WO2011021677A1 - アンテナモジュール - Google Patents

アンテナモジュール Download PDF

Info

Publication number
WO2011021677A1
WO2011021677A1 PCT/JP2010/064041 JP2010064041W WO2011021677A1 WO 2011021677 A1 WO2011021677 A1 WO 2011021677A1 JP 2010064041 W JP2010064041 W JP 2010064041W WO 2011021677 A1 WO2011021677 A1 WO 2011021677A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
signal line
impedance
conductor
axis direction
Prior art date
Application number
PCT/JP2010/064041
Other languages
English (en)
French (fr)
Inventor
加藤 登
佐々木 純
聡 石野
勝己 谷口
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201080037308.3A priority Critical patent/CN102484312B/zh
Priority to JP2011527710A priority patent/JP5375962B2/ja
Publication of WO2011021677A1 publication Critical patent/WO2011021677A1/ja
Priority to US13/368,358 priority patent/US9705194B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna

Definitions

  • the present invention relates to an antenna module, and more particularly to an antenna module including an antenna that transmits and receives a high-frequency signal.
  • FIG. 6 is an external perspective view of an antenna-integrated stripline cable 500 described in Patent Document 1.
  • the stripline cable 500 includes insulators 510 and 512, a central conductor 514, conductors 516 and 518, and an impedance matching circuit 520.
  • the stripline cable 500 is composed of three regions: an antenna portion 502, a transmission line portion 504, and a counterpoise portion 506.
  • the insulators 510 and 512 are made of a flexible material.
  • a conductor 516 is provided on the lower surface of the insulator 510.
  • a conductor 518 is provided on the top surface of the insulator 512.
  • the center conductor 514 is a linear conductor extending in the longitudinal direction of the insulator 510 on the upper surface of the insulator 510.
  • the insulator 510 and the insulator 512 are formed by bonding the upper surface of the insulator 510 and the lower surface of the insulator 512 together.
  • the insulator 510 and the insulator 512 are not bonded to each other in a region (hereinafter referred to as a tip region) having a length of about 1 ⁇ 4 of the wavelength ⁇ of the operating frequency from the tips of the insulators 510 and 512.
  • the insulator 512 stands perpendicular to the insulator 510 in the tip region.
  • the insulator 510, the central conductor 514, and the conductor 516 in the tip region constitute an antenna portion 502. That is, a high frequency signal is transmitted and received from the center conductor 514 in the antenna unit 502.
  • the insulator 512 and the conductor 518 in the tip region constitute a counterpoise portion 506.
  • the insulators 510 and 512 other than the tip region, the center conductor 514, the conductors 516 and 518, and the impedance matching circuit 520 constitute a transmission line portion 504.
  • the center conductor 514 and the conductors 516 and 518 form a strip line.
  • the impedance matching circuit 520 is provided in the middle of the center conductor 514 and has a wider line width than the center conductor 514. Thereby, impedance matching between the antenna unit 502 and the strip line of the transmission line unit 504 is taken.
  • the stripline cable 500 described in Patent Document 1 curves the transmission line portion 504 with a small radius without increasing the DC resistance value and maintaining the stability of the characteristic impedance. It has the problem that it is difficult to design so that it can be made. More specifically, the stripline cable 500 is used in, for example, a mobile phone. In recent years, the miniaturization of mobile phones has progressed, and the necessity of accommodating the stripline cable 500 in a small space inside the mobile phone has been increasing. Therefore, it is desired to bend the transmission line portion 504 with a radius as small as possible. Therefore, for example, it is conceivable to reduce the thickness of the insulators 510 and 512. Thereby, since the rigidity of the stripline cable 500 becomes low, the transmission line part 504 can be curved with a small radius.
  • the transmission line portion 504 can be curved with a small radius without increasing the DC resistance value and maintaining the stability of the characteristic impedance. It was difficult to design.
  • an object of the present invention is to provide an antenna module that can bend a signal line with a small radius without increasing the DC resistance value and maintaining the stability of the characteristic impedance.
  • An antenna module includes a main body in which a plurality of insulating sheets made of a flexible material are stacked, an antenna provided in the main body, which transmits and receives high-frequency signals, and A connection portion provided in the main body, the connection portion connected to an electronic element that inputs and outputs the high-frequency signal, and a stripline structure or a microstripline structure provided in the main body.
  • the signal line can be curved with a small radius without increasing the DC resistance value and maintaining the stability of the characteristic impedance.
  • FIG. 1 is an external perspective view of an antenna module according to an embodiment of the present invention.
  • FIG. 2A is an exploded view of the antenna module of FIG.
  • FIG. 2B is an enlarged view of the insulating sheet of the antenna module. It is an equivalent circuit diagram of an antenna module.
  • FIG. 2 is a cross-sectional structure diagram along AA in FIG. 1. It is a disassembled perspective view of the antenna module which concerns on a modification.
  • 1 is an external perspective view of an antenna-integrated stripline cable described in Patent Document 1.
  • FIG. 1 is an external perspective view of an antenna module 10 according to an embodiment of the present invention.
  • FIG. 2A is an exploded view of the antenna module 10 of FIG.
  • FIG. 2B is an enlarged view of the insulating sheet 16 a of the antenna module 10.
  • FIG. 3 is an equivalent circuit diagram of the antenna module 10.
  • FIG. 4 is a sectional structural view taken along line AA in FIG. 1 to 4, the stacking direction of the antenna module 10 is defined as the z-axis direction.
  • the longitudinal direction of the antenna module 10 is defined as the x-axis direction, and the direction orthogonal to the x-axis direction and the z-axis direction is defined as the y-axis direction.
  • the antenna module 10 is bent and used in a folded state, for example, in an electronic device such as a mobile phone. As shown in FIGS. 1 and 2, the antenna module 10 includes a main body 12, an antenna 14, a signal line 24, impedance matching circuits 31 and 37, a connection portion 46, a ground conductor 48, and via-hole conductors b1 to b10.
  • the main body 12 can be divided into three areas, an antenna area A1, a signal line area A2, and a connection area A3.
  • the signal line region A2 extends in the x-axis direction.
  • the antenna region A1 is provided on the negative direction side in the x-axis direction of the signal line region A2.
  • the antenna area A1 has a larger width in the y-axis direction than the signal line area A2.
  • the connection region A3 is provided on the positive direction side in the x-axis direction of the signal line region A2.
  • the connection region A3 has a larger width in the y-axis direction than the signal line region A2.
  • the main body 12 is configured by laminating insulating sheets 16 (16a to 16c) shown in FIG. 2 in this order from the positive direction side to the negative direction side in the z-axis direction.
  • the insulating sheet 16 is made of a thermoplastic resin such as a liquid crystal polymer having flexibility.
  • the thickness of the insulating sheet 16 is preferably 10 ⁇ m or more and 100 ⁇ m or less in order to ensure its flexibility.
  • each of the insulating sheets 16a to 16c includes antenna portions 18a to 18c, signal line portions 20a to 20c, and connection portions 22a to 22c.
  • the antenna unit 18 constitutes an antenna region A1 of the main body 12.
  • the signal line portion 20 constitutes a signal line region A ⁇ b> 2 of the main body 12.
  • the connection portions 22a to 22c constitute a connection area A3 of the main body 12.
  • the main surface on the positive direction side in the z-axis direction of the insulating sheet 16 is referred to as a front surface
  • the main surface on the negative direction side in the z-axis direction of the insulating sheet 16 is referred to as a back surface.
  • the antenna 14 is provided in the antenna area A1 of the main body 12, and transmits and receives a high-frequency signal (for example, about 2 GHz).
  • the antenna 14 is manufactured by bending a single metal plate, and includes a radiating plate 14a and mounting portions 14b and 14c as shown in FIGS.
  • the radiation plate 14a has a rectangular shape that substantially matches the antenna region A1 when viewed in plan from the z-axis direction, and radiates and absorbs radio waves.
  • the attachment portions 14b and 14c are connected to the midpoints of the two long sides of the radiation plate 14a and are bent to the negative direction side in the z-axis direction. As shown in FIG. 2, the attachment portions 14 b and 14 c extend in the z-axis direction, and are attached to the surface of the antenna portion 18 a at the end on the negative direction side in the z-axis direction. .
  • the connecting portion 46 is composed of connecting conductors T1 and T2.
  • the connection conductors T1 and T2 are connected to an electronic element (not shown) that inputs and outputs a high-frequency signal.
  • the electronic element is a circuit element constituting a high-frequency signal processing circuit.
  • the connection conductor T1 is provided on the surface of the connection portion 22a and has a square shape.
  • the connection conductor T2 is provided on the surface of the connection portion 22a, and is separated from the connection conductor T1 in the three directions of the positive and negative directions in the y-axis direction and the positive direction side in the x-axis direction of the connection conductor T1. Is provided so as to surround.
  • An RF connector (not shown) having an outer conductor and a center conductor is mounted as an electronic element on the connection conductors T1 and T2.
  • the connection conductor T1 is connected to the center conductor, and the connection conductor T2 is connected to the outer conductor.
  • the RF connector is connected to an external circuit (not shown) that performs predetermined processing on the high-frequency signal via a coaxial cable or the like.
  • the RF connector, the external circuit, the coaxial cable, and the like constitute a processing circuit.
  • the signal line 24 is provided in the signal line region A2 of the main body 12 and has a stripline structure, and transmits a high-frequency signal.
  • the signal line 24 includes a center conductor 28 and ground conductors 26 and 30.
  • the center conductor 28 is a linear conductor layer provided so as to extend in the x-axis direction on the surface of the signal line portion 20b.
