JPH07105166B2 - Fluorine-doped tin oxide film and method for reducing resistance thereof - Google Patents

Fluorine-doped tin oxide film and method for reducing resistance thereof

Info

Publication number
JPH07105166B2
JPH07105166B2 JP1245181A JP24518189A JPH07105166B2 JP H07105166 B2 JPH07105166 B2 JP H07105166B2 JP 1245181 A JP1245181 A JP 1245181A JP 24518189 A JP24518189 A JP 24518189A JP H07105166 B2 JPH07105166 B2 JP H07105166B2
Authority
JP
Japan
Prior art keywords
fluorine
tin oxide
oxide film
resistance
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1245181A
Other languages
Japanese (ja)
Other versions
JPH02168507A (en
Inventor
一夫 佐藤
芳夫 後藤
啓道 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP1245181A priority Critical patent/JPH07105166B2/en
Publication of JPH02168507A publication Critical patent/JPH02168507A/en
Publication of JPH07105166B2 publication Critical patent/JPH07105166B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高性能を有する酸化錫膜、特に太陽電池用基
板として有用な酸化錫膜に関するものである。
TECHNICAL FIELD The present invention relates to a tin oxide film having high performance, particularly a tin oxide film useful as a substrate for solar cells.

[従来の技術] 一般に酸化物透明導電膜では低抵抗、高透明であること
が要求されるが、導電性を左右する電導電子密度を高く
するにつれて可視光域で徐々に光吸収が増加するという
矛盾する側面をもっているため一般に低抵抗、高透明を
両立させることは極めて困難である。しかし、電力用太
陽電池用透明導電基板においては導電性を出来るだけ高
く維持したまま透明化を図ることが重要であるとされて
おり、特性の良い基板の開発が必要とされている。
[Prior Art] Generally, an oxide transparent conductive film is required to have low resistance and high transparency, but it is said that light absorption gradually increases in a visible light region as the density of electron conductors which influence conductivity is increased. Since it has contradictory aspects, it is generally extremely difficult to achieve both low resistance and high transparency. However, in a transparent conductive substrate for a solar cell for electric power, it is important to achieve transparency while keeping the conductivity as high as possible, and it is necessary to develop a substrate having good characteristics.

透明導電膜としてはガラス基板上に堆積した酸化錫や酸
化インジウムなどが知られており、太陽電池用基体、液
晶、電場発光素子等の表示素子用電極等に広く利用され
ている。特に酸化錫膜は化学的に安定な材料であり、ま
た低価格であることから大面積導電基板として有用であ
り、主としてアモルファス太陽電池用基板用として活発
な研究が行なわれている。現在、ガラス基板上に酸化錫
膜を形成する一般的な方法は、四塩化錫を用いたスプレ
ー法、またはCVD法(化学気相蒸着法)であるが、特に
高性能な導電膜を形成する場合はCVD法を用いて、活剤
としてフッ素(F)を導入する手法が一般的である。
Known transparent conductive films include tin oxide and indium oxide deposited on a glass substrate, and are widely used for substrates for solar cells, liquid crystals, electrodes for display elements such as electroluminescent elements, and the like. In particular, the tin oxide film is a chemically stable material and is inexpensive, so that it is useful as a large-area conductive substrate, and active research is being carried out mainly for substrates for amorphous solar cells. At present, a general method for forming a tin oxide film on a glass substrate is a spray method using tin tetrachloride or a CVD method (chemical vapor deposition method), but a particularly high-performance conductive film is formed. In this case, a method of introducing fluorine (F) as an activator is generally used by using the CVD method.

しかしこのようにフッ素(F)をドーピングする場合、
酸化錫導電膜の比抵抗は10-4Ω・cm台まで到達し、導電
性の高い膜が比較的容易に得られる利点を有する反面、
逆に透過率の高い膜は逆に得にくい傾向があった。これ
はフッ素を用いた場合、電導電子密度を比較的容易に増
大することが低抵抗化を可能にしている訳であるが、電
導電子の増加は光学吸収を招くため透過率は逆に減少し
てしまうためである。これに対して、逆に電導電子密度
の少ない膜では透過率は向上するものの、抵抗増大が著
しく、太陽電池等に使用可能な実用的な低抵抗膜は得に
くかった。電導電子密度の少ない膜を低抵抗化するため
には膜厚を厚くする必要があるがこれは吸収増大を招
く。結果的に高透明と低抵抗の両立は困難であった。
However, when fluorine (F) is doped in this way,
The specific resistance of the tin oxide conductive film reaches the range of 10 −4 Ω · cm, which has the advantage that a highly conductive film can be obtained relatively easily.
On the contrary, a film having high transmittance tends to be difficult to obtain. This is because when fluorine is used, it is possible to reduce the resistance by relatively easily increasing the density of the electron conductors, but the increase of the electron conductors causes optical absorption, so that the transmittance decreases on the contrary. This is because it will end up. On the other hand, on the contrary, a film having a low electric conductor density has an improved transmittance, but the resistance is remarkably increased, and it has been difficult to obtain a practical low resistance film usable for a solar cell or the like. It is necessary to increase the film thickness in order to reduce the resistance of the film having a low electric conductor density, but this causes an increase in absorption. As a result, it was difficult to achieve both high transparency and low resistance.

一方、一般の上記の導電膜は、たとえばJ.H.Thomas III
(Appl.Phys.Lett.,42(1983)794),Y.Tawada AND Y.
Hamakawa(Proc.Int'1 PVSEC−1,Kobe,Japan(1984)17
9)等に明らかにされているように活性還元種に脆弱で
あり、この導電膜を水素プラズマにさらすと導電膜は黒
く変色し透明性を失い、甚だしい場合は粉状になり基板
から剥離する。酸化錫膜を形成した導電体上にアモルフ
ァスシリコン(a−Si)太陽電池を形成する最も一般的
な方法はグロー放電法を用いるプラズマCVD法である。
この方法を用いる場合アモルファスシリコン(a−Si)
・形成初期に導電膜は必ず水素プラズマにさらされるた
め、水素プラズマによる導電膜の劣化が問題となる。従
ってプラズマにさらされる前に高透過率を有していて
も、僅かでもプラズマにより劣化が生じた場合、この基
体を太陽電池に用いれば、導電膜は光の入射側になるた
め導電体の黒化は交換効率を低下させる原因となる。即
ち太陽電池用の基板としての透明導電体においてはまず
高透明であることと同時に水素プラズマによる導電膜の
透明性が損なわれない特性を有することが極めて重要で
ある。しかし現在までこれらの要件を満たす有効な解決
策は見出されていない。
On the other hand, the above-mentioned general conductive film is, for example, JHThomas III.
(Appl.Phys.Lett., 42 (1983) 794), Y.Tawada AND Y.
Hamakawa (Proc.Int'1 PVSEC-1, Kobe, Japan (1984) 17
It is vulnerable to active reducing species as revealed in 9), etc. When this conductive film is exposed to hydrogen plasma, the conductive film turns black and loses transparency, and in extreme cases it becomes powdery and peels from the substrate. . The most general method for forming an amorphous silicon (a-Si) solar cell on a conductor on which a tin oxide film is formed is a plasma CVD method using a glow discharge method.
When using this method, amorphous silicon (a-Si)
Since the conductive film is always exposed to hydrogen plasma at the initial stage of formation, deterioration of the conductive film due to hydrogen plasma poses a problem. Therefore, even if it has a high transmittance before being exposed to plasma, even if it is slightly deteriorated by plasma, if this substrate is used for a solar cell, the conductive film becomes the light incident side, so that the black color of the conductor is generated. This causes deterioration of exchange efficiency. That is, it is extremely important for a transparent conductor as a substrate for a solar cell to be highly transparent and to have the property of not impairing the transparency of the conductive film due to hydrogen plasma. However, to date no effective solution has been found to meet these requirements.

