnets 6 and teeth 1 are alternately arranged in the circumferential direction of the rotors 110a and 110b. That is, the permanent magnets 6 are arranged in the shape of spokes in the rotors 110a and 110b. The rotors 110a and 110b have a resin bobbin 3 and a key 5 in addition to the above-described configuration.
 図9Bの回転子110bは、図9Aの一極を構成するティース1をさらに分割した物である。このようにティース1を分割することで、ティース1の内周側の内角が小さくなる。これによって、台形の先端部を、固定部材8の円周により精密に沿った構造とすることが可能となり、エアギャップを小さくすることができる。この結果、誘導起電力の低下を抑制することができる。 The rotor 110 b of FIG. 9B is one obtained by further dividing the teeth 1 constituting one pole of FIG. 9A. By dividing the tooth 1 in this manner, the inner angle on the inner peripheral side of the tooth 1 is reduced. As a result, it becomes possible to make the tip end of the trapezoid more closely conform to the circumference of the fixing member 8, and the air gap can be made smaller. As a result, it is possible to suppress the reduction of the induced electromotive force.
 永久磁石をスポーク状に配置する場合、回転子内側部での漏れ磁束を低減するため、固定部材8は非磁性材料で構成することが望ましい。例えば、アルミニウムやステンレス等が好ましい。また、ティース1と永久磁石6を固定する外枠7は、耐遠心力部材(回転子外周部に配置した耐遠心力強度に耐えうる部材)で構成されることが好ましい。耐遠心力部材7の例としては、CFRP(Carbon Fiber Reinforced Plastic)やSUSカバーを用いることができる。 When the permanent magnets are arranged in the shape of a spoke, it is desirable that the fixing member 8 be made of a nonmagnetic material in order to reduce the leakage flux at the inner side of the rotor. For example, aluminum or stainless steel is preferable. Moreover, it is preferable that the outer frame 7 which fixes the teeth 1 and the permanent magnet 6 is comprised with a centrifugal-resistant member (member arrange | positioned in the rotor outer peripheral part and which can bear the centrifugal-resistant strength). As an example of the centrifugal force resistant member 7, CFRP (Carbon Fiber Reinforced Plastic) or a SUS cover can be used.
 図11Aは本発明のラジアルギャップ型回転電機の他の例(アウターロータ型)を示す断面模式図であり、図11Bは図11AのAB線断面図である。先に記載した説明では、インナーロータ型のラジアルギャップ型回転電機を例に取り上げたが、これに限定されるものではなく、本発明は図11A及び図11Bに示すアウターロータ型のラジアルギャップ型回転電機であってもよい。すなわち、アウターロータ型のラジアルギャップ型回転電機100bの固定子鉄心104に上述したティースブロックを用いることができる。また、回転子鉄心103にも上述したアモルファスティースブロックを用いることができる。 11A is a schematic cross-sectional view showing another example (outer rotor type) of the radial gap type rotary electric machine of the present invention, and FIG. 11B is a cross-sectional view along line AB of FIG. 11A. In the above description, an inner rotor type radial gap type rotating electrical machine is taken as an example, but the present invention is not limited to this, and the present invention is an outer rotor type radial gap type rotating motor shown in FIGS. 11A and 11B. It may be an electric machine. That is, the teeth block described above can be used for the stator core 104 of the outer rotor type radial gap type rotating electrical machine 100b. The above-mentioned amorphous teeth block can be used for the rotor core 103 as well.
 [ラジアルギャップ型回転電機の製造装置及び製造方法]
