WO2011027498A1 - 通信システム - Google Patents

通信システム Download PDF

Info

Publication number
WO2011027498A1
WO2011027498A1 PCT/JP2010/004233 JP2010004233W WO2011027498A1 WO 2011027498 A1 WO2011027498 A1 WO 2011027498A1 JP 2010004233 W JP2010004233 W JP 2010004233W WO 2011027498 A1 WO2011027498 A1 WO 2011027498A1
Authority
WO
WIPO (PCT)
Prior art keywords
coupler
communication
communication system
groove
signal transmission
Prior art date
Application number
PCT/JP2010/004233
Other languages
English (en)
French (fr)
Inventor
今里雅治
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US13/390,045 priority Critical patent/US8847697B2/en
Priority to CN201080038418.1A priority patent/CN102484506B/zh
Priority to JP2011529775A priority patent/JP5601326B2/ja
Publication of WO2011027498A1 publication Critical patent/WO2011027498A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer

Definitions

  • the present invention relates to a communication system including a signal transmission device having a lattice pattern and a communication coupler that is installed on the upper surface of the signal transmission device and transmits a signal to the signal transmission device, and particularly has a noise suppression structure that suppresses electromagnetic leakage of the communication coupler.
  • the present invention relates to a communication system.
  • the communication system shown in these drawings includes a sheet-like signal transmission device 1 serving as a communication medium and a communication coupler 2.
  • the signal transmission device 1 has a sheet-like structure, and includes a ground layer 3, a lattice pattern electrode 4, a protective layer 5, and a dielectric layer 6.
  • the ground layer 3 constitutes a lower electrode.
  • the grid pattern electrode 4 has a mesh shape and is spaced from the ground layer 3.
  • the protective layer 5 is provided on the upper part of the lattice pattern electrode 4 to prevent the pattern electrode 4 from coming into direct contact with the communication coupler 2.
  • the dielectric layer 6 is provided in a region between the ground layer 3 and the grid pattern electrode 4.
  • the communication coupler 2 is installed on the signal transmission device 1 and includes a plate-like antenna circuit 10 for transmitting or receiving communication signals or power and a circuit for signal / power transmission / reception (not shown) and the antenna circuit 10. And a cup-shaped coupler housing 11 formed so as to cover.
  • the communication signal becomes an electromagnetic field via the antenna circuit 10 of the coupler housing 11 and is injected into the signal transmission device 1, and then propagates through the signal transmission device 1 to be separated from the communication coupler 2.
  • Communication with a communication coupler (not shown).
  • patent document 2 shows a communication coupler having a structure shown in FIG.
  • the communication coupler 20 includes an inner conductor 21, an outer conductor 23, and a coaxial cable 24.
  • the inner conductor 21 has a disk shape.
  • the outer conductor 23 has a cup shape and covers the inner conductor 21 and constitutes a coupler housing 22.
  • the coaxial cable 24 is connected to the inner conductor 21 and the outer conductor 23.
  • the end of the coaxial cable 24 is connected to the communication device 25.
  • the electromagnetic field input / output from the communication device 25 is transmitted through the coaxial cable 24, propagates between the inner conductor 21 and the outer conductor 23 of the communication coupler 2, and is injected into the signal transmission device 1. Communication is performed between the communication coupler 20 and another communication coupler (not shown) by propagating through the signal transmission device 1.
  • Patent Document 4 discloses a position for performing alignment so as to cause electrostatic coupling between the electrodes and holding the position at the tip portion of the surface wave transmission line piece attached to each of the transmitting electrode and the receiving electrode. A technique related to a communication device including a holding mechanism is shown.
  • FIG. 22 shows the joint structure between the coupler housing 11 of the communication coupler 2 and the signal transmission device 1 as shown in FIG. 22. is there.
  • a signal current for communication or power transmission is transmitted from the inside 12 of the communication coupler 2 (right side in FIG. 22) between the coupler housing 11 and the signal transmission device 1.
  • FIG. 23 shows the junction noise propagation equivalent circuit of FIG. In FIG.
  • the joint surface resistance of the signal transmission device 1 of the coupler housing 11 is represented as “Rs”, and the impedance between the coupler housing 11 and the signal transmission device 1 is represented as “Zc”.
  • the signal current generated inside the communication coupler 2 12 flows through the communication coupler 2 via the Zc as indicated by the arrow A, and flows through the communication coupler 2 via the Rs as indicated by the arrow B. It is distributed to “Id”.
  • f is a signal frequency.
  • the capacitance C is about 10 pF.
  • the impedance Zc is several ⁇ .
  • the surface resistance of the joint portion of the coupler housing 11 is a metal housing, it is in milliohm units. Therefore, the ratio of Rs to Zc is “Rs ⁇ Zc”. Therefore, Id occupies most of the noise current and flows out to the outside 13 of the communication coupler 2 as noise current, causing noise emission. Depending on the noise radiation level, there is a possibility that the standard value of electric field strength applied to the apparatus may be exceeded.
  • the communication device shown in Patent Document 4 simply aligns the positions of the transmission electrode and the reception electrode that cause electrostatic coupling between the electrodes at the tip of the surface wave transmission line piece, and positions the electrodes. It only has a position holding mechanism for holding. Since this communication device does not have a structure for suppressing noise emission, there is a risk of causing noise emission.
  • the present invention has been made in view of the above-described circumstances, and an object of the present invention is to radiate out of the coupler housing by providing a structure in which noise current does not easily flow on the lower end surface of the coupler housing facing the signal transmission device.
  • a leakage electromagnetic field suppression structure that suppresses generated noise.
  • a communication system of the present invention comprises a communication coupler that transmits and transmits a signal, and a signal transmission device that performs communication by propagating a signal transmitted from the communication coupler as an electromagnetic field,
  • the communication coupler has a coupler housing installed on the signal transmission device, and a noise suppression unit that suppresses noise by forming a high impedance on a lower end surface of the coupler housing facing the signal transmission device.
  • a noise suppression unit that suppresses noise by forming a high impedance on the lower end surface of the coupler housing facing the signal transmission device is provided.
  • FIG. 11 is a front sectional view taken along line III-III in FIGS. 2 and 10.
  • FIG. 4 is an enlarged front sectional view of a contact portion between a communication coupler and a signal transmission portion shown in FIG. 3.
  • FIG. 3 shows the equivalent circuit of the contact part of the coupler housing
  • FIG. 3 shows the noise leakage condition of the communication coupler which has a groove
  • FIG. 1 It is a figure which shows the noise leakage condition of the communication coupler and signal transmission apparatus concerning a prior art as a near magnetic field distribution calculated
  • FIG. It is a top view which shows the communication system of FIG. It is a front sectional view showing a communication system of a second modification of the first embodiment. 6 is a front sectional view showing a communication system according to Embodiment 2.
  • FIG. It is a perspective view which shows the communication system of the modification 1 of Example 2.
  • FIG. 1 It is a figure which shows the noise leakage condition of the communication coupler and signal transmission apparatus concerning a prior art as a near magnetic field distribution calculated
  • FIG. 6 is a front sectional view showing a communication system according to Embodiment 3.
  • FIG. It is a figure which shows the noise leakage condition of the communication coupler and signal transmission apparatus concerning Example 3 as a near magnetic field distribution calculated
