WO2011007932A1 - Three dimensional coordination polymer network structure, and preparation method thereof - Google Patents

Three dimensional coordination polymer network structure, and preparation method thereof Download PDF

Info

Publication number
WO2011007932A1
WO2011007932A1 PCT/KR2009/005938 KR2009005938W WO2011007932A1 WO 2011007932 A1 WO2011007932 A1 WO 2011007932A1 KR 2009005938 W KR2009005938 W KR 2009005938W WO 2011007932 A1 WO2011007932 A1 WO 2011007932A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
network structure
ligand
bptc
dimensional
Prior art date
Application number
PCT/KR2009/005938
Other languages
French (fr)
Korean (ko)
Inventor
백명현
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Publication of WO2011007932A1 publication Critical patent/WO2011007932A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D259/00Heterocyclic compounds containing rings having more than four nitrogen atoms as the only ring hetero atoms

Definitions

  • the present invention relates to a three-dimensional coordination polymer network structure and a method of manufacturing the same.
  • CPNs Coordination polymer networks with passages or cavities have been found to be applicable for gas storage, gas separation, ion exchange and selective adsorption of organic or inorganic molecules.
  • Metal-organic frameworks have been reported to adsorb even higher amounts of carbon dioxide, for example 114 wt% at 195 K, 1 bar, and 150 wt% at 298 K, 42 bar. It has been reported to adsorb 176 wt% at 303 K, 50 bar.
  • the present invention is to provide a three-dimensional coordination polymer network structure and a method of manufacturing the same to improve such a conventional problem and other required physical properties.
  • the invention is a three-dimensional network structure comprising a two-dimensional grid consisting of (1) a double macrocyclic compound linked by a flexible organic molecule and (2) a ligand comprising 2 to 4 carboxyl groups, wherein the two-dimensional
  • the grid discloses a three-dimensional network structure connected to each other between grids by the double macrocyclic compound.
  • the present invention discloses a three-dimensional coordination polymer network structure having a structure of the following formula.
  • the compound is a two-dimensional grid formed by the LIGAND is connected to each other between the grid by M x L y acting as a flexible pillar to form a three-dimensional network as a whole.
  • M is a metal selected from Ni, Cu, Fe, Co, Zn coordinated to the L y ligand
  • x is an integer selected from 2 to 6, preferably 2,
  • the LIGAND is a ligand including 2 to 4 carboxyl groups and constituting a two-dimensional grid, and examples thereof include BPTC, BTC, BDC, and TCBPDA, but are not limited thereto.
  • BPTC, BTC, BDC, TCBTDA are 1,1'-biphenyl-3,3 ', 5,5'-tetracarboxylate, benzene-1,3,5-tricarboxylate, benzene-, respectively.
  • L y is a bismacrocyclic ligand in which 2 to 6, preferably 2, macrocycles of the formula are linked by a linker.
  • the macrocyclic portion of the formula is a ligand of coordination number 4 consisting of methylene group and nitrogen, each macrocyclic ring is composed of a total of 12 to 16 carbon or nitrogen atoms, and is bonded to the carbon or nitrogen of the methylene group Hydrogen present may be substituted with NH 2 or OH.
  • the linker moiety is a linear or branched alkyl group substituted or unsubstituted with a substituent, and the substituent may be NH 2 or OH, but is not limited thereto.
  • specific examples of the linker moiety include-(CR 1 R 2 ) n-,-(CR 1 R 2 -CR 3 R 4 -CR 5 R 6 ) n-,-(CR 1 R 2 -CR 3 R 4 And an alkyl group such as -CR 5 R 6 -CR 7 R 8 ) n-, wherein n is an integer of 1 or more, and the R 1 , R 2 , R 3 , R 4 , R 5, R 6 , R 7 And R 8 are each independently (i) H, NH 2 , OH or (ii) an alkyl group substituted by NH 2 or OH, wherein the alkyl group may be a C1-C20, or C1-C10 alkyl group, or C1 Or an alkyl group of -C
  • linker moiety examples include-(CH 2 ) n-,-(CH 2 -CHR-CH 2 ) n-,-(CS 1 -CH 2 -CHS 2 )-, and the S 1 and S 2 is NH 2 or OH, wherein R is — (CH 2 ) m —NH 2 or — (CH 2 ) m-OH.
  • M is an integer of 0 or more, and may be one of integers of 0 to 10, and may be one of integers of 0 to 5.
  • M x L y include a ligand having a form in which a bismacrocyclic macrocycle of the following formula is linked by a linker (a moiety represented by LINKER) and a metal coordinated by the moiety (part represented by M in the following general formula) Or a complex consisting of), but is not limited thereto.
  • the linker may be bonded to the nitrogen atom present in the relatively protruding portion of the macro ring, or may be bonded to the nitrogen atom relatively close to the metal.
  • LINKER and M are as described above for the linker and the metal, respectively.
  • X is C or N
  • Y is hydrogen or a substituent such as NH 2 or OH.
  • M x L y may include, but are not limited to, a complex in which a linker is connected to nitrogen, which is relatively external to the macrocycle, as shown in the following formula.
  • LINKER, M, X, Y are as described above.
  • M x L y may be a complex compound represented by the following formula.
  • M is a metal selected from Ni, Cu, Fe, Co, Zn, LINKER is as described above as a linker.
  • Preferred examples of the network structure of [Formula 1] include the network structure of the following [Formula 9] or [Formula 10], in which the Ni 2 L 2 and Ni 2 L 4 of the formula [8] Having the structure, wherein R is ethyl or butyl in the Ni 2 L 2 and Ni 2 L 4 , respectively.
  • the M x L y has the structure of [Formula 8], and in the formula, R is ethyl, preferably, the network structure is obtained by desolvating the solvate of the following Formula [11].
  • the solvent included therein can be divided into a solvent as a ligand for coordinating a metal and a non ligand solvent having a solvation function. Participating non-ligand solvents are easily evaporated in air so that the number of solvent molecules can vary over time, so p is a number from 1 to 20 and is not necessarily an integer.
  • the LBP-SOLVENT is a non-ligand solvent having a solvation effect, and the number p thereof is a number between 1 and 20, and is not necessarily an integer.
  • the LIGAND may be selected from BPTC, BTC, BDC, and TCBPDA, but is not limited thereto.
  • the LBP-SOLVENT is selected from MeCN, H 2 O, MeOH, EtOH, CHCl 3 , MeCN, DMSO, DMF, acetone, and toluene. It means a boiling point solvent.
  • the network structure wherein M x L y has the structure of [Formula 8], wherein R is ethyl and LIGAND is BPTC is obtained by desolvating a solvate having the structure of [Formula 12]. It is desirable to.
  • the low boiling solvents present in the solvates are readily evaporated in air so that the number of solvated solvent molecules can vary over time, where x is a number between 1 and 20, not necessarily an integer.
  • the M x L y has the structure of [Formula 8], and the network structure in which R is butyl in the formula is preferably obtained by desolvating the solvate of [Formula 13].
  • LIGAND may be selected from BPTC, BTC, BDC, TCBPDA, but is not limited thereto, SOLVENT is H 2 O, DMF, DEF, dimethylacet Solvent selected from amide, MeCH, MeOH.
  • M x L y has the structure of [Formula 8], wherein R is butyl and the LIGAND is BPTC, and the network structure desolvates a solvate having the structure of [Formula 14]. It is preferable.
  • x is a number between 1 and 20 and need not necessarily be an integer.
  • the present invention also discloses a three-dimensional coordination polymer network structure of the structure [Formula 15].
  • x and y are numbers between 1 and 20 and need not necessarily be integers.
  • Ni 2 L 2 has the structure of [Formula 8], in the following formula R is ethyl, the LIGAND may be selected from BPTC, BTC, BDC, TCBPDA, but is not limited to these SOL1 and silver H 2 O, DMF, DEF, dimethylacetamide, MeCH, MeOH is a solvent selected from, SOL2 is a solvent selected from DEF, ROH, DMF, DMSO, MeCN, MeOH, H 2 O, wherein x and y are each 1 to 10 Is selected from.
  • the Ni 2 L 2 portion and the BPTC portion has a structure that is connected to form a network structure in three dimensions with each other.
  • Preferred examples of the network structure of the above [Formula 15] include a network structure of the following [Formula 16].
  • x and y are each a number between 1 and 20.
  • the present invention also discloses a three-dimensional coordination polymer network structure having the structure of [Formula 13].
  • q is a number between 1 and 20 and need not necessarily be an integer.
  • Ni 2 L 4 has the structure of [Formula 8], wherein R is butyl, the LIGAND LIGAND may be selected from BPTC, BTC, BDC, TCBPDA, but is not limited to this, q is 1 Number between 20 and 20, wherein SOLVENT is a solvent selected from H 2 O, DMF, DEF, dimethylacetamide, MeCH, MeOH. Similarly, the Ni 2 L 4 portion and the BPTC portion are bonded to each other to form a network structure in three dimensions.
  • Preferred examples of the network structure of [Formula 13] include a three-dimensional coordination polymer network structure having a structure of the following [Formula 2].
  • x is a number between 1 and 20 and need not necessarily be an integer.
  • the present invention also discloses a method for producing a three-dimensional coordination polymer network structure having the structure of [Formula 15], the network structure in the mixture of SOL1 / SOL2 / SOL3 [Formula 17] and H 4 BPTC Or a salt thereof self-assembled, wherein SOL1 and SOL2 are as described above, and SOL3 is used to dehydrogenate a carboxyl group, including but not limited to TEA, TMA, pyridine.
  • the salt of H 4 BPTC include, but are not limited to, Na 4 BPTC or K 4 BPTC.
  • the network structure has the structure of [Formula 16], it is preferable to use a H 2 O / DEF / TEA mixture as the mixture of SOL1 / SOL2 / SOL3.
  • x and y are each independently a number between 1 and 20, and are not necessarily integers.
  • the present invention also discloses a method for producing a three-dimensional coordination polymer network structure having the structure of [Formula 13], the network structure in the mixture of SOLVENT / SOLVENT1 and [Formula 18] and H 4 BPTC or Na Self-assembling a salt thereof, such as 4 BPTC or K 4 BPTC, wherein SOLVENT1 is a solvent selected from DEF, DEF, pyridine (?).
  • the network structure has the structure of [Formula 14], it is preferable to use the DEF / H 2 O mixture as a mixture of SOLVENT / SOLVENT 1 .
  • the present invention also discloses a method for preparing a three-dimensional coordination polymer network structure of the following [Formula 19], the preparation method includes the following steps.
  • the present invention also discloses a method for producing a three-dimensional coordination polymer network structure of the following [Formula 20], the preparation method includes the following steps.
  • the network structures having the structures of [Formula 15] and [Formula 13] have a non-interpenetrating or non-penetrating three-dimensional network structure, each macrocyclic unit is coordinated with two ligands in the trans position and each ligand Combines with four metal ions belonging to four different bismacrocyclic complexes to form a two-dimensional grid extending parallel to the ab plane.
  • the two-dimensional grid forms rhombic cavities, each cavity comprising four macrocyclic units and four ligand units. That is, the alkyl crosslinking group of the bismacrocyclic complex acts as a pillar connecting the secondary layer formed by the ligand and the macrocyclic species of the metal.
  • the bismacrocyclic complex is intersected between two two-dimensional grids, and the alkyl bridging group of the bismacrocyclic complex acts as a column connecting the grid, whereby one embodiment of the present invention is implemented.
  • the network structure according to the example has the structure of a pillared-multilayer 3D network.
  • the interlayer distance between the two-dimensional grid of the network structure having the structures of [Formula 15] and [Formula 13] may vary depending on the length and structure of the bridging alkyl group, especially when the bridging alkyl group is ethyl
  • the interlayer distance of the grid is 5 to 15 mm 3, preferably 7 to 10 mm 3, most preferably 8 to 9 mm 3.
  • the distance between grid layers is 5 to 13 mm 3, preferably 5 to 9 mm 3, and most preferably 6 to 8 mm 3.
  • the network structure having the structure of [Formula 15] forms a three-dimensional channel along the [001], [010], and [100] directions, and the above direction is arbitrarily expressed in space. It is apparent that by setting different criteria for viewing the direction in the direction, the above-described directions may be changed to form three-dimensional channels of the same shape.
  • the network structure preferably has a void volume of 40 to 70%, more preferably 50 to 60% of the crystal volume measured by PLATON.
  • the network structure having the structure of [Formula 13] forms a one-dimensional rhombic channel along the [101] direction, and the effective hole size of the channel is 0.5-3 x 5-8 8 2 Is preferable, More preferably, it is 1-2x6-7 ⁇ 2> .
  • the network structure has a solvent-accessible free volume of 20 to 50% of the total crystal volume, more preferably 30 to 40%, as measured by PLATON.
  • the network structure having the structure of [Formula 19] or [Formula 20] is Langmuir surface area measured from carbon dioxide isotherm is preferably 450 ⁇ 4500 m 2 g -1 , 480 ⁇ 4000 m 2 g -1 More preferably.
  • the network structure preferably has a pore volume of 0.1 to 1.3 cm 3 g -1 and more preferably 0.15 to 1 cm 3 g -1 measured by applying the Dubinin-Radushkevich equation.
  • the network structure having the structure of [Formula 19] or [Formula 20] exhibits hysteresis desorption and gate opening behavior, and accordingly not only gas type but also control of opening and closing of channels according to temperature and pressure This is possible.
  • the present invention also provides a gas collecting device, a gas storage device, a gas separation device, a gas detection device, and an ion exchange device including the network structure.
  • a capture, storage, separation, and sensing device relating to carbon dioxide is preferable.
  • a device for separating CO 2 in a CO 2 / H 2 mixture is preferred.
  • the network structure of the present invention is excellent in gas collection, gas storage, gas separation, ion exchange and selective adsorption of organic or inorganic molecules, and also excellent in heat, water, and air, and is excellent in temperature and pressure as well as hysteresis desorption. Its excellent gate opening and closing phenomenon allows for efficient gas capture, storage and detection.
  • 1 shows the X-ray crystal structure of 1 .
  • a) Show the lozenge channel as seen from ab plane.
  • b) Show the inclined ethyl column as seen on the ac plane.
  • Color classification: BPTC 4- light meal; Ni II bismacrocyclic complexes intersected on a two-dimensional planar grid, brown and green; Hydrogen atom is omitted.
  • FIG. 2 shows the X-ray crystal structure of 2.
  • a) View on (101) plane.
  • b) Viewed from the ac plane, showing a beveled butyl column.
  • Color classification: BPTC 4- pale gray; Ni II bismacrocyclic complexes, intersected, blue and purple; Hydrogen atom omitted
  • Figure 4 shows the carbon dioxide adsorption and desorption isotherm of SNU-M11 .
  • Figure 6 shows the gas circulating data measured in TG equipment against SNU-M10 at 298 K using the method to shedding of carbon dioxide flow rate of N 2 in 15% (v / v) then flowing pure N 2 gaseous.
  • FIG. 7A shows 3D-vs. Self-assembly of organic building blocks and Ni (II) bismacrocyclic complexes.
  • FIG. 7B shows the ORTEP diagram of 1 , the coordination environment around BPTC 4 ⁇ (thermal ellipsoid at 30% probability). Symmetry operation: a, -x + 1, y, -z + 3/2; b, x-1 / 2, y + 1/2, z; c, -x + 3/2, y + 1/2, -z + 3/2; d, -x + 3/2, -y + 1/2, -z + 1; e, x, -y + 1, z-1 / 2.
  • 10 is a PXRD pattern of 1 and guest exchange samples measured at room temperature.
  • (a) 1 1, (b) one of the as-synthesized as prepared immersed for 4 hours in MeCN 1MeCN, (c) the preparation and release immersed in a 1 EtOH 1EtOH, (d) the one prepared immersed in hexane 1hexane.
  • 11 is a PXRD pattern measured at room temperature. a) the processed pattern based on the X-ray single crystal diffraction data of 1 , b) 1 in the synthesized state, c) 1 , d) 1 prepared by drying 1 for 18 hours under vacuum for 4 hours in MeCN. E) 1 MeCN prepared by dipping , e) 1 MeCN prepared under vacuum and dried for 6 hours, SNU-M10 prepared by drying for 6 hours, f) SNU-M10 soaked in MeCN for 6 hours, and then separated solid, g) SNU-M10 in MeCN steam, Solids separated after exposure, h) SNU-M10 after exposure for 30 days in air
  • FIG. 12 is an ORTEP diagram of 2 , showing the coordination environment around BPTC 4- (thermal ellipsoid at 30% probability). Symmetry operation: a, -x + 1, y, -z + 3/2; b, x + 1/2, y + 1/2, z; c, -x + 1/2, y + 1/2, -z + 3/2; d, x-3 / 2, -y + 1/2, z-1 / 2.
  • FIG. 13 shows CPK of 1 and 2.
  • FIG. (a) Planar and side views of 1 .
  • Figure 14 is a TGA / DSC trace of the second.
  • FIG. 17 shows gas adsorption and desorption isotherms for CO 2 (diamond), CH 4 (triangle), N 2 (square), and H 2 (circle) gases.
  • 19 is SNU-M10 Adsorption isotherm of carbon dioxide, showing temperature-dependent gate opening phenomenon. a) Measured from 195 K (square), 273 K (circle), and 298 K (triangle) to 1 atm. Filled Figures: Adsorption. Empty shapes: Desorption.
  • One of the objects of the present invention is a highly flexible three-dimensional coordination polymer network, in which channels and pores are opened and closed depending on the type of gas, particularly preferably a porous and three-dimensional coordination polymer useful for selectively capturing carbon dioxide. To provide a network structure.
  • a) is [Ni 2 L 2 ] (ClO 4 ) 4 ( A) And [Ni 2 L 4 ] (ClO 4 ) 4 xH 2 O ( B (X is a number between 1 and 20), which binds ethyl and butyl bridging units, respectively.
  • B (X is a number between 1 and 20), which binds ethyl and butyl bridging units, respectively.
  • b) is alkyl-bridged Ni II
  • Porous coordination polymer networks are formed from suitable metal and organic building blocks. If a square-planar macrycyclic complex is used as the metal building block, the complex has only two vacant coordination sites at the trans site and thus simply a linear linkage to the organic ligand.
  • the network design is simple and easy because it acts as a linear linker. In this type of self-assembly, the pore shape and size of the network structure is largely determined by the organic ligands that must be located at the nodes of the polygons.
  • Design strategy of a flexible three-dimensional solid network is 1,1'-biphenyl-3,3 ', 5,5'-tetracarboxylate (BPTC) as a rectangular organic building block 4- ) And square plane Ni as linear linkage II 2D grids are formed from macrocyclic complexes, [Ni 2 L 2 ] (ClO 4 ) 4 ( A) And [Ni 2 L 4 ] (ClO 4 ) 4 8H 2 O ( B Alkyl-crosslinked Ni such as II Bismacrocyclic complexes are used to connect the two-dimensional grid with highly flexible alkyl pillars.
  • BPTC 1,1'-biphenyl-3,3 ', 5,5'-tetracarboxylate
  • BPTC 1,1'-biphenyl-3,3 ', 5,5'-tetracarboxylate
  • BPTC 1,1'-biphenyl-3,3 ', 5,5'-tetracarboxylate
  • BPTC 1,
  • two soft three-dimensional solid-state coordination polymer network structures are representative of [(Ni 2 L 2 ) (BPTC)].
  • XH 2 OyDEF One
  • X, y, z is a number between 1 and 20). They not only show thermal stability up to 300 ° C, but also air and water stability, as well as N 2 , H 2 And CH 4 Highly selective carbon dioxide compared to gas Adsorption is shown.
  • One and 2 Ni II It is the first three-dimensional columnar network structure combined from the bismacrocyclic complex.
  • 1 and 2 are insoluble in water and common organic solvents such as MeOH, EtOH, MeCN, chloroform, acetone, toluene, dimethylformamide and dimethylsulfoxide (where x, y, z, p are 1 to Number between 20).
  • common organic solvents such as MeOH, EtOH, MeCN, chloroform, acetone, toluene, dimethylformamide and dimethylsulfoxide (where x, y, z, p are 1 to Number between 20).
  • the X-ray crystal structure of 1 shows a three-dimensional network of non-phase osmosis (see FIG. 1 and Ref. 1).
  • each Ni II macrocyclic unit of A is coordinated with two BPTC 4- ligands in the trans position and each B PTC 4 binds with four Ni II ions belonging to four different bismacrocyclic complexes To form a two-dimensional grid extending parallel to the ab plane.
  • the bismacrocyclic complex is intersected between two two-dimensional grids, and the ethyl bridging group of the bismacrocyclic complex acts as a column connecting the grid, whereby the columnar-multilayer three-dimensional network Create a pil lared-multilayer 3D network.
  • the interlayer distance is 8.72 mm 3
  • the ethyl column is inclined 40.5 o with respect to the straight line connecting the two-dimensional planes (see FIG. 1).
  • the network produces three-dimensional channels along the [001], [010], and [100] directions.
  • the void volume of 1 is 50-60% of the crystal volume.
  • the channel is filled with guest solvent molecules but cannot be identified in the X-ray structure because it is severely anxious thermally. Therefore, identification and identification of the number of guest molecules were determined by IR spectra, elemental analysis, and thermogravimetric analysis (TGA) data.
  • TGA data of 1 measured under N 2 are ca. It shows a 29.7% weight loss when heated to 90 ° C (see Figure 8).
  • the TGA data as well as the temperature dependent powder X-ray diffraction (PXRD) pattern shows that 1 is thermally stable up to 300 ° C. (see FIG. 9).
  • PXRD temperature dependent powder X-ray diffraction
  • the PXRD pattern differs from the pattern of 1 . This indicates that the host network was flexible enough to change its structure depending on the type of guest molecule (see FIG. 10).
  • 1 is immersed in MeCN to exchange 1 guest molecule with MeCN to obtain [(Ni 2 L 2 ) (BPTC)] ⁇ nMeCN ( 1MeCN ) (n is a number between 1 and 10). Thereafter, 1 MeCN was heated at 100 ° C. under vacuum for 6 hours to remove MeCN guest molecules, thereby preparing [(Ni 2 L 2 ) (BPTC)] ( SNU-M10) .
  • the PXRD patterns of 1 , 1 desolvated sample ( 1 ′ ), 1MeCN, and SNU-M10 show that the network structure changes by exchange and removal of guest solvent molecules (see FIG. 11). SNU-M10 has been demonstrated by the PXRD pattern that its network structure is stable even after exposure to air for 30 days.
  • X- ray crystal structure is similar to the crystal structure of 1 (see Fig. 2 and reference material 2).
  • the butyl crosslinking group of bismacrocyclic complex B acts as a column connecting the two-dimensional layer formed by BPTC 4- and Ni II macrocyclic species.
  • the interlayer distance (6.80 ⁇ ) is considerably shorter than the interlayer distance of 1 (8.72 ⁇ ) because the butyl column (68.4 o ) is much more inclined than the ethyl column (40.5 o ) of 1 (See FIG. 2).
  • solid 2 Is Creates a one-dimensional diamond, which creates a three-dimensional channel One The opposite is true. As measured by PLATON, 2 The solvent-accessible free volume of is 35% of the total crystal volume.
  • SNU-M11 was heated at 100 ° C. under vacuum for 12 hours to obtain a desolvated solid [(Ni 2 L 4 ) (BPTC)] ( SNU-M11 ).
  • the PXRD pattern of SNU-M11 is different from that of 2 (see FIG. 16), indicating that the network structure changes as the guest water molecules are removed (see FIG. 3).
  • SNU-M10 Adsorbs carbon dioxide gas at 195 K and shows type-I isotherm (FIG. 3).
  • CO2 adsorption capacity is 24.3 wt% (123.5 cm 3 g -One at STP, 5.5 mmolg -One ).
  • Langmuir surface area measured from carbon dioxide isotherm is 505 m 2 g -One to be.
  • the pore volume measured using the Dubinin-Radushkevich equation is 0.20 cm 3 g -One to be.
  • the carbon dioxide adsorption isotherm shows an S-shaped curve, which represents an uptake of 14.6 wt% of carbon dioxide at 1 atm (74.6 cm).
  • SNU-M11 also adsorbs carbon dioxide gas at 195 K but does not adsorb carbon dioxide gas at 273 K and 298 K (FIG. 4A).
  • 195 K almost no adsorption of carbon dioxide gas to 0.18 atm (point A, P go ), then suddenly starts to adsorb the gas at 0.18 atm and reaches a plateau at 0.41 atm (point B).
  • the carbon dioxide adsorption capacity at 1 atm is 24.4 wt% (124.0 cm 3 g ⁇ 1 at STP, 5.54 mmol g ⁇ 1 ).
  • SNU-M11 maintains the amount of adsorbed carbon dioxide until the pressure drops to 0.039 atm (point C, gate-closing pressure, P gc, ). And then rapidly desorbs carbon dioxide at 0.039 atm.
  • SNU-M11 Does not adsorb carbon dioxide gas up to 1 atm at 273 K and 298 K, but adsorbs carbon dioxide gas at a pressure higher than 1 atm (FIG. 4B).
  • CO2 at 298 K, 20.0 bar Start adsorption (point A, P go ), The carbon dioxide absorption reaches 20.6 wt% at 23 bar (point B).
  • Desorption isotherms show very large hysteresis and adsorbed carbon dioxide is 10.0 bar (point C, P gc Cannot be released until).
  • the synchrotron PXRD pattern of SNU-M10 measured under vacuum shows that the network structure is temperature independent at 195 K, 273 K and 298 K (see FIG. 21). However, at 1 atm CO 2 and 298 K, some of the peaks of the PXRD shift to a lower angular region than the peak measured under vacuum, which shows that the expansion of the network occurs by CO 2 adsorption (see FIG. 5). .
  • the inventors first produced highly flexible 3D pillared coordination networks using Ni II bismacrocyclic complexes.
  • the network structure can open and close channels according to gas type, temperature and pressure.
  • the alkyl column connecting the 2D square-grids is inclined considerably, and the channel size is adjusted according to the slope of the column.
  • the 1 and 2 desolvated solids, SNU-M10 and SNU-M11 exhibit thermal stability up to 300 ° C., stability to air and water, as well as higher selective adsorption to carbon dioxide than N 2 , H 2 and CH 4 . see.
  • the CO 2 : N 2 selectivity in SNU-M10 is 98: 1 (v / v) at 298 K, 1 atm.
  • the carbon dioxide adsorption isotherms of both networks show gate opening and large hysteresis desorption.
  • the gate opening pressure of the SNU-M10 is lower than that of the SNU-M11 , which shows that the ethyl column has more flexibility than the butyl column.
  • the gate opening energy for carbon dioxide absorption of SNU-M10 is 27.6 kJmol ⁇ 1 .
  • Selective and reversible carbon dioxide adsorption was also confirmed by gas cycle experiments.
  • This three-dimensional coordination polymer network with flexible columns can be applied to the selective capture, storage and detection of carbon dioxide gas as well as to the separation of the CO 2 / H 2 mixture due to a water gas shift reaction.
  • Ni (II) bismacrocyclic complexes A and B were prepared by modifying the one pot template condensation reactions developed by the present inventors.
  • H 4 BPTC (3,3 ', 5,5'-biphenyltetracarboxylic acid) was prepared by modifying the previously reported method.
  • Infrared spectra were recorded using a Perkin-Elmer Spectrum One FT-IR spectrophotometer. Elemental analysis was performed using a Perkin-Elmer 2400 Series II CHN analyzer. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were performed at a scanning rate of 5 ° C./min under N 2 using a TGA Q50 and DSC Q10 of TA apparatus, respectively.
  • TGA Thermogravimetric analysis
  • DSC differential scanning calorimetry
  • Synchrotron X-ray diffraction data were collected using a Korean Pohang Radiation Accelerator, Beamline 11A.
  • N, N-bis (2-aminoethyl) -1,3-propane diamine 8.33 g, 50.0 mmol
  • para Ethylenediamine 1.67 mL, 25.0 mmol
  • formaldehyde 4.35 g, 15.0 mmol
  • 1,4-diaminobutane 2.52 mL, 25.0 mmol
  • the mixture was heated to reflux for 2 days, during which time the solution gradually turned brown.
  • the solution was filtered while hot and the filtrate was concentrated to half volume.
  • the solution was left in a refrigerator until a purple precipitate of [Ni 2 L 2 Cl 4 ] or [Ni 2 L 4 Cl 4 ] was formed, filtered to remove the precipitate, washed with methanol and dried in air. .
  • the precipitate was dissolved in a minimum amount of water to form a yellow solution, then excess LiClO 4 saturated methanol solution was added.
  • the solution was left at room temperature until orange crystals formed.
  • the solid was removed by filtration, washed with methanol and dried in air.
  • Example 2 Preparation of [(Ni 2 L 2 ) (BPTC)].
  • Example 7 Preparation of [(Ni 2 L 4 ) (BPTC)] ⁇ pH 2 O (2), where p is a number between 1 and 20
  • N 2 and H 2 gas adsorption and desorption isotherms were monitored at 77 K, 195 K and 298 K, and carbon dioxide gas adsorption and desorption isotherms were measured at 195 K, 273 K and 298 K. After each gas adsorption and desorption measurement, the sample weight was again measured accurately.
  • High pressure gas adsorption isotherms of SNU-M10 and SNU-M11 on carbon dioxide gas were measured by gravimetric method using Rubotherm MSB (magnetic suspension balance). All gases used a 99.999% purity grade and carbon dioxide adsorption and desorption isotherms were measured at 298 K.
  • the SN U-M10 and SNU-M11 solids were heated in a Schlenk tube for 12 hours under vacuum at 100 ° C., vacuum, precisely measured the amount of dried solids, then inserted into the gas adsorption and desorption equipment, and subjected to 100 ° C. evacuation. By reactivation.
  • the He isotherm (up to 90 bar) was measured at 298 K before the gas adsorption and desorption measurement. After measuring the excess adsorption isotherm, the volume of the structure was multiplied by the density of the gas at each pressure and temperature to correct for buoyancy.
  • Preliminary orientation matrixes and unit cell parameters were obtained from the peak of the first 10 frames and then refined using the entire data set. After integrating the frames, DENZO was used to correct for Lorentz and polarization effects. Scaling and global refinement of crystal parameters were performed by SCALEPACK.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

