WO2011013471A1 - Cu-Ga焼結体スパッタリングターゲット及び同ターゲットの製造方法 - Google Patents

Cu-Ga焼結体スパッタリングターゲット及び同ターゲットの製造方法 Download PDF

Info

Publication number
WO2011013471A1
WO2011013471A1 PCT/JP2010/061049 JP2010061049W WO2011013471A1 WO 2011013471 A1 WO2011013471 A1 WO 2011013471A1 JP 2010061049 W JP2010061049 W JP 2010061049W WO 2011013471 A1 WO2011013471 A1 WO 2011013471A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
alloy
sputtering target
sintered
sintered body
Prior art date
Application number
PCT/JP2010/061049
Other languages
English (en)
French (fr)
Inventor
正克 生澤
英生 高見
友哉 田村
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to JP2010535150A priority Critical patent/JP5144766B2/ja
Priority to KR1020107023228A priority patent/KR101249566B1/ko
Priority to CN201080001562.8A priority patent/CN102046836B/zh
Publication of WO2011013471A1 publication Critical patent/WO2011013471A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Definitions

  • the present invention relates to a Cu—Ga sintered body sputtering target used when forming a Cu—In—Ga—Se (hereinafter referred to as CIGS) quaternary alloy thin film, which is a light absorption layer of a thin film solar cell layer, and the same.
  • the present invention relates to a method for manufacturing a target.
  • the outline process of selenization method is as follows. First, a molybdenum electrode layer is formed on a soda lime glass substrate, a Cu-Ga layer and an In layer are formed thereon by sputtering, and a CIGS layer is formed by high-temperature treatment in selenium hydride gas. A Cu-Ga target is used during the sputter deposition of the Cu-Ga layer during the CIGS layer formation process by this selenization method.
  • Cu-Ga target production methods include dissolution method and powder method.
  • the Cu-Ga target manufactured by the melting method has relatively little impurity contamination, but the compositional segregation is large and there is a problem such as a decrease in yield due to shrinkage. There were problems such as low density and easy cracking.
  • the target obtained by sintering the powder is characterized by less component segregation compared to the melted product, easy production, and easy adjustment of the components as necessary, which is larger than the melted product.
  • the target obtained by sintering has a problem that the Cu-Ga target is highly brittle and easily cracked. If the target is broken during the processing of the target, the target manufacturing yield is reduced, but if it is cracked during sputtering, there is a problem that the yield of CIGS solar cell manufacturing is reduced. In any case, the production cost of CIGS solar cells will eventually increase.
  • Patent Document 1 can be cited as one of the documents related to the Cu-Ga target so far.
  • This Patent Document 1 is prepared by dissolving the Cu-Ga target. And the feature of this patent document 1 is inject
  • Patent Document 1 there is a description that there was no abnormal discharge or the like and a description that the relative density is 95% or more, but there is no special description about the cracking of the obtained target.
  • the melted product naturally has a higher density than the sintered product, and it is rare that the density is usually less than 100%.
  • paragraph [0010] of Patent Document 1 describes that “the relative density is a high density of 95% or more”, and there is a description that this level of density is realized.
  • a relative density of about 95% cannot be said to be a high density.
  • nests for reducing the density and undesirable vacancies (voids) are generated in the melted product.
  • compositional segregation was not observed, no analysis results or the like are shown. From the above description of the relative density of the level, only the segregation improvement of the recognized level is described.
  • the melting method usually has a large compositional segregation, and since a special process for eliminating the segregation has not been performed, it is considered that a normal level of segregation remains.
  • segregation peculiar to a dissolved product has a problem that the film composition changes during sputtering. Also, the sputtering conditions are unknown.
  • the nest that lowers the density of the melted product, the undesirable voids (voids), or the target where segregation occurs is more likely to crack than the powder sintered body. .
  • Patent Document 2 relating to a Cu-Ga target describes a sintered body target, which is an explanation of the prior art relating to brittleness that cracks and defects are likely to occur when the target is cut.
  • One of the two types of powders is a powder with a high Ga content
  • the other is a powder with a low Ga content, which is a two-phase coexisting structure surrounded by a grain boundary phase. Since this process involves manufacturing two types of powders in advance, the process is naturally complicated, and each powder has different physical properties such as hardness and structure, so simply mixing and sintering. It is difficult to make a uniform sintered body, and improvement in density cannot be expected. Naturally, a target with a low density causes cracking.
  • Patent Document 2 the evaluation of cracks during cutting is good, but the problem of cracks during sputtering is unclear. Since the structure of the target is not a surface but an internal problem, the problem of cracking during sputtering of the two-phase coexisting structure is considered to be a problem different from the machinability of the surface. Even if the problem of cracking at the time of sputtering can be solved, the target structure is a two-phase coexisting structure, which may result in a non-uniform sputtered film. In any case, it can be said that the cost increase by producing two types of powders and the above problems are included.
  • Patent Document 3 describes that CuGa 2 is exemplified as one of the recording layer materials of the optical recording medium, and an AuZn recording layer is laminated by sputtering. However, rather than the fact of sputtered CuGa 2, merely suggesting the sputtering of CuGa 2.
  • Patent Document 4 describes that CuGa 2 is exemplified as one of the recording layer materials of an optical recording medium, and an AuSn recording layer is laminated by sputtering. There is no description that CuGa 2 has been sputtered, and it merely suggests sputtering of CuGa 2 .
  • Patent Document 5 discloses a copper alloy target that contains Ga in an amount of 100 ppm or more and less than 10% by weight, has an average grain size of 1 to 20 ⁇ m, and has a standard deviation of grain size uniformity of the whole target of less than 15%. It is written in. The object is to make the Ga concentration low and the target made by forging and rolling have a predetermined texture. Patent Document 6 claims a copper alloy to which an additive element containing Ga is added in a solid solubility limit of 0.1 to 20.0 at%. However, only the Cu-Mn alloy is shown in the examples, and the manufacturing method of the target is not specifically described, but is considered to have been made by the melting method. The use is for display devices.
  • Patent Document 7 discloses a copper alloy target produced by cold isostatic pressing of powder raw material components.
  • Example 3 describes a target production method using a mixture of indium powder and Cu-Ga alloy powder as a raw material. It is written. Compared with the present invention, sintering is not performed, the composition is different, and there are no related elements.
  • Patent Document 8 describes a sputtering target for a Cu alloy recording layer containing 1 to 20 at% of Ga. In the examples, an arc melting furnace is made of a material obtained by adding Zn or Mn to Cu. There is no specific description about the copper alloy target to which Ga is added, and is obtained as an ingot.