 次に、上述した台形形状のアモルファス金属箔帯の積層体を効率的に製造できる装置及び方法について説明する。図10Aはアモルファス金属の素材シートを切断する装置の一例を模式的に示す斜視図であり、図10Bは図11Aの上面図である。図10Aに示すように、切断装置120は、アモルファス金属箔帯の素材シート15を送り出す送りローラ10と、アモルファス金属箔帯の素材シート15を切断する切断ステージ16と、アモルファス金属箔帯の素材シート15を台形形状に切断する切断刃(上刃13a及び下刃13b)と、上刃13aを支持する上プレート14と、切断ステージ16を支持し、切断後のアモルファス金属箔帯を積層するベースプレート11を有する。
[Production apparatus and method for manufacturing radial gap type rotary electric machine]
Next, an apparatus and a method capable of efficiently manufacturing the laminate of the above-described trapezoidal shaped amorphous metal foil strip will be described. FIG. 10A is a perspective view schematically showing an example of an apparatus for cutting an amorphous metal material sheet, and FIG. 10B is a top view of FIG. 11A. As shown in FIG. 10A, the cutting device 120 comprises a feed roller 10 for feeding out the material sheet 15 of the amorphous metal foil band, a cutting stage 16 for cutting the material sheet 15 of the amorphous metal foil band, and a material sheet of the amorphous metal foil band. A cutting blade (upper blade 13a and lower blade 13b) for cutting 15 into a trapezoidal shape, an upper plate 14 for supporting the upper blade 13a, and a base plate 11 for supporting the cutting stage 16 and laminating amorphous metal foil strips after cutting. Have.
 アモルファス金属箔帯の素材シート15は、送りローラ10によって等ピッチで切断ステージ16に供給される。切断ステージ16に送り出されたアモルファス金属箔帯の素材シートは、上刃13a及び下刃13bによってせん断切断され、ベースプレート11の上に積層されて積層体1を製造する。このような方式によると、切断刃は単純な形状であるので、金型への取り付け取り外しが容易な上、安価で再研磨等のメンテナンスもしやすいために、アモルファス金属の硬さや薄さに対して充分に製造コストを抑えることができる。 The material sheet 15 of the amorphous metal foil strip is supplied to the cutting stage 16 at equal pitches by the feed roller 10. The material sheet of the amorphous metal foil band delivered to the cutting stage 16 is sheared by the upper blade 13 a and the lower blade 13 b and laminated on the base plate 11 to manufacture the laminate 1. According to such a method, since the cutting blade has a simple shape, it is easy to attach to and remove from the mold, and inexpensive and easy to carry out maintenance such as regrinding. The manufacturing cost can be sufficiently suppressed.
 アモルファス金属箔帯を台形形状とするためには、一対の脚がなす角度がθとなるように切断する必要があるが、一つの切断刃で一様に切断すると、平行四辺形のアモルファス金属箔帯が出来てしまう。そこで、本発明の製造方法では、図10Bの実線と点線に示すように、上刃13a及び下刃13bが回転しながら、図10Aの矢印A方向(アモルファス金属箔帯の素材シートに対して垂直な方向)及び図10Bの矢印B方向(アモルファス金属箔帯の素材シートの幅方向)に移動することで、角度をつけながらの切断が可能となる。 In order to make the amorphous metal foil strip into a trapezoidal shape, it is necessary to cut so that the angle formed by the pair of legs is θ, but when cut uniformly with one cutting blade, the parallelogram amorphous metal foil A band is made. Therefore, in the manufacturing method of the present invention, as shown by the solid and dotted lines in FIG. 10B, while the upper blade 13a and the lower blade 13b rotate, the direction of arrow A in FIG. 10A (perpendicular to the material sheet of amorphous metal foil strip By moving in the direction of arrow B) and in the direction of arrow B in FIG. 10B (in the width direction of the material sheet of the amorphous metal foil strip), it is possible to cut at an angle.