[発明の解決しようとする課題] 本発明は、従来技術が有していた前述の欠点を解消し、
低抵抗で高透過率を有し、かつ水素プラズマや水素イオ
ンなどの水素活性種に対して高耐久性を有する高品位の
フッ素ドープの透明導電膜、特にa−Si太陽電池用基板
として有用な透明性導電膜を提供することを目的とす
る。
[Problems to be Solved by the Invention] The present invention solves the above-mentioned drawbacks of the prior art,
Useful as a high-quality fluorine-doped transparent conductive film having low resistance and high transmittance and high durability against hydrogen active species such as hydrogen plasma and hydrogen ions, especially as a-Si solar cell substrate. It is an object to provide a transparent conductive film.

[課題を解決するための手段] 本発明は前述の課題を解決すべくなされたものであり、
導電体中のフッ素添加量と電導電子密度を特定の範囲に
制御することにより、膜の吸収量が極めて少なく高透明
で、かつ活性水素種に対して高耐久であり、活性水素種
により導電性が従来技術とは逆に向上する透明導電膜の
低抵抗化方法及び該方法により得られる透明導電膜を提
供するものである。即ち、フッ素を酸化錫に対し0.01〜
4mol%含み、電導電子密度が5×1019〜4×1020cm-3
あるフッ素ドープ酸化錫膜を基板上に形成し、該フッ素
ドープ酸化錫膜を非酸化性雰囲気に曝露することを特徴
とするフッ素ドープ酸化錫膜の低抵抗化方法を提供する
ものである。
[Means for Solving the Problems] The present invention has been made to solve the above problems.
By controlling the amount of fluorine added to the conductor and the density of the electric conductor within a specific range, the amount of absorption of the film is extremely small, it is highly transparent, and it is highly durable against active hydrogen species. However, the present invention provides a method for lowering the resistance of a transparent conductive film which is improved contrary to the prior art and a transparent conductive film obtained by the method. That is, 0.01 to about 0.01
A fluorine-doped tin oxide film containing 4 mol% and having an electric conductor density of 5 × 10 19 to 4 × 10 20 cm -3 is formed on a substrate, and the fluorine-doped tin oxide film is exposed to a non-oxidizing atmosphere. A method for reducing the resistance of a characteristic fluorine-doped tin oxide film is provided.

以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

本発明者らは酸化錫透明導電膜の透過率を向上させるた
め、酸化錫透明導電体膜中のフッ素添加量を酸化錫に対
して0.01〜4mol%、かつ導電電子密度が5×1019cm-3
上4×1020cm-3以下の範囲に制御した場合においての
み、膜の吸収量が極めて少ない高透明膜が得られ、かつ
a−Si等の形成時の水素プラズマに曝露すると導電膜の
抵抗値が最大で約1/5まで低抵抗化する現象を見出し
た。これらの膜は非酸化性雰囲気にさらしてから10秒た
らずで導電性が大きく向上し、透過率は全く変化せずプ
ラズマ耐性に優れている。
In order to improve the transmittance of the tin oxide transparent conductive film, the present inventors have added fluorine in the tin oxide transparent conductive film in an amount of 0.01 to 4 mol% with respect to tin oxide, and have a conductive electron density of 5 × 10 19 cm 2. -3 or more and 4 x 10 20 cm -3 or less, a highly transparent film with an extremely small amount of film absorption is obtained only when it is controlled, and a conductive film is obtained when exposed to hydrogen plasma during the formation of a-Si or the like. We found a phenomenon that the resistance value of was reduced to about 1/5 at the maximum. Within 10 seconds after exposure to a non-oxidizing atmosphere, these films have greatly improved conductivity, have no change in transmittance, and have excellent plasma resistance.

本発明のフッ素ドープ酸化錫膜はスプレー法、CVD法の
他、真空蒸着、スパッタリング等PVD法等でも製膜可能
であるが、量産性が高く良質な膜が容易に得られるCVD
法が特に好ましい。
The fluorine-doped tin oxide film of the present invention can be formed by a spray method, a CVD method, a PVD method such as vacuum deposition, sputtering, etc.
The method is particularly preferred.

また、太陽電池の透明電極として用いる場合には、本発
明のフッ素ドープ酸化錫膜の膜厚は、透過率、抵抗値の
両方を考慮すると500Å〜2μmÅ程度が好ましい。
When used as a transparent electrode of a solar cell, the film thickness of the fluorine-doped tin oxide film of the present invention is preferably about 500Å to 2 μmÅ in consideration of both the transmittance and the resistance value.

本発明のフッ素ドープ酸化錫膜は非酸化性雰囲気に曝露
されることによって、透過率抵抗値が最大で約1/5まで
低抵抗化されるものである。
By exposing the fluorine-doped tin oxide film of the present invention to a non-oxidizing atmosphere, the transmittance resistance value is reduced to about 1/5 at the maximum.

非酸化性雰囲気としては酸素分圧が100Torr以下である
ことが好ましい(第8図参照)。かかる非酸化性雰囲気
において、酸素以外の成分としては、窒素,H2O,Ar等が
使用でき特に限定されない。
The non-oxidizing atmosphere preferably has an oxygen partial pressure of 100 Torr or less (see FIG. 8). In such a non-oxidizing atmosphere, nitrogen, H 2 O, Ar or the like can be used as a component other than oxygen and is not particularly limited.

又、非酸化性雰囲気に曝露する際の基板温度としては、
低抵抗化が顕著に行えるという点から150℃以上、特に2
00℃以上であることが好ましい(第9図参照)。
The substrate temperature when exposed to a non-oxidizing atmosphere is
150 ℃ or more, especially 2
It is preferably 00 ° C. or higher (see FIG. 9).