The present invention relates to a three dimensional coordination polymer network structure, and a preparation method thereof. The network structure of the present invention provides excellent gas collection, gas storage, gas separation, ion exchange and the selective adsorption of organic or inorganic molecules, has very excellent stabilities to heat, water and air, and shows gate opening and closing phenomena dependent on temperature and pressure as well as the hysteretic desorption of gas, thereby enabling effective gas collection, storage and sensing.

Description

3차원 배위 고분자 망상구조체 및 이의 제조방법3D coordination polymer network structure and manufacturing method thereof
본 발명은 3차원 배위 고분자 망상구조체 및 이의 제조방법에 관한 것이다.The present invention relates to a three-dimensional coordination polymer network structure and a method of manufacturing the same.
지구온난화로 인하여 최근 몇 년 동안 과학자들의 최대 관심사는 이산화탄소 포집 기술이었으며, 산업배기가스로부터 효율적인 이산화탄소 포집방법 개발은 매우 중요한 이슈가 되었다. Due to global warming, scientists' most interest in recent years has been carbon dioxide capture technology, and the development of efficient carbon dioxide capture methods from industrial exhaust gases has become a very important issue.
통로 또는 공동을 갖는 배위 고분자 그물망(coodination polymer networks, CPNs)은 기체 저장, 기체 분리, 이온 교환 그리고 유기 또는 무기 분자의 선택적 흡착에 대한 응용 가능성이 있음이 알려져 왔다. 몇몇 CPNs은 비교적 많은 양의 이산화탄소를 흡착한다고 보고되었는데, 예를 들어 195 K, 1 bar에서 20 wt%를 흡착한다고 보고되었고, 298 K, 50 atm에서 16 wt%를 흡착하는 것으로 보고되었다. Coordination polymer networks (CPNs) with passages or cavities have been found to be applicable for gas storage, gas separation, ion exchange and selective adsorption of organic or inorganic molecules. Some CPNs have been reported to adsorb relatively large amounts of carbon dioxide, for example 20 wt% at 195 K, 1 bar, and 16 wt% at 298 K, 50 atm.
금속-유기 골격구조(MOFs)는 심지어 더 많은 양의 이산화탄소를 흡착한다고 보고되었는데, 예를 들어 195 K, 1 bar에서 114 wt%를 흡착한다고 보고되었고, 298 K, 42 bar에서 150 wt%를 흡착한다고 보고되었으며, 303 K, 50 bar에서 176 wt%를 흡착하는 것으로 보고되었다.Metal-organic frameworks (MOFs) have been reported to adsorb even higher amounts of carbon dioxide, for example 114 wt% at 195 K, 1 bar, and 150 wt% at 298 K, 42 bar. It has been reported to adsorb 176 wt% at 303 K, 50 bar.
그러나, 특히 상온 및 상압에서, N2, CH4, H2O 등의 다른 기체들을 포함하는 산업 배출 스트림(industrial emission streams)으로부터 이산화탄소를 선택적으로 포집하는 것은 여전히 해결해야 할 과제이다.However, the selective capture of carbon dioxide from industrial emission streams containing other gases, such as N 2 , CH 4 , H 2 O, especially at room temperature and atmospheric pressure, is still a challenge to be solved.
본 발명은 이와 같은 종래의 문제점 및 기타 요구되는 물성을 크게 향상시킨 3차원 배위 고분자 망상구조체 및 그 제조방법을 제공하고자 한다.The present invention is to provide a three-dimensional coordination polymer network structure and a method of manufacturing the same to improve such a conventional problem and other required physical properties.
일 측면에 있어서 본 발명은 (1) 유연성 있는 유기 분자로 연결된 이중 거대고리 화합물 및 (2) 2 내지 4개의 카르복시기를 포함하는 리간드로 구성된 2차원 그리드를 포함하는 3차원 망상 구조체로서, 상기 2차원 그리드는 상기 이중 거대 고리 화합물에 의해서 그리드 간에 서로 연결되어 있는 3차원 망상 구조체를 개시한다.In one aspect, the invention is a three-dimensional network structure comprising a two-dimensional grid consisting of (1) a double macrocyclic compound linked by a flexible organic molecule and (2) a ligand comprising 2 to 4 carboxyl groups, wherein the two-dimensional The grid discloses a three-dimensional network structure connected to each other between grids by the double macrocyclic compound.
일 구현예에 의하면, 본 발명은 하기 화학식의 구조를 갖는 3차원 배위 고분자 망상구조체를 개시한다.According to one embodiment, the present invention discloses a three-dimensional coordination polymer network structure having a structure of the following formula.
화학식 1
Figure PCTKR2009005938-appb-C000001
Formula 1
Figure PCTKR2009005938-appb-C000001
위 화합물은 상기 LIGAND에 의해 구성된 2차원 그리드가 유연성 있는 기둥 역할을 하는 MxLy에 의해 그리드 간 서로 연결되어 전체적으로 3차원 망상구조를 형성하고 있다.The compound is a two-dimensional grid formed by the LIGAND is connected to each other between the grid by M x L y acting as a flexible pillar to form a three-dimensional network as a whole.
상기에서 M은 Ni, Cu, Fe, Co, Zn 중에서 선택된 금속으로 Ly 리간드에 배위되어 있고, 상기 x는 2 내지 6 중에서 선택된 정수로서 바람직하게는 2이며,In the above, M is a metal selected from Ni, Cu, Fe, Co, Zn coordinated to the L y ligand, x is an integer selected from 2 to 6, preferably 2,
상기 LIGAND는 2 내지 4개의 카르복시기를 포함하면서 2차원 그리드를 구성하는 역할을 하는 리간드로서, 이들의 예로서 BPTC, BTC, BDC, TCBPDA를 들 수 있으나, 이에 한정되지 않는다.The LIGAND is a ligand including 2 to 4 carboxyl groups and constituting a two-dimensional grid, and examples thereof include BPTC, BTC, BDC, and TCBPDA, but are not limited thereto.
본 발명에서 BPTC, BTC, BDC, TCBTDA는 각각 1,1’-비페닐-3,3’,5,5’-테트라카르복실레이트, 벤젠-1,3,5-트리카르복실레이트, 벤젠-1,4-디카르복실레이트, 2-(N,N,N’,N’-테트라키스(4-카르복시페닐)-비페닐-4,4’-디아민을 의미한다.In the present invention, BPTC, BTC, BDC, TCBTDA are 1,1'-biphenyl-3,3 ', 5,5'-tetracarboxylate, benzene-1,3,5-tricarboxylate, benzene-, respectively. 1,4-dicarboxylate, 2- (N, N, N ', N'-tetrakis (4-carboxyphenyl) -biphenyl-4,4'-diamine.
또한, 상기 Ly는 하기 화학식의 거대고리 2 내지 6개, 바람직하게는 2개가 링커에 의해 연결된 비스매크로사이클릭 리간드이다.Further, L y is a bismacrocyclic ligand in which 2 to 6, preferably 2, macrocycles of the formula are linked by a linker.
[규칙 제91조에 의한 정정 26.03.2010] 
화학식 2
Figure WO-DOC-CHEMICAL-2
[Revisions under Rule 91 26.03.2010]
Formula 2
Figure WO-DOC-CHEMICAL-2
[규칙 제91조에 의한 정정 26.03.2010] 
화학식 3
[Revisions under Rule 91 26.03.2010]
Formula 3
[규칙 제91조에 의한 정정 26.03.2010] 
화학식 4
Figure WO-DOC-CHEMICAL-4
[Revisions under Rule 91 26.03.2010]
Formula 4
Figure WO-DOC-CHEMICAL-4
상기 화학식의 거대고리 부분은 메틸렌기와 질소로 이루어진 배위수 4의 리간드로서, 각 거대고리는 총 12 내지 16개의 탄소 또는 질소 원자에 의해 고리가 구성되며, 상기에서 메틸렌기의 탄소 또는 질소에 결합되어 있는 수소는 NH2 또는 OH로 치환될 수도 있다.The macrocyclic portion of the formula is a ligand of coordination number 4 consisting of methylene group and nitrogen, each macrocyclic ring is composed of a total of 12 to 16 carbon or nitrogen atoms, and is bonded to the carbon or nitrogen of the methylene group Hydrogen present may be substituted with NH 2 or OH.
상기 링커 부분은 치환기로 치환된 또는 비 치환된 선형 또는 가지형 알킬기로서, 상기 치환기는 NH2 또는 OH가 될 수 있으나 이에 한정되지 않는다. 또한, 상기 링커 부분의 구체적인 예로는 -(CR1R2)n-, -(CR 1R2-CR3R4-CR5R6)n-, -(CR1R2-CR3R4-CR5R 6-CR7R8)n- 등과 같은 알킬기를 들 수 있고, 상기 n은 1 이상의 정수이며, 상기 R1, R2, R3, R4, R5, R6, R7, R8은 각각 독립적으로 (i) H, NH2, OH이거나 또는 (ii) NH2나 OH에 의해서 치환된 알킬기이며, 본 발명에서 알킬기는 C1-C20, 또는 C1-C10 알킬기일 수도 있고 C1-C6의 알킬기일 수도 있다. 상기 링커 부분의 더욱 구체적인 예로는 -(CH 2)n-, -(CH2-CHR-CH2)n-, -(CS1-CH2-CHS 2)-를 들 수가 있고, 상기 S1과 S2는 NH2 또는 OH이며, 상기 R은 -(CH2)m-NH2 또는 -(CH2)m-OH이다. 여기서 m은 0 이상 의 정수로서, 0 내지 10의 정수 중 하나일 수 있으며, 0 내지 5의 정수 중 하나일 수 있다.The linker moiety is a linear or branched alkyl group substituted or unsubstituted with a substituent, and the substituent may be NH 2 or OH, but is not limited thereto. In addition, specific examples of the linker moiety include-(CR 1 R 2 ) n-,-(CR 1 R 2 -CR 3 R 4 -CR 5 R 6 ) n-,-(CR 1 R 2 -CR 3 R 4 And an alkyl group such as -CR 5 R 6 -CR 7 R 8 ) n-, wherein n is an integer of 1 or more, and the R 1 , R 2 , R 3 , R 4 , R 5, R 6 , R 7 And R 8 are each independently (i) H, NH 2 , OH or (ii) an alkyl group substituted by NH 2 or OH, wherein the alkyl group may be a C1-C20, or C1-C10 alkyl group, or C1 Or an alkyl group of -C6. More specific examples of the linker moiety include-(CH 2 ) n-,-(CH 2 -CHR-CH 2 ) n-,-(CS 1 -CH 2 -CHS 2 )-, and the S 1 and S 2 is NH 2 or OH, wherein R is — (CH 2 ) m —NH 2 or — (CH 2 ) m-OH. M is an integer of 0 or more, and may be one of integers of 0 to 10, and may be one of integers of 0 to 5.
또한, 상기 MxLy의 구체적인 예로서는 하기 화학식의 비스매크로사이클릭 거대고리가 링커(하기 화학식에서 LINKER로 표시된 부분)에 의해 연결된 형태의 리간드 및 이에 의해 배위된 금속(하기 화학식에서 M으로 표시된 부분)으로 이루어진 착화합물을 들 수 있으나, 이에 한정되지 않는다. 여기서, 상기 링커는 거대고리에서 상대적으로 외부로 돌출된 부분에 존재하는 질소 원자와 결합할 수도 있고, 또는 상대적으로 금속과 가까운 질소 원자와 결합할 수도 있다. 하기 화학식에서 LINKER 및 M은 위에서 각각 링커와 금속에 대해 설명한 바와 같다. 또한, 하기 화학식에서 X는 C 또는 N이고, Y는 수소 또는 NH2나 OH와 같은 치환기이다.In addition, specific examples of M x L y include a ligand having a form in which a bismacrocyclic macrocycle of the following formula is linked by a linker (a moiety represented by LINKER) and a metal coordinated by the moiety (part represented by M in the following general formula) Or a complex consisting of), but is not limited thereto. Here, the linker may be bonded to the nitrogen atom present in the relatively protruding portion of the macro ring, or may be bonded to the nitrogen atom relatively close to the metal. In the formula, LINKER and M are as described above for the linker and the metal, respectively. In the following formulae, X is C or N, and Y is hydrogen or a substituent such as NH 2 or OH.
[규칙 제91조에 의한 정정 26.03.2010] 
화학식 5
Figure WO-DOC-CHEMICAL-5
[Revisions under Rule 91 26.03.2010]
Formula 5
Figure WO-DOC-CHEMICAL-5
상기 MxLy의 더욱 구체적인 예로서는 하기 화학식과 같이 링커가 거대고리의 상대적으로 외부에 존재하는 질소와 연결된 착화합물을 들 수 있으나, 이에 한정되지 않는다. 하기 화학식에서 LINKER, M, X, Y는 위에서 설명한 바와 같다.More specific examples of M x L y may include, but are not limited to, a complex in which a linker is connected to nitrogen, which is relatively external to the macrocycle, as shown in the following formula. In the following formula, LINKER, M, X, Y are as described above.
[규칙 제91조에 의한 정정 26.03.2010] 
화학식 6
Figure WO-DOC-CHEMICAL-6
[Revisions under Rule 91 26.03.2010]
Formula 6
Figure WO-DOC-CHEMICAL-6
상기 MxLy의 더더욱 구체적인 예로서는 하기와 같은 화학식의 착화합물일 수 있다. 하기 화학식에서 M은 Ni, Cu, Fe, Co, Zn 중에서 선택된 금속이고, LINKER는 링커로서 위에서 설명한 바와 같다.More specific examples of the M x L y may be a complex compound represented by the following formula. In the formula, M is a metal selected from Ni, Cu, Fe, Co, Zn, LINKER is as described above as a linker.
[규칙 제91조에 의한 정정 26.03.2010] 
화학식 7
Figure WO-DOC-CHEMICAL-7
[Revisions under Rule 91 26.03.2010]
Formula 7
Figure WO-DOC-CHEMICAL-7
상기 [화학식 1]의 망상구조체의 바람직한 예로는 하기 [화학식 9] 또는 [화학식 10]의 망상구조체를 들 수 있는데, 상기 화학식에서 Ni2L2 및 Ni2L4는 모두 상기 [화학식 8]의 구조를 가지고, 상기 R은 상기 Ni2L2 및 Ni2L4에서 각각 에틸 또는 부틸이다.Preferred examples of the network structure of [Formula 1] include the network structure of the following [Formula 9] or [Formula 10], in which the Ni 2 L 2 and Ni 2 L 4 of the formula [8] Having the structure, wherein R is ethyl or butyl in the Ni 2 L 2 and Ni 2 L 4 , respectively.
화학식 8
Figure PCTKR2009005938-appb-C000008
Formula 8
Figure PCTKR2009005938-appb-C000008
화학식 9
Figure PCTKR2009005938-appb-C000009
Formula 9
Figure PCTKR2009005938-appb-C000009
화학식 10
Figure PCTKR2009005938-appb-C000010
Formula 10
Figure PCTKR2009005938-appb-C000010
본 발명에는 상기 [화학식 9] 및 [화학식 10]의 망상구조체에 대한 PXRD 데이터가 제시되어 있으나, 위 [화학식 9] 및 [화학식 10]의 망상구 조체와 동일한 물질이기 위해서 본 발명에 제시된 PXRD 데이터와 모든 파라미터에서 정확히 일치하여야만 하는 것이 아님은 통상의 기술자 상식에 비추어 자명하다고 할 수 있다.In the present invention, PXRD data for the network structures of the above [Formula 9] and [Formula 10] is presented, but the PXRD data presented in the present invention for the same material as the network structure of the [Formula 9] and [Formula 10] It is obvious in the light of common technical knowledge that and do not have to exactly match every parameter.
상기 화학식에서 상기 MxLy은 상기 [화학식 8]의 구조를 가지고 상기 화학식에서 R은 에틸인 망상 조체는 하기 [화학식 11]의 용매화물을 탈용매화시켜 수득하는 것이 바람직하다.In the above formula, the M x L y has the structure of [Formula 8], and in the formula, R is ethyl, preferably, the network structure is obtained by desolvating the solvate of the following Formula [11].
화학식 11
Figure PCTKR2009005938-appb-C000011
Formula 11
Figure PCTKR2009005938-appb-C000011
본 발명의 망상 구조체 또는 구조체를 제조하기 위한 전구체가 용매화물 형태의 경우에 여기에 포함되는 용매는 금속을 배위하는 리간드로서의 용매와 용매화 작용을 하는 비리간드 용매로 나눌 수 있는데, 상기 용매화에 참가하는 비리간드 용매는 공기 중에서 쉽게 증발하여 그 용매 분자의 개수는 시간에 따라 변할 수 있기 때문에, 상기에서 p는 1 내지 20의 수이며 반드시 정수일 필 요는 없다. 예컨대, 상기 LBP-SOLVENT는 용매화 작용을 하는 비리간드 용매로서 그 개수인 p는 1 내지 20 사이의 수로서 반드시 정수일 필요는 없다.When the network structure or the precursor for preparing the structure of the present invention is in the form of a solvate, the solvent included therein can be divided into a solvent as a ligand for coordinating a metal and a non ligand solvent having a solvation function. Participating non-ligand solvents are easily evaporated in air so that the number of solvent molecules can vary over time, so p is a number from 1 to 20 and is not necessarily an integer. For example, the LBP-SOLVENT is a non-ligand solvent having a solvation effect, and the number p thereof is a number between 1 and 20, and is not necessarily an integer.
상기 LIGAND는 BPTC, BTC, BDC, TCBPDA 중에서 선택될 수 있으나 이에 한정되지 않으며, 상기 LBP-SOLVENT는 MeCN, H2O, MeOH, EtOH, CHCl3, MeCN, DMSO, DMF, 아세톤, 톨루엔 중에서 선택된 저 비등점 용매를 의미한다.The LIGAND may be selected from BPTC, BTC, BDC, and TCBPDA, but is not limited thereto. The LBP-SOLVENT is selected from MeCN, H 2 O, MeOH, EtOH, CHCl 3 , MeCN, DMSO, DMF, acetone, and toluene. It means a boiling point solvent.
특히, 상기 화학식에서 상기 MxLy은 상기 [화학식 8]의 구조를 가지고 상기 화학식에서 R은 에틸이며 LIGAND는 BPTC인 망상구조체는 하기 [화학식 12]의 구조를 갖는 용매화물을 탈용매화시켜 수득하는 것이 바람직하다. 용매화물에 존재하는 저 비등점 용매는 공기 중에서 쉽게 증발하여 그 용매화된 용매 분자의 개수는 시간에 따라 변할 수 있으며, 하기에서 x는 1 내지 20 사이의 수로서 반드시 정수일 필요는 없다.Particularly, in the formula, the network structure wherein M x L y has the structure of [Formula 8], wherein R is ethyl and LIGAND is BPTC is obtained by desolvating a solvate having the structure of [Formula 12]. It is desirable to. The low boiling solvents present in the solvates are readily evaporated in air so that the number of solvated solvent molecules can vary over time, where x is a number between 1 and 20, not necessarily an integer.
화학식 12
Figure PCTKR2009005938-appb-C000012
Formula 12
Figure PCTKR2009005938-appb-C000012
또한, 상기 화학식에서 상기 MxLy은 상기 [화학식 8]의 구조를 가지고 상기 화학식에서 R은 부틸인 상기 망상구조체는 하기 [화학식 13]의 용매화물을 탈용매화시켜 수득 하는 것이 바람직하다.In addition, in the chemical formula, the M x L y has the structure of [Formula 8], and the network structure in which R is butyl in the formula is preferably obtained by desolvating the solvate of [Formula 13].
화학식 13
Figure PCTKR2009005938-appb-C000013
Formula 13
Figure PCTKR2009005938-appb-C000013
상기에서 q는 1 내지 20 사이의 수로서 반드시 정수일 필요는 없고, 상기 LIGAND는 BPTC, BTC, BDC, TCBPDA 중에서 선택될 수 있으나 이에 한정되지 않으며, 상기 SOLVENT는 H2O, DMF, DEF, 디메틸아세트아미드, MeCH, MeOH 중에서 선택된 용매이다.In the above q is a number between 1 and 20 and not necessarily an integer, LIGAND may be selected from BPTC, BTC, BDC, TCBPDA, but is not limited thereto, SOLVENT is H 2 O, DMF, DEF, dimethylacet Solvent selected from amide, MeCH, MeOH.
특히, 상기 화학식에서 상기 MxLy은 상기 [화학식 8]의 구조를 가지고 상기 화학식에서 R은 부틸이고 상기 LIGAND는 BPTC인 망상구조체는 하기 [화학식 14]의 구조를 갖는 용매화물을 탈용매화시키는 것이 바람직하다. 하기에서 x는 1 내지 20 사이의 수로서 반드시 정수일 필요는 없다.Particularly, in the chemical formula, M x L y has the structure of [Formula 8], wherein R is butyl and the LIGAND is BPTC, and the network structure desolvates a solvate having the structure of [Formula 14]. It is preferable. In the following, x is a number between 1 and 20 and need not necessarily be an integer.
화학식 14
Figure PCTKR2009005938-appb-C000014
Formula 14
Figure PCTKR2009005938-appb-C000014
또한, 본 발명은 하기 [화학식 15] 구조의 3차원 배위 고분자 망상구조체도 개시한다. 하기에서 x와 y는 1 내지 20 사이의 수로서 반드시 정수일 필요는 없다.In addition, the present invention also discloses a three-dimensional coordination polymer network structure of the structure [Formula 15]. In the following, x and y are numbers between 1 and 20 and need not necessarily be integers.
화학식 15
Figure PCTKR2009005938-appb-C000015
Formula 15
Figure PCTKR2009005938-appb-C000015