  • Patent Document 9 describes examples of the use of 10, 20, and 30 wt% Ga CuGa alloy targets for use in CIGS type thin film solar cell production. There is no description. Similarly, there are no descriptions of various characteristics of the target. Patent Document 10 describes a method of manufacturing a CuGa alloy target containing 25 to 67 at% Ga by a forging and quenching method. Although it is the same thin-film solar cell use as that of the present invention, it has disadvantages peculiar to forging, and the problems solved by the present invention still remain.
  • Patent Document 11 a CuGa alloy target containing 20 to 96% by weight of Ga is defined, and in the examples, Ga25 and Cu75% by weight are described as being particularly effective. However, there is no description about the manufacturing method of the CuGa alloy target itself, and there is no description about various characteristics of the target as well. In any of the above-mentioned patent documents, it has not been possible to find a disclosure of a technology that serves as a reference for the problem of the present invention and the means for solving it.
  • the present invention increases the bending strength, suppresses cracking of the target at the time of target production and sputtering film formation, improves yield, CIGS layer formation process, and It is an object of the present invention to provide a Cu—Ga sintered body target and a method for manufacturing the same, which can reduce the cost of manufacturing a CIGS solar cell.
  • the present inventors have conducted intensive research. As a result, in order to prevent compositional segregation, there is a limit in the dissolution method, and it is necessary to use raw materials with a uniform composition in the powder method. In order to reduce this, it has been found that increasing the target density and setting the average particle diameter within a predetermined range are effective, and the present invention has been completed.
  • the present invention 1 It consists of a sintered body of Cu-Ga alloy powder with Ga concentration of 20-60at%, the balance being Cu and inevitable impurities, the relative density of the sintered body is 97% or more, and the average crystal grain size is 5 ⁇ Cu-Ga alloy sintered sputtering target characterized by 30 ⁇ m and a bending strength of 150 Mpa or more 2) Folding force of the target is F (MPa) and Ga concentration is N (at%) 1) The Cu—Ga alloy sintered body sputtering target according to 1) above, wherein the relationship of F> ⁇ 10 ⁇ N + 600 is satisfied. 3) The Cu—Ga alloy has a single composition.
  • the present invention also provides: 6) A method for producing a Cu-Ga alloy sintered body sputtering target according to any one of claims 1 to 5, wherein the Cu and Ga raw materials are dissolved, cooled, and then pulverized mixed raw material powder is hot-pressed.
  • the holding temperature during hot pressing is 50 to 200 ° C lower than the melting point of the mixed raw material powder, the holding time is 1 to 3 hours, the cooling rate is 5 ° C / min or more, and the pressurizing pressure to the mixed raw material powder is 30 to Manufacturing method of Cu-Ga alloy sintered compact sputtering target characterized by hot pressing as 40 MPa 7) Melting of Cu and Ga raw materials, and pulverization after cooling by mechanical pulverization method, gas atomization method or water atomization method The manufacturing method of the Cu-Ga alloy sintered compact sputtering target of said 6) characterized by performing.
  • the yield strength in the Cu-Ga sintered body target, can be improved by increasing the bending strength and suppressing the cracking of the target during the production of the target and during the sputtering film formation. It has the excellent effect of being able to reduce the cost of the process and CIGS solar cell manufacturing.
  • the Ga concentration range of the Cu—Ga alloy sintered body sputtering target of the present invention is 20 to 60 at%, and the balance is Cu and inevitable impurities. This is because the Ga concentration range is appropriate and suitable for manufacturing an actual CIGS solar cell. However, the technical idea of the present invention can be applied to compositions outside this range.
  • the relative density of the sintered body is 97% or more, preferably 98% or more, more preferably 99% or more.
  • the relative density is a ratio of values obtained by dividing the actual absolute density of the sintered compact target by the theoretical density of the target having the composition.
  • the low relative density of the target means that there are many internal vacancies in the target, which causes embrittlement of the Cu—Ga alloy sintered compact target.
  • the Cu—Ga alloy sintered compact target rapidly becomes brittle as the Ga content increases. Therefore, increasing the density of the target has a function of suppressing the embrittlement of the Cu—Ga alloy sintered compact target and increasing the bending strength.
  • the Cu—Ga alloy sintered body sputtering target of the present invention has an average crystal grain size of 5 to 30 ⁇ m.
  • the average particle diameter can be obtained by a planimetric method after lightly etching the target surface as necessary to clarify the grain boundary.
  • the average particle size is small, it is easy to increase the density, and the occurrence of cracks can be suppressed through the above-described high-density features.
  • the average grain size is large, each crystal grain has a random orientation, so that the progress of cracking is likely to proceed.
  • the bending strength to the extent that cracks and cracks do not occur during processing or sputtering is defined as 150 MPa or more.
  • Cu-Ga alloys have a tendency that the bending strength decreases as the Ga concentration increases.
  • the target bending strength is F (MPa) and the Ga concentration is N (at%)
  • a target having a high bending strength is specified to satisfy the relationship of F> ⁇ 10 ⁇ N + 600.
  • the bending strength can be obtained by a three-point bending method.
  • the Cu-Ga alloy sintered compact sputtering target of this invention As one of the preferable conditions of the Cu-Ga alloy sintered compact sputtering target of this invention, the Cu-Ga alloy sintered compact sputtering target in which a Cu-Ga alloy consists of a single composition is provided.
  • the term “single composition” is used to mean a composition composed of only a composition in which the presence of another composition cannot be detected by ordinary physical means. Also, microscopically, even if a small amount of other composition is contained, if no adverse effects are observed in various characteristics, the effect is substantially the same as that of a single composition.
  • the peak intensity other than the main peak by X-ray diffraction of the Cu-Ga alloy is 5% or less with respect to the main peak intensity.
  • -Ga alloy sintered compact sputtering target is provided.
  • the standard of unity can be defined by the X-ray peak intensity ratio. If the peak intensity of the other composition is 5% or less as compared with the peak of the main composition, substantially the same effect as that of the single composition is exhibited.
  • the composition of the mixed raw material powder produced by the gas atomization or water atomization method is almost uniform, and the target composition obtained by hot pressing the mixed raw material can be nearly uniform. If the cooling rate is low during hot press cooling, a heterogeneous phase may precipitate during cooling. Such a heterogeneous phase can be detected by an X-ray diffraction peak when the amount is large.
  • Cu-Ga alloys have a gamma ( ⁇ ) phase when the Ga composition is about 30-43 at%. This phase is brittle and has a feature of being easily broken.
  • the Cu—Ga composition used for CIGS solar cells is often in this Ga concentration range. In order to avoid such brittleness of the Cu—Ga alloy, it is particularly effective to improve the density and the bending strength.