  • a high frequency signal is transmitted through the central conductor 28.
  • both ends of the center conductor 28 are located in the antenna region A1 and the connection region A3.
  • the ground conductor 26 is provided on the positive side in the z-axis direction with respect to the center conductor 28 in the signal line region A2 of the main body 12, and specifically, the x-axis on the surface of the signal line portion 20a. Extends in the direction. Further, as shown in FIG. 4, the ground conductor 26 has a wider line width in the y-axis direction than the center conductor 28. The ground conductor 26 overlaps the center conductor 28 when viewed in plan from the z-axis direction. Furthermore, both ends of the ground conductor 26 are located in the antenna region A1 and the connection region A3. The end of the ground conductor 26 on the x-axis direction side is connected to the connection conductor T2.
  • the ground conductor 30 is provided on the negative side in the z-axis direction with respect to the center conductor 28 in the signal line region A2 of the main body 12, and specifically, the x-axis on the surface of the signal line portion 20c. Extends in the direction.
  • the ground conductor 30 has a wider line width in the y-axis direction than the center conductor 28 and the ground conductor 26 as shown in FIG.
  • the ground conductor 30 overlaps the center conductor 28 when viewed in plan from the z-axis direction.
  • the center conductor 28 and the ground conductors 26 and 30 form a stripline structure as shown in FIG.
  • the impedance matching circuit 31 is provided between the antenna 14 and the end of the signal line 24 on the negative side in the x-axis direction in the antenna region A1 of the main body 12. As shown in FIG. 2, the impedance matching circuit 31 includes linear conductors 32 and 34 and a ground conductor 36.
  • the antenna 14 and the impedance matching circuit 31 are connected by an antenna port P1.
  • the signal port of the antenna port P1 is a connection point between the linear conductor 32 and the attachment portion 14b.
  • the ground port of the antenna port P1 is a connection point between the linear conductor 34 and the attachment portion 14c.
  • the linear conductor 32 is a linear conductor layer provided on the surface of the antenna portion 18a and extending in the x-axis direction.
  • the end on the negative direction side in the y-axis direction of the linear conductor 32 overlaps with the end on the negative direction side in the x-axis direction of the center conductor 28 when viewed in plan from the z-axis direction.
  • the via-hole conductor b1 penetrates the antenna portion 18a in the z-axis direction, so that the end of the linear conductor 32 on the negative side in the y-axis direction and the end of the central conductor 28 on the negative direction side in the x-axis direction And connected.
  • the end of the linear conductor 32 on the positive side in the y-axis direction is connected to the mounting portion 14 b of the antenna 14.
  • the linear conductor 32 has a relatively narrow line width that is substantially the same as the central conductor 28. As a result, the linear conductor 32 forms a coil L2 between the center conductor 28 and the antenna 14, as shown in FIG.
  • the linear conductor 34 is provided on the surface of the antenna portion 18a, extends in the x-axis direction, and is bent toward the positive direction side in the y-axis direction at the end portion on the negative direction side in the x-axis direction. It is an L-shaped linear conductor layer. The end of the linear conductor 34 on the positive side in the x-axis direction is connected to the ground conductor 26. The end of the linear conductor 34 on the positive side in the y-axis direction is connected to the mounting portion 14 c of the antenna 14.
  • the linear conductor 34 has a relatively narrow line width that is substantially the same as the central conductor 28. As a result, the linear conductor 34 forms a coil L3 between the ground conductor 26 and the antenna 14, as shown in FIG.
  • the ground conductor 36 is provided so as to cover substantially the entire surface of the antenna portion 18c, and is connected to the end of the ground conductor 30 on the negative side in the x-axis direction. This prevents the antenna area A1 of the main body 12 from being easily deformed. Further, the linear conductors 32 and 34 overlap the ground conductor 36 when viewed in plan from the z-axis direction. Accordingly, the linear conductors 32 and 34 and the ground conductor 36 constitute a microstrip line structure. Therefore, a capacitance C2 is generated between the linear conductor 32 and the ground conductor 36 as shown in FIG. Further, a capacitance C3 is generated between the linear conductor 34 and the ground conductor 36 as shown in FIG.
  • the capacitor C3 is charged with much less charge than the capacitor C2. More specifically, the end on the negative side in the x-axis direction of the ground conductor 26 overlaps with the ground conductor 36 when viewed in plan from the z-axis direction.
  • the via-hole conductors b2 and b7 penetrate the antenna portions 18a and 18b in the z-axis direction and are connected to each other, so that the end of the ground conductor 26 on the negative direction side in the x-axis direction and the ground conductor 36 is connected.
  • the via-hole conductors b3 and b8 penetrate the antenna portions 18a and 18b in the z-axis direction and are connected to each other, so that the end of the ground conductor 26 on the negative side in the x-axis direction and the ground The conductor 36 is connected.
  • the linear conductor 34 is connected to the ground conductor 36 via the ground conductor 26. Accordingly, since the ground potential is applied to the linear conductor 34 in the same manner as the ground conductor 36, the capacitance C3 generated between the linear conductor 34 and the ground conductor 36 is much smaller than the capacitance C2. Only charge is charged.
  • the impedance matching circuit 31 is configured by a low-pass filter including a combination of the coils L2 and L3 and the capacitors C2 and C3.
  • the impedance matching circuit 31 has an impedance Z1 (see FIG. 3) when the antenna 14 is viewed from the end of the signal line 24 on the negative direction side in the x-axis direction and the end of the signal line 24 on the negative direction side in the x-axis direction. Impedance matching is taken with the impedance Z2 (see FIG. 3) when the signal line 24 side is seen from the part.
  • the linear conductor 34 of the impedance matching circuit 31 is designed so that the impedance Z1 and the impedance Z2 have a conjugate relationship.
  • the impedance Z1 and the impedance Z2 being in a conjugate relationship means that when the impedance Z1 is a + jb, the impedance Z2 is a ⁇ jb. Thereby, generation
  • the impedance matching circuit 37 is provided between the end portion of the signal line 24 on the positive direction side in the x-axis direction and the connection portion 46 in the connection region A3 of the main body 12. As shown in FIG. 2, the impedance matching circuit 37 includes a chip capacitor C1, a chip coil L1, and linear conductors 38, 40, and 44.
  • the linear conductor 38 is a linear conductor layer provided on the surface of the connecting portion 22a. One end of the linear conductor 38 overlaps the end of the central conductor 28 on the positive direction side in the x-axis direction when viewed in plan from the z-axis direction.
  • the via-hole conductor b4 passes through the connecting portion 22a in the z-axis direction, thereby connecting one end portion of the linear conductor 38 and the end portion of the central conductor 28 on the positive direction side in the x-axis direction. .
  • a connecting conductor t1 is provided at the other end of the linear conductor 38.
  • the linear conductor 40 is a T-shaped linear conductor layer provided on the surface of the connecting portion 22a.
  • the linear conductor 40 is composed of linear conductors 40a and 40b.
  • the linear conductor 40 a is a linear conductor layer extending in the y-axis direction.
  • a connecting conductor t2 is provided at the end of the linear conductor 40a on the positive side in the y-axis direction.
  • a connecting conductor t3 is provided at the end of the linear conductor 40b on the negative side in the y-axis direction.
  • the linear conductor 40b extends in the positive direction in the x-axis direction from the vicinity of the middle point in the y-axis direction of the linear conductor 40a.
  • the linear conductor 40b is connected to the connection conductor T1 at the end on the positive direction side in the x-axis direction.
  • the linear conductor 44 is a linear conductor layer that is provided on the surface of the connection portion 22a and protrudes from the ground conductor 26 toward the positive side in the y-axis direction.
  • a connecting conductor t4 is provided at the end of the linear conductor 44 on the positive side in the y-axis direction.
  • the chip capacitor C1 is, for example, a multilayer electronic component with a built-in capacitor, and includes external electrodes 50a and 50b.
  • the chip capacitor C1 is solder-mounted on the connection portion 22a so that the external electrode 50a is connected to the connection conductor t1 and the external electrode 50b is connected to the connection conductor t2.
  • the linear conductor 38 is electrically connected to the central conductor 28 via the via-hole conductor b4. Thereby, the chip capacitor C1 is connected between the center conductor 28 and the connection conductor T1, as shown in FIG.
  • the chip coil L1 is, for example, a multilayer electronic component having a built-in coil, and includes external electrodes 52a and 52b.
  • the chip coil L1 is solder-mounted on the connection portion 22a so that the external electrode 52a is connected to the connection conductor t3 and the external electrode 52b is connected to the connection conductor t4.
  • the linear conductor 44 is connected to the connection conductor T2 through the ground conductor 26. Thereby, the chip coil L1 is connected between the connection conductor T1 and the connection conductor T2, as shown in FIG.
  • the impedance matching circuit 37 is configured by a high-pass filter that is a combination of the chip coil L1 and the chip capacitor C1.
  • the impedance matching circuit 37 includes the impedance Z3 (see FIG. 3) and the signal line 24 when the connection part 46 side in a state where the electronic element is connected from the end of the signal line 24 on the positive side in the x-axis direction. Impedance matching is taken with the impedance Z4 (see FIG. 3) when the signal line 24 side is viewed from the end on the positive direction side in the x-axis direction.
  • the chip coil L1 and the chip capacitor C1 of the impedance matching circuit 37 are selected so that the impedance Z3 and the impedance Z4 have a conjugate relationship. Thereby, generation
  • the ground conductor 48 is provided so as to cover substantially the entire surface of the connection portion 22c, and is connected to the end of the ground conductor 30 on the positive side in the x-axis direction. Thereby, it is prevented that the connection part area
