WO2011010824A2 - Low emissivity glass and method for manufacturing same - Google Patents

Low emissivity glass and method for manufacturing same Download PDF

Info

Publication number
WO2011010824A2
WO2011010824A2 PCT/KR2010/004520 KR2010004520W WO2011010824A2 WO 2011010824 A2 WO2011010824 A2 WO 2011010824A2 KR 2010004520 W KR2010004520 W KR 2010004520W WO 2011010824 A2 WO2011010824 A2 WO 2011010824A2
Authority
WO
WIPO (PCT)
Prior art keywords
low
glass
layer
emissivity
dielectric layer
Prior art date
Application number
PCT/KR2010/004520
Other languages
French (fr)
Korean (ko)
Other versions
WO2011010824A3 (en
Inventor
전윤기
조금실
배일준
황승석
Original Assignee
㈜엘지하우시스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020090067301A external-priority patent/KR101302273B1/en
Application filed by ㈜엘지하우시스 filed Critical ㈜엘지하우시스
Priority to CN201080020074.1A priority Critical patent/CN102421719B/en
Priority to US13/321,692 priority patent/US8722210B2/en
Priority to RU2011144649/03A priority patent/RU2561419C2/en
Priority to JP2012521571A priority patent/JP2012533514A/en
Priority to DE112010003037T priority patent/DE112010003037T8/en
Publication of WO2011010824A2 publication Critical patent/WO2011010824A2/en
Publication of WO2011010824A3 publication Critical patent/WO2011010824A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3618Coatings of type glass/inorganic compound/other inorganic layers, at least one layer being metallic
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3642Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating containing a metal layer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
    • C03C17/366Low-emissivity or solar control coatings

