WO2011005009A2 - Upper part structure for a continuous bridge, which efficiently supports negative moment and has improved constructability, and method for constructing same - Google Patents

Upper part structure for a continuous bridge, which efficiently supports negative moment and has improved constructability, and method for constructing same Download PDF

Info

Publication number
WO2011005009A2
WO2011005009A2 PCT/KR2010/004391 KR2010004391W WO2011005009A2 WO 2011005009 A2 WO2011005009 A2 WO 2011005009A2 KR 2010004391 W KR2010004391 W KR 2010004391W WO 2011005009 A2 WO2011005009 A2 WO 2011005009A2
Authority
WO
WIPO (PCT)
Prior art keywords
girder
bridge
composite
steel
concrete
Prior art date
Application number
PCT/KR2010/004391
Other languages
French (fr)
Korean (ko)
Other versions
WO2011005009A3 (en
Inventor
신동기
김충언
Original Assignee
주식회사 삼현피에프
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020090061851A external-priority patent/KR101079616B1/en
Priority claimed from KR1020090088598A external-priority patent/KR101006835B1/en
Priority claimed from KR1020100049923A external-priority patent/KR101191647B1/en
Priority claimed from KR1020100049921A external-priority patent/KR101181665B1/en
Application filed by 주식회사 삼현피에프 filed Critical 주식회사 삼현피에프
Publication of WO2011005009A2 publication Critical patent/WO2011005009A2/en
Publication of WO2011005009A3 publication Critical patent/WO2011005009A3/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/29Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures
    • E04C3/293Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures the materials being steel and concrete
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D2/00Bridges characterised by the cross-section of their bearing spanning structure
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D21/00Methods or apparatus specially adapted for erecting or assembling bridges
    • E01D21/06Methods or apparatus specially adapted for erecting or assembling bridges by translational movement of the bridge or bridge sections
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/29Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures
    • E04C3/291Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces built-up from parts of different material, i.e. composite structures with apertured web
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D2101/00Material constitution of bridges
    • E01D2101/20Concrete, stone or stone-like material
    • E01D2101/24Concrete
    • E01D2101/26Concrete reinforced
    • E01D2101/28Concrete reinforced prestressed
    • E01D2101/285Composite prestressed concrete-metal

Definitions

  • the present invention relates to a superstructure of a continuous rigid girder bridge, and more particularly, in the continuous structure of the superstructure of a bridge constructed by using a rigid girder bridge, the superstructure of the bridge is largely generated in a continuous piers.
  • the present invention relates to a superstructure of a continuous rigid girder bridge that can not only effectively support the parent cement but also to allow simple construction of the bridge and to enable long span bridges.
  • bridges are constructed so that vehicles, such as rivers, seas, or valleys can be more conveniently passed by vehicles, girders made to withstand dead and live loads acting on the bridges, and vehicles can pass on top of the girders.
  • the bottom plate is made of concrete so that it is formed into a plate shape.
  • both ends of the girder 10 are connected to the piers 21 as shown in FIG. 1.
  • the bottom plate 30 is installed on it to construct a simple bridge (1).
  • the length of the bridge can be constructed by mounting the girders 10 of the type shown in FIG.
  • the bridge constructed as described above has a large deflection of the girder 10 when the vehicle passes the bridge, and accordingly, the upper part of the bridge between the girder 10 and the girder 10 rattles during the passage of the vehicle, resulting in a more comfortable ride. There is a problem that goes bad.
  • the continuous bridges 1 ', 1 " in which the girder 10 adjacent to each other in the axial direction is continuous with the connecting member 15, are started to be constructed. 1 '), as the girder 10 adjacent in the axial direction is fixed by the connecting member 15, the girder continuous in the axial direction behaves integrally, and thus, the girder (between the pier 22 and the pier 21). 10) the amount of bending deformation is minimized, and the user can comfortably pass the bridge because the vehicle is not rattled even when passing through the pier 22 as the girders 10 are not stretched.
  • the sequential bridges 1 'and 1 "have the advantage of greatly reducing the moments Mp' and Mp" acting at the centers of the pier 21 and the pier 22, but acting in the pier pier 22.
  • the large parent moments Mn 'and Mn are greatly increased, a problem arises in that a large stress acts on the bridges 1' and 1".
  • the continuous bridge composed of steel composite girders did not have a proper way to offset the parent acting at the pier (22) position. Accordingly, in the case of constructing the bridge 3 by the composite girder 30 in which the casing concrete 31 is synthesized in the steel mold, in order to offset the parent moment acting on the pier 22 in which the girder 30 is continuous. As shown in FIG. 4, a high-strength girder 40 having a large height and a large cross-sectional coefficient was used.
  • the parent moment acting on the pier 22 where the connection portion of the girder 30 is located increases, so that There is a limit to offset the parent moment acting on the upper part of the piers 22 by increasing the.
  • the cross section of the girder at the top of the pier is higher than the girder located in the center of the span, there is also a secondary problem that hurts the appearance.
  • the present invention in order to solve the problems described above, in the sequential bridges constructed using a rigid girder, not only can effectively support the parent moment generated in the continuous bridge bridges, but also It is an object of the present invention to provide a superstructure of a continuous rigid girder bridge and a construction method thereof, which are simple in construction and enable a long span bridge.
  • the present invention can effectively cancel the large parent moment acting in the pier of the continuous bridge while the same height of the girders acting large static moment and the girder acts large parents without increasing the cross section in the bridge. It is an object of the present invention to provide a superstructure and a construction method of a continuous rigid composite girder bridge.
  • the present invention is another object to implement a long span continuous bridge, as the girder effectively resists the parent moment acting on the upper portion of the continuous piers by utilizing the effective cross section.
  • the present invention is connected to the sequential bridge of the composite type consisting of different cross-section as a single structural system by a simple construction to prevent the local stress concentration phenomenon due to the bridge type change to support the external force It is an object of the present invention to provide a superstructure linkage of a continuous bridge of a composite type capable of implementing load carrying capacity.
  • Another object of the present invention is to enable the construction of a long span continuous bridge of a composite type of 70 m or more by firmly connecting a continuous bridge of a composite type using the superstructure connecting body.
  • the present invention is to produce a superstructure connector of the composite continuous bridge in the factory to perform only a simple connection process in the field, to improve the field construction and construction period in the construction of the long span continuous bridge of the composite type Shortening is another purpose.
  • the present invention is to introduce a compressive prestress to the bottom plate concrete located above the neutral axis of the continuous point portion in order to minimize the effect of the tensile stress of the bottom plate concrete caused by the large parent acting on the continuous point portion For other purposes.
  • the present invention is connected to the sequential bridge of the composite type composed of different cross-sections as a single structural system by simple construction, so as to effectively resist the parent moment despite the change of the bridge type, the long-span continuous bridge It's another purpose to implement.
  • the present invention comprises a first girder made to include a first steel to support a constant moment acting on the bridge to achieve the object as described above;
  • a first girder made to include a first steel to support a constant moment acting on the bridge to achieve the object as described above;
  • the pre-fabricated third casing concrete with compression prestress introduced into the upper part of the third steel is pre-fabricated and at the same time one end is axially connected to the other end of the first girder.
  • a third rigid girder A second girder fabricated such that a second steel die is included to support a constant moment acting on the bridge, and at one end thereof connected to the other end of the third rigid girder in the axial direction;
  • a bottom plate concrete formed on an upper side of the first girder, the second girder, and the third rigid girder; It provides a superstructure of the continuous bridge, characterized in that configured to include.
  • the casing concrete in which the compression prestress is pre-introduced is synthesized on the upper portion of the steel to separately manufacture the third rigid composite girder, which is a parent moment resistance girder, to effectively offset the parent moment, separately from the constant moment resistance girder, thereby
  • the girder By placing the girder on top of the continuous piers, it is possible to more efficiently support the large parent moment acting on the top of the continuous piers on the continuous piers.
  • the upper structure of the sequential bridge according to the present invention can prevent the cross section of the girder, which is installed on top of the pier where the girder is continuous, is larger than the girder supporting the constant moment, which makes the appearance unsightly.
  • the height of the first girder and the second girder, which resists the constant moment, and the third rigid girder, which resists the parent moment, can be kept constant, so that the upper structure of the bridge can be constructed to give a beautiful and refined aesthetic appearance. It becomes possible.
  • the upper structure of the sequential bridge according to the present invention does not manufacture the girder by placing the site in the field, all of them are manufactured in the factory, so it is possible to manufacture the upper structure of the bridge by just installing the construction site immediately.
  • the advantages of shortening the air required and minimizing the manpower required for construction are obtained.
  • the term 'pier' used in the present specification and claims is used as a generic term for the lower structure supporting the girder, etc. in order to manufacture the bridge, in the case of a bridge in which the girder is continuously arranged in the axial direction
  • This term is used to include the meaning of 'shift', which supports the girders only on one side of the axial direction.
  • 'steel' used in the present specification and claims means a girder composed of structural steel, and even if the shape is 'I' type, box type, or any other form, the girder is made of metal material. It is used as a term of containing meaning.
  • the upper structure of the two span continuous bridge is obtained. That is, the center portion of the third rigid girder is supported by the third pier of the continuous intermediate point portion, and at the same time, one end of the first girder and the other end of the second girder are spaced apart from each other in the direction of the third pier and the axial direction. It can be mounted on each of the piers placed in the position to form a superstructure of the two-span continuous bridge.
  • the pre-fabricated fourth casing concrete in which the compression prestress is introduced on the upper portion of the fourth steel is pre-fabricated, and at the same time, one end thereof is in the axial direction with the other end of the second girder.
  • the bottom plate concrete is formed on the upper side of the first girder, the second girder, the third rigid girder, the fourth rigid girder, the fifth girder, the third bridge or more of the continuous bridge
  • the superstructure can be constructed.
  • the composite girder is composed of a casing concrete in which the compression prestress is introduced in advance in the position where the bending moment is concentrated, so that when the third casing concrete is synthesized in the upper portion, such as the third rigid girder, the adjacent first girder and the second girder The problem arises that joining becomes very difficult.
  • the third casing girder is joined to both ends of the first girder and the second girder so that the third casing concrete is not synthesized and remains in a rigid cross section, and at the same time, the third rigid girder is
  • the cross section of the third composite girder at the position joined to the first girder and the second girder is formed to be the same as the cross section of the first girder and the second girder. Accordingly, the third rigid composite girder can be simply joined to be integral with the first and second girders adjacent to each other by welding or by bolting through the connecting plate.
  • the first girder and the second girder may be a static moment resistance girder consisting of steel girder or box girder, which is a steel girder, but a casing concrete in which compression prestress is pre-introduced is a composite girder formed in the lower portion of the steel to form a constant moment resistance girder. You may. As described above, even if the first girder and the second girder are steel composite girders combined with casing concrete in which compression prestress is introduced, similarly to the third steel composite girders, the cross section of the portion joined with the third composite girders is the third composite girders. By forming the same as the cross section of the girder, there is an advantage that the mutual bonding is easy.
  • the upper surface of the third casing concrete is formed not higher than the upper flange of the rigid of both ends of the third composite girder, so that despite the third casing concrete of the upper surface of the first girder, the second girder and the third rigid girder Since the height is constant, it is easier to pour the bottom plate concrete, thereby preventing the appearance of being impaired.
  • the third composite girder has a length protruding in the axial direction by the length (x) to reach a position where the bending moment due to the weight of the bridge becomes zero. Therefore, the third composite girder is welded or bolted to the first girder and the second girder at this point (x), whereby the third composite girder, the first girder and the second girder are joined during the sharing of the bridge. It is possible to prevent breakage due to the action of stress due to external force.
  • the present invention is a method of constructing a superstructure of a rigid girder continuous bridge that is constructed by successively constructing a plurality of girders continuously arranged in the axial direction, the third casing in which compression prestress is introduced in advance Synthesizing concrete on top of the third steel mold to produce a third steel composite girder; Manufacturing a first composite girder by synthesizing the first casing concrete into which the compression prestress is introduced in advance to a lower portion of the first steel mold; Manufacturing a second composite girder by synthesizing the second casing concrete into which the compression prestress is introduced in advance to the lower portion of the second steel mold; Installing a third stabilization device on an upper part of the third piers hypothesized at a position to be continuous, and lifting and mounting the third rigid girder with a crane on the third stair device; Providing a temporary pier between a third pier and an adjacent first pier, and between a third pier and an adjacent
  • Conjugating by any one or more of methods Welding and bolting one end of the second composite girder and the other end of the third composite girder while raising the second composite girder and supporting the temporary pier between the second pier and the third pier. Conjugating by any one or more of methods; It provides a method of construction of the superstructure of the continuous rigid girder bridge, characterized in that configured to include.
  • the present invention also includes a first girder fabricated including a first steel die and arranged in the axial direction to support a constant moment acting on the bridge;
  • the pre-stressed third casing concrete is pre-fabricated prior to mounting on the pier to be synthesized on the upper part of the third steel, and one end is axially connected to the first girder and the center portion is formed on the upper part of the continuous third pier.
  • a third rigid girder supporting the parental moment mounted and acting on the continuous bridge A second girder including a second steel mold and connected to the other end of the third rigid girder in the axial direction to be arranged in the axial direction to support the positive moment; A bottom plate concrete formed on an upper side of the first girder, the second girder, and the third rigid girder; It provides a continuous bridge, characterized in that configured to include.
  • the present invention comprises: a box girder having an upper flange and a lower flange and a pair of abdomen connecting the upper flange and the lower flange and installed in an area in which a constant moment is generated by a fixed load;
  • a truss girder having a plurality of connecting members connecting the upper chord and the lower chord and the upper chord and the lower chord and installed in an area where a parent moment is generated by a fixed load;
  • a diaphragm coupled to the upper flange and the lower flange of the box girder and the pair of abdomen is installed, and the upper chord end and the lower chord end of the truss girder are coupled to the diaphragm, and the truss girder
  • a connecting member connecting the truss girder and the box girder in a longitudinal direction so that a composite region in which the box girder overlaps with each other is generated. It provides a superstructure of the continuous bridge of the composite type, characterized in that
  • the hybrid bridge type continuous bridge according to the present invention is characterized by the interconnection of two different types of superstructures.
  • the box girder and the truss girder having different types are connected to each other at one point rather than the box girder and the truss girder. They are interconnected in a composite area that overlaps along the axial direction.
  • the upper flange, the lower flange and a pair of box girders In a state where the diaphragm coupled to the abdomen is fixed to the inside of the box girder in a transverse direction, a part of the truss girder is inserted into the box girder to firmly connect the upper and lower chord ends to the diaphragm.
  • the box girders and truss girders having different cross sections may be firmly coupled to each other while overlapping over a predetermined length.
  • connection configuration has an advantageous effect of improving the workability in that the construction can be firmly integrated by a simple process in coupling the truss girder and the box girder having different cross sections with each other.
  • the diaphragm is preferably line welded along the inner wall of the box girder to be firmly fixed.
  • the diaphragm may be coupled with a plurality of rivets or bolts and ribs protruding from the inner wall of the box girder.
  • box girder provided in the area where the static moment is generated by the fixed load and "truss girder installed in the area where the parent moment is generated by the fixed load” described in the present specification and claims are defined in the fixed load.
  • the box girders are arranged only in the area where the static moment is generated by the box, and the truss girder is arranged only in the area where the parent moment is generated by the fixed load.
  • the girder is arranged, and the truss girder is defined as including at least a portion of the region where the parent moment is generated by the fixed load.
  • the term 'diaphragm' of the present specification and claims is not limited to being formed in a plate shape, and may be formed in various shapes such as blocks, and thus may be fixed to end portions of upper and lower chords. If it is combined with the inner wall of the will be defined as including all.
  • the present invention provides a box girder having a pair of abdomen connecting the upper flange and the lower flange and the upper flange and the lower flange, A superstructure of a continuous bridge of a composite type in which a truss girder having a plurality of connecting members connecting the current and the lower chord and the upper chord and the lower chord is connected in the longitudinal direction, the length of which is less than one span length of the continuous bridge.
  • a connector box girder fabricated to a length and continuously connected to the box girder;
  • a connector truss girder connected in series with the truss girder and having at least a portion inserted into the connector box girder;
  • a diaphragm installed transversely to engage the upper flange and the lower flange of the connector box girder and the pair of abdomen, and the end of the upper chord and the lower chord of the connector truss girder are coupled to each other.
  • It is configured to include, and provides a superstructure coupling of the continuum bridge of the composite type used as part of the continuous bridge in the composite area where the box girder and the truss girder of the continuous bridge is arranged in a longitudinal overlap.
  • the box girders may be arranged in the region where the static moment acts by the fixed load, and the truss girders may be bonded to each other while the truss girders are arranged in the region where the parent moment acts by the fixed load.
  • the area where the girder and the truss girder overlap is modularized into a connecting body by using the connecting box girder and the connecting truss girder as described above, and the construction is performed by constructing the upper structure of the continuous bridge using the connecting body. It can improve more.
  • the connecting body may be manufactured in the field, but after being manufactured in advance in the factory and transported to the site, it is more advantageous to improve the construction efficiency. Since the height of the box girders is generally no greater than 3.2 m, it is possible to transport the linkages to the site using a transport vehicle after fabrication at the factory.
  • the connecting body in the case of constructing a continuous bridge of a composite type, it is not possible to separately manufacture the connecting body as described above, for example, while manufacturing from one side to the other side while manufacturing the continuous bridge It may be.
  • the connector since the connector is not manufactured separately, the truss girder and the box girder are connected to each other without the need for a separate connector truss girder or a connector box girder.
  • Vertical connecting members for vertically connecting the upper chord and the lower chord are installed at the end of the connecting body truss girder of the connecting portion, and the vertical connecting material is coupled to the diaphragm, so that the end of the truss girder and the diaphragm of the box girder are firm. Are mutually coupled.
  • the connector truss girder is formed in the same cross-section with each other at the position connected with the truss girder, and the connector box girder is formed with the same cross-section with each other at the position connected with the box girder, the connector and the fabricated in advance It becomes easy to connect with the truss girder and the box girder.
  • Both ends are coupled to the upper chord of the connector truss girder, and an upper reinforcement coupled to the bottom of the upper flange of the box girder, and both ends are coupled to the lower chord of the connector truss girder and at the same time the box Further comprising a lower reinforcement coupled to the upper surface of the lower flange of the girder, to more secure the coupling of the upper, lower chord of the truss girder and the upper, lower flange of the box girder.
  • any one of the upper reinforcement, the lower reinforcement may be arranged in the transverse direction perpendicular to the longitudinal direction of the connector truss girder, it may be arranged inclined by a predetermined angle with respect to the longitudinal direction.
  • the lower reinforcement may be formed so that the drain hole is formed to discharge the rainwater accumulated in the connection from time to time.
  • the inner surface of the pair of abdomen of the box girder may be configured such that the upper chord and the lower chord of the truss girder are welded to each other so that the truss girder and the box girder collectively move throughout the connecting body.
  • the upper structure of the sequential bridge of the composite type according to the present invention constructed as described above, in the continuous point portion of the lower chord of the truss girder used in the point portion is a continuous point portion of the upper portion of the bridge in the state of concrete composite It may be mounted.
  • reinforcement of the compressive stress acting on the lower chord by the parent at the continuous point portion assists to stably support the parent.
  • At least one of the upper chord, the lower chord, and the connecting member of the truss girder is formed as a closed end surface, and the closed end surface of the connecting member of the truss girder is filled with concrete to synthesize a compressive stress applied to the connecting member of the truss girder. You can effectively resist it.
  • a truss-shaped parent girder having an upper chord, a lower chord and a plurality of connecting members connecting the upper chord and the lower chord; Box shape, Manufacturing a girder for a constant moment formed in one of the cross-sections of the shape and I shape; Constructing the regular moment girder and the parent moment girder to be connected to each other while being mounted on a lower structure of a bridge; Synthesizing bottom plate concrete on top of the girder for constant moment; A load introduction step of forcibly introducing a load such that the static moment girder causes a deflection displacement downward; Synthesizing the bottom plate concrete on top of the parent girder; Removing the load introduced to the constant moment girder; It is configured to include, provides a method of constructing a continuous bridge of the composite type characterized in that the compression prestress is introduced into the bottom plate concrete synthesized on the upper part of the girder.
  • Compression prestress is introduced to the bottom plate concrete synthesized on the upper side of the parent moment girder by compounding to the girder and removing the load introduced to the static moment girder.
  • the present invention supports the relatively large parent moment acting on the continuous point portion by the steel girder for the parent moment configured in the truss shape, the span portion in which the relatively small moment is applied to the box shape or ' It is supported by steel girder for the 'moment' or 'I' shape, and at the same time, the compressive prestress is introduced to the bottom plate concrete at the continuous point to offset the parent acting largely at the continuous point.
  • the compressive prestress is introduced to the bottom plate concrete at the continuous point to offset the parent acting largely at the continuous point.
  • the load introduction step may be imposed by hanging or mounting the weight on the girder for the constant moment can cause the displacement of the girder for the constant moment sagging downward.
  • the step of synthesizing the bottom plate concrete on the top of the girder for the parent may include a step of synthesizing the concrete at least a portion of the lower chord of the parent girder. This effectively resists the compressive stress introduced in the lower chord at the moment when the continuous point portion bends upward to introduce compressive prestress to the bottom plate concrete synthesized on the upper part of the parent girder, and at the same time continuously This is to effectively resist the compressive stress acting on the lower edge of the neutral axis of the point portion.