  • Cu and Ga raw materials are weighed so as to have a predetermined composition ratio, then put in a carbon crucible, and the mixed raw materials are dissolved at a temperature higher than the melting point by about 50 to 200 ° C. in a heating furnace pressurized to about 0.5 MPa. Hold for about 1 hour or more, and after the melted raw materials are sufficiently mixed, after stopping heating and cooling, the primary synthetic raw material is taken out.
  • This primary synthetic raw material is pulverized to obtain a fine powder raw material.
  • the pulverization method there are a mechanical pulverization method, a gas atomization method, a water atomization method, and the like. Any method can be used, but the water atomization method is capable of mass processing at a relatively low cost.
  • the primary synthetic raw material is again dissolved in the crucible and a liquid raw material liquid is dropped, and high pressure water of about 10 MPa is injected into the dropped liquid to obtain fine powder.
  • the obtained fine powder is then used as a mixed fine powder raw material through a filter press, drying and the like.
  • the mixed fine powder raw material is passed through a sieve with a predetermined opening to adjust the particle size distribution, and then hot pressing is performed.
  • the appropriate conditions for hot pressing vary depending on the Ga concentration. For example, when the Ga concentration is 30 at%, the temperature is 600 to 700 ° C. and the pressure is about 30 to 40 MPa.
  • suitable conditions for this hot pressing are that the holding temperature during hot pressing is 50 to 200 ° C. lower than the melting point of the mixed raw material powder, the holding time is 1 to 3 hours, and the cooling rate is 5 ° C. / It is effective to set it to min or more and to set the pressure applied to the mixed raw material powder to 30 to 40 MPa.
  • the conditions for this hot pressing it is possible to improve the density of the Cu—Ga alloy target and further improve the bending strength.
  • the pre-pressure method in which pressure is applied first is sintered rather than the post-pressure method in which pressure is applied after the temperature has been set to the maximum temperature. Since the raw material powder is crushed more finely before, it is effective for increasing the sintered density.
  • the density of the Cu-Ga sintered body produced by the above method can be obtained by Archimedes method, the average particle size can be obtained by planimetric method after surface etching, and the composition can be obtained by X-ray diffraction method.
  • the Cu-Ga sintered body is processed into, for example, a diameter of 6 inches and a thickness of 6 mm, indium is bonded to a backing plate as a brazing material, a sputtering target is formed, a film is formed, particle generation on the film, nodules The situation of abnormal discharge etc. can be investigated.
  • Example 1 Cu raw material and Ga raw material are weighed so that the composition is Ga concentration 30at%, put in a carbon crucible, dissolved at 1000 ° C in a heating furnace to which 0.5Mpa argon is applied, and then cooled at a rate of 5-10 The synthetic raw material was taken out after cooling at ° C / min.
  • this synthetic raw material is put in a carbon crucible of a water atomizer and melted at 1000 ° C., and then 10 Mpa high-pressure water is injected into the dropping liquid while dropping the melting liquid to obtain a Cu—Ga mixed fine powder. It was.
  • the mixed fine powder was filtered and dried at 120 ° C. to obtain a mixed fine powder raw material.
  • the mixed fine powder was heated from room temperature to 650 ° C. at a temperature rising rate of 5 ° C./min, then held at 650 ° C. for 2 hours, and a pressure of 35 MPa was applied. Thereafter, the sintered body was taken out after cooling at a temperature lowering rate of 5 ° C./min.
  • the relative density of the obtained Cu—Ga sintered body was 99.9%, the average particle size was 11 ⁇ m, and the X-ray diffraction peak intensity ratio between the main phase and the different phase was 0.2%.
  • This sintered body was processed into a disk shape having a diameter of 6 inches and a thickness of 6 mm, and was used as a sputtering target for sputtering.
  • the atmosphere gas was argon, the gas flow rate was 50 sccm, and the sputtering pressure was 0.5 Pa.
  • the sputtering power which is an important condition for target cracking, was increased to a direct current (DC) 1000 W. After 20 hours of sputtering time and 20 kWhr of total sputtering amount, the target surface was observed, but no cracks were confirmed. The results are shown in Table 1.
  • Example 2 Table 1 summarizes the results of producing targets with different Ga compositions and average particle diameters by the same method as in Example 1 and performing sputtering evaluation. From these results, the target having a Ga composition, average particle size, and bending strength within predetermined ranges was a good result that there was no cracking during processing or sputtering.
  • Example 1 A target was produced under substantially the same conditions as in Example 1, but a low-density target was produced by reducing the temperature during hot pressing to 600 ° C. and 550 ° C., respectively.
  • Table 1 summarizes the results of the target characteristics and the presence or absence of cracks. “Slightly” described in the column of cracking at the time of processing did not go until the target was broken and separated, but it showed a slight crack. From this result, when the density of the target was lower than a predetermined value, cracks were observed during processing. However, no cracks on the target surface after sputtering were confirmed.
  • Example 5 The target was fabricated under substantially the same conditions as in Example 1, but the average particle size was increased by reducing the cooling rates to 1 ° C / min, 2 ° C / min, and 0.5 ° C / min, respectively. A target having a large intensity ratio and a different phase was produced. Table 1 summarizes the results of the target characteristics and the presence or absence of cracks. From these results, no cracks were observed during sputtering, but slight cracks were observed during processing.
  • a Cu-Ga target was prepared by a dissolution method.
  • Cu and Ga raw materials were weighed so that the Ga composition had a predetermined concentration, placed in a carbon crucible, and heated in a heating furnace to which 0.5 Mpa of argon was applied.
  • Table 1 summarizes the characteristics of the target taken out after melting at about 200 ° C higher than the melting point of each material and cooled at a cooling rate of about 5 ° C / min. . From these results, it was confirmed that the target produced by the melting method had a very large average particle diameter and a very small bending force, and cracks during processing and sputtering.
  • FIG. 1 is a graph showing the relationship between the Ga concentration and the bending strength of a Cu—Ga based target in Examples and Comparative Examples of the present invention. From this figure, since the bending strength of the target in the embodiment of the present invention is large, there is no crack at the time of processing or sputtering, and a Cu—Ga based target or film can be manufactured with high yield.
  • the present invention it is possible to provide a high Ga concentration Cu—Ga target having a compositional segregation and less brittleness with a Ga concentration of 25 to 45 at% and a method for manufacturing the same, and for manufacturing targets and CIGS solar cells. Since the yield is improved and the manufacturing cost can be reduced, it is useful as a material for manufacturing CIGS solar cells by the selenization method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Vapour Deposition (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