Definitions

  • the present invention relates to a low-emissive glass and a method for producing the same.
  • Low emissivity glass is a low emissivity glass, which has a special coating on the glass surface that reflects solar radiation in the summer and preserves the infrared rays generated by the indoor heater in the winter, saving energy in buildings. It means functional glass which can bring effect.
  • an oxygen atmosphere is mainly formed by injecting oxygen into the chamber, and a method of depositing an oxide thin film on the low-emission layer under an oxygen atmosphere using a metal target material is used. Has been.
  • the first dielectric layer made of metal oxides, etc., the low-emission layer made of silver (Ag), etc., and the second dielectric layer made of metal oxides, etc. are sequentially formed on the substrate glass. It was composed of a deposited form.
  • the conventional low-emissive glass is contained in the low-emissive layer due to the high oxygen partial pressure injected into the chamber, since the metal is used as the target raw material under the oxygen atmosphere when the second dielectric layer is deposited on the low-emissive layer as described above.
  • the boundary between layers was blurred by mixing between the low-emissive layer and the second dielectric layer by oxidizing to the conductive metal, and for this reason, the emissivity value was significantly increased, thereby losing the functionality as the low-emissive glass.
  • a primer layer composed of metallic nickel chromium is deposited, and then, an oxygen atmosphere is formed to deposit the dielectric layer on the primer layer. Oxidation of the conductive metal was prevented.
  • the emissivity can be kept low by preventing the oxidation of the conductive metal contained in the low-emissive layer, but as the thickness of the metal thin film increases because the primer layer is additionally deposited on the low-emissive layer. Not only is the visible light transmittance reduced, but the addition of a primer layer deposition process makes the process complicated and costs more.
  • the present invention has been made to solve the above-described problems, and by forming a dielectric layer directly without forming a primer layer on the low-emissivity layer, an efficient low-emissive glass that can simultaneously exhibit high visible light transmittance with excellent emissivity and its The purpose is to provide a manufacturing method.
  • the present invention as a means for solving the above problems, low emission layer; And a dielectric layer formed on the low emissive layer, the emissivity being 0.01 to 0.3, and the low emissive glass having a visible light transmittance of 70% or more.
  • the present invention provides a method for manufacturing a low-emissive glass comprising the step of depositing a dielectric layer directly on the low-emissive layer using a metal oxide as a target under vacuum conditions.
  • the low-emissive glass of the present invention and the method for producing the same as described above, it is possible to form a dielectric layer while preventing the oxidation of the functional material contained in the low-emissive layer without forming a primer layer. Accordingly, the low-emissive glass according to the present invention can maintain excellent visible light transmittance and radiation performance simultaneously, thereby enabling an increase in the thermal insulation effect of the low-emissive glass and ensuring a comfortable visual field.
  • FIG. 1 is a cross-sectional view schematically showing the layer structure of the low-emissive glass according to an embodiment of the present invention.
  • Figure 2 is a graph showing the distribution of atoms between the layers of the low-emissive glass prepared by depositing a dielectric layer on the low-emissive layer using a metal as a target in an oxygen atmosphere according to the conventional method for producing low-emissive glass.
  • FIG. 3 is an interlayer layer of a low-emissive glass manufactured by depositing a dielectric layer on a low-emissive layer using a metal oxide as a target under a vacuum argon gas atmosphere according to a method of manufacturing a low-emissive glass according to an embodiment of the present invention.
  • the present invention is a low emission layer; And a dielectric layer formed on the low emissive layer, wherein the emissivity is 0.01 to 0.3 and the visible light transmittance is 70% or more.
  • the low-emissive glass of the present invention is a low-emissive layer; And a dielectric layer formed on the low emission layer, wherein the emissivity is 0.01 to 0.3 and the visible light transmittance is 70% or more.
  • low-emission glass is one of energy-saving plate glass, which means low emissivity glass, and such low-emissivity glass may be formed by forming a thin film of metal or metal oxide having excellent electrical conductivity on ordinary plate glass. In the visible light region, it means glass that provides excellent thermal insulation by lowering the emissivity of the coated surface while maintaining predetermined transmission characteristics.
  • emissivity means the rate at which an object absorbs, transmits, and reflects energy having any specific wavelength, that is, in the present invention, emissivity represents the degree of absorption of infrared energy in the infrared wavelength region. Specifically, when the far infrared rays corresponding to the wavelength region of about 2,500 to 40,000 nm exhibiting a strong thermal action is applied, it means the ratio of infrared energy absorbed to the applied infrared energy.
  • Kirchhoff's law states that the absorbed energy is equal to the emissivity because the infrared energy absorbed by the material is equal to the energy emitted again.
  • Such emissivity can be measured through various methods commonly known in the art, and is not particularly limited, for example, can be measured by a facility such as MK-3 according to the KSL2514 standard.
  • the absorption rate to far-infrared rays exhibiting such a strong thermal action may represent a very important meaning in measuring the degree of thermal insulation performance.
  • the emissivity of the low-emissivity glass according to the present invention is 0.01 to 0.3, preferably 0.01 to 0.2, more preferably 0.01 to 0.1, most preferably 0.01 to 0.08.
  • the thermal insulation effect may be improved according to the reflection of far infrared rays, but the visible light transmittance may be lowered.
  • the emissivity exceeds 0.3, the far infrared reflectance may be too low to lower the thermal insulation performance.
  • the low-emissivity glass according to the present invention has a visible light transmittance of 70% or more, preferably 80% or more, and more preferably 85% or more.
  • the visible light transmittance is less than 70%, it may be difficult to provide a comfortable view.
  • the low-emissive glass of the present invention exhibits high visible light transmittance with low emissivity, and can be used as a functional glass capable of providing a good visual field with excellent heat insulating effect.
  • the sheet resistance of the low-emissivity glass according to the present invention is not particularly limited, and may be used without limitation within the range capable of simultaneously exhibiting excellent emissivity and visible light transmittance in accordance with the purpose of the present invention, for example, the low radiation
  • the sheet resistance of the glass may be 5 to 15 ⁇ / cm 2.
  • sheet resistance means a specific resistance per unit thickness of the thin film, the lower the sheet resistance, the lower the emissivity value can be obtained excellent heat insulating performance. Accordingly, it may be a measure to measure the infrared reflectance in the low-emissivity glass.
  • the sheet resistance may be measured through various methods, and the measuring method is not particularly limited, but may be measured using, for example, a multimeter or a four-point probe.
  • the thickness of the low-emissive layer should be thick, so there is a fear that the visible light transmittance is lowered, if it exceeds 15 ⁇ / cm2, the emissivity value is too large, The adiabatic effect can be reduced.
  • the low radiation layer is a functional layer that serves to block radiation in the infrared region, including a metal having excellent thermal conductivity
  • the type is not particularly limited, for example, silver (Ag), copper (Cu ), Gold (Au), aluminum (Al) and platinum (Pt) may include one or more selected from the group consisting of, considering the price, color and low emission characteristics, preferably excellent electrical conductivity Silver (Ag) can be used.
  • the low-emissivity layer of the low-emissivity glass according to the present invention may include the conductive metal as exemplified above as such, and may be nickel (Ni), palladium (Pd), platinum (Pt), copper from the viewpoint of durability improvement and the like.
  • a conductive metal doped with one or more elements selected from the group consisting of (Cu) and gold (Au) may be used, and other additives may be further mixed to improve various functionalities.
  • the thickness of the low-emissivity layer is not particularly limited and may be formed in various thicknesses within the range that can simultaneously implement a low emissivity and excellent visible light transmittance according to the purpose of the present invention, for example, 8 to 35 nm, preferably from 8 to 15 nm.
  • the thickness of the low emission layer is less than 8 nm, it may be difficult to exert a heat insulation effect due to the high emissivity is significantly increased, the emissivity may be lowered when it exceeds 35 nm, but the visible light transmittance is relatively reduced to ensure a comfortable view It can be difficult.
  • the low-emissive glass according to the present invention may be a dielectric layer is formed directly on the low-emissive layer.
  • the dielectric layer is directly formed on the low emission layer
  • no other layer ex primer layer
  • the dielectric layer is formed directly on the low emission layer. I mean.
  • another layer may be formed on the low-emissive layer, but a dielectric layer may be directly formed on the low-emissive layer as described above, and the dielectric layer is directly formed on the low-emissive layer. If possible, it is possible to prevent a decrease in visible light transmittance or an increase in emissivity, which may be caused by the deposition of another layer, to simplify the process and to reduce the investment cost.
  • the type of the dielectric layer is not particularly limited, for example, zinc oxide, aluminum oxide, zirconium oxide, silicon dioxide, tin oxide ), Titanium oxide, bismuth oxide, indium doped tin oxide, gallium-doped zinc oxide, and aluminum-added zinc oxide (Al) doped zinc oxide) may include one or more selected from the group consisting of.
  • the material included in the dielectric layer is not limited to the above description, and various metal oxides may be included therein, and bismuth (Bi), boron (B), aluminum (Al), One or more elements selected from the group consisting of silicon (Si), magnesium (Mg), antimony (Sb), and beryllium (Be) may be doped.
  • Such a dielectric layer may contribute to improving chemical resistance, moisture resistance, wear resistance, and emissivity of the low-emissive glass according to the present invention.
  • the dielectric layer is also not particularly limited in thickness, but may be, for example, 10 to 100 nm, preferably 30 to 40 nm.
  • the thickness of the dielectric layer is less than 10 nm, there is a fear that the glass surface is discolored, when it exceeds 100 nm there is a fear that the visible light transmittance is lowered.
  • the low-emissive glass according to the present invention may further include a dielectric layer formed on the lower surface of the low-emissive layer.
  • the dielectric layer may serve to prevent contamination of the low emission layer by Na + ions as well as surface contamination of the glass substrate, The adhesion between the substrate and the low emissive layer and the emissivity can be improved.
  • the low-emissive glass according to the present invention may further include an overcoating layer formed on the dielectric layer formed on the low-emissive layer.
  • the overcoating layer protects the surface of the low-emissive glass and provides durability.
  • the material that can be used as the overcoating layer is not particularly limited in kind, and may include all materials that can be commonly used as the overcoating layer in the art.
  • silicon nitride (SiN), silicon nitride (SiAlN) or silicon oxynitride (SiNO x ), to which aluminum is added, may be included in the overcoating layer.
  • the low-emissivity glass according to the present invention may further include an undercoat layer formed on the lower surface of the low-emissivity layer.
  • the undercoat layer is for protecting the substrate of the low-emissive glass and providing durability.
  • the material that can be used as the undercoat layer is not particularly limited in kind, and may include a material that can be used as an undercoat layer in the art.
  • silicon nitride (SiN), silicon nitride (SiAlN) or silicon oxynitride (SiNO x ) to which aluminum is added may be included in the undercoat layer.
  • the low-emissivity glass according to the present invention has a high visible light transmittance with excellent heat insulation performance due to low emissivity, it can be widely used for building or automobile glass, which requires such a heat insulating effect and a comfortable visual field. .
  • the low-emission glass of the present invention is not limited to the above-described applications, but may be applied to glass in various fields requiring high thermal insulation performance and a comfortable visual field, and further layers for securing emissivity and improving visible light transmittance. Since there is no need to deposit the process cost is reduced, it can be usefully used as a large-area glass and the like.
  • FIG. 1 is a cross-sectional view schematically showing the layer structure of the low-emissive glass according to an embodiment of the present invention.
  • a low emission glass may include a substrate 110, a dielectric layer 130, a low emission layer 150, and a dielectric layer 170.
  • the dielectric layer 130, the low emission layer 150, and the dielectric layer 170 are sequentially formed on the substrate 110, and between the dielectric layer 130 and the low emission layer 150, or between the low emission layer 150 and the dielectric layer ( There is no fear that the visible light transmittance may be reduced since no other layer (ex. Primer layer) having low electrical conductivity is deposited between the 170).
  • the present invention also relates to a method for producing a low-emissive glass comprising directly depositing a dielectric layer on a low-emissive layer using a metal oxide as a target under vacuum conditions.
  • the vacuum condition means a condition for creating an atmosphere in a vacuum state
  • the deposition may be carried out under a vacuum process pressure of 1 to 10 mTorr, preferably a vacuum of 2 to 6 mTorr It can be carried out under a vacuum, more preferably 3 to 5 mTorr.
  • the process pressure is less than 1 mTorr, there is a risk that the film quality is lowered by the impact of the deposition material having a high energy on the substrate, if it exceeds 10 mTorr, the average free path of the particles may be reduced and deposition may be difficult. .
  • various inert gases conventionally used in this field may be supplied to form a vacuum during the deposition, and the type of the inert gas is not particularly limited, but for example, the deposition may be performed under nitrogen gas or argon gas. It may be carried out, preferably in an argon gas atmosphere.
  • the injection amount is not particularly limited, but may be, for example, 10 to 100 sccm (Standard Cubic Centimeter per minute).
  • the inert gas When the inert gas is injected at less than 10 sccm and the inert partial pressure is low, the plasma ignition of the sputter may not occur, and thus the deposition efficiency may be lowered. As the average free path is reduced, deposition may not be performed, or the physical properties of the film may be degraded by gas molecules.
  • the deposition method may include any deposition method conventionally used in the art for depositing a functional layer on glass, as long as it is performed under vacuum conditions, and is not particularly limited.
  • the vacuum deposition method performed under vacuum conditions may include all, resistance heating evaporation method, electron beam evaporation method, laser beam evaporation method, plasma sputtering method, etc. may be used for the deposition, preferably, Plasma sputtering methods can be used.
  • the sputtering method using the plasma When the sputtering method using the plasma is used, uniform film formation is possible, the adhesion of the thin film is high, and various materials such as metals, alloys, compounds, and insulators can be formed, as well as the target can be cooled, and a large target can be formed. It can be used to make glass of a large sized thin film, and specific examples of such plasma sputtering methods include DC sputtering, RF sputtering, magnetron sputtering, reactive sputtering, and the like.
  • the deposition of the dielectric layer may be performed by applying an input power of 1 to 5 W / cm2.
  • the deposition rate is low, the productivity is lowered, the adhesion between the film and the substrate to be deposited may be lowered, and when the input power exceeds 5 W / cm2, damage to the substrate, or the raw material There is a risk of causing large damage to the process equipment by causing breakage or melting of the target.
  • an inert gas such as argon gas is supplied into a vacuum chamber, and a voltage is applied to a cathode provided with a target material.
  • argon gas argon gas
  • electrons emitted from the cathode collide with gas atoms of argon gas to ionize argon (Ar + ).
  • Ar + gas atoms of argon gas
  • the argon emits electrons as it becomes an excite, energy is released, and a glow discharge occurs, thereby forming a plasma in which ions and electrons coexist.
  • Ar + ions in the plasma are accelerated toward the cathode (target), i.e., the metal oxide, by the large potential difference, and collide with the surface of the target. Accordingly, the target atoms stick out to form a thin film on the low emission layer to deposit a dielectric layer. Can be.
  • target i.e., the metal oxide
  • the deposition when the dielectric layer is deposited on the low-emission layer, the deposition is not performed under a high oxygen atmosphere, and thus the deposition can be performed under vacuum conditions. It is possible to prevent the metal material in the low-emissive layer from oxidizing without separately depositing a primer layer for preventing oxidation of the layer.
  • the low radiation layer does not have to be oxidized, so it is possible to maintain excellent radioactivity and not to deposit a primer layer to prevent oxidation of the low radiation layer, so that visible light may be generated due to the deposition of a primer layer having low electrical conductivity.
  • the decrease in transmittance can also be prevented.
  • argon gas was injected into the chamber at an injection speed of 30 sccm, and an input power of 1.4 W / cm 2 was applied to generate plasma. Accordingly, a first dielectric layer made of zinc oxide was formed by depositing target atoms on a glass substrate.
  • silver (Ag) is pre-positioned on the cathode using a target material, and argon gas is injected at an injection rate of 20 sccm, and then an input power of 0.8 W / cm 2 is applied to the first dielectric layer.
  • a low emissive layer was formed at.
  • an input power of 1.4 W / cm 2 is applied to form a second dielectric layer on the low emission layer. It was.
  • the thickness of the first dielectric layer formed on the glass substrate was 35 nm
  • the thickness of the low radiation layer was 10 nm
  • the thickness of the second dielectric layer formed on the low radiation layer was 45 nm.
  • Example 1 low-emission according to Example 2 Glass was prepared.
  • Example 3 Except that the deposition was performed so that the thickness of the low-emissive layer is 11.5 nm, all other conditions were the same as in Example 1 to prepare a low-emissive glass according to Example 3.
  • the thicknesses of the first primer layer and the second primer layer were 1.5 nm, respectively.
  • the first dielectric layer and the second dielectric layer were deposited in a high oxygen atmosphere in which 20 sccm of oxygen and 20 sccm of oxygen were mixed using zinc as a target material, and nickel chromium was used as the target material on the first dielectric layer. Except for depositing a first primer layer under the same conditions as in Example 1, and then depositing a low-emissivity layer on the first primer layer, the other conditions were the same as in Example 1 to Comparative Example 2 According to the low-emissivity glass was prepared.
  • the thickness of the first primer layer was 1.5 nm.
  • a low-emissive glass according to Comparative Example 3 was prepared in the same manner as in Comparative Example 2 except that the low-emissive layer was deposited directly on the first dielectric layer without depositing the first primer layer.
  • the emissivity and visible light transmittance of the low emissive glass according to Example 1 and Comparative Examples 1 to 3 were measured using an emissivity measuring device (INGLAS TIR 100-2) and a spectrophotometer (Spectrophotometer; model Shimazu solid spec 3700), This is shown in Table 1 below.
  • VT visible light transmittance (%)
  • the low-emissivity glass according to Example 1 exhibited a low emissivity of 0.078 and at the same time exhibited a significantly higher visible light transmittance of 86.7% compared to the low-emissivity glasses according to Comparative Examples 1 and 2.
  • the optical properties of the low-emissive glass according to Comparative Example 2 in which the second dielectric layer was vacuum deposited using zinc as a target material under high oxygen atmosphere were examined. Although oxidation of the emission layer was prevented, the emissivity was low as 0.062, but the visible light transmittance was low as 68% due to the stacking of the primer layer. In the high oxygen atmosphere, the first dielectric layer was used without the primer layer using zinc as a target material. And the low-emissivity glass according to Comparative Example 3 in which the second dielectric layer was deposited, the emissivity was remarkably high and the visible light transmittance was also low.
  • N nickel chromium layer
  • A silver (Ag) layer
  • Example 2 As shown in Table 2, in the average sheet resistance, the low-emissivity glass according to Example 2 was the lowest, and the emissivity was the lowest in Example 3, and the measured Examples 1 to 3 and Comparative Example 1 All low-emissivity glasses showed good sheet resistance and emissivity.
  • the low-emissive glass according to Comparative Example 1 further includes a nickel chromium layer having a relatively lower sheet resistance than zinc oxide in the same structure, compared to the low-emissive glass according to Examples 1 to 3, Example 3 Compared with, the average sheet resistance was rather low, but the primer layer composed of metals such as nickel chromium significantly reduced the overall visible light transmittance even though only a slight increase in thickness caused a great effect on the visible light transmittance. .
  • the low-emission glass according to Examples 1 to 3 maintained excellent radioactivity even without a nickel chromium layer, and exhibited excellent visible light transmittance of 80% or more.
  • Elemental analysis was performed with an x-ray photoelectron spectroscopy (XPS) analyzer while sputter etching using argon particles from the surface of the low-emissive glass according to Example 1 and Comparative Example 3.
  • XPS x-ray photoelectron spectroscopy
  • the low-emissive glass according to Comparative Example 3 manufactured by depositing a dielectric layer on the low-emissive layer using a metal as a target under a high oxygen atmosphere according to the conventional method of manufacturing low-emissive glass is low-emission
  • a mixing phenomenon between the layer and the dielectric layer occurred silver was observed on the surface of the second dielectric layer, and a mixing phenomenon in which silver eluted to the surface part appeared.
  • a region having a short etching time becomes a surface portion of the multilayer thin film.
  • a predetermined amount of silver constituting the low-emission layer is also contained in the surface portion.
  • a small amount of silver was also distributed at the upper boundary of the second dielectric layer and the low emission layer.
  • the low-emissivity glass according to Example 1 prepared according to an embodiment of the present invention was not observed at all until a certain time while performing the etching from the surface, the low-emission layer It was found that silver was observed uniformly in the corresponding area, and it can be seen that the low-emissive layer and the dielectric layer exist in a clearly separated state.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Physical Vapour Deposition (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention relates to low emissivity glass and to a method for manufacturing same. The low emissivity glass comprises: a low emissivity layer; and a dielectric layer formed on the low emissivity layer, wherein the glass has an emissivity of 0.01 to 0.3 and a visible light transmissivity of 70% or higher. According to the present invention, a low emissivity glass can be provided having good emissive performance while also exhibiting high visible light transmissivity. Further, according to the present invention, the manufacturing process for the above-described low emissivity glass can be simplified, and the initial investment amount can be reduced.