  • FIG. 20 is a front sectional view taken along line XX-XX in FIG. It is a front sectional view showing a communication system according to another prior art.
  • the communication system includes a sheet-like signal transmission device 30 serving as a communication medium, and a cup-shaped communication coupler 31 installed on the upper surface of the signal transmission device 30. Is done.
  • the signal transmission device 30 has a sheet-like structure, and includes a ground layer 32, a lattice pattern electrode 33, a protective layer 34, and a dielectric layer 35.
  • the ground layer 32 constitutes a lower electrode.
  • the grid pattern electrode 33 has a mesh shape and is spaced from the ground layer 32.
  • the protective layer 34 is provided on the upper part of the grid pattern electrode 33 to prevent the grid pattern electrode 33 from coming into direct contact with the communication coupler 31.
  • the dielectric layer 35 is provided in a region between the ground layer 32 and the grid pattern electrode 33.
  • the communication coupler 31 includes an antenna circuit 40, a signal / power transmission / reception circuit (not shown), and a coupler housing 41.
  • the antenna circuit 40 has a plate shape, is installed on the signal transmission device 30, and is used for communication signals or power transmission / reception.
  • the coupler housing 41 has a cup shape, is formed so as to cover the antenna circuit 40, and is opened at the bottom. With such a configuration, the communication signal becomes an electromagnetic field via the antenna circuit 40 of the coupler housing 41 and is injected into the signal transmission device 30, and then propagates through the signal transmission device 30 to be separated from the communication coupler 31. Communication with a communication coupler (not shown).
  • a groove 42 for forming a high impedance is provided on a lower end surface 41A in contact with the protective layer 34 of the signal transmission device 30.
  • the groove 42 is a concave body formed from the center of the lower end surface 41 ⁇ / b> A of the coupler housing 41 toward the upper direction inside the coupler housing 41 and along the wall surface.
  • the right side shows the inside 36 of the communication coupler 31, and the left side shows the outside 37 of the coupler housing 41.
  • FIG. 5 shows an equivalent circuit of details of the contact portion between the coupler housing 41 and the signal transmission device 30 of the communication coupler 31 shown in FIG. 5, the contact resistance of the lower end surface 41A of the coupler housing 41 is “Rs”, the impedance between the coupler housing 41 and the signal transmission device 30 is “Zc” and “Zc ′”, and the lower end surface of the coupler housing 41 Impedance due to the groove 42 provided in is denoted as “Zs”.
  • the signal current for communication or power transmission in the inner part 36 of the communication coupler 31 flows through Rs, and as indicated by the arrow A, the current Ic returns to the inner part 36 of the communication coupler 31 via Zc.
  • Id flowing to the outside 37 of the communication coupler 31 via Zc and Rs as indicated by an arrow B.
  • Zs is the impedance increment due to the current path extension by the groove 42.
  • the impedance increases and the current decreases by the groove impedance ratio of the surface resistance. That is, the current flowing out of the outside 37 of the communication coupler 31 is reduced by the groove impedance generated by the groove 42, and noise radiated to the outside 37 of the communication coupler 31 can be reduced.
  • FIG. 6 shows the noise leakage status of the communication coupler 31 having the groove 42 and the signal transmission device 30 according to the first embodiment of the present invention as a near magnetic field distribution obtained by electromagnetic field simulation.
  • FIG. 6 shows the magnetic field strength in the cross-sectional view along the line III-III shown in FIG.
  • FIG. 7 is a diagram showing noise leakage of the communication coupler 2 and the signal transmission device 1 (see FIGS. 18 to 20) according to the prior art as a near magnetic field distribution obtained by electromagnetic field simulation.
  • FIG. 7 shows the magnetic field strength in the vicinity of the sectional view taken along the line XX-XX shown in FIG. In such a magnetic field distribution, the higher the magnetic field strength, the darker the color, and the smaller the magnetic field strength, the lighter the color.
  • the strong magnetic field area of the near magnetic field distribution of the first embodiment having the groove 42 has the groove 42. It can be seen that the area is reduced compared with the conventional strong magnetic field area.
  • the field strength from the communication system related to the prior art is 3 dB or more lower than the field strength according to the embodiment of the present invention. did it.
  • FIG. 6 is also a communication system according to the first embodiment of the present invention, but is different in configuration from the communication system of FIG. That is, the communication system shown in FIG. 8 has grooves 42 on the left and right of the communication coupler 31. 8 has a structure in which part of the lattice of the grid pattern electrode 33 is provided immediately below the left-side groove 42 and directly below the right-side groove 42 in FIG.
  • the electric field strength is higher in the communication system shown in FIG. 8 than in the communication system shown in FIG. Has declined overall. From this, it is understood that the noise reduction effect is obtained when the lattice pattern arrangement and the lattice width directly below the groove provided in the coupler housing 41 are as follows.
  • the width of the groove 42 is expressed as “W”
  • the grid width of the grid pattern of the grid pattern electrode 33 is expressed as “W ′”.
  • the condition for obtaining the noise reduction effect is that the lattice pattern electrode 33 is disposed below (directly below) the groove 42 and is set to “W> W ′”, and the lattice width “W ′” of the lattice pattern electrode 33 is set. ”Does not exceed the groove width“ W ”of the groove 42.
  • the groove 42 that forms high impedance is provided on the lower end surface 41A of the coupler housing 41 of the communication coupler 31 facing the signal transmission device 30.
  • the current flowing from the inside to the outside of the communication coupler 31 is less likely to flow due to the high impedance.
  • noise emission is reduced, and satisfaction of the standard value of the electric field strength applied to the communication system can be realized.
  • the first embodiment may be modified as follows. [Modification 1]
  • the communication system using the cylindrical communication coupler 31 as shown in FIGS. 1 and 2 is described as an example, but the present invention is not limited to this.
  • the present technology may be applied to a rectangular communication coupler 31 formed in a square shape as a whole.
  • the groove 42 for forming a high impedance is provided on the lower end surface 41A of the coupler housing 41 of the communication coupler 31 facing the signal transmission device 30.
  • channel 42 is not limited to providing in the main-body part 41B (refer FIG. 3) of the coupler housing
  • a part of the main body 41B of the coupler housing 41 may be formed and disposed in the groove housing 43 disposed adjacent to the outside of the main body 41B.
  • the groove 42 formed in the lower end surface 41A of the coupler housing 41 may be provided in the main body portion 41B of the coupler housing 41, or is disposed adjacent to the main body portion 41B and constitutes a part of the main body portion 41B. You may provide in the housing
  • Only one groove 42 on the lower end surface 41A facing the signal transmission device 30 may be provided so as to be continuous in the circumferential direction of the lower end surface 41A of the coupler housing 41 formed in a circular shape as a whole.
  • a plurality of grooves 42 may be provided by being intermittently divided along the circumferential direction of the lower end surface 41 ⁇ / b> A of the coupler housing 41.
  • the communication coupler 50 shown in FIG. 12 includes an antenna circuit 51, a signal / power transmission / reception circuit (not shown), and a coupler housing 52, like the communication coupler 31 shown in FIGS. Have.
  • the antenna circuit 51 has a plate shape, is installed on the signal transmission device 30, and is used for transmission and reception of communication signals or power.