  • the via-hole conductors b5 and b9 pass through the connecting portions 22a and 22b in the z-axis direction and are connected to each other, whereby the end portion of the ground conductor 26 on the positive side in the x-axis direction and the ground conductor 48 are connected. And connected.
  • the via-hole conductors b6 and b10 pass through the connection portions 22a and 22b in the z-axis direction and are connected to each other, thereby connecting the connection conductor T2 and the ground conductor 48.
  • the antenna 14 has a characteristic impedance Z11 (for example, 377 ⁇ ) in order to radiate radio waves into the air or absorb radio waves from the air.
  • the electronic element is, for example, an RF connector and is connected to a coaxial cable having a characteristic impedance of 50 ⁇ or 75 ⁇ , and thus has the same characteristic impedance Z12 (for example, 50 ⁇ or 75 ⁇ ) as that of the coaxial cable.
  • the signal line 24 has a characteristic impedance Z13 (for example, 30 ⁇ ) smaller than the characteristic impedances Z11 and Z12.
  • the impedance Z01 when the antenna 14 is viewed from the antenna port P1 and the impedance Z02 when the impedance matching circuit 31 is viewed from the antenna port P1 are normally 1 ⁇ to 25 ⁇ . That is, the characteristic impedance Z0 of the antenna port P1 is normally 1 ⁇ to 25 ⁇ . Therefore, in the antenna module 10, impedance matching circuits 31 and 37 are provided so that high-frequency signal reflection does not occur at the boundary between the antenna 14 and the signal line 24 and at the boundary between the signal line 24 and the connection portion 46. ing. That is, even when the signal line 24 is bent with a small radius, a stable characteristic impedance can be secured on the connection portion 46 side.
  • the characteristic impedance of the antenna port P1 is smaller than the characteristic impedance of the signal line 24 and the characteristic impedance of the electronic elements connected to the connection conductors T1 and T2 of the connection portion 46. Since the characteristic impedance changes stepwise from the antenna port P1 toward the connection portion 46, loss due to impedance conversion is reduced.
  • an insulating sheet 16 made of a thermoplastic resin such as a liquid crystal polymer having a copper foil formed on the entire surface is prepared.
  • the ground conductor 26, the linear conductors 32, 34, 38, 40, and 44 and the connection conductors T1 and T2 shown in FIG. 2 are formed on the surface of the insulating sheet 16a by a photolithography process.
  • a resist having the same shape as the ground conductor 26, the linear conductors 32, 34, 38, 40, 44 and the connection conductors T1, T2 shown in FIG. 2 is printed on the copper foil of the insulating sheet 16a.
  • the copper foil of the part which is not covered with the resist is removed by performing an etching process with respect to copper foil. Thereafter, the resist is removed. Thereby, the ground conductor 26, the linear conductors 32, 34, 38, 40, 44 and the connection conductors T1, T2 are formed on the surface of the insulating sheet 16a as shown in FIG.
  • the central conductor 28 shown in FIG. 2 is formed on the surface of the insulating sheet 16b by a photolithography process.
  • the ground conductors 30, 36, and 48 shown in FIG. 2 are formed on the surface of the insulating sheet 16c by a photolithography process. Note that these photolithography processes are the same as the photolithography processes for forming the ground conductor 26, the linear conductors 32, 34, 38, 40, and 44 and the connection conductors T1 and T2, and thus the description thereof is omitted.
  • a laser beam is irradiated from the back side to the positions where the via hole conductors b1 to b10 of the insulating sheets 16a and 16b are formed to form via holes.
  • the via holes formed in the insulating sheets 16a and 16b are filled with a conductive paste mainly composed of copper to form the via hole conductors b1 to b10 shown in FIG.
  • the insulating sheets 16a to 16c are stacked in this order. Then, the insulating sheets 16a to 16c are pressure-bonded to the insulating sheets 16a to 16c isotropically or via an elastic body from the positive side and the negative side in the z-axis direction. Finally, the antenna 14 is solder-mounted on the antenna area A1. Thereby, the antenna module 10 shown in FIG. 1 is obtained.
  • the antenna module 10 can bend the signal line region A2 of the main body 12 with a small radius without increasing the DC resistance value and ensuring the stability of the characteristic impedance. More specifically, in the stripline cable 500 described in Patent Document 1, the thickness of the insulators 510 and 512 is reduced, thereby reducing the rigidity of the stripline cable 500 and bending the transmission line portion 504 with a small radius. I am letting.
  • the thickness of the insulators 510 and 512 is reduced, the distance between the center conductor 514 and the conductors 516 and 518 is reduced. For this reason, the capacitance between the center conductor 514 and the conductors 516 and 518 increases, and the characteristic impedance of the strip line of the transmission line portion 504 deviates from a predetermined characteristic impedance (for example, 50 ⁇ or 75 ⁇ ). Therefore, it is necessary to reduce the capacitance between the center conductor 514 and the conductors 516 and 518 by reducing the line width of the center conductor 514. As a result, the DC resistance value of the stripline cable 500 becomes large.
  • the impedance matching circuit 31 is provided between the end of the signal line 24 on the negative side in the x-axis direction and the antenna 14.
  • the impedance matching circuit 31 has the impedance Z1 and the end of the signal line 24 on the negative direction side in the x-axis direction when viewed from the end of the signal line 24 on the negative direction side in the x-axis direction. Impedance matching can be obtained with the impedance Z2 when the signal line 24 side is viewed.
  • an impedance matching circuit 37 is provided between the end of the signal line 24 on the positive side in the x-axis direction and the connecting portion 46.
  • the impedance matching circuit 37 has the impedance Z3 and the x of the signal line 24 when the connection part 46 side in a state where the electronic element is connected from the end on the positive direction side in the x-axis direction of the signal line 24 is seen. Impedance matching can be obtained with the impedance Z4 when the signal line 24 side is viewed from the end on the positive side in the axial direction. As described above, by providing the impedance matching circuits 31 and 37 at both ends of the signal line 24, even if the characteristic impedance Z13 of the signal line 24 is different from the characteristic impedance Z11 of the antenna 14 and the characteristic impedance Z12 of the electronic element, Impedance matching can be achieved among the line 24, the antenna 14, and the electronic element.
  • the thickness of the main body 12 can be reduced without breaking the impedance matching between the signal line 24, the antenna 14, and the electronic element. As a result, even if the thickness of the main body 12 is reduced, it is not necessary to reduce the width of the central conductor 28. As described above, the antenna module 10 can bend the signal line region A2 of the main body 12 with a small radius without increasing the DC resistance value and ensuring the stability of the characteristic impedance.
  • the direct current resistance value can be reduced. That is, in the antenna module 10, the characteristic impedance Z13 of the signal line 24 may be different from the characteristic impedance Z11 of the antenna 14 and the characteristic impedance Z12 of the electronic element. Therefore, the line width of the central conductor 28 of the signal line 24 can be increased. As a result, in the antenna module 10, the DC resistance value of the center conductor 28 is reduced, and the loss of the high frequency signal can be reduced.
  • the antenna module 10 does not need to be redesigned for each electronic device to be used, and high versatility can be obtained. More specifically, the electronic element has a specific characteristic impedance (for example, 50 ⁇ or 75 ⁇ ) like an RF connector.
  • the impedance matching circuit 37 is provided between the end portion of the signal line 24 on the positive side in the x-axis direction and the connection portion 46. Thereby, the impedance matching circuit 37 has the impedance Z3 and the x of the signal line 24 when the connection part 46 side in a state where the electronic element is connected from the end on the positive direction side in the x-axis direction of the signal line 24 is seen.
  • Impedance matching is taken with the impedance Z4 when the signal line 24 side is viewed from the end on the positive side in the axial direction. That is, the impedance matching circuit 37 may be designed so that impedance matching is taken when an electronic element having a specific impedance is connected to the connection unit 46. As a result, impedance matching is achieved among the signal line 24, the antenna 14, and the electronic element regardless of the type of the electronic element. Therefore, the antenna module 10 can be used for various electronic devices without redesigning the antenna module 10.
  • FIG. 5 is an exploded perspective view of an antenna module 10 ′ according to a modification.
  • the difference between the antenna modules 10 and 10 ′ is the configuration of the antennas 14 and 14 ′. More specifically, the antenna 14 is manufactured by bending a metal plate and attached to the antenna region A1. On the other hand, the antenna 14 'is provided on the surface of the antenna portion 18a. That is, the antenna 14 ′ is provided on the surface of the antenna portion 18 a with a copper foil, like the ground conductor 26, the linear conductors 32, 34, 38, 40, 44 and the connection conductors T 1, T 2.
  • the other configuration of the antenna module 10 ′ is the same as the other configuration of the antenna module 10, and the description thereof is omitted.
  • the impedance matching circuit 37 may be configured by a linear conductor, a ground conductor, or the like provided in the connection portions 22a to 22c.
  • the linear conductors 32 and 34 and the ground conductor 36 are used for the impedance matching circuit 31.
  • the impedance matching circuit 31 may be configured by a chip coil and a chip capacitor.
  • the electronic element mounted on the connection unit 46 is an RF connector.
  • the electronic element may be an electronic component such as an IC chip instead of the RF connector.
  • the signal line 24 has a stripline structure, but may have a microstripline structure.
  • the present invention is useful for an antenna module, and is particularly excellent in that a signal line can be curved with a small radius without increasing the DC resistance value and ensuring the stability of characteristic impedance. .