Description

저방사 유리 및 이의 제조방법Low Emissive Glass and Method for Manufacturing the Same
본 발명은 저방사 유리 및 이의 제조방법에 관한 것이다.The present invention relates to a low-emissive glass and a method for producing the same.
저방사 유리(Low emissivity glass; Low-e glass)는 방사율이 낮은 유리로서, 유리 표면에 특수한 막을 코팅하여 여름에는 태양 복사열을 반사시키고 겨울에는 실내 난방기에서 발생하는 적외선을 보존해 줌으로써 건축물의 에너지 절감효과를 가져올 수 있는 기능성 유리를 의미한다.Low emissivity glass (Low-e glass) is a low emissivity glass, which has a special coating on the glass surface that reflects solar radiation in the summer and preserves the infrared rays generated by the indoor heater in the winter, saving energy in buildings. It means functional glass which can bring effect.
종래 상기와 같은 저방사 유리를 제조하는 방법으로는, 주로 챔버 내에 산소를 주입하여 산소 분위기를 조성하고, 금속 타겟 물질을 이용하여 산소 분위기 하에서, 저방사층 상에 산화물 박막을 증착하는 방법이 사용되어 왔다.Conventionally, as a method of manufacturing the low-radiation glass as described above, an oxygen atmosphere is mainly formed by injecting oxygen into the chamber, and a method of depositing an oxide thin film on the low-emission layer under an oxygen atmosphere using a metal target material is used. Has been.
따라서, 상기 종래 제조방법을 통하여 제조된 저방사 유리는, 기판 유리 상에 금속 산화물 등으로 이루어진 제1유전체층, 실버(Ag) 등으로 이루어진 저방사층, 및 금속 산화물 등으로 이루어진 제2유전체층이 순차적으로 증착된 형태로 구성되었다.Therefore, in the low-emissivity glass manufactured by the conventional manufacturing method, the first dielectric layer made of metal oxides, etc., the low-emission layer made of silver (Ag), etc., and the second dielectric layer made of metal oxides, etc. are sequentially formed on the substrate glass. It was composed of a deposited form.
그러나 종래 저방사 유리는, 상기한 바와 같이 저방사층 상에 제2유전체층의 증착 시에 산소 분위기 하에서 금속을 타겟 원료로 사용하였기 때문에, 챔버 내에 주입된 높은 산소 분압에 의하여 저방사층 내에 함유된 전도성 금속까지 산화되어 저방사층과 제2유전체층 간의 혼합을 통하여 층간 경계가 모호해진다는 문제점이 있었으며, 이와 같은 이유로 인하여 방사율 값이 현저하게 높아져서 저방사 유리로서의 기능성을 상실한다는 문제점이 있었다.However, the conventional low-emissive glass is contained in the low-emissive layer due to the high oxygen partial pressure injected into the chamber, since the metal is used as the target raw material under the oxygen atmosphere when the second dielectric layer is deposited on the low-emissive layer as described above. There was a problem in that the boundary between layers was blurred by mixing between the low-emissive layer and the second dielectric layer by oxidizing to the conductive metal, and for this reason, the emissivity value was significantly increased, thereby losing the functionality as the low-emissive glass.
따라서 이를 해결하고자 상기 저방사층 상에 유전체층을 증착하기에 앞서 금속성 니켈크롬으로 구성된 프라이머층을 증착한 후, 산소 분위기를 조성하여 상기 프라이머층 상에 유전체층을 증착하는 방식으로 저방사층 내에 함유된 전도성 금속의 산화를 방지하였다.Therefore, in order to solve this problem, before depositing the dielectric layer on the low-emissivity layer, a primer layer composed of metallic nickel chromium is deposited, and then, an oxygen atmosphere is formed to deposit the dielectric layer on the primer layer. Oxidation of the conductive metal was prevented.
그러나 이와 같은 방법을 이용하는 경우, 저방사층의 내에 함유된 전도성 금속의 산화를 방지함으로써 방사율은 낮게 유지할 수 있으나, 상기 저방사층 상에 프라이머층이 추가적으로 증착되기 때문에 금속 박막의 두께가 증가함에 따라 가시광 투과율이 감소될 뿐 아니라 프라이머층 증착 공정의 추가로 인하여 공정이 복잡해지고, 비용이 더 많이 소요된다는 문제점이 있었다.However, in such a method, the emissivity can be kept low by preventing the oxidation of the conductive metal contained in the low-emissive layer, but as the thickness of the metal thin film increases because the primer layer is additionally deposited on the low-emissive layer. Not only is the visible light transmittance reduced, but the addition of a primer layer deposition process makes the process complicated and costs more.
본 발명은 상술한 문제점을 해결하기 위하여 창출된 것으로서, 저방사층 상에 프라이머층을 형성하지 않고, 직접 유전체층을 형성시킴으로써, 우수한 방사율과 함께 높은 가시광 투과율을 동시에 나타낼 수 있는 효율적인 저방사 유리 및 이의 제조방법을 제공하는데 그 목적이 있다.The present invention has been made to solve the above-described problems, and by forming a dielectric layer directly without forming a primer layer on the low-emissivity layer, an efficient low-emissive glass that can simultaneously exhibit high visible light transmittance with excellent emissivity and its The purpose is to provide a manufacturing method.
본 발명은 상기 과제를 해결하기 위한 수단으로서, 저방사층; 및 상기 저방사층 상에 형성된 유전체층을 포함하고, 방사율이 0.01 내지 0.3이며, 가시광 투과율이 70% 이상인 저방사 유리를 제공한다.The present invention as a means for solving the above problems, low emission layer; And a dielectric layer formed on the low emissive layer, the emissivity being 0.01 to 0.3, and the low emissive glass having a visible light transmittance of 70% or more.
또한, 본 발명은 상기 과제를 해결하기 위한 다른 수단으로서, 진공 조건 하에서 금속 산화물을 타겟으로 이용하여 저방사층 상에 직접 유전체층을 증착하는 단계를 포함하는 저방사 유리의 제조방법을 제공한다.In another aspect, the present invention provides a method for manufacturing a low-emissive glass comprising the step of depositing a dielectric layer directly on the low-emissive layer using a metal oxide as a target under vacuum conditions.
상술한 바와 같은 본 발명의 저방사 유리 및 이의 제조방법에 의하면, 프라이머 층을 형성하지 않고도 저방사층에 함유된 기능성 물질의 산화를 방지하면서, 유전체층을 형성할 수 있다. 이에 따라 본 발명에 따른 저방사 유리는 가시광 투과율 및 방사성능을 동시에 우수하게 유지할 수 있으며, 이를 통하여 저방사 유리의 단열 효과의 상승 및 쾌적한 시야확보를 가능하게 한다.According to the low-emissive glass of the present invention and the method for producing the same as described above, it is possible to form a dielectric layer while preventing the oxidation of the functional material contained in the low-emissive layer without forming a primer layer. Accordingly, the low-emissive glass according to the present invention can maintain excellent visible light transmittance and radiation performance simultaneously, thereby enabling an increase in the thermal insulation effect of the low-emissive glass and ensuring a comfortable visual field.
또한, 본 발명에 따른 저방사 유리의 제조방법에 의하면, 투자비용 및 자재비용을 줄일 수 있어, 공정 효율 면에서도 우수하다.Moreover, according to the manufacturing method of the low radiation glass which concerns on this invention, investment cost and material cost can be reduced, and it is excellent also in process efficiency.
도 1은 본 발명의 일 실시예에 따른 저방사 유리의 층 구조를 개략적으로 나타낸 단면도이다.1 is a cross-sectional view schematically showing the layer structure of the low-emissive glass according to an embodiment of the present invention.
도 2는 종래 저방사 유리의 제조방법에 따라 산소 분위기 하에서 금속을 타겟으로 이용하여 저방사층 상에 유전체층을 증착하여 제조된 저방사 유리의 층 간 원자의 분포를 나타낸 그래프이다.Figure 2 is a graph showing the distribution of atoms between the layers of the low-emissive glass prepared by depositing a dielectric layer on the low-emissive layer using a metal as a target in an oxygen atmosphere according to the conventional method for producing low-emissive glass.
도 3은 본 발명의 일 실시예에 따른 저방사 유리의 제조방법에 따라 진공 상태의 아르곤 가스 분위기 하에서 금속 산화물을 타겟으로 이용하여 저방사층 상에 유전체층을 증착하여 제조된 저방사 유리의 층 간 원자의 분포를 나타낸 그래프이다.3 is an interlayer layer of a low-emissive glass manufactured by depositing a dielectric layer on a low-emissive layer using a metal oxide as a target under a vacuum argon gas atmosphere according to a method of manufacturing a low-emissive glass according to an embodiment of the present invention. A graph showing the distribution of atoms.
본 발명은 저방사층; 및 상기 저방사층 상에 형성된 유전체층을 포함하고, 방사율이 0.01 내지 0.3이며, 가시광 투과율이 70% 이상인 저방사 유리에 관한 것이다.The present invention is a low emission layer; And a dielectric layer formed on the low emissive layer, wherein the emissivity is 0.01 to 0.3 and the visible light transmittance is 70% or more.
이하, 본 발명의 저방사 유리를 보다 상세하게 설명하도록 한다.Hereinafter, the low-emissivity glass of this invention is demonstrated in detail.
상기한 바와 같이, 본 발명의 저방사 유리는 저방사층; 및 상기 저방사층 상에 형성된 유전체층을 포함하고, 방사율이 0.01 내지 0.3이며, 가시광 투과율이 70% 이상이다.As described above, the low-emissive glass of the present invention is a low-emissive layer; And a dielectric layer formed on the low emission layer, wherein the emissivity is 0.01 to 0.3 and the visible light transmittance is 70% or more.
본 발명에서, 『저방사 유리』란 에너지 절약형 판유리의 하나로서, 로이 유리(low emissivity glass)를 의미하며, 이와 같은 저방사 유리는 일반 판유리 상에 전기 전도성이 우수한 금속 또는 금속 산화물 박막을 형성함으로써 가시광선 영역에서는 소정의 투과 특성을 유지시키면서 코팅면의 방사율을 낮추어 우수한 단열 효과를 제공하는 유리를 의미한다.In the present invention, "low-emission glass" is one of energy-saving plate glass, which means low emissivity glass, and such low-emissivity glass may be formed by forming a thin film of metal or metal oxide having excellent electrical conductivity on ordinary plate glass. In the visible light region, it means glass that provides excellent thermal insulation by lowering the emissivity of the coated surface while maintaining predetermined transmission characteristics.
또한, 『방사율(Emissivity)』이란 물체가 임의의 특정 파장을 갖는 에너지를 흡수, 투과 및 반사하는 비율을 의미하는 것이다, 즉, 본 발명에서 방사율은 적외선 파장영역에 있는 적외선 에너지의 흡수 정도를 나타내는 것으로서, 구체적으로는, 강한 열 작용을 나타내는 약 2,500 내지 40,000 nm의 파장영역에 해당하는 원적외선이 인가되었을 때, 인가되는 적외선 에너지에 대하여 흡수되는 적외선 에너지의 비율을 의미한다.In addition, the term "emissivity" means the rate at which an object absorbs, transmits, and reflects energy having any specific wavelength, that is, in the present invention, emissivity represents the degree of absorption of infrared energy in the infrared wavelength region. Specifically, when the far infrared rays corresponding to the wavelength region of about 2,500 to 40,000 nm exhibiting a strong thermal action is applied, it means the ratio of infrared energy absorbed to the applied infrared energy.
키르히호프의 법칙에 의하면 물질에 흡수된 적외선 에너지는 다시 방사되어 나오는 에너지와 동일하므로 흡수율은 방사율과 동일하다.Kirchhoff's law states that the absorbed energy is equal to the emissivity because the infrared energy absorbed by the material is equal to the energy emitted again.
또한, 흡수되지 않은 적외선 에너지는 물질 표면에서 반사되므로 방사율은 적외선 에너지 반사가 높을수록 낮은 값을 갖게 된다. 이를 수치적으로 나타내면, (방사율 = 1 - 적외선 반사율)의 관계를 갖는다.In addition, the unabsorbed infrared energy is reflected at the surface of the material, so the emissivity is lower as the infrared energy reflection is higher. If this is expressed numerically, it has a relationship of (emissivity = 1-infrared reflectance).
이와 같은 방사율은 이 분야에서 통상적으로 알려진 다양한 방법을 통하여 측정될 수 있으며, 특별히 제한되는 것은 아니지만, 예를 들면, KSL2514 규격에 의해 MK-3 등의 설비로 측정할 수 있다.Such emissivity can be measured through various methods commonly known in the art, and is not particularly limited, for example, can be measured by a facility such as MK-3 according to the KSL2514 standard.
저방사 유리에서는 이와 같은 강한 열 작용을 나타내는 원적외선에 대한 흡수율, 즉 방사율이 단열 성능의 정도를 측정하는데 있어서, 매우 중요한 의미를 나타낼 수 있다.In low-emissivity glass, the absorption rate to far-infrared rays exhibiting such a strong thermal action, that is, emissivity, may represent a very important meaning in measuring the degree of thermal insulation performance.
본 발명에 따른 저방사 유리의 방사율은 0.01 내지 0.3이며, 바람직하게는 0.01 내지 0.2일 수 있고, 보다 바람직하게는 0.01 내지 0.1일 수 있으며, 가장 바람직하게는 0.01 내지 0.08일 수 있다.The emissivity of the low-emissivity glass according to the present invention is 0.01 to 0.3, preferably 0.01 to 0.2, more preferably 0.01 to 0.1, most preferably 0.01 to 0.08.
상기 방사율이 0.01 미만인 경우, 원적외선의 반사에 따라 단열효과는 향상될 수 있으나, 가시광 투과율이 저하될 우려가 있으며, 0.3을 초과하는 경우, 원적외선 반사율이 너무 낮아 단열 성능이 저하될 우려가 있다.When the emissivity is less than 0.01, the thermal insulation effect may be improved according to the reflection of far infrared rays, but the visible light transmittance may be lowered. When the emissivity exceeds 0.3, the far infrared reflectance may be too low to lower the thermal insulation performance.
또한, 본 발명에 따른 저방사 유리는 가시광 투과율이 70% 이상이며, 바람직하게는 80% 이상일 수 있고, 보다 바람직하게는 85% 이상일 수 있다.In addition, the low-emissivity glass according to the present invention has a visible light transmittance of 70% or more, preferably 80% or more, and more preferably 85% or more.