非酸化性雰囲気として水素プラズマを用いる場合には、
水素分圧が0.3〜1.5Torr、放電電力が10〜50mW/cm2程度
の水素プラズマ中に基板温度が100〜300℃において10〜
120秒間曝露すると最も低抵抗化が顕著に行なえるので
好ましい。
When using hydrogen plasma as the non-oxidizing atmosphere,
Hydrogen partial pressure of 0.3 to 1.5 Torr, discharge power of 10 to 50 mW / cm 2 in hydrogen plasma at substrate temperature of 100 to 300 ℃ 10 to
Exposure for 120 seconds is most preferable because the resistance can be remarkably lowered.

第3図は、本発明のフッ素ドープ酸化錫膜を透明電極と
して用いた太陽電池の一例の一部縦断面図を示したもの
である。第3図において、1は透光性基板、2はアルカ
リバリヤーコート、3は本発明のフッ素ドープ酸化錫膜
からなる第1透明電極、4は水素化アモルファスシリコ
ン(a−Si:H)からなる光電変換層、5は第2導電膜で
あり、導線6によって光電変換層4において得られた起
電力を取り出すようにしたものである。
FIG. 3 is a partial vertical sectional view of an example of a solar cell using the fluorine-doped tin oxide film of the present invention as a transparent electrode. In FIG. 3, 1 is a transparent substrate, 2 is an alkali barrier coat, 3 is a first transparent electrode made of the fluorine-doped tin oxide film of the present invention, and 4 is hydrogenated amorphous silicon (a-Si: H). The photoelectric conversion layers 5 are second conductive films, and the electromotive force obtained in the photoelectric conversion layer 4 is taken out by the conductive wire 6.

本発明のフッ素ドープ酸化錫膜3を形成する透光性基板
1としては、透明性、光学的特性、耐久性、電気的特性
等の点から、ソーダライムシリケートガラス板、アルミ
ノシリケートガラス板、硼珪酸塩ガラス板、リチウムア
ルミノシリケートガラス板等のアルカリ含有ガラス板、
低アルカリ含有ガラス板、あるいは無アルカリガラス
板、石英ガラス板などが好ましいが、場合によっては透
明性プラスチック板、あるいは透明性プラスチックフィ
ルムを使用することもできる。なお、ソーダライムシリ
ケートガラス板などのアルカリ含有ガラス板、あるいは
低アルカリ含有ガラス板においては、その表面のアルカ
リ成分が溶出して、その上に形成された透明導電膜にヘ
イズ(曇り)が発生する場合があるので、これを防止す
るために上記ガラス板の透明導電膜形成面側に、SiO2
Al2O3、ZrO2等の酸化物を主体とするアルカリバリヤー
コート2を形成しておくのが好ましい。
The translucent substrate 1 on which the fluorine-doped tin oxide film 3 of the present invention is formed is a soda lime silicate glass plate, an aluminosilicate glass plate, or a boron substrate in view of transparency, optical characteristics, durability, electrical characteristics and the like. Alkali-containing glass plates such as silicate glass plates and lithium aluminosilicate glass plates,
A low alkali content glass plate, a non-alkali glass plate, a quartz glass plate, or the like is preferable, but in some cases, a transparent plastic plate or a transparent plastic film can be used. Incidentally, in an alkali-containing glass plate such as a soda lime silicate glass plate or a low alkali-containing glass plate, the alkaline component on the surface is eluted, and haze (cloudiness) occurs in the transparent conductive film formed thereon. In some cases, in order to prevent this, on the transparent conductive film formation surface side of the glass plate, SiO 2 ,
It is preferable to form the alkali barrier coat 2 mainly containing oxides such as Al 2 O 3 and ZrO 2 .

本発明のフッ素ドープ酸化錫膜は、上述のように、酸素
分圧が100Torr以下の非酸化性雰囲気中、例えば水素分
圧が0.3〜1.5Torr、放電電力が10〜50mW/cm2程度の水素
プラズマ中に基板温度が100〜300℃の条件で10〜120秒
間曝露すると高透過率を維持したまま最も顕著に低抵抗
化が行なえる。一方、透明導電膜上にグロー放電により
a−Si:Hを製膜する際、a−Si:H膜が最低20Å程度形成
されると、グロー放電による水素プラズマが透明導電膜
に影響を与えることはほとんどなくなる。従って、本発
明のフッ素ドープ酸化錫膜上にグロー放電によってa−
Si:H膜を形成する際、上述の低抵抗化の条件でグロー放
電を行ない、最も低抵抗が得られたところでそれ以上の
水素プラズマの影響を受けないようにすることが大変好
ましい。即ち、a−Si:H膜の最初の約20Åを10〜120秒
間に製膜すれば、最も低抵抗のドープ酸化錫膜上にa−
Si:H膜を形成でき、太陽電池の変換効率の向上に大きく
寄与することが期待される。
The fluorine-doped tin oxide film of the present invention is, as described above, in a non-oxidizing atmosphere having an oxygen partial pressure of 100 Torr or less, for example, a hydrogen partial pressure of 0.3 to 1.5 Torr, and a discharge power of 10 to 50 mW / cm 2 of hydrogen. When exposed to plasma at a substrate temperature of 100 to 300 ℃ for 10 to 120 seconds, the resistance can be most remarkably lowered while maintaining the high transmittance. On the other hand, when a-Si: H film is formed on the transparent conductive film by glow discharge, if the a-Si: H film is formed at least about 20Å, hydrogen plasma due to glow discharge may affect the transparent conductive film. Is almost gone. Therefore, a-
When forming a Si: H film, it is very preferable to perform glow discharge under the above-mentioned conditions of low resistance so as not to be further affected by hydrogen plasma when the lowest resistance is obtained. That is, if the first about 20Å of a-Si: H film is formed in 10 to 120 seconds, a-
It is expected that a Si: H film can be formed and that it will greatly contribute to the improvement of the conversion efficiency of the solar cell.

[作用] 本発明においてフッ素を酸化錫に対し0.01〜4mol%含
み、電導電子密度が5×19〜4×1020cm-3であるフッ素
ドープ酸化錫膜をN2,H2OやAr等の不活性ガス等の非酸化
性雰囲気にさらすことによって、酸化錫膜から酸素原子
が一部除去され酸素不足の状態となって粒界近傍のキャ
リア濃度が増大し、ホール移動度が増大するため、低抵
抗化が促進されるものと考えられる。
[Operation] In the present invention, a fluorine-doped tin oxide film containing 0.01 to 4 mol% of fluorine with respect to tin oxide and having an electric conductor density of 5 × 19 to 4 × 10 20 cm −3 is used as N 2 , H 2 O, Ar, or the like. By exposing it to a non-oxidizing atmosphere such as an inert gas, oxygen atoms are partially removed from the tin oxide film, resulting in an oxygen-deficient state, which increases the carrier concentration near the grain boundaries and increases the hole mobility. It is considered that the low resistance is promoted.