  • the present invention the step of manufacturing a truss-shaped parent girders having a top chord, a bottom chord and a plurality of connecting members connecting the top chord and the bottom chord; Box shape, Manufacturing a girder for a constant moment formed in one of the cross-sections of the shape and I shape; Constructing the regular moment girder and the parent moment girder to be connected to each other while being mounted on a lower structure of a bridge; Synthesizing bottom plate concrete on top of the girder for constant moment; Installing a formwork to pour the bottom plate concrete on the upper part of the girder for parenting, and installing a tension member in the formwork; It provides a construction method of a sequential bridge of a composite type comprising a; including a compression prestress introduction step of introducing a compression prestress to the concrete cast on the formwork using the tension material.
  • the present invention can introduce the compression prestress to the bottom plate concrete with a simple work as compared to using the bending deformation of the continuous point portion.
  • the step of introducing the compression prestress may be performed by a pretension method in which concrete is poured into the mold and cured in the state where the tension member is in tension, or after the tension member is installed in the sheath pipe, After the concrete is cured to a predetermined strength, it may be performed by a post-tension method of tensioning and fixing the tension member.
  • the bottom plate concrete synthesized on the upper part of the parent moment girder and the bottom plate concrete synthesized on the upper part of the moment moment girder are not separately placed. It may be.
  • the method may further include the step of synthesizing the concrete to the connecting member of the truss-shaped parent girder. This makes it possible to withstand higher parental loads, even with the same amount of steel.
  • Box shape which defines the cross-sectional shape of the moment moment steel girders in the specification and claims
  • 'I' shape it will be defined as including all, that is, "box shape," Even if an additional steel cross section is added to the 'shape,' I 'shape, It is regarded as a cross section belonging to the shape 'any one of the shape' I ', and the term "static moment steel girder" used throughout the present specification and claims is defined as the "box shape,” It is not limited to the girder formed only by the steel section of the shape 'any one of the' I 'shape, It will be defined as including a cross-sectional view of the concrete is synthesized in the steel section of the 'shape,' I 'shape.
  • the third composite girder which synthesizes the casing concrete, into which the compression prestress is introduced in advance, is installed in the upper part of the pier, which is a continuous portion of the sequential bridge, as the parent resistance girder, whereby the girder is continuous. It provides a superstructure of a continuous rigid girder bridge that can effectively cancel the parental force that acts largely on top of the pier at the location.
  • the present invention effectively applies the parent moment acting in the continuous bridge by applying the constant moment resistance girder applied in the simple bridge to the continuous bridge as it is.
  • the parent at the position that acts largely in the continuous bridge is mounted by mounting a parent moment resistance member which is distinguished from the constant moment resistance member at the upper part of the pier where the girder with the large acting moment acts. There is an advantageous effect that can effectively cancel the cement.
  • the present invention can effectively cancel the parent moment acting large in the upper part of the pier where the girder is connected even if the cross section of the girder is not large, so that the cross section of the girder is made larger to offset the parent moment acting largely in the continuous bridge.
  • the cross-sectional height of the bridge can be kept constant as a whole, so that a bridge having a refined appearance can be constructed.
  • the present invention has the advantage of being able to support the parent moment inevitably generated in the continuum bridge in the cross-section with a low height, it is possible to manufacture the superstructure of the long span continuous bridge.
  • the present invention does not need to install two bridge devices to support two adjacent girders in the upper part of the pier where the girders are continuous, and only one bridge device may be installed to support one third rigid girder. More economical construction is possible.
  • the present invention is provided with the diaphragm which is coupled to the upper flange and the lower flange of the box girder and a pair of abdomen in the transverse direction, and the upper and lower end of the truss girder is coupled to the diaphragm, the truss And the upper flange, the lower flange, and the pair of abdomen of the box girder, including a connecting body connecting the truss girder and the box girder in a longitudinal direction so that a composite area in which a girder and the box girder are disposed overlappingly occurs.
  • a portion of the truss girder may be inserted into the box girder to securely fix the upper and lower chord ends to the diaphragm.
  • the box girders and the truss girders having different cross-sections are overlapped over a predetermined length. It provides a superstructure of a continuous bridge of a complex type that is firmly coupled to each other and stably integrated.
  • the present invention is made of a truss girder that can effectively support a large parent moment in the continuous point portion, and is made of a box girder that can effectively support the static moment with a small amount of steel in between, the long load capacity is large While it is possible to implement span bridges, it is possible to obtain an advantageous effect that enables economic construction.
  • box girder and the truss girder are connected to each other more stably by having a complex area in which the box girder and the truss girder are arranged in duplicate, rather than being made at a single point.
  • the structure can be firmly connected to each other as one structural system, thereby enabling the external force to be firmly supported. Allows construction of long span bridges of type.
  • the present invention enables the superstructure coupling of the continuum bridge of the composite type used in the connection area of the different cross-section can be manufactured in the factory and transported to the site in advance, so that only a simple connection process is performed in the field.
  • the advantage of simply constructing a long span continuous bridge in a short time is obtained.
  • the present invention is to connect the girder having different cross-section in the longitudinal direction in the construction of the composite type continuous bridge, so that the compression prestress is introduced into the bottom plate concrete synthesized on the top of the girder for the parent cement, continuous point portion
  • By resisting the large parent moment acting on the truss-shaped parent girder and the compressive prestress of the bottom plate concrete on the upper part it is possible to effectively resist the high parent part in the continuous point even with relatively small amount of steel used. Benefit from economical construction of long span bridges.
  • the present invention can effectively support the large parent moment acting on the continuous point portion to implement a long span bridge having a large load capacity, while the box shape, '
  • the advantageous effect of minimizing the amount of steel used enables economic construction.
  • 1 is a schematic view showing the configuration of a conventional simple bridge
  • Figure 2 is a schematic diagram showing the configuration of a conventional two-span continuous bridge
  • Figure 3 is a schematic diagram showing the configuration of a conventional three-span continuous bridge
  • Figure 4 is a schematic diagram showing the configuration of a conventional two-span continuous steel composite girder bridge
  • Figure 5 is a schematic diagram showing the configuration of a two-span continuous steel composite girder bridge according to an embodiment of the present invention
  • FIG. 6 is a longitudinal sectional view of the third rigid composite girder of portion 'A' of FIG.
  • FIG. 7 is a cross-sectional view of a third rigid girder according to cutting line B-B and cutting line C-C of FIG.
  • FIG. 8 is a cross-sectional view of a third rigid girder according to cut line D-D and cut line E-E of FIG. 5; FIG.
  • FIG. 9 is a longitudinal sectional view of the third rigid composite girder of the second form in the 'A' part of FIG.
  • FIG. 10 is a cross-sectional view of a third rigid girder of the second form according to cut line B-B and cut line C-C of FIG. 5; FIG.
  • FIG. 11 is a cross sectional view of a third rigid girder of the second form along cut line D-D and cut line E-E of FIG. 5; FIG.
  • FIG. 12 is a longitudinal sectional view of the third rigid composite girder of the third form in the portion 'A' of FIG.
  • Fig. 13 is a cross sectional view of a third rigid composite girder of the third form according to cut line B-B and cut line C-C of Fig. 5;
  • FIG. 14 is a cross sectional view of a third rigid girder of the third form according to cut line D-D and cut line E-E of FIG. 5; FIG.
  • FIG. 15 is a longitudinal sectional view of the third rigid composite girder of the fourth form in the portion 'A' of FIG. 5; FIG.
  • Fig. 16 is a cross sectional view of a third rigid girder of the fourth form according to cut line B-B and cut line C-C of Fig. 5;
  • FIG. 17 is a cross sectional view of a third rigid girder of the fourth form according to cut line D-D and cut line E-E of FIG. 5; FIG.
  • FIG. 18 is a diagram showing the configuration of a continuous bridge having a complex form according to an embodiment of the present invention.
  • 19 is a cross-sectional view taken along the line III-III of FIG.
  • FIG. 20 is a cross-sectional view taken along the line IV-IV of FIG. 18.
  • FIG. 21 is a cross-sectional view taken along the cutting line V-V of FIG.
  • FIG. 22 is an enlarged perspective view of portion 'A' of FIG. 18;
  • Figure 23 is a 'B' of Figure 21; Magnification
  • FIG. 24 is a perspective view of the girder around the continuous point portion of FIG. 18; FIG.
  • Figure 25 is a front view of Figure 24
  • FIG. 26 is a perspective view showing the structure of the continuous body used in FIG. 18; FIG.
  • FIG. 27 is a sectional view taken along the line XI-XI of FIG. 26;
  • 28 to 31 are diagrams showing the construction according to the construction sequence of the sequential bridge having the composite form shown in FIG.
  • 32 to 36 are views showing the construction according to the construction sequence of the sequential bridge of the composite type according to FIG.
  • FIG. 37 is a flow chart sequentially showing the construction sequence of FIGS. 32 to 36.
  • FIG. 37 is a flow chart sequentially showing the construction sequence of FIGS. 32 to 36.
  • 38 to 42 are views showing the construction according to the construction sequence of the sequential bridge of the composite type according to another embodiment of the present invention.
  • FIG. 43 is a flow chart sequentially showing the construction sequence of FIGS. 38 to 42.
  • FIG. 43 is a flow chart sequentially showing the construction sequence of FIGS. 38 to 42.
  • the upper structure 100 of the continuous rigid girder bridge is an upper structure of a two-span continuous bridge, one end of which is an upper bridge of the first bridge 21.
  • the first steel composite girder 110 which is mounted on the apparatus 21a and has a first casing concrete 112 having compression prestress introduced under the first steel 111, and one end of the second piers 23
  • the second steel composite girder 120 which is mounted on the upper scaffolding device 23a, and the second casing concrete 122 into which the compression prestress is introduced to the lower portion of the second steel 121, is combined with one end of the first steel composite.
  • a third cable in which the compression prestress is introduced in advance to support the parent moment acting on the continuous point portion by being mounted at the center portion of the bridge device 22a of the Is concrete 132 is composed of a third upper and a third ganghyeong steel composite girder (130) synthesized in the (131), the bottom plate of concrete (30) formed on an upper surface of the girder (110 120 130).
  • the first composite girder 110 and the second composite girder 120 are casing concrete (112, 122), the compression prestress is introduced is synthesized in the lower portion, the maximum acts in the center of the span as it is convex downwardly It serves as a positive moment resistance member that supports and supports against the constant moment.
  • the first composite girder 110 and the second composite girder 120 may have different cross sections and shapes, but will be described as having the same cross section and shape.
  • the third composite girder 130 is the upper of the pier 22, the two girder (110, 120) is continuous as the casing concrete 132, the compression prestress is introduced is synthesized on the upper, and convex upwardly. It acts as a parent-resisting member that resists and supports the parent-acting acting at the three consecutive points.
  • the third composite girder 130 has a length that is joined to the adjacent girder (110, 120) and welded or bolted at the point where the bending moment is adjacent to the adjacent composite girder (110,120), the third composite girder At the junction between the 130 and the first composite girder 110 and the second composite girder 120, excessive stress is prevented from occurring.
  • the girders (110, 120, 130) are arranged in a row in the direction perpendicular to the axial axis in accordance with the width of the bridge, to stably support the bottom plate concrete (30).
  • the third casing concrete 132 is formed of the third steel composite girder 130 joined to the first steel composite girder 110 and the second steel composite girder 120. It is not compounded to the third steel mold 131 at both end positions.
  • the first casing concrete 112 and the second casing concrete 122 are not synthesized in the first steel mold 111 and the second steel mold 121 at the end positions joined to the third steel composite girder 130.
  • the casing concrete 112 and 122 of the first and second rigid composite girders 110 and 120 which are the constant moment resistance girders
  • the casing concrete 132 of the third rigid composite girder 130 which are the parent moment resistance girders, are located at different positions.
  • the girders 110, 120, 130 can be easily joined between the rigid shapes 111, 121, and 131 of the rigid composite girders 110, 120, and 130 without being influenced by being synthesized.
  • the upper flange 131a of the third steel 131 to secure the position of the tension member 133
  • the width of is formed small.
  • both ends of the third steel composite girder 130 where the third casing concrete 132 is not formed may be more easily and firmly bonded to the adjacent first steel composite girder 110 and the second steel composite girder 120.
  • the cross sections of the rigid shapes 111 and 121 of the adjacent first and second composite girders 110 and 120 are formed.
  • the width of the upper flange 131a gradually increases as the upper flange 131a of the steel 131 reaches both ends.
  • the lower flange 121c of the second steel 121 to secure the position of the tension member 123.
  • the width of is formed small.
  • the joint with the third steel composite girder 130 on which the second casing concrete 122 is not formed can be easily and firmly joined. It is formed in the same manner as the cross section of the steel mold 131 of the steel composite girder 130. To this end, in the region between the boundary of the region of the second casing concrete 122 and both ends, the width of the upper flange 131a gradually increases as the lower flange 121c of the steel 121 reaches both ends.
  • the shape of the second rigid composite girder 120 is the same for the first rigid composite girder 110.
  • the upper surface of the third casing concrete 132 of the third composite girder 130 is formed not to be higher than the upper flange 131a of the steel 131 at both ends of the third composite girder 130. That is, the third casing concrete 132 does not protrude upward with respect to the imaginary line 55 interconnecting the upper flanges 131a at both ends of the third steel composite girder 130. Through this, not only the process of constructing the bottom plate concrete 30 installed on the upper surface is easy, but also the cross-section around the piers can be prevented from harming the aesthetics.
  • the upper surface of the third casing concrete 132 does not protrude more than the upper flange 131a of the both ends of the steel 131.
  • the height H1 of the abdomen 131b is smaller than the height H2 of the abdomen 131b at both ends of the third rigid girder 130.
  • the height of the abdomen 131b is gradually increased. Accordingly, predetermined spaces 131x are formed at both ends of the third casing concrete 132.
  • the upper structure 100 of the continuous composite girder bridge according to the first embodiment of the present invention configured as described above has a parent resistance in the upper portion of the third pier 22, which is a continuous point portion in which the girder acts with large parent moments.
  • a parent resistance in the upper portion of the third pier 22 which is a continuous point portion in which the girder acts with large parent moments.
  • the present invention is all made in a factory, because it is made of steel composite girders (110, 120, 130) can be installed just in the field, it is possible to shorten the air required for construction, the bridge on the top of the pier 22 Since only one device can be installed to support the third rigid girder, more economical construction is possible.
  • the upper structure of the continuous composite girder bridge according to the second embodiment of the present invention is similar in overall structure to the upper structure of the bridge of the first embodiment shown in Figure 5, the third composite girder 230 is shown in Figure 9 And a configuration as shown in FIG. 10. That is, as shown in FIGS. 9 and 10, the third casing concrete 232 to which the compression prestress is introduced is synthesized by tensioning the tension member 233 on the upper portion of the steel mold 231 of the first embodiment. Similar to the third composite girder 130, but in the third composite girder 230 according to the second embodiment the auxiliary side iron plate 234 for accommodating the third casing concrete 232 with the central upper flange (231a) ) Is formed on the upper side of the central upper flange 231a. Accordingly, there is an advantage that the formwork is not required to manufacture the third rigid composite girder 230 according to the second embodiment.
  • reference numeral 234a is a fixing device that pulls the tension member 233 to introduce compression prestress to the third casing concrete 232 surrounded by the auxiliary side iron plate 234 and the central upper flange 231a.
  • Reference numeral 231a ′ denotes an upper flange of an area where the third casing concrete 232 is not synthesized.
  • the upper structure of the continuous composite girder bridge according to the third embodiment of the present invention is similar in overall structure to the upper structure of the bridge of the first embodiment shown in Figure 5, the third composite girder 330 is shown in Figure 12
  • the compressive prestress is not introduced into the casing concrete 342 by the tension member, but the third casing concrete 342 is deflected in the state where the third steel 331 is bent downward.
  • Compression prestress is applied to the casing concrete 342 by the preflex method by the elastic restoring force which is poured on the tensile side of the third steel die 331, and the third steel die 331 returns to its original state before bending deformation. It is characterized by being introduced. Accordingly, the lower flange 341c of the third steel mold 341 is broad in width.
  • the continuous rigid girder bridge according to the fourth embodiment of the present invention is similar in overall configuration to the bridge of the first embodiment shown in FIG. 5, but the girders 410, 420, and 430 are box-shaped as shown in FIGS. 15 to 17. There is a difference in that it consists of. That is, the third steel composite girder 430, which is a parent resistance girder, is configured such that the casing concrete is not synthesized on the upper flange of the 'I' type steel, but the casing concrete is synthesized on the top of the box type steel and the compression prestress is introduced. .
  • the first girder 410 and the second girder adjacent to the third composite girder 430 have the same shape as that of the steel 431 of the third composite girder 430 without the casing concrete being synthesized. It is formed into a cross section.
  • Box-type girders have a larger cross-sectional coefficient than I-type steels, which can be supported against larger static and parent moments.
  • the construction method of the continuous rigid girder bridge 100 according to the first embodiment of the present invention will be described in detail.
  • the continuous composite girder bridge 100 described below may be applied to all the superstructures of the continuous composite girder bridges according to the first to fourth embodiments of the present invention.
  • Step 1 First, the upper flange 131a is smaller than the lower flange 131c, and prepares the I-shaped steel 131 having the shape shown in FIGS. 6 and 7. Next, after installing the formwork surrounding the upper flange (131a) of the I-shaped steel 131, reinforce the steel bars around the installation, and install the tension member 133 inside the sheath pipe (not shown), the concrete in the formwork When the third casing concrete 132 has a predetermined strength by pouring and curing, the tension material 133 is pulled out to introduce compression prestress to the third casing concrete 132 to form a third rigid girder as a parent resistance girder. Produce 130.
  • the length of the third rigid girder 130 is determined so that the bending moment of the position (x) joined with the first rigid girder 110 and the second rigid girder 120 becomes '0'. .
  • Step 2 The I-shaped steel 121 is prepared in which the lower flange 121c is smaller in width than the upper flange 121a. Next, the formwork surrounding the lower flange 121c of the I-shaped steel 121 is installed, the reinforcing bar is disposed around it, and the tension member 123 is installed inside the sheath tube (not shown), and then the concrete is formed in the formwork. When the second casing concrete 122 exhibits a predetermined strength by pouring and curing, the tension material 123 is pulled out to introduce compression prestress into the second casing concrete 122 to form a second rigid girder as a constant moment resistance girder. Complete the production of 120.
  • Step 3 The first composite girder 110 is manufactured in the same manner as the second composite girder 120. Steps 1 to 3 may be performed at the same time, or the order may be reversed.
  • Step 4 The third bridge device 22a is installed on the upper portion of the third bridge 22, and the third composite girder 130 manufactured in Step 1 is mounted on the third bridge device 22a, which is a continuous point. Raise and mount.
  • Step 5 Temporary bridge piers (not shown) are constructed between the third bridge piers 22a and the first bridge piers 21 adjacent thereto, and the first steel composite girders 110 manufactured in Step 3 are raised to raise the first piers ( 21 and the one end of the first rigid composite girder 110 and one end of the third rigid composite girder 130 are bonded to each other in a state where both ends are supported by the temporary pier between the third piers 22.
  • one end of the first composite girder 110 and the third composite girder 130 which are in contact with each other, are made of only the steel molds 111 and 131 without the casing concrete 112 and 132, welding or bolts can be easily joined. have.
  • the first composite girder 110 and the third composite girder 130 which have the same cross section with each other and completely contact the entire cross section, are welded to the upper flange and the lower flange. After joining, by joining the abdomen 131b and the plate 77 of the rigid (111,131) and the plate 77 together with bolts, the first rigid girder 110 and the third rigid girder 130 are joined so as to be integrally behaved. do.
  • Step 6 Similarly, a temporary pier (not shown) is constructed between the third pier 22a and the second pier 23 adjacent thereto, and the second pier is fabricated by raising the second steel composite girder 120 manufactured in step 2.
  • One end of the second rigid composite girder 120 and one end of the third rigid composite girder 130 are bonded to each other in a state where both ends of the temporary pier between the 23 and the third piers 22 are supported.
  • one end of the second composite girder 120 and the one end of the third composite girder 130 which are in contact with each other consists of only the steel (121, 131) without the casing concrete (122, 132), it can be easily joined by welding or bolts have.
  • Step 7 Steps 4 to 6 are constructed such that the girders 110, 120 and 130 are arranged in a plurality of rows in the direction perpendicular to the bridge depending on the width of the bridge. Then, the bottom plate formwork is installed on the upper surfaces of the girders (110, 120, 130), after reinforcing the reinforcing bars, and cast and harden the concrete to form the bottom plate concrete (30).
  • the upper structure 100 of the continuous composite girder bridge according to the present invention is a steel composite girders (110,120,130) that can be manufactured in the factory except the bottom plate concrete 30, the construction time in the field is shortened And the advantageous effect of simplifying construction is obtained.
  • the upper flange 131a with the same cross-sectional height as the first steel composite girder 110 and the second steel composite girder 120, in which casing concrete 112 and 122 are synthesized on the lower flange 121a, which is a constant moment resistance member.
  • the superstructure 500 of the continuous bridge having a complex type is an exemplary two-span continuous bridge, one end of the first bridge 10 (10)
  • the center portion is mounted on the box girders 510 respectively mounted on the upper bridge device 10a and the bridge device 20a on the upper portion of the second piers 20 forming a continuous point portion, and both ends of the box girders 510 are mounted.
  • the truss girder 520 connected in the throttle direction, and the bottom plate concrete 530 formed on the upper side of the box girder 510 and the truss girder 520 so that the vehicle and the like pass.
  • the box girder 510 is installed in an area III where a static moment is generated by a fixed load, and as shown in FIG. 19, the box girder 510 is in contact with a pair of abdominal plates 510b and a lower part of the pair of abdominal plates simultaneously.
  • the lower flange 510a and the upper flange 510c are connected to the upper portion of the pair of abdominal plates simultaneously.
  • the upper flange 510c is provided with a shear connecting member 511 extending upward, thereby more firmly coupled with the bottom plate concrete 530.