상기 가시광 투과율이 70% 미만인 경우 쾌적한 시야를 제공하기 어려워질 우려가 있다.If the visible light transmittance is less than 70%, it may be difficult to provide a comfortable view.
상술한 바와 같이, 본 발명의 저방사 유리는 낮은 방사율과 함께 높은 가시광 투과율을 나타내는 것으로서, 우수한 단열 효과와 동시에 쾌적한 시야를 제공할 수 있는 기능성 유리로 사용될 수 있다.As described above, the low-emissive glass of the present invention exhibits high visible light transmittance with low emissivity, and can be used as a functional glass capable of providing a good visual field with excellent heat insulating effect.
나아가, 본 발명에 따른 저방사 유리의 면저항은 특별히 제한되는 것은 아니고, 본 발명의 목적에 따라 우수한 방사율 및 가시광 투과율을 동시에 나타낼 수 있는 범위 내에서 제한 없이 사용될 수 있으나, 예를 들면, 상기 저방사 유리의 면저항은 5 내지 15 Ω/㎠일 수 있다.Further, the sheet resistance of the low-emissivity glass according to the present invention is not particularly limited, and may be used without limitation within the range capable of simultaneously exhibiting excellent emissivity and visible light transmittance in accordance with the purpose of the present invention, for example, the low radiation The sheet resistance of the glass may be 5 to 15 Ω / cm 2.
본 발명에서, 『면저항(sheet resistance)』은 박막의 단위 두께당 비저항을 의미하는 것으로서, 이와 같은 면저항이 낮을수록 방사율 값도 낮아져서 우수한 단열성능을 얻을 수 있다. 이에 따라, 저방사 유리에서 적외선 반사율을 측정할 수 있는 척도가 될 수 있다.In the present invention, "sheet resistance" means a specific resistance per unit thickness of the thin film, the lower the sheet resistance, the lower the emissivity value can be obtained excellent heat insulating performance. Accordingly, it may be a measure to measure the infrared reflectance in the low-emissivity glass.
상기 면저항은 다양한 방식을 통하여 측정될 수 있으며, 측정방법이 특별히 한정되는 것은 아니지만 구체적인 예를 들면, 멀티미터(multimeter) 또는 4-탐침(four point probe) 등을 이용하여 측정될 수 있다.The sheet resistance may be measured through various methods, and the measuring method is not particularly limited, but may be measured using, for example, a multimeter or a four-point probe.
본 발명에 따른 저방사 유리의 면저항이 5 Ω/㎠ 미만인 경우, 저방사층의 두께가 두꺼워져야 하므로 가시광 투과율이 저하될 우려가 있으며, 15 Ω/㎠을 초과하는 경우, 방사율 값이 너무 커져서, 단열효과가 감소될 수 있다.When the sheet resistance of the low-emissivity glass according to the present invention is less than 5 Ω / ㎠, the thickness of the low-emissive layer should be thick, so there is a fear that the visible light transmittance is lowered, if it exceeds 15 Ω / ㎠, the emissivity value is too large, The adiabatic effect can be reduced.
한편, 상기 저방사층은 열 전도성이 우수한 금속을 포함하여 적외선 영역의 복사선을 차단하는 역할을 하는 기능성 층으로서, 그 종류가 특별히 제한되는 것은 아니지만, 예를 들면, 실버(Ag), 구리(Cu), 금(Au), 알루미늄(Al) 및 백금(Pt)으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것일 수 있으며, 가격, 색상 및 저 방사 특성 등을 고려할 때, 바람직하게는 전기전도도가 우수한 실버(Ag)를 사용할 수 있다.On the other hand, the low radiation layer is a functional layer that serves to block radiation in the infrared region, including a metal having excellent thermal conductivity, the type is not particularly limited, for example, silver (Ag), copper (Cu ), Gold (Au), aluminum (Al) and platinum (Pt) may include one or more selected from the group consisting of, considering the price, color and low emission characteristics, preferably excellent electrical conductivity Silver (Ag) can be used.
본 발명에 따른 저방사 유리의 저방사층은 상기 예시한 바와 같은 전도성 금속을 그 자체로서 포함할 수도 있고, 내구성 향상 등의 관점에서 니켈(Ni), 팔라듐(Pd), 백금(Pt), 구리(Cu) 및 금(Au)으로 이루어진 군에서 선택된 1종 이상의 원소를 도핑한 전도성 금속을 사용할 수도 있으며, 다양한 기능성을 향상시키기 위하여 다른 첨가물질을 추가로 혼합하여 사용할 수 있다.The low-emissivity layer of the low-emissivity glass according to the present invention may include the conductive metal as exemplified above as such, and may be nickel (Ni), palladium (Pd), platinum (Pt), copper from the viewpoint of durability improvement and the like. A conductive metal doped with one or more elements selected from the group consisting of (Cu) and gold (Au) may be used, and other additives may be further mixed to improve various functionalities.
또한, 상기 저방사층의 두께도 특별히 제한되는 것은 아니고, 본 발명의 목적에 따라 낮은 방사율 및 우수한 가시광 투과율을 동시에 구현할 수 있는 범위 내에서 다양한 두께로 형성될 수 있지만, 예를 들면, 8 내지 35 nm일 수 있으며, 바람직하게는 8 내지 15 nm일 수 있다.In addition, the thickness of the low-emissivity layer is not particularly limited and may be formed in various thicknesses within the range that can simultaneously implement a low emissivity and excellent visible light transmittance according to the purpose of the present invention, for example, 8 to 35 nm, preferably from 8 to 15 nm.
상기 저방사층의 두께가 8 nm 미만인 경우, 방사율이 크게 높아져서 단열 효과를 발휘하기 어려울 수 있으며, 35 nm를 초과하는 경우 방사율은 낮출 수 있으나, 상대적으로 가시광선 투과율이 크게 감소되어 쾌적한 시야 확보가 어려울 수 있다.When the thickness of the low emission layer is less than 8 nm, it may be difficult to exert a heat insulation effect due to the high emissivity is significantly increased, the emissivity may be lowered when it exceeds 35 nm, but the visible light transmittance is relatively reduced to ensure a comfortable view It can be difficult.
한편, 본 발명에 따른 저방사 유리는 유전체층이 저방사층 상에 직접 형성되어 있는 것일 수 있다.On the other hand, the low-emissive glass according to the present invention may be a dielectric layer is formed directly on the low-emissive layer.
여기서, 상기 『유전체층이 저방사층 상에 직접 형성되어 있다』는 의미는 저방사층과 유전체층 사이에 다른 층(ex 프라이머층)이 형성되어 있지 않고, 상기 유전체층이 직접적으로 저방사층 상에 형성되어 있는 것을 의미한다.Here, "the dielectric layer is directly formed on the low emission layer" means that no other layer (ex primer layer) is formed between the low emission layer and the dielectric layer, and the dielectric layer is formed directly on the low emission layer. I mean.
즉, 본 발명에 따른 저방사 유리는 저방사층 상에 다른 층이 형성될 수도 있으나, 상기와 같이 저방사층 상에 유전체층이 직접 형성될 수도 있으며, 이와 같이 저방사층 상에 유전체층이 직접 형성되는 경우, 다른 층의 게재로 인하여 야기될 수 있는 가시광 투과율의 저하 또는 방사율의 상승을 방지할 수 있으며, 공정을 간단하게 하고, 투자 비용을 절감할 수 있다.That is, in the low-emissivity glass according to the present invention, another layer may be formed on the low-emissive layer, but a dielectric layer may be directly formed on the low-emissive layer as described above, and the dielectric layer is directly formed on the low-emissive layer. If possible, it is possible to prevent a decrease in visible light transmittance or an increase in emissivity, which may be caused by the deposition of another layer, to simplify the process and to reduce the investment cost.
한편, 상기 유전체층의 종류도 특별히 제한되는 것은 아니지만, 예를 들면, 산화아연(zinc oxide), 산화알루미늄(aluminum oxide), 산화지르코늄(zirconium oxide), 이산화규소(silicon dioxide), 산화주석(tin oxide), 산화 티타늄(Titanium oxide), 산화 비스무트 (Bismuth oxide), 인듐이 첨가된 산화 주석(Indium doped tin oxide), 갈륨이 첨가된 산화 아연(Ga doped zinc oxide) 및 알루미늄이 첨가된 산화 아연(Al doped zinc oxide)으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.On the other hand, the type of the dielectric layer is not particularly limited, for example, zinc oxide, aluminum oxide, zirconium oxide, silicon dioxide, tin oxide ), Titanium oxide, bismuth oxide, indium doped tin oxide, gallium-doped zinc oxide, and aluminum-added zinc oxide (Al) doped zinc oxide) may include one or more selected from the group consisting of.
다만, 상기 유전체층에 포함되는 물질이 상술한 바에 한정되는 것은 아니고, 다양한 금속 산화물이 이에 포함될 수 있으며, 내구성 등을 향상시키기 위하여 금속 산화물에 비스무트(Bi), 붕소(B), 알루미늄(Al), 규소(Si), 마그네슘(Mg), 안티몬(Sb) 및 베릴륨(Be)으로 이루어진 군에서 선택된 1종 이상의 원소를 도핑할 수 있다.However, the material included in the dielectric layer is not limited to the above description, and various metal oxides may be included therein, and bismuth (Bi), boron (B), aluminum (Al), One or more elements selected from the group consisting of silicon (Si), magnesium (Mg), antimony (Sb), and beryllium (Be) may be doped.
이와 같은 유전체층은 본 발명에 따른 저방사 유리의 내화학성, 내습성, 내마모성 향상 및 방사율을 낮추는데 기여할 수 있다.Such a dielectric layer may contribute to improving chemical resistance, moisture resistance, wear resistance, and emissivity of the low-emissive glass according to the present invention.
또한, 상기 유전체층도 두께가 특별히 제한되는 것은 아니지만, 예를 들면, 10 내지 100 nm일 수 있고, 바람직하게는 30 내지 40 nm일 수도 있다.In addition, the dielectric layer is also not particularly limited in thickness, but may be, for example, 10 to 100 nm, preferably 30 to 40 nm.
여기서, 상기 유전체층의 두께가 10 nm 미만인 경우, 유리면이 변색될 우려가 있으며, 100 nm를 초과하는 경우 가시광 투과율이 저하될 우려가 있다.Here, when the thickness of the dielectric layer is less than 10 nm, there is a fear that the glass surface is discolored, when it exceeds 100 nm there is a fear that the visible light transmittance is lowered.
아울러, 본 발명에 따른 저방사 유리는 저방사층의 하면에 형성된 유전체층을 추가로 포함할 수 있다.In addition, the low-emissive glass according to the present invention may further include a dielectric layer formed on the lower surface of the low-emissive layer.
즉, 상기 유전체층이 유리 기판과 저방사층의 사이에 추가로 형성되는 경우로서, 상기 유전체층은 유리 기판의 표면 오염뿐만 아니라 Na+ 이온 등에 의한 저방사층의 오염을 방지하는 역할을 할 수 있으며, 기재와 저방사층 간의 접착력 향상 및 방사율 향상 효과를 가져올 수 있다.That is, as the dielectric layer is further formed between the glass substrate and the low emission layer, the dielectric layer may serve to prevent contamination of the low emission layer by Na + ions as well as surface contamination of the glass substrate, The adhesion between the substrate and the low emissive layer and the emissivity can be improved.
또한, 본 발명에 따른 저방사 유리는 저방사층 상에 형성된 유전체층 상에 형성된 오버코팅층을 추가로 포함할 수 있다.In addition, the low-emissive glass according to the present invention may further include an overcoating layer formed on the dielectric layer formed on the low-emissive layer.
상기 오버코팅층은 저방사 유리의 표면을 보호하고, 내구성을 부여하기 위한 것이다. 상기 오버코팅층으로 사용될 수 있는 물질은 그 종류가 특별히 제한되는 것은 아니고, 이 분야에서 통상적으로 오버코팅층으로 사용될 수 있는 물질을 모두 포함할 수 있다. 예를 들면, 질화규소(SiN), 알루미늄이 첨가된 질화규소(SiAlN) 또는 산화 질화규소(SiNOx) 등이 오버코팅층에 포함될 수 있다.The overcoating layer protects the surface of the low-emissive glass and provides durability. The material that can be used as the overcoating layer is not particularly limited in kind, and may include all materials that can be commonly used as the overcoating layer in the art. For example, silicon nitride (SiN), silicon nitride (SiAlN) or silicon oxynitride (SiNO x ), to which aluminum is added, may be included in the overcoating layer.
또한, 본 발명에 따른 저방사 유리는 저방사층의 하면에 형성된 언더코팅층을 추가로 포함할 수 있다.In addition, the low-emissivity glass according to the present invention may further include an undercoat layer formed on the lower surface of the low-emissivity layer.
상기 언더코팅층은 저방사 유리의 기판을 보호하고, 내구성을 부여하기 위한 것이다. 상기 언더코팅층으로 사용될 수 있는 물질도 그 종류가 특별히 제한되는 것은 아니고, 이 분야에서 통상적으로 언더코팅층으로 사용될 수 있는 물질을 포함할 수 있다. 예를 들면, 질화규소(SiN), 알루미늄이 첨가된 질화규소(SiAlN) 또는 산화 질화규소(SiNOx) 등이 언더코팅층에 포함될 수 있다.The undercoat layer is for protecting the substrate of the low-emissive glass and providing durability. The material that can be used as the undercoat layer is not particularly limited in kind, and may include a material that can be used as an undercoat layer in the art. For example, silicon nitride (SiN), silicon nitride (SiAlN) or silicon oxynitride (SiNO x ) to which aluminum is added may be included in the undercoat layer.
상기한 바와 같이, 본 발명에 따른 저방사 유리는 낮은 방사율로 인하여 우수한 단열 성능과 함께 높은 가시광 투과율을 가지므로 이와 같은 단열 효과 및 쾌적한 시야 확보가 요구되는 건축용 또는 자동차용 유리 등에 폭넓게 활용될 수 있다.As described above, since the low-emissivity glass according to the present invention has a high visible light transmittance with excellent heat insulation performance due to low emissivity, it can be widely used for building or automobile glass, which requires such a heat insulating effect and a comfortable visual field. .