  • the coupler housing 52 has a cup shape, is formed so as to cover the antenna circuit 51, and is opened at the bottom.
  • a plurality (two in this example) of grooves 53 that form high impedance are provided on the lower end surface 52A of the coupler housing 52 that is in contact with the protective layer 34 of the signal transmission device 30.
  • These two sets of grooves 53 are concave bodies formed from the lower end surface 52A of the coupler housing 52 to the upper direction inside the coupler housing 52 and along the wall surface, and are arranged so as to be parallel to each other. Has been. The depths of the concave bodies that form the grooves 53 are the same.
  • a plurality of grooves 53 for forming high impedance are provided on the lower end surface 52A of the coupler housing 52 of the communication coupler 50 facing the signal transmission device 30.
  • the end impedance of the coupler housing 52 is further increased as compared with the impedance due to the single groove 53 as shown in the first embodiment.
  • the noise current flowing from the inside of the communication coupler 50 to the outside is reduced, and the effect of realizing reduction of noise radiated to the outside of the communication coupler 50 can be obtained.
  • the second embodiment may be modified as follows.
  • the two sets of grooves 53 are formed at the same depth, but the present invention is not limited to this.
  • the two sets of grooves 53A and 53B may have different depths.
  • the depth of the inner groove 53A is expressed as “h1”
  • the depth of the outer groove 53B is expressed as “h2”.
  • an impedance that is short-circuited in the deep part of the grooves 53A and 53B and open at the lower end surface 52A of the coupler housing 52 can be realized.
  • the plurality of grooves 53A and 53B are provided in the lower end surface 52A of the coupler housing 52 facing the signal transmission device 30, and the depths of these grooves 53A and 53B are set to 1 of a plurality of frequencies for performing signal or power transmission, respectively.
  • the end impedance of the coupler housing 52 becomes high impedance at the operating frequency, noise currents of a plurality of frequencies flowing out from the inside of the communication coupler 31 are reduced, and the communication coupler 31 Reduction of noise radiated to the outside can be realized.
  • the groove 60 shown in FIG. 14 is a concave body formed from the lower end surface 52A of the coupler housing 52 toward the upper side inside the coupler housing 52 and along the wall surface. The bottom of the concave body is not parallel to the lower end surface 52A of the coupler housing 52, and is provided so as to be inclined so that the depth increases from the inside toward the outside.
  • the depth of the shallowest groove 60 located inside the coupler housing 52 of the communication coupler 50 is denoted as “h3”, and the deepest groove located outside the coupler housing 52.
  • the depth of 60 is expressed as “h4”.
  • a continuous short circuit in the band from f1 to f2 at the groove deep portion of the groove 60 and an open impedance at the lower end surface 52A of the communication coupler 50 are possible.
  • the bottom of the concave body is not parallel to the lower end surface 52A of the coupler housing 52 on the lower end surface 52A of the coupler housing 52 facing the signal transmission device 30, and the depth increases from the inside toward the outside.
  • An inclined groove 60 is provided, and the depth of the groove 60 is set to a quarter wavelength length of the highest frequency and the lowest frequency at a plurality of frequencies for signal or power transmission.
  • the communication coupler 50 shown in the second embodiment is a cylindrical type as shown in FIGS. 1 and 2, as shown in FIGS. Also good.
  • 53 (53A / 53B) or the groove 60 may be provided in the main body of the coupler housing as shown in FIGS. 12 to 14, or adjacent to the main body of the coupler housing as shown in FIG. You may provide in the housing
  • the grooves 53 (53A and 53B) and the groove 60 described above may be provided so as to be continuous in the circumferential direction of the lower end surface 52A of the coupler housing 52 formed in a circular shape as a whole, or along the circumferential direction. As described above, a plurality of them may be provided intermittently.
  • FIGS. 3 A third embodiment of the present invention will be described with reference to FIGS.
  • the third embodiment is different from the first and second embodiments in that the grooves 42 and 53 are formed on the lower end surfaces 41A and 52A facing the signal transmission device 30 of the coupler housings 41 and 52 of the communication couplers 31 and 51.
  • the communication coupler 70 shown in FIG. 15 is formed so as to cover the antenna circuit 71 and the signal / power transmission / reception circuit (not shown) as well as the communication coupler 31 of FIGS.
  • a cup-shaped coupler housing 72 having an opening at the bottom.
  • the antenna circuit 71 has a plate shape, is installed on the signal transmission device 30, and is used for transmission / reception of communication signals or power.
  • the coupler housing 72 has a cup shape, is formed so as to cover the antenna circuit 71, and has a lower portion opened.
  • a high impedance is similarly formed on the lower end surface 72 ⁇ / b> A in contact with the protective layer 34 of the signal transmission device 30 of the coupler housing 72 instead of the grooves 42 and 53 as in the first and second embodiments.
  • a magnetic body 73 for reducing the peripheral magnetic field strength is provided.
  • FIG. 16 shows a near magnetic field distribution obtained by electromagnetic field simulation for noise leakage of the communication coupler 70 and the signal transmission device 30 having the magnetic body 73 of the third embodiment.
  • FIG. 16 shows the magnetic field strength near the outside of the joint between the signal transmission device 30 and the communication coupler 70 corresponding to the cross-sectional structure of FIG.
  • the strong magnetic field area of the near magnetic field distribution of the third embodiment in which the communication body 70 is provided with the magnetic body 73 it can be confirmed that it is smaller than that related to the prior art.
  • the far field strength calculation by electromagnetic field simulation it is confirmed that the field strength from the communication system is reduced by 4 dB or more in the third embodiment of the present invention compared to the prior art.
  • the communication coupler 70 shown in FIG. 16 there is a lattice pattern electrode 33 directly below the left magnetic body 73 and no lattice pattern electrode 3 lattice directly below the right magnetic body 73. ing.
  • the grid pattern electrode 33 is partially disposed immediately below the left and right magnetic bodies 73.
  • the lattice arrangement pattern of the grid pattern electrode 33 shown in FIG. 17 has a lower electric field strength than that of FIG. ing. For this reason, it is effective for noise reduction to arrange the grid arrangement pattern of the grid pattern electrodes so that there is at least a part of the grid immediately below the magnetic body 73 provided in the coupler housing 72 of the communication coupler 70. It was confirmed.
  • the magnetic body 73 is provided on the lower end surface 72A of the coupler housing 72 facing the signal transmission device 30.
  • the communication coupler 70 shown in the third embodiment may be a cylindrical type as shown in FIGS. 1 and 2 or a square type formed as a whole in a square shape as shown in FIGS. 9 and 10.
  • the magnetic body 73 may be provided in the main body portion of the coupler housing 52 as shown in FIGS. 12 to 14, or as shown in FIG. You may provide in the housing
  • the magnetic bodies 73 described above may be provided in a plurality of rows on the lower end surface 72A of the coupler housing 72 as shown in FIG.
  • the magnetic body 73 may be provided so as to be continuous in the circumferential direction of the lower end surface 72A of the coupler housing 72 formed in a circular shape as a whole, or may be divided intermittently along the circumferential direction. It may be provided.
  • the present invention can be applied to a communication system including a sheet-like signal transmission device and a communication coupler that is installed on the sheet-like signal transmission device and transmits signals to the signal transmission device, and in particular, leakage electromagnetic field suppression that suppresses electromagnetic leakage during communication Applicable to structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