 また、機械式のカム等を用いて切断ステージ16を動かして角度を付けてアモルファス箔帯を切断することも可能である。さらに、アモルファス金属箔帯を送りローラ10で間欠送りして、間欠送り動作と同期して電動スライドによって金型を動作させる方法でも充分な生産スピードが期待できる。切断のスピードは、200SPM程度は期待でき、さらに複数枚重ねたアモルファス箔帯の素材シート15を供給することによって、商業的に効果が期待できる製造スピードで生産を行う事ができる。 It is also possible to move the cutting stage 16 with a mechanical cam or the like to cut the amorphous foil strip at an angle. Furthermore, sufficient production speed can be expected even by a method in which the amorphous metal foil strip is intermittently fed by the feed roller 10 and the mold is operated by an electric slide in synchronization with the intermittent feeding operation. The cutting speed can be expected to be about 200 SPM, and by supplying a plurality of stacked amorphous foil band material sheets 15, production can be performed at a production speed at which commercial effects can be expected.
 ベースプレート11に積層された積層体1は、積層体1を構成するアモルファス金属箔帯の枚数管理か、又は重量管理等の方法によって所定の軸方向長(高さ)となるように管理し、整列した後、樹脂製のボビンに挿入することでティースブロックを完成することができる。 The stacked body 1 stacked on the base plate 11 is controlled so as to have a predetermined axial length (height) by management of the number of amorphous metal foil bands constituting the laminated body 1 or by a method such as weight management, and alignment After that, the teeth block can be completed by inserting into a resin bobbin.
 以上、説明したように、本発明によれば、高い効率を実現でき、かつ、生産性に優れたアモルファス金属を使用したラジアルギャップ型回転電機、その製造装置及びその製造方法を提供できることが実証された。 As described above, according to the present invention, it is demonstrated that it is possible to provide a radial gap type rotary electric machine using an amorphous metal which can realize high efficiency and is excellent in productivity, a manufacturing apparatus thereof and a manufacturing method thereof. The
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the embodiments described above, but includes various modifications. For example, the embodiments described above are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. Further, part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. In addition, with respect to a part of the configuration of each embodiment, it is possible to add, delete, and replace other configurations.
 1…ティース、2,2a,2b…バックヨーク、20…凹部、3…樹脂製のボビン、30…突起、4…コイル導体、5…キー、6…永久磁石、7…外枠、8…固定部材、10…送りローラ、11…ベースプレート、13a…上刃、13b…下刃、14…上プレート、15…アモルファス金属箔帯の素材シート、16…切断ステージ、40…ティースブロック、100a…ラジアルギャップ型回転電機(インナーロータ型)、100b…ラジアルギャップ型回転電機(アウターロータ型)、101…回転軸、102…軸受、103…回転子鉄心、104…固定子鉄心、105…コイル、110,110a,110b…回転子、111…固定子、120…アモルファス金属箔帯切断装置。 DESCRIPTION OF SYMBOLS 1 ... Teeth, 2, 2a, 2b ... Back yoke, 20 ... Concave part, 3 ... Resin bobbin, 30 ... Protrusion, 4 ... Coil conductor, 5 ... Key, 6 ... Permanent magnet, 7: Outer frame, 8 ... Fixing Member 10 Feed roller 11 Base plate 13a Upper blade 13b Lower blade 14 Upper plate 15 Amorphous metal foil strip material sheet 16 Cutting stage 40 Tees block 100a Radial gap Type rotary electric machine (inner rotor type), 100b: radial gap type rotary electric machine (outer rotor type), 101: rotary shaft, 102: bearing, 103: rotor core, 104: stator core, 105: coil, 110, 110a , 110b ... rotor, 111 ... stator, 120 ... amorphous metal foil strip cutting device.