다만, 상기 본 발명의 저방사 유리가 상기 기재된 용도에만 한정되는 것은 아니며, 높은 단열 성능과 함께 쾌적한 시야의 확보가 요구되는 다양한 분야의 유리에 적용될 수 있으며, 방사율 확보 및 가시광 투과율 향상을 위하여 추가적인 층을 증착할 필요가 없어 공정 비용이 절감되기 때문에, 대면적으로 제작되는 유리 등으로도 유용하게 사용될 수 있다.However, the low-emission glass of the present invention is not limited to the above-described applications, but may be applied to glass in various fields requiring high thermal insulation performance and a comfortable visual field, and further layers for securing emissivity and improving visible light transmittance. Since there is no need to deposit the process cost is reduced, it can be usefully used as a large-area glass and the like.
이하, 도 1을 참고하여 본 발명의 일 실시예에 따른 저방사 유리에 대해서 설명하도록 한다. 다만, 이는 본 발명의 일 태양에 불과하며, 본 발명의 범위가 하기 제시된 실시예에 의해 한정되는 것은 아니다.Hereinafter, a low-emissivity glass according to an embodiment of the present invention will be described with reference to FIG. 1. However, this is only one aspect of the present invention, and the scope of the present invention is not limited by the examples given below.
도 1은 본 발명의 일 실시예에 따른 저방사 유리의 층 구조를 개략적으로 나타낸 단면도이다.1 is a cross-sectional view schematically showing the layer structure of the low-emissive glass according to an embodiment of the present invention.
도 1을 참고하면, 본 발명의 일 실시예에 따른 저방사 유리는 기판(110), 유전체층(130), 저방사층(150) 및 유전체층(170)을 포함할 수 있다.Referring to FIG. 1, a low emission glass according to an embodiment of the present invention may include a substrate 110, a dielectric layer 130, a low emission layer 150, and a dielectric layer 170.
기판(110) 상에 순차적으로 유전체층(130), 저방사층(150) 및 유전체층(170)이 형성되며, 유전체층(130)과 저방사층(150) 사이나 저방사층(150)과 유전체층(170) 사이에 전기전도도가 낮은 다른 층(ex. 프라이머층)이 증착되어 있지 않아 가시광 투과율이 감소될 우려가 없다.The dielectric layer 130, the low emission layer 150, and the dielectric layer 170 are sequentially formed on the substrate 110, and between the dielectric layer 130 and the low emission layer 150, or between the low emission layer 150 and the dielectric layer ( There is no fear that the visible light transmittance may be reduced since no other layer (ex. Primer layer) having low electrical conductivity is deposited between the 170).
뿐만 아니라, 본 발명은 또한, 진공 조건 하에서 금속 산화물을 타겟으로 이용하여 저방사층 상에 유전체층을 직접 증착하는 단계를 포함하는 저방사 유리의 제조방법에 관한 것이다.In addition, the present invention also relates to a method for producing a low-emissive glass comprising directly depositing a dielectric layer on a low-emissive layer using a metal oxide as a target under vacuum conditions.
여기서, 상기 진공 조건이란, 진공 상태의 분위기를 조성하는 조건을 의미하며, 예를 들면, 상기 증착은 공정압력이 1 내지 10 mTorr인 진공 하에서 수행할 수 있고, 바람직하게는 2 내지 6 mTorr인 진공 하에서 수행할 수 있으며, 보다 바람직하게는 3 내지 5 mTorr인 진공 하에서 수행할 수 있다.Here, the vacuum condition means a condition for creating an atmosphere in a vacuum state, for example, the deposition may be carried out under a vacuum process pressure of 1 to 10 mTorr, preferably a vacuum of 2 to 6 mTorr It can be carried out under a vacuum, more preferably 3 to 5 mTorr.
상기 공정압력이 1 mTorr 미만인 경우, 고에너지를 갖는 증착 물질이 기재에 충격을 가함으로써 막질이 저하될 우려가 있으며, 10 mTorr를 초과하는 경우, 입자들의 평균 자유행로가 줄어들어 증착이 어려워질 수 있다.If the process pressure is less than 1 mTorr, there is a risk that the film quality is lowered by the impact of the deposition material having a high energy on the substrate, if it exceeds 10 mTorr, the average free path of the particles may be reduced and deposition may be difficult. .
또한, 상기 증착 시 진공을 형성하기 위하여 이 분야에서 통상적으로 사용되는 다양한 비활성 가스가 공급될 수 있으며 상기 비활성 가스의 종류가 특별히 제한되는 것은 아니지만, 예를 들면, 상기 증착은 질소 가스 또는 아르곤 가스 하에서 수행할 수 있으며, 바람직하게는 아르곤 가스 분위기 하에서 수행할 수 있다.In addition, various inert gases conventionally used in this field may be supplied to form a vacuum during the deposition, and the type of the inert gas is not particularly limited, but for example, the deposition may be performed under nitrogen gas or argon gas. It may be carried out, preferably in an argon gas atmosphere.
상기 비활성 가스 분위기 하에서 증착을 수행하는 경우, 그 주입량은 특별히 제한되는 것은 아니지만, 예를 들면, 10 내지 100 sccm(Standard Cubic Centimeter per minute)일 수 있다.When the deposition is performed in the inert gas atmosphere, the injection amount is not particularly limited, but may be, for example, 10 to 100 sccm (Standard Cubic Centimeter per minute).
상기 비활성 가스가 10 sccm 미만으로 주입되어 비활성 분압이 낮을 경우, 스퍼터의 플라즈마 이그니션(ignition)이 일어나지 않아 증착효율이 저하될 수 있으며, 100 sccm을 초과하여 주입되어 비활성 분압이 너무 높을 경우, 입자들의 평균 자유행로가 줄어들어 증착이 수행되지 않거나, 기체 분자들에 의해 막의 물성이 저하될 우려가 있다.When the inert gas is injected at less than 10 sccm and the inert partial pressure is low, the plasma ignition of the sputter may not occur, and thus the deposition efficiency may be lowered. As the average free path is reduced, deposition may not be performed, or the physical properties of the film may be degraded by gas molecules.
또한, 상기 증착 방법은 진공 조건에서 수행되는 한, 유리 상에 기능성 층을 증착하기 위하여 이 분야에서 통상적으로 사용될 수 있는 모든 증착 방법을 포함할 수 있으며, 특별히 제한되는 것은 아니다.In addition, the deposition method may include any deposition method conventionally used in the art for depositing a functional layer on glass, as long as it is performed under vacuum conditions, and is not particularly limited.
구체적인 예를 들면, 진공 조건에서 수행되는 진공 증착 방법은 모두 포함할 수 있으며, 증착을 위하여 저항가열 증발법, 전자빔 증발법, 레이저빔 증발법, 플라스마 스퍼터링 방법 등이 사용될 수 있으며, 바람직하게는, 플라스마를 이용한 스퍼터링 방법이 사용될 수 있다.For example, the vacuum deposition method performed under vacuum conditions may include all, resistance heating evaporation method, electron beam evaporation method, laser beam evaporation method, plasma sputtering method, etc. may be used for the deposition, preferably, Plasma sputtering methods can be used.
상기 플라스마를 이용한 스퍼터링 방법을 이용하는 경우, 균일한 성막이 가능하고, 박막의 응착력이 높으며, 금속, 합금, 화합물, 절연체 등 다양한 재료의 성막이 가능할 뿐 아니라 타겟의 냉각이 가능하고, 큰 타겟을 사용할 수 있어 대형화 박막의 유리를 제조하는데 적합할 수 있으며, 이와 같은 플라스마 스퍼터링 방법의 구체적인 예를 들면, DC 스퍼터링, RF 스퍼터링, 마그네트론 스퍼터링, 반응성 스퍼터링 등이 있다.When the sputtering method using the plasma is used, uniform film formation is possible, the adhesion of the thin film is high, and various materials such as metals, alloys, compounds, and insulators can be formed, as well as the target can be cooled, and a large target can be formed. It can be used to make glass of a large sized thin film, and specific examples of such plasma sputtering methods include DC sputtering, RF sputtering, magnetron sputtering, reactive sputtering, and the like.
한편, 상기 플라스마를 이용한 스퍼터링 방법을 이용 시에, 상기 유전체층의 증착은 1 내지 5 W/㎠의 입력 전력을 인가하여 수행할 수 있다.On the other hand, when using the plasma sputtering method, the deposition of the dielectric layer may be performed by applying an input power of 1 to 5 W / ㎠.
상기 입력 전력이 1 W/㎠ 미만인 경우, 증착 속도가 낮아 생산성이 저하되고, 증착되는 막과 기판 간의 부착력이 떨어질 수 있으며, 5 W/㎠를 초과하는 경우, 기판에 손상을 입히거나, 원료 물질인 타겟의 파손 또는 용융을 일으킴으로써 공정 장비에 큰 손상을 초래할 우려가 있다.When the input power is less than 1 W / ㎠, the deposition rate is low, the productivity is lowered, the adhesion between the film and the substrate to be deposited may be lowered, and when the input power exceeds 5 W / ㎠, damage to the substrate, or the raw material There is a risk of causing large damage to the process equipment by causing breakage or melting of the target.
상기 플라스마 스퍼터링 방법에 따른 저방사 유리의 제조방법에 대한 구체적인 예를 들면, 우선, 진공 챔버 내에 아르곤 가스와 같은 비활성 가스를 공급하고, 타겟 물질이 설치된 캐소드(cathode)에 전압을 가한다. 이 경우, 상기 캐소드로부터 방출된 전자들이 아르곤 가스의 기체원자와 충돌하여 아르곤을 이온화(Ar+)시키게 된다. 이어서, 상기 아르곤이 여기자(excite)가 되면서 전자를 방출하면, 에너지가 방출되며, 이때 글로우 방전(glow discharge)이 발생하여 이온과 전자가 공존하는 플라스마(plasma)를 형성한다.As a specific example of the method of manufacturing the low-emissivity glass according to the plasma sputtering method, first, an inert gas such as argon gas is supplied into a vacuum chamber, and a voltage is applied to a cathode provided with a target material. In this case, electrons emitted from the cathode collide with gas atoms of argon gas to ionize argon (Ar + ). Subsequently, when the argon emits electrons as it becomes an excite, energy is released, and a glow discharge occurs, thereby forming a plasma in which ions and electrons coexist.
상기 플라스마 내의 Ar+ 이온은 큰 전위차에 의하여 캐소드(타겟), 즉 금속 산화물 쪽으로 가속되어 타겟의 표면과 충돌하게 되고, 이에 따라 타겟 원자들이 튀어나와 저방사층 상에 박막을 형성하여 유전체층을 증착할 수 있다.Ar + ions in the plasma are accelerated toward the cathode (target), i.e., the metal oxide, by the large potential difference, and collide with the surface of the target. Accordingly, the target atoms stick out to form a thin film on the low emission layer to deposit a dielectric layer. Can be.
상기한 바와 같이, 본 발명에 따른 저방사 유리의 제조방법에 의하면, 저방사층 상에 유전체층을 증착하는 경우, 고산소 분위기 하에서 증착이 이루어지지 않고, 진공 조건 하에서 증착을 수행할 수 있으므로 저방사층의 산화를 방지하기 위한 프라이머층을 별도로 증착하지 않아도 저방사층 내의 금속 물질이 산화되는 것을 방지할 수 있다.As described above, according to the method of manufacturing the low-emissivity glass according to the present invention, when the dielectric layer is deposited on the low-emission layer, the deposition is not performed under a high oxygen atmosphere, and thus the deposition can be performed under vacuum conditions. It is possible to prevent the metal material in the low-emissive layer from oxidizing without separately depositing a primer layer for preventing oxidation of the layer.
따라서 저방사층이 산화될 우려가 없으므로 우수한 방사성능을 유지할 수 있을 뿐 아니라, 저방사층의 산화방지를 위하여 프라이머 층을 증착하지 않아도 되므로 전기전도도가 낮은 프라이머 층의 증착으로 인하여 발생될 수 있는 가시광 투과율의 감소도 방지할 수 있다.Therefore, the low radiation layer does not have to be oxidized, so it is possible to maintain excellent radioactivity and not to deposit a primer layer to prevent oxidation of the low radiation layer, so that visible light may be generated due to the deposition of a primer layer having low electrical conductivity. The decrease in transmittance can also be prevented.
[실시예]EXAMPLE
이하, 본 발명은 다음 실시예 및 비교예에 의거하여 더욱 상세히 설명하도록 하며, 다만, 본 발명이 이에 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail based on the following examples and comparative examples, but the present invention is not limited thereto.
실시예 1Example 1
크기가 370 mm × 470 mm × 6 mm의 플로트 유리(float glass) 기판을 준비하고, 성막 전에 진공 챔버 내의 공정압력이 5 mTorr가 될 때까지 배기하여 진공 상태를 형성한 후, 챔버 내에 상기 유리 기판을 설치하였다. 이 때, 상기 챔버 내의 캐소드 상에 산화 아연을 타겟 물질로 미리 배치하였다.After preparing a float glass substrate having a size of 370 mm x 470 mm x 6 mm, and evacuating until the process pressure in the vacuum chamber becomes 5 mTorr prior to film formation, a vacuum state is formed, and then the glass substrate is formed in the chamber. Was installed. At this time, zinc oxide was previously placed on the cathode in the chamber as the target material.
이어서, 상기 챔버 내에 30 sccm의 주입속도로 아르곤 가스를 주입하고, 1.4W/㎠의 입력 전력을 인가하여 플라스마를 발생시켰다. 이에 따라 유리 기판 상에 타겟 원자들을 증착함으로써 산화 아연으로 구성된 제1유전체층을 형성하였다.Subsequently, argon gas was injected into the chamber at an injection speed of 30 sccm, and an input power of 1.4 W / cm 2 was applied to generate plasma. Accordingly, a first dielectric layer made of zinc oxide was formed by depositing target atoms on a glass substrate.
상기한 바와 마찬가지 방식으로 실버(Ag)를 타겟 물질로 하여 캐소드 상에 미리 배치하고, 20 sccm의 주입속도로 아르곤 가스를 주입한 후, 0.8 W/㎠의 입력 전력을 인가하여 상기 제1유전체층 상에 저방사층을 형성하였다. 또한, 다시 산화 아연을 타겟 물질로 하여 캐소드 상에 배치하고, 30 sccm의 주입속도로 아르곤 가스를 주입한 후, 1.4 W/㎠의 입력 전력을 인가하여 상기 저방사층 상에 제2유전체층을 형성하였다.In the same manner as described above, silver (Ag) is pre-positioned on the cathode using a target material, and argon gas is injected at an injection rate of 20 sccm, and then an input power of 0.8 W / cm 2 is applied to the first dielectric layer. A low emissive layer was formed at. In addition, after arranging zinc oxide as a target material on the cathode and injecting argon gas at an injection rate of 30 sccm, an input power of 1.4 W / cm 2 is applied to form a second dielectric layer on the low emission layer. It was.