Ga濃度が20~60at%、残部がCu及び不可避的不純物であるCu-Ga合金粉末の焼結体からなり、該焼結体の相対密度が97%以上、平均結晶粒径が5~30μmであり、さらに抗折力が150Mpa以上であることを特徴とするCu-Ga合金焼結体スパッタリングターゲット。組成偏析がなく、脆性が少ないGa濃度が25~45at%の高Ga濃度のCu-Gaターゲット及びその製造方法を提供することができ、ターゲット製造及びCIGS系太陽電池製造の歩留まりが向上し、製造コストが低減できるので、セレン化法によるCIGS系太陽電池の製造用材料として有用である。

Description

Cu-Ga焼結体スパッタリングターゲット及び同ターゲットの製造方法
 本発明は薄膜太陽電池層の光吸収層であるCu-In-Ga-Se(以下、CIGSと記載する)四元系合金薄膜を形成する時に使用されるCu-Ga焼結体スパッタリングターゲット及び同ターゲットの製造方法に関する。
 近年、薄膜系太陽電池として高効率であるCIGS系太陽電池の量産が進展してきており、その光吸収層製造方法としては、蒸着法とセレン化法が知られている。蒸着法で製造された太陽電池は高変換効率の利点はあるが、低成膜速度、高コスト、低生産性の欠点があり、セレン化法の方が産業的大量生産には適している。
 セレン化法の概要プロセスは以下の通りである。まず、ソーダライムガラス基板上にモリブデン電極層を形成し、その上にCu-Ga層とIn層をスパッタ成膜後、水素化セレンガス中の高温処理によりCIGS層を形成する。このセレン化法によるCIGS層形成プロセス中のCu-Ga層のスパッタ成膜時に、Cu-Gaターゲットが使用される。
 Cu-Gaターゲットの製造方法としては、溶解法と粉末法がある。一般的には、溶解法で製造されたCu-Gaターゲットは、不純物汚染が比較的少ないが、組成偏析が大きく、引け巣による歩留まり低下等の問題があり、粉末法で製造されたターゲットは焼結密度が低く、割れ易い等の問題があった。
 CIGS系太陽電池の変換効率には各種要素が影響を与えるが、CIGS膜特性も大きな影響を与え、CIGS膜を形成する前段階であるCu-Ga膜の特性も、太陽電池の変換効率に大きな影響を与える。粉末を焼結して得られたターゲットは、溶解品に比べて成分偏析が少なく、製造が容易であり、また必要に応じて成分調整が容易であるという特徴があり、溶解品に比べて大きな利点がある。
 しかし、焼結により得たターゲットはCu-Gaターゲットは脆性が高く、割れ易いという問題がある。ターゲットの加工中に割れるとターゲット製造歩留まりが低下するが、スパッタリング中に割れると、CIGS太陽電池製造の歩留まりの低下となるという問題が生ずる。いずれにしても最終的にはCIGS系太陽電池製造コストの上昇に繋がってしまう。
 これまでCu-Gaターゲットに関する文献の一つとして、下記の特許文献1を挙げることができるが、この特許文献1はCu-Gaターゲットを溶解法で作製されている。そして、この特許文献1の特徴は、Cu-GaターゲットにInを注入することである。この特許文献1では、異常放電等がなかった旨の記載と、相対密度が95%以上であることの記載があるが、得られたターゲットの割れについては、特段の記載がない。
 一般に、溶解品は焼結品よりも、当然密度が高くなり、通常100%未満の密度となるのは稀である。しかし、特許文献1の段落[0010]に、「相対密度が95%以上の高密度である」と記載し、この程度の密度が実現しているような記載がある。
 このように相対密度95%程度では、決して高密度とは言えない。実際、この特許文献1では、溶解品に密度を低下させる巣や、好ましくない空孔(空隙)が発生していると考えられる。
 また、組成偏析が観察されなかった旨の記載はあるものの、分析結果等は一切示されていない。上記のレベルの相対密度の記載から、認識したレベルの程度の偏析の向上を述べているだけである。
 一般に、溶解法は組成偏析が大きいのが普通であり、偏析を無くすための特別な工程を経ていないことから、通常レベルの偏析が残存しているものと考えられる。
 このような溶解品特有の偏析は、スパッタリング中に膜組成が変化してしまう不具合がある。また、スパッタリング条件も不明である。
 このように、溶解品に密度を低下させる巣や、好ましくない空孔(空隙)、あるいは偏析が発生しているターゲットは、粉末焼結体よりも、割れが発生し易くなる虞が多分にある。
 また、Cu-Gaターゲットに関する別の文献(特許文献2)では、焼結体ターゲットが記載されているが、これはターゲットを切削する際に割れや欠損が発生し易いという脆性に関する従来技術の説明があり、これを解決しようとして、二種類の粉末を製造し、これを混合して焼結したとしている。そして、二種類の粉末の、一方はGa含有量を高くした粉末で、他方はGa含有量を少なくした粉末であり、粒界相で包囲した二相共存組織にするというものである。
 この工程は、二種類の粉末を事前に製造するものであるから、当然工程が複雑であり、またそれぞれの粉末は、硬さ等の物性値や組織が異なるので、単に混合焼結するだけでは均一な焼結体にすることは難しく、密度の向上は期待できない。密度が低くなるターゲットは、当然ながら割れの原因となるものである。
 この特許文献2では、切削時の割れの評価を良いとしているが、スパッタリング時の割れの問題については不明である。ターゲットの組織構造は表面ではなく、内部的な問題であるから、二相共存組織のスパッタリング時の割れの問題は、表面の切削性とは別の問題と考えられるのである。たとえ、スパッタリング時の割れの問題が解決できるとしても、ターゲットの組織が二相共存組織になっていることから、不均一なスパッタ膜を生ずる可能性がある。いずれにしても、二種類の粉末を作製することによるコスト増と上記の問題を内包していると言える。
 特許文献3には、光記録媒体の記録層の材料の1つとして、CuGa2を例示した上で、AuZn記録層をスパッタ法で積層した旨の記載がある。しかし、CuGa2をスパッタした旨の記載は無く、単にCuGa2のスパッタを示唆したに過ぎない。
 特許文献4には、光記録媒体の記録層の材料の1つとして、CuGa2を例示した上で、AuSn記録層をスパッタ法で積層した旨の記載がある。CuGa2をスパッタした旨の記載は無く、単にCuGa2のスパッタを示唆したに過ぎない。
 特許文献5には、Gaを100ppm以上10重量%未満で含み、1から20μmの平均結晶粒度を持ち、ターゲット全体の結晶粒度均一性が15%未満の標準偏差を有する銅合金ターゲットが請求項29に記されている。Ga濃度が低く、鍛造・圧延によって作られたターゲットが所定の集合組織を有するようにすることを目的としている。
 特許文献6には、Gaを含む添加元素が0.1~20.0at%の固溶限の範囲で添加された銅合金がクレームされている。しかし、実施例で示されているのはCu-Mn合金だけであり、ターゲットの製法については、具体的に記されていないが、溶解法で作られたものと考えられる。用途は表示装置用である。
 特許文献7には、粉末の原料成分を冷間静水圧圧縮して作られた銅合金ターゲットであり、実施例3にインジウム粉末とCu-Ga合金粉末からなる混合物を原料とするターゲットの製法が記されている。本願発明と比べ、焼結を行っておらず、組成も異なり、関連する要素は無い。
 特許文献8には、Gaを1~20at%含有したCu合金記録層用スパッタリングターゲットの記載があるが、実施例に記されているのは、CuにZn又はMnを添加した材料をアーク溶解炉で溶製し、インゴットとして得るものであって、Gaを添加した銅合金ターゲットに関する具体的な記載は何も無い。
 特許文献9には、CIGS型薄膜太陽電池製造に用いる為の10、20、30重量%のGaのCuGa合金ターゲットの使用例が実施例に記載されているが、CuGa合金ターゲット自体の製法については、何ら記載がない。また、ターゲットの諸特性についても同様に記載がない。