Claims (11)

  1.  回転軸と、前記回転軸の周りに回転する回転子鉄心とを含む回転子と、前記回転子鉄心に対向して配置された固定子鉄心を含む固定子とを備え、
     前記固定子鉄心は、円環形状を有し、内周に沿って設けられた複数の凹部を有するバックヨークと、一端が前記凹部に篏合され、他端が前記回転子鉄心に向かって突出したティースとを有し、
     前記ティースはアモルファス金属からなることを特徴とするラジアルギャップ型回転電機。
    A rotor including a rotation axis and a rotor core rotating around the rotation axis; and a stator including a stator core disposed opposite to the rotor core,
    The stator core has an annular shape, and a back yoke having a plurality of recesses provided along the inner periphery, and one end thereof is joined to the recess and the other end protrudes toward the rotor core Have a tooth and
    The radial gap type electric rotating machine characterized in that the teeth are made of amorphous metal.
  2.  前記ティースは、台形形状のアモルファス金属箔帯が前記回転軸の軸方向に積層された物であり、前記回転子側の端部が樹脂製のボビンによって保持されていることを特徴とする請求項1に記載のラジアルギャップ型回転電機。 The teeth are formed by stacking amorphous metal foil strips in a trapezoidal shape in the axial direction of the rotating shaft, and the end portion on the rotor side is held by a resin bobbin. Radial gap type rotating electrical machine according to 1.
  3.  隣接する前記樹脂製のボビンの間にコイル導体が保持されていることを特徴とする請求項2に記載のラジアルギャップ型回転電機。 The radial gap type rotating electrical machine according to claim 2, wherein a coil conductor is held between the adjacent resin bobbins.
  4.  前記樹脂製のボビンの側面に、前記回転軸の軸方向に沿って伸びる複数の突起を有し、隣接する前記突起の間に前記コイル導体が保持されていることを特徴とする請求項3に記載のラジアルギャップ型回転電機。 A plurality of protrusions extending along the axial direction of the rotating shaft are provided on the side surface of the resin bobbin, and the coil conductor is held between the adjacent protrusions. Radial gap type electric rotating machine described.
  5.  前記バックヨークは、周方向に複数に分割された電磁鋼板が前記回転軸の軸方向に積層された物であることを特徴とする請求項1乃至4のいずれか1項に記載のラジアルギャップ型回転電機。 The radial gap type according to any one of claims 1 to 4, wherein the back yoke is one in which a plurality of electromagnetic steel plates divided in a circumferential direction are laminated in an axial direction of the rotating shaft. Electric rotating machine.
  6.  前記バックヨークは、電磁鋼板が周方向にエッジワイズコイル状に巻き回されて積層された物であることを特徴とする請求項1乃至4のいずれか1項に記載のラジアルギャップ型回転電機。 The radial gap electrical rotating machine according to any one of claims 1 to 4, wherein the back yoke is formed by winding electromagnetic steel plates in an edgewise coil shape in a circumferential direction and laminating them.
  7.  前記回転子鉄心は、円環形状を有し、前記回転軸の周りに設けられた固定部材と、外周を構成する外枠と、一端が前記固定部材に固定され、他端が前記外枠に固定されたティース及び永久磁石とを有し、
     前記ティースはアモルファス金属からなり、前記永久磁石と前記ティースが前記回転子鉄心の周方向に交互に配置されていることを特徴とする請求項1乃至4のいずれか1項に記載のラジアルギャップ型回転電機。
    The rotor core has an annular shape, and a fixing member provided around the rotation axis, an outer frame forming an outer periphery, one end is fixed to the fixing member, and the other end is fixed to the outer frame. With fixed teeth and permanent magnets,
    The radial gap type according to any one of claims 1 to 4, wherein the teeth are made of amorphous metal, and the permanent magnet and the teeth are alternately arranged in the circumferential direction of the rotor core. Electric rotating machine.
  8.  前記ティースは、台形形状のアモルファス金属箔帯が前記回転軸の軸方向に積層された物であり、一端が前記外枠に固定され、他端が樹脂製のボビンによって保持されて前記固定部材に固定されていることを特徴とする請求項7に記載のラジアルギャップ型回転電機。 The teeth are a trapezoidal amorphous metal foil strip laminated in the axial direction of the rotating shaft, one end is fixed to the outer frame, the other end is held by a resin bobbin, and the fixing member is fixed to the fixing member. The radial gap type rotary electric machine according to claim 7, characterized in that it is fixed.
  9.  前記ラジアルギャップ型回転電機がインナーロータ型又はアウターロータ型であることを特徴とする請求項1乃至4のいずれか1項に記載のラジアルギャップ型回転電機。 The radial gap type rotary electric machine according to any one of claims 1 to 4, wherein the radial gap type rotary electric machine is an inner rotor type or an outer rotor type.