이에 따라, 제조된 저방사 유리에서, 상기 유리 기판 상에 형성된 제1유전체층의 두께는 35 nm였고, 상기 저방사층의 두께는 10 nm였으며, 상기 저방사층 상에 형성된 제2유전체층의 두께는 45 nm였다.Accordingly, in the produced low radiation glass, the thickness of the first dielectric layer formed on the glass substrate was 35 nm, the thickness of the low radiation layer was 10 nm, and the thickness of the second dielectric layer formed on the low radiation layer was 45 nm.
실시예 2Example 2
상기 저방사층의 두께가 11.5nm이고, 제2유전체층의 두께가 59 nm가 되도록 증착을 수행하였다는 점을 제외하고는, 다른 조건은 모두 실시예 1과 동일하게 하여 실시예 2에 따른 저방사 유리를 제조하였다.Except that the deposition was performed so that the thickness of the low-emissive layer is 11.5nm, the thickness of the second dielectric layer is 59nm, all other conditions are the same as in Example 1 low-emission according to Example 2 Glass was prepared.
실시예 3Example 3
상기 저방사층의 두께가 11.5 nm이 되도록 증착을 수행하였다는 점을 제외하고는, 다른 조건은 모두 실시예 1과 동일하게 하여 실시예 3에 따른 저방사 유리를 제조하였다.Except that the deposition was performed so that the thickness of the low-emissive layer is 11.5 nm, all other conditions were the same as in Example 1 to prepare a low-emissive glass according to Example 3.
비교예 1Comparative Example 1
유리 기판 상에 형성된 제1유전체층 상에 니켈크롬을 타겟 물질로 이용하여 30 sccm의 아르곤 가스를 주입하고, 0.8 W/㎠의 입력 전력을 인가하여 제1프라이머층을 증착한 후, 상기 제1프라이머층 상에 저방사층을 증착하고, 이어서, 상기 저방사층 상에 니켈크롬을 타겟 물질로 이용하여 30 sccm의 아르곤 가스를 주입하고, 0.8 W/㎠의 입력 전력을 인가하여 제2프라이머층을 증착한 후, 상기 제2프라이머 층 상에 산화아연을 타겟 물질로 이용하여 제2유전체층을 증착하였다는 점을 제외하고는, 다른 조건은 실시예 1과 모두 동일하게 하여 비교예 1에 따른 저방사 유리를 제조하였다.After injecting 30 sccm of argon gas using nickel chromium as a target material on the first dielectric layer formed on the glass substrate, and depositing the first primer layer by applying an input power of 0.8 W / cm 2, the first primer A low emission layer was deposited on the layer, and then 30 sccm of argon gas was injected onto the low emission layer using nickel chromium as a target material, and a second primer layer was applied by applying an input power of 0.8 W / cm 2. After deposition, except that the second dielectric layer was deposited on the second primer layer by using zinc oxide as a target material, the other conditions were the same as in Example 1, and the low-emissivity according to Comparative Example 1 Glass was prepared.
여기서, 상기 제1프라이머층 및 제2프라이머층의 두께는 각각 1.5nm이었다.Here, the thicknesses of the first primer layer and the second primer layer were 1.5 nm, respectively.
비교예 2Comparative Example 2
아연을 타겟 물질로 이용하여 산소 20 sccm 및 아르곤 20 sccm이 혼합 주입된 고 산소 분위기 하에서 제1유전체층 및 제2유전체층을 각각 증착하였다는 점 및 제1유전체층 상에 니켈크롬을 타겟 물질로 이용하여 비교예 1과 동일한 조건으로 제1프라이머층을 증착한 후, 상기 제1프라이머층 상에 저방사층을 증착하였다는 점을 제외하고는, 다른 조건은 실시예 1과 모두 동일하게 하여 비교예 2에 따른 저방사 유리를 제조하였다.The first dielectric layer and the second dielectric layer were deposited in a high oxygen atmosphere in which 20 sccm of oxygen and 20 sccm of oxygen were mixed using zinc as a target material, and nickel chromium was used as the target material on the first dielectric layer. Except for depositing a first primer layer under the same conditions as in Example 1, and then depositing a low-emissivity layer on the first primer layer, the other conditions were the same as in Example 1 to Comparative Example 2 According to the low-emissivity glass was prepared.
여기서, 상기 제1프라이머층의 두께는 1.5 nm이었다.Here, the thickness of the first primer layer was 1.5 nm.
비교예 3Comparative Example 3
제1프라이머층을 증착하지 않고, 제1유전체층 상에 바로 저방사층을 증착하였다는 점을 제외하고는 다른 조건은 비교예 2와 모두 동일하게 하여 비교예 3에 따른 저방사 유리를 제조하였다.A low-emissive glass according to Comparative Example 3 was prepared in the same manner as in Comparative Example 2 except that the low-emissive layer was deposited directly on the first dielectric layer without depositing the first primer layer.
시험예Test Example
1. 방사율 및 가시광 투과율 측정1. Emissivity and visible light transmittance measurement
상기 실시예 1 및 비교예 1 내지 3에 따른 저방사 유리의 방사율 및 가시광 투과율을 각각 방사율 측정장치(INGLAS TIR 100-2) 및 분광 광도계(Spectrophotometer; model Shimazu solid spec 3700)를 이용하여 측정하였고, 이를 하기 표 1에 나타내었다.The emissivity and visible light transmittance of the low emissive glass according to Example 1 and Comparative Examples 1 to 3 were measured using an emissivity measuring device (INGLAS TIR 100-2) and a spectrophotometer (Spectrophotometer; model Shimazu solid spec 3700), This is shown in Table 1 below.
[표 1]TABLE 1
Figure PCTKR2010004520-appb-I000001
Figure PCTKR2010004520-appb-I000001
Z: 산화 아연을 원료로 하여 증착한 유전체층Z: Dielectric layer deposited by using zinc oxide as a raw material
Z*: 아연을 원료로 하여 증착한 유전체층Z *: Dielectric layer deposited using zinc as a raw material
ε: 방사율 N: 니켈크롬 층ε: emissivity N: nickel chromium layer
VT: 가시광 투과율(%) A: 실버(Ag)층VT: visible light transmittance (%) A: silver (Ag) layer
상기 표 1을 참고하면, 산화 아연을 원료로 이용하여 아르곤 가스 분위기에서 제1유전체층 및 제2유전체층을 진공 증착한 실시예 1에 따른 저방사 유리는, 니켈크롬 층을 각각 실버(Ag)층의 상부 및 하부에 증착하여 프라이머층을 형성하였다는 점을 제외하고는 다른 조건은 모두 동일하게 한 비교예 1에 따른 저방사 유리와 비교하여 현저하게 우수한 가시광 투과율을 나타내었다.Referring to Table 1, the low-emissivity glass according to Example 1 in which the first dielectric layer and the second dielectric layer were vacuum deposited in an argon gas atmosphere using zinc oxide as a raw material, respectively, the nickel chromium layer was formed of a silver (Ag) layer. Except for depositing on the top and bottom to form a primer layer, all other conditions showed a remarkably good visible light transmittance compared to the low-emission glass according to Comparative Example 1, which was the same.
즉, 실시예 1에 따른 저방사 유리는 0.078의 낮은 방사율을 나타냄과 동시에 비교예 1 및 2에 따른 저방사 유리와 비교하여 현저하게 높은 86.7%의 가시광 투과율을 나타내었다.That is, the low-emissivity glass according to Example 1 exhibited a low emissivity of 0.078 and at the same time exhibited a significantly higher visible light transmittance of 86.7% compared to the low-emissivity glasses according to Comparative Examples 1 and 2.
또한, 고 산소 분위기 하에서 아연을 타겟 물질로 이용하여 제2유전체층을 진공 증착한 비교예 2에 따른 저방사 유리의 광 특성을 살펴보면, 비교예 2에 따른 저방사 유리는 프라이머층의 적층에 따라 저방사층의 산화가 방지되어 방사율이 0.062로 낮은 값을 나타내었으나, 프라이머층의 적층으로 인하여 가시광 투과율이 68%로 낮게 나타났고, 고 산소 분위기 하에서 아연을 타겟 물질로 이용하여 프라이머층 없이 제1유전체층 및 제2유전체층을 증착한 비교예 3에 따른 저방사 유리는 방사율도 현저하게 높고, 가시광 투과율도 낮게 나타났다.In addition, the optical properties of the low-emissive glass according to Comparative Example 2 in which the second dielectric layer was vacuum deposited using zinc as a target material under high oxygen atmosphere were examined. Although oxidation of the emission layer was prevented, the emissivity was low as 0.062, but the visible light transmittance was low as 68% due to the stacking of the primer layer. In the high oxygen atmosphere, the first dielectric layer was used without the primer layer using zinc as a target material. And the low-emissivity glass according to Comparative Example 3 in which the second dielectric layer was deposited, the emissivity was remarkably high and the visible light transmittance was also low.
2. 면저항 및 광 특성 측정2. Measurement of sheet resistance and optical properties
이하, 실시예 1 내지 3 및 비교예 1에 따른 저방사 유리의 면저항, 방사율 및 가시광 투과율을 하기 표 2에 나타내었다.Hereinafter, the sheet resistance, emissivity, and visible light transmittance of the low-emissive glass according to Examples 1 to 3 and Comparative Example 1 are shown in Table 2 below.
[표 2]TABLE 2
Figure PCTKR2010004520-appb-I000002
Figure PCTKR2010004520-appb-I000002
Z: 산화 아연을 이용하여 증착한 유전체층Z: dielectric layer deposited using zinc oxide
N: 니켈크롬 층 A: 은(Ag)층N: nickel chromium layer A: silver (Ag) layer
상기 표 2에 나타난 바와 같이, 평균 면저항에 있어서는 실시예 2에 따른 저방사 유리가 가장 낮게 나타났고, 방사율은 실시예 3이 가장 낮게 나타났으며, 측정된 실시예 1 내지 3 및 비교예 1에 따른 저방사 유리 모두 양호한 면저항값 및 방사율을 나타내었다.As shown in Table 2, in the average sheet resistance, the low-emissivity glass according to Example 2 was the lowest, and the emissivity was the lowest in Example 3, and the measured Examples 1 to 3 and Comparative Example 1 All low-emissivity glasses showed good sheet resistance and emissivity.
그러나, 가시광 투과율은 실시예 1 내지 3에 따른 저방사 유리가 비교예 1에 따른 저방사 유리와 비교하여 현저하게 높게 나타났다.However, the visible light transmittance of the low-emissive glass according to Examples 1 to 3 was significantly higher than that of the low-emissive glass according to Comparative Example 1.
이는, 비교예 1에 따른 저방사 유리는 실시예 1 내지 3에 따른 저방사 유리와 비교하여, 동일 구조에서 산화아연보다 상대적으로 낮은 면저항을 가지는 니켈크롬 층을 추가로 포함하기 때문에, 실시예 3과 비교할 때, 평균 면저항은 오히려 낮게 나타났지만, 니켈크롬과 같은 금속으로 구성된 프라이머층의 경우, 적층에 따라 두께가 조금만 증가하게 되더라도 가시광 투과율에 크게 영향을 미치므로 전체적인 가시광 투과율은 크게 감소된 것으로 나타났다.This is because the low-emissive glass according to Comparative Example 1 further includes a nickel chromium layer having a relatively lower sheet resistance than zinc oxide in the same structure, compared to the low-emissive glass according to Examples 1 to 3, Example 3 Compared with, the average sheet resistance was rather low, but the primer layer composed of metals such as nickel chromium significantly reduced the overall visible light transmittance even though only a slight increase in thickness caused a great effect on the visible light transmittance. .
반면에, 실시예 1 내지 3에 따른 저방사 유리는 니켈크롬 층을 구비하지 않아도 우수한 방사성능이 유지하는 동시에, 80% 이상의 우수한 가시광 투과율을 나타내었다.On the other hand, the low-emission glass according to Examples 1 to 3 maintained excellent radioactivity even without a nickel chromium layer, and exhibited excellent visible light transmittance of 80% or more.
3. 제2유전체층의 원자성분 측정3. Atomic Component Measurement of Second Dielectric Layer
실시예 1 및 비교예 3에 따른 저방사 유리에 대하여 표면으로부터 아르곤 입자를 이용한 스퍼터 에칭을 수행하면서 XPS(x-ray photoelectron spectroscopy) 분석기를 가지고 원소분석을 수행하였다.Elemental analysis was performed with an x-ray photoelectron spectroscopy (XPS) analyzer while sputter etching using argon particles from the surface of the low-emissive glass according to Example 1 and Comparative Example 3.
그 결과, 도 2를 참고하면, 종래 저방사 유리의 제조방법에 따라 고 산소 분위기 하에서 금속을 타겟으로 이용하여 저방사층 상에 유전체층을 증착하여 제조된 비교예 3에 따른 저방사 유리는 저방사층과 유전체층 간에 섞임(mixing) 현상이 일어남에 따라 제2유전체층의 표면 상에 실버가 관찰되었으며, 실버가 표면부로 용출되는 섞임(mixing) 현상이 나타났다.As a result, referring to FIG. 2, the low-emissive glass according to Comparative Example 3 manufactured by depositing a dielectric layer on the low-emissive layer using a metal as a target under a high oxygen atmosphere according to the conventional method of manufacturing low-emissive glass is low-emission As a mixing phenomenon between the layer and the dielectric layer occurred, silver was observed on the surface of the second dielectric layer, and a mixing phenomenon in which silver eluted to the surface part appeared.
여기서, 에칭 시간(etching time)이 짧은 영역이 다층박막의 표면부가 되는데, 도 2에 나타난 바와 같이, 비교예 3에 따른 저방사 유리는 저방사층을 구성하는 실버가 표면부에도 일정량 함유되어 있는 것으로 나타났으며, 상부의 제2유전체층과 저방사층 경계에도 미량의 실버가 분포하는 것으로 나타났다.Here, a region having a short etching time becomes a surface portion of the multilayer thin film. As shown in FIG. 2, in the low-emission glass according to Comparative Example 3, a predetermined amount of silver constituting the low-emission layer is also contained in the surface portion. A small amount of silver was also distributed at the upper boundary of the second dielectric layer and the low emission layer.
반면에, 도 3을 참고하면, 본 발명의 일 실시예에 따라 제조된 실시예 1에 따른 저방사 유리는 표면으로부터 에칭을 수행하는 동안 일정 시간까지 실버가 전혀 관찰되지 않았으며, 저방사층에 해당하는 영역에 이르러서 균일하게 실버가 관찰된 것으로 나타났으며, 저방사층과 유전체층이 명확하게 분리된 상태로 존재한다는 점을 알 수 있다.On the other hand, referring to Figure 3, the low-emissivity glass according to Example 1 prepared according to an embodiment of the present invention was not observed at all until a certain time while performing the etching from the surface, the low-emission layer It was found that silver was observed uniformly in the corresponding area, and it can be seen that the low-emissive layer and the dielectric layer exist in a clearly separated state.