상기에서 Ni2L2는 상기 [화학식 8]의 구조를 가지고, 하기 화학식에서 R은 에틸이며, 상기 LIGAND는 BPTC, BTC, BDC, TCBPDA 중에서 선택될 수 있으나 이에 한정되지 않으며 상기 SOL1과 은 H2O, DMF, DEF, 디메틸아세트아미드, MeCH, MeOH 중에서 선택된 용매이며, 상기 SOL2는 DEF, ROH, DMF, DMSO, MeCN, MeOH, H2O 중에서 선택된 용매이고, 상기 x와 y는 각각 1 내지 10 중에서 선택된다. 또한 상기 Ni2L2 부분과 BPTC 부분은 서로 3차원 적으로 망상구조를 형성하며 결합되어 있는 구조를 가진다.Wherein Ni 2 L 2 has the structure of [Formula 8], in the following formula R is ethyl, the LIGAND may be selected from BPTC, BTC, BDC, TCBPDA, but is not limited to these SOL1 and silver H 2 O, DMF, DEF, dimethylacetamide, MeCH, MeOH is a solvent selected from, SOL2 is a solvent selected from DEF, ROH, DMF, DMSO, MeCN, MeOH, H 2 O, wherein x and y are each 1 to 10 Is selected from. In addition, the Ni 2 L 2 portion and the BPTC portion has a structure that is connected to form a network structure in three dimensions with each other.
상기 [화학식 15]의 망상구조체 의 바람직한 예로는 하기 [화학식 16]의 망상구조체를 들 수 있다. 하기에서 x와 y는 각각 1 내지 20 사이의 수이다.Preferred examples of the network structure of the above [Formula 15] include a network structure of the following [Formula 16]. In the following, x and y are each a number between 1 and 20.
화학식 16
Figure PCTKR2009005938-appb-C000016
Formula 16
Figure PCTKR2009005938-appb-C000016
또한, 본 발명은 하기 [화학식 13]의 구조를 갖는 3차원 배 위 고분자 망상구조체에 대해서도 개시한다. 하기에서 q는 1 내지 20 사이의 수로서 반드시 정수일 필요는 없다.In addition, the present invention also discloses a three-dimensional coordination polymer network structure having the structure of [Formula 13]. In the following q is a number between 1 and 20 and need not necessarily be an integer.
[화학식 13][Formula 13]
[(Ni2L4)(LIGAND)]·qSOLVENT[(Ni 2 L 4 ) (LIGAND)] qSOLVENT
상기에서, Ni2L4는 상기 [화학식 8]의 구조를 가지고, 상기 R은 부틸이며, 상기 LIGAND는 LIGAND는 BPTC, BTC, BDC, TCBPDA 중에서 선택될 수 있으나 이에 한정되지 않으며, 상기 q는 1 내지 20 사이의 수이며, 상기 SOLVENT는 H2O, DMF, DEF, 디메틸아세트아미드, MeCH, MeOH 중에서 선택된 용매이다. 마찬가지로, 상기에서 Ni2L4 부분과 BPTC 부분은 서로 3차원적으로 망상구조를 형성하며 결합되어 있다.In the above, Ni 2 L 4 has the structure of [Formula 8], wherein R is butyl, the LIGAND LIGAND may be selected from BPTC, BTC, BDC, TCBPDA, but is not limited to this, q is 1 Number between 20 and 20, wherein SOLVENT is a solvent selected from H 2 O, DMF, DEF, dimethylacetamide, MeCH, MeOH. Similarly, the Ni 2 L 4 portion and the BPTC portion are bonded to each other to form a network structure in three dimensions.
상기 [화학식 13]의 망상구조체의 바람직한 예로는 하기 [화학식 2]의 구조를 갖는 3차원 배위 고분자 망상구조체를 들 수 있다. 하기에서 x는 1 내지 20 사이의 수로서 반드시 정수일 필요는 없다.Preferred examples of the network structure of [Formula 13] include a three-dimensional coordination polymer network structure having a structure of the following [Formula 2]. In the following, x is a number between 1 and 20 and need not necessarily be an integer.
[화학식 14][Formula 14]
[(Ni2L4)(BPTC)]·xH2O[(Ni 2 L 4 ) (BPTC)] xH 2 O
또한, 본 발명은 상기 [화학식 15]의 구조를 갖는 3차원 배위 고분자 망상구조체의 제조방법에 대해서도 개시하는데, 이 망상구조체는 SOL1/SOL2/SOL3의 혼합물 내에서 하기 [화학식 17]와 H4BPTC 또는 이의 염이 자기조립하도록 하는 단계를 포함하며, 상기 SOL1과 SOL2는 위에서 언급한 바와 같고, 상기 SOL3는 카르복시기를 탈수소화하는데 쓰이며 TEA, TMA, 피리딘을 예로 들 수 있으며 이에 한정되지 않는다. 상기 H4BPTC의 염은 Na4BPTC 또는 K4BPTC 등을 예로 들 수 있으나 이에 한정되지 않는다.In addition, the present invention also discloses a method for producing a three-dimensional coordination polymer network structure having the structure of [Formula 15], the network structure in the mixture of SOL1 / SOL2 / SOL3 [Formula 17] and H 4 BPTC Or a salt thereof self-assembled, wherein SOL1 and SOL2 are as described above, and SOL3 is used to dehydrogenate a carboxyl group, including but not limited to TEA, TMA, pyridine. Examples of the salt of H 4 BPTC include, but are not limited to, Na 4 BPTC or K 4 BPTC.
[화학식 15] [Formula 15]
[(Ni2L2)(LIGAND)]·xSOL1·ySOL2[(Ni 2 L 2 ) (LIGAND)] xxOL1ySOL2
화학식 17
Figure PCTKR2009005938-appb-C000017
Formula 17
Figure PCTKR2009005938-appb-C000017
특히, 상기 망상구조체가 하기 [화학식 16]의 구조를 가지는 경우에는 상기 SOL1/SOL2/SOL3의 혼합물로서 H2O/DEF/TEA 혼합물을 사용하는 것이 바람직하다. 하기에서 x와 y는 각각 독립적으로 1 내지 20 사이의 수로서 반드시 정수일 필요는 없다.Particularly, when the network structure has the structure of [Formula 16], it is preferable to use a H 2 O / DEF / TEA mixture as the mixture of SOL1 / SOL2 / SOL3. In the following, x and y are each independently a number between 1 and 20, and are not necessarily integers.
[화학식 16][Formula 16]
[(Ni2L2)(BPTC)]·xH2O·yDEF[(Ni 2 L 2 ) (BPTC)] xH 2 O yDEF
또한, 본 발명은 하기 [화학식 13]의 구조를 갖는 3차원 배위 고분자 망상구조체의 제조방법에 대해서도 개시하는데, 이 망상구조체는 SOLVENT/SOLVENT1의 혼합물 내에서 하기 [화학식 18]와 H4BPTC 또는 Na4BPTC나 K4BPTC와 같은 이의 염을 자기조립시키는 단계를 포함하며, 여기서 SOLVENT1은 DEF, DEF, 피리딘(?) 중에서 선택된 용매이다.In addition, the present invention also discloses a method for producing a three-dimensional coordination polymer network structure having the structure of [Formula 13], the network structure in the mixture of SOLVENT / SOLVENT1 and [Formula 18] and H 4 BPTC or Na Self-assembling a salt thereof, such as 4 BPTC or K 4 BPTC, wherein SOLVENT1 is a solvent selected from DEF, DEF, pyridine (?).
[화학식 13][Formula 13]
[(Ni2L4)(LIGAND)]·qSOLVENT[(Ni 2 L 4 ) (LIGAND)] qSOLVENT
화학식 18
Figure PCTKR2009005938-appb-C000018
Formula 18
Figure PCTKR2009005938-appb-C000018
특히, 상기 망상구조체가 하기 [화학식 14]의 구조를 가지는 경우에는 상기 SOLVENT/SOLVENT1의 혼합물로서 DEF/H2O 혼합물을 사용하는 것이 바람직하다.In particular, when the network structure has the structure of [Formula 14], it is preferable to use the DEF / H 2 O mixture as a mixture of SOLVENT / SOLVENT 1 .
[화학식 14][Formula 14]
[(Ni2L4)(BPTC)]·rH2O[(Ni 2 L 4 ) (BPTC)] rr 2 O
또한, 본 발명은 하기 [화학식 19]의 3차원 배위 고분자 망상구조체의 제조방법에 대해서도 개시하고 있는데, 이러한 제조방법은 아래와 같은 단계를 포함한다.In addition, the present invention also discloses a method for preparing a three-dimensional coordination polymer network structure of the following [Formula 19], the preparation method includes the following steps.
화학식 19
Figure PCTKR2009005938-appb-C000019
Formula 19
Figure PCTKR2009005938-appb-C000019
(a) SOL1/SOL2/SOL3의 혼합물 내에서 하기 [화학식 17]의 화합물과 H4BPTC 또는 Na4BPTC나 K4HPBC와 같은 이의 염을 자기조립시켜 하기 [화학식 15]의 구조를 갖는 3차원 배위 고분자 망상구조체를 수득하는 단계:(a) to within the mixture of SOL1 / SOL2 / SOL3 to to a salt thereof, such as [Chemical Formula 17 compound and H 4 BPTC or Na 4 BPTC and K 4 HPBC of self-assembly 3D has the structure of Formula 15; Obtaining a coordination polymer network structure:
[화학식 17][Formula 17]
[Ni2L2](ClO4)4, [Ni 2 L 2 ] (ClO 4 ) 4,
[화학식 15][Formula 15]
[(Ni2L2)(LIGAND)]·xSOL1·ySOL2;[(Ni 2 L 2 ) (LIGAND)] · xSOL 1 ySOL 2;
(b) 상기 [화학식 15]의 구조를 갖는 3차원 배위 고분자 망상구조체를 하기 LBP-SOLVENT에 침지하여 게스트 용매 분자를 저 비등점 용매로 교체한 [화학식 21]를 수득하는 단계;(b) immersing the three-dimensional coordination polymer network structure having the structure of [Formula 15] in LBP-SOLVENT to obtain [Formula 21] in which the guest solvent molecule is replaced with a low boiling point solvent;
화학식 21
Figure PCTKR2009005938-appb-C000020
Formula 21
Figure PCTKR2009005938-appb-C000020
(c) 상기 [화학식 21]의 화합물을 탈용매화하는 단계.(c) desolvating the compound of [Formula 21].
또한, 본 발명은 하기 [화학식 20]의 3차원 배위 고분자 망상구조체의 제조방법에 대해서도 개시하는데, 이러한 제조방법은 아래와 같은 단계를 포함한다.In addition, the present invention also discloses a method for producing a three-dimensional coordination polymer network structure of the following [Formula 20], the preparation method includes the following steps.
화학식 20
Figure PCTKR2009005938-appb-C000021
Formula 20
Figure PCTKR2009005938-appb-C000021
(a) SOLVENT/SOLVENT1의 혼합물 내에서 하기 [화학식 18]의 화합물과 H4BPTC 또는 Na4BPTC나 K4BPTC와 같은 이의 염을 자기조립시켜 하기 [화학식 13]의 구조를 갖는 3차원 배위 고분자 망상구조체를 수득하는 단계로서, 하기에서 x는 1 내지 10 사이의 수이고 q는 1 내지 20 사이의 수이며:(a) SOLVENT / of SOLVENT1 to within mixture to by the salt thereof such as the compound and H 4 BPTC or Na 4 BPTC and K 4 BPTC of [formula 18], self-assembled three-dimensional coordination polymer having the structure of Formula 13; Obtaining a network, wherein x is a number between 1 and 10 and q is a number between 1 and 20:
[화학식 18][Formula 18]
[Ni2L4](ClO4)4·xH2O [Ni 2 L 4 ] (ClO 4 ) 4 x H 2 O
[화학식 13][Formula 13]
[(Ni2 L4)(LIGAND)]·qSOLVENT[(Ni 2 L 4 ) (LIGAND)] qSOLVENT
(b) 상기 [화학식 13] 의 구조를 갖는 3차원 배위 고분자 망상구조체를 탈용매화하는 단계.(b) desolvating the three-dimensional coordination polymer network structure having the structure of [Formula 13].
특히, 상기 [화학식 15]와 [화학식 13]의 구조를 갖는 망상 구조체는 비-상호침투 또는 비침투 3차원 망상구조를 가지며, 거대고리 유닛 각각은 트랜스 위치에서 2개의 리간드와 배위되며 각각의 리간드는 각기 다른 4개의 비스매크로사이클릭 착화합물에 소속된 4개의 금속 이온들과 결합하여 ab 평면에 평행하도록 연장된 2차원 그리드를 형성한다. 2차원 그리드는 마름 모꼴의 공동(rhombic cavities)을 형성하고, 각각의 공동은 4개의 거대고리 유닛 및 4개의 리간드 유닛을 포함한다. 즉, 비스매크로사이클릭 착화합물의 알킬 가교기가 리간드와 금속의 거대고리 종에 의해 형성된 2차 원 층을 연결하는 기둥으로 작용한다. 따라서, 비스매크로사이클릭 착화합물은 2개의 2차원 그리드 사이에 교차하여 위치하고, 비스매크로사이클릭 착화합물의 알킬 가교기(bridging group)는 그리드를 연결하는 기둥으로서 작용하며, 이에 의해서 위 본 발명의 일 구현예에 따른 망상 구조체는 기둥모양-다중층 3차원 망상구조(pillared-multilayer 3D network)의 구조를 가진다.In particular, the network structures having the structures of [Formula 15] and [Formula 13] have a non-interpenetrating or non-penetrating three-dimensional network structure, each macrocyclic unit is coordinated with two ligands in the trans position and each ligand Combines with four metal ions belonging to four different bismacrocyclic complexes to form a two-dimensional grid extending parallel to the ab plane. The two-dimensional grid forms rhombic cavities, each cavity comprising four macrocyclic units and four ligand units. That is, the alkyl crosslinking group of the bismacrocyclic complex acts as a pillar connecting the secondary layer formed by the ligand and the macrocyclic species of the metal. Thus, the bismacrocyclic complex is intersected between two two-dimensional grids, and the alkyl bridging group of the bismacrocyclic complex acts as a column connecting the grid, whereby one embodiment of the present invention is implemented. The network structure according to the example has the structure of a pillared-multilayer 3D network.
일 구현예에 따르면, 상기 [화학식 15]와 [화학식 13]의 구조를 갖는 망상 구조체의 2차원 그리드 간의 층간 거리는 브리징하는 알킬기의 길이와 구조에 따라 달라질 수 있으며, 특히 브리징 알킬기가 에틸인 경우에 그리드의 층간 거리는 5~15 Å이고, 바람직하게는 7~10 Å이며, 가장 바람직하게는 8~9 Å이이다. 또한, 브리징 알킬기가 부틸기인 경우 그리드 층간 거리는 5~13 Å이고, 바람직하게는 5~9 Å이며, 가장 바람직하게는 6~8 Å이이다.According to one embodiment, the interlayer distance between the two-dimensional grid of the network structure having the structures of [Formula 15] and [Formula 13] may vary depending on the length and structure of the bridging alkyl group, especially when the bridging alkyl group is ethyl The interlayer distance of the grid is 5 to 15 mm 3, preferably 7 to 10 mm 3, most preferably 8 to 9 mm 3. In the case where the bridging alkyl group is a butyl group, the distance between grid layers is 5 to 13 mm 3, preferably 5 to 9 mm 3, and most preferably 6 to 8 mm 3.
또한, 다른 구현예에 따르면 상기 [화학식 15]의 구조를 갖는 망상 구조체는 [001], [010], 그 리고 [100] 방향을 따라 3차원 채널을 만들어내며, 위 방향은 공간 상에서 임의로 표현된 방향으로 그 방향을 바라보는 기준을 달리 설정함으로써 위에 기재한 방향이 서로 바뀌어 동일한 형태의 3차원 채널을 형성할 수도 있음은 자명하다. 또한, 이 망상 구조체는 PLATON에 의해 측정된 공극부피(void volume)가 결정 부피(crystal volume)의 40~70%이 바람직하고, 더욱 바람직하게는 50~60%이다.  In addition, according to another embodiment, the network structure having the structure of [Formula 15] forms a three-dimensional channel along the [001], [010], and [100] directions, and the above direction is arbitrarily expressed in space. It is apparent that by setting different criteria for viewing the direction in the direction, the above-described directions may be changed to form three-dimensional channels of the same shape. In addition, the network structure preferably has a void volume of 40 to 70%, more preferably 50 to 60% of the crystal volume measured by PLATON.
또 다른 구현예에 따르면, 상기 [화학식 13]의 구조를 갖는 망상 구조체는 [101] 방향을 따라 1차원 마름 모꼴 채널을 형성하며, 이 채널의 효과적인 구멍 크기는 0.5~3 x 5~8 Å2인 것이 바람직하고, 더욱 바람직하게는 1~2 x 6~7 Å2인다. 또한, 이 망상 구조체는 PLATON에 의해 측정된 접 근 가능 자유 부피(solvent-accessible free volume)가 전체 결정 부피의 20~50%이 바람직하고, 더욱 바람직하게는 30~40%이다. According to another embodiment, the network structure having the structure of [Formula 13] forms a one-dimensional rhombic channel along the [101] direction, and the effective hole size of the channel is 0.5-3 x 5-8 8 2 Is preferable, More preferably, it is 1-2x6-7 <2> . In addition, the network structure has a solvent-accessible free volume of 20 to 50% of the total crystal volume, more preferably 30 to 40%, as measured by PLATON.
또한, 상기 [화학식 19] 또는 [화학식 20]의 구조를 갖는 망상 구조 체는 이산화탄소 등온선으로부터 측정된 랭뮤어 표면적은 450~4500 m2g-1인 것이 바람직하고, 480~4000 m2g-1인 것이 더욱 바람직하다. 또한 이 망상 구조체는 Dubinin-Radushkevich 수식을 적용해 측정한 공극 부피가 0.1~ 1.3 cm3g-1인 것이 바람직하고, 0.15~1 cm 3g-1인 것이 더욱 바람직하다.In addition, the network structure having the structure of [Formula 19] or [Formula 20] is Langmuir surface area measured from carbon dioxide isotherm is preferably 450 ~ 4500 m 2 g -1 , 480 ~ 4000 m 2 g -1 More preferably. In addition, the network structure preferably has a pore volume of 0.1 to 1.3 cm 3 g -1 and more preferably 0.15 to 1 cm 3 g -1 measured by applying the Dubinin-Radushkevich equation.
또한, 일 구현예에 따르면, 상기 [화학식 19] 또는 [화학식 20]의 구조를 갖는 망상 구조체는 히스테리시스 탈착과 게이트 오프닝 거동을 보이며, 따라서 기체유형뿐만 아니라, 온도 및 압렵에 따라서도 채널의 개폐 조절이 가능하다.In addition, according to one embodiment, the network structure having the structure of [Formula 19] or [Formula 20] exhibits hysteresis desorption and gate opening behavior, and accordingly not only gas type but also control of opening and closing of channels according to temperature and pressure This is possible.
또한, 본 발명은 상기 망상 구조체를 포함하는 기체포집 장치, 기체저장 장치, 기체분리 장치, 기체감지 장치, 이온교환 장치에 관해서도 제공한다. 특히, 이러한 장치 중에서도 이산화탄소에 관한 포집, 저장, 분리, 감지 장치가 바람직하다. 그 중에서도 특히, 본 발명에 따른 이와 같은 장치로서 CO2/H2 혼합물에서 CO2의 분리 장치가 바람직하다.The present invention also provides a gas collecting device, a gas storage device, a gas separation device, a gas detection device, and an ion exchange device including the network structure. In particular, among these devices, a capture, storage, separation, and sensing device relating to carbon dioxide is preferable. Among others, as such a device according to the invention, a device for separating CO 2 in a CO 2 / H 2 mixture is preferred.
본 발명의 망상구조체는 기체 포집, 기체 저장, 기체 분리, 이온 교환 그리고 유기 또는 무기 분자의 선택적 흡착 성능이 매우 우수하고, 열과 물 및 공기에 대한 안정성 역시 매우 뛰어나며, 히스테리시스 탈착뿐만 아니라 온도와 압력에 의존하는 게이트 개폐 현상을 보여 효율적인 기체 포집, 저장 및 감지를 가능하게 하는 데 우수하다. The network structure of the present invention is excellent in gas collection, gas storage, gas separation, ion exchange and selective adsorption of organic or inorganic molecules, and also excellent in heat, water, and air, and is excellent in temperature and pressure as well as hysteresis desorption. Its excellent gate opening and closing phenomenon allows for efficient gas capture, storage and detection.
도 1은 1의 X-선 결정 구조를 보여준다. a) ab평 면 상에서 본 모습으로 마름모꼴 채널을 보여준다. b) ac 평면 상에서 본 모습으로 기울어진 에틸 기둥을 보 여준다. 색 분류: BPTC4-, 옅은 회식; 2차원 평면 그리드 상에 교차하여 위치하는 NiII 비스매크로사이클릭 착화합물, 갈색과 초록색; 수소원자는 생략.1 shows the X-ray crystal structure of 1 . a) Show the lozenge channel as seen from ab plane. b) Show the inclined ethyl column as seen on the ac plane. Color classification: BPTC 4- , light meal; Ni II bismacrocyclic complexes intersected on a two-dimensional planar grid, brown and green; Hydrogen atom is omitted.
도 2는 2의 X-선 결정구조를 보여준다. a) (101) 평면 상에서 살펴본 모습. b) ac 평면에서 살펴본 모습으로, 경사진 부틸 기둥이 보임. 색 분류: BPTC4-, 옅은 회색; 교차하여 위치하는 NiII 비스매크로사이클릭 착화합물, 파란색과 보라색; 수소 원자는 생략함2 shows the X-ray crystal structure of 2. a) View on (101) plane. b) Viewed from the ac plane, showing a beveled butyl column. Color classification: BPTC 4- , pale gray; Ni II bismacrocyclic complexes, intersected, blue and purple; Hydrogen atom omitted