  10.  回転軸と、前記回転軸の周りに回転する回転子鉄心とを含む回転子と、前記回転子鉄心に対向して配置された固定子鉄心を含む固定子とを備え、前記固定子鉄心は、円環形状を有し、内周に沿って設けられた複数の凹部を有するバックヨークと、一端が前記凹部に篏合され、他端が前記回転子鉄心に向かって突出したティースとを有し、前記ティースは台形形状のアモルファス金属箔帯の積層体からなるラジアルギャップ型回転電機の製造装置において、
     前記アモルファス金属箔帯の素材シートを台形形状にせん断する切断ステーションを備え、
     前記切断ステーションは、前記アモルファス金属箔帯の素材シートに対して垂直な方向及び前記アモルファス金属箔帯の素材シートの幅方向に対して互いに異なる角度で往復可能な2台のせん断刃を有し、前記せん断刃によって前記台形形状の脚を作製し、前記台形形状のアモルファス金属箔帯を作製可能な構成を有することを特徴とするラジアルギャップ型回転電機の製造装置。
    The rotor comprises: a rotor including a rotating shaft; and a rotor core rotating around the rotating shaft; and a stator including a stator core disposed opposite to the rotor core, the stator core comprising: A back yoke having an annular shape and having a plurality of recesses provided along the inner periphery, and teeth having one end joined to the recess and the other end protruding toward the rotor core The manufacturing apparatus of a radial gap type rotating electrical machine, wherein the teeth are formed of a laminate of trapezoidal metal foil strips.
    A cutting station for shearing the material sheet of the amorphous metal foil strip into a trapezoidal shape;
    The cutting station has two shear blades that can reciprocate at different angles with respect to the material sheet of the amorphous metal foil strip in a direction perpendicular to the material sheet of the amorphous metal foil strip and at a different angle to the width direction of the material sheet of the amorphous metal foil strip. A manufacturing apparatus of a radial gap type rotary electric machine, wherein the trapezoidal blade is manufactured by the shear blade, and the trapezoidal metal foil strip can be manufactured.
  11.  回転軸と、前記回転軸の周りに回転する回転子鉄心とを含む回転子と、前記回転子鉄心に対向して配置された固定子鉄心を含む固定子とを備え、前記固定子鉄心は、円環形状を有し、内周に沿って設けられた複数の凹部を有するバックヨークと、一端が前記凹部に篏合され、他端が前記回転子鉄心に向かって突出したティースとを有し、前記ティースは台形形状のアモルファス金属箔帯の積層体からなるラジアルギャップ型回転電機の製造方法において、
     前記アモルファス金属箔帯の素材シートを台形形状のアモルファス金属箔帯にせん断する切断工程を有し、
     前記切断工程は、前記アモルファス金属箔帯の素材シートに対して垂直な方向及び前記アモルファス金属箔帯の素材シートの幅方向に対して互いに異なる角度で往復可能な2台のせん断刃によって前記台形形状の脚を作製し、前記台形形状のアモルファス金属箔帯を作製することを特徴とするラジアルギャップ型回転電機の製造方法。
    The rotor comprises: a rotor including a rotating shaft; and a rotor core rotating around the rotating shaft; and a stator including a stator core disposed opposite to the rotor core, the stator core comprising: A back yoke having an annular shape and having a plurality of recesses provided along the inner periphery, and teeth having one end joined to the recess and the other end protruding toward the rotor core The method for manufacturing a radial gap type rotary electric machine, wherein the teeth are formed of a laminate of trapezoidal metal foil strips.
    It has a cutting step of shearing the material sheet of the amorphous metal foil strip into an amorphous metal foil strip having a trapezoidal shape,
    In the cutting step, the trapezoidal shape is formed by two shearing blades that can reciprocate at different angles with respect to a direction perpendicular to the material sheet of the amorphous metal foil strip and a width direction of the material sheet of the amorphous metal foil strip. A method of manufacturing a radial gap type rotary electric machine, characterized in that the legs of the above are manufactured, and the trapezoidal shaped amorphous metal foil strip is manufactured.
PCT/JP2018/007577 2017-09-29 2018-02-28 Radial-gap-type rotary electric machine, and production device and production method for same WO2019064630A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880058581.0A CN111052545B (en) 2017-09-29 2018-02-28 Radial gap type rotating electrical machine, manufacturing device therefor, and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-190453 2017-09-29
JP2017190453A JP6917853B2 (en) 2017-09-29 2017-09-29 Radial gap type rotary electric machine, its manufacturing equipment and its manufacturing method