Landscapes

  • Details Of Aerials (AREA)
  • Support Of Aerials (AREA)

Abstract

 直流抵抗値を大きくすることなく、信号線路を小さな半径で湾曲させることができるアンテナモジュールを提供する。 本体(12)は、可撓性材料からなる複数の絶縁シート(16)が積層されてなる。アンテナ(14)は、本体(12)に設けられ、高周波信号を送受信する。接続部(46)は、本体(12)に設けられ、高周波信号が入出力する電子素子に接続される。信号線路(24)は、本体(12)に設けられ、かつ、ストリップライン構造又はマイクロストリップライン構造を有し、高周波信号を伝送する。インピーダンスマッチング回路(31)は、本体(12)において、信号線路(24)のx軸方向の負方向側の端部とアンテナ(14)との間に設けられている。インピーダンスマッチング回路(37)は、本体(12)において、信号線路(24)のx軸方向の正方向側の端部と接続部(46)との間に設けられている。

Description

アンテナモジュール
 本発明は、アンテナモジュールに関し、より特定的には、高周波信号を送受信するアンテナを備えているアンテナモジュールに関する。
 従来のアンテナモジュールに関する発明としては、例えば、特許文献1に記載のアンテナ一体型ストリップラインケーブル(以下、ストリップラインケーブルと称す)が知られている。図6は、特許文献1に記載のアンテナ一体型ストリップラインケーブル500の外観斜視図である。
 ストリップラインケーブル500は、図6に示すように、絶縁体510,512、中心導体514、導電体516,518及びインピーダンスマッチング回路520により構成されている。また、ストリップラインケーブル500は、アンテナ部502、伝送線路部504及びカウンターポイズ部506の3つの領域からなる。
 絶縁体510,512は、可撓性を有する材料により構成されている。絶縁体510の下面には導電体516が設けられている。絶縁体512の上面には導電体518が設けられている。また、中心導体514は、絶縁体510の上面において、該絶縁体510の長手方向に延在する線状導体である。絶縁体510と絶縁体512とは、絶縁体510の上面と絶縁体512の下面とが貼り合わされている。
 ただし、絶縁体510,512の先端から使用周波数の波長λの略1/4の長さの領域(以下、先端領域と称す)では、絶縁体510と絶縁体512とは貼り合わされていない。具体的には、先端領域では、絶縁体512は、絶縁体510に対して垂直に立っている。そして、先端領域の絶縁体510、中心導体514及び導電体516は、アンテナ部502を構成している。すなわち、アンテナ部502における中心導体514から高周波信号が送受信される。一方、先端領域の絶縁体512及び導電体518は、カウンターポイズ部506を構成している。
 更に、先端領域以外の絶縁体510,512、中心導体514、導電体516,518及びインピーダンスマッチング回路520は、伝送線路部504を構成している。また、伝送線路部504では、中心導体514及び導電体516,518は、ストリップラインを構成している。
 また、インピーダンスマッチング回路520は、中心導体514の途中に設けられており、中心導体514よりも広い線幅を有している。これにより、アンテナ部502と伝送線路部504のストリップラインとの間のインピーダンスマッチングが取られている。
 ところで、特許文献1に記載のストリップラインケーブル500は、以下に説明するように、直流抵抗値を大きくすることなく、かつ、特性インピーダンスの安定性を保ちつつ、伝送線路部504を小さな半径で湾曲させることができるように設計することが困難であるという問題を有している。より詳細には、ストリップラインケーブル500は、例えば、携帯電話に用いられる。近年、携帯電話の小型化が進んでおり、携帯電話内の僅かなスペースにストリップラインケーブル500を収める必要性が高くなっている。そのため、伝送線路部504をできるだけ小さな半径で湾曲させることが望まれている。そこで、例えば、絶縁体510,512の厚みを薄くすることが考えられる。これにより、ストリップラインケーブル500の剛性が低くなるので、伝送線路部504を小さな半径で湾曲させることができる。
 しかしながら、ストリップラインケーブル500において、絶縁体510,512の厚みを薄くすると、中心導体514と導電体516,518との間隔が小さくなってしまう。そのため、中心導体514と導電体516,518との間の容量が大きくなってしまい、伝送線路部504のストリップラインの特性インピーダンスが所定の特性インピーダンス(例えば、50Ω又は75Ω)からずれてしまう。したがって、中心導体514の線幅を狭くすることにより、中心導体514と導電体516,518との間の容量を小さくする必要がある。その結果、ストリップラインケーブル500の直流抵抗値が大きくなってしまう。以上のように、特許文献1に記載のストリップラインケーブル500では、直流抵抗値を大きくすることなく、かつ、特性インピーダンスの安定性を保ちつつ、伝送線路部504を小さな半径で湾曲させることができるように設計することは困難であった。
特開平8-242117号公報
 そこで、本発明の目的は、直流抵抗値を大きくすることなく、かつ、特性インピーダンスの安定性を保ちつつ、信号線路を小さな半径で湾曲させることができるアンテナモジュールを提供することである。
 本発明の一形態に係るアンテナモジュールは、可撓性材料からなる複数の絶縁シートが積層されてなる本体と、前記本体に設けられているアンテナであって、高周波信号を送受信するアンテナと、前記本体に設けられている接続部であって、前記高周波信号が入出力する電子素子に接続される接続部と、前記本体に設けられ、かつ、ストリップライン構造又はマイクロストリップライン構造を有している信号線路であって、前記高周波信号を伝送する信号線路と、前記本体において、前記信号線路の一方の端部と前記アンテナとの間に設けられている第1のインピーダンスマッチング回路と、前記本体において、前記信号線路の他方の端部と前記接続部との間に設けられている第2のインピーダンスマッチング回路と、を備えていること、を特徴とする。
 本発明によれば、直流抵抗値を大きくすることなく、かつ、特性インピーダンスの安定性を保ちつつ、信号線路を小さな半径で湾曲させることができる。
本発明の一実施形態に係るアンテナモジュールの外観斜視図である。 図2(a)は、図1のアンテナモジュールの分解図である。図2(b)は、アンテナモジュールの絶縁シートの拡大図である。 アンテナモジュールの等価回路図である。 図1のA-Aにおける断面構造図である。 変形例に係るアンテナモジュールの分解斜視図である。 特許文献1に記載のアンテナ一体型ストリップラインケーブルの外観斜視図である。
 以下に、本発明の実施形態に係るアンテナモジュールについて図面を参照しながら説明する。
(アンテナモジュールの構成)
 以下に、本発明の一実施形態に係るアンテナモジュールの構成について図面を参照しながら説明する。図1は、本発明の一実施形態に係るアンテナモジュール10の外観斜視図である。図2(a)は、図1のアンテナモジュール10の分解図である。図2(b)は、アンテナモジュール10の絶縁シート16aの拡大図である。図3は、アンテナモジュール10の等価回路図である。図4は、図1のA-Aにおける断面構造図である。図1ないし図4において、アンテナモジュール10の積層方向をz軸方向と定義する。また、アンテナモジュール10の長手方向をx軸方向と定義し、x軸方向及びz軸方向に直交する方向をy軸方向と定義する。
 アンテナモジュール10は、例えば、携帯電話等の電子機器内において、湾曲させられて2つ折の状態で用いられる。アンテナモジュール10は、図1及び図2に示すように、本体12、アンテナ14、信号線路24、インピーダンスマッチング回路31,37、接続部46、グランド導体48及びビアホール導体b1~b10を備えている。
 本体12は、図1に示すように、アンテナ領域A1、信号線路領域A2及び接続領域A3の3つの領域に分けることができる。信号線路領域A2は、図1に示すように、x軸方向に延在している。アンテナ領域A1は、信号線路領域A2のx軸方向の負方向側に設けられている。アンテナ領域A1は、信号線路領域A2よりもy軸方向に大きな幅を有している。接続領域A3は、信号線路領域A2のx軸方向の正方向側に設けられている。接続領域A3は、信号線路領域A2よりもy軸方向に大きな幅を有している。本体12は、図2に示す絶縁シート16(16a~16c)がz軸方向の正方向側から負方向側へとこの順に積層されて構成されている。
 絶縁シート16は、可撓性を有する液晶ポリマー等の熱可塑性樹脂により構成されている。絶縁シート16の厚みは、その可撓性を確保するために、10μm以上100μm以下であることが好ましい。絶縁シート16a~16cはそれぞれ、図2に示すように、アンテナ部18a~18c、信号線路部20a~20c及び接続部22a~22cにより構成されている。アンテナ部18は、本体12のアンテナ領域A1を構成している。信号線路部20は、本体12の信号線路領域A2を構成している。接続部22a~22cは、本体12の接続領域A3を構成している。なお、以下では、絶縁シート16のz軸方向の正方向側の主面を表面と称し、絶縁シート16のz軸方向の負方向側の主面を裏面と称す。
 アンテナ14は、本体12のアンテナ領域A1に設けられており、高周波信号(例えば、2GHz程度)を送受信する。アンテナ14は、1枚の金属板が折り曲げられることにより作製されており、図1及び図2に示すように、放射板14a及び取り付け部14b,14cにより構成されている。放射板14aは、z軸方向から平面視したときにアンテナ領域A1と略一致する長方形状をなしており、電波を放射及び吸収する。取り付け部14b,14cは、放射板14aの2つの長辺の中点に接続されており、z軸方向の負方向側に折り曲げられている。そして、取り付け部14b,14cは、図2に示すように、z軸方向に延在しており、そのz軸方向の負方向側の端部においてアンテナ部18aの表面に対して取り付けられている。
 接続部46は、接続導体T1,T2により構成されている。接続導体T1,T2は、高周波信号が入出力する電子素子(図示せず)と接続される。該電子素子は、高周波信号の処理回路を構成する回路素子である。具体的には、接続導体T1は、接続部22aの表面に設けられており、正方形状をなしている。接続導体T2は、接続部22aの表面に設けられており、接続導体T1と離れた状態で、接続導体T1のy軸方向の正方向側及び負方向側並びにx軸方向の正方向側の三方を囲むように設けられている。接続導体T1,T2には、外導体及び中心導体を備えているRFコネクタ(図示せず)が電子素子として実装される。接続導体T1は中心導体に接続され、接続導体T2は外導体に接続される。そして、RFコネクタには、同軸ケーブル等を介して、高周波信号に所定の処理を施す外部回路(図示せず)が接続されている。RFコネクタ、外部回路及び同軸ケーブル等は、処理回路を構成している。