 特許文献10には、25~67at%のGaを含むCuGa合金ターゲットを鍛造急冷法で製造する方法が記載されている。本願発明と同じ薄膜太陽電池用途であるが、鍛造特有の欠点を有しており、本願発明で解決された課題が依然として残っている。
 特許文献11には、20~96重量%のGaを含有するCuGa合金ターゲットが規定され、実施例でGa25,Cu75重量%が、特に有効と記載されている。しかしながら、CuGa合金ターゲット自体の製法については、何ら記載がなく、ターゲットの諸特性についても同様に記載がない。上記いずれの特許文献にも、本願発明の課題及びそれを解決手段に対して、参考となる技術の開示を見出すことができなかった。
特開2000-73163号公報 特開2008-138232号公報 特開昭63-37834号公報 特開昭62-379533号公報 特表2005-533187号公報 国際公開WO2006-025347号公報 国際公開WO2007-137824号公報 国際公開WO2007-004344号公報 特開平10-135498号公報 中華人民共和国特開1719626号公報 特開平11-260724号公報
 本発明は上記状況に鑑み、Cu-Ga焼結体ターゲットにおいて、抗折強度を高め、ターゲット製造時及びスパッタリング成膜時のターゲットの割れを抑制して、歩留まりを向上させ、CIGS層形成プロセス及びCIGS太陽電池製造のコストを低減することが可能であるCu-Ga焼結体ターゲット及びその製造方法を提供することを課題とする。
 上記課題の解決のため、本発明者らは鋭意研究を行った結果、組成偏析防止のためには、溶解法では限界があり、粉末法で組成の揃った原料を用いる必要があること、脆性を少なくするためには、ターゲット密度を高くすること、平均粒径を所定の範囲内とすること等が有効であることを見出し、本発明を完成させた。
 すなはち、本発明は、
1)Ga濃度が20~60at%、残部がCu及び不可避的不純物であるCu-Ga合金粉末の焼結体からなり、該焼結体の相対密度が97%以上、平均結晶粒径が5~30μmであり、さらに抗折力が150Mpa以上であることを特徴とするCu-Ga合金焼結体スパッタリングターゲット
2)ターゲットの抗折力をF(MPa)、Ga濃度をN(at%)とした時、F>-10×N+600の関係を満足することを特徴とする上記1)記載のCu-Ga合金焼結体スパッタリングターゲット
3)Cu-Ga合金が単一組成からなることを特徴とする上記1)又は2)記載のCu-Ga合金焼結体スパッタリングターゲット
4)Cu-Ga合金のX線回折による主ピーク以外のピーク強度が、主ピーク強度に対して5%以下であることを特徴とする上記1)~3)のいずれか一項に記載のCu-Ga合金焼結体スパッタリングターゲット
5)Cu-Ga合金組成が実質的にγ相であるか又は主要相がγ相であることを特徴とする上記1)~4)のいずれか一項に記載のCu-Ga合金焼結体スパッタリングターゲット、を提供する。
 また、本発明は、
6)Cu及びGa原料を溶解、冷却後、粉砕した混合原料粉をホットプレス法で請求項1~5のいずれか一項に記載のCu-Ga合金焼結体スパッタリングターゲットを製造する方法であって、ホットプレス時の保持温度を混合原料粉の融点より50~200℃低温とし、保持時間を1~3時間、冷却速度を5℃/min以上、混合原料粉への加圧圧力を30~40MPaとして、ホットプレスすることを特徴とするCu-Ga合金焼結体スパッタリングターゲットの製造方法
7)Cu及びGa原料の溶解、冷却後の粉砕を、機械的粉砕法、ガスアトマイズ法又は水アトマイズ法で行うことを特徴とする上記6)記載のCu-Ga合金焼結体スパッタリングターゲットの製造方法、を提供する。
 本発明によれば、Cu-Ga焼結体ターゲットにおいて、抗折強度を高め、ターゲット製造時及びスパッタリング成膜時のターゲットの割れを抑制して、歩留まりを向上させることができるので、CIGS層形成プロセス及びCIGS太陽電池製造のコストを低減することが可能であるという優れた効果を有する。
実施例及び比較例での、Ga濃度とCu-Ga系ターゲットの抗折力との関係を示すグラフである。
 次に、発明を実施するための形態、すなわち本発明の構成要件の定義、範囲規定の理由や意義、調整方法、測定方法等について記す。
 本発明のCu-Ga合金焼結体スパッタリングターゲットのGa濃度範囲は20~60at%とし、残部はCu及び不可避的不純物とする。これは、実際のCIGS系太陽電池を作製する際の適切かつ好適なGa濃度範囲であるからである。但し、本発明の技術的思想自体は、この範囲外の組成に対しても適用可能である。
 本発明のCu-Ga合金焼結体スパッタリングターゲットは、焼結体の相対密度を97%以上、好ましくは98%以上、より好ましくは99%以上とする。相対密度は、焼結体ターゲットの実際の絶対密度を、その組成のターゲットの理論密度で除した値の比である。
 ターゲットの相対密度が低いということは、ターゲット中に内部空孔が多数存在することを意味するので、Cu-Ga合金焼結体ターゲットの脆化の要因となる。後述する実施例及び比較例に示すように、Cu-Ga合金焼結体ターゲットは、Ga含有量が増加すると急速に脆化する。したがって、ターゲットの密度を高めることはCu-Ga合金焼結体ターゲットの脆化を抑制し、抗折力を高める機能を有する。
 さらに、本願発明のCu-Ga合金焼結体スパッタリングターゲットは平均結晶粒径を5~30μmとする。平均粒径はターゲット表面を必要に応じて軽くエッチングをして、粒界を明確にしてからプラニメトリック法で求めることができる。
 平均粒径が小さいと高密度化し易く、上記の高密度の特徴を介して、割れの発生を抑制できる。また、逆に、平均粒径が大きいと、各結晶粒はランダム配向をしているために、割れの進展が進み易い。
 上記の様なメカニズムから、平均粒径を小さくすることで、割れを抑制することができる。平均粒径が増加するにつれて抗折力が小さくなっていくが、平均粒径が30μmを超えるあたりから、ターゲットへ加わる加工時及びスパッタ時の力との関係で、割れやひびが入りやすくなる。また、平均粒径は小さい方が好ましいが、平均粒径を5μm未満とすることは、製造上追加の工程が必要となるために実用的に劣る。
 平均粒径は、ホットプレス時の保持温度によって調整することができ、より高温にする程、粒径は大きくなる。
 一般的に、加工時やスパッタ時の割れやひびはターゲットの抗折力が小さい方が発生し易い傾向があるが、抗折力の値のみと1対1の対応をしているわけではなく、ある程度の範囲の幅があり、同一抗折力であっても、密度や粒径が異なれば、割れ易さには多少の違いが生じる。本発明では、加工時やスパッタ時の割れやひびが発生しない程度の抗折力として150Mpa以上と規定した。
 Cu-Ga系合金はGa濃度が増加すると抗折力が低下する傾向を有する。本発明では、ターゲットの抗折力をF(MPa)、Ga濃度をN(at%)とした時、F>-10×N+600の関係を満足する程度に抗折力の高いターゲットを規定する。
 これまでの先行文献等ではCu-Ga系ターゲットの抗折力を記載したものはなく、本発明による抗折力は各濃度において高いものであるために、Cu-Ga系ターゲットの割れ抑制に効果があるものである。抗折力は3点曲げ法によって求めることができる。
 本願発明のCu-Ga合金焼結体スパッタリングターゲットの、好ましい条件の一つとして、Cu-Ga合金が単一組成からなるCu-Ga合金焼結体スパッタリングターゲットを提供する。
本発明で単一組成の語は、通常の物理的手段等では他の組成の存在を検出できない組成のみで構成されている組成の意味で使用する。また、ミクロ的には他の組成が微量含まれていても、諸特性に悪影響等が認められない場合は、実質的に単一組成と同様な効果を示す。
 本願発明のCu-Ga合金焼結体スパッタリングターゲットの、好ましい条件の一つとして、Cu-Ga合金のX線回折による主ピーク以外のピーク強度が、主ピーク強度に対して5%以下であるCu-Ga合金焼結体スパッタリングターゲットを提供する。