Publications (1)

Publication Number Publication Date
WO2019064630A1 true WO2019064630A1 (en) 2019-04-04

Family

ID=65901604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007577 WO2019064630A1 (en) 2017-09-29 2018-02-28 Radial-gap-type rotary electric machine, and production device and production method for same

Country Status (3)

Country Link
JP (1) JP6917853B2 (en)
CN (1) CN111052545B (en)
WO (1) WO2019064630A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021060298A1 (en) * 2019-09-24 2021-04-01 日立金属株式会社 Stator for rotating electrical machine, rotating electrical machine, method for manufacturing stator for rotating electrical machine, and method for manufacturing rotating electrical machine
JP2021126031A (en) * 2020-02-10 2021-08-30 株式会社日立ハイテク Coil bobbin, stator core of distributed winding radial gap type rotary electric machine, and distributed winding radial gap type rotary electric machine
US11658530B2 (en) 2021-07-15 2023-05-23 Stoneridge, Inc. Modular brushless DC (BLDC) motor construction
WO2024089937A1 (en) * 2022-10-27 2024-05-02 株式会社日立産機システム Rotary electric machine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022163612A (en) 2021-04-14 2022-10-26 株式会社日立産機システム Rotating electric machine
JP2023105875A (en) * 2022-01-20 2023-08-01 株式会社日立産機システム Rotary electric machine and industrial machine
WO2023188619A1 (en) * 2022-03-31 2023-10-05 ニデック株式会社 Drive device and method for manufacturing drive device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006101673A (en) * 2004-09-30 2006-04-13 Hitachi Industrial Equipment Systems Co Ltd Rotating machine with permanent magnet and method for manufacturing teeth of stator iron core of the same
JP2006325295A (en) * 2005-05-17 2006-11-30 Honda Motor Co Ltd Stator
JP2007159308A (en) * 2005-12-07 2007-06-21 Daikin Ind Ltd Rotor
JP2012016131A (en) * 2010-06-30 2012-01-19 Asmo Co Ltd Rotor, and method of manufacturing motor
JP2012165576A (en) * 2011-02-08 2012-08-30 Yaskawa Electric Corp Rotary electric machine and method for manufacturing rotary electric machine
JP2014155347A (en) * 2013-02-08 2014-08-25 Mitsubishi Electric Corp Split core, stator employing the split core and rotary electric machine with the stator