 信号線路24は、本体12の信号線路領域A2に設けられ、かつ、ストリップライン構造を有しており、高周波信号を伝送する。具体的には、信号線路24は、中心導体28及びグランド導体26,30により構成されている。中心導体28は、信号線路部20bの表面においてx軸方向に延在するように設けられている線状の導体層である。高周波信号は、該中心導体28を伝送される。更に、中心導体28の両端は、アンテナ領域A1及び接続領域A3に位置している。
 グランド導体26は、図2に示すように、本体12の信号線路領域A2において中心導体28よりもz軸方向の正方向側に設けられ、具体的には、信号線路部20aの表面においてx軸方向に延在している。また、グランド導体26は、図4に示すように、中心導体28よりもy軸方向において広い線幅を有している。グランド導体26は、z軸方向から平面視したときに、中心導体28と重なっている。更に、グランド導体26の両端は、アンテナ領域A1及び接続領域A3に位置している。そして、グランド導体26のx軸方向側の端部は、接続導体T2に接続されている。
 グランド導体30は、図2に示すように、本体12の信号線路領域A2において中心導体28よりもz軸方向の負方向側に設けられ、具体的には、信号線路部20cの表面においてx軸方向に延在している。また、グランド導体30は、図4に示すように、中心導体28及びグランド導体26よりもy軸方向において広い線幅を有している。グランド導体30は、z軸方向から平面視したときに、中心導体28と重なっている。これにより、中心導体28及びグランド導体26,30は、図4に示すように、ストリップライン構造を構成している。
 インピーダンスマッチング回路31は、本体12のアンテナ領域A1において、信号線路24のx軸方向の負方向側の端部とアンテナ14との間に設けられている。インピーダンスマッチング回路31は、図2に示すように、線状導体32,34及びグランド導体36により構成されている。
 アンテナ14とインピーダンスマッチング回路31とは、アンテナポートP1により接続されている。アンテナポートP1のシグナルポートが、線状導体32と取り付け部14bとの接続点である。また、アンテナポートP1のグランドポートが、線状導体34と取り付け部14cとの接続点である。
 線状導体32は、アンテナ部18aの表面に設けられており、x軸方向に延在している線状の導体層である。線状導体32のy軸方向の負方向側の端部は、z軸方向から平面視したときに、中心導体28のx軸方向の負方向側の端部と重なっている。そして、ビアホール導体b1は、アンテナ部18aをz軸方向に貫通することにより、線状導体32のy軸方向の負方向側の端部と中心導体28のx軸方向の負方向側の端部とを接続している。また、線状導体32のy軸方向の正方向側の端部は、アンテナ14の取り付け部14bに接続されている。線状導体32は、中心導体28と略同じ比較的に細い線幅を有している。これにより、線状導体32は、図3に示すように、中心導体28とアンテナ14との間においてコイルL2を形成している。
 線状導体34は、アンテナ部18aの表面に設けられており、x軸方向に延在していると共に、x軸方向の負方向側の端部においてy軸方向の正方向側に折れ曲がっているL字型の線状の導体層である。線状導体34のx軸方向の正方向側の端部は、グランド導体26に接続されている。線状導体34のy軸方向の正方向側の端部は、アンテナ14の取り付け部14cに接続されている。線状導体34は、中心導体28と略同じ比較的に細い線幅を有している。これにより、線状導体34は、図3に示すように、グランド導体26とアンテナ14との間においてコイルL3を形成している。
 グランド導体36は、アンテナ部18cの表面の略全面を覆うように設けられており、グランド導体30のx軸方向の負方向側の端部に接続されている。これにより、本体12のアンテナ領域A1が容易に変形することを防止している。また、線状導体32,34は、z軸方向から平面視したときに、グランド導体36と重なっている。これにより、線状導体32,34及びグランド導体36は、マイクロストリップライン構造を構成している。よって、線状導体32とグランド導体36との間には、図3に示すように、容量C2が発生している。また、線状導体34とグランド導体36との間には、図3に示すように、容量C3が発生している。
 ただし、線状導体34は、グランド導体36と電気的に接続されているので、容量C3には、容量C2に比べてはるかに少ない電荷しかチャージされない。より詳細には、グランド導体26のx軸方向の負方向側の端部は、z軸方向から平面視したときに、グランド導体36と重なっている。そして、ビアホール導体b2,b7はそれぞれ、アンテナ部18a,18bをz軸方向に貫通し、かつ、互いに接続されていることにより、グランド導体26のx軸方向の負方向側の端部とグランド導体36とを接続している。同様に、ビアホール導体b3,b8はそれぞれ、アンテナ部18a,18bをz軸方向に貫通し、かつ、互いに接続されていることにより、グランド導体26のx軸方向の負方向側の端部とグランド導体36とを接続している。これにより、線状導体34は、グランド導体26を介してグランド導体36と接続されている。よって、線状導体34には、グランド導体36と同様に接地電位が印加されるので、線状導体34とグランド導体36との間に発生する容量C3には、容量C2に比べてはるかに少ない電荷しかチャージされない。
 以上のように、インピーダンスマッチング回路31は、コイルL2,L3と容量C2,C3の組み合わせからなるローパスフィルタにより構成されている。インピーダンスマッチング回路31は、信号線路24のx軸方向の負方向側の端部からアンテナ14側を見たときにおけるインピーダンスZ1(図3参照)と信号線路24のx軸方向の負方向側の端部から信号線路24側を見たときにおけるインピーダンスZ2(図3参照)との間でインピーダンスマッチングを取っている。そして、インピーダンスZ1とインピーダンスZ2とが共役の関係になるように、インピーダンスマッチング回路31の線状導体34が設計されている。インピーダンスZ1とインピーダンスZ2が共役の関係にあるとは、インピーダンスZ1がa+jbである場合に、インピーダンスZ2がa-jbであることをいう。これにより、アンテナ14と信号線路24との間における電力損失の発生が低減される。
 インピーダンスマッチング回路37は、本体12の接続領域A3において、信号線路24のx軸方向の正方向側の端部と接続部46との間に設けられている。インピーダンスマッチング回路37は、図2に示すように、チップコンデンサC1、チップコイルL1及び線状導体38,40,44により構成されている。
 線状導体38は、接続部22aの表面に設けられている線状の導体層である。線状導体38の一方の端部は、z軸方向から平面視したときに、中心導体28のx軸方向の正方向側の端部と重なっている。そして、ビアホール導体b4は、接続部22aをz軸方向に貫通することにより、線状導体38の一方の端部と中心導体28のx軸方向の正方向側の端部とを接続している。また、線状導体38の他端には、接続導体t1が設けられている。
 線状導体40は、接続部22aの表面に設けられているT字型をなす線状の導体層である。具体的には、線状導体40は、線状導体40a,40bにより構成されている。線状導体40aは、図2に示すように、y軸方向に延在している線状の導体層である。線状導体40aのy軸方向の正方向側の端部には、接続導体t2が設けられている。また、線状導体40bのy軸方向の負方向側の端部には、接続導体t3が設けられている。一方、線状導体40bは、線状導体40aのy軸方向の中点近傍からx軸方向の正方向に延在している。そして、線状導体40bは、そのx軸方向の正方向側の端部において接続導体T1に接続されている。
 線状導体44は、接続部22aの表面に設けられ、かつ、グランド導体26からy軸方向の正方向側に突出している線状の導体層である。線状導体44のy軸方向の正方向側の端部には、接続導体t4が設けられている。
 チップコンデンサC1は、例えば、コンデンサを内蔵している積層型電子部品であり、外部電極50a,50bを備えている。チップコンデンサC1は、外部電極50aが接続導体t1に接続され、外部電極50bが接続導体t2に接続されるように、接続部22a上にはんだ実装される。線状導体38は、中心導体28とビアホール導体b4を介して電気的に接続されている。これにより、チップコンデンサC1は、図3に示すように、中心導体28と接続導体T1との間に接続されている。
 チップコイルL1は、例えば、コイルを内蔵している積層型電子部品であり、外部電極52a,52bを備えている。チップコイルL1は、外部電極52aが接続導体t3に接続され、外部電極52bが接続導体t4に接続されるように、接続部22a上にはんだ実装される。線状導体44は、グランド導体26を介して接続導体T2に接続されている。これにより、チップコイルL1は、図3に示すように、接続導体T1と接続導体T2との間に接続されている。
 以上のように、インピーダンスマッチング回路37は、チップコイルL1とチップコンデンサC1の組み合わせからなるハイパスフィルタにより構成されている。インピーダンスマッチング回路37は、信号線路24のx軸方向の正方向側の端部から電子素子が接続されている状態の接続部46側を見たときにおけるインピーダンスZ3(図3参照)と信号線路24のx軸方向の正方向側の端部から信号線路24側を見たときにおけるインピーダンスZ4(図3参照)との間でインピーダンスマッチングを取っている。そして、インピーダンスZ3とインピーダンスZ4とが共役の関係になるように、インピーダンスマッチング回路37のチップコイルL1及びチップコンデンサC1が選択されている。これにより、電子素子と信号線路24との間における電力損失の発生が低減される。
 グランド導体48は、接続部22cの表面の略全面を覆うように設けられており、グランド導体30のx軸方向の正方向側の端部に接続されている。これにより、本体12の接続部領域A3が容易に変形することを防止している。また、グランド導体26のx軸方向の正方向側の端部及び接続導体T2は、z軸方向から平面視したときに、グランド導体48と重なっている。そして、ビアホール導体b5,b9は、接続部22a,22bをz軸方向に貫通し、かつ、互いに接続されていることにより、グランド導体26のx軸方向の正方向側の端部とグランド導体48とを接続している。同様に、ビアホール導体b6,b10は、接続部22a,22bをz軸方向に貫通し、かつ、互いに接続されていることにより、接続導体T2とグランド導体48とを接続している。