 上記単一性の基準をX線ピーク強度比で規定することができる。主組成のピークと比較して、他組成のピーク強度が5%以下であれば、実質的に単一組成と同様の効果を示す。
 ガスアトマイズ又は水アトマイズ法で作製された混合原料粉の組成は、ほぼ均一であり、その混合原料をホットプレスして得られるターゲット組成も均一に近いものとなり得る。なお、ホットプレス冷却中に冷却速度が小さいと、冷却中に異相が析出してしまうことがある。この様な異相は、その量が多いとX線回折ピークで検出することができる。
 Cu-Ga合金はGa組成が約30~43at%の場合は、ガンマ(γ)相を有する。この相は脆性があり、割れやすいという特徴がある。CIGS系太陽電池に使用されるCu-Ga組成は、特にこのGa濃度範囲であることが多い。このようなCu-Ga合金の脆性を回避するために、特に密度を向上させ、抗折力を向上させることが有効となる。
 次に、本発明のターゲットの製造方法について、その範囲規定の理由や意義、そのターゲット諸特性へ与える影響等について記す。
 Cu及びGa原料を所定の組成比となるように秤量後、カーボン製坩堝に入れ、約0.5 MPa気圧に加圧した加熱炉内で融点より約50~200℃高温として、混合原料を溶解させる。約1時間以上保持して、溶解原料が充分に混合した後に、加熱を停止して冷却した後に、1次合成原料を取り出す。
 この1次合成原料を粉砕して微粉原料を得る。粉砕方法としては、機械的粉砕法、ガスアトマイズ法、水アトマイズ法などがあり、いずれの方法でも可能であるが、比較的低コストで大量処理が可能なものが、水アトマイズ法である。
 水アトマイズの場合、1次合成原料を再度、坩堝内で溶解させて液状となった原料液を滴下させ、その滴下液に約10Mpa程度の高圧水を噴射して、微粉を得る方法である。得られた微粉はその後、フィルタープレスや乾燥等を経て混合微粉原料として使用される。
 混合微粉原料を所定目開きの篩にかけて、粒度分布を調整してから、ホットプレスを行う。ホットプレス条件は、Ga濃度によって適切条件は異なるが、例えば、Ga濃度が30at%の場合、温度600~700℃、圧力30~40MPa程度である。
 すなわち、このホットプレスの好適な条件として、ホットプレス時の保持温度を混合原料粉の融点より50~200℃低温とすること、保持時間を1~3時間とすること、冷却速度を5℃/min以上とすること、混合原料粉への加圧圧力を30~40MPaとすることが有効である。このホットプレスの条件を適宜選択して、Cu-Ga合金ターゲットの密度向上、さらには抗折力の向上を図ることが可能である。
 温度上昇速度や保持時間等の温度プロファイルと圧力印加プロファイルとの関係では、温度を設定最高温度にしてから圧力を加える後圧方式よりも、先に圧力を加える先圧方式の方が、焼結前に原料粉がより微細に砕けるために、焼結密度を高くするのに有効である。
 また、ホットプレスの冷却速度がゆっくりであると、その間に異相が発生するので、冷却速度は5℃/min以上の速い温度とすることが有効である。
 上記方法で作製したCu-Ga焼結体の密度はアルキメデス法で、平均粒径は表面エッチング後にプラニメトリック法で、組成はX線回折法でそれぞれ求めることができる。
 上記Cu-Ga焼結体を、例えば直径6インチ、厚み6mmに加工して、バッキングプレートにインジウムをロウ材として貼り付けて、スパッタリングターゲットとし、成膜を行い、膜へのパーティクル発生状況、ノジュール、異常放電等の状況を調べることができる。
次に、本願発明の実施例及び比較例について説明する。なお、以下の実施例は、あくまで代表的な例を示しているもので、本願発明は、これらの実施例に制限される必要はなく、明細書の記載される技術思想の範囲で解釈されるべきものである。
(実施例1)
 Cu原料とGa原料を組成がGa濃度30at%となるように秤量し、カーボン製坩堝に入れ、0.5Mpaのアルゴンを印加した加熱炉内で、1000℃で溶解させた後、冷却速度5~10℃/minで冷却してから合成原料を取り出した。
 次に、この合成原料を水アトマイズ装置のカーボン坩堝に入れ、1000℃で融解させた後に、融解液を滴下しつつ、滴下液に10Mpaの高圧水を噴射して、Cu-Ga混合微粉を得た。混合微粉をフィルタープレス後、120℃で乾燥させて、混合微粉原料を得た。
この混合微粉を、5℃/minの昇温速度で室温から650℃まで昇温した後、650℃で2時間保持すると共に35Mpaの圧力を印加した。その後、5℃/minの降温速度で冷却を行ってから焼結体を取り出した。
 得られたCu-Ga焼結体の相対密度は99.9%、平均粒径は11μm、主相と異相とのX線回折ピーク強度比は0.2%であった。この焼結体を直径6インチ、厚み6mmの円板状に加工して、スパッタリングターゲットとし、スパッタを行った。
 スパッタ条件としては、雰囲気ガスはアルゴンでガス流量は50sccm、スパッタ時圧力は0.5Paとして、特に、ターゲット割れに関して重要な条件であるスパッタパワーは直流(DC)1000Wと大きくした。スパッタ時間にして20時間後、総スパッタ量にして20kWhr後、ターゲット表面を観察したが、割れは確認されなかった。
以上の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
(実施例2~実施例6)
 実施例1と同様な方法で、Ga組成と平均粒径とを変化させたターゲットをそれぞれ作製し、スパッタ評価を行った結果を表1にまとめて記す。この結果からGa組成、平均粒径、抗折力が所定の範囲内であるターゲットは、加工時やスパッタ時に割れがないという良好な結果であった。
(比較例1~比較例2)
 実施例1とほぼ同様条件で、ターゲットを作製したが、ホットプレス時の温度をそれぞれ、600℃、550℃と低くすることで、密度の低いターゲットを作製した。
 ターゲットの特性や割れ等の有無の結果を表1にまとめて記す。加工時の割れの欄中に記載の「少し」とは、ターゲットが割れて分離してしまうまではいかなかったが、僅かでもひびが入った状態を示す。この結果から、ターゲットの密度が所定値より低いと、加工時にひびが認められた。但し、スパッタ後のターゲット表面のひびは確認されなかった。
(比較例3~比較例5)
 実施例1とほぼ同様条件で、ターゲットを作製したが、冷却速度をそれぞれ、1℃/min、2℃/min、0.5℃/minと小さくすることで、平均粒径が大きく、また、X線強度比が大きく異相が認められるターゲットを作製した。
 ターゲットの特性や割れ等の有無の結果を表1にまとめて記す。この結果から、スパッタ時にひびは認められなかったが、加工時に僅かながらひびが認められた。
(比較例6~比較例8)
 溶解法でCu-Gaターゲットを作製した。Ga組成が所定の濃度となるようにCuとGa原料を秤量しカーボン製坩堝に入れ、0.5Mpaのアルゴンを印加した加熱炉内で、比較例の6場合は1000℃で、比較例7及び8の場合はそれぞれの材料の融点より約200℃高温として融解させた後、約5℃/minの冷却速度で冷却して取り出したターゲットの特性や割れ等の有無の結果を表1にまとめて記す。
 この結果から、溶解法で作製したターゲットは、平均粒径が非常に大きく、抗折力が非常に小さく、加工時やスパッタ時の割れが確認された。
 図1に本発明での実施例及び比較例でのGa濃度とCu-Ga系ターゲットの抗折力との関係を示すグラフを記す。この図から本発明の実施例でのターゲットの抗折力は大きいので、加工時やスパッタ時の割れがなく、歩留まり良くCu-Ga系ターゲットや膜を製造することができる。
 本発明によれば、組成偏析がなく、脆性が少ないGa濃度が25~45at%の高Ga濃度のCu-Gaターゲット及びその製造方法を提供することができ、ターゲット製造及びCIGS系太陽電池製造の歩留まりが向上し、製造コストが低減できるので、セレン化法によるCIGS系太陽電池の製造用材料として有用である。