又、水素プラズマ中に曝露することによって、酸化錫の
粒界の電荷を水素が中和し、結晶粒界におけるポテンシ
ャルバリアの高さを低下させホール移動度を増大させる
ために低抵抗化が促進されるものと考えられる。
Also, exposure to hydrogen plasma neutralizes the charges at the grain boundaries of tin oxide, lowers the height of the potential barrier at the grain boundaries, and increases hole mobility, which promotes low resistance. It is thought to be done.

以上のような効果は、フッ素が酸化錫に対し4mol%以下
含まれ、キャリア濃度が4×1020cm-3以下であるような
フッ素ドープ酸化錫膜において、最も顕著であると考え
られる。
It is considered that the above effects are most remarkable in a fluorine-doped tin oxide film in which fluorine is contained in an amount of 4 mol% or less with respect to tin oxide and the carrier concentration is 4 × 10 20 cm −3 or less.

本発明において、酸化錫膜中のフッ素含有量が4mol%以
下の膜において顕著な低抵抗化が認められるのは、フッ
素が4mol%以上含まれていると膜中にSn−F結合ができ
たり、粒界にFが偏析したりする為に、酸素原子が除去
されてホール移動度が移動するのが妨げられるからと考
えられる。
In the present invention, a remarkable reduction in resistance is observed in a film having a fluorine content of 4 mol% or less in the tin oxide film, because when the fluorine content is 4 mol% or more, Sn-F bond may be formed in the film. It is considered that F is segregated at the grain boundaries, so that oxygen atoms are removed and the hole mobility is prevented from moving.

又、電導電子密度を4×1020cm-3以下の膜において顕著
な低抵抗化が認められるのは、4×1020cm-3以上となる
とFの粒界への偏析が発生し、やはり同様に、酸素原子
が除去されてホール移動度が増大するのが妨げられるか
らと考えられる。又、電導電子密度が4×1020cm-3以上
になると、自由電子による吸収が多くなり、透過率が低
くなってしまうという欠点もある。
Also, in the film with an electric conductor density of 4 × 10 20 cm -3 or less, a remarkable reduction in resistance is observed. When it is 4 × 10 20 cm -3 or more, segregation of F to grain boundaries occurs, and Similarly, it is considered that the removal of oxygen atoms prevents the increase of hole mobility. In addition, when the electron conductor density is 4 × 10 20 cm −3 or more, there is a drawback that absorption by free electrons increases and the transmittance decreases.

又、フッ素含有量が0.01mol%未満であると、酸化錫膜
の結晶性が悪くなり、抵抗値が高い膜となってしまい、
又、抵抗値は電導電子密度と移動度の積に反比例するた
め、電導電子密度が5×019cm-3未満であると、抵抗値
の絶対値が高くなり、低抵抗の透明導電膜として実用的
な膜が得られないため、好ましくない。
If the fluorine content is less than 0.01 mol%, the tin oxide film will have poor crystallinity and a high resistance value.
Further, the resistance value is inversely proportional to the product of the electron conductor density and the mobility. Therefore, if the electron conductor density is less than 5 × 0 19 cm −3 , the absolute value of the resistance value becomes high, and a low resistance transparent conductive film is obtained. It is not preferable because a practical film cannot be obtained.

[実施例] 以下、本発明の実施例及び比較例について説明する。[Examples] Examples and comparative examples of the present invention will be described below.

実施例および比較例1 [水素プラズマによる低抵抗化] アルカリバリアーコートとして約1000Åの膜厚のシリカ
膜が形成されたガラス基板(10cm×10cm×1mm)を用意
し、充分に洗浄した後、シリカ膜上に常圧CVD法により
四塩化錫を主原料とし、水との加水分解反応により表2
のような各種酸化錫透明導電膜を形成した。膜中のフッ
素添加量および電気特性の制御はドーパントであるフッ
酸の供給量を変化させることにより行なった。またフッ
素ドーピングを促進させるためメタノールの添加を行な
った。基板温度は500℃から600℃の範囲で製膜した。サ
ンプルとして表2に示すように各種の抵抗及び透過率を
有する膜を作成した。膜中のフッ素含有量は酸化錫膜を
亜鉛を含む塩酸中で溶解した後、ガスクロマトグラフィ
ーにより定量分析を行なった。フッ素含有量は酸化錫に
対するモル%で表わした。又電子密度はホール効果(va
n der Pauw法)の測定により求めた。これらについて表
1に示す条件で水素プラズマ曝露試験を行なった。結果
を表2に示す。
Example and Comparative Example 1 [Reduction of Resistance by Hydrogen Plasma] A glass substrate (10 cm × 10 cm × 1 mm) on which a silica film having a thickness of about 1000 Å was formed as an alkali barrier coat was prepared and thoroughly washed, and then silica was prepared. On the film, tin tetrachloride was used as the main raw material by the atmospheric pressure CVD method, and the hydrolysis reaction with water was performed.
Various tin oxide transparent conductive films as described above were formed. The amount of fluorine added to the film and the electrical characteristics were controlled by changing the amount of the supplied hydrofluoric acid as a dopant. In addition, methanol was added to promote fluorine doping. The substrate temperature was 500 ° C. to 600 ° C. As samples, films having various resistances and transmittances were prepared as shown in Table 2. The fluorine content in the film was analyzed quantitatively by gas chromatography after dissolving the tin oxide film in hydrochloric acid containing zinc. The fluorine content was expressed in mol% based on tin oxide. Also, the electron density is the Hall effect (va
n der Pauw method). A hydrogen plasma exposure test was performed on these under the conditions shown in Table 1. The results are shown in Table 2.

表2から明らかなようにフッ素濃度がモル比で0.01mol
%以上、4mol%以下にある膜は成膜時において高い透過
率を示し、プラズマ処理後にも透過率は変化しない。又
電気特性(表面抵抗)は成膜後には比較的高い値を示し
ていてもプラズマ曝露後には抵抗値が最大で1/5まで減
少するため、低抵抗となる。特にサンプル1に示すよう
な電子密度の低い膜では透過率は86%と極めて高いが抵
抗も高いが、プラズマ曝露後には充分低抵抗化し高透明
低抵抗化が実現されることがわかる。これに対してサン
プル6に示すようにフッ素含有量が0.01モル%未満の膜
では抵抗の減少は見られるがもともとその絶対値が高い
ためプラズマ処理後にも実用的な低抵抗値(10数Ω/□
以下)は得られない。またサンプル7に見られるように
フッ素濃度が電子濃度に対して特に高い膜では透過率が
低く(サンプル3に比べ)抵抗の減少度も小さいため全
体としての特性はよくならない。このように本発明の導
電基板は水素プラズマ処理後に電気特性の向上が見ら
れ、高透明、低抵抗となるため太陽電池用基板として最
適なものとなる。
As is clear from Table 2, the fluorine concentration is 0.01 mol in terms of molar ratio.
% And 4 mol% or less, the film has high transmittance during film formation, and the transmittance does not change even after plasma treatment. Moreover, even though the electrical characteristics (surface resistance) show a relatively high value after the film formation, the resistance value decreases up to 1/5 after the plasma exposure, and the resistance becomes low. In particular, in the film having a low electron density as shown in Sample 1, the transmittance is as high as 86% but the resistance is also high, but it can be seen that after the plasma exposure, the resistance is sufficiently lowered to realize high transparency and low resistance. On the other hand, as shown in Sample 6, a film with a fluorine content of less than 0.01 mol% shows a decrease in resistance, but since its absolute value is originally high, it has a practically low resistance value (10 Ω / □
The following) cannot be obtained. Further, as seen in Sample 7, in a film in which the fluorine concentration is particularly high with respect to the electron concentration, the transmittance is low (compared to Sample 3) and the resistance reduction degree is small, so that the overall characteristics are not good. As described above, the conductive substrate of the present invention is improved in electrical characteristics after hydrogen plasma treatment, becomes highly transparent, and has low resistance, and thus is most suitable as a substrate for solar cells.