도 3은 SN U-M10의 이산화탄소 흡탈착 등온선을 보여준다. a) 195 K(square), 273 K (triangle), 2 98 K (diamond)에서 1atm 까지 측정하였으며, N2 (circle) 및 H2 (star) 흡착 등 온선 비교 측정값. b) 298 K, 30 bar에서 과량 이산화탄소 흡탈착이 측정되었다. 채워진 도형: 흡착. 비워진 도형: 탈착.3 isSN U-M10Shows carbon dioxide adsorption and desorption isotherms. a) Measured at 195 K (square), 273 K (triangle), 2 98 K (diamond) to 1 atm, N2 (circle) and H2 (star) Measurement of warmth comparison, including adsorption. b) Excess carbon dioxide adsorption and desorption was measured at 298 K, 30 bar. Filled Figures: Adsorption. Empty shapes: Desorption.
도 4는 SNU-M11 이산화탄소 흡탈착 등온선을 보여준다. a) 195 K (diamon d), 273 K (square) 및 298 K (triangle)에서 1 atm까지 측정되었으며, N2 (circle) 및 H 2 (star)의 흡탈착 등온선 측정값 비교. b) 298 K에서 55 bar까지 과량 이산화탄소 흡탈착이 측정되 었다. 채워진 도형: 흡착. 비워진 도형: 탈착.Figure 4 shows the carbon dioxide adsorption and desorption isotherm of SNU-M11 . a) Comparison of adsorption and desorption isotherm measurements of N 2 (circle) and H 2 (star) measured at 195 K (diamon d), 273 K (square) and 298 K (triangle). b) Excess carbon dioxide adsorption and desorption was measured from 298 K to 55 bar. Filled Figures: Adsorption. Empty shapes: Desorption.
도 5는 진공 하, 이산화탄소 압력 1atm에서 측정한 S NU-M10의 인시츄(in-situ) 싱크로트론 분말 X-선 회절 패턴(Cu Kα, λ= 1.54178 Å)을 보여준다.FIG. 5 shows the in-situ synchrotron powder X-ray diffraction pattern (Cu Kα, λ = 1.54178 Hz) of S NU-M10 measured at 1 atm of carbon dioxide under vacuum.
도 6은 N2 내 15% (v/v)의 이산화탄소 유량을 흘리고 나서 순수한 N2 기 체를 흘려주는 방식을 이용하여 298 K에서 SNU-M10에 대하여 TG 장비에서 측정된 기체 순환 데이터를 보여준다.Figure 6 shows the gas circulating data measured in TG equipment against SNU-M10 at 298 K using the method to shedding of carbon dioxide flow rate of N 2 in 15% (v / v) then flowing pure N 2 gaseous.
도 7a는 유기 빌딩 블록(organic building block) 및 Ni(II) 비스매크로사이클릭 착화합물의 자기조립에 의한 3D- vs. 2D- network 의 개요도이다.FIG. 7A shows 3D-vs. Self-assembly of organic building blocks and Ni (II) bismacrocyclic complexes. A schematic diagram of a 2D-network.
도 7b는 1의 ORTEP 도면, BPTC4 - (thermal ellipsoid at 30% probability) 주변의 배위 환경(coordination environment)을 보여줌. 대칭 조작(Symmetry operation): a, -x+1, y, -z+3/2; b, x-1/2, y+1/2, z; c, -x+3/2, y+1/2, -z+ 3/2; d, -x+3/2, -y+1/2, -z+1; e, x, -y+1, z-1/2.FIG. 7B shows the ORTEP diagram of 1 , the coordination environment around BPTC 4 − (thermal ellipsoid at 30% probability). Symmetry operation: a, -x + 1, y, -z + 3/2; b, x-1 / 2, y + 1/2, z; c, -x + 3/2, y + 1/2, -z + 3/2; d, -x + 3/2, -y + 1/2, -z + 1; e, x, -y + 1, z-1 / 2.
도 8은 1 1MeCN 의 TGA/DSC trace이다.8 is a TGA / DSC trace of 1 and 1MeCN .
도 9는 다양한 온도에서 측정된 1 PXRD 패턴이다(실온에서 300℃까 지).9 is measured at various temperaturesOneof PXRD pattern (up to 300 ° C at room temperature).
도 10은 실온에서 측정된 1 및 게스트 교환 샘플의 PXRD 패턴. (a) 합성된 상태 그대로의1, (b) 1을 MeCN 내에 4 시간 동안 담궈서 준비된 1MeCN, (c) 1을 EtOH에 담궈놓아 준비 된 1EtOH, (d) 1을 hexane에 담궈서 준비된 1hexane. 10 is a PXRD pattern of 1 and guest exchange samples measured at room temperature. (a) 1, (b) one of the as-synthesized as prepared immersed for 4 hours in MeCN 1MeCN, (c) the preparation and release immersed in a 1 EtOH 1EtOH, (d) the one prepared immersed in hexane 1hexane.
도 11은 실온에서 측정된 PXRD 패턴이다. a) 1의 X-선 single crystal diffraction data 에 기초하여 가공된 패턴, b) 합성된 상태 그대로의 1, c) 진공하에서, 18시간 동안 1을 건조시켜서 준비한 1, d) 1을 MeCN내에 4시간 동안 담가서 준비한 1MeCN, e) 1MeCN을 진공 하, 6 시간 동안 건조시켜 준비한 SNU-M10, f) SNU-M10을 MeCN 에 6시간 동안 담근 후 분리된 고체, g) SNU-M10을 MeCN 증기에 12시간 동안 노출시킨 후 분리된 고체, h) 공기 중에 30일 동안 노출시킨 후의 SNU-M10 11 is a PXRD pattern measured at room temperature. a) the processed pattern based on the X-ray single crystal diffraction data of 1 , b) 1 in the synthesized state, c) 1 , d) 1 prepared by drying 1 for 18 hours under vacuum for 4 hours in MeCN. E) 1 MeCN prepared by dipping , e) 1 MeCN prepared under vacuum and dried for 6 hours, SNU-M10 prepared by drying for 6 hours, f) SNU-M10 soaked in MeCN for 6 hours, and then separated solid, g) SNU-M10 in MeCN steam, Solids separated after exposure, h) SNU-M10 after exposure for 30 days in air
도 12는 2의 ORTEP 도면으로서, BPTC4- (thermal ellipsoid at 30% probability) 주변의 배위 환경을 보여줌. 대칭 조작(Symmetry operation): a, -x+1, y, -z+3/2; b, x+1/2, y+1/2, z; c, -x+1/2, y+1/2, -z+3/2; d, x-3/2, -y+1/2, z-1/2.12 is an ORTEP diagram of 2 , showing the coordination environment around BPTC 4- (thermal ellipsoid at 30% probability). Symmetry operation: a, -x + 1, y, -z + 3/2; b, x + 1/2, y + 1/2, z; c, -x + 1/2, y + 1/2, -z + 3/2; d, x-3 / 2, -y + 1/2, z-1 / 2.
도 13은 12의 CPK 도시. (a) 1의 평면 및 측면도. (b) 2의 평면 및 측면도. 색 도시: C, gray; O, red; N, blue; Ni, green; H, white.13 shows CPK of 1 and 2. FIG. (a) Planar and side views of 1 . (b) plan and side views of 2. Color city: C, gray; O, red; N, blue; Ni, green; H, white.
도 14는 2의 TGA/DSC trace이다.Figure 14 is a TGA / DSC trace of the second.
도 15는 다양한 온도에서 측정된 2의 PXRD 패턴 (실온에서 330℃까지).15 shows a PXRD pattern of 2 measured at various temperatures (up to 330 ° C. at room temperature).
도 16은 실온에서 측정된 PXRD 패턴을 보여준다. a) 2의 단결정 X-선 데이터로부터 가공된 패턴, b) 합성된 상태 그대로의 2, c) 진공하, 100℃에서, 12시간 동안 2를 건조시켜서 준비한 SNU-M11, d) 공기 중에 5분 동안 노출시킨 후의 SNU-M11, e) 공기중에 30일 동안 노출시킨 후의 SNU-M11 16 shows the PXRD pattern measured at room temperature. a) pattern processed from single crystal X-ray data of 2, b) as-synthesized2c) dried under vacuum at 100 ° C. for 12 hours to prepare 2SNU-M11d) exposed to air for 5 minutes LaterSNU-M11e) after exposure to air for 30 daysSNU-M11             
도 17은 CO2 (diamond), CH4 (triangle), N2 (square), and H 2 (circle) 기체에 대한 기체 흡탈착 등온성을 보여준다. a) SNU-M10 및 b) SNU-M11, 채워진 도형: 흡착. 비워진 도형: 탈착FIG. 17 shows gas adsorption and desorption isotherms for CO 2 (diamond), CH 4 (triangle), N 2 (square), and H 2 (circle) gases. a) SNU-M10 and b) SNU-M11 , filled figures: adsorption. Empty Shapes: Desorption
도 18은 298K에서 CO2 (diamo nd) 및 N2 (square)에 대하여 SNU-M10의 기체 흡착 등온선을 보여준다. 채워진 도형: 탈착. 비워진 도형: 흡착.18 shows gas adsorption isotherms of SNU-M10 for CO 2 (diamo nd) and N 2 (square) at 298K. Filled Geometry: Desorption. Empty figure: adsorption.
도 19는 SNU-M10의 이산화탄소 흡착 등온선이며, 온도-의존 게이트 오 프닝 현상을 보여주고 있음. a) 195 K (square), 273 K (circle), and 298 K (triangle)에서 1 atm까지 측정된 값. 채워진 도형: 흡착. 비워진 도형: 탈착.19 isSNU-M10Adsorption isotherm of carbon dioxide, showing temperature-dependent gate opening phenomenon. a) Measured from 195 K (square), 273 K (circle), and 298 K (triangle) to 1 atm. Filled Figures: Adsorption. Empty shapes: Desorption.
도 20은 SNU-M10의 이산화탄소 압력 대 온도에 대한 게이트 오프닝 도면을 나타낸다. Clausius-Clapeyron equation을 이용하여, 게이트-오프팅 에너지(ΔHgo)가 계산되었다. 20 shows a gate opening plot for carbon dioxide pressure versus temperature for SNU-M10 . Using the Clausius-Clapeyron equation, the gate-opening energy (ΔH go ) was calculated.
도 21은 SNU-M10의 인시츄(In-situ) 싱크로트론 분말 X-선 회절 패턴을 보여준다(Cu Kα, λ= 1.54178 Å). (a)진공 하, 195 K, 273 K 298 K에서, (b) 298K에서 진공 하, 이산화탄소 압력 1atm, 진공 하, 공기에 노출 후의 순서로 측정한 값을 298 K에서 합성된 그대로의 1을 측정한 PXRD 패턴과 비교한 값임.21 isSNU-M10In-situ synchrotron powder X-ray diffraction pattern of (Cu Kα, λ = 1.54178 kHz). (a) under vacuum at 195 K, 273 K at 298 K, (b) at 298 K under vacuum, carbon dioxide The value measured in the order of 1 atm pressure, vacuum and after exposure to air is compared with the PXRD pattern measured 1 as synthesized at 298 K.
본 발명의 목적 중의 하나는 기체 유형에 따라 채널 및 공극이 개폐되는 고연성(highly flexible) 3차원의 배위 고분자 망상구조체로서, 특히 바람직하게는 이산화탄소를 선택적으로 포집하는데 유용한 다공성이고 3 차원의 배위 고분자 망상구조체를 제공하는 데 있다.One of the objects of the present invention is a highly flexible three-dimensional coordination polymer network, in which channels and pores are opened and closed depending on the type of gas, particularly preferably a porous and three-dimensional coordination polymer useful for selectively capturing carbon dioxide. To provide a network structure.
[규칙 제91조에 의한 정정 26.03.2010] 
화학식 22
Figure WO-DOC-CHEMICAL-22
[Revisions under Rule 91 26.03.2010]
Formula 22
Figure WO-DOC-CHEMICAL-22
위 반응식에서 a)는 [Ni2L2](ClO4)4 (A) 및 [Ni2L4](ClO4)4xH 2O (B)를 나타내며(x는 1 내지 20 사이의 수), 이들은 각각 에틸 및 부틸 가교 유닛(bridging units)와 결합한다. b)는 알킬-브릿지된(alkyl-bridged) NiII 비스매크로사이클릭 착화합물(bismacrocyclic complex)과 사각형 형태의 테트라카르복실레이트(square-shaped tetracarboxylate)로부터 3차원 입체 망상구조를 합성하는 설계 전략을 보여준다.In the above scheme, a) is [Ni2L2] (ClO4)4                  (A)And [Ni2L4] (ClO4)4xH2O (B(X is a number between 1 and 20), which binds ethyl and butyl bridging units, respectively. b) is alkyl-bridged NiIIWe show a design strategy for synthesizing a three-dimensional steric network from bismacrocyclic complexes and square-shaped tetracarboxylates.
다공성 배위 고분자 망상구조는 적절한 금속 및 유기 빌딩 블록(organic building blocks)으로부터 형성된다. 사각 평면 거대고 리 착화합물(square-planar macrycyclic complex)이 금속 빌딩 블록으로 사용되는 경우, 이 착화합물은 트랜스 자리에 비어있는 배위 부위(vacant coordination sites)가 단지 2개뿐이고 따라서 유기 리간드에 대해 단순히 선형 연결체(linear linker)로서 작용하기 때문에 망상구조 설계는 단순하고 쉬워진다. 이러한 자기조립 유형에서 망상구조의 공극 형태 및 크기는 다각형(polygon)의 노드(node)에 위치해야 하는 유기 리간드에 의해 주로 결정된다. Porous coordination polymer networks are formed from suitable metal and organic building blocks. If a square-planar macrycyclic complex is used as the metal building block, the complex has only two vacant coordination sites at the trans site and thus simply a linear linkage to the organic ligand. The network design is simple and easy because it acts as a linear linker. In this type of self-assembly, the pore shape and size of the network structure is largely determined by the organic ligands that must be located at the nodes of the polygons.
본 발명의 일 구현예에 따른 연성 3차원 입체 망상구조의 설계 전략은 사각형의 유기 빌딩 블록으로서의 1,1’-비페닐-3,3’,5,5’-테트라카르복실레이트(BPTC4-) 와 선형 연결체로서의 사각 평면 NiII 거대고리 착화합물로부터 2차원 그리드(2D grids)를 형성하고, [Ni2L2](ClO4)4 (A) 및 [Ni2L4](ClO4)4·8H2O (B)와 같은 알킬-가교된 NiII 비스매크로사이클릭 착화합물을 사용하여 2차원 그리드 를 고연성 알킬 기둥(alkyl pillars)과 연결하는 것이다[화학식 21].Design strategy of a flexible three-dimensional solid network according to an embodiment of the present invention is 1,1'-biphenyl-3,3 ', 5,5'-tetracarboxylate (BPTC) as a rectangular organic building block4-) And square plane Ni as linear linkageII2D grids are formed from macrocyclic complexes, [Ni2L2] (ClO4)4                  (A)And [Ni2L4] (ClO4)48H2O (BAlkyl-crosslinked Ni such asII Bismacrocyclic complexes are used to connect the two-dimensional grid with highly flexible alkyl pillars.
본 발명에서 대표적으로 2개의 연성 3차원 입체 배위 고분자 망상구조인 [(Ni2L2)(BPTC)]·xH2O·yDEF (1)과 [(Ni2L4)(BPTC)]·zH2O (2)를 구체 적으로 개시한다(x, y, z는 1 내지 20 사이의 수). 이들은 300℃까지의 열 안정성, 그리 고 공기 및 물에 대하여 안정성을 보일 뿐만 아니라 N2, H2 및 CH 4 기체에 비하여 고 선택적 이산화탄소 흡착을 보인다. 12의 이산화 탄소 흡착 등온선은 히스테리시스 탈착(hysteretic desorption)뿐만 아니라 게이트 개폐 현상을 보이는데, 이는 효율적인 이산화탄소 포집, 저장 및 감지를 가능케 한다. 12는 NiII 비스매크로사이클릭 착화합물로부터 조합된 제1의 3차원 기둥꼴 망상구조이다.In the present invention, two soft three-dimensional solid-state coordination polymer network structures are representative of [(Ni2L2) (BPTC)]. XH2OyDEF (One) And [(Ni2L4) (BPTC)] · zH2O (2) (X, y, z is a number between 1 and 20). They not only show thermal stability up to 300 ° C, but also air and water stability, as well as N2, H2And CH4 Highly selective carbon dioxide compared to gas Adsorption is shown.Oneand2The carbon dioxide adsorption isotherm of not only exhibits hysteretic desorption but also gate opening and closing, which allows efficient carbon capture, storage and detection.Oneand2NiIIIt is the first three-dimensional columnar network structure combined from the bismacrocyclic complex.
DEF/H2O/TEA (2:3:0.16, v/v) 내에서 [Ni2L2](ClO4)4 (A)와 H4BPTC 또는 이의 염의 자기조립은 [(Ni2L2)(BPTC)]·xH2O·yDEF (1)의 보라색 결정으로 얻어진다. DEF/H2O (1:4, v/v) 내에서 [Ni2L4](ClO4)4·zH2O (B)와 H4BPTC 또는 이의 염의 자기조립에 의해 [(Ni2L4)(BPTC)]·pH2O (2)이 얻어진다. 12는 물(water)과 MeOH, EtOH, MeCN, 클로로포름, 아세톤, 톨루엔, 디메틸포름아미드 및 디메틸설폭사이드와 같은 일반적인 유 기 용매에 녹지 않는다(상기에서 x, y, z, p는 1 내지 20 사이의 수).Self-assembly of [Ni 2 L 2 ] (ClO 4 ) 4 ( A) and H 4 BPTC or its salts in DEF / H 2 O / TEA (2: 3: 0.16, v / v) is [(Ni 2 L 2 ) (BPTC)]. XH 2 O.yDEF ( 1 ). [(Ni 2 L) by self-assembly of [Ni 2 L 4 ] (ClO 4 ) 4 · zH 2 O ( B ) and H 4 BPTC or salts thereof in DEF / H 2 O (1: 4, v / v) 4 ) (BPTC)]. PH 2 O ( 2 ). 1 and 2 are insoluble in water and common organic solvents such as MeOH, EtOH, MeCN, chloroform, acetone, toluene, dimethylformamide and dimethylsulfoxide (where x, y, z, p are 1 to Number between 20).
1의 X-선 결정구조는 비-상 호침투의 3차원 망상구조를 보인다(도 1 및 참고자료 1 참조). 1에서, A의 NiII 거대고리 유닛 각각은 트랜스 위치에서 2개의 BPTC4- 리간드와 배위되며 각각의 B PTC4는 각기 다른 4개의 비스매크로사이클릭 착화합물에 소속된 4개의 NiII 이온들과 결합하여 ab 평면에 평행하도록 연장된 2차원 그리드를 형성한다.The X-ray crystal structure of 1 shows a three-dimensional network of non-phase osmosis (see FIG. 1 and Ref. 1). At 1 , each Ni II macrocyclic unit of A is coordinated with two BPTC 4- ligands in the trans position and each B PTC 4 binds with four Ni II ions belonging to four different bismacrocyclic complexes To form a two-dimensional grid extending parallel to the ab plane.
비스매크로사이클릭 착화합물은 2개의 2차원 그리드 사이에 교차하여 위치하고, 비스매크로사이클릭 착화합물의 에틸 가교기(bridging group)는 그리드를 연결하는 기둥으로서 작용하며, 이에 의해서 기둥모양-다중층 3차원 망상구조(pil lared-multilayer 3D network)를 만들어진다. 층간 거리는 8.72 Å이고, 에틸 기둥은 2차원 평면들을 연결하 는 직선에 대하여 40.5o 경사져 있다(도 1 참조). The bismacrocyclic complex is intersected between two two-dimensional grids, and the ethyl bridging group of the bismacrocyclic complex acts as a column connecting the grid, whereby the columnar-multilayer three-dimensional network Create a pil lared-multilayer 3D network. The interlayer distance is 8.72 mm 3, and the ethyl column is inclined 40.5 o with respect to the straight line connecting the two-dimensional planes (see FIG. 1).
상기 망상구조는 [001], [010], 그리 고 [100] 방향을 따라 3차원 채널을 만들어낸다. PLATON에 의해 측정된 바에 의하면, 1의 공극부피(void volume)는 결정 부피(crystal volume)의 50~60%이다. 채널은 게스트 용매 분자(guest solvent molecules)로 채워져 있으나 열적으로 심각하게 불안하기 때문에 X-선 구조에서 확인될 수 없다. 그러므로, 게스트 분자의 식별 및 그 개수 확인은 IR 스펙트럼, 원소분석, 열중량분석(TGA) 데이터에 의하여 결정되었다.The network produces three-dimensional channels along the [001], [010], and [100] directions. As measured by PLATON, the void volume of 1 is 50-60% of the crystal volume. The channel is filled with guest solvent molecules but cannot be identified in the X-ray structure because it is severely anxious thermally. Therefore, identification and identification of the number of guest molecules were determined by IR spectra, elemental analysis, and thermogravimetric analysis (TGA) data.
N2 하에서 측정된 1의 TGA 데이터는 ca. 90℃까지 가열하였을 때 29.7% 중량 감소를 보 임을 나타낸다(도 8 참조). TGA 데이터뿐만 아니라 온도의존 분말 X-선 회절(powder X-선 diffraction, PXRD) 패턴은 1이 300℃까지 열적으로 안정함을 보여주고 있다(도 9 참조). 게스트 분자 1이 MeCN, EtOH 및 헥산과 같은 다양한 용매로 교환되는 경우, PXRD 패턴은 1의 패턴과 달라진다. 이것은 호스트 네트워크가 게스트 분자의 종류에 따라 그 구조를 변화시키기에 충분히 유연함을 가졌다는 것을 나타낸 다(도 10 참조).TGA data of 1 measured under N 2 are ca. It shows a 29.7% weight loss when heated to 90 ° C (see Figure 8). The TGA data as well as the temperature dependent powder X-ray diffraction (PXRD) pattern shows that 1 is thermally stable up to 300 ° C. (see FIG. 9). When guest molecule 1 is exchanged with various solvents such as MeCN, EtOH and hexane, the PXRD pattern differs from the pattern of 1 . This indicates that the host network was flexible enough to change its structure depending on the type of guest molecule (see FIG. 10).
본 발명에서는 1을 MeCN에 침지시켜 1의 게스트 분자를 MeCN으로 교환함 으로써 [(Ni2L2)(BPTC)]·nMeCN (1MeCN)를 수득하였다(n은 1 내지 10 사이의 수). 그리고 난 후, 1MeCN을 100℃, 진공 하에서 6시간 동안 가열함으로써 MeCN 게스 트분자를 제거하여 [(Ni2L2)(BPTC)] (SNU-M10)을 제조하였다. 1, 1의 탈용매화된 샘플 (1’), 1MeCNSNU-M10의 PXRD 패턴은 게스트 용매 분자의 교환 및 제거에 의해 망상구조가 변화함을 보여주고 있다(도 11 참조). SNU-M10은 공기 중에 30일 동안 노출시킨 후에라도 그 망상구조는 안정하다는 것이 PXRD 패턴으로 입증되었다.In the present invention, 1 is immersed in MeCN to exchange 1 guest molecule with MeCN to obtain [(Ni 2 L 2 ) (BPTC)] · nMeCN ( 1MeCN ) (n is a number between 1 and 10). Thereafter, 1 MeCN was heated at 100 ° C. under vacuum for 6 hours to remove MeCN guest molecules, thereby preparing [(Ni 2 L 2 ) (BPTC)] ( SNU-M10) . The PXRD patterns of 1 , 1 desolvated sample ( 1 ′ ), 1MeCN, and SNU-M10 show that the network structure changes by exchange and removal of guest solvent molecules (see FIG. 11). SNU-M10 has been demonstrated by the PXRD pattern that its network structure is stable even after exposure to air for 30 days.