Claims (7)

  1.  Ga濃度が20~60at%、残部がCu及び不可避的不純物であるCu-Ga合金粉末の焼結体からなり、該焼結体の相対密度が97%以上、平均結晶粒径が5~30μmであり、さらに抗折力が150Mpa以上であることを特徴とするCu-Ga合金焼結体スパッタリングターゲット。
  2.  ターゲットの抗折力をF(MPa)、Ga濃度をN(at%)とした時、F>-10×N+600の関係を満足することを特徴とする請求項1記載のCu-Ga合金焼結体スパッタリングターゲット。
  3.  Cu-Ga合金が単一組成からなることを特徴とする請求項1又は2記載のCu-Ga合金焼結体スパッタリングターゲット。
  4.  Cu-Ga合金のX線回折による主ピーク以外のピーク強度が、主ピーク強度に対して5%以下であることを特徴とする請求項1~3のいずれか一項に記載のCu-Ga合金焼結体スパッタリングターゲット。
  5.  Cu-Ga合金組成が実質的にγ相であるか又は主要相がγ相であることを特徴とする請求項1~4のいずれか一項に記載のCu-Ga合金焼結体スパッタリングターゲット。
  6.  Cu及びGa原料を溶解、冷却後、粉砕した混合原料粉をホットプレス法で請求項1~5のいずれか一項に記載のCu-Ga合金焼結体スパッタリングターゲットを製造する方法であって、ホットプレス時の保持温度を混合原料粉の融点より50~200℃低温とし、保持時間を1~3時間、冷却速度を5℃/min以上、混合原料粉への加圧圧力を30~40MPaとして、ホットプレスすることを特徴とするCu-Ga合金焼結体スパッタリングターゲットの製造方法。
  7.  Cu及びGa原料の溶解、冷却後の粉砕を、機械的粉砕法、ガスアトマイズ法又は水アトマイズ法で行うことを特徴とする請求項6記載のCu-Ga合金焼結体スパッタリングターゲットの製造方法。
PCT/JP2010/061049 2009-07-27 2010-06-29 Cu-Ga焼結体スパッタリングターゲット及び同ターゲットの製造方法 WO2011013471A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010535150A JP5144766B2 (ja) 2009-07-27 2010-06-29 Cu−Ga焼結体スパッタリングターゲット及び同ターゲットの製造方法
KR1020107023228A KR101249566B1 (ko) 2009-07-27 2010-06-29 Cu-Ga 소결체 스퍼터링 타깃 및 동 타깃의 제조 방법
CN201080001562.8A CN102046836B (zh) 2009-07-27 2010-06-29 Cu-Ga烧结体溅射靶及该靶的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-174253 2009-07-27
JP2009174253 2009-07-27

Publications (1)

Publication Number Publication Date
WO2011013471A1 true WO2011013471A1 (ja) 2011-02-03

Family

ID=43529135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061049 WO2011013471A1 (ja) 2009-07-27 2010-06-29 Cu-Ga焼結体スパッタリングターゲット及び同ターゲットの製造方法

Country Status (5)

Country Link
JP (1) JP5144766B2 (ja)
KR (1) KR101249566B1 (ja)
CN (1) CN102046836B (ja)
TW (1) TWI458848B (ja)
WO (1) WO2011013471A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012072468A (ja) * 2010-09-29 2012-04-12 Sumitomo Metal Mining Co Ltd Cu−Ga合金スパッタリングターゲット及びCu−Ga合金スパッタリングターゲットの製造方法
JP2012072466A (ja) * 2010-09-29 2012-04-12 Sumitomo Metal Mining Co Ltd Cu−Ga合金スパッタリングターゲットの製造方法及びCu−Ga合金スパッタリングターゲット
CN102677013A (zh) * 2012-05-25 2012-09-19 大连交通大学 一种Cu(In1-xGax)Se2薄膜及其制备和应用
JP2012201948A (ja) * 2011-03-25 2012-10-22 Sumitomo Metal Mining Co Ltd Cu−Ga合金スパッタリングターゲット
JP2012233230A (ja) * 2011-04-29 2012-11-29 Mitsubishi Materials Corp スパッタリングターゲット及びその製造方法
JP2012246574A (ja) * 2012-09-18 2012-12-13 Mitsubishi Materials Corp スパッタリングターゲット及びその製造方法
JP2013142175A (ja) * 2012-01-11 2013-07-22 Sumitomo Metal Mining Co Ltd Cu−Ga合金スパッタリングターゲット及びその製造方法
JP2013155424A (ja) * 2012-01-31 2013-08-15 Nippon Steel & Sumitomo Metal Corp Cu−Gaスパッタリングターゲット及びその製造方法
WO2014129648A1 (ja) * 2013-02-25 2014-08-28 三菱マテリアル株式会社 スパッタリングターゲット及びその製造方法
JP2015071830A (ja) * 2014-10-29 2015-04-16 山陽特殊製鋼株式会社 酸素含有量が低いCu−Ga系合金スパッタリングターゲット材
JP2016008339A (ja) * 2014-06-25 2016-01-18 Jx日鉱日石金属株式会社 Cu−Ga合金スパッタリングターゲット
EP3101153A4 (en) * 2014-01-28 2017-08-30 Mitsubishi Materials Corporation Cu-Ga ALLOY SPUTTERING TARGET AND METHOD FOR PRODUCING SAME
US10822691B2 (en) 2015-03-30 2020-11-03 Mitsubishi Materials Corporation Cu—Ga alloy sputtering target and method of manufacturing Cu—Ga alloy sputtering target

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103502505B (zh) * 2011-08-29 2015-09-30 吉坤日矿日石金属株式会社 Cu-Ga合金溅射靶及其制造方法
JP5750393B2 (ja) * 2012-03-28 2015-07-22 Jx日鉱日石金属株式会社 Cu−Ga合金スパッタリングターゲット及びその製造方法
CN103421976B (zh) * 2012-05-22 2017-11-21 山阳特殊制钢株式会社 氧含量低的Cu‑Ga系合金粉末、Cu‑Ga系合金靶材、以及靶材的制造方法
CN107321998B (zh) * 2017-07-24 2020-01-07 先导薄膜材料(广东)有限公司 铜镓合金粉的制备方法
JP2019183277A (ja) * 2018-04-04 2019-10-24 三菱マテリアル株式会社 Cu−Ga合金スパッタリングターゲット
WO2020116668A1 (ko) * 2018-12-03 2020-06-11 엘티메탈 주식회사 은 나노 입자의 제조방법, 및 이에 의해 제조된 은 나노 입자를 포함하는 전기 접점재료