第1図に、プラズマ曝露時の表面抵抗変化の水素プラズ
マ曝露時間依存性をサンプル1とサンプル5について表
3の条件で調べた結果を示す。
FIG. 1 shows the results of examining the dependence of the surface resistance change during plasma exposure on the hydrogen plasma exposure time for Sample 1 and Sample 5 under the conditions of Table 3.

サンプル1の場合(曲線A)、10秒後に抵抗値は1/5に
低下し120秒まで一定の抵抗値を保つ。これに対してサ
ンプル5の場合(曲線B)、抵抗値は殆ど変化しない。
300秒以上の処理により膜に還元が生じるためいずれの
膜の抵抗も急増する。
In the case of sample 1 (curve A), the resistance value decreased to 1/5 after 10 seconds and kept constant until 120 seconds. On the other hand, in the case of sample 5 (curve B), the resistance value hardly changes.
Since the film is reduced by the treatment for 300 seconds or more, the resistance of any film rapidly increases.

第2図に、水素プラズマ曝露時の表面抵抗変化の基板温
度依存性をサンプル1とサンプル5について表4の条件
で調べた結果を示す。
FIG. 2 shows the results of examining the substrate temperature dependence of the surface resistance change during hydrogen plasma exposure for Samples 1 and 5 under the conditions of Table 4.

サンプル1の場合(曲線C)、約100℃以上で抵抗値は1
/2から1/5に低下し300℃までの温度範囲で低抵抗化す
る。350℃でも低抵抗であるが僅かに透過率に劣化が見
られるため実用的な温度範囲は100℃以上300℃以下の範
囲に限られる。これに対して、サンプル5の場合(曲線
D)、抵抗値は300℃まで殆ど変化せず、350℃以上で増
加の傾向が見られる。このように実施例の場合プラズマ
処理による電気特性の改善が見られるが比較例の場合全
く向上は見られないことがわかる。第4図に酸化錫膜中
のフッ素含有量と、表1に示した条件による水素プラズ
マ曝露試験の前後の表面抵抗率化との関係、第5図に酸
化錫膜中の電導電子密度と、表1に示した条件による水
素プラズマ曝露試験の前後の表面抵抗率化との関係を示
す。
In the case of sample 1 (curve C), the resistance value is 1 above 100 ° C
It decreases from / 2 to 1/5 and has low resistance in the temperature range up to 300 ℃. Although the resistance is low even at 350 ° C, the transmittance is slightly deteriorated, so the practical temperature range is limited to the range of 100 ° C to 300 ° C. On the other hand, in the case of sample 5 (curve D), the resistance value hardly changes up to 300 ° C, and an increasing tendency is seen at 350 ° C or higher. As described above, it can be seen that in the case of the example, the electric characteristics are improved by the plasma treatment, but in the case of the comparative example, no improvement is observed. FIG. 4 shows the relationship between the fluorine content in the tin oxide film and the surface resistivity before and after the hydrogen plasma exposure test under the conditions shown in Table 1, and FIG. 5 shows the density of electron conductors in the tin oxide film. The relationship between the surface resistivity before and after the hydrogen plasma exposure test under the conditions shown in Table 1 is shown.

フッ素濃度が4mol%以下、又、電導電子密度4×1020cm
-3以下のときに、水素プラズマ曝露による低抵抗化の効
果が得られていることがわかる。
Fluorine concentration is 4 mol% or less, and electron conductor density is 4 × 10 20 cm
It can be seen that the effect of lowering the resistance by hydrogen plasma exposure is obtained when the value is -3 or less.

以上示したようにフッ素濃度と電導電子密度をある特定
の範囲に制御することにより、透過率の高い透明導電膜
が実現できることに加えて、a−Si形成時の水素プラズ
マ雰囲気下にさらした場合、基板温度100℃以上300℃以
下の広い温度範囲において120秒以下の曝露により電気
特性を大きく向上させることが可能である。電気的特性
の向上に伴う光学的特性の変化は全くない。従って、こ
れらの基板を太陽電池基板に用いた場合、高透明性、低
抵抗、プラズマ耐性の3要素の相乗効果により、その変
換効率を大きく向上させることが可能となる。
As described above, by controlling the fluorine concentration and the electric conductor density within a specific range, a transparent conductive film having a high transmittance can be realized, and when exposed to a hydrogen plasma atmosphere during a-Si formation. It is possible to greatly improve the electrical characteristics by exposing the substrate temperature in a wide temperature range of 100 ° C to 300 ° C for 120 seconds or less. There is no change in the optical characteristics due to the improvement in the electrical characteristics. Therefore, when these substrates are used as a solar cell substrate, the conversion efficiency can be greatly improved by the synergistic effect of the three elements of high transparency, low resistance, and plasma resistance.

実施例および比較例2 [窒素アニールによる低抵抗化] 上記実施例1と同様の方法で表5に示すような各種の抵
抗及び透過率を有する膜を作成した。フッ素含有量及び
透過率を有する膜を作成した。フッ素含有量及び電子密
度も実施例1と同様にして測定した。
Example and Comparative Example 2 [Reduction of Resistance by Nitrogen Annealing] Films having various resistances and transmittances shown in Table 5 were prepared in the same manner as in Example 1 above. A film having a fluorine content and a transmittance was prepared. The fluorine content and electron density were also measured in the same manner as in Example 1.

第6図に酸化錫膜中のフッ素含有量と、N2約100%、常
圧、500℃、10分の窒素アニール処理の前後の表面抵抗
変化との関係、7図に酸化錫膜中の電導電子密度と、N2
約100%、常圧、500℃、10分の窒素アニール処理の前後
の表面抵抗変化との関係を示す。
Fig. 6 shows the relationship between the fluorine content in the tin oxide film and the surface resistance change before and after the nitrogen annealing treatment at about 100% N 2 , normal pressure, 500 ° C, and 10 minutes. Electron density and N 2
The relationship with the surface resistance change before and after the nitrogen annealing treatment at about 100%, atmospheric pressure, 500 ° C. for 10 minutes is shown.