2의 X-선 결정구조는 1의 결정구조와 유사하다(도 2 및 참고자료 2 참조). 2에서는, 비스매크로사이클릭 착화합물 B의 부틸 가교기가 BPTC4-와 NiII 거대고리 종에 의해 형성된 2차원 층을 연결하는 기둥으로 작용한다. 본 발명자의 예상과는 반대로, 층간거리(6.80 Å)는 1의 층간거리(8.72 Å)보다 상당히 짧은데, 그 이유는 부틸 기둥(68.4 o)이 1의 에틸 기둥(40.5o)보다 훨씬 많이 기울어져 있기 때문이다(도 2 참조). 2 X- ray crystal structure is similar to the crystal structure of 1 (see Fig. 2 and reference material 2). In 2 , the butyl crosslinking group of bismacrocyclic complex B acts as a column connecting the two-dimensional layer formed by BPTC 4- and Ni II macrocyclic species. Contrary to the expectations of the present inventors, the interlayer distance (6.80 Å) is considerably shorter than the interlayer distance of 1 (8.72 Å) because the butyl column (68.4 o ) is much more inclined than the ethyl column (40.5 o ) of 1 (See FIG. 2).
고체 2 1차원 마름모꼴의 채널을 생성하며, 이것은 3차원 채널을 생성하는 1과는 반대이다. PLATON에 의해 측정된 바에 의하면, 2의 용매 점유가능 자유 부피(solvent-accessible free volume)는 전체 결정 부피의 35%이다.  solid2Is Creates a one-dimensional diamond, which creates a three-dimensional channelOneThe opposite is true. As measured by PLATON,2The solvent-accessible free volume of is 35% of the total crystal volume.
2 내부에 게스트 물 분자의 식별 및 개수 확인은 IR 스펙 트럼, 원소 분석, TGA 데이터에 의해 결정되었다. 온도의존 PXRD 패턴(도 15 참조) 및 TGA 데이터는 2 가 300℃까지 열적으로 안정함을 보여준다. Identification and number identification of guest water molecules inside 2 were determined by IR spectrum, elemental analysis, and TGA data. Temperature dependent PXRD pattern (see Fig. 15) and TGA data show that the two are thermally stable up to 300 ℃.
2를 100℃, 진공 하에서 12 시간 동안 가열하면, 탈용매화된 고체[(Ni2L4)(BPTC)] (SNU-M11)가 얻어진다. SNU-M11의 PXRD 패턴은 2의 패턴과는 다르며(도 16 참조), 이는 게스트 물분자의 제거에 따라 망상구조가 변화함을 나타낸다(도 3 참조). 2 was heated at 100 ° C. under vacuum for 12 hours to obtain a desolvated solid [(Ni 2 L 4 ) (BPTC)] ( SNU-M11 ). The PXRD pattern of SNU-M11 is different from that of 2 (see FIG. 16), indicating that the network structure changes as the guest water molecules are removed (see FIG. 3).
그러나, SNU-M11이 공기 중에 5 분 동안 노출되면, 2의 PXRD 패턴은 재생성되며, 이것은 2의 망상구조가 게스트 물 분자의 재삽입에 의해 원형 복구되는 것을 의미한다. SNU-M11은 또한 공기 및 물에 대하여 안정하다; PXRD 패턴으로 확인되듯이, 심지어 이를 공기 중에 30일 동안 노출하거나 물에 12시간 동안 침지한 후에도 망상구조가 유지되었다(도 16 참조). However, when SNU-M11 is exposed to air for 5 minutes, the PXRD pattern of 2 is regenerated, which means that the network of 2 is circularly repaired by reinsertion of the guest water molecules. SNU-M11 is also stable against air and water; As confirmed by the PXRD pattern, the network structure was maintained even after it was exposed to air for 30 days or soaked in water for 12 hours (see FIG. 16).
S NU-M10SNU-M11의 기체 흡탈착 특성을 보기 위해서, N2, H2, CH 4 및 CO2 기체에 대하여 기체 흡착 등온선(gas adsorption isotherms)을 측정하였다. SNU-M10SNU-M11 N2, H2 및 CH4 기체를 거의 흡착하지 않는다. X-선 구조에서 나타나듯이, 이들 기체가 들어가기에 1의 채널 구멍 크기는 충분히 크나, 2의 채널 구멍 크기는 이들 기체가 들어가기에 너무 작고, 게스트 용매 제거에 의하여 이들 채널 구멍 크기는 기둥이 더 큰 기울임에 의해 훨씬 많이 감소된다. 그러나, SNU-M10SNU-M11 195 K, 1 atm에서 많은 양의 이산화탄소를 흡착한다(도 3 및 4). 이산화탄소의 동역학적 직경(kinetic diameter)(3.3 Å)이 H2의 동역학적 직경(2.89 Å)보다 큼에도 불구하고, 이들이 H 2는 흡착하지 않으면서 이산화탄소를 흡착하고 있는 점은 특이한 결과이다. S NU-M10andSNU-M11To see the gas adsorption and desorption characteristics of2, H2, CH4 And CO2 Gas adsorption isotherms were measured for gases.SNU-M10andSNU-M11silver N2, H2 And CH4It hardly adsorbs gas. As you can see in the X-ray structure, these gasesOneThe channel pore size of is large enough, but the channel pore size of 2 is too small for these gases to enter, and by removing the solvent, these channel pore sizes are much reduced by the larger tilt of the column. But,SNU-M10andSNU-M11 silver Adsorption of a large amount of carbon dioxide at 195 K, 1 atm (FIGS. 3 and 4). The kinetic diameter of carbon dioxide (3.3 kW) is H2Despite being larger than the kinetic diameter of (2.89 Å), they2The unique result is that carbon dioxide adsorbs without adsorption.
SNU-M10은 195 K에서 이산화탄소 기체를 흡착하고, type-I 등온선을 보여주고 있다(도 3). 195 K, 1 atm에서 이산화탄소 흡착 수용력은 24.3 wt%이다(123.5 cm3g-1 at STP, 5.5 mmolg-1). 이산화탄소 등온선으로부터 측정된 랭뮤어 표면적(Langmuir surface area)은 505 m2g-1이다. Dubinin-Radushkevich 수식을 적용해 측정한 공극 부피는 0.20 cm3g-1이다. 273 K에서, 이산화탄소 흡착 등온선은 S-모양의 곡선을 보이고, 이것은 1 atm에서 14.6 wt%의 이산화탄소 흡수(uptake)를 나타낸다(74.6 cm3g-1 at STP, 3.3 mmolg-1). 298 K, 1 atm에서, 0.61 atm(the gate opening pressure, Pgo)에 이 를 때까지 이산화탄소를 거의 흡착하지 않다가, 갑자기 이산화탄소를 흡수하기 시작하여 1 atm에서 9.2 wt% 까지 흡수한다(47.2 cm3g-1 at STP, 2.1 mmolg-1). 298 K에 서 탈착 등온선은 큰 히스테리시스(hysteresis)를 보인다; 흡착된 기체는 1.0-0.2 atm 영역에서 서서히 방출 되고(released), 더욱 낮은 압력에서 갑자기(sharply) 탈착된다. 고압력 이산화탄소 흡탈착 등온선에 따르면 SNU-M10 298 K, 10 bar에서 15.2 wt%의 과량 이산화탄소 흡착 수용력을 보인다(도 4 참조). SNU-M10Adsorbs carbon dioxide gas at 195 K and shows type-I isotherm (FIG. 3). At 195 K, 1 atm, CO2 adsorption capacity is 24.3 wt% (123.5 cm3g-One at STP, 5.5 mmolg-One). Langmuir surface area measured from carbon dioxide isotherm is 505 m2g-Oneto be. The pore volume measured using the Dubinin-Radushkevich equation is 0.20 cm3g-Oneto be. At 273 K, the carbon dioxide adsorption isotherm shows an S-shaped curve, which represents an uptake of 14.6 wt% of carbon dioxide at 1 atm (74.6 cm).3g-One at STP, 3.3 mmolg-One). At 298 K, 1 atm, the gate opening pressure, PgoRarely adsorb carbon dioxide until it reaches up to), then suddenly it starts to absorb carbon dioxide and absorbs up to 9.2 wt% at 1 atm (47.2 cm).3g-One at STP, 2.1 mmolg-One). Desorption isotherms at 298 K show large hysteresis; The adsorbed gas is released slowly in the 1.0-0.2 atm region and sharply desorbs at lower pressures. According to the high pressure carbon dioxide adsorption and desorption isothermSNU-M10silver Excess carbon dioxide adsorption capacity of 15.2 wt% is shown at 298 K, 10 bar (see FIG. 4).
SNU-M11은 또한 195 K에서 이산화탄소 기체를 흡착하나, 273 K 및 298 K에서는 이산화탄소 기체를 흡착하지 않는다(도 4a). 195 K에서, 0.18 atm까지는(point A, Pgo) 이산화탄소 기체를 거의 흡착 하지 않다가, 0.18atm에서 갑자기 기체를 흡착하기 시작한 후 0.41 atm(point B)에서 플래토(plateau)에 이른다. 1 atm에서 이산화탄소 흡착 수용능력은 24.4 wt%이다(124.0 cm3g-1 at STP, 5.54 mmolg-1). 탈착 등온선은 흡착 곡선을 따라 귀선(retrace)하지 않으며, 큰 히스테리시스를 보인다: SNU-M11은 압력이 0.039 atm(point C, gate-closing pressure, Pgc,)으로 낮아질 때까지 흡착된 이산화탄소 양을 유지하다가 0.039 atm에서 이산화탄소를 급격히 탈착한다. SNU-M11 also adsorbs carbon dioxide gas at 195 K but does not adsorb carbon dioxide gas at 273 K and 298 K (FIG. 4A). At 195 K, almost no adsorption of carbon dioxide gas to 0.18 atm (point A, P go ), then suddenly starts to adsorb the gas at 0.18 atm and reaches a plateau at 0.41 atm (point B). The carbon dioxide adsorption capacity at 1 atm is 24.4 wt% (124.0 cm 3 g −1 at STP, 5.54 mmol g −1 ). Desorption isotherms do not retrace along the adsorption curve and exhibit large hysteresis: SNU-M11 maintains the amount of adsorbed carbon dioxide until the pressure drops to 0.039 atm (point C, gate-closing pressure, P gc, ). And then rapidly desorbs carbon dioxide at 0.039 atm.
SNU-M11는 273 K 및 298 K에서 1 atm까지는 이산화탄소 기체를 흡착하지 않으나, 1atm 보다 더 높은 압력에서 이산화탄소 기체를 흡착한다(도 4b). 298 K, 20.0 bar에서 이산화탄소 흡착 을 시작하며(point A, Pgo), 23 bar에서 이산화탄소 흡수량은 20.6 wt%에 이른다(point B). 탈 착 등온선은 매우 큰 히스테리시스를 보이며, 흡착된 이산화탄소는 10.0 bar(point C, Pgc)에 이를 때까지 방출될 수 없다. SNU-M11Does not adsorb carbon dioxide gas up to 1 atm at 273 K and 298 K, but adsorbs carbon dioxide gas at a pressure higher than 1 atm (FIG. 4B). CO2 at 298 K, 20.0 bar Start adsorption (point A, Pgo), The carbon dioxide absorption reaches 20.6 wt% at 23 bar (point B). Desorption isotherms show very large hysteresis and adsorbed carbon dioxide is 10.0 bar (point C, PgcCannot be released until).
SNU-M10SNU-M11 모두에서는, 망상구조의 유연성 때문에 이산화탄소 흡착 등온선은 큰 히스테리시스적인 탈착 현상뿐만 아니라 게이트 오프닝 현상을 보인다. 다른 연성 망상구조의 H2, Ar, N2, 및 O2 흡착과 유사하게, 게이 트 오프닝 압력은 온도가 증가함에 따라 증가한다. 게이트 오프닝 압력에서, 사중극자(-1.34 x 10 -39 Cm2)를 갖는 이산화탄소 분자는 그 망상구조가 닫힌 상(closed phase)에서 열린 상(open phase)으로의 구조변형을 야기한다. SNU-M10은 동일한 온도에서 SNU-M11보다 더 낮은 게이트 오프닝 압력을 보여주는데, 이는 SNU-M10 내부의 에틸 기둥이 SNU-M11 내부의 부틸 기 둥보다 더 유연함을 보여준다. Clausius-Clapeyron 수식으로부터 계산된 이산화탄소 흡수에 대한 SNU-M10 게이트 오프닝 에너지(ΔHgo)는 27.6 kJmol-1 이다(도 20 참조). SNU-M10 AndSNU-M11In all cases, due to the flexibility of the network structure, the carbon dioxide adsorption isotherm exhibits a gate opening phenomenon as well as a large hysteretic desorption phenomenon. H of other flexible networks2, Ar, N2, And O2Similar to adsorption, the gate opening pressure increases with increasing temperature.At the gate opening pressure, quadrupole (-1.34 x 10-39 Cm2Carbon dioxide molecules with) cause structural transformation of the network from the closed phase to the open phase.SNU-M10At the same temperatureSNU-M11Lower gate opening pressure,SNU-M10 The ethyl column insideSNU-M11 It is more flexible than the internal butyl column. For CO2 uptake calculated from Clausius-Clapeyron equationSNU-M10of Gate opening energy (ΔHgo) Is 27.6 kJmol-One(See FIG. 20).
진공 하에서 측정된 SNU-M10의 싱크로트론 PXRD 패턴은 그 망상구조가 195 K, 273 K 및 298 K에서 온도에 독립적임을 보여준다(도 21 참조). 그러나, 1 atm CO2 및 298 K에서, PXRD의 몇 몇 피크는 진공 하에서 측정된 피크보다 더 낮은 각도 영역으로 이동하며, 이것은 CO2 흡착에 의해 망상구조의 팽창이 일어남을 보여준다(도 5 참조).The synchrotron PXRD pattern of SNU-M10 measured under vacuum shows that the network structure is temperature independent at 195 K, 273 K and 298 K (see FIG. 21). However, at 1 atm CO 2 and 298 K, some of the peaks of the PXRD shift to a lower angular region than the peak measured under vacuum, which shows that the expansion of the network occurs by CO 2 adsorption (see FIG. 5). .
298 K에서 SNU-M10의 CO2 흡탈착 수용력(9.3 wt% at 1 atm and 15 wt% at 10 bar) 및 SNU-M11의 수용력(21 wt% at 30 bar)은 아주 크다고는 볼 수 없지만, 본 배위 고분자 망상구조는 실온에서의 N2, H2 및 CH4 기체보다 CO2에 대해 현저하게 높은 흡착 선택성을 보여준다. 298 K에서 SNU-M10 CO2:N2 선택성은 0.61 atm에서 24:1 (v/v)이고, 1.0 atm에서 98:1 (v/v)이다. 이산화탄소 포집 물질로서 망상구조를 응용하기 위해서는 N2보다 이산화탄소에 대해 흡착 선택성을 보이는 것은 매우 중요하다. 298 K에서 SNU-M10 내부에 선택적이고 가역적으로 이산화탄소를 포집한다는 점은 배기(flue) 가스를 모방한 N2 내 15% (v/v)의 이산화탄소 혼합 기체를 흘려준 후 순수한 N2 기체를 흘려 주는 방식에 의해 TG 장비에서의 기체 순환 실험에 의해서도 확인되었다(도 6 참조).At 298 KSNU-M10CO2Adsorption and desorption capacity (9.3 wt% at 1 atm and 15 wt% at 10 bar) andSNU-M11The capacity of (21 wt% at 30 bar) is not very large, but the coordination polymer network is N at room temperature.2, H2And CH4 CO than gas2Shows significantly higher adsorption selectivity for. At 298 KSNU-M10of CO2: N2Selectivity is 24: 1 (v / v) at 0.61 atm and 98: 1 (v / v) at 1.0 atm. carbon dioxide To apply network structure as trapping material, N2It is very important to show adsorption selectivity for carbon dioxide. At 298 KSNU-M10 The selective and reversible capture of carbon dioxide inside allows N to mimic the flue gas.2Pure N after flowing 15% (v / v) CO2 gas mixture2 It was also confirmed by the gas circulation experiment in the TG equipment by the method of flowing the gas (see Fig. 6).
사이클 과정에서 0.77 wt%의 가역 변화가 관찰되었으며, 상기 물질은 N2 기체를 흘려줌으로써 재생되었다. 이는 SNU-M10이 압력 변환 방식의 이산화탄소 격리 공정(a pressure swing type CO 2 sequestration process)에 적용될 수 있는 매우 우수한 후보 물질이라는 점을 보여준다.A reversible change of 0.77 wt% was observed during the cycle and the material was regenerated by flowing N 2 gas. This shows that SNU-M10 is a very good candidate for application in a pressure swing type CO 2 sequestration process.
결론적으로, 본 발명자는 최초로 NiII 비스매크로사이클릭 착화합물을 이용하여 고연성 3D 기둥 배위 망상구조(highly flexible 3D pillared coordination networks)를 제조하였다. 상기 망상구조는 기체 유형, 온도 및 압력에 따라 채널의 개폐가 가능하다. X-선 결정 구조에 따르면, 2차원 사각-격자(2D square -grids)를 연결하는 알킬 기둥이 상당히 경사져 있으며, 이 기둥의 경사도에 따라 채널 크기가 조절된다.In conclusion, the inventors first produced highly flexible 3D pillared coordination networks using Ni II bismacrocyclic complexes. The network structure can open and close channels according to gas type, temperature and pressure. According to the X-ray crystal structure, the alkyl column connecting the 2D square-grids is inclined considerably, and the channel size is adjusted according to the slope of the column.
12의 탈용매화된 고체, SNU-M10SNU-M11은 300℃까지 열안정성, 공기와 물에 대한 안정성을 보일 뿐만 아니라, N2, H2 및 CH 4보다 이산화탄소에 대해 고선택적 흡착을 보인다. 일반적으로, SNU-M10 내의 CO2:N2 선택성은 298 K, 1 atm에서 98:1 (v/v)이다. 두 망상구조의 이산화탄소 흡착 등온선은 게이트 오프닝 현상 및 큰 히스테리시스 탈착을 보인다. 동일한 온도에서 SNU-M10의 게이트 오프닝 압 력은 SNU-M11의 게이트 오프닝 압력보다 낮으며, 이것은 에틸 기둥이 부틸 기둥보다 더 나은 유연성을 가짐을 보여준다. SNU-M10의 이산화탄소 흡수를 위한 게이트 오프닝 에너지는 27.6 kJmol-1이다. 선택적이고 가역적인 이산화탄소 흡착은 기체 순환 실험에 의해서도 확인되었다. 유연한 기둥을 포함하는 본 3차원 배위 고분자 망상구조는 수성 가스 이동 반응(water gas shift reaction)로 인한 CO2/H2 혼합물의 분리에서뿐만 아니라 이산화탄소 기체의 선택적 포집, 저장 및 감지에 적용될 수 있다. The 1 and 2 desolvated solids, SNU-M10 and SNU-M11 , exhibit thermal stability up to 300 ° C., stability to air and water, as well as higher selective adsorption to carbon dioxide than N 2 , H 2 and CH 4 . see. In general, the CO 2 : N 2 selectivity in SNU-M10 is 98: 1 (v / v) at 298 K, 1 atm. The carbon dioxide adsorption isotherms of both networks show gate opening and large hysteresis desorption. At the same temperature, the gate opening pressure of the SNU-M10 is lower than that of the SNU-M11 , which shows that the ethyl column has more flexibility than the butyl column. The gate opening energy for carbon dioxide absorption of SNU-M10 is 27.6 kJmol −1 . Selective and reversible carbon dioxide adsorption was also confirmed by gas cycle experiments. This three-dimensional coordination polymer network with flexible columns can be applied to the selective capture, storage and detection of carbon dioxide gas as well as to the separation of the CO 2 / H 2 mixture due to a water gas shift reaction.
실시예EXAMPLE
본 실시예는 본 발명을 설명하기 위해 예시적으로만 제시되는 것이며, 본 실시예에 의해 본 발명의 범위가 제한되어 해석될 수 없다.This embodiment is presented by way of example only to illustrate the invention, the scope of the invention by this embodiment is limited and can not be interpreted.
일반적 방법 General method
합성에 사용되는 대부분의 시약 및 용매는 시약급(reagents grade)으로 사용하였으며, 더 이상의 정제는 하지 않았다. Ni(II) 비스매크로사이클릭 착화합물인 AB 는 이전에 본 발명자가 개발하였던 한 단계 주형 축합반응(one pot template condensation reactions)을 변형시켜 제조하였다. H4BPTC (3,3’,5,5’-비페닐테트라카르복실산)는 이전에 보고한 방법을 변형하여 제조되었다.Most of the reagents and solvents used in the synthesis were used in reagents grade and no further purification was done. Ni (II) bismacrocyclic complexes A and B were prepared by modifying the one pot template condensation reactions developed by the present inventors. H 4 BPTC (3,3 ', 5,5'-biphenyltetracarboxylic acid) was prepared by modifying the previously reported method.
적외선 스펙트럼은 Perkin-Elmer Spectrum One FT-IR spectrophotometer를 사용하여 기록되었다. 원소분석은 Perkin-Elmer 2400 Series II CHN analyzer를 사용하여 수행하였다. 열중량분석(TGA) 및 시차주사열량분석(DSC)은 각각 TGA Q50 및 DSC Q10 of TA 장치를 사용하여 N2 환경 하에서 5℃/min의 스캐닝 속도로 수행되었다. Infrared spectra were recorded using a Perkin-Elmer Spectrum One FT-IR spectrophotometer. Elemental analysis was performed using a Perkin-Elmer 2400 Series II CHN analyzer. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were performed at a scanning rate of 5 ° C./min under N 2 using a TGA Q50 and DSC Q10 of TA apparatus, respectively.