 ここで、アンテナ14、信号線路24及び電子素子の特性インピーダンスについて説明する。アンテナ14は、空気中に電波を放射する又は空気中から電波を吸収するために、特性インピーダンスZ11(例えば、377Ω)を有している。電子素子は、例えば、RFコネクタであり、50Ω又は75Ωの特性インピーダンスを有する同軸ケーブルと接続されるので、同軸ケーブルと同じ特性インピーダンスZ12(例えば、50Ω又は75Ω)を有している。一方、信号線路24は、特性インピーダンスZ11,Z12よりも小さな特性インピーダンスZ13(例えば、30Ω)を有している。また、アンテナポートP1からアンテナ14側を見たときのインピーダンスZ01及びアンテナポートP1からインピーダンスマッチング回路31側を見たときのインピーダンスZ02は、通常では、1Ω~25Ωである。すなわち、アンテナポートP1の特性インピーダンスZ0は、通常では、1Ω~25Ωである。そこで、アンテナモジュール10では、アンテナ14と信号線路24との境界、及び、信号線路24と接続部46との境界にて高周波信号の反射が発生しないように、インピーダンスマッチング回路31,37が設けられている。すなわち、信号線路24が小さな半径で湾曲させられた場合であっても、接続部46側では安定した特性インピーダンスを確保できる。
 また、アンテナポートP1の特性インピーダンスは、信号線路24の特性インピーダンス及び接続部46の接続導体T1,T2に接続される電子素子の特性インピーダンスよりも小さい。アンテナポートP1から接続部46へ向けて段階的に特性インピーダンスが変化するので、インピーダンス変換による損失が小さくなる。
(アンテナモジュールの製造方法)
 以下に、アンテナモジュール10の製造方法について図面を参照しながら説明する。以下では、一つのアンテナモジュール10が作製される場合を例にとって説明するが、実際には、大判の絶縁シートが積層及びカットされることにより、同時に複数のアンテナモジュール10が作製される。
 まず、表面の全面に銅箔が形成された液晶ポリマー等の熱可塑性樹脂からなる絶縁シート16を準備する。次に、フォトリソグラフィ工程により、図2に示すグランド導体26、線状導体32,34,38,40,44及び接続導体T1,T2を絶縁シート16aの表面に形成する。具体的には、絶縁シート16aの銅箔上に、図2に示すグランド導体26、線状導体32,34,38,40,44及び接続導体T1,T2と同じ形状のレジストを印刷する。そして、銅箔に対してエッチング処理を施すことにより、レジストにより覆われていない部分の銅箔を除去する。その後、レジストを除去する。これにより、図2に示すような、グランド導体26、線状導体32,34,38,40,44及び接続導体T1,T2が絶縁シート16aの表面に形成される。
 次に、フォトリソグラフィ工程により、図2に示す中心導体28を絶縁シート16bの表面に形成する。また、フォトリソグラフィ工程により、図2に示すグランド導体30,36,48を絶縁シート16cの表面に形成する。なお、これらのフォトリソグラフィ工程は、グランド導体26、線状導体32,34,38,40,44及び接続導体T1,T2を形成する際のフォトリソグラフィ工程と同様であるので、説明を省略する。
 次に、絶縁シート16a,16bのビアホール導体b1~b10が形成される位置に対して、裏面側からレーザービームを照射して、ビアホールを形成する。その後、絶縁シート16a,16bに形成したビアホールに対して、銅を主成分とする導電性ペーストを充填し、図2に示すビアホール導体b1~b10を形成する。
 次に、絶縁シート16a~16cをこの順に積み重ねる。そして、絶縁シート16a~16cに対してz軸方向の正方向側及び負方向側から等方的に又は弾性体を介して力を加えることにより、絶縁シート16a~16cを圧着する。最後に、アンテナ14をアンテナ領域A1にはんだ実装する。これにより、図1に示すアンテナモジュール10が得られる。
(効果)
 アンテナモジュール10は、直流抵抗値を大きくすることなく、かつ、特性インピーダンスの安定性を確保しつつ、本体12の信号線路領域A2を小さな半径で湾曲させることができる。より詳細には、特許文献1に記載のストリップラインケーブル500では、絶縁体510,512の厚みを薄くすることにより、ストリップラインケーブル500の剛性を低くして、伝送線路部504を小さな半径で湾曲させている。
 しかしながら、ストリップラインケーブル500において、絶縁体510,512の厚みを薄くすると、中心導体514と導電体516,518との間隔が小さくなってしまう。そのため、中心導体514と導電体516,518との間の容量が大きくなってしまい、伝送線路部504のストリップラインの特性インピーダンスが所定の特性インピーダンス(例えば、50Ω又は75Ω)からずれてしまう。したがって、中心導体514の線幅を狭くすることにより、中心導体514と導電体516,518との間の容量を小さくする必要がある。その結果、ストリップラインケーブル500の直流抵抗値が大きくなってしまう。
 そこで、アンテナモジュール10では、インピーダンスマッチング回路31を信号線路24のx軸方向の負方向側の端部とアンテナ14との間に設けている。これにより、インピーダンスマッチング回路31は、信号線路24のx軸方向の負方向側の端部からアンテナ14側を見たときにおけるインピーダンスZ1と信号線路24のx軸方向の負方向側の端部から信号線路24側を見たときにおけるインピーダンスZ2との間でインピーダンスマッチングを取ることができる。更に、インピーダンスマッチング回路37を信号線路24のx軸方向の正方向側の端部と接続部46との間に設けている。これにより、インピーダンスマッチング回路37は、信号線路24のx軸方向の正方向側の端部から電子素子が接続されている状態の接続部46側を見たときにおけるインピーダンスZ3と信号線路24のx軸方向の正方向側の端部から信号線路24側を見たときにおけるインピーダンスZ4との間でインピーダンスマッチングを取ることができる。このように、信号線路24の両端にインピーダンスマッチング回路31,37を設けることにより、信号線路24の特性インピーダンスZ13が、アンテナ14の特性インピーダンスZ11及び電子素子の特性インピーダンスZ12と異なっていても、信号線路24とアンテナ14と電子素子との間でインピーダンスマッチングを取ることができるようになる。よって、信号線路24とアンテナ14と電子素子との間のインピーダンスマッチングを崩すことなく、本体12の厚みを薄くすることができる。その結果、本体12の厚みを薄くしても、中心導体28の幅を小さくする必要がなくなる。以上より、アンテナモジュール10は、直流抵抗値を大きくすることなく、かつ、特性インピーダンスの安定性を確保しつつ、本体12の信号線路領域A2を小さな半径で湾曲させることができる。
 また、アンテナモジュール10では、以下に説明するように、直流抵抗値の低減を図ることができる。すなわち、アンテナモジュール10では、信号線路24の特性インピーダンスZ13が、アンテナ14の特性インピーダンスZ11及び電子素子の特性インピーダンスZ12と異なっていてもよい。そのため、信号線路24の中心導体28の線幅を大きくすることができる。その結果、アンテナモジュール10では、中心導体28の直流抵抗値が小さくなり、高周波信号の損失を低減できる。
 また、アンテナモジュール10では、以下に説明するように、使用する電子機器毎に設計しなおす必要がなく、高い汎用性を得ることができる。より詳細には、電子素子は、RFコネクタのように特定の特性インピーダンス(例えば、50Ω又は75Ω)を有している。一方、アンテナモジュール10では、インピーダンスマッチング回路37を信号線路24のx軸方向の正方向側の端部と接続部46との間に設けている。これにより、インピーダンスマッチング回路37は、信号線路24のx軸方向の正方向側の端部から電子素子が接続されている状態の接続部46側を見たときにおけるインピーダンスZ3と信号線路24のx軸方向の正方向側の端部から信号線路24側を見たときにおけるインピーダンスZ4との間でインピーダンスマッチングを取っている。すなわち、接続部46に特定のインピーダンスを有する電子素子が接続されたときに、インピーダンスマッチングが取られるように、インピーダンスマッチング回路37を設計しておけばよい。その結果、電子素子の種類に関らず、信号線路24とアンテナ14と電子素子との間でインピーダンスマッチングが取られるようになる。よって、アンテナモジュール10の設計をしなおすことなく、多種の電子機器に用いることができる。
(変形例)
 以下に、変形例に係るアンテナモジュールについて図面を参照しながら説明する。図5は、変形例に係るアンテナモジュール10'の分解斜視図である。図5において、図2と同じ構成については同じ参照符号を付した。
 アンテナモジュール10,10'間の相違点は、アンテナ14,14'の構成である。より詳細には、アンテナ14は、金属板が折り曲げられることにより作製され、アンテナ領域A1に取り付けられていた。一方、アンテナ14'は、アンテナ部18aの表面に設けられている。すなわち、アンテナ14'は、グランド導体26、線状導体32,34,38,40,44及び接続導体T1,T2と同様に、銅箔によりアンテナ部18aの表面に設けられている。なお、アンテナモジュール10'のその他の構成は、アンテナモジュール10のその他の構成と同じであるので説明を省略する。
 なお、アンテナモジュール10,10'では、インピーダンスマッチング回路37にチップコイルL1及びチップコンデンサC1が用いられている。しかしながら、インピーダンスマッチング回路37は、接続部22a~22cに設けられた線状導体やグランド導体等によって構成されていてもよい。
 また、アンテナモジュール10,10'では、インピーダンスマッチング回路31に線状導体32,34及びグランド導体36が用いられている。しかしながら、インピーダンスマッチング回路31は、チップコイル及びチップコンデンサによって構成されていてもよい。
 また、アンテナモジュール10,10'では、接続部46に実装される電子素子は、RFコネクタであるとした。しかしながら、電子素子は、RFコネクタではなく、例えば、ICチップのような電子部品であってもよい。
 なお、信号線路24は、ストリップライン構造を有しているが、マイクロストリップライン構造を有していてもよい。
 本発明は、アンテナモジュールに有用であり、特に、直流抵抗値を大きくすることなく、かつ、特性インピーダンスの安定性を確保しつつ、信号線路を小さな半径で湾曲させることができる点において優れている。
 T1,T2,t1~t4 接続導体
 b1~b10 ビアホール導体
 10,10' アンテナモジュール
 12 本体
 14,14' アンテナ
 16a~16c 絶縁シート
 24 信号線路
 26,30 グランド導体
 28 中心導体
 31,37 インピーダンスマッチング回路
 46 接続部