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005017517B4 (en) * 2005-04-15 2007-03-08 Minebea Co., Ltd. Stator assembly for an electric machine and method of manufacturing a stator assembly
JP5442388B2 (en) * 2009-10-22 2014-03-12 株式会社日立産機システム Magnetic iron core and manufacturing method thereof, axial gap type rotating electric machine, stationary machine
DE102010064051A1 (en) * 2010-12-23 2012-06-28 Robert Bosch Gmbh Winding carrier for the isolation of a single-tooth winding in electrical machines
KR101317892B1 (en) * 2011-01-24 2013-10-16 주식회사 아모텍 Amorphous Stator and Producing Method thereof
CN205846911U (en) * 2016-07-08 2016-12-28 东莞市亚琪五金塑胶科技有限公司 Miniature brushless slotless electric machine winding skeleton
CN206272379U (en) * 2016-12-14 2017-06-20 东莞拓蓝自动化科技有限公司 Tricycle electric motor internal stator insulating support
CN206302312U (en) * 2016-12-24 2017-07-04 重庆乔麦科技有限公司 A kind of slotless magnetic resistance inner rotor motor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006101673A (en) * 2004-09-30 2006-04-13 Hitachi Industrial Equipment Systems Co Ltd Rotating machine with permanent magnet and method for manufacturing teeth of stator iron core of the same
JP2006325295A (en) * 2005-05-17 2006-11-30 Honda Motor Co Ltd Stator
JP2007159308A (en) * 2005-12-07 2007-06-21 Daikin Ind Ltd Rotor
JP2012016131A (en) * 2010-06-30 2012-01-19 Asmo Co Ltd Rotor, and method of manufacturing motor
JP2012165576A (en) * 2011-02-08 2012-08-30 Yaskawa Electric Corp Rotary electric machine and method for manufacturing rotary electric machine
JP2014155347A (en) * 2013-02-08 2014-08-25 Mitsubishi Electric Corp Split core, stator employing the split core and rotary electric machine with the stator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021060298A1 (en) * 2019-09-24 2021-04-01 日立金属株式会社 Stator for rotating electrical machine, rotating electrical machine, method for manufacturing stator for rotating electrical machine, and method for manufacturing rotating electrical machine
JP6857318B1 (en) * 2019-09-24 2021-04-14 日立金属株式会社 Manufacture method of stator and rotary electric machine for rotary electric machine, and stator for rotary electric machine and manufacturing method of rotary electric machine
CN114342215A (en) * 2019-09-24 2022-04-12 日立金属株式会社 Stator for rotating electric machine, method for manufacturing stator for rotating electric machine, and method for manufacturing rotating electric machine
CN114342215B (en) * 2019-09-24 2023-10-20 株式会社博迈立铖 Stator for rotating electric machine, method for manufacturing same, rotating electric machine, and method for manufacturing same
JP2021126031A (en) * 2020-02-10 2021-08-30 株式会社日立ハイテク Coil bobbin, stator core of distributed winding radial gap type rotary electric machine, and distributed winding radial gap type rotary electric machine
JP7344807B2 (en) 2020-02-10 2023-09-14 株式会社日立ハイテク Coil bobbin, stator core of distributed winding radial gap type rotating electrical machine, and distributed winding radial gap type rotating electrical machine
US11658530B2 (en) 2021-07-15 2023-05-23 Stoneridge, Inc. Modular brushless DC (BLDC) motor construction
WO2024089937A1 (en) * 2022-10-27 2024-05-02 株式会社日立産機システム Rotary electric machine

Also Published As

Publication number Publication date
JP6917853B2 (en) 2021-08-11
CN111052545A (en) 2020-04-21
CN111052545B (en) 2022-03-01
JP2019068567A (en) 2019-04-25

Similar Documents

Publication Publication Date Title
WO2019064630A1 (en) Radial-gap-type rotary electric machine, and production device and production method for same
CN111837314B (en) Radial gap type rotating electrical machine
US11557948B2 (en) Radial-gap-type rotary electric machine, production method for radial-gap-type rotary electric machine, production device for rotary electric machine teeth piece, and production method for rotary electric machine teeth member
JP3350889B2 (en) Stator for high power density motor / generator and its manufacturing method
JP2012186999A (en) Method for making soft magnetic metal electromagnetic component
US9553495B2 (en) Wound core, electromagnetic component and manufacturing method therefor, and electromagnetic equipment
KR101289289B1 (en) Motor having one-body type stator core
WO2016114054A1 (en) Axial-gap rotary electric machine
KR100533012B1 (en) Stater structure for reciprocating motor
JP6057777B2 (en) Stator, hermetic compressor and rotary machine including the stator, and mold
JP7247720B2 (en) Radial gap type rotary electric machine and method for manufacturing radial gap type rotary electric machine
JP4305239B2 (en) Core manufacturing method
JP5311290B2 (en) Manufacturing method of stator core for axial gap type rotating electrical machine
JP2021118566A (en) Manufacturing method for laminate core of electric machine and manufacturing method for electric machine
JP2021114868A (en) Manufacturing method of lamination iron core of electric machine and manufacturing method of the electric machine
JP2021121159A (en) Laminated core of electric machine, electric machine, manufacturing method of laminated core of electric machine and manufacturing method of electric machine
US20220344981A1 (en) Laminated core of electric machine, electric machine, method for manufacturing laminated core of electric machine, and method for manufacturing electric machine
KR20150125826A (en) Single stator and Motor having the thereof
JP2021090231A (en) Laminated iron core of electric machine and electric machine
CN116317252A (en) Rotary electric machine
JP2006296075A (en) Divided stator and motor
KR20150022526A (en) Motor having one-body type stator core

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18863137

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18863137

Country of ref document: EP

Kind code of ref document: A1