분말 X-선회절(PXRD) 데이터는 Bruker D5005 diffrac tometer를 사용하여 Cu Ka (λ = 1.54050 Å) 에 대하여 40 kV, 40 mA에서 5o/min의 스캔속도, 2θ에서 0.02o의 스텝 사이즈로 측정되었다. 싱크로트론 X-선 회절 데이터는 한국의 포항 방사광 가속기, Beamline 11A를 사용하여 수집하였다.Powder X-ray diffraction (PXRD) data were obtained using a Bruker D5005 diffrac tometer with a scan rate of 40 kV, 5 o / min at 40 mA and a step size of 0.02 o at 2θ, using Cu K a (λ = 1.54050 kPa). Was measured. Synchrotron X-ray diffraction data were collected using a Korean Pohang Radiation Accelerator, Beamline 11A.
실시예 1: [Ni2 L2](ClO4)4 (A) 및 [Ni2L4](ClO 4)4·xH2O (B)의 제조(x는 1 내지 20 사이의 수)Example 1 Preparation of [Ni 2 L 2 ] (ClO 4 ) 4 (A) and [Ni 2 L 4 ] (ClO 4 ) 4 .xH 2 O (B) (x is a number between 1 and 20)
NiCl2·6H2O(12.0 g, 50.0 mmol)와 메탄올(100 mL)의 교반 용액에 N,N-비스(2-아미노에틸)-1,3-프로판 디아민(8.33 g, 50.0 mmol), 파라포름알데하이드(4.35 g, 15.0 mmol)와 더불어서 A를 제조할 경우 에는 에틸렌 디아민(1.67 mL, 25.0 mmol)을, B를 제조할 경우에는 1,4-디아미노부탄 (2.52 mL, 25.0 mmol)을 천천히 가하였다.To a stirred solution of NiCl 2 · 6H 2 O (12.0 g, 50.0 mmol) and methanol (100 mL), N, N-bis (2-aminoethyl) -1,3-propane diamine (8.33 g, 50.0 mmol), para Ethylenediamine (1.67 mL, 25.0 mmol) when preparing A with formaldehyde (4.35 g, 15.0 mmol) and 1,4-diaminobutane (2.52 mL, 25.0 mmol) when preparing B was slowly Was added.
상기 혼합물은 2일 동안 환류하면서 가열하였고, 이 기간 동안 용액은 점차적으로 갈색으로 변하였다. 상기 용액은 뜨거운 동안 여과하였고, 여과물(filtrate)은 부피가 반으로 줄 때까지 농축시켰다. 상기 용액은 [Ni2L2Cl4] 또는 [Ni2 L4Cl4]의 자주빛 침전이 형성될 때까지 냉장고에 방치한 후, 여과하여 침전을 제거한 후, 메탄올로 세척하고 공기 중에서 건조시켰다. 상기 침전물을 최소량의 물에 녹여서 노란색 용액을 만든 후, 과량의 LiClO4의 포화 메탄올 용액을 첨가하였다. 상기 용액을 오렌지색 결정이 형성될 때까지 실온에 방치하였다. 고체를 여과하여 제거한 후, 메탄올로 세척하고 공기 중에서 건조시켰다. The mixture was heated to reflux for 2 days, during which time the solution gradually turned brown. The solution was filtered while hot and the filtrate was concentrated to half volume. The solution was left in a refrigerator until a purple precipitate of [Ni 2 L 2 Cl 4 ] or [Ni 2 L 4 Cl 4 ] was formed, filtered to remove the precipitate, washed with methanol and dried in air. . The precipitate was dissolved in a minimum amount of water to form a yellow solution, then excess LiClO 4 saturated methanol solution was added. The solution was left at room temperature until orange crystals formed. The solid was removed by filtration, washed with methanol and dried in air.
A의 FT-IR: ν = 3208 (N-H), 2953, 2874 (C-H), 1095 (Cl-O) cm-1 elemental analysis calcd (%) for Ni2C20H48N10Cl4O 16: C 25.45, H 5.13, N 14.84; found: C 25.77, H 5.09, N 14.78.Of A FT-IR: ν = 3208 (NH), 2953, 2874 (CH), 1095 (Cl-O) cm -1 elemental analysis calcd (%) for Ni 2 C 20 H 48 N 10 Cl 4 O 16: C 25.45, H 5.13, N 14.84; found: C 25.77, H 5.09, N 14.78.
B의 FT-IR for B (KB r pellet): ν = 3448 (O-H), 3175 (N-H), 2945, 2876 (C-H), 1089 (Cl-O) cm-1 elemental analysis calcd (%) for Ni2C22H68N10Cl4 O24: C 23.68, H 6.14, N 12.55; found: C 23.76, H 5.96, N 12.31.FT-IR for B (KB r pellet) of B : ν = 3448 (OH), 3175 (NH), 2945, 2876 (CH), 1089 (Cl-O) cm -1 elemental analysis calcd (%) for Ni 2 C 22 H 68 N 10 Cl 4 O 24 : C 23.68, H 6.14, N 12.55; found: C 23.76, H 5.96, N 12.31.
실시예 2: [(Ni2L2)(BPTC)]·xH2O·yDEF (1)의 제조(x와 y는 1 내지 20 사이의 수)Example 2: Preparation of [(Ni 2 L 2 ) (BPTC)]. XH 2 O.yDEF (1), where x and y are numbers between 1 and 20.
[Ni2L2](ClO4)4 (0.030 g, 0.035 mmol)의 뜨거운 수용액(3 mL)에 H4BPTC (0.011 g, 0.035 mmol)의 뜨거운 DEF/TEA (2 mL/0.16 mL) 용액을 첨가하였다. 상기 반응기를 단단히 밀폐하고 나서 용액을 40 ℃에서 4 일간 자주빛 결정이 형성될 때까지 방치한 다음, 결정이 형성되면 여과하고, H2O와 DEF의 혼합물(3:2, v/v)로 세척한 후 공기 중에서 간단히 건조시켰다. [Ni2L2] (ClO4)4                  (0.030 g, 0.035 mmol) in a hot aqueous solution (3 mL)4A hot DEF / TEA (2 mL / 0.16 mL) solution of BPTC (0.011 g, 0.035 mmol) was added. After tightly sealing the reactor, the solution was left at 40 ° C. for 4 days until purple crystals were formed, and then the crystals were formed and filtered, H2Washed with a mixture of O and DEF (3: 2, v / v) and then simply dried in air.
수율: 0.025 g (57%). elemental analysis calcd (%) for Ni2C 51H99N13O17: C 47.71, H 7.77, N 14.18; found: C 48.13, H 7.47, N 14.22; FT-IR (KBr pellet): γ = 3417 (O-H), 3213 (N-H), 2931, 2866 (C-H), 1660 (C=ODEF), 1564 (O-C=O) cm-1.Yield: 0.025 g (57%). elemental analysis calcd (%) for Ni2C51H99N13O17C 47.71, H 7.77, N 14.18; found: C 48.13, H 7.47, N 14.22; FT-IR (KBr pellet): γ = 3417 (O-H), 3213 (N-H), 2931, 2866 (C-H), 1660 (C = ODEF), 1564 (O-C = O) cm-One.
실시예 3: [(Ni2L2)(BPTC)] (1’)의 제조Example 3: Preparation of [(Ni 2 L 2 ) (BPTC)] (1 ′)
1을 진공 하 110℃에서 18 시간 동안 가열하였다. elemental analysis calcd (%) for Ni2C36H54N10 O8: C 49.57, H 6.24, N 16.06; found: C 50.20, H 6.12, N 15.59; FT-IR (Nujol mull): γ = 3145 (N-H), 1563 (O-C=O) cm-1. OneHeated at 110 ° C. under vacuum for 18 h. elemental analysis calcd (%) for Ni2C36H54N10O8C 49.57, H 6.24, N 16.06; found: C 50.20, H 6.12, N 15.59; FT-IR (Nujol mull): γ = 3145 (N-H), 1563 (O-C = O) cm-One.
실시예 4: [(Ni2L2)(BPTC)]·pMeCN (1MeCN)의 제조(p는 1 내지 20 사이의 수)Example 4 Preparation of [(Ni 2 L 2 ) (BPTC)]. PMeCN (1MeCN), where p is a number between 1 and 20
1의 결정을 무수 MeCN에 4시간 동안 침지시켜 1의 게스트 용매 분자를 MeCN으로 교체하였다. elemental analysis calcd (%) for Ni2C42H63N13O 8: C 50.68, H 6.38, N 18.29; found: C 48.51, H 6.62, N 18.20; FT-IR (Nujol mull): γ = 3141 (N-H), 2249 (C-N), 1566 (O-C=O) cm-1.Crystals of 1 were immersed in anhydrous MeCN for 4 hours to replace the guest solvent molecules of 1 with MeCN. elemental analysis calcd (%) for Ni 2 C 42 H 63 N 13 O 8 : C 50.68, H 6.38, N 18.29; found: C 48.51, H 6.62, N 18.20; FT-IR (Nujol mull): γ = 3141 (NH), 2249 (CN), 1566 (OC = O) cm -1 .
실시예 5: [(Ni2L 2)(BPTC)] (SNU-M10)의 제조Example 5: Preparation of [(Ni 2 L 2 ) (BPTC)] (SNU-M10)
1MeCN은 100℃, 진공 하에서 6 시간 동안 가열하였다. elemental analysis calcd (%) for Ni2C36H54N10O8: C 49.57, H 6.24, N 16.06; found: C 49.09, H 6.43, N 16.37; FT-IR (Nujol mu ll): γ = 3140 (N-H), 1557 (O-C=O) cm-1. 1MeCNHeated at 100 ° C. under vacuum for 6 hours. elemental analysis calcd (%) for Ni2C36H54N10O8C 49.57, H 6.24, N 16.06; found: C 49.09, H 6.43, N 16.37; FT-IR (Nujol mu ll): γ = 3140 (N-H), 1557 (O-C = O) cm-One.
실시예 6: SNU-M10에 대한 재용매화Example 6: Resolvation for SNU-M10
SNU-M10을 MeCN에 6 시간 동안 침지시켰다. elemental analysis calcd (%) for {[Ni2L2][BPTC]·3H2O·3MeCN }n: C 48.07, H 6.63, N 17.30; found: C 47.82; H 6.37; N 17.13. SNU-M10Was immersed in MeCN for 6 hours. elemental analysis calcd (%) for {[Ni2L2] [BPTC] · 3H2O · 3MeCN}n: C 48.07, H 6.63, N 17.30; found: C 47.82; H 6.37; N 17.13.
실시예 7: [(Ni2L4)(BPTC)]·pH2O (2)의 제조(p는 1 내지 20 사이의 수)Example 7: Preparation of [(Ni 2 L 4 ) (BPTC)] · pH 2 O (2), where p is a number between 1 and 20
Na4BPTC (0.015 g, 0.035 mmol)의 수용액(3 mL)에 [Ni2L4](ClO 4)4·8H2O (0.039 g, 0.035 mmol)의 뜨거운 H2O/DEF(2 mL, 1:1 v/v) 용액을 첨가하였다. 상기 반응기를 단단히 밀폐하고 나서 상기 용액을 실온에서 자주빛 결정이 형성될 때까지 방치한 다음 결정이 형성되면 여과하고, H2O로 세척한 후 공기 중에서 건조시킨다.To an aqueous solution of Na 4 BPTC (0.015 g, 0.035 mmol) (3 mL) was dissolved in hot Ni 2 L 4 ] (ClO 4 ) 4 .8H 2 O (0.039 g, 0.035 mmol) with hot H 2 O / DEF (2 mL, 1: 1 v / v) solution was added. After tightly sealing the reactor, the solution is left at room temperature until purple crystals are formed, and then filtered when the crystals are formed, washed with H 2 O and dried in air.
수율: 0.022 g (54%). elemental analysis calcd (%) for Ni2C38H8 6N10O22: C 39.60, H 7.52, N 12.15; found: C 41.37, H 7.01, N 12.43; FT-IR (KBr pellet): γ = 3400 (O-H), 3184 (N-H), 2925, 2865(C-H), 1568 (O- C=O) cm-1.Yield: 0.022 g (54%). elemental analysis calcd (%) for Ni2C38H8 6N10O22: C 39.60, H 7.52, N 12.15; found: C 41.37, H 7.01, N 12.43; FT-IR (KBr pellet): γ = 3400 (O-H), 3184 (N-H), 2925, 2865 (C-H), 1568 (O- C = O) cm-One.
실시예 8: [(Ni2L4)(BPTC)] (SNU-M11)의 제조Example 8: Preparation of [(Ni 2 L 4 ) (BPTC)] (SNU-M11)
2를 진공 하100℃에서 12 시간 동안 가열하였다. elemental analysis calcd (%) for Ni2 C38H58N10O8: C 50.70, H 6.49, N 15.56; found: C 50.10, H 6.49, N 15.10; FT-IR (Nujol mull): 3189 (N-H), 1564 (O-C=O) cm-1. 2 was heated at 100 ° C. under vacuum for 12 h. elemental analysis calcd (%) for Ni 2 C 38 H 58 N 10 O 8 : C 50.70, H 6.49, N 15.56; found: C 50.10, H 6.49, N 15.10; FT-IR (Nujol mull): 3189 (NH), 1564 (OC = O) cm -1 .
실시 예 9: SNU-M11의 재용매화Example 9: Resolvation of SNU-M11
SNU-M11을 공기 중에 5분 동안 노출시켰다. elemental analysis calcd (%) for [(Ni2L4)(BPTC)]·15H2O: C 38.99, H 7.5 8, N 11.97; found: C 39.19, H 7.13, N 12.06. SNU-M11Was exposed to air for 5 minutes. elemental analysis calcd (%) for [(Ni2L4) (BPTC)] · 15H2O: C 38.99, H 7.5 8, N 11.97; found: C 39.19, H 7.13, N 12.06.
실험예 1: 저압 기체 흡탈착 실험Experimental Example 1: Low pressure gas adsorption and desorption experiment
자동화 된 micropore gas analyzer Autosorb-3B (Quantachrome Instruments)를 이용하여 static volumetric method 에 의해 기체 흡착-탈착 실험을 수행하였다. Gas adsorption-desorption experiments were performed using a static volumetric method using an automated micropore gas analyzer Autosorb-3B (Quantachrome Instruments).
합성된 12의 결정을 100 ℃, 진공 하, Schlenk tube 내에서 각각 6 시간 및 12 시간 동안 가열한 후, 정확하게 무게를 측정한 건조 고체를 기체-흡 착 장비 안에 삽입하였다. 상기 시료를 100 ℃, ca. 10-5 Torr 하에서 3 시간동안 가열하여 재활성화시켰다. 모든 기체는 99.999%의 순도를 사용하였으며, 불순물 수증기는 기체 라인이 장착된 기체 정 제기(Agilent, OT3-4)에 의해 제거하였다.After the determination of the combined first and second heating for respectively 6 and 12 hours in 100 ℃, vacuum, Schlenk tube, a dry solid accurately measure the weight gas-inserted in the adsorption equipment. The sample at 100 ° C., ca. It was reactivated by heating under 10 -5 Torr for 3 hours. All gases used 99.999% purity and impurity vapor was removed by gas purification (Agilent, OT3-4) equipped with gas lines.
N2 및 H2 기체 흡탈착 등 온선은 77 K, 195 K 및 298 K에서 모니터링하였고, 이산화탄소 기체 흡탈착 등온선은 195 K, 273 K 및 298 K에서 측정하였다. 각 기체 흡탈착 측정 후, 시료 중량을 다시 정확하게 측정하였다.N 2 and H 2 gas adsorption and desorption isotherms were monitored at 77 K, 195 K and 298 K, and carbon dioxide gas adsorption and desorption isotherms were measured at 195 K, 273 K and 298 K. After each gas adsorption and desorption measurement, the sample weight was again measured accurately.
실험예 2: 고압 기체 흡탈착 실험Experimental Example 2: High pressure gas adsorption and desorption experiment
Rubotherm MSB (magnetic suspension balance)을 이용하여 gravimetric method에 의해 이산화탄소 기체에 대한 SNU-M10SNU-M11의 고압 기체 흡착 등온선이 측정하였다. 모 든 기체는 99.999 % 의 순도급을 이용하였고, 이산화탄소 흡탈착 등온선은 298 K에서 측정하였다.High pressure gas adsorption isotherms of SNU-M10 and SNU-M11 on carbon dioxide gas were measured by gravimetric method using Rubotherm MSB (magnetic suspension balance). All gases used a 99.999% purity grade and carbon dioxide adsorption and desorption isotherms were measured at 298 K.
SN U-M10SNU-M11 고체는 100 ℃, 진공 하에서 12 시간 동안 Schlenk tube 내에서 가열되었으며, 건조된 고체량을 정확히 측정한 후, 기체 흡탈착 장비 내에 삽입하였으며, 100 ℃ 배기(evacuation)에 의해 재활성화시켰다. The SN U-M10 and SNU-M11 solids were heated in a Schlenk tube for 12 hours under vacuum at 100 ° C., vacuum, precisely measured the amount of dried solids, then inserted into the gas adsorption and desorption equipment, and subjected to 100 ° C. evacuation. By reactivation.
구조체의 스켈리톤(skeleton)을 얻기 위해, 기체 흡탈착 측정 전에 298 K에서 He 등온선 (최대 90 bar까지)을 측정하였다. 과량의 흡착 등온선을 측정한 후, 구조체의 부피에 각 압력 및 온도에서 해당 기체의 밀도를 곱하여 부력(buoyancy)에 대해 보정하였다.To obtain a skeleton of the structure, the He isotherm (up to 90 bar) was measured at 298 K before the gas adsorption and desorption measurement. After measuring the excess adsorption isotherm, the volume of the structure was multiplied by the density of the gas at each pressure and temperature to correct for buoyancy.
실험예 3: 기체 순환 실험Experimental Example 3: Gas Circulation Experiment
기체 순환 실험에 앞서, 100℃에서 120 분 동안 시료를 가열하여 활성화시킨 후, 25℃, N2 하에서 냉각하였다. 이산화탄소 기체 순환 실험은 TGA Q50에서 N2 내 15% (v/v) 이산화탄소를 흘려준 다음 순수한 N2를 흘려줌으로써 수행하였다. 유속은 60 mL/min을 사용하였다.Prior to gas circulation experiments, the samples were heated and activated at 100 ° C. for 120 minutes and then cooled under 25 ° C., N 2 . Carbon dioxide gas circulation experiment gave the following under flowing N 2 in 15% (v / v) carbon dioxide in a TGA Q50 was carried out by flowing pure N 2. The flow rate was 60 mL / min.
실험 예 4: X-선 결정구조 분석Experimental Example 4: X-ray Crystal Structure Analysis
12의 회절 데이터는 293 K에서 graphite-monochromated Mo Kα radiation (λ = 0.71073 Å)을 갖는 Enraf Nonius Kappa CCD diffractometer를 사용하여 수집되었다. 단일 결정을 Glass capillary 내에 모액과 함께 봉합하였다(sealed). Diffraction data of 1 and 2 were collected using an Enraf Nonius Kappa CCD diffractometer with graphite-monochromated Mo Kα radiation (λ = 0.71073 μs) at 293 K. Single crystals were sealed with mother liquor in Glass capillary.
첫 번째 10 프레임의 피크로부터 예비 배향 매트릭스(preliminary orientation matrixes) 및 유닛 셀 파라미터을 얻고 나서 전체 데이터 셋을 이용 하여 정련하였다. 프레임을 통합한 후 DENZO를 이용하여 Lorentz 및 편광효과에 대하여 교정하였다. 결정 파라미터의 스케일링(scaling) 및 글러벌 정련(global refinement)는 SCALEPACK에 의해 수행하였다.Preliminary orientation matrixes and unit cell parameters were obtained from the peak of the first 10 frames and then refined using the entire data set. After integrating the frames, DENZO was used to correct for Lorentz and polarization effects. Scaling and global refinement of crystal parameters were performed by SCALEPACK.
흡착 보정은 수행하지 않았다. 결정 구조는 직접 방법(direct methods)에 의해 구하고 나서 SHELXL-97 컴퓨터 프로그램을 사용하여 full-matrix least-squares refinement로 정련하였다. 수소 원자는 riding model을 이용하여 기하적으로 배치시켰다. PLATON의 SQUEEZE option을 사용하여 무질서한 게스트 용매 분자(1 3979 Å3, 55.8%, 2 1957 Å3, 35.0%)를 무시함으로써 X-선 데이터를 보완하고 나서, 구조 정련을 추가적으로 수행하였으며, 이것은 더 나은 정련 및 데이터 컨버젼스 (data convergence)를 제공하였다.Adsorption correction was not performed. Crystal structures were obtained by direct methods and refined by full-matrix least-squares refinement using the SHELXL-97 computer program. Hydrogen atoms were placed geometrically using the riding model. Complementing the X-ray data by ignoring the disordered guest solvent molecules ( 1 3979 Å 3 , 55.8%, 2 1957 Å 3 , 35.0%) using PLATON's SQUEEZE option, further refinement of the structure was performed. Refinement and data convergence were provided.
참고 자료Reference
1. Crystal data of 1. Ni2C3 6H54N10O8, Mr = 872.31, monoclinic, space group C2/c, a = 25.2087(5) Å, b = 16.2843(3) Å, c = 19.9379(4) Å, β = 119.319(1)o, V = 7136.2(2) Å3, Z = 4, calcd = 0.812 gcm3 without guests, μ = 0.563 mm1, λ = 0.71073 Å, T = 298(2) K, 2θ = 54.98o, 253 parameters, R1 = 0.0549 (I > 2(I), 8140 reflections), wR2= 0.1709 (all data, 14081 reflections), GOF = 0.947. 1. Crystal data of 1 . Ni 2 C 3 6 H 54 N 10 O 8 , M r = 872.31, monoclinic, space group C2 / c, a = 25.2087 (5) Å, b = 16.2843 (3) Å, c = 19.9379 (4) Å, β = 119.319 (1) o, V = 7136.2 (2) Å 3 , Z = 4, calcd = 0.812 gcm 3 without guests, μ = 0.563 mm 1 , λ = 0.71073 Å, T = 298 (2) K, 2θ = 54.98 o , 253 parameters, R 1 = 0.0549 (I> 2 (I), 8140 reflections), wR 2 = 0.1709 (all data, 14081 reflections), GOF = 0.947.
2. Crystal data of 2. Ni2C38 H58N10O8, Mr = 900.36, monoclinic, space group C 2/c, a = 25.1189(12) Å, b = 16.3750(9) Å, c = 16.6616(10) Å, β = 125.254(2)o, V = 5596.4(5) Å3, Z = 4, calcd = 1.069 gcm3 without guests, μ = 0.720 mm1, λ = 0.71073 Å, T = 298(2) K, 2θ = 55.04o, 263 parameters, R1 = 0.1210 (I > 2(I), 5769 reflections), wR2= 0.3430 (all data, 10259 reflections), GOF = 0.904.2. Crystal data of 2 . Ni 2 C 38 H 58 N 10 O 8 , M r = 900.36, monoclinic, space group C 2 / c, a = 25.1189 (12) Å, b = 16.3750 (9) Å, c = 16.6616 (10) Å, β = 125.254 (2) o , V = 5596.4 (5) Å 3 , Z = 4, calcd = 1.069 gcm 3 without guests, μ = 0.720 mm 1 , λ = 0.71073 Å, T = 298 (2) K, 2θ = 55.04 o , 263 parameters, R 1 = 0.1210 (I> 2 (I), 5769 reflections), wR 2 = 0.3430 (all data, 10259 reflections), GOF = 0.904.