Claims (6)

  1.  可撓性材料からなる複数の絶縁シートが積層されてなる本体と、
     前記本体に設けられているアンテナであって、高周波信号を送受信するアンテナと、
     前記本体に設けられている接続部であって、前記高周波信号が入出力する電子素子に接続される接続部と、
     前記本体に設けられ、かつ、ストリップライン構造又はマイクロストリップライン構造を有している信号線路であって、前記高周波信号を伝送する信号線路と、
     前記本体において、前記信号線路の一方の端部と前記アンテナとの間に設けられている第1のインピーダンスマッチング回路と、
     前記本体において、前記信号線路の他方の端部と前記接続部との間に設けられている第2のインピーダンスマッチング回路と、
     を備えていること、
     を特徴とするアンテナモジュール。
  2.  前記電子素子は、第1の特性インピーダンスを有し、
     前記信号線路は、前記第1の特性インピーダンスよりも小さな第2の特性インピーダンスを有していること、
     を特徴とする請求項1に記載のアンテナモジュール。
  3.  前記アンテナと前記第1のインピーダンスマッチング回路との接続ポートであるアンテナポートの特性インピーダンスが、前記第1の特性インピーダンス及び前記第2の特性インピーダンスよりも小さいこと、
     を特徴とする請求項2に記載のアンテナモジュール。
  4.  前記第1のインピーダンスマッチング回路は、前記信号線路の一方の端部から前記アンテナ側を見たときにおける第1のインピーダンスと該信号線路の一方の端部から該信号線路側を見たときにおける第2のインピーダンスとの間でインピーダンスマッチングを取っており、
     前記第2のインピーダンスマッチング回路は、前記信号線路の他方の端部から前記電子素子が接続されている状態の前記接続部側を見たときにおける第3のインピーダンスと該信号線路の他方の端部から該信号線路側を見たときにおける第4のインピーダンスとの間でインピーダンスマッチングを取っていること、
     を特徴とする請求項1ないし請求項3のいずれかに記載のアンテナモジュール。
  5.  前記第1のインピーダンスと前記第2のインピーダンスとが共役の関係にあり、
     前記第3のインピーダンスと前記第4のインピーダンスとが共役の関係にあること、
     を特徴とする請求項4に記載のアンテナモジュール。
  6.  前記絶縁シートの厚みは、10μm以上100μm以下であること、
     を特徴とする請求項1ないし請求項5のいずれかに記載のアンテナモジュール。
PCT/JP2010/064041 2009-08-20 2010-08-20 アンテナモジュール WO2011021677A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080037308.3A CN102484312B (zh) 2009-08-20 2010-08-20 天线模块
JP2011527710A JP5375962B2 (ja) 2009-08-20 2010-08-20 アンテナモジュール
US13/368,358 US9705194B2 (en) 2009-08-20 2012-02-08 Antenna module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009190898 2009-08-20
JP2009-190898 2009-08-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/368,358 Continuation US9705194B2 (en) 2009-08-20 2012-02-08 Antenna module