 本発明の通信システムは、信号を送発信する通信カプラと、前記通信カプラから伝達された信号を電磁界として伝搬させて通信を行う信号伝達装置とからなり、前記通信カプラは、前記信号伝達装置上に設置されるカプラ筐体を有し、前記カプラ筐体の前記信号伝達装置に面した下端面に、高インピーダンスを形成してノイズを抑制するノイズ抑制部が設けられている。 

Description

通信システム
 本発明は、格子状パターンを有する信号伝達装置と、その上面に設置されて信号伝達装置に信号を伝達する通信カプラからなる通信システムに関し、特に通信カプラの電磁漏洩を抑制するノイズ抑制構造を有する通信システムに関する。
 近年、近傍電磁界の電磁結合を利用して、2次元の信号伝達装置上の任意の点間の通信や電力伝送を実現する通信技術がある。これは、平面上の信号伝達装置の表面に格子状パターンを設け、格子状パターン上に通信又は電力伝送用通信カプラを設置した通信システムにおいて、信号伝達装置を介して任意の通信カプラ間で通信又は電力伝送が可能となる通信技術である。
 このような通信技術としては、例えば、図18~図20に示すような通信システムが提供されている。
 これらの図に示される通信システムは、通信媒体となるシート状の信号伝達装置1と、通信カプラ2とから構成される。信号伝達装置1は、シート状構造であり、グランド層3と、格子状パターン電極4と、保護層5と、誘電体層6と、を有する。グランド層3は下部電極を構成する。格子状パターン電極4は、メッシュ状であり、グランド層3と間隔をおいて配置されている。保護層5は、格子状パターン電極4の上部に設けられて、パターン電極4が通信カプラ2と直接的に接触することを防止する。誘電体層6は、グランド層3と格子状パターン電極4との挟間領域に設けられている。
 通信カプラ2は、図20に示すように、信号伝達装置1上に設置されて通信信号又は電力送受用の板状のアンテナ回路10及び信号・電力送受用回路(図示略)とアンテナ回路10を覆うように形成されたカップ形状のカプラ筐体11と、を有する。
 このような構成によって、カプラ筐体11のアンテナ回路10を介して通信信号が電磁界となって信号伝達装置1に注入された後、信号伝達装置1内を伝搬して、通信カプラ2と別の通信カプラ(図示略)との間で通信を行う。
 上記図18~図20に示す技術の他にも、特許文献1~3に示されるように、通信装置でも、互いに対向する導電部となるシート状体に挟まれる領域に電磁場を存在させ、2つのシート状体の間の印加電圧を変化させることで、電磁場を進行させて通信を行う技術が示されている。
 これら特許文献の中の特に、特許文献2には、図21に示される構造の通信カプラが示されている。
 通信カプラ20は、図21の断面図に示すように、内部導体21と、外部導体23と、同軸ケーブル24と、を有する。内部導体21は、円盤形状である。外部導体23は、カップ形状であり、内部導体21を覆いかつカプラ筐体22を構成する。同軸ケーブル24は、これら内部導体21及び外部導体23に接続されている。同軸ケーブル24の末端は、通信機器25に接続されている。このような構成によって、通信機器25から入出力された電磁界が同軸ケーブル24を伝わり、通信カプラ2の内部導体21と外部導体23の間を伝搬して信号伝達装置1に注入された後、信号伝達装置1内を伝搬して通信カプラ20と別の通信カプラ(図示略)との間で通信を行う。
 特許文献4には、送信用電極及び受信用電極それぞれに取り付けられた表面波伝送線路片の先端部分に、電極同士で静電結合を生じさせるような位置合わせを行なうとともにその位置を保持する位置保持機構を備えた通信装置に関する技術が示されている。
国際公開第2006/32339号公報 日本国特開2007-082178号公報 日本国特開2007-281678号公報 日本国特開2008-103902号公報
 上記図18~図20及び特許文献1~4に示される通信装置では、図22に示されるような、通信カプラ2のカプラ筐体11と信号伝達装置1との接合部構造が用いられる場合がある。このような接合部構造では、図22において、通信カプラ2の内部12(図22において右側)から、通信又は電力伝送用信号電流が、カプラ筐体11と信号伝達装置1との間の接合部から通信カプラ2の外部13(図22において左側)へ流れ、ノイズとして通信システム外へ放射される。
 図23は、図22の接合部ノイズ伝搬等価回路を示す。図23において、カプラ筐体11の信号伝達装置1の接合部表面抵抗を「Rs」、カプラ筐体11と信号伝達装置1と間のインピーダンスを「Zc」と表記する。通信カプラ2の内部12で発生した信号電流は、矢印Aで示すようにZc経由で通信カプラ2の内部12に流れる「Ic」と、矢印Bで示すようにRs経由で通信カプラ外部13へ流れる「Id」に分配される。インピーダンスZcは、「Zc=1/ωC=1/2πfC」で示されるように、カプラ筐体11の信号伝達装置1の下端面と信号伝達装置1との導体間容量Cで決定される。
 但し、fは信号周波数である。カプラ筐体11の信号伝達装置1に面する面積と信号伝達装置の誘電率から考慮すると、容量Cは10pF前後となる。GHz帯通信周波数を考慮するとインピーダンスZcは数Ωとなる。一方、カプラ筐体11の接合部の表面抵抗は金属筐体であると想定すると、ミリΩ単位となる。ゆえに、RsとZcの比率は、「Rs<<Zc」となる。よって、ノイズ電流はIdが殆どを占め、ノイズ電流として、通信カプラ2の外部13に流れ出ることとなり、ノイズ放射を引き起こす。ノイズ放射レベルによっては、装置に適用される電界強度規格値を超える可能性があり、これにより通信システムとして使用できない場合がある。
 特許文献4に示された通信機器は、単に、送信用電極及び受信用電極の表面波伝送線路片の先端部分に、電極同士で静電結合を生じさせるような位置合わせを行ないかつその位置を保持する位置保持機構を備えているだけである。この通信機器は、ノイズ放射を抑制する構造を備えていないため、ノイズ放射を引き起す恐れがある。
 本発明は、上述した事情に鑑みてなされたものであって、その目的は、カプラ筐体の信号伝達装置に面する下端面にノイズ電流が流れにくい構造を設けることにより、カプラ筐体外へ放射されるノイズを抑制する漏洩電磁界抑制構造を提供する。
 上記課題を解決するために、本発明の通信システムは、信号を送発信する通信カプラと、前記通信カプラから伝達された信号を電磁界として伝搬させて通信を行う信号伝達装置とからなり、前記通信カプラは、前記信号伝達装置上に設置されるカプラ筐体を有し、前記カプラ筐体の前記信号伝達装置に面した下端面に、高インピーダンスを形成してノイズを抑制するノイズ抑制部が設けられている。
 本発明によれば、信号伝達装置と通信カプラからなる通信システムにおいて、カプラ筐体の信号伝達装置に面する下端面に高インピーダンスを形成してノイズを抑制するノイズ抑制部を設けている。この構成により、通信カプラ内部から通信カプラ外部へ流れる電流が抑制される。カプラ筐体外に流れるノイズ電流が減少することにより、ノイズ放射が低減され、通信システムに適用される電界強度規格値満足を実現できる。
本発明の実施例1の通信システムを示す斜視図である。 図1に示す通信システムの平面図である。 図2及び図10のIII-III線に沿う正断面図である。 図3に示される通信カプラと信号伝達部との接触部を拡大した正断面図である。 図3に示される通信カプラのカプラ筐体と信号伝達装置との接触部の等価回路を示す図である。 実施例1に係わる、溝を有する通信カプラ及び信号伝達装置のノイズ漏洩状況を、電磁界シミュレーションにより求めた近傍磁界分布として示す図である。 従来技術に係わる通信カプラ及び信号伝達装置のノイズ漏洩状況を、電磁界シミュレーションにより求めた近傍磁界分布として示す図である。 実施例1に係わる通信カプラの溝と、格子状パターン電極の格子との位置関係を示す図である。 実施例1の変形例1の通信システムを示す斜視図である。 図9の通信システムを示す平面図である。 実施例1の変形例2の通信システムを示す正断面図である。 実施例2に係わる通信システムを示す正断面図である。 実施例2の変形例1の通信システムを示す斜視図である。 実施例2の変形例2の通信システムを示す斜視図である。 実施例3に係わる通信システムを示す正断面図である。 実施例3に係わる通信カプラ及び信号伝達装置のノイズ漏洩状況を、電磁界シミュレーションにより求めた近傍磁界分布として示す図である。 図16とは異なる通信カプラの溝と格子状パターン電極の格子との位置関係の近傍磁界分布として示す図である。 従来技術に係わる通信システムを示す斜視図である。 図18に示す通信システムの平面図である。 図19のXX-XX線に沿う正断面図である。 別の従来技術に係わる通信システムを示す正断面図である。 従来技術に係わる通信カプラと信号伝達部との接触部を拡大した正断面図である。 従来技術に係わる通信カプラのカプラ筐体と信号伝達装置との接触部の等価回路を示す図である。
 [実施例1]
 本発明の実施例1を図1~図7を参照して説明する。
 本発明に係わる通信システムは、図1~図3に示すように、通信媒体となるシート状の信号伝達装置30と、信号伝達装置30の上面に設置されるカップ形状の通信カプラ31とから構成される。