Claims (26)

  1. (1) 유연성 있는 유기 분자로 연결된 이중 거대고리 화합 물, 및(1) double macrocyclic compounds linked by flexible organic molecules, and
    (2) 2 내지 4개의 카르복시기를 포함하는 유기 화합물로 구성된 2차원 그리드를 포함하며,(2) a two-dimensional grid composed of organic compounds containing two to four carboxyl groups,
    상기 2차원 그리드는 상기 이중 거대 고리 화합물에 의해서 그리드 간에 서로 연결되어 있는 3차원 망상 구조체. The two-dimensional grid is a three-dimensional network structure is connected to each other between the grid by the double macrocyclic compound.
  2. [규칙 제91조에 의한 정정 26.03.2010] 
    하기 [화학식 1]의 구조를 갖는 3차원 배위 고분자 망상구조체: [화학식 1] [(MxLy) (LIGAND)] 상기에서 M은 Ni, Cu, Fe, Co, Zn 중에서 선택된 금속으로 Ly 리간드에 배위 되어 있고, 상기 x는 2 내지 6 중에서 선택된 정수이며, 상기 LIGAND는 2 내지 4개의 카르복시기를 포함하는 유기 화합물 리간드이고; 상기 Ly는 하기 화학식의 거대고리 2 내지 6개 가 링커에 의해 연결된 비스매크로사이클릭 리간드로서, 각 거대고리는 총 12 내지 16개의 탄소 또는 질소 원자에 의해 고리가 구성되며, 하기 화학식에서 메틸렌기의 탄소 또는 질소에 결합되어 있는 수소는 NH 2 또는 OH로 치환될 수도 있으며; [화학식 2]
    Figure WO-DOC-FIGURE-102
    [화학식 3]
    Figure WO-DOC-FIGURE-103
    [화학식 4]
    Figure WO-DOC-FIGURE-104
    상기 링커는 -(CR1R2)n-, -(CR1R2-CR 3R4-CR5R6)n-, -(CR1R2 -CR3R4-CR5R6-CR7R 8)n- 중에서 선택되고, 상기 n은 1 이상의 정수이며, 상기 R1, R2, R3, R4, R5, R6, R7, R 8은 각각 독립적으로 (i) H, (ii) NH2, (iii) OH 및 (iv) NH2나 OH에 의 해서 치환된 C1-C20 알킬기 중에서 선택되고; 상기 구조체는 상기 LIGAND에 의해 구성된 2차원 그리드가 유연성 있는 기둥 역할을 하는 MxLy에 의해 그리드 간 서로 연결되어 전체적으 로 3차원 망상구조를 형성하고 있는 것을 특징으로 하는 3차원 배위 고분자 망상구조체.
    [Revisions under Rule 91 26.03.2010]
    Three-dimensional coordination polymer network structure having the structure of [Formula 1]: [Formula 1] [(M x L y ) (LIGAND)] In the above, M is a metal selected from Ni, Cu, Fe, Co, Zn L y Coordinated to a ligand, wherein x is an integer selected from 2 to 6 and the LIGAND is an organic compound ligand comprising 2 to 4 carboxy groups; L y is a bismacrocyclic ligand in which 2 to 6 macrocycles of the following formula are linked by a linker, and each macrocyclic ring is composed of a total of 12 to 16 carbon or nitrogen atoms. Hydrogen bonded to carbon or nitrogen of may be substituted with NH 2 or OH; [Formula 2]
    Figure WO-DOC-FIGURE-102
    [Formula 3]
    Figure WO-DOC-FIGURE-103
    [Formula 4]
    Figure WO-DOC-FIGURE-104
    The linker is-(CR 1 R 2 ) n-,-(CR 1 R 2 -CR 3 R 4 -CR 5 R 6 ) n-,-(CR 1 R 2 -CR 3 R 4 -CR 5 R 6- CR 7 R 8 ) n-, n is an integer of 1 or more, and R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , and R 8 are each independently (i) H, (ii) NH 2 , (iii) OH and (iv) a C 1 -C 20 alkyl group substituted by NH 2 or OH; The structure is a three-dimensional coordination polymer network structure, characterized in that the two-dimensional grid formed by the LIGAND is connected to each other by the grid by M x L y acting as a flexible column to form a three-dimensional network as a whole .
  3. [규칙 제91조에 의한 정정 26.03.2010] 
    제2항에 있어서, 상기 MxLy은 비스매 크로사이클릭 거대고리가 링커에 의해 연결된 하기 화학식의 착화합인 것을 특징으로 하는 3차원 망상 구조 체: [화학식 5]
    Figure WO-DOC-FIGURE-105
    상기에서 M은 Ni, Cu, Fe, Co, Zn 중에서 선택된 금속이고; 상기 LINKER는 -(CR1R2)n-, -(CR1R2 -CR3R4-CR5R6)n-, -(CR1R 2-CR3R4-CR5R6-CR7R 8)n- 중에서 선택된 링커로서, 상기 n은 1 이상의 정수이이고, 상기 R1, R 2, R3, R4, R5, R6, R7, R8은 각각 독립적으로 (i) H, (ii) NH2, (iii) OH 및 (iv) NH2 나 OH에 의해서 치환된 C1-C20 알킬기 중에서 선택되며; 상기 X는 C 또는 N이고; Y는 수소 또는 NH2 또는 OH의 치환기이며; 상기 LIGAND는 BPTC, BTC, BDC, TCBPDA 중에서 선택되고; 상기 링커는 상기 비스매크로사이클릭 거대고리를 구성하는 질소 원자 중에서 상 대적으로 외부로 돌출된 부분에 존재하는 질소 원자와 결합할 수도 잇고 상대적으로 금속과 가까운 질소 원 자와 결합할 수도 있다.
    [Revisions under Rule 91 26.03.2010]
    3. The three-dimensional network structure according to claim 2, wherein M x L y is a complex of the following chemical formula in which a bismacro cyclic ring is connected by a linker.
    Figure WO-DOC-FIGURE-105
    Wherein M is a metal selected from Ni, Cu, Fe, Co, Zn; The LINKER is-(CR 1 R 2 ) n-,-(CR 1 R 2 -CR 3 R 4 -CR 5 R 6 ) n-,-(CR 1 R 2 -CR 3 R 4 -CR 5 R 6- CR 7 R 8 ) n-, wherein n is an integer of 1 or more, and R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7, R 8 are each independently (i ) H, (ii) NH 2 , (iii) OH and (iv) a C 1 -C 20 alkyl group substituted by NH 2 or OH; X is C or N; Y is hydrogen or a substituent of NH 2 or OH; The LIGAND is selected from BPTC, BTC, BDC, TCBPDA; The linker may combine with a nitrogen atom present in a portion protruding to the outside of the nitrogen atoms constituting the bismacrocyclic macrocyclic ring and may combine with a nitrogen atom relatively close to a metal.
  4. [규칙 제91조에 의한 정정 26.03.2010] 
    제3항에 있어서, 상기 MxLy는 하기 [화학식 6]의 구조를 갖는 것을 특징으로 하는 3차원 망상 구조체: [화학식 6]
    Figure WO-DOC-FIGURE-106
    상기 LINKER는 -(CH2)n-, -(CH2-CHR-CH2)n-, -(CS1-CH 2-CHS2)- 중에서 선택되고, 상기 S1과 S2는 NH 2 또는 OH이며, 상기 R은 -(CH2)m-NH2 또는 -(CH2)m-OH로서, 여기서 m은 0 내지 10의 정수 중 하나이다.
    [Revisions under Rule 91 26.03.2010]
    The three-dimensional network structure according to claim 3, wherein M x L y has a structure of [Formula 6]:
    Figure WO-DOC-FIGURE-106
    The LINKER is selected from-(CH 2 ) n-,-(CH 2 -CHR-CH 2 ) n-,-(CS 1 -CH 2 -CHS 2 )-, and S 1 and S 2 are NH 2 or OH, wherein R is-(CH 2 ) m-NH 2 or-(CH 2 ) m-OH, wherein m is one of integers from 0 to 10.
  5. [규칙 제91조에 의한 정정 26.03.2010] 
    제4항에 있어서, 상기 MxLy는 하기 [화학식 7]의 구조를 갖는 것을 특징 으로 하는 3차원 망상 구조체. [화학식 7]
    Figure WO-DOC-FIGURE-107
    [Revisions under Rule 91 26.03.2010]
    The 3D network structure according to claim 4, wherein the M x L y has a structure of [Formula 7]. [Formula 7]
    Figure WO-DOC-FIGURE-107
  6. 제5항에 있어서, 상기 망상구조체는 하기 [화학식 9] 또는 [화학식 10]의 구조를 가지고,The method of claim 5, wherein the network structure has the structure of [Formula 9] or [Formula 10],
    [화학식 9][Formula 9]
    [(Ni2L2)(BPTC)][(Ni 2 L 2 ) (BPTC)]
    [화학식 10][Formula 10]
    [(Ni2L4)(BPTC)][(Ni 2 L 4 ) (BPTC)]
    상기 화학식에서 Ni2L2 및 Ni2L4는 모두 하기 [화학식 8]의 구조를 가지 고, 상기 R은 상기 Ni2L2 및 Ni2L4에서 각각 에틸 또는 부틸인 것을 특징으로 하는 3차원 배위 고분자 망상구조체:In the above formula, both Ni 2 L 2 and Ni 2 L 4 have the structure of [Formula 8], wherein R is three-dimensional, characterized in that each of the ethyl or butyl in the Ni 2 L 2 and Ni 2 L 4 Coordination Polymer Networks:
    [화학식 8][Formula 8]
    Figure PCTKR2009005938-appb-I000007
    .
    Figure PCTKR2009005938-appb-I000007
    .
  7. 제2항에 있어서, 상기 MxLy은 상기 [화학식 8]의 구조를 가지고, 상기 화학식에서 R은 에틸이며, 상기 망상구조체는 하기 [화학식 11]의 용매화물을 탈용매화시켜 수득되는 것임을 특징으로 하는 3차원 배위 고분자 망상 구조체:The method according to claim 2, wherein M x L y has the structure of [Formula 8], wherein in the formula R is ethyl, the network structure is obtained by desolvating the solvate of the formula [11] 3-D coordination polymer network structure:
    [화학식 11][Formula 11]
    [(Ni2L2)(LIGAND)]·pLBP-SOLVENT[(Ni 2 L 2 ) (LIGAND)] · pLBP-SOLVENT
    상기에서 p는 1 내지 20의 수이고, 상기 LIGAND는 BPTC, BTC, BDC, TCBPDA 중에서 선택되는 리간드이며, 상기 LBP-SOLVENT는 MeCN, H2O, MeOH, EtOH, CHCl3, MeCN, DMSO, DMF, 아세톤, 톨루엔 중에서 선택된 저 비등점 용매인 것을 특징으로 하는 3차원 배위 고분자 망상구조체.Wherein p is a number from 1 to 20, the LIGAND is a ligand selected from BPTC, BTC, BDC, TCBPDA, the LBP-SOLVENT is MeCN, H 2 O, MeOH, EtOH, CHCl 3 , MeCN, DMSO, DMF 3D coordination polymer network structure, characterized in that the low boiling point solvent selected from acetone, toluene.
  8. 제7항에 있어서, 상기 LIGAND는 BPTC이고, 상기 용매화물은 하기 [화학식 12]의 구조를 갖는 것을 특징으로 하는 3차원 배위 고분자 망상구조체:The three-dimensional coordination polymer network structure according to claim 7, wherein the LIGAND is BPTC and the solvate has a structure of [Formula 12]:
    [화학식 12][Formula 12]
    [(Ni2L2)(BPTC)]·xMeCN[(Ni 2 L 2 ) (BPTC)] xMeCN
    상기에서 x는 1 내지 20 사이의 수이다.Where x is a number between 1 and 20.
  9. 제2항에 있어서, 상기 MxLy은 상기 [화학식 8]의 구조를 가지며, 상기 화학식에서 R은 부틸이며, 상기 망상구조체는 하기 [화학식 13] 의 용매화물을 탈용매화시켜 수득되는 것임을 특징으로 하는 3차원 배위 고분자 망상구조체:The method according to claim 2, wherein M x L y has the structure of [Formula 8], wherein in the formula R is butyl, the network structure is obtained by desolvating the solvate of the formula [13] 3-D coordination polymer network:
    [화학식 13][Formula 13]
    [(Ni2L4)(LIGAND)]·qSOLVENT[(Ni 2 L 4 ) (LIGAND)] qSOLVENT
    상기에서 q는 1 내지 20 사이의 수이고, 상기 LIGAND는 BPTC, BTC, BDC, TCBPDA 중에서 선택된 리간드이며, 상기 SOLVENT는 H2O, DMF, DEF, 디메틸아세트아미드, MeCH, MeOH 중에서 선택된 용매인 것을 특징으로 하는 입체구조 배위 고분자 망상구조체.Wherein q is a number between 1 and 20, wherein LIGAND is a ligand selected from BPTC, BTC, BDC, and TCBPDA, and SOLVENT is a solvent selected from H 2 O, DMF, DEF, dimethylacetamide, MeCH, and MeOH. A three-dimensional coordination polymer network structure.
  10. 제9항에 있어서, 상기 LIGAND는 BPTC이고, 상기 용매화물은 하기 [화학식 14]의 구조를 갖는 것을 특징으로 하는 3차원 배위 고분자 망상구조체: The three-dimensional coordination polymer network structure according to claim 9, wherein the LIGAND is BPTC and the solvate has a structure of [Formula 14]:
    [화학식 14][Formula 14]
    [(Ni2L4)(BPTC)]·x H2O[(Ni 2 L 4 ) (BPTC)] x H 2 O
    상기에서 x는 1 내지 20 사이의 수이다.Where x is a number between 1 and 20.
  11. 하기 [화학식 15] 구조의 3차원 배위 고분자 망상구조체: A three-dimensional coordination polymer network structure of the following structure:
    [화학식 15][Formula 15]
    [(Ni2L2)(LIGAND)]·xSOL1·ySOL2[(Ni 2 L 2 ) (LIGAND)] xxOL1ySOL2
    상기에서 Ni2L2는 하기 [화학식 8]의 구조를 가지고, 하기 화학식에서 R은 에틸이며, 상기 LIGAND는 BPTC, BTC, BDC, TCBPDA 중에서 선택된 리간드이고, 상기 SOL1은 H2O, DMF, DEF, 디메틸아세트아 미드, MeCH, MeOH 중에서 선택된 용매이며, 상기 SOL2는 DEF, ROH, DMF, DMSO, MeCN, MeOH, H2 O 중에서 선택된 용매이고, 상기 x와 y는 각각 1 내지 10 중에서 선택되며,In the above Ni 2 L 2 has the structure of [Formula 8], in the following formula R is ethyl, the LIGAND is a ligand selected from BPTC, BTC, BDC, TCBPDA, the SOL1 is H 2 O, DMF, DEF , Dimethylacetamide, MeCH, MeOH is a solvent selected from, SOL2 is a solvent selected from DEF, ROH, DMF, DMSO, MeCN, MeOH, H 2 O, wherein x and y are each selected from 1 to 10,
    [화학식 8][Formula 8]
    Figure PCTKR2009005938-appb-I000008
    Figure PCTKR2009005938-appb-I000008
    상기에서 Ni2L2 부분과 BPTC 부분은 서로 3차원적으로 망상구조를 형성하며 결합되어 있는 것을 특징으로 하는 3차원 배위 고분자 망상구조체.In the Ni 2 L 2 portion and the BPTC portion is a three-dimensional coordination polymer network structure, characterized in that the three-dimensional network structure is combined with each other.
  12. 제 11항에 있어서, 상기 망상구조체는 하기 [화학식 16]의 구조를 갖는 것을 특징으로 하는 3차원 배위 고분자 망상구조체:The three-dimensional coordination polymer network structure according to claim 11, wherein the network structure has a structure of [Formula 16]:
    [화학식 16][Formula 16]
    [(Ni2L2)(BPTC)]·xH2O·yDEF[(Ni 2 L 2 ) (BPTC)] xH 2 O yDEF
    상기에서 x와 y는 각각 독립적으로 1 내지 20 사이의 수이다. In the above, x and y are each independently a number between 1 and 20.
  13. 하기 [화학식 13]의 구조를 갖는 3차원 배위 고분자 망상구조체: Three-dimensional coordination polymer network structure having the structure of [Formula 13]:
    [화학식 13][Formula 13]
    [(Ni2L4)(LIGAND)]·qSOLVENT[(Ni 2 L 4 ) (LIGAND)] qSOLVENT
    상기에서 Ni2L4는 하기 [화학식 8]의 구조를 가지고, 상기 R은 부틸이며, 상기 LIGAND는 BPTC, BTC, BDC, TCBPDA 중에서 선택된 리간드이고, 상기 q는 1 내지 20 사이의 수이며, 상기 SOLVENT는 H2O, DMF, DE F, 디메틸아세트아미드, MeCH, MeOH 중에서 선택된 용매이고, Ni 2 L 4 has the structure of Formula 8, wherein R is butyl, LIGAND is a ligand selected from BPTC, BTC, BDC, TCBPDA, q is a number between 1 and 20, SOLVENT is a solvent selected from H 2 O, DMF, DE F, dimethylacetamide, MeCH, MeOH,
    [화학식 8][Formula 8]
    Figure PCTKR2009005938-appb-I000009
    ,
    Figure PCTKR2009005938-appb-I000009
    ,
    상기에서 Ni2L 4 부분과 BPTC 부분은 서로 3차원적으로 망상구조를 형성하며 결합되어 있는 것을 특징으로 하는 3차 원 배위 고분자 망상구조체.The Ni 2 L 4 part and the BPTC part is a tertiary coordination polymer network structure, characterized in that the three-dimensional network structure is combined with each other.
  14. 제13항에 있어서, 상기 망상구조체는 하기 [화학식 14]의 구조를 갖는 것을 특징으로 하는 3차원 배위 고분자 망상구조 체:The three-dimensional coordination polymer network structure according to claim 13, wherein the network structure has a structure of [Formula 14]:
    [화학식 14][Formula 14]
    [(Ni2L4)(BPTC)]·14H2O[(Ni 2 L 4 ) (BPTC)] · 14H 2 O
  15. 하기 [화학식 15]의 구조를 갖는 3차원 배위 고분자 망상구조체의 제조방법에 있어서:In the method for producing a three-dimensional coordination polymer network structure having the structure of [Formula 15]:
    [화학식 15][Formula 15]
    [(Ni2L2)(LIGAND)]·xSOL1·ySOL2[(Ni 2 L 2 ) (LIGAND)] xxOL1ySOL2
    상기에서 Ni2L2는 하기 [화학식 8]의 구조를 가지고, 하기 화학식에서 R은 에틸이며, 상기 LIGAND는 BPTC, BTC, BDC, TCBPDA 중에서 선택된 리간드이고, 상기 SOL1은 H2O, DMF, DEF, 디메틸아세트아미드, MeCH, MeOH 중에서 선택된 용매이며, 상기 SOL2는 DEF, ROH, DMF, DMSO, MeCN, MeOH, H2O 중에서 선택된 용매이고, 상기 x 및 y는 각각 1 내지 10 중에서 선택되며, In the above Ni 2 L 2 has the structure of [Formula 8], in the following formula R is ethyl, the LIGAND is a ligand selected from BPTC, BTC, BDC, TCBPDA, the SOL1 is H 2 O, DMF, DEF , Dimethylacetamide, MeCH, MeOH, SOL2 is a solvent selected from DEF, ROH, DMF, DMSO, MeCN, MeOH, H 2 O, wherein x and y are each selected from 1 to 10,
    [화학식 8][Formula 8]
    Figure PCTKR2009005938-appb-I000010
    Figure PCTKR2009005938-appb-I000010
    상기 제조방법은 SOL1/SOL2/SOL3의 혼합물 내에서 하기 [화학식 17]와 H4BPTC 또는 이의 염을 자기조립시키는 단 계를 포함하는 것을 특징으로 하는 상기 [화학식 15]의 구조를 갖는 3차원 배위 고분자 망상구 조체의 제조방법:The manufacturing method includes a step of self-assembling the following [Formula 17] and H 4 BPTC or a salt thereof in a mixture of SOL1 / SOL2 / SOL3, wherein the three-dimensional configuration having the structure of [Formula 15] Manufacturing Method of Polymer Network Structure:
    [화학식 17][Formula 17]
    [Ni2L2](ClO4)4, [Ni 2 L 2 ] (ClO 4 ) 4,
    상기 SOL3는 TEA, TMA, 피리딘 중에서 선택된 용매이다.SOL3 is a solvent selected from TEA, TMA, pyridine.
  16. 제15항에 있어서, 상기 망상구조체는 하기 [화학식 16]의 구조를 가지며,  The method of claim 15, wherein the network structure has the structure of [Formula 16]
    [화학식 16][Formula 16]
    [(Ni2L2)(BPTC)]·6H2O·3DEF,[(Ni 2 L 2 ) (BPTC)] · 6H 2 O · 3DEF,
    상기 SOL1/SOL2/SOL3의 혼합물은 H2O/DEF/TEA 혼합물인 것을 특징으로 하는 3차원 배위 고분자 망상구조체의 제조방법.The SOL1 / SOL2 / SOL3 mixture is a method for producing a three-dimensional coordination polymer network structure, characterized in that the H 2 O / DEF / TEA mixture.
  17. 하기 [화학식 13]의 구조를 갖는 3차원 배위 고분자 망상구 조체의 제조방법에 있어서:In the manufacturing method of the three-dimensional coordination polymer network structure having the structure of [Formula 13]:
    [화학식 13][Formula 13]
    [(Ni2L4)(LIGAND)]·q SOLVENT[(Ni 2 L 4 ) (LIGAND)] q SOLVENT
    상기에서 Ni2L4는 하기 [화학식 8]의 구조를 가지고, 상기 R은 부틸이며, 상기 LIGAND는 BPTC, BTC, BDC, TCBPDA 중에서 선택된 리간드이고, 상기 q는 1 내지 20 사이의 수이며, 상기 SOLVENT는 H2O, DMF, DEF, 디메틸아세트아미드, MeCH, MeOH 중에서 선택된 용매이고, Ni 2 L 4 has the structure of Formula 8, wherein R is butyl, LIGAND is a ligand selected from BPTC, BTC, BDC, TCBPDA, q is a number between 1 and 20, SOLVENT is a solvent selected from H 2 O, DMF, DEF, dimethylacetamide, MeCH, MeOH,
    [화학식 8] [Formula 8]
    Figure PCTKR2009005938-appb-I000011
    Figure PCTKR2009005938-appb-I000011
    상기 제조방법은 SOLVENT/SOLVENT1의 혼합물 내에서 하기 [화학식 18]와 H4BPTC 또는 이의 염의 자기조립시키는 단계를 포함하는 것을 특징으로 하는 상기 [화학식 13]의 구조를 갖는 3차원 배위 고분자 망상구조체의 제조방법:The manufacturing method of the three-dimensional coordination polymer network structure having the structure of [Formula 13] comprising the step of self-assembling the formula [18] and H 4 BPTC or a salt thereof in a mixture of SOLVENT / SOLVENT1 Manufacturing Method:
    [화학식 18][Formula 18]
    [Ni2L4](ClO4)4·8H2O,[Ni 2 L 4 ] (ClO 4 ) 4 .8H 2 O,
    상기 SOLVENT1은 DEF, DEF, 피리딘(?) 중에서 선택된 용매이다.SOLVENT1 is a solvent selected from DEF, DEF, pyridine (?).
  18. 제17항에 있어서, 상기 망상구조체는 하기 [화학식 14]의 구조를 가지며, The method of claim 17, wherein the network structure has the structure of [Formula 14]
    [화학식 14][Formula 14]
    [(Ni2L4)(BPTC)]·14H2O,[(Ni 2 L 4 ) (BPTC)] · 14H 2 O,
    상기 SO LVENT/SOLVENT1의 혼합물은 DEF/H2O 혼합물인 것을 특징으로 하는 3차원 배위 고분자 망상구조 체의 제조방법.The mixture of SO LVENT / SOLVENT1 is a method for producing a three-dimensional coordination polymer network structure, characterized in that the DEF / H 2 O mixture.
  19. (a) SOL1/SOL2/SOL3의 혼합물 내에서 하기 [화학식 17]의 화합물과 H4BPTC 또는 이의 염을 자기조립시켜 하기 [화학식 15]의 구조를 갖는 3차원 배위 고분자 망상구조체를 수득하는 단계:(a) self-assembling the compound of formula 17 and H 4 BPTC or a salt thereof in a mixture of SOL1 / SOL2 / SOL3 to obtain a three-dimensional coordination polymer network structure having the structure of formula 15:
    [화학식 17] [Formula 17]
    [Ni2L2](ClO4)4, [Ni 2 L 2 ] (ClO 4 ) 4,
    [화학식 15][Formula 15]
    [(Ni2L2)(LIGAND)]·xSOL1·ySOL2;[(Ni 2 L 2 ) (LIGAND)] · xSOL 1 ySOL 2;
    (b) 상기 [화학식 15]의 구조를 갖는 3차원 배위 고분자 망상구조체를 하기 LBP-SOLVENT에 침지하여 게스트 용매 분자를 저 비등점 용매로 교체한 [화학식 11]를 수득하는 단계:(b) immersing the 3D coordination polymer network structure having the structure of [Formula 15] in the following LBP-SOLVENT to obtain [Formula 11] in which the guest solvent molecule is replaced with a low boiling point solvent:
    [화학식 11][Formula 11]
    [(Ni2L2)(LIGAND)]·pLBP-SOLVENT;[(Ni 2 L 2 ) (LIGAND)]. PLBP-SOLVENT;
    (c) 상기 [화학식 11]의 화 합물을 탈용매화하는 단계를 포함하는 하기 [화학식 19]의 3차원 배위 고분자 망상구조체의 제조방법:(c) a method for preparing a three-dimensional coordination polymer network structure according to [Formula 19] comprising the step of desolvating the compound of [Formula 11]:
    [화학식 19] [Formula 19]
    [(Ni2L2)(LIGAND)];[(Ni 2 L 2 ) (LIGAND)];
    상기에서 Ni2L 2는 하기 [화학식 8]의 구조를 가지고, 하기 화학식에서 R은 에틸이며,In the above Ni 2 L 2 has the structure of [Formula 8], in the formula R is ethyl,
    [화학식 8][Formula 8]
    Figure PCTKR2009005938-appb-I000012
    Figure PCTKR2009005938-appb-I000012
    상기에서 LIGAND는 BPTC, BTC, BDC, TCBPDA 중에서 선택된 리간드이고, 상기 SOL1은 H2O, DMF, DEF, 디메틸아세트아미드, MeCH, MeOH 중에서 선택되며, 상기 SOL2는 DEF, ROH, DMF, DMSO, MeCN, MeOH, H2O 중에서 선택되고, 상기 SOL3는 TEA, DMF, 피리딘 중에서 선택되며, LIGAND is a ligand selected from BPTC, BTC, BDC, TCBPDA, the SOL1 is selected from H 2 O, DMF, DEF, dimethylacetamide, MeCH, MeOH, the SOL2 is DEF, ROH, DMF, DMSO, MeCN , MeOH, H 2 O, the SOL 3 is selected from TEA, DMF, pyridine,
    상기 x, y, p는 각각 1 내지 20 사이의 수이며, 상기 LBP-SOLVENT 는 MeCN, H2O, MeOH, EtOH, CHCl3, MeCN, DMSO, DMF, 아세톤, 톨루엔 중에서 선택된 저 비등점 용매이다.The x, y, p is a number between each of 1 to 20, wherein the LBP-SOLVENT is a low-boiling point solvent selected from MeCN, H 2 O, MeOH, EtOH, CHCl 3, MeCN, DMSO, DMF, acetone, toluene.
  20. (a) SOLVENT/SOLVENT1의 혼합물 내에서 하기 [화학식 18]의 화합물과 H4BPTC 또는 이의 염을 자기조립시켜 하기 [화학식 13]의 구조를 갖는 3차원 배위 고분자 망상구조체를 수득하는 단계:(A) self-assembling the compound of the formula [18] and H 4 BPTC or a salt thereof in a mixture of SOLVENT / SOLVENT1 to obtain a three-dimensional coordination polymer network structure having the structure of [Formula 13]:
    [화학식 18] [Formula 18]
    [Ni2L4](ClO4)4·8H2 O[Ni 2 L 4 ] (ClO 4 ) 4 · 8H 2 O
    [화학식 13][Formula 13]
    [(Ni2L4)(LIGAND)]·qSOLVENT[(Ni 2 L 4 ) (LIGAND)] qSOLVENT
    (b) 상기 [화학식 13]의 구조를 갖는 3차원 배위 고분자 망상구조체를 탈용매화하는 단계를 포함하는 하기 [화학식 20]의 3차원 배위 고분자 망상구조체의 제조방법:(b) a method for preparing a three-dimensional coordination polymer network structure according to [Formula 20] comprising the step of desolvating a three-dimensional coordination polymer network structure having the structure of [Formula 13]:
    [화학식 20][Formula 20]
    [(Ni2L4)(LIGAND)];[(Ni 2 L 4 ) (LIGAND)];
    상기에서 Ni2L4는 하기 [화학식 8]의 구조를 가지고, 하기 화학식에서 R은 부틸이며,In the above Ni 2 L 4 has the structure of [Formula 8], in the formula R is butyl,
    [화학식 8][Formula 8]
    Figure PCTKR2009005938-appb-I000013
    Figure PCTKR2009005938-appb-I000013
    상기에서 LIGAND는 BPTC, BTC, BDC, TCBPDA 중에서 선택된 리간드이고, 상기 SOLVENT는 H2O, DMF, DEF, 디메틸아세트아미드, MeCH, MeOH 중에서 선택되며, 상기 SOLVENT1은 DEF, DEF, 피리딘(?) 중에서 선택되고, 상기 q는 1 내지 15 중에서 선택된다.The way the LIGAND is a ligand selected from the group consisting of BPTC, BTC, BDC, TCBPDA, the SOLVENT is selected from H 2 O, DMF, DEF, dimethylacetamide, MeCH, MeOH, the SOLVENT1 is DEF, DEF, pyridine (?) Q is selected from 1 to 15.
  21. 제13항 또는 제14항에 있어서, 상기 그리드 층간 거리는 상기 R이 에틸인 경우 그리드의 층간 거리는 7~10 Å이고, R이 부틸인 경우 그리드 층간 거리는 5~9 Å이며, 15. The method according to claim 13 or 14, wherein the grid interlayer distance is 7-10 kPa between the grids when R is ethyl, and the grid interlayer distance is 5-9 kPa when R is butyl.
    상기 [화학식 15] 구조의 망상 구조체는 [001], [010], 그리고 [100] 방향을 따라 효과적 구멍 크기가 각각 2~3 x 8~9 Å2, 4~5 x 12~13 Å2 및 1~2 x 4~5 Å2인 3차원 채널을 포함하고, PLATON에 의해 측정된 공극부피가 결정 부피의 50~60%이며, The network structure of the above [Formula 15] has an effective pore size of 2 to 3 x 8 to 9 010 2, 4 to 5 x 12 to 13 Å 2 and along the [001], [010], and [100] directions, respectively. It contains a three-dimensional channel of 1 to 2 x 4 to 5 Å 2 , and the pore volume measured by PLATON is 50 to 60% of the crystal volume,
    상기 [화학식 13]의 구조를 갖는 망상 구조체는 [101] 방향을 따라 효과적인 구멍 크기가 1~2 x 6~7 Å2인 1차원 마름모꼴 채널을 포함하고, PLATON에 의해 측정된 접근 가능 자유 부피가 전체 결정 부피인 것을 특징으로 하는 3차원 배위 고분자 망상 구조체.The network structure having the structure of [Formula 13] includes a one-dimensional rhombic channel having an effective pore size of 1 to 2 x 6 to 7 방향 2 along the [101] direction, and has an accessible free volume measured by PLATON. 3D coordination polymer network structure, characterized in that the total crystal volume.
  22. 하기 [화학식 19] 또는 [화학식 20]의 구조를 갖는 3차원 배위 고분자 망상구조체:Three-dimensional coordination polymer network structure having the structure of [Formula 19] or [Formula 20]:
    [화학식 19][Formula 19]
    [(Ni2 L2)(LIGAND)][(Ni 2 L 2 ) (LIGAND)]
    [화학식 20][Formula 20]
    [(Ni2L4)(LIGAND)];[(Ni 2 L 4 ) (LIGAND)];
    상기에서 Ni2L2 또는 Ni2L4는 각각 독립적으로 하기 [화학식 8]의 구조를 가지고, 하기 화학식에서 R은 에틸 또는 부틸이며,In the above Ni 2 L 2 or Ni 2 L 4 each independently have a structure of [Formula 8], in the formula R is ethyl or butyl,
    상기에서 LIGAND는 BPTC, BTC, BDC, TCBPDA 중에서 선택된 리간드이고, 상기 SOL1은 H2O, DMF, DEF, 디메틸아세트아미드, MeCH, MeOH 중에서 선택되며, 상기 SOL2는 DEF, ROH, DMF, DMSO, MeCN, MeOH, H2O 중에서 선택되고, 상기 SOL3는 TEA, TMA, 피리딘 중에서 선택된다. LIGAND is a ligand selected from BPTC, BTC, BDC, TCBPDA, the SOL1 is selected from H 2 O, DMF, DEF, dimethylacetamide, MeCH, MeOH, the SOL2 is DEF, ROH, DMF, DMSO, MeCN , MeOH, H 2 O, and the SOL 3 is selected from TEA, TMA, pyridine.
  23. 제22항에 있어서, 상기 [화학식 19] 또는 [화학식 20] 의 구조를 갖는 망상 구조체는 이산화탄소 등온선으로부터 측정된 랭뮤어 표면적이 480~520 m2g-1이고, Dubinin-Radushkevich 수식을 적용해 측정한 공극 부피가 0.15~0.25 cm3g-1이며, The method according to claim 22, wherein the network structure having the structure of [Formula 19] or [Formula 20] is Langmuir surface area measured from carbon dioxide isotherm of 480 ~ 520 m 2 g -1 , measured by applying the Dubinin-Radushkevich formula One pore volume is 0.15-0.25 cm 3 g -1 ,
    상기 망상 구조체는 히드테리시스 탈착과 게이트 오프닝 거동을 보이는 것을 특징으로 하는 3차원 배위 고분자 망상구조체.The network structure is a three-dimensional coordination polymer network structure, characterized in that the hysteresis desorption and gate opening behavior.
  24. 제2항에 따른 3차원 배위 고분자 망상구조체를 포함하는 기체 장치로서, 상기 기체 장치는 기체포집 장치, 기체저장 장치, 기체분리 장치, 기체감지 장치, 이온교환 장치 중에서 선택된 것임을 특징으로 하는 기체 장 치. A gas device comprising the three-dimensional coordination polymer network structure according to claim 2, wherein the gas device is selected from a gas collecting device, a gas storage device, a gas separation device, a gas detection device, and an ion exchange device. .
  25. 제24항에 있어서, 상기 기체는 이산화탄소인 것임을 특징으로 하는 기체 장치.The gas apparatus of claim 24, wherein the gas is carbon dioxide.
  26. 제24항에 있어서, 상기 기체 장치는 수소가스이동 반응으로 인한 CO2/H2 혼합물에서 이산화탄소를 분리하는 장치인 것을 특징으로 하는 기체 장치.25. The gas unit of claim 24, wherein the gas unit is a unit that separates carbon dioxide from a CO 2 / H 2 mixture due to a hydrogen gas shift reaction.
PCT/KR2009/005938 2009-07-17 2009-10-15 Three dimensional coordination polymer network structure, and preparation method thereof WO2011007932A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090065569A KR101130157B1 (en) 2009-07-17 2009-07-17 Preparation method of 3D flexible coordination polymers and the applications in selective carbon dioxide capture
KR10-2009-0065569 2009-07-17