フッ素濃度が4mol%以下、又、電導電子密度が4×1020
cm-3以下のときに、窒素アニール処理による低抵抗化の
効果が得られていることがわかる。
Fluorine concentration is 4 mol% or less, and electric conductor density is 4 × 10 20
It can be seen that the effect of lowering the resistance by the nitrogen annealing treatment is obtained when the value is cm −3 or less.

表5から明らかなようにフッ素濃度がモル比で0.01%以
上、4%以下にある膜は成膜時において高い透過率を示
し、窒素雰囲気中アニール処理後にも透過率は変化しな
い。また、電気特性(表面抵抗)は成膜後には比較的高
い値を示していてもアニール後には抵抗値が最大で1/5
まで減少するため、低抵抗となる。
As is clear from Table 5, a film having a fluorine concentration of 0.01% or more and 4% or less in molar ratio exhibits high transmittance during film formation, and the transmittance does not change even after annealing in a nitrogen atmosphere. In addition, the electrical characteristics (surface resistance) show a relatively high value after film formation, but the maximum resistance value after annealing is 1/5.
Since it decreases to, the resistance becomes low.

特にサンプル1に示す様に、電子密度の低い膜では、透
過率は85%と極めて高いが抵抗も高い膜はアニール後に
は充分低抵抗化し高透明低抵抗が実現されることがわか
る。これに対してサンプル5に示すようにフッ素含有量
が0.01モル%以下の膜では抵抗の減少が見られるがもと
もとその絶対値が高いためアニール処理後にも実用的な
低抵抗値(10数Ω/□以下)は得られない。
In particular, as shown in Sample 1, it can be seen that in a film having a low electron density, a film having a very high transmittance of 85% but a high resistance is sufficiently reduced in resistance after annealing and a high transparency and low resistance are realized. On the other hand, as shown in Sample 5, a film with a fluorine content of 0.01 mol% or less shows a decrease in resistance, but its absolute value is originally high, so a practical low resistance value (10 Ω / □ or less) cannot be obtained.

またサンプル5に見られるようにフッ素濃度が電子濃度
に対して特に高い膜では透過率が低い(サンプル3に比
べ)上に抵抗の変化もみられず全体としての特性は良く
ならない。
Further, as seen in Sample 5, in a film in which the fluorine concentration is particularly high with respect to the electron concentration, the transmittance is low (compared to Sample 3), the resistance is not changed, and the characteristics as a whole are not improved.

このように本発明の導電基板は窒素アニール後に電気特
性の向上が見られ、高透明、低抵抗となるため太陽電池
用基板とし最適なものとなる。
As described above, the conductive substrate of the present invention is improved in electrical characteristics after nitrogen annealing, becomes highly transparent, and has low resistance, and thus is optimal as a substrate for solar cells.

以上示したようにフッ素濃度と電導電子密度をある特定
の範囲に制御することにより、本透過率の高い透明導電
膜が実現できる。
As described above, by controlling the fluorine concentration and the electric conductor density within a specific range, a transparent conductive film having a high transmittance can be realized.

第8図は窒素アニール処理(常圧、500℃、10分間)に
よる表面抵抗変化の窒素雰囲気中の酸素分圧依存性を示
す。酸素分圧100Torr以下でアニール処理効果が認めら
れていることがわかる。
FIG. 8 shows the oxygen partial pressure dependency in the nitrogen atmosphere of the surface resistance change due to the nitrogen annealing treatment (normal pressure, 500 ° C., 10 minutes). It can be seen that the annealing treatment effect is recognized when the oxygen partial pressure is 100 Torr or less.

第9図に窒素アニール処理(常圧、N2約100%、10分
間)による表面抵抗変化のアニール処理時の基板温度依
存性を示す。基板温度150℃以上、特に200℃以上で顕著
なアニール処理効果が得られていることがわかる。
FIG. 9 shows the substrate temperature dependence during the annealing treatment of the surface resistance change due to the nitrogen annealing treatment (normal pressure, N 2 about 100%, 10 minutes). It can be seen that a remarkable annealing treatment effect is obtained at a substrate temperature of 150 ° C or higher, particularly at 200 ° C or higher.

なお、アニール処理時間については、水素プラズマ曝露
時とほぼ同様で、10秒程度で低抵抗化の効果があらわれ
る。
The annealing time is almost the same as that in the hydrogen plasma exposure, and the effect of lowering the resistance appears in about 10 seconds.

これらの特性向上は酸素分圧が100Torr以下であれば窒
素以外の不活性ガス雰囲気でも可能である。使用ガスと
してはアルゴン、ネオン、ヘリウム等の希ガス、または
還元雰囲気ガスである水素が適当である。また真空下で
も同等のアニール効果が得られる。
These characteristics can be improved even in an inert gas atmosphere other than nitrogen as long as the oxygen partial pressure is 100 Torr or less. A rare gas such as argon, neon, or helium, or hydrogen, which is a reducing atmosphere gas, is suitable as the used gas. Also, the same annealing effect can be obtained under vacuum.

なおフッ素濃度と電導密度の範囲はそれぞれ0.01〜4mol
%、5×1019〜4×1020cm-3、特に0.1〜4mol%、1×1
010〜4×1020cm-3の範囲が望ましく、この場合特に高
透明低抵抗の優れた透明導膜が得られる。
The range of fluorine concentration and conductivity is 0.01 to 4 mol, respectively.
%, 5 × 10 19 to 4 × 10 20 cm -3 , especially 0.1 to 4 mol%, 1 × 1
The range of 0 10 to 4 × 10 20 cm -3 is desirable, and in this case, an excellent transparent conductive film having particularly high transparency and low resistance can be obtained.

アニール後の膜は電気的特性の向上に伴う光学的特性の
変化は全く見られない。従って、これらの基板を太陽電
池に用いた場合、高透明性、低抵抗の相乗効果により、
その変換効率を大きく向上させることが可能となる。
The annealed film does not show any change in the optical characteristics accompanying the improvement of the electrical characteristics. Therefore, when these substrates are used for solar cells, the synergistic effect of high transparency and low resistance causes
The conversion efficiency can be greatly improved.

[発明の効果] 本発明によれば、透明導電膜の透過率を高く維持したま
ま水素プラズマ雰囲気下に僅か10秒程度さらすことによ
り抵抗値を大きく減少させることが可能となる。従っ
て、高透過性、低抵抗、水素プラズマ耐性が必要とされ
る太陽電池基板に用いた場合、アモルファス層形成後に
おいて、これらのすべての要件を満足するため、その変
換効率を大きく向上させることが可能となる。
[Effects of the Invention] According to the present invention, the resistance value can be greatly reduced by exposing the transparent conductive film to a hydrogen plasma atmosphere for about 10 seconds while maintaining a high transmittance. Therefore, when used in a solar cell substrate that requires high transparency, low resistance, and hydrogen plasma resistance, all of these requirements are satisfied after the amorphous layer is formed, so that the conversion efficiency can be greatly improved. It will be possible.