 信号伝達装置30は、図3に示すように、シート状構造であり、グランド層32と、格子状パターン電極33と、保護層34と、誘電体層35と、を有する。グランド層32は、下部電極を構成する。格子状パターン電極33は、メッシュ状であり、グランド層32と間隔をおいて配置されている。保護層34は、格子状パターン電極33の上部に設けられて、格子状パターン電極33が通信カプラ31と直接的に接触することを防止する。誘電体層35は、グランド層32と格子状パターン電極33との挟間領域に設けられている。
 通信カプラ31は、図3に示すように、アンテナ回路40及び信号・電力送受用回路(図示略)と、カプラ筐体41と、を有する。アンテナ回路40は、板状であり、信号伝達装置30上に設置され、通信信号又は電力送受に用いられる。カプラ筐体41は、カップ状であり、アンテナ回路40を覆うように形成されかつ下部が開口されている。
 このような構成によって、カプラ筐体41のアンテナ回路40を介して通信信号が電磁界となって信号伝達装置30に注入された後、信号伝達装置30内を伝搬して、通信カプラ31と別の通信カプラ(図示略)との間で通信を行う。
 カプラ筐体41において、信号伝達装置30の保護層34上に接する下端面41Aには、高インピーダンスを形成する溝42が設けられている。この溝42は、図4に詳細に示すように、カプラ筐体41の下端面41Aの中央から、該カプラ筐体41の内部でかつ壁面に沿い上方向に向けて形成された凹状体である。図4において、右側は通信カプラ31の内部36を示し、左側はカプラ筐体41の外部37を示す。
 図5は、図4に示される通信カプラ31のカプラ筐体41と信号伝達装置30との接触部詳細の等価回路を示す。図5において、カプラ筐体41の下端面41Aの接触抵抗を「Rs」、カプラ筐体41と信号伝達装置30との間のインピーダンスを「Zc」及び「Zc´」、カプラ筐体41下端面に設けた溝42によるインピーダンスを「Zs」と表記する。
 このような図5の等価回路において、通信カプラ31の内部36の通信又は電力伝送の信号電流はRsに流れ、矢印Aで示すように、Zcを介して通信カプラ31の内部36に戻る電流Icと、矢印Bで示すように、Zc,Rsを介して、通信カプラ31の外部37へ流れるIdとに分配される。
 Zsは溝42による電流経路延長によるインピーダンス増分である。ここで図5に示す等価回路と、図23に示す従来技術に係わる通信カプラ2と信号伝達装置1の接触部詳細の等価回路と比較すると、RsとZc、Zc´と比率が、「Rs<<Zc,Zc´」である。よって、通信カプラ31の外部37へ流れるIdは、図23の従来構造において通信カプラ2の外部13へ流れるIdに対して、「Id(従来の構造)/Id(本発明の実施形態の構造)=(2Rs+Zs)/2Rs=1+Zs/2Rs」となる。よって、本発明の実施形態に係わる構成を適用することにより、表面抵抗の溝インピーダンス比率分だけ、インピーダンスが増加し、電流が減少する。すなわち、通信カプラ31の外部37に流れ出る電流が、溝42によって生じる溝インピーダンスにより減少し、通信カプラ31の外部37へ放射されるノイズの低減が実現できる。
 通信カプラ及び信号伝達装置のノイズ漏洩を、電磁界シミュレーションにより求めた近傍磁界分布について図6~図8を参照して説明する。
 図6は、本発明の実施例1に係わる、溝42を有する通信カプラ31及び信号伝達装置30のノイズ漏洩状況を、電磁界シミュレーションにより求めた近傍磁界分布として示す。図6は、図2に示したIII-III線に沿う断面図における近傍磁界強度を濃淡で表わしている。
 図7は、従来技術に係わる通信カプラ2及び信号伝達装置1(図18~図20参照)のノイズ漏洩を、電磁界シミュレーションにより求めた近傍磁界分布として示す図である。図7は、図19に示したXX-XX線断面図構造における近傍磁界強度を濃淡で示している。
 このような磁界分布では、磁界の強度が大きいほど濃く、磁界の強度が小さいほど薄い色で示している。
 図6及び図7において、信号伝達装置30と通信カプラ31との接合部外側の近傍磁界分布を比較すると、溝42を有する実施例1の近傍磁界分布の強磁界エリアが、溝42を有さない従来構造の強磁界エリアと比べて縮小していることが理解できる。通信カプラ2・31の外部の磁界強度で見れば、図6、図7中右側に示す強度グラフを尺度とした場合、本発明の実施例1に係わる構造では、従来の構造と比較して、3段階(2dBx3=6dB)以上の磁界強度低減が実現できることが確認できた。
 また、電磁界シミュレーションによる遠方電界強度計算では、従来技術に係わる通信システム(図18~図20参照)からの電界強度が、本発明の実施例による電界強度より3dB以上低減していることが確認できた。
 図6に示される本発明の実施例1に係わる通信システムにおいて、通信カプラ31の左右に溝42がある。図6中左側の溝42の直下(符号Rで示す)には、格子状パターン電極33の格子がある構成となっている。一方、図6中右側の溝42の直下(符号Sで示す)には、格子状パターン電極33の格子が無い構成となっている。
 また、図8も本発明の実施例1に係わる通信システムであるが、図6の通信システムとは構成が異なっている。すなわち、図8に示す通信システムは、通信カプラ31の左右に溝42がある。図8中左側の溝42の直下と、図8中右側の溝42の直下(符号Tで示す)とにおいてそれぞれ、格子状パターン電極33の格子が一部ある構成となっている。
 これら図6及び図8に示す、格子状パターン電極33の有無が係わる構造の電磁界シミュレーションよる電界強度を検討すると、図6に示す通信システムと比較して、図8に示す通信システムでは電界強度が全体的に低下している。
 このことから、カプラ筐体41に設けた溝直下の格子状パターン配置および格子幅を、以下のような条件すると、ノイズ低減効果を得ると理解される。ここで、溝42の幅を「W」、格子状パターン電極33の格子状パターンの格子幅を「W´」と表記する。ノイズ低減効果を得る条件は、溝42の下部(直下)に格子状パターン電極33の格子を配置するとともに、「W > W´」と設定して、格子状パターン電極33の格子幅「W´」が、溝42の溝幅「W」を超えないことである。
 以上詳細に説明したように、本実施例1に係わる通信システムにおいて、通信カプラ31のカプラ筐体41の信号伝達装置30に面する下端面41Aに、高インピーダンスを形成する溝42を設けることにより、通信カプラ31の内部から外部へ流れる電流が、高インピーダンスにより流れにくくなる。カプラ筐体41の外部に流れるノイズ電流が減少することにより、ノイズ放射が低減され、通信システムに適用される電界強度規格値満足を実現できる。
 上記実施例1は以下のように変形しても良い。
 〔変形例1〕
 上記実施例1では、図1及び図2に示すように円筒型の通信カプラ31を用いた通信システムを例に挙げたが、これに限定されない。図9及び図10に示すように、全体として四角形状に形成された方形型の通信カプラ31に本技術を適用しても良い。
 〔変形例2〕
 上記実施例1では、通信カプラ31のカプラ筐体41の信号伝達装置30に面する下端面41Aに、高インピーダンスを形成する溝42を設けた。しかしながら、このような溝42は、カプラ筐体41の本体部41B(図3参照)内に一体に設けることに限定されない。これに代わって、図11に示すように、カプラ筐体41の本体部41Bの一部を形成しかつ本体部41Bに外側に隣接配置した溝用筐体43に配置しても良い。すなわち、カプラ筐体41の下端面41Aに形成する溝42は、カプラ筐体41の本体部41B内に設けても良いし、本体部41Bに隣接配置しかつ本体部41Bの一部を構成する溝用筐体43に設けても良い。
 〔変形例3〕
 信号伝達装置30に面する下端面41Aの溝42は、全体として円形に形成されるカプラ筐体41の下端面41Aの周方向に連続的するように1本だけ設けても良い。また、溝42は、カプラ筐体41の下端面41Aの周方向に沿うように間欠的に分割して複数設けても良い。
 [実施例2]
 本発明の実施例2を図12~図14を参照して説明する。
 本実施例2が、先の実施例1と異なる点は、通信カプラ31のカプラ筐体41の信号伝達装置30に面する下端面41Aに形成された溝42が、様々な形態を有する点である。
 具体的には、図12に示す通信カプラ50は、図1~図3の通信カプラ31と同様に、アンテナ回路51及び信号・電力送受用回路(図示略)と、カプラ筐体52と、を有する。アンテナ回路51は、板状であり、信号伝達装置30上に設置され、通信信号又は電力の送受に用いられる。カプラ筐体52はカップ状であり、アンテナ回路51を覆うように形成されかつ下部が開口されている。
 通信カプラ50においては、カプラ筐体52の信号伝達装置30の保護層34上に接する下端面52Aには、高インピーダンスを形成する溝53が複数(本例では2組)設けられている。これら2組の溝53は、カプラ筐体52の下端面52Aから、カプラ筐体52の内部でかつ壁面に沿い上方向に向けて形成された凹状体であって、互いに平行となるように配置されている。また、これら溝53となる凹状体の深さは同一に形成されている。