  • a reinforcing rib 510f for reinforcing bending strength is coupled to the upper surface of the lower flange 510a and the lower surface of the upper flange 510b.
  • the truss girder 520 is installed in the region (I) where the parent moment is generated by the fixed load, the lower chord 520a and the upper chord 520b are arranged in the axial direction, as shown in FIG.
  • a plurality of connecting members 520c are arranged between the chord 520a and the top chord 520b by welding or bolting in the vertical direction and the oblique direction.
  • the cross member 520d for connecting the upper chord and the lower chord of the truss steel extending in the throttling direction in the lateral direction, respectively, is installed at predetermined distances in the axial direction.
  • the shear connector 521 is coupled to the upper portion of the upper chord 520b to extend upward, thereby more firmly coupling the upper chord 520b and the bottom plate concrete 530.
  • Concrete 528 is synthesized in the lower chord 520a of the truss girder 520, as shown in FIGS. 18 and 20, and the compressive stress at the lower edge of the neutral axis when the parent moment acts on the continuous point above the pier 20.
  • the connecting member 520c of the truss girder 520 may be formed as a closed cross section, and concrete 520z may be poured into the composite as shown in FIG. 20. This effectively supports the compressive stress acting on the connecting member of the truss girder 520.
  • the concrete 520z is synthesized only in the connecting member 520c, but according to another embodiment of the present invention, the lower chord 520a, the upper chord 520b and the connecting member 520c of the truss girder 520 are All are formed in a closed cross-section, concrete may be poured into the closed cross-section to be synthesized.
  • the connecting member 520c of the truss girder 520 may be directly connected to the upper chord 520b and the lower chord 520a by welding or bolting, and the gusset fixed to the upper and lower chords 520b and 520a. It may be installed to be connected.
  • the box girders 510 and the truss girders 520 which are different types, are interconnected as one structural system in the composite region indicated by reference numeral II in FIG. 18 (see FIG. 21).
  • the position is determined to include the point where no bending moment occurs.
  • FIG. 23 which is an enlarged view of part 'B' of FIG. 21, one end of the truss girder 520 is inserted into the box girder 510 and installed. This is preferable because the truss girder 520 is not hidden by the box girder 510 from the outside, so that a neat aesthetic can be realized.
  • the upper chord 520b of the truss girder 520 is arranged to be in contact with the upper flange 510c and the abdominal plate 510b of the box girder along the axial direction and welded 88 along the contact portion.
  • the lower chord 520a of the truss girder 520 is arranged to be in contact with the lower flange 510a and the abdominal plate 510b of the box girder along the axial direction and welded 88 along this contact, thereby providing a box girder ( 510 and truss girder 520 are interconnected in the composite region II.
  • the truss girder 520 may be joined.
  • the lower chord 520a and the upper chord 520b are arranged in indirect contact with the box girder 510 through separate members in the composite region (II), so that the lower chord 520a and the upper chord 520b are separated from the truss girder 520.
  • the box girder 510 and the truss girder 520 may be interconnected in the composite region II.
  • the diaphragm 550 is welded and fixed to the pair of abdomen 510c and the upper and lower flanges 510a and 510b in the box girder 510 of the composite region II.
  • the lower chord 520a and the upper chord 520b of the truss girder 520 are welded to the diaphragm 550 installed in the box girder 510 of the composite region II.
  • vertically arranged vertical connecting members 520x are positioned at the ends of the truss girder 520, and the diaphragms fixed in the transverse direction ( A weld 520y is coupled to the plate surface of 550.
  • the pair of upper chords 520b of the truss girder 520 and the bottom surface of the upper flange 510b are integrally formed.
  • the upper reinforcement 541 to be coupled to each other, and the lower reinforcement 542 to integrally couple the upper surface of the lower chord 520a of the truss girder 520 and the lower flange 510a are provided.
  • the lower reinforcing material 542 is formed with a drain port 542i to allow the water accumulated therein to be discharged.
  • connection of the box girder 510 and the truss girder 520 having different cross sections overlaps the box girder 510 and the truss girder 520 along the axial direction, rather than being interconnected at one point.
  • the inner wall of the truss girder 520 and the box girder 510 is welded over the composite region II arranged, but also more firmly coupled by the diaphragm 550 and the upper and lower reinforcement members 541 and 542. It acts as one structural system.
  • the continuous bridge 500 of the composite type according to the present invention is made of a truss girder 520 that can effectively support the large parent moment in the continuous point portion 20, between which the constant moment with a small amount of steel Since the box girder 510 is capable of effectively supporting the improved load capacity, it is possible to implement a long span bridge of 50m to 70m.
  • the sequential bridge 500 of the complex type is rigidly connected while overlapping arrangement of the girder 510, 120 of different cross-section over the composite area (II), box girder 510 at the construction site of the bridge Inserting a portion of the truss girder 520 into the interconnect fixing process is very demanding and takes a long time.
  • the connector 500 'corresponding to the connection configuration in the composite region II in which a part of the truss girder 520 is inserted into the box girder 510 is manufactured in advance as shown in FIG.
  • the bridge 500 can also be constructed.
  • the connector 500 ' is connected to the box box girder 510' having the same cross-section as that of the box girder 500 of the bridge 500, and the upper and lower ends of the connector box girder 510 '.
  • Diaphragm 550 welded to and fixed to flange 510a '510b' and a pair of abdomen 510c ', and ends of upper and lower chords 520a' and 520b 'on diaphragm 550 and vertical reinforcement ( 520x consists of a welded truss girder 520 '.
  • each structure of the connection body 500 ' is previously manufactured similarly to the structure of the connection part in the composite area II of the bridge 500.
  • a lower reinforcement 542 which is coupled together to a pair of lower chords 520a 'of the connector truss girder 520' and to the inner wall of the lower flange 510a 'of the connector box girder 510'. do.
  • the upper and lower chords 520a 'and 520b' of the connector truss girder 520 ' are firmly welded to the inner walls of the upper and lower flanges 510a' and 510b 'of the connector box girder 510'. do.
  • the cross-sections of both ends of the pre-fabricated connector 500 ′ are formed to have the same cross-sections as end faces of the box girder 510 and the truss girder 520 which are manufactured separately to support the bridge. That is, the cross section of the end 510s of the connector box girder 510 'of the connector 500' is the same as the cross section of the end of the box girder 510 connected thereto, and the connector of the connector 500 '.
  • the cross section of the end 520s of the truss girder 520 ' is formed in the same way as the cross section of the end of the truss girder 520 connected thereto, so that they are firmly connected to each other by bolting or riveting using welding or fixing plates.
  • a continuous bridge 500 of a composite type in which longitudinally connecting girders of different cross-sections using a pre-fabricated connector 500 ' the construction period of the bridge in the field can be shortened and the process can be completed. Advantages that can be simplified further are obtained.
  • the connector 500 ' may be manufactured in the field, but according to another embodiment of the present invention, the connector 500' may be manufactured at the factory and then transported to the site to increase the efficiency of the manufacturing work. .
  • the sequential bridge 500 having the complex type according to the fifth embodiment of the present invention configured as described above is constructed by the following process.
  • Step 1 First, the box girder 510 of the section shown in FIG. 19 is manufactured at a factory, and then loaded into a vehicle and transported to a site.
  • Step 2 After the lower chord 520a, the top chord 520b and the connecting member 520c of the truss girder 520 of the truss shape are manufactured at the factory and transported to the site independently of the step 1, these members are transferred to bolt joints or the like. By assembling, the truss girder 520 of the truss shape is produced. At this time, a part of the lower chord 520a, the upper chord 520b, and the connecting member 520c of the truss girder 520 may be manufactured in a factory in advance within the range that can be carried by the vehicle.
  • Step 3 Similarly, in the factory, the connector 500 'corresponding to the connection structure in the composite region II in which the box girder 510 and the truss girder 520 are overlapped and connected is manufactured in advance. Since the connection body 500 ′ is overlapped with the truss girder 520 inserted into the box girder 510, the connector 500 ′ may be manufactured at the factory and then carried in a vehicle and transported to the site.
  • Step 4 As shown in Fig. 28, the box girder 510 manufactured in Step 1 and transported to the site is lifted by a crane, and one end is mounted on the top of the bridge device 10a of the first piers 10. Position the other end to be mounted by another temporary pier.
  • Step 5 Firmly connect the plurality of bolts and / or welds through the fixing plate so that the connector 500 'manufactured and transported at the factory can be integrally operated with the truss girder 520 manufactured in step 2. do. That is, the end of the connector truss girder 520 'is coupled to the end of the truss girder 520 of the same cross section.
  • the truss girder 520 coupled with the connector 500 ' is lifted by a crane, and as shown in FIG. 29, the upper portion of the bridge device 20a of the second piers 20, which is a continuous point portion, is lifted. Mount it so that its center is located.
  • Step 6 As shown in FIG. 30, the box girder 510 and the truss girder 520 are firmly connected in the axial direction, and then the temporary pier is removed. Thus, the box girder 510 and the truss girder 520 are interconnected while overlappingly arranged over a certain length corresponding to the composite region II, rather than at one point.
  • Step 7 Then, formwork (not shown) is installed around the lower chord 520a of the truss girder 520, and the concrete is poured into the form to synthesize the reinforcement concrete 528 surrounding the lower chord 520a. do. Through this, it is possible to more effectively support the large parent applied to the continuous point portion 20.
  • a formwork for constructing the bottom plate concrete 530 is installed on the upper side of the steel girder 510 and the truss girder 520, and after reinforcing the reinforcement to the formwork, the vehicle is cast by the site The bottom plate concrete 530 through the back is constructed.
  • the shear connection member 511 is coupled to the upper side of the box girder 510 and the upper side of the truss girder 520 so that the bottom plate concrete 530 is the box girder 510 and the truss girder 520. ) And firmly combined.
  • the connector 500 'manufactured at the factory in advance in the joint area II of the box girder 510 and the truss girder 520 having different cross-sectional shapes is a truss.
  • the first connection body 500 'prepared in advance is connected to the box girder 510 and fixed. It may be constructed to be first mounted on the piers 10.
  • the connector 500' is lifted by a crane to form another temporary pier. After mounting on it, it may be constructed to be interconnected with the box girder 510 and the truss girder 520 in the air.
  • the composite area II for interconnecting the box girder 510 and the truss girder 520 in the field is constructed without using the connector 500 'in advance. It may be configured to.
  • the cross-sectional shape of the box girder 510 may include a U-shaped steel girder, the top of which is open, instead of using a steel girder with the top closed as shown in FIG. .
  • the continuous bridge having the composite type according to the fifth embodiment of the present invention may be constructed as follows.
  • Step 1 First, the lower chord 520a, the upper chord 520b, and the connecting material 520c of the truss-shaped parent girder 520 are manufactured at the factory and transported to the site, and then these members are bolted or the like. By assembling to produce a truss-shaped parent girder 520 (S110). At this time, a part of the lower chord 520a, the upper chord 520b and the connecting member 520c of the parent steel girder 520 may be manufactured in advance in a factory within a range that can be carried by a vehicle.
  • Step 2 After the steel moment girder 510 for the positive moment of the cross-section shown in Figure 3 independent of the step 1 is manufactured in the factory, it is carried in the vehicle to the site (S120).
  • Step 3 Similarly, in the factory, the connector 500 'corresponding to the connection structure in the composite region II in which the constant moment steel girder 510 and the parent moment steel girder 520 are overlapped and connected is pre-manufactured. Produce (S130). Since the connection body 500 ′ is arranged in such a manner that the parent moment steel girder 520 is inserted into the steel moment girder 510 for the positive moment, the connector 500 ′ may be transported to the site after being manufactured at the factory.
  • Step 4 a plurality of bolts and / or via a fixing plate may be provided so that the connector 500 'manufactured and transported at the factory may be integrated with the steel girder 520 for the parent cement fabricated in step 1. It is firmly connected to each other by welding (S140). That is, the end of the connector box girder 510 ′ is coupled to the end of the box girder 510 of the same cross section, and the end of the connector truss girder 520 ′ is the steel girder 520 for the parent cement of the same cross section. Is connected to the end of the connection.
  • Step 5 Then, as shown in Fig. 32, the steel moment girder 510 for the positive moment produced in step 2 and transported to the site is lifted by a crane, and the end device 10a of the first piers 10 is lifted. ) Is positioned on top of the and the other end is mounted by another temporary pier. Then, the steel girder 520 for the parent cement coupled with the connecting member 500 'is pulled up by a crane, and as shown in FIG. 34, the upper portion of the bridge device 20a of the second piers 20 as a continuous point portion. Mount it at its center.
  • the steel moment girder 510 for the positive moment and the steel girder 520 for the parent moment are firmly connected in the axial direction, and then the temporary pier is removed to remove the temporary moment steel girder 510.
  • girder steel girders 520 are mounted on the piers 10 and 20 in an interconnected state while overlappingly arranged over a predetermined length corresponding to the complex region II, not at one point. It becomes the state (S150).
  • Step 6 Next, formwork (not shown) for placing the bottom plate concrete 530i and 530f on the upper side of the steel girders 510 and 520, and the reinforcing bars are placed in the formwork.
  • the concrete that is not hardened only in the formwork on the upper side of the steel moment girder 510 for static moment is placed on the floor plate concrete 530i to synthesize the steel moment girder 510 for the constant moment (S160).
  • the shear connection member 511 is coupled to the upper side of the steel moment girder 510 for the positive moment, so that the bottom plate concrete 530i is firmly coupled with the steel girder 510 for the moment.
  • Formwork (not shown) is installed around the lower chord 520a of the truss girder 520 before pouring the bottom plate concrete 530i of the constant moment section, and the concrete Reinforced concrete 528 surrounding 520a may be synthesized. Through this, it is possible to more effectively support the compressive stress applied to the lower edge of the neutral axis of the continuous point portion 20 in common. At the same time, concrete may be poured into the lower chord 520a and the connecting member 520c formed in the closed section of the cross section of the truss girder 520 to reinforce compressive stress acting on each member 520a-120c.
  • Step 7 Then, as shown in FIG. 35, by placing or hanging a heavy weight (not shown) on the steel moment girder 510 for the positive moment, the displacement of the steel moment girder 510 for the positive moment is lowered.
  • the force P is introduced to be generated (S170).
  • the load P causes displacement of the steel girder 520 for the parent cement of the continuous point portion 20 to be convex upward.
  • Step 8 In the state in which the upwardly convex displacement occurs in step 7, the concrete is poured into the formwork installed on the upper side of the parent steel girder 520, and the bottom plate concrete 520f at the continuous point portion 20 is synthesized. (S180).
  • Step 9 Then, the weight imposed on the steel moment girder 510 for the positive moment is removed, and the parent moment where the convex bending deflection is generated upwardly with the positive moment steel girder 510 in which the downwardly convex deflection displacement is generated.
  • the steel girder 520 is returned to its original shape (S190). Through this, compression prestress is introduced to the bottom plate concrete 530f synthesized on the upper side of the parent steel girder 510, so that cracks do not occur with respect to the parent cement acting in common, thereby effectively having resistance.
  • the shear connector 521 is coupled to the upper side of the parent cement girder 520 so as to protrude upward, the bottom plate concrete 530f is firmly coupled to the parent cement girder 520.
  • the continuous bridge having the composite type according to the fifth embodiment of the present invention is as shown in Figs. It may be constructed in other ways. However, steps 1 to 6 are performed in the same manner as each step in the construction method just described.
  • Step 7 install the tension member 561 in the sheath tube in the state that the reinforcing bar in the formwork 565 installed on the upper side of the steel girder 520 for the parent cement (S270).
  • the fixing unit 560 for tensioning the tension member 561 is arranged to be located under the formwork 565.
  • Step 8 Then, site-pouring concrete that is not hardened in the formwork 565 installed on the upper side of the parent steel girder 520 (S280).
  • Step 9 When the poured concrete reaches the strength specified in the concrete regulations, the tension member 561 is pulled in the direction indicated by the reference numeral 160f to tension and settled to the bottom plate concrete 530f on the continuous point portion 20. Compression prestress is introduced (S290). Through this, compression prestress is introduced to the bottom plate concrete 530f synthesized on the upper side of the parent steel girder 510, so that cracks do not occur with respect to the parent cement acting in common, thereby effectively having resistance.
  • the bottom plate concrete of the region (I) in which the parent moment acts by a post tension method after tension and fixation of the tension material 561 in the sheath pipe is solidified to a predetermined strength.
  • compression prestress was introduced at 530f as an example
  • the tension member, which is not built in the sheath tube is exposed in a state in which a tension material, which is not built in the sheath tube, is exposed in advance.
  • Compression prestress may be introduced into the bottom plate concrete 530f in the region I in which the parent moment acts by pouring the hardened concrete and curing it to reach the final strength.
  • the steel girder 510 is divided into the bottom plate concretes 530i and 130f, respectively.
  • the composite of the 120, but the bottom plate concrete (530i, 130f) synthesized on the upper side of the steel girders (510, 120) may be synthesized at once.
  • a connector in which the joint part in the composite area II of the steel moment girder 510 and the parent moment steel girder 520 having a different cross-sectional shape is manufactured at the factory in advance. Instead of being pulled up by the crane and mounted on the second piers 20 in a fixed state in which the 500 'is connected to the steel girder 520 for the parent moment, the prefabricated connector 500' is used for the constant moment.
  • the steel girder 510 may be installed so as to be mounted on the first piers 10 in a fixed state.
  • connection member 500 'made in advance is fixed to the steel moment girder 510 or the parent moment steel girder 520 for the constant moment, and only the connection body 500' is lifted by a crane. After mounting on another temporary piers may be constructed so as to be interconnected with the steel girder 510 and the parent moment girder 520 for the moment in the air.
  • the cross-sectional shape of the steel moment girder 510 for the positive moment according to the embodiment of the present invention, as shown in Figure 3, instead of using the steel girder closed top, the U-shaped steel girder is open You may.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

The present invention relates to an upper part structure for a continuous bridge. The present invention provides an upper structure for a continuous steel composite girder bridge, comprising: a first girder including a first steel girder for supporting a positive moment being applied to the bridge; a third steel composite girder which is prefabricated such that a compressed prestressed third casing concrete is applied to an upper portion of a third steel girder so as to support a negative moment being applied to a first continuous point, and which has one end connected to an end of the first girder in the longitudinal direction; a second girder which includes a second steel girder to support the positive moment being applied to the bridge, and which has one end connected to the other end of the third steel composite girder in the longitudinal direction; and a concrete bridge deck formed on the first girder, the second girder, and the third steel composite girder. The third steel composite girder in which the compressed prestressed casing concrete is applied to the upper portion of the steel girder is installed in the upper portion of the bridge, which is a continuous part of a continuous bridge, to thereby effectively compensate for the negative moment which acts significantly on the upper portion of the bridge in which girders are connected.

Description

부모멘트를 효율적으로 지지하면서 시공성이 향상된 연속화 교량의 상부구조및 그 시공방법 Superstructure of continuous bridge with improved supportability while supporting parent moments and construction method
본 발명은 연속화된 강합성 거더 교량의 상부 구조에 관한 것으로, 보다 상세하게는 강합성 거더를 이용하여 시공된 교량의 상부 구조를 연속화하는 데 있어서, 교량의 상부 구조가 연속하는 교각에서 크게 발생되는 부모멘트를 효과적으로 지지할 수 있을 뿐만 아니라, 교량의 시공이 간단하고 장경간 교량을 가능하게 하는 연속화된 강합성 거더 교량의 상부 구조 및 그 시공 방법에 관한 것이다.The present invention relates to a superstructure of a continuous rigid girder bridge, and more particularly, in the continuous structure of the superstructure of a bridge constructed by using a rigid girder bridge, the superstructure of the bridge is largely generated in a continuous piers. The present invention relates to a superstructure of a continuous rigid girder bridge that can not only effectively support the parent cement but also to allow simple construction of the bridge and to enable long span bridges.
일반적으로 교량은 강이나 바다 또는 계곡을 차량 등이 보다 편리하게 통행할 수 있도록 시공되는 것으로서, 교량에 작용하는 사하중과 활하중을 견디기 위해 제작된 거더와, 상기 거더의 상측에 차량 등이 통행할 수 있도록 판 형상으로 형성된 바닥판 콘크리트로 이루어진다. In general, bridges are constructed so that vehicles, such as rivers, seas, or valleys can be more conveniently passed by vehicles, girders made to withstand dead and live loads acting on the bridges, and vehicles can pass on top of the girders. The bottom plate is made of concrete so that it is formed into a plate shape.
강이나 계곡의 폭이 작아 건너고자 하는 길이가 짧거나, 차량의 통과 중량이 적어 큰 하중을 지지할 필요가 없는 경우에는 도1에 도시된 바와 같이 교각(21)에 거더(10)의 양단이 지지되도록 거더(10)를 거치한 후, 그 위에 바닥판(30)을 설치하여 단순교(1)를 시공한다. When the width of the river or valley is short and the length to be crossed is short, or the weight of the vehicle is small and it is not necessary to support a large load, as shown in FIG. 1, both ends of the girder 10 are connected to the piers 21 as shown in FIG. 1. After mounting the girder 10 to be supported, the bottom plate 30 is installed on it to construct a simple bridge (1).
한편, 강이나 계곡의 폭이 길더라도 도1에 도시된 바와 같은 형식의 거더(10)를 연속하여 교각에 거치하여 교량의 길이를 길게 시공할 수 있다. 그러나, 이와 같이 시공된 교량은 차량이 교량을 통과할 때에 거더(10)의 처짐이 커지고, 이에 따라 거더(10)와 거더(10)사이의 교각 상부에서는 차량이 통과하는 중에 크게 덜컹거려 승차감이 나빠지는 문제점이 있다. On the other hand, even if the width of the river or valley is long, the length of the bridge can be constructed by mounting the girders 10 of the type shown in FIG. However, the bridge constructed as described above has a large deflection of the girder 10 when the vehicle passes the bridge, and accordingly, the upper part of the bridge between the girder 10 and the girder 10 rattles during the passage of the vehicle, resulting in a more comfortable ride. There is a problem that goes bad.