Publications (1)

Publication Number Publication Date
WO2011021677A1 true WO2011021677A1 (ja) 2011-02-24

Family

ID=43607125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064041 WO2011021677A1 (ja) 2009-08-20 2010-08-20 アンテナモジュール

Country Status (4)

Country Link
US (1) US9705194B2 (ja)
JP (1) JP5375962B2 (ja)
CN (2) CN102484312B (ja)
WO (1) WO2011021677A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014158297A (ja) * 2012-09-28 2014-08-28 Murata Mfg Co Ltd 信号線路モジュールおよび通信端末装置
JP2015053742A (ja) * 2014-12-17 2015-03-19 株式会社村田製作所 高周波伝送線路およびアンテナ装置
US9583836B2 (en) 2013-11-12 2017-02-28 Murata Manufacturing Co., Ltd. High-frequency transmission line and antenna device
WO2017051649A1 (ja) * 2015-09-25 2017-03-30 株式会社村田製作所 アンテナモジュールおよび電子機器
WO2019116941A1 (ja) * 2017-12-14 2019-06-20 株式会社村田製作所 アンテナ装置、アンテナモジュール、及び無線装置
JP7332216B1 (ja) 2022-12-05 2023-08-23 天竜精機株式会社 伝送線路付きアンテナ、及び伝送線路付きアンテナの製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5375962B2 (ja) * 2009-08-20 2013-12-25 株式会社村田製作所 アンテナモジュール
JP6524985B2 (ja) * 2016-08-26 2019-06-05 株式会社村田製作所 アンテナモジュール
JP2018088629A (ja) * 2016-11-29 2018-06-07 ソニーセミコンダクタソリューションズ株式会社 高周波モジュール、および通信装置
CN110462933B (zh) * 2017-03-30 2021-05-04 住友电气工业株式会社 平面天线和无线模块
TWI815544B (zh) * 2022-07-08 2023-09-11 美律實業股份有限公司 天線模組

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11234033A (ja) * 1998-02-12 1999-08-27 Taiyo Yuden Co Ltd 高周波アンテナモジュール
JP2002076750A (ja) * 2000-08-24 2002-03-15 Murata Mfg Co Ltd アンテナ装置およびそれを備えた無線機
JP2002314301A (ja) * 2001-04-11 2002-10-25 Auto Network Gijutsu Kenkyusho:Kk 無線装置及び無線装置の製造方法
JP2007235215A (ja) * 2006-02-27 2007-09-13 Furukawa Electric Co Ltd:The 無線通信回路

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5258728A (en) * 1987-09-30 1993-11-02 Fujitsu Ten Limited Antenna circuit for a multi-band antenna
EP0469779B1 (en) * 1990-07-30 1999-09-29 Sony Corporation A matching device for a microstrip antenna
JP3141692B2 (ja) * 1994-08-11 2001-03-05 松下電器産業株式会社 ミリ波用検波器
JP3123386B2 (ja) * 1995-03-03 2001-01-09 株式会社村田製作所 アンテナ一体型ストリップラインケーブル
JP3114582B2 (ja) * 1995-09-29 2000-12-04 株式会社村田製作所 表面実装型アンテナおよびこれを用いた通信機
US6215454B1 (en) * 1998-02-20 2001-04-10 Qualcomm, Inc. Multi-layered shielded substrate antenna
KR20010108226A (ko) * 1999-12-15 2001-12-07 다니구찌 이찌로오, 기타오카 다카시 임피던스 정합 회로 및 이것을 사용한 안테나 장치
AU2003281402A1 (en) * 2002-07-05 2004-01-23 Taiyo Yuden Co., Ldt. Dielectric antenna, antenna-mounted substrate, and mobile communication machine having them therein
JP3982511B2 (ja) * 2004-03-09 2007-09-26 ソニー株式会社 フラット型ケーブル製造方法
JP2006121633A (ja) * 2004-10-20 2006-05-11 Gcomm Corp 無線通信モジュール
JP4664213B2 (ja) * 2005-05-31 2011-04-06 富士通コンポーネント株式会社 アンテナ装置
WO2007122870A1 (ja) * 2006-04-10 2007-11-01 Murata Manufacturing Co., Ltd. 無線icデバイス
EP1926223B1 (en) * 2006-11-21 2018-02-28 Sony Corporation Communication system and communication apparatus
TWI401840B (zh) * 2007-11-13 2013-07-11 Tyco Electronics Services Gmbh 具有多層金屬化及接觸孔的超材料
US8217852B2 (en) * 2009-06-26 2012-07-10 Raytheon Company Compact loaded-waveguide element for dual-band phased arrays
JP5375962B2 (ja) * 2009-08-20 2013-12-25 株式会社村田製作所 アンテナモジュール

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11234033A (ja) * 1998-02-12 1999-08-27 Taiyo Yuden Co Ltd 高周波アンテナモジュール
JP2002076750A (ja) * 2000-08-24 2002-03-15 Murata Mfg Co Ltd アンテナ装置およびそれを備えた無線機
JP2002314301A (ja) * 2001-04-11 2002-10-25 Auto Network Gijutsu Kenkyusho:Kk 無線装置及び無線装置の製造方法
JP2007235215A (ja) * 2006-02-27 2007-09-13 Furukawa Electric Co Ltd:The 無線通信回路

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9660341B2 (en) 2012-09-28 2017-05-23 Murata Manufacturing Co., Ltd. Signal line module and communication terminal apparatus
JP2015167377A (ja) * 2012-09-28 2015-09-24 株式会社村田製作所 信号線路モジュールおよび通信端末装置
JP2014158297A (ja) * 2012-09-28 2014-08-28 Murata Mfg Co Ltd 信号線路モジュールおよび通信端末装置
US9583836B2 (en) 2013-11-12 2017-02-28 Murata Manufacturing Co., Ltd. High-frequency transmission line and antenna device
JP2015053742A (ja) * 2014-12-17 2015-03-19 株式会社村田製作所 高周波伝送線路およびアンテナ装置
JP6168258B1 (ja) * 2015-09-25 2017-07-26 株式会社村田製作所 アンテナモジュールおよび電子機器
WO2017051649A1 (ja) * 2015-09-25 2017-03-30 株式会社村田製作所 アンテナモジュールおよび電子機器
US10122058B2 (en) 2015-09-25 2018-11-06 Murata Manufacturing Co., Ltd. Antenna module and electronic device
WO2019116941A1 (ja) * 2017-12-14 2019-06-20 株式会社村田製作所 アンテナ装置、アンテナモジュール、及び無線装置
US20200312798A1 (en) * 2017-12-14 2020-10-01 Murata Manufacturing Co., Ltd. Antenna apparatus, antenna module, and wireless apparatus
JP7332216B1 (ja) 2022-12-05 2023-08-23 天竜精機株式会社 伝送線路付きアンテナ、及び伝送線路付きアンテナの製造方法
WO2024122152A1 (ja) * 2022-12-05 2024-06-13 天竜精機株式会社 伝送線路付きアンテナ、及び伝送線路付きアンテナの製造方法
JP2024080830A (ja) * 2022-12-05 2024-06-17 天竜精機株式会社 伝送線路付きアンテナ、及び伝送線路付きアンテナの製造方法

Also Published As

Publication number Publication date
US20130038501A1 (en) 2013-02-14
CN102484312A (zh) 2012-05-30
US9705194B2 (en) 2017-07-11
CN102484312B (zh) 2014-06-25
CN103779661B (zh) 2016-08-24
JPWO2011021677A1 (ja) 2013-01-24
JP5375962B2 (ja) 2013-12-25
CN103779661A (zh) 2014-05-07

Similar Documents

Publication Publication Date Title
JP5375962B2 (ja) アンテナモジュール
JP5907297B2 (ja) 電子機器
US9332644B2 (en) High-frequency transmission line and electronic device
US9401534B2 (en) High-frequency signal line and electronic device
JP6156610B2 (ja) 電子機器、およびアンテナ素子
JP5737457B2 (ja) 信号線路モジュールおよび通信端末装置
JP5842850B2 (ja) フラットケーブルおよび電子機器
US9401531B2 (en) High-frequency signal transmission line and electronic device
US20170094777A1 (en) Flexible board and electronic device
JP6233473B2 (ja) 高周波信号伝送線路及び電子機器
JP5472555B2 (ja) 高周波信号伝送線路及び電子機器
US9472839B2 (en) High-frequency transmission line and electronic device
JP5472551B2 (ja) 高周波信号線路及び電子機器
JP5472552B2 (ja) 高周波信号線路及び電子機器
JP2013135173A (ja) 高周波信号線路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080037308.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10810018

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011527710

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10810018

Country of ref document: EP

Kind code of ref document: A1