 このような本実施例2に係わる通信システムでは、通信カプラ50のカプラ筐体52の信号伝達装置30に面する下端面52Aに、高インピーダンスを形成する溝53を複数設けている。この構造により、カプラ筐体52の端部インピーダンスが、実施例1で示すような、一つの溝53によるインピーダンスと比較して、更にインピーダンス増となる。このため、本実施例2に係わる通信システムでも、通信カプラ50の内部から外部へ流れ出るノイズ電流が減少し、通信カプラ50の外部へ放射されるノイズの低減が実現できる効果が得られる。
 上記実施例2は以下のように変形しても良い。
 〔変形例1〕
 上記実施例2では、2組の溝53を同じ深さに形成したが、これに限定されない。例えば、図13に示すように、2組の溝53A、53Bは、それぞれ異なる深さを有していてもよい。内側の溝53Aの深さを「h1」、外側の溝53Bの深さを「h2」と表記する。例えば、本通信システムにおいて信号又は電力伝送を行う周波数が2波存在する場合、第1の周波数f1の1/4波長長さを「(λ1)/4=h1」、第2の周波数f2の1/4波長長さを「(λ2)/4=h2」とすると、溝53A、53Bの深部では短絡、カプラ筐体52の下端面52Aでは開放となるインピーダンスを実現することができる。
 このようにカプラ筐体52の信号伝達装置30に面する下端面52Aに複数の溝53A、53Bを設け、これら溝53A、53Bの深さを、それぞれ信号又は電力伝送を行う複数の周波数の1/4波長長さに設定することにより、カプラ筐体52の端部インピーダンスが使用周波数で高インピーダンスとなり、通信カプラ31の内部から外部へ流れ出る複数の周波数のノイズ電流が減少し、通信カプラ31の外部へ放射されるノイズの低減が実現できる。  
 〔変形例2〕
 上記実施例2の変形例1では、2つの溝53A、53Bを設けることで、信号又は電力伝送を行う周波数が2波存在する場合のノイズ軽減を実現するようにした。これに代えて、図14で示すように、このような周波数が2波存在する場合のノイズ軽減を、1つの溝60により実現しても良い。すなわち、図14に示す溝60は、カプラ筐体52の下端面52Aから、カプラ筐体52の内部でかつ壁面に沿い上方向に向けて形成された凹状体である。この凹状体の底部は、カプラ筐体52の下端面52Aと平行でなく、内側から外側に向けて深度が大きくなるように傾斜するように設けられている。
 図14で示すように、通信カプラ50のカプラ筐体52の内側に位置する最浅部の溝60の深さを「h3」と表記し、カプラ筐体52の外側に位置する最深部の溝60の深さを「h4」と表記する。例えば、本通信システムにおいて信号又は電力伝送を行う周波数が複数存在する場合、最も高い周波数f1の1/4波長長さを「(λ1)/4=h3」、最も低い周波数f2の1/4波長長さを「(λ2)/4=h4」とすると、溝60の溝深部では、f1からf2の帯域において連続した短絡、通信カプラ50の下端面52Aでは開放となるインピーダンスが可能となる。
 このようにカプラ筐体52の信号伝達装置30に面する下端面52Aに、凹状体の底部が、カプラ筐体52の下端面52Aと平行でなく、内側から外側に向けて深度が大きくなるように傾斜する溝60を設け、溝60の深さを、それぞれ信号又は電力伝送を行う複数の周波数において、最高周波数と最低周波数の1/4波長長さとする。このような構成により、カプラ筐体52の端部インピーダンスが使用周波数帯域で高インピーダンスとなり、通信カプラ50の内部から外部へ流れ出る複数の周波数のノイズ電流が減少し、該通信カプラ50の外部へ放射されるノイズの低減が実現することが可能となる。
 本実施例2に示す通信カプラ50は、図1及び図2に示すように円筒型であっても、図9及び図10に示すように、全体として四角形状に形成された方形型であっても良い。また、53(53A・53B)あるいは溝60は、図12~図14で示すようにカプラ筐体の本体部内に設けても良いし、図11で示すように、カプラ筐体の本体部に隣接配置しかつ本体部の一部を構成する溝用筐体43に設けても良い。また、上述した溝53(53A・53B)、溝60は、全体として円形に形成されるカプラ筐体52の下端面52Aの周方向に連続的するように設けても良いし、周方向に沿うように間欠的に分割して複数設けても良い。
 [実施例3]
 本発明の実施例3を図15~図17を参照して説明する。
 本実施例3が、先の実施例1、2と異なる点は、通信カプラ31、51のカプラ筐体41、52の信号伝達装置30に面する下端面41A、52Aに、溝42、53ではなく、磁性体が設けられている点である。
 すなわち、図15に示す通信カプラ70は、図1~図3の通信カプラ31と同様に、アンテナ回路71及び信号・電力送受用回路(図示略)と、該アンテナ回路71を覆うように形成されかつ下部が開口されたカップ状のカプラ筐体72と、を有する。アンテナ回路71は、板状であり、信号伝達装置30上に設置され、通信信号又は電力の送受に用いられる。カプラ筐体72は、カップ状であり、アンテナ回路71を覆うように形成され、かつ下部が開口されている。
 通信カプラ70においては、カプラ筐体72の信号伝達装置30の保護層34上に接する下端面72Aに、先の実施例1、2のような溝42、53では無く、同様に高インピーダンスを形成して周辺の磁界強度を低下させるための磁性体73が設けられている。
 図16は、本実施例3の磁性体73を有する通信カプラ70及び信号伝達装置30のノイズ漏洩について、電磁界シミュレーションにより求めた近傍磁界分布を示す。図16は、図15の断面図構造に対応した信号伝達装置30と通信カプラ70との接合部外側の近傍磁界強度を濃淡で示している。
 この図16と、前述した従来技術に係わる図7の近傍磁界分布とを比較して分るように、通信カプラ70に磁性体73が設けられている実施例3の近傍磁界分布の強磁界エリアが、従来技術に係わるものより縮小していることが確認できる。本実施例3では、通信カプラ70の外部の磁界強度は、図16右側の強度グラフを尺度として、4段階(2dBx4=8dB)以上の磁界強度低減が実現できたことが確認されている。
 一方、電磁界シミュレーションによる遠方電界強度計算では、通信システムからの電界強度が、従来技術に対して本発明の実施例3の方が4dB以上低減していることが確認されている。
 図16に示される通信カプラ70では、左側の磁性体73の直下には格子状パターン電極33の格子が有り、右側の磁性体73の直下には格子状パターン電極3の格子が無い配置となっている。これに対して、図17に示される通信カプラ70では、左右両側の磁性体73の直下には、それぞれ格子状パターン電極33の格子が部分的に有る配置となっている。
 このような図16と図17の通信カプラ70について、電磁界シミュレーションによる電界強度を比較すると、図17に示す格子状パターン電極33の格子配置パターンの方が、図16よりも電界強度が低下している。このことから、通信カプラ70のカプラ筐体72に設けた磁性体73直下に、少なくとも格子の一部があるように格子状パターン電極の格子配置パターンが配置されることがノイズ低減に有効であることが確認された。
 以上説明したように本実施例3に係わる通信システムでは、通信カプラ70においてカプラ筐体72の信号伝達装置30に面する下端面72Aに、磁性体73を設けている。この構成により、周辺の磁界強度を低下させることができ、通信カプラ70の内部から外部へ流れ出るノイズ電流を減少させ、通信カプラ70の外部へ放射されるノイズの低減が実現できる効果が得られる。
 本実施例3に示す通信カプラ70は、図1及び図2に示すように円筒型でも、図9及び図10に示すように、全体として四角形状に形成された方形型であっても良い。また、磁性体73は、図12~図14で示すようにカプラ筐体52の本体部内に設けても良いし、図11で示すように、カプラ筐体の本体部に隣接配置しかつ本体部の一部を構成する溝用筐体43に設けても良い。また、上述した磁性体73は、図12に示すようにカプラ筐体72の下端面72Aに複数列に設けても良い。また、磁性体73は、全体として円形に形成されるカプラ筐体72の下端面72Aの周方向に連続的するように設けても良いし、周方向に沿うように間欠的に分割して複数設けても良い。
 以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
 この出願は、2009年9月1日に出願された日本出願特願2009-202115を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 本発明は、シート状の信号伝達装置と、その上に設置して信号伝達装置に信号を伝達する通信カプラとからなる通信システムに適用でき、特に通信時の電磁漏洩を抑制する漏洩電磁界抑制構造に適用できる。
30       信号伝達装置
31   通信カプラ
33     格子状パターン電極
41    カプラ筐体
41A   下端面
41B       本体部
42  溝(ノイズ抑制部)
42A  溝(ノイズ抑制部)
42B  溝(ノイズ抑制部)
43    溝用筐体
50       通信カプラ
52     カプラ筐体
52A   下端面
53  溝(ノイズ抑制部)
53A  溝(ノイズ抑制部)
53B  溝(ノイズ抑制部)
70    通信カプラ
72     カプラ筐体
72A   下端面
73  磁性体(ノイズ抑制部)  