이에 따라, 도2 및 도3에 도시된 바와 같이, 교축 방향으로 인접한 거더(10)를 연결재(15)를 이용하여 연속화시킨 연속화 교량(1', 1")이 시공되기 시작하였다. 연속화 교량(1')은 교축 방향으로 인접한 거더(10)가 연결재(15)로 고정됨에 따라, 교축 방향으로 연속하는 거더가 일체로 거동하고, 이에 따라 교각(22)과 교각(21)의 사이에서 거더(10)의 휨 변형량이 최소화되며, 거더(10)를 신축 이음하지 않음에 따라 차량이 교각(22)을 통과할 때에도 덜컹거리지 않으므로 이용자가 편안하게 교량을 통과할 수 있게 된다. Accordingly, as shown in Figs. 2 and 3, the continuous bridges 1 ', 1 ", in which the girder 10 adjacent to each other in the axial direction is continuous with the connecting member 15, are started to be constructed. 1 '), as the girder 10 adjacent in the axial direction is fixed by the connecting member 15, the girder continuous in the axial direction behaves integrally, and thus, the girder (between the pier 22 and the pier 21). 10) the amount of bending deformation is minimized, and the user can comfortably pass the bridge because the vehicle is not rattled even when passing through the pier 22 as the girders 10 are not stretched.
그러나, 연속화 교량(1', 1")은 교각(21)과 교각(22)의 중앙부에 작용하는 정모멘트(Mp', Mp")가 크게 줄어드는 잇점이 있지만, 연속화된 교각(22)에서 작용하는 큰 부모멘트(Mn', Mn")가 크게 증가함에 따라, 교량(1',1")에 큰 응력이 작용하는 문제점이 야기되었다. However, the sequential bridges 1 'and 1 "have the advantage of greatly reducing the moments Mp' and Mp" acting at the centers of the pier 21 and the pier 22, but acting in the pier pier 22. As the large parent moments Mn 'and Mn "are greatly increased, a problem arises in that a large stress acts on the bridges 1' and 1".
지간의 거리가 40m인 도로교의 경우를 예를 들어 살펴보면, 연속하지 않은 도1의 단순교와, 중앙부에 교각(22)이 하나 세워진 도2의 2경간 연속교와, 중앙부에 교각(22)이 두 개 세워진 도3의 연속교에 대하여 10tonf/m의 하중이 재하되는 경우에, 거더(10)에 작용하는 정모멘트(Mp, Mp', Mp")와 교각(22)에서 거더(10)에 작용하는 부모멘트(Mn', Mn")은 다음과 같이 구해진다. In the case of the road bridge having a distance of 40 m, for example, the non-continuous simple bridge of Fig. 1, the two-span continuous bridge of Fig. 2 with one pier 22 in the center, and the pier 22 in the center are shown. In the case where a load of 10tonf / m is applied to two continuous bridges of FIG. 3, the positive moments (Mp, Mp ', Mp ") acting on the girder 10 and the pier 22 to the girder 10 The acting parent moments Mn ', Mn "are obtained as follows.
표 1
정모멘트(tonf-m) 부모멘트(tonf-m) 정모멘트(tonf-m)
단순교 2000
2경간 연속교 1133 -1978
3경간 연속교 1283 -1593 407
Table 1
Static moment (tonf-m) Ton-m Static moment (tonf-m)
Simple school 2000
2 span continuous bridge 1133 -1978
3 span continuous bridge 1283 -1593 407
즉, 도1의 단순교의 경우에는 정모멘트가 매우 크게 작용하지만, 도2 및 도3의 연속교의 경우에는 경간의 수가 많아질수록 정모멘트를 크게 줄일 수 있지만 이에 따라 부모멘트가 크게 증가한다는 것을 알 수 있다. In other words, in the case of the simple bridge of FIG. 1, the positive moment works very much. However, in the case of the continuous bridges of FIGS. 2 and 3, as the number of spans increases, the static moment can be greatly reduced, but the parent moment increases accordingly. Can be.
이와 같은 경향은 거더의 휨 강성이 커질수록 더욱더 분명해지는데, 상기와 같은 조건에서 지점부 양쪽 8m의 강성이 2배로 된 경우를 예를 들면, 도1 내지 도3의 교량(1, 1'. 1")에 작용하는 정모멘트(tonf-m)와 부모멘트(tonf-m)는 다음과 같다. This tendency becomes more apparent as the girder rigidity of the girder becomes larger. For example, when the stiffness of both sides of the point portion is doubled under the above conditions, for example, the bridges 1 and 1 'of FIGS. The constant moment (tonf-m) and parent moment (tonf-m) acting on ") are as follows.
표 2
구 분 정모멘트(tonf-m) 부모멘트(tonf-m) 정모멘트(tonf-m)
2경간 교량 동일강성 1133 -1978
2배강성 985 -2384
3경간 교량 동일강성 1283 -1593 407
2배 강성 1186 -1840 160
TABLE 2
division Static moment (tonf-m) Ton-m Static moment (tonf-m)
Two span bridge Equal stiffness 1133 -1978
2x rigidity 985 -2384
Three span bridge Equal stiffness 1283 -1593 407
2x rigidity 1186 -1840 160
즉, 교량의 내하력을 증대시키기 위하여 거더의 휨 강성을 보강하면, 연속교의 교각(22) 상부에서 발생되는 부 모멘트(Mn', Mn")가 더욱더 크게 증가한다는 것을 알 수 있다. 다시 말하면, 연속교에 작용하는 최대 부모멘트는 정모멘트에 비하여 1.24배, 1.75배가 더 크고, 거더의 강성이 2배로 커지면 이 차이는 각각 1.55배, 2.42배로 벌어진다는 것이다. In other words, it can be seen that when the bending stiffness of the girder is increased to increase the load capacity of the bridge, the minor moments Mn 'and Mn "generated in the upper part of the bridge pier 22 of the continuous bridge increase even more. The maximum parent moment acting on the bridge is 1.24 times and 1.75 times larger than the static moment, and when the girder's stiffness doubles, the difference is 1.55 times and 2.42 times, respectively.
따라서, 상기와 같이 연속교에서 크게 문제되는 부모멘트를 효과적으로 견딜 수 있도록 하는 방안의 필요성이 절실히 대두되고 있다.Therefore, there is an urgent need for a method to effectively withstand the parental problems, which are greatly problematic in the continuous bridge as described above.
한편, 콘크리트 거더와 달리 강합성 거더로 이루어진 연속교는 교각(22)위치에서 보다 크게 작용하는 부모멘트를 상쇄할만한 마땅한 방법이 없었다. 이에 따라, 강형에 케이싱 콘크리트(31)가 합성된 강합성 거더(30)로 교량(3)을 시공하는 경우에는, 거더(30)가 연속하는 교각(22)에서 작용하는 부모멘트를 상쇄시키기 위하여, 도4에 도시된 바와 같이 높이가 크게 제작되어 단면 계수가 커진 강합성 거더(40)를 사용하였다. On the other hand, unlike the concrete girder, the continuous bridge composed of steel composite girders did not have a proper way to offset the parent acting at the pier (22) position. Accordingly, in the case of constructing the bridge 3 by the composite girder 30 in which the casing concrete 31 is synthesized in the steel mold, in order to offset the parent moment acting on the pier 22 in which the girder 30 is continuous. As shown in FIG. 4, a high-strength girder 40 having a large height and a large cross-sectional coefficient was used.
그러나, 앞서 살펴본 바와 같이, 연속화되는 경간의 수가 많아지고 연속되는 위치에서 거더(30)의 강성이 높아질수록, 거더(30)의 연결부가 위치한 교각(22)에서 작용하는 부모멘트가 커지므로, 단면을 크게 하는 것에 의해 교각(22)의 상부에서 작용하는 부모멘트를 상쇄시키는 것은 한계가 있다. 또한, 경간의 중앙부에 위치한 거더에 비하여 교각 상부에서의 거더의 단면이 더 높으므로, 미관을 해치는 부수적인 문제도 있었다.However, as described above, as the number of sequential spans increases and the stiffness of the girder 30 increases in the continuous position, the parent moment acting on the pier 22 where the connection portion of the girder 30 is located increases, so that There is a limit to offset the parent moment acting on the upper part of the piers 22 by increasing the. In addition, the cross section of the girder at the top of the pier is higher than the girder located in the center of the span, there is also a secondary problem that hurts the appearance.
한편, 상기 종래 기술에서 설명한 구성은 오로지 본 발명의 기술적 배경을 이해하기 위하여 기술한 것으로서, 본 발명의 기술 분야의 당업자에게 이미 알려진 선행 기술을 의미하는 것은 아니다. On the other hand, the configuration described in the prior art is described only for understanding the technical background of the present invention, it does not mean the prior art already known to those skilled in the art of the present invention.
본 발명은 상술한 바와 같은 문제점을 해결하기 위하여, 강합성 거더를 이용하여 시공된 교량을 연속화하는 데 있어서, 교량이 연속하는 교각에서 크게 발생되는 부모멘트를 효과적으로 지지할 수 있을 뿐만 아니라, 교량의 시공이 간단하고 장경간 교량을 가능하게 하는 연속화된 강합성 거더 교량의 상부 구조 및 그 시공 방법을 제공하는 것을 그 목적으로 한다. The present invention, in order to solve the problems described above, in the sequential bridges constructed using a rigid girder, not only can effectively support the parent moment generated in the continuous bridge bridges, but also It is an object of the present invention to provide a superstructure of a continuous rigid girder bridge and a construction method thereof, which are simple in construction and enable a long span bridge.
또한, 본 발명은 교각에서의 단면을 크게 하지 않고 정모멘트가 크게 작용하는 거더와 부모멘트가 크게 작용하는 거더의 높이를 동일하게 하면서, 연속화 교량의 교각에서 작용하는 큰 부모멘트를 효과적으로 상쇄시킬 수 있는 연속화된 강합성 거더 교량의 상부 구조 및 그 시공 방법을 제공하는 것을 그 목적으로 한다. In addition, the present invention can effectively cancel the large parent moment acting in the pier of the continuous bridge while the same height of the girders acting large static moment and the girder acts large parents without increasing the cross section in the bridge. It is an object of the present invention to provide a superstructure and a construction method of a continuous rigid composite girder bridge.
그리고, 본 발명은 효율적인 단면의 활용으로 거더가 연속하는 교각의 상부에 작용하는 부모멘트를 효과적으로 저항함에 따라, 장경간 연속화 교량을 구현하는 것을 또 다른 목적으로 한다.In addition, the present invention is another object to implement a long span continuous bridge, as the girder effectively resists the parent moment acting on the upper portion of the continuous piers by utilizing the effective cross section.
본 발명은 내하 능력이 큰 장경간 교량을 구현할 수 있으면서 강재의 사용량을 최소화하여 경제적인 시공이 가능한 복합 형식의 연속화 교량의 상부 구조를 제공하는 것을 그 목적으로 한다.It is an object of the present invention to provide a superstructure of a continuous bridge of a composite type that can be implemented economically by minimizing the amount of steel used while being able to implement a long span bridge with a large load capacity.
또한, 본 발명은 서로 다른 단면으로 구성된 복합형식의 연속화 교량을 간단한 시공에 의하여 하나의 구조계로서 상호 견고하게 연결되어 교량 형식 변경에 따른 국부적인 응력 집중 현상을 방지하여 견고하게 외력을 지지함에 따라 높은 내하 능력을 구현할 수 있는 복합 형식의 연속화 교량의 상부구조 연결체를 제공하는 것을 목적으로 한다. In addition, the present invention is connected to the sequential bridge of the composite type consisting of different cross-section as a single structural system by a simple construction to prevent the local stress concentration phenomenon due to the bridge type change to support the external force It is an object of the present invention to provide a superstructure linkage of a continuous bridge of a composite type capable of implementing load carrying capacity.
그리고, 본 발명은 상기의 상부구조 연결체를 이용하여 복합 형식의 연속화 교량을 견고하게 연결하여 70m이상의 복합 형식의 장경간 연속화 교량의 시공을 가능하게 하는 것을 또 다른 목적으로 한다.Another object of the present invention is to enable the construction of a long span continuous bridge of a composite type of 70 m or more by firmly connecting a continuous bridge of a composite type using the superstructure connecting body.
또한, 본 발명은 복합 형식의 연속화 교량의 상부구조 연결체를 공장에서 제작하여 현장에서는 간단한 연결 공정만을 행하도록 하여, 복합 형식의 장경간 연속화 교량을 시공하는 데 있어서 현장 시공성을 향상시키고 시공 기간을 단축하는 것을 또 다른 목적으로 한다. In addition, the present invention is to produce a superstructure connector of the composite continuous bridge in the factory to perform only a simple connection process in the field, to improve the field construction and construction period in the construction of the long span continuous bridge of the composite type Shortening is another purpose.
본 발명은 연속 지점부에 작용하는 큰 부모멘트에 의해 발생하는 바닥판 콘크리트의 인장응력 발생에 따른 영향을 최소화하기 위하여 연속 지점부의 중립축의 상측에 위치하는 바닥판 콘크리트에 압축 프리스트레스를 도입하는 것을 또 다른 목적으로 한다.The present invention is to introduce a compressive prestress to the bottom plate concrete located above the neutral axis of the continuous point portion in order to minimize the effect of the tensile stress of the bottom plate concrete caused by the large parent acting on the continuous point portion For other purposes.
이를 통해, 본 발명은 서로 다른 단면으로 구성된 복합형식의 연속화 교량을 간단한 시공에 의하여 하나의 구조계로서 상호 견고하게 연결되어 교량 형식 변경에도 불구하고 부모멘트를 보다 효과적으로 저항함에 따라, 장경간 연속화 교량을 구현하는 것을 또 다른 목적으로 한다.Through this, the present invention is connected to the sequential bridge of the composite type composed of different cross-sections as a single structural system by simple construction, so as to effectively resist the parent moment despite the change of the bridge type, the long-span continuous bridge It's another purpose to implement.
본 발명은 상술한 바와 같은 목적을 달성하기 위하여, 교량에 작용하는 정모멘트를 지지하기 위하여 제1강형이 포함되도록 제작된 제1거더와; 제1연속지점부에 작용하는 부모멘트를 지지하기 위하여 제3강형의 상부에 압축 프리스트레스가 도입된 제3케이싱 콘크리트가 합성되도록 미리 제작되고 동시에 일단이 상기 제1거더의 타단과 교축방향으로 연결되는 제3강합성거더와; 교량에 작용하는 정모멘트를 지지하기 위하여 제2강형이 포함되도록 제작되고 동시에 일단이 상기 제3강합성거더의 타단과 교축 방향으로 연결된 제2거더와; 상기 제1거더, 상기 제2거더, 상기 제3강합성 거더의 상측에 형성된 바닥판 콘크리트를; 포함하여 구성된 것을 특징으로 하는 연속화 교량의 상부구조를 제공한다. The present invention comprises a first girder made to include a first steel to support a constant moment acting on the bridge to achieve the object as described above; In order to support the parent moment acting on the first continuous point portion, the pre-fabricated third casing concrete with compression prestress introduced into the upper part of the third steel is pre-fabricated and at the same time one end is axially connected to the other end of the first girder. A third rigid girder; A second girder fabricated such that a second steel die is included to support a constant moment acting on the bridge, and at one end thereof connected to the other end of the third rigid girder in the axial direction; A bottom plate concrete formed on an upper side of the first girder, the second girder, and the third rigid girder; It provides a superstructure of the continuous bridge, characterized in that configured to include.
이는, 압축 프리스트레스가 미리 도입된 케이싱 콘크리트를 강형의 상부에 합성한 부모멘트 저항 거더를 연속화 교량의 연속 부위인 교각 상부에 설치하여, 이에 작용하는 구간은 짧고, 크기는 커다란 부모멘트를 효과적으로 상쇄시킬 수 있도록 하기 위함이다. This is to install a casing concrete with compression prestress pre-introduced in the upper part of the steel, and install the parent-resist girder on the upper part of the pier, which is a continuous part of the sequential bridge. To do so.
즉, 연속교에서는 통상적으로 정모멘트보다 부모멘트가 훨씬 크게 작용함에도 불구하고, 종래에는 정모멘트를 지지하기 위해 제작된 거더를 단순교에 적용하다가 이를 그대로 연속교에 확장 적용함에 따라, 거더가 연속하는 교각 상부에서 크게 작용하는 부모멘트를 상쇄시키는 데에는 제한적인 문제가 있었다. 이에 따라, 본 발명은 압축 프리스트레스가 미리 도입된 케이싱 콘크리트가 강형의 상부에 합성되어 부모멘트를 효과적으로 상쇄시키는 부모멘트 저항거더인 제3강합성거더를 정모멘트 저항거더와 구별하여 별도로 제작하여, 이를 거더가 연속하는 교각의 상부에 거치시킴으로써, 연속교에서 거더가 연속하는 교각의 상부에 작용하는 커다란 부모멘트를 보다 효율적으로 지지할 수 있다. That is, in the continuous bridge, although the parent moment acts much larger than the normal moment, conventionally, the girder manufactured to support the constant moment is applied to the simple bridge, and as it is extended to the continuous bridge, the girder is continuously There was a limiting problem in canceling the parental moment that acts largely at the top of the bridge. Accordingly, in the present invention, the casing concrete in which the compression prestress is pre-introduced is synthesized on the upper portion of the steel to separately manufacture the third rigid composite girder, which is a parent moment resistance girder, to effectively offset the parent moment, separately from the constant moment resistance girder, thereby By placing the girder on top of the continuous piers, it is possible to more efficiently support the large parent moment acting on the top of the continuous piers on the continuous piers.
따라서, 본 발명에 따른 연속화 교량의 상부 구조는 종래와 달리 거더가 연속하는 교각의 상부에 설치되는 거더의 단면이 정모멘트를 지지하는 거더보다 비대해져 외관이 보기에 좋지 않게 되는 것을 방지할 수 있으며, 정모멘트에 저항하는 제1거더 및 제2거더와 부모멘트에 저항하는 제3강합성거더의 높이를 일정하게 유지할 수 있게 되어, 외관이 수려하고 세련된 미감을 심어줄 수 있는 교량의 상부 구조를 시공할 수 있게 된다. Therefore, the upper structure of the sequential bridge according to the present invention can prevent the cross section of the girder, which is installed on top of the pier where the girder is continuous, is larger than the girder supporting the constant moment, which makes the appearance unsightly. The height of the first girder and the second girder, which resists the constant moment, and the third rigid girder, which resists the parent moment, can be kept constant, so that the upper structure of the bridge can be constructed to give a beautiful and refined aesthetic appearance. It becomes possible.
이 뿐만 아니라, 본 발명에 따른 연속화 교량의 상부 구조는 현장에서 현장타설하여 거더를 제작하지 않고, 모두 공장에서 제작하여 현장에서는 곧바로 설치 시공만 하여도 교량의 상부 구조의 제작이 가능하므로, 시공에 소요되는 공기가 단축되고 시공에 소요되는 인력을 최소화할 수 있는 장점이 얻어진다. 동시에, 거더가 연속하는 교각의 상부에 2개의 인접한 거더를 지지하기 위해 교좌 장치를 2개 설치하지 않고, 하나의 제3강합성 거더를 지지하기 위해 교좌 장치를 1개만 설치하여도 되므로 시공이 보다 경제적으로 이루어질 수 있다. In addition, the upper structure of the sequential bridge according to the present invention does not manufacture the girder by placing the site in the field, all of them are manufactured in the factory, so it is possible to manufacture the upper structure of the bridge by just installing the construction site immediately. The advantages of shortening the air required and minimizing the manpower required for construction are obtained. At the same time, it is not necessary to install two bridge devices to support two adjacent girders in the upper part of the continuous piers, and only one bridge device may be installed to support one third composite girder. It can be done economically.
한편, 본 명세서 및 특허청구범위에서 사용되는 '교각'라는 용어는 교량을 제작하기 위하여 거더 등을 지지하는 하부 구조를 통칭하는 의미로 사용된 것으로서, 거더가 교축 방향으로 연속하여 배열된 교량의 경우에 교축 방향의 일측으로만 거더를 지지하는 '교대'의 의미 등을 포함하는 용어로 사용하기로 한다. On the other hand, the term 'pier' used in the present specification and claims is used as a generic term for the lower structure supporting the girder, etc. in order to manufacture the bridge, in the case of a bridge in which the girder is continuously arranged in the axial direction This term is used to include the meaning of 'shift', which supports the girders only on one side of the axial direction.
또한, 본 명세서 및 특허청구범위에서 사용되는 '강형'이라는 용어는 구조용 강재로 구성된 거더를 의미하는 것으로, 그 형태가 'I'형 이거나 박스형이거나 그 밖에 다른 형태이더라도 금속 재료로 거더를 이루는 것은 모두 포함하는 의미의 용어로 사용된 것이다.In addition, the term 'steel' used in the present specification and claims means a girder composed of structural steel, and even if the shape is 'I' type, box type, or any other form, the girder is made of metal material. It is used as a term of containing meaning.
한편, 본 명세서 및 특허청구범위 전반에 걸쳐 사용된 '연속 지점부', '제1연속지점부' 등 이들과 유사한 용어는 교축방향으로 연속되어 시공된 거더를 양끝단이 아닌 내측위치에서 지지하는 지점을 의미하는 것으로서, 연속화 교량의 상부 구조에서 부모멘트가 발생되는 지점부를 의미하는 용어로 사용된 것이다. 그리고, 본 명세서에서 사용된 '복합 형식'이라는 용어는 정모멘트가 작용하는 영역과 부모멘트가 작용하는 영역의 상부 구조의 형식이 서로 다르게 구성된 것을 의미한다. On the other hand, terms similar to these, such as 'continuous point portion', 'first continuous point portion' used throughout this specification and claims, support continuous girders constructed in the axial direction in the inner position rather than at both ends. As used to mean a point, it is used as a term that refers to the point where the parent is generated in the superstructure of the continuous bridge. In addition, the term 'composite form' as used herein means that the upper structure of the region in which the constant moment acts and the region in which the parent moment acts are configured differently.