Claims (18)

  1. 기재; 상기 기재 상에 형성된 저방사층; 및 상기 저방사층 상에 형성된 유전체층을 포함하고,materials; A low emission layer formed on the substrate; And a dielectric layer formed on the low emission layer,
    방사율이 0.01 내지 0.3이며, 가시광 투과율이 70% 이상인 저방사 유리.Low emissivity glass whose emissivity is 0.01-0.3 and visible light transmittance is 70% or more.
  2. 제 1항에 있어서,The method of claim 1,
    방사율이 0.01 내지 0.2인 것을 특징으로 하는 저방사 유리.Low emissivity glass, characterized in that the emissivity is 0.01 to 0.2.
  3. 제 1 항에 있어서,The method of claim 1,
    가시광 투과율이 80% 이상인 것을 특징으로 하는 저방사 유리.Low emission glass, characterized in that the visible light transmittance is 80% or more.
  4. 제 1 항에 있어서,The method of claim 1,
    면저항이 5 내지 15 Ω/㎠인 것을 특징으로 하는 저방사 유리.Low-resistance glass characterized by the sheet resistance of 5-15 ohms / cm <2>.
  5. 제 1 항에 있어서,The method of claim 1,
    저방사층은 실버, 구리, 금, 알루미늄 및 백금으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는 저방사 유리.Low-emissivity glass, the low-emissivity layer, characterized in that it comprises one or more selected from the group consisting of silver, copper, gold, aluminum and platinum.
  6. 제 1 항에 있어서,The method of claim 1,
    저방사층은 두께가 5 내지 35 nm인 것을 특징으로 하는 저방사 유리.The low-emissive layer is characterized in that the thickness is 5 to 35 nm.
  7. 제 1 항에 있어서,The method of claim 1,
    유전체층은 저방사층 상에 직접 형성되어 있는 것을 특징으로 하는 저방사 유리.A low radiation glass, wherein the dielectric layer is formed directly on the low emission layer.
  8. 제 1 항에 있어서,The method of claim 1,
    유전체층은, 산화아연, 산화알루미늄, 산화지르코늄, 이산화규소, 산화주석, 산화 티타늄, 산화 비스무트, 인듐 도핑 산화 주석, 갈륨 도핑 산화 아연 및 알루미늄 도핑 산화 아연으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는 저방사 유리.The dielectric layer includes one or more selected from the group consisting of zinc oxide, aluminum oxide, zirconium oxide, silicon dioxide, tin oxide, titanium oxide, bismuth oxide, indium doped tin oxide, gallium doped zinc oxide, and aluminum doped zinc oxide. Low emission glass characterized by the above-mentioned.
  9. 제 1 항에 있어서,The method of claim 1,
    유전체층은 두께가 10 내지 100 nm인 것을 특징으로 하는 저방사 유리.Low emission glass, characterized in that the dielectric layer has a thickness of 10 to 100 nm.
  10. 제 1 항에 있어서,The method of claim 1,
    저방사층의 하면에 형성된 유전체층을 추가로 포함하는 저방사 유리.A low radiation glass further comprising a dielectric layer formed on the bottom surface of the low emission layer.
  11. 제 1 항에 있어서,The method of claim 1,
    유전체층 상에 형성된 오버코팅층을 추가로 포함하는 것을 특징으로 하는 저방사 유리.A low-emissive glass, further comprising an overcoating layer formed on the dielectric layer.
  12. 제 1 항에 있어서,The method of claim 1,
    기재와 저방사층 사이에 형성된 언더코팅층을 추가로 포함하는 것을 특징으로 하는 저방사 유리Low emission glass, characterized in that it further comprises an undercoat layer formed between the substrate and the low emission layer
  13. 진공 조건 하에서 금속 산화물을 타겟으로 이용하여 저방사층 상에 유전체층을 직접 증착하는 단계를 포함하는 저방사 유리의 제조방법.A method for producing a low-emissive glass, comprising directly depositing a dielectric layer on a low-emissive layer using a metal oxide as a target under vacuum conditions.
  14. 제 13 항에 있어서,The method of claim 13,
    증착은 공정압력이 1 내지 10 mTorr인 진공 하에서 수행하는 것을 특징으로 하는 방법.And the deposition is carried out under vacuum with a process pressure of 1 to 10 mTorr.
  15. 제 13 항에 있어서,The method of claim 13,
    증착은 아르곤 가스 분위기 하에서 수행하는 것을 특징으로 하는 방법.And the deposition is carried out under an argon gas atmosphere.
  16. 제 15 항에 있어서,The method of claim 15,
    아르곤 가스는 주입량이 10 내지 100 sccm인 것을 특징으로 하는 방법.Argon gas is a method characterized in that the injection amount is 10 to 100 sccm.
  17. 제 13 항에 있어서,The method of claim 13,
    증착은 플라스마 스퍼터링 방법을 이용하여 수행하는 것을 특징으로 하는 방법.And the deposition is carried out using a plasma sputtering method.
  18. 제 17 항에 있어서,The method of claim 17,
    증착은 1 내지 5 W/㎠의 입력 전력을 인가하여 플라스마를 형성시키는 것을 특징으로 하는 방법.The deposition is characterized in that the plasma is applied by applying an input power of 1 to 5 W / cm 2.
PCT/KR2010/004520 2008-08-14 2010-07-12 Low emissivity glass and method for manufacturing same WO2011010824A2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201080020074.1A CN102421719B (en) 2009-07-23 2010-07-12 Low emissivity glass and method for manufacturing same
US13/321,692 US8722210B2 (en) 2008-08-14 2010-07-12 Low emissivity glass and method for manufacturing the same
RU2011144649/03A RU2561419C2 (en) 2009-07-23 2010-07-12 Low-emission glass and method of obtaining thereof
JP2012521571A JP2012533514A (en) 2009-07-23 2010-07-12 Low emission glass and manufacturing method thereof
DE112010003037T DE112010003037T8 (en) 2009-07-23 2010-07-12 Low emissivity glass and method of making the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0067301 2009-07-23
KR1020090067301A KR101302273B1 (en) 2008-08-14 2009-07-23 Low emissivity glass and preparing method thereof