Claims (10)

  1.  信号を送発信する通信カプラと、前記通信カプラから伝達された信号を電磁界として伝搬させて通信を行う信号伝達装置とからなる通信システムであって、
     前記通信カプラは、前記信号伝達装置上に設置されるカプラ筐体を有し、前記カプラ筐体の前記信号伝達装置に面した下端面に、高インピーダンスを形成してノイズを抑制するノイズ抑制部が設けられている通信システム。
  2.  前記ノイズ抑制部は、前記下端面に形成された溝である請求項1に記載の通信システム。
  3.  前記溝は、前記カプラ筐体の本体部の一部を構成する溝用筐体に設けられている請求項2に記載の通信システム。
  4.  前記溝は、前記下端面に複数形成される請求項2又は3に記載の通信システム。
  5.  前記複数の溝はそれぞれ、前記下端面に異なる深さで形成されている請求項4に記載の通信システム。
  6.  前記複数の溝の深さはそれぞれ、信号又は電力伝送を行う複数の周波数の1/4波長に対応して設定されている請求項5項に記載の通信システム。
  7.  前記溝の底部は、前記通信カプラのカプラ筐体の内側から外側に向けて深度が大きくなるように傾斜するように設けられている請求項2又は3に記載の通信システム。
  8.  前記溝の底部の最深部の深さ及び前記溝の底部の最浅部の深さはそれぞれ、信号又は電力伝送を行う複数の周波数の1/4波長に対応して設定されている請求項7項に記載の通信システム。
  9.  前記信号伝達装置は、下部電極を構成するグランド層と、前記グランド層と間隔をおいて配置されたメッシュ状の格子状パターン電極とを有し、
     前記溝の幅は、前記信号伝達装置の格子状パターン電極を構成する格子の幅より大きい請求項2~8のいずれか1項に記載の通信システム。
  10.  前記ノイズ抑制部は、前記下端面に設けられた磁性体である請求項1に記載の通信システム。  
PCT/JP2010/004233 2009-09-01 2010-06-25 通信システム WO2011027498A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/390,045 US8847697B2 (en) 2009-09-01 2010-06-25 Communication system
CN201080038418.1A CN102484506B (zh) 2009-09-01 2010-06-25 通信***
JP2011529775A JP5601326B2 (ja) 2009-09-01 2010-06-25 通信システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009202115 2009-09-01
JP2009-202115 2009-09-01