又、本発明のフッ素ドープ酸化錫膜は窒素雰囲気、ある
いはH2O雰囲気、アルゴン等の不活性ガスなどの非酸化
性雰囲気中に放置することによっても、高透過率のまま
低抵抗を得ることができるので他方向に応用可能であ
る。
Further, the fluorine-doped tin oxide film of the present invention can obtain low resistance with high transmittance even when left in a nitrogen atmosphere, a H 2 O atmosphere, or a non-oxidizing atmosphere such as an inert gas such as argon. Since it can be applied, it can be applied in other directions.

【図面の簡単な説明】 第1図、第2図は、フッ素ドープ酸化錫膜における水素
プラズマ曝露時の表面低抵抗変化の水素プラズマ曝露時
間依存性、基板温度依存性をそれぞれ示すグラフであ
る。 第3図は本発明のフッ素ドープ酸化錫膜を透明電極とし
て用いた太陽電池の一例の一部縦断面図である。 第4図、第5図は、フッ素ドープ酸化錫膜におけるフッ
素含有量、及び電導電子密度と、水素プラズマ曝露試験
による表面抵抗変化との関係をそれぞれ示すグラフであ
る。 第6図、第7図は、フッ素ドープ酸化錫膜におけるフッ
素含有量、及び電導電子密度と、窒素アニール処理によ
る表面抵抗変化との関係をそれぞれ示すグラフである。 第8図、第9図は、フッ素ドープ酸化錫膜における窒素
アニール処理時の表面抵抗変化のアニール雰囲気中の酸
素分圧依存性、基板温度依存性をそれぞれ示すグラフで
ある。 1:透光性基板 2:アルカリバリヤーコート 3:本発明のフッ素ドープ酸化錫膜からなる第1透明電極 4:水素化アモルファスシリコン(a−Si:H)からなる光
電変換層 5:第2導電膜 6:導線 RO:非酸化性雰囲気曝露前の表面抵抗 RP:非酸化性雰囲気曝露後の表面抵抗
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 and FIG. 2 are graphs showing hydrogen plasma exposure time dependency and substrate temperature dependency of surface low resistance change during hydrogen plasma exposure in a fluorine-doped tin oxide film, respectively. FIG. 3 is a partial vertical sectional view of an example of a solar cell using the fluorine-doped tin oxide film of the present invention as a transparent electrode. FIG. 4 and FIG. 5 are graphs showing the relationship between the fluorine content in the fluorine-doped tin oxide film, the electric conductor density, and the surface resistance change by the hydrogen plasma exposure test, respectively. FIG. 6 and FIG. 7 are graphs showing the relationship between the fluorine content in the fluorine-doped tin oxide film, the electric conductor density, and the surface resistance change due to the nitrogen annealing treatment, respectively. FIG. 8 and FIG. 9 are graphs showing the oxygen partial pressure dependency in the annealing atmosphere and the substrate temperature dependency of the surface resistance change during the nitrogen annealing treatment in the fluorine-doped tin oxide film, respectively. 1: Translucent substrate 2: Alkali barrier coating 3: First transparent electrode made of the fluorine-doped tin oxide film of the present invention 4: Photoelectric conversion layer made of hydrogenated amorphous silicon (a-Si: H) 5: Second conductivity Film 6: Conductive wire R O : Surface resistance before exposure to non-oxidizing atmosphere R P : Surface resistance after exposure to non-oxidizing atmosphere

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】フッ素を酸化錫に対し0.01〜4mol%含み、
電導電子密度が5×1019〜4×1020cm-3であるフッ素ド
ープ酸化錫膜を基板上に形成し、非酸化性雰囲気に曝露
することを特徴とするフッ素ドープ酸化錫膜の低抵抗化
方法。
1. A fluorine content of 0.01 to 4 mol% with respect to tin oxide,
Low resistance of a fluorine-doped tin oxide film, characterized in that a fluorine-doped tin oxide film having an electric conductor density of 5 × 10 19 to 4 × 10 20 cm -3 is formed on a substrate and exposed to a non-oxidizing atmosphere. Method.
【請求項2】酸素分圧が100Torr以下の非酸化性雰囲気
であることを特徴とする請求項1記載のフッ素ドープ酸
化錫膜の低抵抗化方法。
2. The method for reducing the resistance of a fluorine-doped tin oxide film according to claim 1, wherein the oxygen partial pressure is 100 Torr or less in a non-oxidizing atmosphere.
【請求項3】基板温度150℃以上で非酸化性雰囲気に曝
露することを特徴とする請求項1又は2記載のフッ素ド
ープ酸化錫膜の低抵抗化方法。
3. The method for reducing the resistance of a fluorine-doped tin oxide film according to claim 1, wherein the substrate is exposed to a non-oxidizing atmosphere at a temperature of 150 ° C. or higher.
【請求項4】水素分圧が0.3〜1.5Torrで放電電圧が10〜
50mW/cm2の水素プラズマ中で、基板温度100〜300℃にお
いて10〜120秒間曝露することを特徴とする請求項1記
載のフッ素ドープ酸化錫膜の低抵抗化方法。
4. A hydrogen partial pressure of 0.3 to 1.5 Torr and a discharge voltage of 10 to
The method for reducing the resistance of a fluorine-doped tin oxide film according to claim 1, wherein the exposure is performed in a hydrogen plasma of 50 mW / cm 2 at a substrate temperature of 100 to 300 ° C. for 10 to 120 seconds.
【請求項5】フッ素を酸化錫に対し0.01〜4mol%含み、
電導電子密度が5×1019〜4×1020cm-3で、基板上に形
成され、非酸化性雰囲気に曝露されてなることを特徴と
するフッ素ドープ酸化錫膜。
5. A fluorine content of 0.01 to 4 mol% with respect to tin oxide,
A fluorine-doped tin oxide film, which is formed on a substrate and is exposed to a non-oxidizing atmosphere, with an electric conductor density of 5 × 10 19 to 4 × 10 20 cm −3 .
【請求項6】透光性基板上にフッ素を酸化錫に対し0.01
〜4mol%含み、電導電子密度が5×1019〜4×1020cm-3
であるフッ素ドープ酸化錫膜からなる第1透明電極を形
成し、非酸化性雰囲気に曝露し、次いで水素プラズマを
用いたグロー放電によってa−Si光電変換層を形成し、
次いで第2導電膜を形成することを特徴とする太陽電池
の製造方法。
6. Fluorine is added to the tin oxide on a transparent substrate in an amount of 0.01.
〜4mol%, and the electric conductor density is 5 × 10 19 〜4 × 10 20 cm -3
Forming a first transparent electrode made of a fluorine-doped tin oxide film, which is exposed to a non-oxidizing atmosphere, and then forming an a-Si photoelectric conversion layer by glow discharge using hydrogen plasma,
Next, a method of manufacturing a solar cell, which comprises forming a second conductive film.
【請求項7】a−Si光電変換層の最初の20Åを水素分圧
が0.3〜1.5Torr、放電電圧10〜50mW/cm2のグロー放電を
用いて120秒以内に製膜することを特徴とする請求項6
記載の太陽電池の製造方法。
7. The first 20 Å of the a-Si photoelectric conversion layer is formed within 120 seconds by glow discharge having a hydrogen partial pressure of 0.3 to 1.5 Torr and a discharge voltage of 10 to 50 mW / cm 2. Claim 6
A method for manufacturing the solar cell described.
【請求項8】透光性基板上に、フッ素を酸化錫に対し0.
01〜4mol%含み、電導電子密度が5×1019〜4×1020cm
-3であるフッ素ドープ酸化錫膜を非酸化性雰囲気に曝露
してなる第1透明電極、a−Si光電変換層、第2導電膜
を順次積層してなる太陽電池。
8. Fluorine is added to tin oxide on a transparent substrate in an amount of 0.
Including 01 to 4 mol%, the electric conductor density is 5 × 10 19 to 4 × 10 20 cm
A solar cell in which a fluorine-doped tin oxide film of No. 3 is exposed to a non-oxidizing atmosphere, a first transparent electrode, an a-Si photoelectric conversion layer, and a second conductive film are sequentially stacked.
JP1245181A 1988-09-22 1989-09-22 Fluorine-doped tin oxide film and method for reducing resistance thereof Expired - Lifetime JPH07105166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1245181A JPH07105166B2 (en) 1988-09-22 1989-09-22 Fluorine-doped tin oxide film and method for reducing resistance thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-236257 1988-09-22
JP23625788 1988-09-22
JP1245181A JPH07105166B2 (en) 1988-09-22 1989-09-22 Fluorine-doped tin oxide film and method for reducing resistance thereof