따라서, 상기 제3교각에 대하여 교축 방향으로 서로 다른 방향으로 이격된 제1교각과 제2교각에 일측으로만 거더를 지지한다면 2경간 연속화 교량의 상부 구조가 된다. 즉, 상기 제3강합성거더의 중앙부는 연속되는 중간지점부의 제3교각에 지지되고 동시에 상기 제1거더의 일단과 상기 제2거더의 타단은 상기 제3교각과 교축 방향으로 서로 다른 방향으로 이격된 위치에 놓인 교각에 각각 거치되어, 2경간 연속화 교량의 상부구조를 구성할 수 있다. Accordingly, if the girder is supported only on one side of the first and second piers spaced in different directions in the axial direction with respect to the third piers, the upper structure of the two span continuous bridge is obtained. That is, the center portion of the third rigid girder is supported by the third pier of the continuous intermediate point portion, and at the same time, one end of the first girder and the other end of the second girder are spaced apart from each other in the direction of the third pier and the axial direction. It can be mounted on each of the piers placed in the position to form a superstructure of the two-span continuous bridge.
그리고, 제2연속지점부에 작용하는 부모멘트를 지지하기 위하여 제4강형의 상부에 압축 프리스트레스가 도입된 제4케이싱 콘크리트가 합성되도록 미리 제작되고 동시에 일단이 상기 제2거더의 타단과 교축방향으로 연결되는 제4강합성거더와; 교량에 작용하는 정모멘트를 지지하기 위하여 제5강형이 포함되도록 제작되고 동시에 일단이 상기 제5강합성거더의 타단과 교축 방향으로 연결된 제5거더를; 추가적으로 포함하고, 상기 바닥판 콘크리트는 상기 제1거더, 상기 제2거더, 상기 제3강합성 거더, 상기 제4강합성거더, 상기 제5거더의 상측에 형성되어, 제3경간 이상의 연속화 교량의 상부구조를 구성할 수 있다. Then, in order to support the parent moment acting on the second continuous point portion, the pre-fabricated fourth casing concrete in which the compression prestress is introduced on the upper portion of the fourth steel is pre-fabricated, and at the same time, one end thereof is in the axial direction with the other end of the second girder. A fourth rigid composite girder connected; A fifth girder fabricated so as to include a fifth steel to support the constant moment acting on the bridge, and at one end thereof connected to the other end of the fifth rigid girder in the axial direction; In addition, the bottom plate concrete is formed on the upper side of the first girder, the second girder, the third rigid girder, the fourth rigid girder, the fifth girder, the third bridge or more of the continuous bridge The superstructure can be constructed.
여기서, 강합성 거더는 휨 모멘트가 집중되는 위치에 미리 압축 프리스트레스가 도입된 케이싱 콘크리트가 합성되므로, 제3강합성거더와 같이 상부에 제3케이싱 콘크리트가 합성되면 인접한 제1거더나 제2거더와 접합하는 것이 매우 까다로워지는 문제가 야기된다. 이를 위하여, 본 발명은, 제3강합성거더가 상기 제1거더 및 상기 제2거더와 접합되는 양단부에는 상기 제3케이싱 콘크리트가 합성되지 않아 강형 단면으로 남고, 동시에, 제3강합성거더가 상기 제1거더 및 상기 제2거더와 접합되는 위치에서의 상기 제3강합성거더의 단면이 상기 제1거더 및 상기 제2거더의 단면과 동일하게 형성된다. 이에 따라, 제3강합성거더는 인접한 제1거더 및 제2거더와 용접에 의하거나 연결 플레이트를 관통하는 볼트체결에 의해 일체 거동하도록 간단히 접합될 수 있다. Here, the composite girder is composed of a casing concrete in which the compression prestress is introduced in advance in the position where the bending moment is concentrated, so that when the third casing concrete is synthesized in the upper portion, such as the third rigid girder, the adjacent first girder and the second girder The problem arises that joining becomes very difficult. To this end, in the present invention, the third casing girder is joined to both ends of the first girder and the second girder so that the third casing concrete is not synthesized and remains in a rigid cross section, and at the same time, the third rigid girder is The cross section of the third composite girder at the position joined to the first girder and the second girder is formed to be the same as the cross section of the first girder and the second girder. Accordingly, the third rigid composite girder can be simply joined to be integral with the first and second girders adjacent to each other by welding or by bolting through the connecting plate.
제1거더 및 제2거더는 강형인 강재 거더나 박스 거더로 이루어진 정모멘트 저항거더일 수도 있지만, 압축 프리스트레스가 미리 도입된 케이싱 콘크리트가 강형의 하부에 합성된 강합성거더로서 정모멘트 저항거더를 형성할 수도 있다. 이와 같이, 제1거더 및 제2거더가 상기 제3강합성거더와 마찬가지로 압축 프리스트레스가 도입된 케이싱 콘크리트와 결합된 강합성거더이더라도, 상기 제3합성거더와 접합하는 부분의 단면이 상기 제3합성거더의 단면과 동일하게 형성됨으로써, 상호 접합이 용이한 장점이 있다. The first girder and the second girder may be a static moment resistance girder consisting of steel girder or box girder, which is a steel girder, but a casing concrete in which compression prestress is pre-introduced is a composite girder formed in the lower portion of the steel to form a constant moment resistance girder. You may. As described above, even if the first girder and the second girder are steel composite girders combined with casing concrete in which compression prestress is introduced, similarly to the third steel composite girders, the cross section of the portion joined with the third composite girders is the third composite girders. By forming the same as the cross section of the girder, there is an advantage that the mutual bonding is easy.
상기 제3케이싱 콘크리트의 상면은 상기 제3강합성 거더의 양단부의 강형의 상부 플랜지보다 높지 않게 형성되어, 제3케이싱 콘크리트에도 불구하고 제1거더, 제2거더 및 제3강합성거더의 상면의 높이가 일정하게 되므로, 바닥판 콘크리트를 타설 시공하는 것이 보다 용이해지고 이로 인해 미관이 저해되는 것을 막을 수 있다. The upper surface of the third casing concrete is formed not higher than the upper flange of the rigid of both ends of the third composite girder, so that despite the third casing concrete of the upper surface of the first girder, the second girder and the third rigid girder Since the height is constant, it is easier to pour the bottom plate concrete, thereby preventing the appearance of being impaired.
한편, 상기 제3강합성거더는 해당 교량의 자중에 의한 휨 모멘트가 0이 되는 위치에 이르는 길이(x)만큼 교축방향으로 돌출되는 길이를 갖는다. 따라서, 제3강합성거더가 이 지점(x)에서 제1거더 및 제2거더와 용접이나 볼트로 접합됨으로써, 교량의 공용 중에 제3강합성거더와 제1거더 및 제2거더가 접합된 부분에 외력 등에 의한 응력이 작용하여 파손되는 것을 막을 수 있다. On the other hand, the third composite girder has a length protruding in the axial direction by the length (x) to reach a position where the bending moment due to the weight of the bridge becomes zero. Therefore, the third composite girder is welded or bolted to the first girder and the second girder at this point (x), whereby the third composite girder, the first girder and the second girder are joined during the sharing of the bridge. It is possible to prevent breakage due to the action of stress due to external force.
한편, 발명의 다른 분야에 따르면, 본 발명은, 교축 방향으로 연속하여 배열된 다수의 거더를 연속화하여 시공되는 강합성 거더 연속화 교량의 상부 구조의 시공 방법으로서, 압축 프리스트레스가 미리 도입된 제3케이싱 콘크리트를 제3강형의 상부에 합성하여 제3강합성거더를 제작하는 단계와; 압축 프리스트레스가 미리 도입된 제1케이싱 콘크리트를 제1강형의 하부에 합성하여 제1강합성거더를 제작하는 단계와; 압축 프리스트레스가 미리 도입된 제2케이싱 콘크리트를 제2강형의 하부에 합성하여 제2강합성거더를 제작하는 단계와; 연속화하고자 하는 위치에 가설된 제3교각의 상부에 제3교좌 장치를 설치하고, 상기 제3교좌 장치 위에 상기 제3강합성 거더를 크레인으로 인상하여 거치시키는 단계와; 제3교각과 인접한 제1교각의 사이와 상기 제3교각과 인접한 제2교각의 사이에 각각 가설 교각을 설치하는 단계와; 상기 제1강합성거더를 인상하여 상기 제1교각과 상기 제3교각 사이의 상기 가설 교각에 지지시킨 상태에서 상기 제1강합성거더의 일단과 상기 제3강합성거더의 일단을 용접, 볼트 체결 중 어느 하나 이상의 방법으로 접합시키는 단계와; 상기 제2강합성거더를 인상하여 상기 제2교각과 상기 제3교각 사이의 상기 가설 교각에 지지시킨 상태에서 상기 제2강합성거더의 일단과 상기 제3강합성거더의 타단을 용접, 볼트 체결 중 어느 하나 이상의 방법으로 접합시키는 단계를; 포함하여 구성된 것을 특징으로 하는 연속화된 강합성 거더 교량의 상부 구조의 시공 방법을 제공한다.On the other hand, according to another field of the invention, the present invention is a method of constructing a superstructure of a rigid girder continuous bridge that is constructed by successively constructing a plurality of girders continuously arranged in the axial direction, the third casing in which compression prestress is introduced in advance Synthesizing concrete on top of the third steel mold to produce a third steel composite girder; Manufacturing a first composite girder by synthesizing the first casing concrete into which the compression prestress is introduced in advance to a lower portion of the first steel mold; Manufacturing a second composite girder by synthesizing the second casing concrete into which the compression prestress is introduced in advance to the lower portion of the second steel mold; Installing a third stabilization device on an upper part of the third piers hypothesized at a position to be continuous, and lifting and mounting the third rigid girder with a crane on the third stair device; Providing a temporary pier between a third pier and an adjacent first pier, and between a third pier and an adjacent second pier; Welding and bolting one end of the first composite girder and one end of the third composite girder while raising the first composite girder to support the temporary pier between the first and third piers. Conjugating by any one or more of methods; Welding and bolting one end of the second composite girder and the other end of the third composite girder while raising the second composite girder and supporting the temporary pier between the second pier and the third pier. Conjugating by any one or more of methods; It provides a method of construction of the superstructure of the continuous rigid girder bridge, characterized in that configured to include.
또한 본 발명은, 제1강형을 포함하여 제작되고, 교축 방향으로 배열되어 교량에 작용하는 정모멘트를 지지하는 제1거더와; 압축 프리스트레스가 도입된 제3케이싱 콘크리트를 제3강형의 상부에 합성되도록 교각에 거치되기 이전에 미리 제작되고, 일단이 상기 제1거더에 교축 방향으로 연결되고 연속하는 제3교각의 상부에 중앙부가 거치되어 연속화된 교량에 작용하는 부모멘트를 지지하는 제3강합성거더와; 제2강형을 포함하여 제작되고, 상기 제3강합성거더의 타단과 교축 방향으로 연결되어 교축 방향으로 배열되어 정모멘트를 지지하는 제2거더와; 상기 제1거더, 상기 제2거더, 상기 제3강합성 거더의 상측에 형성된 바닥판 콘크리트를; 포함하여 구성된 것을 특징으로 하는 연속화 교량을 제공한다.The present invention also includes a first girder fabricated including a first steel die and arranged in the axial direction to support a constant moment acting on the bridge; The pre-stressed third casing concrete is pre-fabricated prior to mounting on the pier to be synthesized on the upper part of the third steel, and one end is axially connected to the first girder and the center portion is formed on the upper part of the continuous third pier. A third rigid girder supporting the parental moment mounted and acting on the continuous bridge; A second girder including a second steel mold and connected to the other end of the third rigid girder in the axial direction to be arranged in the axial direction to support the positive moment; A bottom plate concrete formed on an upper side of the first girder, the second girder, and the third rigid girder; It provides a continuous bridge, characterized in that configured to include.
발명의 다른 측면에 따르면, 본 발명은, 상부 플랜지와 하부 플랜지와 상기 상부 플랜지와 상기 하부 플랜지를 연결하는 한 쌍의 복부를 구비하고 고정 하중에 의하여 정모멘트가 발생되는 영역에 설치된 박스 거더와; 상현재와 하현재와 상기 상현재와 상기 하현재를 연결하는 다수의 연결재를 구비하고 고정 하중에 의하여 부모멘트가 발생되는 영역에 설치된 트러스 거더와; 상기 박스 거더의 상기 상부 플랜지와 상기 하부 플랜지 및 상기 한 쌍의 복부와 결합되는 다이어프램을 설치하고, 상기 트러스 거더의 상기 상현재의 단부와 상기 하현재의 단부가 상기 다이어프램에 결합되어, 상기 트러스 거더와 상기 박스 거더가 중복하여 배치되는 복합 영역이 발생하도록 상기 트러스 거더와 상기 박스 거더를 종방향으로 연결하는 연결체를; 포함하여 구성된 것을 특징으로 하는 복합 형식의 연속화 교량의 상부구조를 제공한다.According to another aspect of the invention, the present invention comprises: a box girder having an upper flange and a lower flange and a pair of abdomen connecting the upper flange and the lower flange and installed in an area in which a constant moment is generated by a fixed load; A truss girder having a plurality of connecting members connecting the upper chord and the lower chord and the upper chord and the lower chord and installed in an area where a parent moment is generated by a fixed load; A diaphragm coupled to the upper flange and the lower flange of the box girder and the pair of abdomen is installed, and the upper chord end and the lower chord end of the truss girder are coupled to the diaphragm, and the truss girder And a connecting member connecting the truss girder and the box girder in a longitudinal direction so that a composite region in which the box girder overlaps with each other is generated. It provides a superstructure of the continuous bridge of the composite type, characterized in that configured to include.
이는, 상대적으로 큰 부모멘트가 연속 지점부에 작용하는 것을 트러스 형상의 강재거더에 의하여 지지하고, 상대적으로 작은 정모멘트가 작용되는 경간부는 박스형상의 강재거더로 지지하여, 이들을 상호 연결하여 복합 형식으로 교량 상부구조를 제작함에 따라, 연속 지점부를 지지하는 거더의 높이가 크게 되더라도 공장에서 분할 제작된 후, 현장에서 용접 결합해야하는 번거로운 공정을 없앨 수 있을 뿐만 아니라, 보다 높은 응력에 견딜 수 있지만 강재의 사용량이 많은 트러스 거더의 길이를 최소화하여 시공의 경제성과 현장 적용성이 뛰어나도록 하기 위함이다.This is supported by the truss-shaped steel girder that the relatively large parent moment acts on the continuous point, and the span section where the relatively small moment is applied is supported by the box-shaped steel girder, and these are interconnected to each other As the bridge superstructure is manufactured, even if the height of the girder supporting the continuous point becomes large, it is possible to eliminate the cumbersome process of welding and joining in the field after being manufactured in the factory, and to withstand higher stress, but The purpose is to minimize the length of heavy-duty truss girders so that the construction economy and field applicability are excellent.
무엇보다도, 본 발명에 따른 복합 형식의 연속화 교량은 2개의 다른 형식의 상부구조가 상호 연결되는 데에 그 특징이 있다. 이 때, 서로 다른 형식을 갖는 박스 거더와 트러스 거더가 보다 안정적으로 상호 연결되도록 하기 위하여, 상기 박스 거더와 상기 트러스 거더의 연결은 하나의 위치(point)에서 상호 연결되기 보다는 박스 거더와 트러스 거더가 교축 방향을 따라 중복 배열되는 복합 영역에서 상호 연결된다. Above all, the hybrid bridge type continuous bridge according to the present invention is characterized by the interconnection of two different types of superstructures. At this time, in order for the box girder and the truss girder having different types to be more stably interconnected, the box girder and the truss girder are connected to each other at one point rather than the box girder and the truss girder. They are interconnected in a composite area that overlaps along the axial direction.
이 뿐만 아니라, 고정하중에 의해 부모멘트가 작용하는 영역에 설치된 트러스 거더와 고정하중에 의해 정모멘트가 작용하는 영역에 설치된 박스 거더를 상호 연결함에 있어서, 박스 거더의 상부 플랜지, 하부 플랜지 및 한쌍의 복부와 결합되는 다이어프램(diaphragm)을 박스 거더의 내부에 횡방향으로 고정 설치한 상태에서, 트러스 거더의 일부를 상기 박스 거더의 내부에 삽입시켜 상현재와 하현재의 단부를 다이어프램에 견고하게 결합시킴으로써, 서로 다른 단면을 갖는 박스 거더와 트러스 거더가 미리 정해진 길이에 걸쳐 중복 배열되면서 상호 견고하게 결합될 수 있다. In addition, in the interconnection of the truss girder installed in the area where the parent moment acts by the fixed load and the box girder installed in the area where the constant moment acts by the fixed load, the upper flange, the lower flange and a pair of box girders In a state where the diaphragm coupled to the abdomen is fixed to the inside of the box girder in a transverse direction, a part of the truss girder is inserted into the box girder to firmly connect the upper and lower chord ends to the diaphragm. In addition, the box girders and truss girders having different cross sections may be firmly coupled to each other while overlapping over a predetermined length.
이와 같은 연결 구성은 서로 다른 단면을 갖는 트러스 거더와 박스 거더를 상호 결합시키는 데 있어서, 간단한 공정에 의해 견고하게 일체화시키도록 시공할 수 있도록 한다는 점에서 시공성이 향상되는 유리한 효과를 얻는다.Such a connection configuration has an advantageous effect of improving the workability in that the construction can be firmly integrated by a simple process in coupling the truss girder and the box girder having different cross sections with each other.
여기서, 다이어프램은 박스 거더의 내벽을 따라 라인(線)용접되어 견고하게 고정되는 것이 바람직하다. 한편, 발명의 다른 실시 형태에 따르면, 다이어프램은 박스 거더의 내벽으로부터 돌출된 리브와 다수의 리벳이나 볼트로 결합될 수도 있다. Here, the diaphragm is preferably line welded along the inner wall of the box girder to be firmly fixed. On the other hand, according to another embodiment of the invention, the diaphragm may be coupled with a plurality of rivets or bolts and ribs protruding from the inner wall of the box girder.
이와 같이, 연속하는 교량에 있어서 2개 이상의 상부구조 형식을 하나의 교량에 함께 적용함에 따라, 연속 지점부에서 작용하는 큰 부모멘트를 저항 능력이 큰 트러스 거더로 효과적으로 대응시킬 수 있을 뿐만 아니라, 고가의 강재가 교량에 과다하게 사용되어 자원의 낭비와 시공의 비용이 높아지는 것을 방지할 수 있다. Thus, by applying two or more superstructure types together in one bridge in a continuous bridge, it is possible not only to effectively cope with the large parent moment acting at the continuous point portion with a high resistance truss girder, The excessive use of steel on the bridge prevents waste of resources and high construction costs.
본 명세서 및 특허청구범위에 기재된 "고정 하중에 의하여 정모멘트가 발생되는 영역에 설치된 박스 거더" 및 "고정 하중에 의하여 부모멘트가 발생되는 영역에 설치된 트러스 거더"라는 구절의 의미는, 고정 하중에 의해 정모멘트가 발생되는 영역에만 박스 거더가 배열되고, 고정하중에 의해 부모멘트가 발생되는 영역에만 트러스 거더가 배열되는 것을 포함하기도 하지만, 고정 하중에 의해 정모멘트가 발생되는 영역 중 일부 이상에 박스 거더가 배열되고, 고정 하중에 의해 부모멘트가 발생되는 영역 중 일부 이상에 트러스 거더가 배열되는 것을 포함하는 것으로 정의하기로 한다.The meanings of the phrases "box girder provided in the area where the static moment is generated by the fixed load" and "truss girder installed in the area where the parent moment is generated by the fixed load" described in the present specification and claims are defined in the fixed load. The box girders are arranged only in the area where the static moment is generated by the box, and the truss girder is arranged only in the area where the parent moment is generated by the fixed load. The girder is arranged, and the truss girder is defined as including at least a portion of the region where the parent moment is generated by the fixed load.
또한, 본 명세서 및 특허청구범위의 '다이어프램(diaphragm)'이라는 용어는 판형상으로 형성된 것에 국한되지 않으며, 블록 등 각종 다양한 형상으로 형성되어 상현재 및 하현재의 단부가 고정될 수 있는 것으로서 박스 거더의 내벽에 결합된 것이라면 모두 포함하는 의미로 정의하기로 한다.In addition, the term 'diaphragm' of the present specification and claims is not limited to being formed in a plate shape, and may be formed in various shapes such as blocks, and thus may be fixed to end portions of upper and lower chords. If it is combined with the inner wall of the will be defined as including all.