Publications (1)

Publication Number Publication Date
WO2011007932A1 true WO2011007932A1 (en) 2011-01-20

Family

ID=43449534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/005938 WO2011007932A1 (en) 2009-07-17 2009-10-15 Three dimensional coordination polymer network structure, and preparation method thereof

Country Status (2)

Country Link
KR (1) KR101130157B1 (en)
WO (1) WO2011007932A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101635552B1 (en) * 2015-03-23 2016-07-01 한림대학교 산학협력단 Nickel Oxide Nanostructures with High Surface Area and Its Application for Urease-based Biosensor
KR101978050B1 (en) * 2017-09-05 2019-09-03 재단법인대구경북과학기술원 Chemical method for room-temperature activation of metal-organic framework materials and metal organic framework materials prepared therefrom

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100809666B1 (en) * 2005-01-31 2008-03-05 재단법인서울대학교산학협력재단 Redox active porous metal-organic framework coordination polymer and its use for producing Ag nanoparticles

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100562816B1 (en) 2004-04-09 2006-03-23 재단법인서울대학교산학협력재단 Coordination polymer and solvate thereof with porous metal-organic framework

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100809666B1 (en) * 2005-01-31 2008-03-05 재단법인서울대학교산학협력재단 Redox active porous metal-organic framework coordination polymer and its use for producing Ag nanoparticles

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KITAURA, R. ET AL.: "Porous Coordination-Polymer Crystals with Gated Channels Specific for Supercritical Gases", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 42, 2003, pages 428 - 431 *
LEE, E.Y. ET AL.: "A Robust Porous Material Constructed of Linear Coordination Polymer Chains: Reversible Single-Crystal to Single-Crystal Transformation upon Dehydration and Rehydration", ANGEWANDTE CHEMIE, vol. 116, 2004, pages 2858 - 2861 *
MAJI, T.K. ET AL.: "Expanding and Shrinking Porous Modulation based on Pillared-Layer Coordination Polymers Showing Selective Guest Adsorption", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 43, 2004, pages 3269 - 3272 *

Also Published As

Publication number Publication date
KR20110007894A (en) 2011-01-25
KR101130157B1 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
CN109476660B (en) Preparation method of N- (5- (3- (7- (3-fluorophenyl) -3H-imidazo [4,5-C ] pyridine-2-yl) -1H-indazol-5-yl) pyridine-3-yl) -3-methylbutyramide
Qi et al. A flexible metal azolate framework with drastic luminescence response toward solvent vapors and carbon dioxide
KR20120129905A (en) Organo-metallic frameworks derived from carbenophilic metals and methods of making same
EP3071579A1 (en) Aluminium metal organic framework materials
Zheng et al. A pair of 3D homochiral metal–organic frameworks: spontaneous resolution, single-crystal-to-single-crystal transformation and selective adsorption properties
Tu et al. Bridged bis (amidinate) lanthanide aryloxides: syntheses, structures, and catalytic activity for addition of amines to carbodiimides
KR20120096454A (en) Organo-metallic frameworks and methods of making same
Liu et al. A new Co (ii) metal–organic framework with enhanced CO 2 adsorption and separation performance
US8829239B2 (en) Lithium-based metal organic frameworks
KR20120032511A (en) Porous crystalline materials, their synthesis and use
Pal et al. Structural variation of transition metal coordination polymers based on bent carboxylate and flexible spacer ligand: polymorphism, gas adsorption and SC-SC transmetallation
Oelkers et al. Pentaalkylmethylguanidinium methylcarbonates–versatile precursors for the preparation of halide-free and metal-free guanidinium-based ILs
He et al. Synthesis of metal-adeninate frameworks with high separation capacity on C2/C1 hydrocarbons
WO2011007932A1 (en) Three dimensional coordination polymer network structure, and preparation method thereof
FI94530B (en) Process for the preparation of therapeutically useful hexahydro-2,5-methano-1H-3a, 6a-cyclopenta / c / pyrrole and hexahydro-2,5-etano-1H-3a, 6a-cyclopenta / c / pyrrole compounds
Chen et al. A flexible doubly interpenetrated metal–organic framework with gate opening effect for highly selective C 2 H 2/C 2 H 4 separation at room temperature
Aslani et al. Crystal-to-crystal transformation from a chain polymer to a two-dimensional network by thermal desolvation
Zhao et al. Facile synthesis of an ultra-stable metal–organic framework with excellent acid and base resistance
Li et al. An rht-type metal–organic framework constructed from an unsymmetrical ligand exhibiting high hydrogen uptake capability
Li et al. Crystal engineering of a hybrid metal–organic host framework and its single-crystal-to-single-crystal guest exchange using second sphere coordination
JP2012516851A (en) Phosphinate toruthenium complex
KR20100029685A (en) Mixed-ligand metal-organic frameworks with large pores
CA2956442C (en) Iron and cobalt catalyzed hydrogen isotope labeling of organic compounds
CN113136037B (en) Synthesis modification method of modified MIL-101 material
EP3331890B1 (en) Protected organoboronic acids with tunable reactivity, and methods of use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09847389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09847389

Country of ref document: EP

Kind code of ref document: A1