Publications (2)

Publication Number Publication Date
JPH02168507A JPH02168507A (en) 1990-06-28
JPH07105166B2 true JPH07105166B2 (en) 1995-11-13

Family

ID=26532574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1245181A Expired - Lifetime JPH07105166B2 (en) 1988-09-22 1989-09-22 Fluorine-doped tin oxide film and method for reducing resistance thereof

Country Status (1)

Country Link
JP (1) JPH07105166B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4328355A2 (en) 2022-08-23 2024-02-28 Indian Oil Corporation Limited Process of reusing bi-facial metal substrates for photoactive semiconductor materials for solar water splitting

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1115160A4 (en) 1998-08-26 2006-01-04 Nippon Sheet Glass Co Ltd Photovoltaic device
JP2001210144A (en) * 1999-11-10 2001-08-03 Asahi Glass Co Ltd Substrate having transparent conductive layer and its manufacturing method
JP4894115B2 (en) * 2001-09-10 2012-03-14 旭硝子株式会社 Method for producing low resistance fluorine-doped tin oxide film
JP4389585B2 (en) 2001-10-19 2009-12-24 旭硝子株式会社 Substrate with transparent conductive oxide film and photoelectric conversion element
WO2004102677A1 (en) * 2003-05-13 2004-11-25 Asahi Glass Company, Limited Transparent conductive substrate for solar battery and method for producing same
JPWO2005027229A1 (en) * 2003-08-29 2007-11-08 旭硝子株式会社 Substrate with transparent conductive film and method for producing the same
JP2006140388A (en) * 2004-11-15 2006-06-01 Asahi Glass Co Ltd Manufacturing method of low resistance fluorine doped tin oxide film and solar cell
JP5099616B2 (en) * 2005-10-28 2012-12-19 旭硝子株式会社 Method for manufacturing transparent substrate with circuit pattern
JP2007153701A (en) * 2005-12-07 2007-06-21 Fujikura Ltd Heat ray reflection glass, film forming apparatus and film forming method
KR101021141B1 (en) * 2007-08-22 2011-03-14 한국세라믹기술원 Transparent Conductive F-dopped tin oxide glass for defogging and fabrication of it
CL2008003281A1 (en) 2007-11-02 2009-10-16 Agc Flat Glass Na Inc Method for manufacturing a thin film comprising supplying a substrate, depositing a first layer on it, depositing a second layer comprising sn and / or zn oxide on a portion of the first layer, in the presence of an oxidizing agent at high temperature increasing the electrical conductivity of the second layer.
JP5790421B2 (en) * 2011-11-08 2015-10-07 旭硝子株式会社 Method for forming fluorine-doped tin oxide film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186478A (en) * 1985-02-15 1986-08-20 Central Glass Co Ltd Forming of conductive film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4328355A2 (en) 2022-08-23 2024-02-28 Indian Oil Corporation Limited Process of reusing bi-facial metal substrates for photoactive semiconductor materials for solar water splitting

Also Published As

Publication number Publication date
JPH02168507A (en) 1990-06-28

Similar Documents

Publication Publication Date Title
EP1189288B1 (en) Photoelectric conversion device
US20010008710A1 (en) Transparent conductive film having high transmission in the infrared region
JP5841074B2 (en) Glass substrate coated with a layer of improved mechanical strength
JPS6215496B2 (en)
KR101352779B1 (en) Transparent electrode for solar cell and method for preparing the same
US20130273377A1 (en) Method of making heat treated coated article using tco and removable protective film
US6512170B1 (en) Photoelectric conversion device
JPH07105166B2 (en) Fluorine-doped tin oxide film and method for reducing resistance thereof
JP2917432B2 (en) Method for producing conductive glass
JP4468894B2 (en) Transparent conductive substrate, manufacturing method thereof, and photoelectric conversion element
US20130319523A1 (en) Conductive transparent glass substrate for photovoltaic cell
JPH07131044A (en) Transparent conductive substrate
CN115093128A (en) Glass substrate with film and method for producing same
JPH0742572B2 (en) Transparent conductive film
JPH01227307A (en) Transparent electric conductor
JPS63195149A (en) Transparent electrically conductive film
JP2001015787A (en) Substrate with transparent conductive film, manufacturing method therefor, and solar battery
US20110020621A1 (en) Glass-type substrate coated with thin layers and production method
KR101095004B1 (en) The manufacturing method and Indium Tin OxideITO transparent conductive films deposited on the diffusion barrier layer coated Soda lime glass substrate.
JP4485642B2 (en) Method for producing transparent substrate with transparent conductive film, and photoelectric conversion device using the same
JPH06191894A (en) Electric conductive glass and its production
JPS63102109A (en) Transparent conducting film
JPS6280918A (en) Manufacturing transparent conductive film
JPH0734329B2 (en) Transparent conductor
JPS6230148B2 (en)

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081113

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091113

Year of fee payment: 14

EXPY Cancellation because of completion of term