한편, 상기와 같은 복합 형식의 연속화 교량의 상부 구조를 시공하는 데 있어서, 본 발명은 상부 플랜지와 하부 플랜지와 상기 상부 플랜지와 상기 하부 플랜지를 연결하는 한 쌍의 복부를 구비한 박스 거더와, 상현재와 하현재와 상기 상현재와 상기 하현재를 연결하는 다수의 연결재를 구비한 트러스 거더가 종방향으로 연결 제작되는 복합 형식의 연속화 교량의 상부구조에 있어서, 상기 연속교량의 일 경간 길이보다 작은 길이로 제작되고, 상기 박스 거더와 연속하여 연결되는 연결체 박스 거더와; 상기 트러스 거더와 연속하여 연결되고, 상기 연결체 박스 거더의 내부에 일부 이상이 삽입 설치되는 연결체 트러스 거더와; 상기 연결체 박스 거더의 상기 상부 플랜지와 상기 하부 플랜지 및 상기 한 쌍의 복부와 결합되도록 횡방향으로 설치되고, 상기 연결체 트러스 거더의 상기 상현재의 단부와 상기 하현재의 단부가 결합되는 다이어프램을; 포함하여 구성되어, 상기 연속교량의 상기 박스 거더와 상기 트러스 거더가 종방향으로 중복 배열되어 연결되는 복합 영역에서 상기 연속교량의 일부로 사용되는 복합 형식의 연속화 교량의 상부구조 연결체를 제공한다.On the other hand, in the construction of the upper structure of the continuous bridge of the composite type as described above, the present invention provides a box girder having a pair of abdomen connecting the upper flange and the lower flange and the upper flange and the lower flange, A superstructure of a continuous bridge of a composite type in which a truss girder having a plurality of connecting members connecting the current and the lower chord and the upper chord and the lower chord is connected in the longitudinal direction, the length of which is less than one span length of the continuous bridge. A connector box girder fabricated to a length and continuously connected to the box girder; A connector truss girder connected in series with the truss girder and having at least a portion inserted into the connector box girder; A diaphragm installed transversely to engage the upper flange and the lower flange of the connector box girder and the pair of abdomen, and the end of the upper chord and the lower chord of the connector truss girder are coupled to each other. ; It is configured to include, and provides a superstructure coupling of the continuum bridge of the composite type used as part of the continuous bridge in the composite area where the box girder and the truss girder of the continuous bridge is arranged in a longitudinal overlap.
즉, 고정 하중에 의하여 정모멘트가 작용하는 영역에 박스 거더를 배치시키고, 고정 하중에 의하여 부모멘트가 작용하는 영역에 트러스 거더를 배치시킨 상태에서 이들을 상호 결합할 수도 있지만, 서로 다른 단면을 갖는 박스 거더와 트러스 거더가 중복 배열되는 영역을 상기와 같이 연결체 박스 거더와 연결체 트러스 거더를 이용하여 연결체로 모듈화화여 미리 제작하여 두고, 상기 연결체를 이용하여 연속화 교량의 상부 구조를 시공함으로써 시공성을 보다 향상시킬 수 있다. That is, the box girders may be arranged in the region where the static moment acts by the fixed load, and the truss girders may be bonded to each other while the truss girders are arranged in the region where the parent moment acts by the fixed load. The area where the girder and the truss girder overlap is modularized into a connecting body by using the connecting box girder and the connecting truss girder as described above, and the construction is performed by constructing the upper structure of the continuous bridge using the connecting body. It can improve more.
여기서, 상기 연결체는 현장에서 제작될 수도 있지만, 공장에서 미리 제작되어 현장으로 운반된 이후에, 상기 연속화 교량의 일부로 사용되는 것이 시공 효율을 향상시키는 데 있어서 보다 유리하다. 대체로 박스 거더의 높이는 3.2m보다 크지 않게 제작되므로, 상기 연결체를 공장에서 제작한 후에 운반 차량을 이용하여 현장으로 운반하는 것이 가능하다. In this case, the connecting body may be manufactured in the field, but after being manufactured in advance in the factory and transported to the site, it is more advantageous to improve the construction efficiency. Since the height of the box girders is generally no greater than 3.2 m, it is possible to transport the linkages to the site using a transport vehicle after fabrication at the factory.
다만, 본 발명의 다른 실시예에 따르면, 복합 형식의 연속화 교량을 시공하는 데 있어서 상기와 같이 연결체를 별도로 제작하지 않고, 예를 들어, 어느 일측으로부터 타측으로 제작해가면서 연속화 교량을 제작 시공할 수도 있다. 이 경우에는, 상기 연결체를 별도로 제작하지 않으므로, 별도의 연결체 트러스 거더나 연결체 박스 거더를 필요로 하지 않고, 트러스 거더와 박스 거더가 상호 연결 결합되는 형태로 제작된다. However, according to another embodiment of the present invention, in the case of constructing a continuous bridge of a composite type, it is not possible to separately manufacture the connecting body as described above, for example, while manufacturing from one side to the other side while manufacturing the continuous bridge It may be. In this case, since the connector is not manufactured separately, the truss girder and the box girder are connected to each other without the need for a separate connector truss girder or a connector box girder.
상기 연결부의 상기 연결체 트러스 거더의 단부에는 상기 상현재와 상기 하현재를 수직으로 연결하는 수직 연결재가 설치되어, 상기 수직 연결재가 상기 다이어프램에 결합됨으로써, 트러스 거더의 단부와 박스 거더의 다이어프램이 견고하게 상호 결합된다.Vertical connecting members for vertically connecting the upper chord and the lower chord are installed at the end of the connecting body truss girder of the connecting portion, and the vertical connecting material is coupled to the diaphragm, so that the end of the truss girder and the diaphragm of the box girder are firm. Are mutually coupled.
그리고, 연결체 트러스 거더는 상기 트러스 거더와 연결되는 위치에서 서로 동일한 단면으로 형성되고, 상기 연결체 박스 거더는 상기 박스 거더와 연결되는 위치에서 서로 동일한 단면으로 형성되어, 미리 제작해둔 연결체와 상기 트러스 거더 및 상기 박스 거더와 연결하는 것이 용이해진다. The connector truss girder is formed in the same cross-section with each other at the position connected with the truss girder, and the connector box girder is formed with the same cross-section with each other at the position connected with the box girder, the connector and the fabricated in advance It becomes easy to connect with the truss girder and the box girder.
상기 연결체 트러스 거더의 상기 상현재에 양단부가 결합되고, 동시에 상기 박스 거더의 상기 상부 플랜지의 저면에 결합된 상측 보강재와, 상기 연결체 트러스 거더의 상기 하현재에 양단부가 결합되고, 동시에 상기 박스 거더의 상기 하부 플랜지의 상면에 결합된 하측 보강재를 추가적으로 포함하여, 트러스 거더의 상,하현재와 박스 거더의 상,하부 플랜지의 결합을 보다 견고하게 한다. Both ends are coupled to the upper chord of the connector truss girder, and an upper reinforcement coupled to the bottom of the upper flange of the box girder, and both ends are coupled to the lower chord of the connector truss girder and at the same time the box Further comprising a lower reinforcement coupled to the upper surface of the lower flange of the girder, to more secure the coupling of the upper, lower chord of the truss girder and the upper, lower flange of the box girder.
이 때, 상기 상측 보강재, 상기 하측 보강재 중 어느 하나는 상기 연결체 트러스 거더의 종방향에 수직한 횡방향으로 배열될 수도 있지만, 종방향에 대하여 소정의 각도만큼 경사지게 배열될 수도 있다. At this time, any one of the upper reinforcement, the lower reinforcement may be arranged in the transverse direction perpendicular to the longitudinal direction of the connector truss girder, it may be arranged inclined by a predetermined angle with respect to the longitudinal direction.
그리고, 하측 보강재에는 배수구가 형성되어 연결체 내부에 고인 빗물을 수시로 배출시킬 수 있도록 구성될 수 있다.In addition, the lower reinforcement may be formed so that the drain hole is formed to discharge the rainwater accumulated in the connection from time to time.
상기 박스 거더의 한 쌍의 복부의 내면은 상기 트러스 거더의 상기 상현재와 상기 하현재가 용접 결합되어, 상기 연결체의 전체에 걸쳐 트러스 거더와 박스 거더가 전체적으로 일체 거동하도록 구성될 수도 있다. The inner surface of the pair of abdomen of the box girder may be configured such that the upper chord and the lower chord of the truss girder are welded to each other so that the truss girder and the box girder collectively move throughout the connecting body.
한편, 상기와 같이 시공된 본 발명에 따른 복합 형식의 연속화 교량의 상부 구조는, 지점부에 사용되는 상기 트러스 거더의 하현재의 연속 지점부에서는 콘크리트가 합성된 상태로 교각 상부의 연속 지점부에 거치될 수도 있다. 이와 같이, 트러스 거더의 하현재에 콘크리트가 합성됨에 따라 연속 지점부에서의 부모멘트에 의해 하현재에 작용하는 압축 응력을 보강하여 부모멘트를 안정적으로 지지하도록 보조한다. On the other hand, the upper structure of the sequential bridge of the composite type according to the present invention constructed as described above, in the continuous point portion of the lower chord of the truss girder used in the point portion is a continuous point portion of the upper portion of the bridge in the state of concrete composite It may be mounted. As such, as concrete is synthesized in the lower chord of the truss girder, reinforcement of the compressive stress acting on the lower chord by the parent at the continuous point portion assists to stably support the parent.
그리고, 상기 트러스 거더의 상기 상현재, 상기 하현재, 상기 연결재 중 어느 하나 이상은 폐단면으로 형성되고, 트러스 거더의 연결재의 폐단면에는 콘크리트가 채워져 합성됨으로써, 트러스 거더의 연결재에 가해지는 압축 응력을 효과적으로 저항할 수도 있다. Further, at least one of the upper chord, the lower chord, and the connecting member of the truss girder is formed as a closed end surface, and the closed end surface of the connecting member of the truss girder is filled with concrete to synthesize a compressive stress applied to the connecting member of the truss girder. You can effectively resist it.
발명의 또 다른 측면에 따르면, 본 발명은, 상현재, 하현재 및 상기 상현재와 상기 하현재를 연결하는 다수의 연결재를 구비한 트러스 형상의 부모멘트용 거더를 제작하는 단계와; 박스형상, '
Figure PCTKR2010004391-appb-I000001
'형상, I형상 중 어느 하나의 단면으로 형성된 정모멘트용 거더를 제작하는 단계와; 상기 정모멘트용 거더와 상기 부모멘트용 거더가 교량의 하부 구조 상에 거치된 상태로 상호 연결되도록 시공하는 단계와; 상기 정모멘트용 거더의 상부에 바닥판 콘크리트를 합성하는 단계와; 상기 정모멘트용 거더가 하방으로의 처짐 변위가 발생되도록 강제로 하중을 도입하는 하중도입단계와; 상기 부모멘트용 거더의 상부에 바닥판 콘크리트를 합성하는 단계와; 상기 정모멘트용 거더에 도입하였던 하중을 제거하는 단계를; 포함하여 구성되어, 상기 부모멘트용 거더의 상부에 합성된 바닥판 콘크리트에 압축 프리스트레스가 도입되는 것을 특징으로 하는 복합 형식의 연속화 교량의 시공 방법을 제공한다.
According to still another aspect of the present invention, there is provided a truss-shaped parent girder having an upper chord, a lower chord and a plurality of connecting members connecting the upper chord and the lower chord; Box shape,
Figure PCTKR2010004391-appb-I000001
Manufacturing a girder for a constant moment formed in one of the cross-sections of the shape and I shape; Constructing the regular moment girder and the parent moment girder to be connected to each other while being mounted on a lower structure of a bridge; Synthesizing bottom plate concrete on top of the girder for constant moment; A load introduction step of forcibly introducing a load such that the static moment girder causes a deflection displacement downward; Synthesizing the bottom plate concrete on top of the parent girder; Removing the load introduced to the constant moment girder; It is configured to include, provides a method of constructing a continuous bridge of the composite type characterized in that the compression prestress is introduced into the bottom plate concrete synthesized on the upper part of the girder.
즉, 정모멘트용 거더에 하방으로 처짐 변위가 발생되는 하중을 강제로 도입하여, 연속 지점부에 배치된 부모멘트용 거더에 미리 부모멘트가 발생되도록 한 상태에서 연속 지점부의 바닥판 콘크리트를 부모멘트용 거더에 합성시키고, 정모멘트용 거더에 도입되었던 하중을 제거함으로써 부모멘트용 거더의 상측에 합성되는 바닥판 콘크리트에 압축 프리스트레스를 도입한다.That is, the bottom plate concrete of the continuous point portion of the bottom portion of the continuous point girders in a state in which the force is introduced into the girder for the positive moment downward displacement is forced to generate a parent moment in advance to the girder for the parent portion disposed in the continuous point portion Compression prestress is introduced to the bottom plate concrete synthesized on the upper side of the parent moment girder by compounding to the girder and removing the load introduced to the static moment girder.
이렇듯, 본 발명은 상대적으로 큰 부모멘트가 연속 지점부에 작용하는 것을 트러스 형상으로 구성된 부모멘트용 강재거더에 의하여 지지하고, 상대적으로 작은 정모멘트가 작용되는 경간부는 박스형상이나 '
Figure PCTKR2010004391-appb-I000002
'형상이나 'I'형상의 정모멘트용 강재거더로 지지하며, 동시에 연속 지점부에 크게 작용하는 부모멘트를 상쇄시키기 위하여 연속 지점부의 바닥판 콘크리트에 압축 프리스트레스를 도입하여 연속화 교량의 상부구조를 제작함에 따라, 상대적으로 적은 강재의 사용량으로도 높은 부모멘트를 효과적으로 저항하여, 50m 내지 70m에 이르는 중/장경간 교량을 경제적으로 시공할 수 있다.
As described above, the present invention supports the relatively large parent moment acting on the continuous point portion by the steel girder for the parent moment configured in the truss shape, the span portion in which the relatively small moment is applied to the box shape or '
Figure PCTKR2010004391-appb-I000002
It is supported by steel girder for the 'moment' or 'I' shape, and at the same time, the compressive prestress is introduced to the bottom plate concrete at the continuous point to offset the parent acting largely at the continuous point. As a result, even with a relatively small amount of steel used, it is possible to effectively resist high parents, and economically construct medium / long span bridges ranging from 50 m to 70 m.
여기서, 상기 하중도입단계는 정모멘트용 거더에 웨이트를 매달거나 거치시키는 것에 의해 부과함으로써 정모멘트용 거더가 하방으로 처지는 변위가 발생되도록 할 수 있다. In this case, the load introduction step may be imposed by hanging or mounting the weight on the girder for the constant moment can cause the displacement of the girder for the constant moment sagging downward.
그리고, 상기 부모멘트용 거더의 상부에 바닥판 콘크리트를 합성하는 단계 이전에, 상기 부모멘트용 거더의 하현재의 일부 이상에 콘크리트를 합성시키는 단계를 포함할 수 있다. 이는, 부모멘트용 거더의 상부에 합성되는 바닥판 콘크리트에 압축 프리스트레스를 도입하기 위하여 연속 지점부가 상방으로 휘는 순간에 하현재에 도입되는 압축 응력에 대하여 효율적으로 저항하고, 동시에 교량으로 설치된 상태에서 연속 지점부의 중립축 하연에 작용하는 압축 응력에 효과적으로 저항할 수 있도록 하기 위함이다. And, before the step of synthesizing the bottom plate concrete on the top of the girder for the parent, it may include a step of synthesizing the concrete at least a portion of the lower chord of the parent girder. This effectively resists the compressive stress introduced in the lower chord at the moment when the continuous point portion bends upward to introduce compressive prestress to the bottom plate concrete synthesized on the upper part of the parent girder, and at the same time continuously This is to effectively resist the compressive stress acting on the lower edge of the neutral axis of the point portion.
한편, 본 발명은, 상현재, 하현재 및 상기 상현재와 상기 하현재를 연결하는 다수의 연결재를 구비한 트러스 형상의 부모멘트용 거더를 제작하는 단계와; 박스형상, '
Figure PCTKR2010004391-appb-I000003
'형상, I형상 중 어느 하나의 단면으로 형성된 정모멘트용 거더를 제작하는 단계와; 상기 정모멘트용 거더와 상기 부모멘트용 거더가 교량의 하부 구조 상에 거치된 상태로 상호 연결되도록 시공하는 단계와; 상기 정모멘트용 거더의 상부에 바닥판 콘크리트를 합성하는 단계와; 상기 부모멘트용 거더의 상부의 바닥판 콘크리트를 타설할 거푸집을 설치하고, 상기 거푸집 내에 긴장재를 설치하는 단계와; 상기 긴장재를 이용하여 상기 거푸집에 타설된 콘크리트에 압축 프리스트레스를 도입하는 압축 프리스트레스 도입단계;를 포함하여 구성된 것을 특징으로 하는 복합 형식의 연속화 교량의 시공 방법을 제공한다.
On the other hand, the present invention, the step of manufacturing a truss-shaped parent girders having a top chord, a bottom chord and a plurality of connecting members connecting the top chord and the bottom chord; Box shape,
Figure PCTKR2010004391-appb-I000003
Manufacturing a girder for a constant moment formed in one of the cross-sections of the shape and I shape; Constructing the regular moment girder and the parent moment girder to be connected to each other while being mounted on a lower structure of a bridge; Synthesizing bottom plate concrete on top of the girder for constant moment; Installing a formwork to pour the bottom plate concrete on the upper part of the girder for parenting, and installing a tension member in the formwork; It provides a construction method of a sequential bridge of a composite type comprising a; including a compression prestress introduction step of introducing a compression prestress to the concrete cast on the formwork using the tension material.
이는, 트러스 형상으로 형성된 부모멘트용 거더를 상방으로 휘도록 하는 변위를 발생시키지 않더라도, 연속 지점부의 상측에 합성되는 바닥판 콘크리트에 내설되는 긴장재를 이용하여 연속 지점부의 바닥판 콘크리트에 압축 프리스트레스를 도입할 수 있도록 하기 위함이다. 이를 통해, 본 발명은 연속 지점부의 휨변형을 이용하는 것에 비하여 간단한 공종으로 바닥판 콘크리트에 압축 프리스트레스를 도입할 수 있다. This introduces compression prestress into the bottom plate concrete of the continuous point portion by using a tension material embedded in the bottom plate concrete synthesized on the upper side of the continuous point portion, even if it does not generate a displacement to bend the parent girder formed in the truss shape upward. To do that. Through this, the present invention can introduce the compression prestress to the bottom plate concrete with a simple work as compared to using the bending deformation of the continuous point portion.
이 때, 상기 압축프리스트레스 도입단계는, 상기 긴장재가 긴장된 상태에서 상기 거푸집에 콘크리트가 타설되어 양생되도록 하는 프리텐션 방식에 의해 행해질 수도 있고, 상기 긴장재를 쉬스관에 내설되게 설치한 이후에 거푸집에 타설된 콘크리트가 미리 정해진 강도로 양생된 이후에 긴장재를 긴장, 정착하는 포스트텐션 방식에 의해 행해질 수도 있다.At this time, the step of introducing the compression prestress may be performed by a pretension method in which concrete is poured into the mold and cured in the state where the tension member is in tension, or after the tension member is installed in the sheath pipe, After the concrete is cured to a predetermined strength, it may be performed by a post-tension method of tensioning and fixing the tension member.
긴장재를 이용하여 연속 지점부에 압축 프리스트레스를 도입하는 경우에는 부모멘트용 거더의 상부에 합성되는 바닥판 콘크리트와 정모멘트용 거더의 상부에 합성되는 바닥판 콘크리트를 구분하여 타설하지 않고, 동시에 타설할 수도 있다. When compressive prestress is introduced at the continuous point by using the tension member, the bottom plate concrete synthesized on the upper part of the parent moment girder and the bottom plate concrete synthesized on the upper part of the moment moment girder are not separately placed. It may be.
한편, 연속 지점부에 작용하는 큰 부모멘트에 저항하기 위하여 상현재, 하현재 및 이들을 연결하는 다수의 연결재로 형성된 트러스 형상의 부모멘트용 거더를 채용하지만, 연속 지점부의 큰 부모멘트에 의해 연결재에 작용하는 압축 응력에 보다 효과적으로 저항하기 위하여 트러스 형상의 부모멘트용 거더의 연결재에 콘크리트를 합성시키는 단계를 추가적으로 포함할 수 있다. 이를 통해, 동일한 양의 강재 를 사용하더라도, 보다 높은 부모멘트에 저항할 수 있게 된다.On the other hand, in order to resist the large parent moment acting on the continuous point portion, a truss-shaped parent moment girder formed of the upper chord, the lower chord and a plurality of connecting members connecting them is employed, In order to more effectively resist the compressive stress acting, the method may further include the step of synthesizing the concrete to the connecting member of the truss-shaped parent girder. This makes it possible to withstand higher parental loads, even with the same amount of steel.
본 명세서 및 특허청구범위에서 상기 정모멘트 강재 거더의 단면 형상을 규정하는 "박스 형상, '
Figure PCTKR2010004391-appb-I000004
'형상, 'I'형상 중 어느 하나"라는 용어는 정모멘트 강재 거더의 단면이 "박스형상, ''형상, 'I'형상"으로만 형성되는 것에 국한하지 않으며, "박스형상, '
Figure PCTKR2010004391-appb-I000006
'형상, 'I'형상"을 포함하고 있으면 모두 포함하는 것으로 정의하기로 한다. 즉, "박스형상, '
Figure PCTKR2010004391-appb-I000007
'형상, 'I'형상"에 추가적인 강재 단면이 부가되더라도 "박스형상, '
Figure PCTKR2010004391-appb-I000008
'형상, 'I'형상 중 어느 하나"에 속하는 단면으로 본다. 그리고, 본 명세서 및 특허청구범위에 걸쳐 사용된 "정모멘트 강재거더"는 "박스형상, '
Figure PCTKR2010004391-appb-I000009
'형상, 'I'형상 중 어느 하나"의 강재 단면만으로 형성되는 거더에 한정되지 않으며, "박스형상, '
Figure PCTKR2010004391-appb-I000010
'형상, 'I'형상 중 어느 하나"의 강재 단면에 콘크리트가 합성되는 단면도 포함하는 것으로 정의하기로 한다.