Publications (2)

Publication Number Publication Date
WO2011010824A2 true WO2011010824A2 (en) 2011-01-27
WO2011010824A3 WO2011010824A3 (en) 2011-04-21

Family

ID=43499846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/004520 WO2011010824A2 (en) 2008-08-14 2010-07-12 Low emissivity glass and method for manufacturing same

Country Status (5)

Country Link
JP (1) JP2012533514A (en)
CN (1) CN102421719B (en)
DE (1) DE112010003037T8 (en)
RU (1) RU2561419C2 (en)
WO (1) WO2011010824A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015030549A1 (en) * 2013-09-02 2015-03-05 (주)엘지하우시스 Low-emissivity coating and construction material for window and door including same
US20210262670A1 (en) * 2019-01-04 2021-08-26 Whirlpool Corporation Automatic oven
CN113831027A (en) * 2021-10-25 2021-12-24 苏州瑞纳新材料科技有限公司 Low-E glass film and preparation process thereof
CN113880454A (en) * 2021-09-28 2022-01-04 吴江南玻华东工程玻璃有限公司 Preparation method of coated glass

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101499288B1 (en) * 2012-06-19 2015-03-05 (주)엘지하우시스 Low-emissivity coated board and building material including the same
CN102786231B (en) * 2012-08-24 2015-04-15 福耀玻璃工业集团股份有限公司 Low-eradiation coated glass available for heat treatment and sandwich glass products thereof
KR102001993B1 (en) * 2013-11-01 2019-07-22 (주)엘지하우시스 Low-emissivity coat, method for preparing low-emissivity coat and functional building material including low-emissivity coat for windows
CN103587167B (en) * 2013-11-15 2016-06-08 哈尔滨固泰电子有限责任公司 Visible ray transmission increasing low emissivity glass
CN105645783A (en) * 2015-11-11 2016-06-08 信义节能玻璃(芜湖)有限公司 Coated glass with high light transmittance and low radiation and preparation method thereof
CN108975726B (en) * 2018-09-30 2024-02-23 吴江南玻华东工程玻璃有限公司 ultra-LOW reflection toughened LOW-E glass
CN109987857B (en) * 2019-04-29 2021-11-23 布勒莱宝光学设备(北京)有限公司 Novel low-radiation energy-saving film system and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030076569A (en) * 2000-09-29 2003-09-26 니혼 이타가라스 가부시키가이샤 Transparent laminate having low emissivity
KR20080015002A (en) * 2005-05-12 2008-02-15 에이지씨 플랫 글래스 노스 아메리카, 인코퍼레이티드 Low emissivity coating with low solar heat gain coefficient, enhanced chemical and mechanical properties and method of making the same
KR20080053511A (en) * 2005-10-11 2008-06-13 카디날 씨지 컴퍼니 Low-emissivity coating having high visible transmission and low solar heat gain coefficient
KR20080093129A (en) * 2006-03-03 2008-10-20 어플라이드 매터리얼스 게엠베하 운트 컴퍼니 카게 Infrared radiation reflecting layer system and method for the production thereof
KR20090017402A (en) * 2007-08-14 2009-02-18 카디날 씨지 컴퍼니 Solar control low-emissivity coating

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6398925B1 (en) * 1998-12-18 2002-06-04 Ppg Industries Ohio, Inc. Methods and apparatus for producing silver based low emissivity coatings without the use of metal primer layers and articles produced thereby
ATE226562T1 (en) * 1998-12-21 2002-11-15 Cardinal Cg Co DIRT-REPELLENT COATING WITH LOW EMISSIONS FOR GLASS SURFACES
CN1159245C (en) * 2001-01-18 2004-07-28 章其初 Glass coated with low-radiation film
RU2190692C1 (en) * 2001-03-13 2002-10-10 Суханов Александр Аркадьевич Low-emission coat applied on transparent substrate
JP2006010930A (en) * 2003-06-27 2006-01-12 Asahi Glass Co Ltd High reflectance mirror
CN1274620C (en) * 2004-05-08 2006-09-13 上海耀皮工程玻璃有限公司 Double silver low-emissivity coated glass based on composite dielectric layer
JP2006206424A (en) * 2004-12-27 2006-08-10 Central Glass Co Ltd Ag FILM FORMING METHOD AND LOW-EMISSIVITY GLASS
US7339728B2 (en) * 2005-10-11 2008-03-04 Cardinal Cg Company Low-emissivity coatings having high visible transmission and low solar heat gain coefficient
RU2339591C2 (en) * 2006-07-25 2008-11-27 ООО Научно-производственное предприятие "РЕЗТЕХКОМПЛЕКТ" Low-emissive coating
CN101148329B (en) * 2007-09-13 2011-02-16 上海耀华皮尔金顿玻璃股份有限公司 Low radiation coated glass with double-silver composite structure and technique
CN101168476B (en) * 2007-10-12 2010-10-06 福耀玻璃工业集团股份有限公司 Low radiation coated glass capable of being bended by baking
US7901781B2 (en) * 2007-11-23 2011-03-08 Agc Flat Glass North America, Inc. Low emissivity coating with low solar heat gain coefficient, enhanced chemical and mechanical properties and method of making the same
CN101372396A (en) * 2008-10-07 2009-02-25 福耀玻璃工业集团股份有限公司 Bendable low radiation coated glass

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030076569A (en) * 2000-09-29 2003-09-26 니혼 이타가라스 가부시키가이샤 Transparent laminate having low emissivity
KR20080015002A (en) * 2005-05-12 2008-02-15 에이지씨 플랫 글래스 노스 아메리카, 인코퍼레이티드 Low emissivity coating with low solar heat gain coefficient, enhanced chemical and mechanical properties and method of making the same
KR20080053511A (en) * 2005-10-11 2008-06-13 카디날 씨지 컴퍼니 Low-emissivity coating having high visible transmission and low solar heat gain coefficient
KR20080093129A (en) * 2006-03-03 2008-10-20 어플라이드 매터리얼스 게엠베하 운트 컴퍼니 카게 Infrared radiation reflecting layer system and method for the production thereof
KR20090017402A (en) * 2007-08-14 2009-02-18 카디날 씨지 컴퍼니 Solar control low-emissivity coating

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015030549A1 (en) * 2013-09-02 2015-03-05 (주)엘지하우시스 Low-emissivity coating and construction material for window and door including same
US9688572B2 (en) 2013-09-02 2017-06-27 Lg Hausys, Ltd. Low-emissivity coating and functional construction material for window and door including same
US20210262670A1 (en) * 2019-01-04 2021-08-26 Whirlpool Corporation Automatic oven
US11767983B2 (en) * 2019-01-04 2023-09-26 Whirlpool Corporation Automatic oven
CN113880454A (en) * 2021-09-28 2022-01-04 吴江南玻华东工程玻璃有限公司 Preparation method of coated glass
CN113831027A (en) * 2021-10-25 2021-12-24 苏州瑞纳新材料科技有限公司 Low-E glass film and preparation process thereof

Also Published As

Publication number Publication date
DE112010003037T8 (en) 2013-06-06
JP2012533514A (en) 2012-12-27
DE112010003037T5 (en) 2013-04-18
RU2011144649A (en) 2013-08-27
CN102421719B (en) 2014-12-10
WO2011010824A3 (en) 2011-04-21
CN102421719A (en) 2012-04-18
RU2561419C2 (en) 2015-08-27

Similar Documents

Publication Publication Date Title
WO2011010824A2 (en) Low emissivity glass and method for manufacturing same
WO2011037365A2 (en) Low emissivity glass comprising dielectric layer and method for producing the same
US7858193B2 (en) Low emissivity (low-E) thin coating stacks with intermediate antidiffusion layers
US6669830B1 (en) Sputtering target, transparent conductive oxide, and process for producing the sputtering target
WO2018048034A1 (en) Functional building material for windows and doors
WO2015088269A1 (en) Low-emissivity coating film, method for manufacturing same, and functional construction material for window and doors including same
US4349425A (en) Transparent conductive films and methods of producing same
JP3453805B2 (en) Transparent conductive film
WO2015088267A1 (en) Low-emissivity coating film, method for manufacturing same, and functional construction material for window and doors including same
WO2015030549A1 (en) Low-emissivity coating and construction material for window and door including same
KR101302273B1 (en) Low emissivity glass and preparing method thereof
WO2019112320A1 (en) Functional building material for windows and doors
WO2017195929A1 (en) Silver alloy composition for forming conductive film, and preparation method therefor
US20010016253A1 (en) Glass article and glass substrate for display panel
WO2016017999A1 (en) Low-emissivity coating and functional construction material for window/door comprising low-emissivity coating
WO2020218880A1 (en) Coated article and method for manufacturing the same
KR20100057442A (en) Low emissivity glass having improved durability
US8722210B2 (en) Low emissivity glass and method for manufacturing the same
KR0179462B1 (en) Alkali metal diffusion barrier layer
US20130319523A1 (en) Conductive transparent glass substrate for photovoltaic cell
WO2019050193A1 (en) Functional building material for door and window
JPH07105166B2 (en) Fluorine-doped tin oxide film and method for reducing resistance thereof
JP7020458B2 (en) Glass substrate with film and its manufacturing method
Hara et al. Optimization and properties of Zn doped indium oxide films on plastic substrate
WO2010143794A1 (en) Etching paste having doping function, and formation method of selective emitter of solar cell using same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080020074.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10802417

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2012521571

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13321692

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120100030375

Country of ref document: DE

Ref document number: 112010003037

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2011144649

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 10802417

Country of ref document: EP

Kind code of ref document: A2