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119749A (ja) * 1984-07-06 1986-01-28 Hitachi Ltd 分光反射率可変合金及び記録材料
JP2000073163A (ja) * 1998-08-28 2000-03-07 Vacuum Metallurgical Co Ltd Cu−Ga合金スパッタリングターゲット及びその製造方法
JP2008138232A (ja) * 2006-11-30 2008-06-19 Mitsubishi Materials Corp 高Ga含有Cu−Ga二元系合金スパッタリングターゲットおよびその製造方法
JP2009287092A (ja) * 2008-05-30 2009-12-10 Mitsubishi Materials Corp カルコパイライト型半導体膜成膜用スパッタリングターゲットの製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2989169B2 (ja) * 1997-08-08 1999-12-13 日立金属株式会社 Ni−Al系金属間化合物ターゲットおよびその製造方法ならびに磁気記録媒体
JPH11260724A (ja) * 1998-03-16 1999-09-24 Matsushita Electric Ind Co Ltd 化合物半導体薄膜の製造方法および製造装置
JP4501250B2 (ja) * 2000-06-19 2010-07-14 日鉱金属株式会社 耐脆化性に優れたゲート酸化膜形成用シリサイドターゲット
EP2465969B1 (en) * 2002-01-30 2016-05-11 JX Nippon Mining & Metals Corp. Copper alloy sputtering target
JP2004162109A (ja) * 2002-11-12 2004-06-10 Nikko Materials Co Ltd スパッタリングターゲット及び同製造用粉末
JP3997527B2 (ja) * 2003-03-31 2007-10-24 日立金属株式会社 Ru−Al金属間化合物ターゲットの製造方法、Ru−Al金属間化合物ターゲットおよび磁気記録媒体
CN100457963C (zh) * 2003-08-05 2009-02-04 日矿金属株式会社 溅射靶及其制造方法
CN100418235C (zh) * 2005-06-03 2008-09-10 清华大学 用于铜铟镓硒薄膜太阳能电池的铜镓合金靶的制备方法
EP1992010A2 (en) * 2006-02-23 2008-11-19 Van Duren, Jeroen K.J. High-throughput printing of chalcogen layer and the use of an inter-metallic material
DE102006026005A1 (de) * 2006-06-01 2007-12-06 W.C. Heraeus Gmbh Kaltgepresste Sputtertargets

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6119749A (ja) * 1984-07-06 1986-01-28 Hitachi Ltd 分光反射率可変合金及び記録材料
JP2000073163A (ja) * 1998-08-28 2000-03-07 Vacuum Metallurgical Co Ltd Cu−Ga合金スパッタリングターゲット及びその製造方法
JP2008138232A (ja) * 2006-11-30 2008-06-19 Mitsubishi Materials Corp 高Ga含有Cu−Ga二元系合金スパッタリングターゲットおよびその製造方法
JP2009287092A (ja) * 2008-05-30 2009-12-10 Mitsubishi Materials Corp カルコパイライト型半導体膜成膜用スパッタリングターゲットの製造方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012072466A (ja) * 2010-09-29 2012-04-12 Sumitomo Metal Mining Co Ltd Cu−Ga合金スパッタリングターゲットの製造方法及びCu−Ga合金スパッタリングターゲット
JP2012072468A (ja) * 2010-09-29 2012-04-12 Sumitomo Metal Mining Co Ltd Cu−Ga合金スパッタリングターゲット及びCu−Ga合金スパッタリングターゲットの製造方法
JP2012201948A (ja) * 2011-03-25 2012-10-22 Sumitomo Metal Mining Co Ltd Cu−Ga合金スパッタリングターゲット
JP2012233230A (ja) * 2011-04-29 2012-11-29 Mitsubishi Materials Corp スパッタリングターゲット及びその製造方法
JP2013142175A (ja) * 2012-01-11 2013-07-22 Sumitomo Metal Mining Co Ltd Cu−Ga合金スパッタリングターゲット及びその製造方法
JP2013155424A (ja) * 2012-01-31 2013-08-15 Nippon Steel & Sumitomo Metal Corp Cu−Gaスパッタリングターゲット及びその製造方法
CN102677013A (zh) * 2012-05-25 2012-09-19 大连交通大学 一种Cu(In1-xGax)Se2薄膜及其制备和应用
JP2012246574A (ja) * 2012-09-18 2012-12-13 Mitsubishi Materials Corp スパッタリングターゲット及びその製造方法
WO2014129648A1 (ja) * 2013-02-25 2014-08-28 三菱マテリアル株式会社 スパッタリングターゲット及びその製造方法
EP3101153A4 (en) * 2014-01-28 2017-08-30 Mitsubishi Materials Corporation Cu-Ga ALLOY SPUTTERING TARGET AND METHOD FOR PRODUCING SAME
JP2016008339A (ja) * 2014-06-25 2016-01-18 Jx日鉱日石金属株式会社 Cu−Ga合金スパッタリングターゲット
JP2015071830A (ja) * 2014-10-29 2015-04-16 山陽特殊製鋼株式会社 酸素含有量が低いCu−Ga系合金スパッタリングターゲット材
US10822691B2 (en) 2015-03-30 2020-11-03 Mitsubishi Materials Corporation Cu—Ga alloy sputtering target and method of manufacturing Cu—Ga alloy sputtering target

Also Published As

Publication number Publication date
KR101249566B1 (ko) 2013-04-01
JP5144766B2 (ja) 2013-02-13
CN102046836A (zh) 2011-05-04
CN102046836B (zh) 2012-10-03
TW201118190A (en) 2011-06-01
JPWO2011013471A1 (ja) 2013-01-07
KR20110014977A (ko) 2011-02-14
TWI458848B (zh) 2014-11-01

Similar Documents

Publication Publication Date Title
JP5144766B2 (ja) Cu−Ga焼結体スパッタリングターゲット及び同ターゲットの製造方法
JP5202643B2 (ja) Cu−Ga合金焼結体スパッタリングターゲット及び同ターゲットの製造方法
JP5591370B2 (ja) Cu−Gaターゲット及びその製造方法
JP4811660B2 (ja) 高Ga含有Cu−Ga二元系合金スパッタリングターゲットおよびその製造方法
JP5818139B2 (ja) Cu−Ga合金ターゲット材およびその製造方法
EP2511397B1 (en) Magnetic material sputtering target
US20120205242A1 (en) Cu-In-Ga-Se QUATERNARY ALLOY SPUTTERING TARGET
JP6393696B2 (ja) Cu−Ga−In−Naターゲット
US9273389B2 (en) Cu—In—Ga—Se quaternary alloy sputtering target
KR20130069839A (ko) 스퍼터링 타겟 및 그 제조방법
WO2018173450A1 (ja) タングステンシリサイドターゲット及びその製造方法
WO2012098722A1 (ja) Cu-Gaターゲット及びその製造方法並びにCu-Ga系合金膜からなる光吸収層及び同光吸収層を用いたCIGS系太陽電池
JP5871106B2 (ja) In合金スパッタリングターゲット、その製造方法及びIn合金膜
WO2009107498A1 (ja) 焼結用Sb-Te系合金粉末及び同粉末の製造方法並びに焼結体ターゲット
JP2014210943A (ja) Cu−Ga合金ターゲット材およびその製造方法
JP2010084177A (ja) 酸化亜鉛系焼結ターゲットおよびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080001562.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2010535150

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20107023228

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10804218

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10804218

Country of ref document: EP

Kind code of ref document: A1