"Box shape," which defines the cross-sectional shape of the moment moment steel girders in the specification and claims
Figure PCTKR2010004391-appb-I000004
The term 'shape,' I 'shape''means that the cross section of the constant moment steel girders is "box shape," It is not limited to being formed only in 'shape,' I 'shape.
Figure PCTKR2010004391-appb-I000006
If it contains' shape, 'I' shape, it will be defined as including all, that is, "box shape,"
Figure PCTKR2010004391-appb-I000007
Even if an additional steel cross section is added to the 'shape,' I 'shape,
Figure PCTKR2010004391-appb-I000008
It is regarded as a cross section belonging to the shape 'any one of the shape' I ', and the term "static moment steel girder" used throughout the present specification and claims is defined as the "box shape,"
Figure PCTKR2010004391-appb-I000009
It is not limited to the girder formed only by the steel section of the shape 'any one of the' I 'shape,
Figure PCTKR2010004391-appb-I000010
It will be defined as including a cross-sectional view of the concrete is synthesized in the steel section of the 'shape,' I 'shape.
이상 설명한 바와 같이, 본 발명은 압축 프리스트레스가 미리 도입된 케이싱 콘크리트를 강형의 상부에 합성한 제3강합성거더가 부모멘트 저항 거더로서 연속화 교량의 연속 부위인 교각 상부에 설치됨으로써, 거더가 연속되는 위치의 교각 상부에서 크게 작용하는 부모멘트를 효과적으로 상쇄할 수 있는 연속화된 강합성 거더 교량의 상부 구조를 제공한다.As described above, in the present invention, the third composite girder, which synthesizes the casing concrete, into which the compression prestress is introduced in advance, is installed in the upper part of the pier, which is a continuous portion of the sequential bridge, as the parent resistance girder, whereby the girder is continuous. It provides a superstructure of a continuous rigid girder bridge that can effectively cancel the parental force that acts largely on top of the pier at the location.
즉, 본 발명은, 통상적으로 연속교에서는 정모멘트보다 부모멘트가 훨씬 크게 작용함에도 불구하고, 단순교에서 적용하는 정모멘트 저항거더를 그대로 연속교에 적용함에 따라 연속교에서 작용하는 부모멘트를 효과적으로 지지할 수 없었던 문제점을 해결하기 위하여, 부모멘트가 크게 작용하는 거더가 연속하는 위치의 교각 상부에는 정모멘트 저항부재와 구별되는 부모멘트 저항부재를 거치시킴으로써, 연속교에서 크게 작용하는 위치에서의 부모멘트를 효과적으로 상쇄시킬 수 있도록 하는 유리한 효과가 있다. That is, in the present invention, although the parent moment acts much larger than the constant moment in the continuous bridge, the present invention effectively applies the parent moment acting in the continuous bridge by applying the constant moment resistance girder applied in the simple bridge to the continuous bridge as it is. In order to solve the problem that could not be supported, the parent at the position that acts largely in the continuous bridge is mounted by mounting a parent moment resistance member which is distinguished from the constant moment resistance member at the upper part of the pier where the girder with the large acting moment acts. There is an advantageous effect that can effectively cancel the cement.
또한, 본 발명은, 거더의 단면이 커지지 않더라도 거더가 연결되는 위치의 교각 상부에서 크게 작용하는 부모멘트를 효과적으로 상쇄시킬 수 있으므로, 연속교에서 크게 작용하는 부모멘트를 상쇄시키기 위하여 거더의 단면을 크게 함에 따라 미관을 해치는 교량을 시공할 수밖에 없었던 종래의 문제점을 해결하여, 전체적으로 교량의 단면 높이가 일정하게 유지될 수 있게 되어 세련된 외관을 갖는 교량을 시공할 수 있게 된다. In addition, the present invention can effectively cancel the parent moment acting large in the upper part of the pier where the girder is connected even if the cross section of the girder is not large, so that the cross section of the girder is made larger to offset the parent moment acting largely in the continuous bridge. As a result, solving the conventional problem of having to construct a bridge that hurts aesthetics, the cross-sectional height of the bridge can be kept constant as a whole, so that a bridge having a refined appearance can be constructed.
그리고, 본 발명은 연속화 교량에서 불가피하게 발생되는 부모멘트를 높이가 낮은 단면으로 지지할 수 있도록 함으로써, 장경간 연속화 교량의 상부구조를 제작할 수 있도록 하는 장점이 있다. In addition, the present invention has the advantage of being able to support the parent moment inevitably generated in the continuum bridge in the cross-section with a low height, it is possible to manufacture the superstructure of the long span continuous bridge.
그리고, 본 발명은 거더가 연속하는 교각의 상부에 2개의 인접한 거더를 지지하기 위해 교좌 장치를 2개 설치하지 않고, 하나의 제3강합성 거더를 지지하기 위해 교좌 장치를 1개만 설치하여도 되므로 보다 경제적인 시공이 가능해진다.In addition, the present invention does not need to install two bridge devices to support two adjacent girders in the upper part of the pier where the girders are continuous, and only one bridge device may be installed to support one third rigid girder. More economical construction is possible.
무엇보다도, 본 발명은 박스 거더의 상부 플랜지와 하부 플랜지 및 한 쌍의 복부와 결합되는 다이어프램을 횡방향으로 설치하고, 트러스 거더의 상현재의 단부와 하현재의 단부가 다이어프램에 결합되어, 상기 트러스 거더와 상기 박스 거더가 중복하여 배치되는 복합 영역이 발생하도록 상기 트러스 거더와 상기 박스 거더를 종방향으로 연결하는 연결체를 포함하여 구성됨에 따라, 박스 거더의 상부 플랜지, 하부 플랜지 및 한쌍의 복부와 결합되는 다이어프램(diaphragm)을 견고하게 박스 거더의 내부에 고정 설치한 상태에서, 트러스 거더의 일부를 상기 박스 거더의 내부에 삽입시켜 상현재와 하현재의 단부를 다이어프램에 견고하게 고정할 수 있고, 이에 의하여, 서로 다른 단면을 갖는 박스 거더와 트러스 거더가 미리 정해진 길이에 걸쳐 중복배열되면서 상호 견고하게 결합되어 안정되게 일체 거동하는 복합 형식의 연속화 교량의 상부구조를 제공한다.Above all, the present invention is provided with the diaphragm which is coupled to the upper flange and the lower flange of the box girder and a pair of abdomen in the transverse direction, and the upper and lower end of the truss girder is coupled to the diaphragm, the truss And the upper flange, the lower flange, and the pair of abdomen of the box girder, including a connecting body connecting the truss girder and the box girder in a longitudinal direction so that a composite area in which a girder and the box girder are disposed overlappingly occurs. In a state where the diaphragm to be coupled is firmly installed inside the box girder, a portion of the truss girder may be inserted into the box girder to securely fix the upper and lower chord ends to the diaphragm. As a result, the box girders and the truss girders having different cross-sections are overlapped over a predetermined length. It provides a superstructure of a continuous bridge of a complex type that is firmly coupled to each other and stably integrated.
즉, 본 발명은 연속 지점부에서는 큰 부모멘트를 효과적으로 지지할 수 있는 트러스 거더로 제작되고 그 사이에는 적은 강재의 사용량으로 정모멘트를 효과적으로 지지할 수 있는 박스 거더로 제작됨으로써, 내하 능력이 큰 장경간 교량을 구현할 수 있으면서 경제적인 시공을 가능하게 하는 유리한 효과를 얻을 수 있다.That is, the present invention is made of a truss girder that can effectively support a large parent moment in the continuous point portion, and is made of a box girder that can effectively support the static moment with a small amount of steel in between, the long load capacity is large While it is possible to implement span bridges, it is possible to obtain an advantageous effect that enables economic construction.
그리고, 박스 거더와 트러스 거더의 연결이 하나의 위치(point)에서 이루어지기 보다는 상기 박스 거더와 상기 트러스 거더가 중복하여 배열되는 복합 영역을 갖도록 하여 이들을 보다 안정적으로 상호 연결시키는 유리한 효과가 있다.In addition, the box girder and the truss girder are connected to each other more stably by having a complex area in which the box girder and the truss girder are arranged in duplicate, rather than being made at a single point.
이를 통해, 본 발명은 서로 다른 단면으로 구성된 박스 거더와 트러스 거더가 중복 배열되어 연결하도록 구성됨에 따라, 하나의 구조계로서 상호 견고하게 연결되어 견고하게 외력을 지지할 수 있으며, 이를 통해, 70m이상의 복합 형식의 장경간 연속화 교량의 시공을 가능하게 한다. Through this, according to the present invention, as the box girder and the truss girder composed of different cross-sections are configured to be connected in a redundant arrangement, the structure can be firmly connected to each other as one structural system, thereby enabling the external force to be firmly supported. Allows construction of long span bridges of type.
또한, 본 발명은 서로 다른 단면의 연결 영역에 사용되는 복합 형식의 연속화 교량의 상부구조 연결체를 미리 공장에서 제작하여 현장으로 운반하는 것을 가능하게 함에 따라, 현장에서는 간단한 연결 공정만을 행하여 복합 형식의 장경간 연속화 교량을 짧은 시간 내에 간단히 시공할 수 있는 잇점이 얻어진다.In addition, the present invention enables the superstructure coupling of the continuum bridge of the composite type used in the connection area of the different cross-section can be manufactured in the factory and transported to the site in advance, so that only a simple connection process is performed in the field. The advantage of simply constructing a long span continuous bridge in a short time is obtained.
본 발명은, 서로 다른 단면을 갖는 거더를 종방향으로 연결하여 복합 형식의 연속화 교량을 시공하는 데 있어서 상기 부모멘트용 거더의 상부에 합성된 바닥판 콘크리트에 압축 프리스트레스가 도입되도록 하고, 연속 지점부에 작용하는 큰 부모멘트를 트러스 형상의 부모멘트용 강재거더와 그 상부의 바닥판 콘크리트의 압축 프리스트레스에 의해 저항함으로써, 상대적으로 적은 강재의 사용량으로도 연속 지점부의 높은 부모멘트를 효과적으로 저항할 수 있는 장경간 교량을 경제적으로 시공할 수 있는 잇점을 얻을 수 있다.The present invention is to connect the girder having different cross-section in the longitudinal direction in the construction of the composite type continuous bridge, so that the compression prestress is introduced into the bottom plate concrete synthesized on the top of the girder for the parent cement, continuous point portion By resisting the large parent moment acting on the truss-shaped parent girder and the compressive prestress of the bottom plate concrete on the upper part, it is possible to effectively resist the high parent part in the continuous point even with relatively small amount of steel used. Benefit from economical construction of long span bridges.
즉, 본 발명은 연속 지점부에 작용하는 큰 부모멘트를 효과적으로 지지하여 내하 능력이 큰 장경간 교량을 구현할 수 있으면서, 상대적으로 작은 정모멘트가 작용하는 영역에는 박스형상, '
Figure PCTKR2010004391-appb-I000011
'형상, I형상 중 어느 하나의 단면으로 형성함으로써, 강재의 사용량을 최소화하여 경제적인 시공을 가능하게 하는 유리한 효과를 얻는다.
That is, the present invention can effectively support the large parent moment acting on the continuous point portion to implement a long span bridge having a large load capacity, while the box shape, '
Figure PCTKR2010004391-appb-I000011
By forming the cross-section of any one of the shape and I shape, the advantageous effect of minimizing the amount of steel used enables economic construction.
도1은 종래의 단순교의 구성을 도시한 개략도1 is a schematic view showing the configuration of a conventional simple bridge
도2는 종래의 2경간 연속화 교량의 구성을 도시한 개략도Figure 2 is a schematic diagram showing the configuration of a conventional two-span continuous bridge
도3은 종래의 3경간 연속화 교량의 구성을 도시한 개략도Figure 3 is a schematic diagram showing the configuration of a conventional three-span continuous bridge
도4는 종래의 2경간 연속화된 강합성거더 교량의 구성을 도시한 개략도Figure 4 is a schematic diagram showing the configuration of a conventional two-span continuous steel composite girder bridge
도5는 본 발명의 일 실시예에 따른 2경간 연속화된 강합성거더 교량의 구성을 도시한 개략도Figure 5 is a schematic diagram showing the configuration of a two-span continuous steel composite girder bridge according to an embodiment of the present invention
도6은 도5의 'A'부분의 제3강합성거더의 종단면도FIG. 6 is a longitudinal sectional view of the third rigid composite girder of portion 'A' of FIG.
도7은 도5의 절단선 B-B와 절단선 C-C에 따른 제3강합성 거더의 횡단면도FIG. 7 is a cross-sectional view of a third rigid girder according to cutting line B-B and cutting line C-C of FIG.
도8은 도5의 절단선 D-D와 절단선 E-E에 따른 제3강합성 거더의 횡단면도FIG. 8 is a cross-sectional view of a third rigid girder according to cut line D-D and cut line E-E of FIG. 5; FIG.
도9는 도5의 'A'부분의 제2형태의 제3강합성거더의 종단면도FIG. 9 is a longitudinal sectional view of the third rigid composite girder of the second form in the 'A' part of FIG.
도10은 도5의 절단선 B-B와 절단선 C-C에 따른 제2형태의 제3강합성 거더의 횡단면도FIG. 10 is a cross-sectional view of a third rigid girder of the second form according to cut line B-B and cut line C-C of FIG. 5; FIG.
도11은 도5의 절단선 D-D와 절단선 E-E에 따른 제2형태의 제3강합성 거더의 횡단면도FIG. 11 is a cross sectional view of a third rigid girder of the second form along cut line D-D and cut line E-E of FIG. 5; FIG.
도12는 도5의 'A'부분의 제3형태의 제3강합성거더의 종단면도12 is a longitudinal sectional view of the third rigid composite girder of the third form in the portion 'A' of FIG.
도13은 도5의 절단선 B-B와 절단선 C-C에 따른 제3형태의 제3강합성 거더의 횡단면도Fig. 13 is a cross sectional view of a third rigid composite girder of the third form according to cut line B-B and cut line C-C of Fig. 5;
도14는 도5의 절단선 D-D와 절단선 E-E에 따른 제3형태의 제3강합성 거더의 횡단면도FIG. 14 is a cross sectional view of a third rigid girder of the third form according to cut line D-D and cut line E-E of FIG. 5; FIG.
도15는 도5의 'A'부분의 제4형태의 제3강합성거더의 종단면도FIG. 15 is a longitudinal sectional view of the third rigid composite girder of the fourth form in the portion 'A' of FIG. 5; FIG.
도16은 도5의 절단선 B-B와 절단선 C-C에 따른 제4형태의 제3강합성 거더의 횡단면도Fig. 16 is a cross sectional view of a third rigid girder of the fourth form according to cut line B-B and cut line C-C of Fig. 5;
도17은 도5의 절단선 D-D와 절단선 E-E에 따른 제4형태의 제3강합성 거더의 횡단면도FIG. 17 is a cross sectional view of a third rigid girder of the fourth form according to cut line D-D and cut line E-E of FIG. 5; FIG.
도18은 본 발명의 실시예에 따른 복합 형식을 갖는 연속화 교량의 구성을 도시한 도면18 is a diagram showing the configuration of a continuous bridge having a complex form according to an embodiment of the present invention.
도19는 도18의 절단선 Ⅲ-Ⅲ에 따른 단면도19 is a cross-sectional view taken along the line III-III of FIG.
도20는 도18의 절단선 Ⅳ-Ⅳ에 따른 단면도20 is a cross-sectional view taken along the line IV-IV of FIG. 18.
도21는 도18의 절단선 Ⅴ-Ⅴ에 따른 단면도FIG. 21 is a cross-sectional view taken along the cutting line V-V of FIG.
도22는 도18의 'A'부분의 확대 사시도22 is an enlarged perspective view of portion 'A' of FIG. 18;
도23은 도21의 'B; 부분의 확대도Figure 23 is a 'B' of Figure 21; Magnification
도24는 도18의 연속 지점부를 중심으로 한 거더의 사시도FIG. 24 is a perspective view of the girder around the continuous point portion of FIG. 18; FIG.
도25는 도24의 정면도Figure 25 is a front view of Figure 24
도26은 도18에 사용되는 연속체의 구성을 도시한 사시도FIG. 26 is a perspective view showing the structure of the continuous body used in FIG. 18; FIG.
도27은 도26의 절단선 XI-XI에 따른 단면도FIG. 27 is a sectional view taken along the line XI-XI of FIG. 26;
도28 내지 도31은 도18에 따른 복합 형식을 갖는 연속화 교량의 시공 순서에 따른 구성을 도시한 도면28 to 31 are diagrams showing the construction according to the construction sequence of the sequential bridge having the composite form shown in FIG.
도32 내지 도36은 도2에 따른 복합 형식의 연속화 교량의 시공 순서에 따른 구성을 도시한 도면32 to 36 are views showing the construction according to the construction sequence of the sequential bridge of the composite type according to FIG.
도37은 도32 내지 도36의 시공 순서를 순차적으로 도시한 순서도FIG. 37 is a flow chart sequentially showing the construction sequence of FIGS. 32 to 36. FIG.
도38 내지 도42은 본 발명의 다른 실시예에 따른 복합 형식의 연속화 교량의 시공 순서에 따른 구성을 도시한 도면38 to 42 are views showing the construction according to the construction sequence of the sequential bridge of the composite type according to another embodiment of the present invention.
도43은 도38 내지 도42의 시공 순서를 순차적으로 도시한 순서도FIG. 43 is a flow chart sequentially showing the construction sequence of FIGS. 38 to 42. FIG.
이하, 첨부 도면을 참조하여 본 발명에 관하여 상세히 설명한다. 다만, 본 발명을 설명함에 있어서, 공지된 기능 혹은 구성에 대한 구체적인 설명은 본 발명의 요지를 명료하게 하기 위하여 생략하기로 한다.Hereinafter, with reference to the accompanying drawings will be described in detail with respect to the present invention. However, in describing the present invention, a detailed description of known functions or configurations will be omitted to clarify the gist of the present invention.
도5에 도시된 바와 같이, 본 발명의 제1실시예에 따른 연속화된 강합성 거더 교량의 상부 구조(100)는 2경간 연속교의 상부 구조로서, 일단이 제1교각(21)의 상부의 교좌장치(21a)에 거치되고 제1강형(111)의 하부에 압축 프리스트레스가 도입된 제1케이싱 콘크리트(112)가 합성된 제1강합성거더(110)와, 일단이 제2교각(23)의 상부의 교좌장치(23a)에 거치되고 제2강형(121)의 하부에 압축 프리스트레스가 도입된 제2케이싱 콘크리트(122)가 합성된 제2강합성거더(120)와, 일단이 제1강합성거더(110)에 교축 방향으로 연결되고 타단이 제2강합성거더(120)에 교축 방향으로 연결되어 제1교각(21)과 제2교각(23)의 사이에 있는 제3교각(22) 상부의 교좌장치(22a)에 중앙부가 거치되어 연속 지점부에 작용하는 부모멘트를 지지하기 위하여 압축 프리스트레스가 미리 도입된 제3케이싱 콘크리트(132)가 제3강형(131)의 상부에 합성된 제3강합성거더(130)와, 상기 거더(110,120,130)의 상면에 형성되는 바닥판 콘크리트(30)로 구성된다.As shown in FIG. 5, the upper structure 100 of the continuous rigid girder bridge according to the first embodiment of the present invention is an upper structure of a two-span continuous bridge, one end of which is an upper bridge of the first bridge 21. The first steel composite girder 110, which is mounted on the apparatus 21a and has a first casing concrete 112 having compression prestress introduced under the first steel 111, and one end of the second piers 23 The second steel composite girder 120, which is mounted on the upper scaffolding device 23a, and the second casing concrete 122 into which the compression prestress is introduced to the lower portion of the second steel 121, is combined with one end of the first steel composite. It is connected to the girder 110 in the axial direction and the other end is connected to the second rigid composite girder 120 in the axial direction to the upper portion of the third pier 22 between the first pier 21 and the second pier 23. A third cable in which the compression prestress is introduced in advance to support the parent moment acting on the continuous point portion by being mounted at the center portion of the bridge device 22a of the Is concrete 132 is composed of a third upper and a third ganghyeong steel composite girder (130) synthesized in the (131), the bottom plate of concrete (30) formed on an upper surface of the girder (110 120 130).
상기 제1강합성거더(110)와 상기 제2강합성거더(120)는 압축 프리스트레스가 도입된 케이싱 콘크리트(112,122)가 하부에 합성되어, 하방으로 볼록하게 휘어짐에 따라 경간 중앙부에서 최대로 작용하는 정모멘트에 대하여 저항하여 지지하는 정모멘트 저항부재로서의 역할을 한다. 제1강합성거더(110)와 제2강합성거더(120)는 서로 다른 단면과 형상을 가질 수도 있지만, 여기서는 동일한 단면과 형상을 가지는 것으로 설명하기로 한다. The first composite girder 110 and the second composite girder 120 are casing concrete (112, 122), the compression prestress is introduced is synthesized in the lower portion, the maximum acts in the center of the span as it is convex downwardly It serves as a positive moment resistance member that supports and supports against the constant moment. The first composite girder 110 and the second composite girder 120 may have different cross sections and shapes, but will be described as having the same cross section and shape.