Publications (1)

Publication Number Publication Date
WO2011027498A1 true WO2011027498A1 (ja) 2011-03-10

Family

ID=43649057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004233 WO2011027498A1 (ja) 2009-09-01 2010-06-25 通信システム

Country Status (4)

Country Link
US (1) US8847697B2 (ja)
JP (1) JP5601326B2 (ja)
CN (1) CN102484506B (ja)
WO (1) WO2011027498A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080476A1 (ja) * 2011-12-02 2013-06-06 日本電気株式会社 通信シート、スマートシェルフ
JPWO2021075511A1 (ja) * 2019-10-17 2021-04-22

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130293323A1 (en) * 2011-01-04 2013-11-07 Koichiro Nakase Electromagnetic wave transmission sheet
KR20210108793A (ko) * 2020-02-26 2021-09-03 삼성전자주식회사 무접점 무선 전력 및 데이터 통신 전송 구조를 포함하는 전자 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0410499A (ja) * 1989-11-29 1992-01-14 Nec Corp 電磁遮へい体および電磁遮へい用筐体
JPH10209665A (ja) * 1997-01-23 1998-08-07 Shimizu Corp 電磁遮蔽ビル
JP2002043834A (ja) * 2000-07-28 2002-02-08 Em Techno:Kk 電波吸収体
JP2003115694A (ja) * 2001-10-02 2003-04-18 Tokai Rubber Ind Ltd 電波吸収体およびそれを備えた電子機器
JP2007150654A (ja) * 2005-11-28 2007-06-14 Serukurosu:Kk センサ装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5160806A (en) 1989-11-29 1992-11-03 Nec Corporation Electromagnetic shielding member and electromagnetic shielding case
US6462436B1 (en) * 1999-08-13 2002-10-08 Avaya Technology Corp. Economical packaging for EMI shields on PCB
JP2004158650A (ja) * 2002-11-06 2004-06-03 Nec Corp 電磁波シールド及び防水構造型筐体
JP2004297763A (ja) * 2003-03-07 2004-10-21 Hitachi Ltd 周波数選択性シールド構造体とそれを有する電子機器
DE102004045490B3 (de) 2004-09-20 2006-01-26 Hansa Metallwerke Ag Sanitäre Unterputzarmatur
JP4538594B2 (ja) * 2005-09-12 2010-09-08 株式会社セルクロス 信号伝達システム
CN101578710B (zh) * 2005-11-22 2013-05-22 肖克科技有限公司 使用电压可变介电材料的发光设备
DE102005061336A1 (de) * 2005-12-21 2007-06-28 Rohde & Schwarz Gmbh & Co. Kg Gehäuse zur Abschirmung von elektromagnetischen Störungen
JP2007281678A (ja) 2006-04-04 2007-10-25 Serukurosu:Kk 信号伝達システム
JP4345851B2 (ja) * 2006-09-11 2009-10-14 ソニー株式会社 通信システム並びに通信装置
CN101145811B (zh) * 2006-09-11 2012-09-05 索尼株式会社 通信***、通信装置以及高频耦合器
JP4752718B2 (ja) 2006-10-18 2011-08-17 ソニー株式会社 通信システム及び通信装置
EP2356896B1 (en) * 2008-11-10 2019-09-04 Finisar Corporation Electromagnetic shielding configuration

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0410499A (ja) * 1989-11-29 1992-01-14 Nec Corp 電磁遮へい体および電磁遮へい用筐体
JPH10209665A (ja) * 1997-01-23 1998-08-07 Shimizu Corp 電磁遮蔽ビル
JP2002043834A (ja) * 2000-07-28 2002-02-08 Em Techno:Kk 電波吸収体
JP2003115694A (ja) * 2001-10-02 2003-04-18 Tokai Rubber Ind Ltd 電波吸収体およびそれを備えた電子機器
JP2007150654A (ja) * 2005-11-28 2007-06-14 Serukurosu:Kk センサ装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080476A1 (ja) * 2011-12-02 2013-06-06 日本電気株式会社 通信シート、スマートシェルフ
US9246203B2 (en) 2011-12-02 2016-01-26 Nec Corporation Communication sheet, smart shelf
JPWO2021075511A1 (ja) * 2019-10-17 2021-04-22
WO2021075511A1 (ja) * 2019-10-17 2021-04-22 国立大学法人 東京大学 二次元無線給電シート及び二次元無線給電システム
JP7274788B2 (ja) 2019-10-17 2023-05-17 国立大学法人 東京大学 二次元無線給電シート及び二次元無線給電システム

Also Published As

Publication number Publication date
CN102484506A (zh) 2012-05-30
US8847697B2 (en) 2014-09-30
US20120139657A1 (en) 2012-06-07
CN102484506B (zh) 2014-08-13
JP5601326B2 (ja) 2014-10-08
JPWO2011027498A1 (ja) 2013-01-31

Similar Documents

Publication Publication Date Title
JP5514612B2 (ja) 低ノイズケーブルおよびそれを使用した装置
JP6012220B2 (ja) 高周波シールド構造
EP3384557B1 (en) Dual-polarized planar ultra-wideband antenna
TWM484822U (zh) 高密度纜線終端連接器
JP6524079B2 (ja) 光送受信器
JP5601326B2 (ja) 通信システム
US20170346188A1 (en) Filter
JP2006191428A (ja) マイクロストリップ線路導波管変換器
JP6704169B2 (ja) 誘電体基板及びアンテナ装置
JP2010074790A (ja) 通信体及びカプラ
JP6474121B2 (ja) 同軸ケーブル・マイクロストリップ線路変換器
JP6887483B2 (ja) 電子機器
US20120135615A1 (en) Electronic connector
US9859598B2 (en) Electronic circuit
JP2009171017A (ja) 平面アンテナ装置
US10818993B2 (en) Branch circuit
CN110536537B (zh) 立体电磁能隙电路
WO2014049920A1 (ja) 電磁波伝播システム及び電磁波インターフェースコネクタ
JP5981466B2 (ja) 平面伝送線路導波管変換器
JP6861904B1 (ja) 電磁シールドケース
JP5157780B2 (ja) カプラ
JPWO2009048095A1 (ja) 伝送線路を有する回路装置及びプリント回路基板
JP2010074792A (ja) 通信体及びカプラ
JP2013214550A (ja) 高周波モジュール
JP2016208076A (ja) 高周波回路基板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080038418.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10813453

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13390045

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011529775

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10813453

Country of ref document: EP

Kind code of ref document: A1