상기 제3강합성거더(130)는 압축 프리스트레스가 도입된 케이싱 콘크리트(132)가 상부에 합성되어, 상방으로 볼록하게 휘어짐에 따라 2개의 거더(110,120)가 연속하는 교각(22)의 상부인 제3연속지점부에서 최대로 작용하는 부모멘트에 대하여 저항하여 지지하는 부모멘트 저항부재로서의 역할을 한다. 여기서, 제3강합성거더(130)는 인접한 강합성거더(110,120)와 휨 모멘트가 0이 되는 지점에서 인접한 거더(110,120)와 용접이나 볼트로 접합되는 길이로 형성됨에 따라, 제3강합성거더(130)와 제1강합성거더(110) 및 제2강합성거더(120)의 접합 지점에서 응력이 과도하게 작용하여 파괴되는 현상이 발생되는 것을 방지한다. The third composite girder 130 is the upper of the pier 22, the two girder (110, 120) is continuous as the casing concrete 132, the compression prestress is introduced is synthesized on the upper, and convex upwardly. It acts as a parent-resisting member that resists and supports the parent-acting acting at the three consecutive points. Here, the third composite girder 130 has a length that is joined to the adjacent girder (110, 120) and welded or bolted at the point where the bending moment is adjacent to the adjacent composite girder (110,120), the third composite girder At the junction between the 130 and the first composite girder 110 and the second composite girder 120, excessive stress is prevented from occurring.
도면에는 도시되지 않았지만, 상기 거더(110,120,130)는 교량의 폭에 따라 교축 직각 방향으로 수열로 배열되어, 바닥판 콘크리트(30)를 안정되게 지지한다. Although not shown in the figure, the girders (110, 120, 130) are arranged in a row in the direction perpendicular to the axial axis in accordance with the width of the bridge, to stably support the bottom plate concrete (30).
한편, 도6 내지 도8에 도시된 바와 같이, 제3케이싱 콘크리트(132)는 제1강합성거더(110) 및 제2강합성거더(120)와 접합되는 제3강합성거더(130)의 양단부위치에서는 제3강형(131)에 합성되지 않는다. 마찬가지로, 제1케이싱 콘크리트(112)와 제2케이싱 콘크리트(122)는 제3강합성거더(130)와 접합되는 단부 위치에서는 제1강형(111) 및 제2강형(121)에 합성되지 않는다. 이에 따라, 정모멘트 저항거더인 제1 및 제2강합성거더(110,120)의 케이싱 콘크리트(112,122)와 부모멘트 저항거더인 제3강합성거더(130)의 케이싱 콘크리트(132)가 서로 다른 위치에 합성되었다는 것에 영향을 받지 않고, 강합성거더(110,120,130)의 강형(111,121,131)끼리 이들 거더들(110,120,130)을 간단히 접합할 수 있다. Meanwhile, as shown in FIGS. 6 to 8, the third casing concrete 132 is formed of the third steel composite girder 130 joined to the first steel composite girder 110 and the second steel composite girder 120. It is not compounded to the third steel mold 131 at both end positions. Likewise, the first casing concrete 112 and the second casing concrete 122 are not synthesized in the first steel mold 111 and the second steel mold 121 at the end positions joined to the third steel composite girder 130. Accordingly, the casing concrete 112 and 122 of the first and second rigid composite girders 110 and 120, which are the constant moment resistance girders, and the casing concrete 132 of the third rigid composite girder 130, which are the parent moment resistance girders, are located at different positions. The girders 110, 120, 130 can be easily joined between the rigid shapes 111, 121, and 131 of the rigid composite girders 110, 120, and 130 without being influenced by being synthesized.
한편, 도7의 절단선 B-B에 따른 단면도에 도시된 바와 같이, 제3케이싱 콘크리트(132)가 형성된 영역에서는 긴장재(133)의 위치를 확보하기 위하여 제3강형(131)의 상부 플랜지(131a)의 폭이 작게 형성된다. 그러나, 제3케이싱 콘크리트(132)가 형성되지 않은 제3강합성거더(130)의 양단부에는 인접한 제1강합성거더(110) 및 제2강합성거더(120)와 보다 쉽고 견고하게 접합할 수 있도록, 도7의 절단선 C-C에 따른 단면도에 도시된 바와 같이, 인접한 제1강합성거더(110) 및 제2강합성거더(120)의 강형(111,121)의 단면과 동일하게 형성된다. 이를 위하여, 제3케이싱 콘크리트(132)의 영역의 경계로부터 양단부에 이르는 사이 영역(131s)에서는 강형(131)의 상부플랜지(131a)가 양단부로 이를수록 상부 플랜지(131a)의 폭이 점점 커진다. On the other hand, as shown in the cross-sectional view along the cutting line BB of Figure 7, in the region where the third casing concrete 132 is formed, the upper flange 131a of the third steel 131 to secure the position of the tension member 133 The width of is formed small. However, both ends of the third steel composite girder 130 where the third casing concrete 132 is not formed may be more easily and firmly bonded to the adjacent first steel composite girder 110 and the second steel composite girder 120. As shown in the cross sectional view along the cutting line CC of FIG. 7, the cross sections of the rigid shapes 111 and 121 of the adjacent first and second composite girders 110 and 120 are formed. To this end, in the area 131s extending from the boundary of the area of the third casing concrete 132 to both ends, the width of the upper flange 131a gradually increases as the upper flange 131a of the steel 131 reaches both ends.
마찬가지로, 도8의 절단선 E-E에 따른 단면도에 도시된 바와 같이, 제2케이싱 콘크리트(122)가 형성된 영역에서는 긴장재(123)의 위치를 확보하기 위하여 제2강형(121)의 하부 플랜지(121c)의 폭이 작게 형성된다. 그러나, 제2케이싱 콘크리트(122)가 형성되지 않은 제3강합성거더(130)와의 접합부는 쉽고 견고하게 접합할 수 있도록, 도8의 절단선 D-D에 따른 단면도에 도시된 바와 같이, 인접한 제3강합성거더(130)의 강형(131)의 단면과 동일하게 형성된다. 이를 위하여, 제2케이싱 콘크리트(122)의 영역의 경계로부터 양단부에 이르는 사이 영역에서는 강형(121)의 하부플랜지(121c)가 양단부로 이를수록 상부 플랜지(131a)의 폭이 점점 커진다. Similarly, as shown in the cross-sectional view along the cutting line EE of FIG. 8, in the region where the second casing concrete 122 is formed, the lower flange 121c of the second steel 121 to secure the position of the tension member 123. The width of is formed small. However, as shown in the cross-sectional view along the cutting line DD of FIG. 8, the joint with the third steel composite girder 130 on which the second casing concrete 122 is not formed can be easily and firmly joined. It is formed in the same manner as the cross section of the steel mold 131 of the steel composite girder 130. To this end, in the region between the boundary of the region of the second casing concrete 122 and both ends, the width of the upper flange 131a gradually increases as the lower flange 121c of the steel 121 reaches both ends.
이와 같은 제2강합성거더(120)의 형상은 제1강합성거더(110)에 대해서도 동일하다.The shape of the second rigid composite girder 120 is the same for the first rigid composite girder 110.
그리고, 제3강합성거더(130)의 제3케이싱 콘크리트(132)의 상면은 제3강합성 거더(130)의 양단부의 강형(131)의 상부 플랜지(131a)보다 높지 않게 형성된다. 즉, 제3케이싱 콘크리트(132)는 제3강합성거더(130)의 양단부의 상부 플랜지(131a)를 상호 연결하는 가상선(55)에 대해 상방(上方)으로 돌출되지 않는다. 이를 통해, 그 상면에 설치되는 바닥판 콘크리트(30)를 시공하는 과정이 용이해질 뿐만 아니라, 교각 주변에서 단면이 커져 미관을 해치는 것을 막을 수 있다. The upper surface of the third casing concrete 132 of the third composite girder 130 is formed not to be higher than the upper flange 131a of the steel 131 at both ends of the third composite girder 130. That is, the third casing concrete 132 does not protrude upward with respect to the imaginary line 55 interconnecting the upper flanges 131a at both ends of the third steel composite girder 130. Through this, not only the process of constructing the bottom plate concrete 30 installed on the upper surface is easy, but also the cross-section around the piers can be prevented from harming the aesthetics.
이를 위하여, 도7의 절단선 B-B에 따른 단면도와 절단선 C-C에 따른 단면도에 도시된 바와 같이, 제3케이싱 콘크리트(132)의 상면이 양단부 강형(131)의 상부 플랜지(131a)보다 돌출되지 않도록, 제3케이싱 콘크리트(132)가 형성된 영역에서는 복부(131b)의 높이(H1)가 제3강합성거더(130)의 양단부에서의 복부(131b)의 높이(H2)보다 더 작게 형성되고, 상기 사이 영역(131s)에서 복부(131b)의 높이는 점점 높아진다. 이에 따라, 제3케이싱 콘크리트(132)의 양단에는 소정의 공간(131x)이 형성된다. To this end, as shown in the cross-sectional view along the cutting line BB and the cross-sectional view along the cutting line CC of FIG. 7, the upper surface of the third casing concrete 132 does not protrude more than the upper flange 131a of the both ends of the steel 131. In the region where the third casing concrete 132 is formed, the height H1 of the abdomen 131b is smaller than the height H2 of the abdomen 131b at both ends of the third rigid girder 130. In the interstitial region 131s, the height of the abdomen 131b is gradually increased. Accordingly, predetermined spaces 131x are formed at both ends of the third casing concrete 132.
상기와 같이 구성된 본 발명의 제1실시예에 따른 연속화된 강합성 거더 교량의 상부 구조(100)는 부모멘트가 크게 작용하는 거더가 연속하는 연속지점부인 제3교각(22) 상부에는 부모멘트 저항부재(130)를 배치시키고, 정모멘트가 크게 작용하는 경간 중앙부에는 정모멘트 저항부재(110,120)를 배치시킴으로써, 연속교에서 크게 작용하는 부모멘트를 효과적으로 상쇄시킬 수 있게 된다. 그리고, 교각(22)의 상부에서 제3강합성거더(130)의 단면을 크게 하지 않더라도 커다란 부모멘트를 효과적으로 상쇄시킬 수 있게 되므로, 전체적으로 교량의 단면 높이가 일정하게 유지될 수 있게 되어 미관을 해치지 않고 세련된 외관을 갖는 교량을 시공할 수 있도록 한다. The upper structure 100 of the continuous composite girder bridge according to the first embodiment of the present invention configured as described above has a parent resistance in the upper portion of the third pier 22, which is a continuous point portion in which the girder acts with large parent moments. By arranging the member 130 and arranging the positive moment resistance members 110 and 120 at the center portion of the span where the positive moment acts greatly, it is possible to effectively offset the parent moment acting greatly in the continuous bridge. And, even if the cross section of the third composite girder 130 in the upper portion of the bridge 22 can be effectively canceled large parent moment, the cross-sectional height of the bridge can be maintained as a whole, so as not to harm the beauty It is possible to construct a bridge with a refined appearance.
이 뿐만 아니라, 본 발명은 모두 공장에서 제작하여 현장에서는 곧바로 설치만 하여도 무방한 강합성거더(110,120,130)로 제작되므로, 시공에 소요되는 공기를 단축할 수 있고, 교각(22)의 상부에 교좌 장치를 1개만 설치하여 제3강합성 거더를 지지할 수 있으므로 보다 경제적인 시공이 가능해진다.In addition to this, the present invention is all made in a factory, because it is made of steel composite girders (110, 120, 130) can be installed just in the field, it is possible to shorten the air required for construction, the bridge on the top of the pier 22 Since only one device can be installed to support the third rigid girder, more economical construction is possible.
이하, 본 발명의 제2실시예에 따른 연속화된 강합성 거더 교량을 상술한다. 다만, 전술한 제1실시예와 동일하거나 유사한 구성 및 작용에 대해서는 동일 또는 유사한 도면 부호를 부여하고 이에 대한 상세한 설명은 제2실시예의 요지를 명확하게 하기 위하여 생략하기로 한다.Hereinafter, the continuous rigid girder bridge according to the second embodiment of the present invention will be described in detail. However, the same or similar reference numerals are used to designate the same or similar elements and operations as the first embodiment, and detailed description thereof will be omitted for clarity.
본 발명의 제2실시예에 따른 연속화된 강합성 거더 교량의 상부 구조는 도5에 도시된 제1실시예의 교량의 상부 구조와 전체적인 구성은 유사하지만, 제3강합성거더(230)가 도9 및 도10에 도시된 바와 같이 구성된다는 점에서 차이가 있다. 즉, 도9 및 도10에 도시된 바와 같이, 강형(231)의 상부에는 긴장재(233)를 긴장시키는 것에 의해 압축 프리스트레스가 도입된 제3케이싱 콘크리트(232)가 합성된다는 점에서는 제1실시예의 제3강합성거더(130)와 유사하지만, 제2실시예에 따른 제3강합성거더(230)에는 중앙부 상부 플랜지(231a)와 함께 제3케이싱 콘크리트(232)를 수용하는 보조 측면철판(234)이 중앙부 상부 플랜지(231a)의 상측에 형성된다. 이에 따라, 제2실시예에 따른 제3강합성거더(230)를 제작하는 데에는 거푸집을 필요로 하지 않는다는 잇점이 있다. The upper structure of the continuous composite girder bridge according to the second embodiment of the present invention is similar in overall structure to the upper structure of the bridge of the first embodiment shown in Figure 5, the third composite girder 230 is shown in Figure 9 And a configuration as shown in FIG. 10. That is, as shown in FIGS. 9 and 10, the third casing concrete 232 to which the compression prestress is introduced is synthesized by tensioning the tension member 233 on the upper portion of the steel mold 231 of the first embodiment. Similar to the third composite girder 130, but in the third composite girder 230 according to the second embodiment the auxiliary side iron plate 234 for accommodating the third casing concrete 232 with the central upper flange (231a) ) Is formed on the upper side of the central upper flange 231a. Accordingly, there is an advantage that the formwork is not required to manufacture the third rigid composite girder 230 according to the second embodiment.
도면 중 미설명 부호인 234a는 보조 측면철판(234)과 중앙부 상부 플랜지(231a)에 의해 둘러싸인 제3케이싱 콘크리트(232)에 압축 프리스트레스를 도입하기 위하여 긴장재(233)를 잡아당기는 정착구이며, 도면 중 미설명 부호인 231a'는 제3케이싱 콘크리트(232)가 합성되지 않는 영역의 상부 플랜지이다. In the drawing, reference numeral 234a is a fixing device that pulls the tension member 233 to introduce compression prestress to the third casing concrete 232 surrounded by the auxiliary side iron plate 234 and the central upper flange 231a. Reference numeral 231a ′ denotes an upper flange of an area where the third casing concrete 232 is not synthesized.
이하, 본 발명의 제3실시예에 따른 연속화된 강합성 거더 교량의 상부 구조를 상술한다. 다만, 전술한 제1실시예와 동일하거나 유사한 구성 및 작용에 대해서는 동일 또는 유사한 도면 부호를 부여하고 이에 대한 상세한 설명은 제3실시예의 요지를 명확하게 하기 위하여 생략하기로 한다.Hereinafter, the superstructure of the continuous rigid girder bridge according to the third embodiment of the present invention will be described in detail. However, the same or similar reference numerals are assigned to the same or similar components and operations as the first embodiment, and detailed description thereof will be omitted to clarify the gist of the third embodiment.
본 발명의 제3실시예에 따른 연속화된 강합성 거더 교량의 상부 구조는 도5에 도시된 제1실시예의 교량의 상부 구조와 전체적인 구성은 유사하지만, 제3강합성거더(330)가 도12 및 도13에 도시된 바와 같이 긴장재에 의해 케이싱 콘크리트(342)에 압축 프리스트레스가 도입되는 것이 아니라, 제3강형(331)이 하방으로 휨변형된 상태에서 제3케이싱 콘크리트(342)가 상기 휨변형된 제3강형(331)의 인장측에 타설 합성되고, 제3강형(331)이 다시 휨 변형 이전의 원 상태로 복귀하려는 탄성 복원력에 의한 프리플렉스 공법에 의하여 케이싱 콘크리트(342)에 압축 프리스트레스가 도입된다는 특징이 있다. 이에 따라, 제3강형(341)의 하부 플랜지(341c)는 전체적으로 그 폭이 넓다. The upper structure of the continuous composite girder bridge according to the third embodiment of the present invention is similar in overall structure to the upper structure of the bridge of the first embodiment shown in Figure 5, the third composite girder 330 is shown in Figure 12 As shown in FIG. 13, the compressive prestress is not introduced into the casing concrete 342 by the tension member, but the third casing concrete 342 is deflected in the state where the third steel 331 is bent downward. Compression prestress is applied to the casing concrete 342 by the preflex method by the elastic restoring force which is poured on the tensile side of the third steel die 331, and the third steel die 331 returns to its original state before bending deformation. It is characterized by being introduced. Accordingly, the lower flange 341c of the third steel mold 341 is broad in width.
이하, 본 발명의 제4실시예에 따른 연속화된 강합성 거더 교량을 상술한다. 다만, 전술한 제2실시예와 동일하거나 유사한 구성 및 작용에 대해서는 동일 또는 유사한 도면 부호를 부여하고 이에 대한 상세한 설명은 제4실시예의 요지를 명확하게 하기 위하여 생략하기로 한다.Hereinafter, the continuous rigid girder bridge according to the fourth embodiment of the present invention will be described in detail. However, the same or similar reference numerals are used to designate the same or similar components and operations as the above-described second embodiment, and a detailed description thereof will be omitted to clarify the gist of the fourth embodiment.
본 발명의 제4실시예에 따른 연속화된 강합성 거더 교량은 도5에 도시된 제1실시예의 교량과 전체적인 구성은 유사하지만, 거더(410,420,430)가 도15 내지 도17에 도시된 바와 같이 박스 형태로 구성된다는 점에서 차이가 있다. 즉, 부모멘트 저항거더인 제3강합성거더(430)는 'I'형 강형의 상부 플랜지에 케이싱 콘크리트가 합성되는 것이 아니라, 박스형 강형의 상부에 케이싱 콘크리트가 합성되고 압축 프리스트레스가 도입되도록 구성된다. 이와 동시에, 제3강합성거더(430)와 인접한 제1거더(410) 및 제2거더는 케이싱 콘크리트가 합성되지 않은 상태로, 제3강합성거더(430)의 강형(431)과 동일한 형상과 단면으로 형성된다. The continuous rigid girder bridge according to the fourth embodiment of the present invention is similar in overall configuration to the bridge of the first embodiment shown in FIG. 5, but the girders 410, 420, and 430 are box-shaped as shown in FIGS. 15 to 17. There is a difference in that it consists of. That is, the third steel composite girder 430, which is a parent resistance girder, is configured such that the casing concrete is not synthesized on the upper flange of the 'I' type steel, but the casing concrete is synthesized on the top of the box type steel and the compression prestress is introduced. . At the same time, the first girder 410 and the second girder adjacent to the third composite girder 430 have the same shape as that of the steel 431 of the third composite girder 430 without the casing concrete being synthesized. It is formed into a cross section.
박스형 거더는 I형 강형에 비하여 단면 계수가 크므로 보다 큰 정모멘트와 부모멘트에 저항하여 지지할 수 있다는 장점이 있다.Box-type girders have a larger cross-sectional coefficient than I-type steels, which can be supported against larger static and parent moments.
이하, 본 발명의 제1실시예에 따른 연속화된 강합성 거더 교량(100)의 시공 방법을 상술한다. 다만, 아래에 기술되는 연속화된 강합성 거더 교량(100)은 본 발명의 제1실시예 내지 제4실시예에 따른 연속화된 강합성 거더 교량의 상부 구조에 대하여 모두 적용될 수 있다. Hereinafter, the construction method of the continuous rigid girder bridge 100 according to the first embodiment of the present invention will be described in detail. However, the continuous composite girder bridge 100 described below may be applied to all the superstructures of the continuous composite girder bridges according to the first to fourth embodiments of the present invention.
단계 1: 먼저, 상부 플랜지(131a)가 하부 플랜지(131c)보다 폭이 작고, 도6 및 도7에 도시된 형상의 I형 강형(131)을 준비한다. 그 다음, I형 강형(131)의 상부 플랜지(131a)를 감싸는 거푸집을 설치하고, 그 주변에 철근을 배근하고, 쉬스관(미도시) 내부에 긴장재(133)를 설치한 후, 거푸집에 콘크리트를 타설하여 양생시켜 제3케이싱 콘크리트(132)가 소정의 강도가 발현되면, 긴장재(133)를 잡아당겨 제3케이싱 콘크리트(132)에 압축 프리스트레스를 도입하여 부모멘트 저항거더로서 제3강합성거더(130)를 제작 완료한다. Step 1 : First, the upper flange 131a is smaller than the lower flange 131c, and prepares the I-shaped steel 131 having the shape shown in FIGS. 6 and 7. Next, after installing the formwork surrounding the upper flange (131a) of the I-shaped steel 131, reinforce the steel bars around the installation, and install the tension member 133 inside the sheath pipe (not shown), the concrete in the formwork When the third casing concrete 132 has a predetermined strength by pouring and curing, the tension material 133 is pulled out to introduce compression prestress to the third casing concrete 132 to form a third rigid girder as a parent resistance girder. Produce 130.
이 때, 제3강합성거더(130)는 제1강합성거더(110) 및 제2강합성거더(120)와 접합되는 위치(x)가 휨 모멘트가 '0'이 되도록 그 길이가 결정된다. At this time, the length of the third rigid girder 130 is determined so that the bending moment of the position (x) joined with the first rigid girder 110 and the second rigid girder 120 becomes '0'. .
단계 2: 하부 플랜지(121c)가 상부 플랜지(121a)보다 폭이 작은 I형 강형(121)을 준비한다. 그 다음, I형 강형(121)의 하부 플랜지(121c)를 감싸는 거푸집을 설치하고, 그 주변에 철근을 배근하고, 쉬스관(미도시) 내부에 긴장재(123)를 설치한 후, 거푸집에 콘크리트를 타설하여 양생시켜 제2케이싱 콘크리트(122)가 소정의 강도가 발현되면, 긴장재(123)를 잡아당겨 제2케이싱 콘크리트(122)에 압축 프리스트레스를 도입하여 정모멘트 저항거더로서 제2강합성거더(120)를 제작 완료한다. Step 2 : The I-shaped steel 121 is prepared in which the lower flange 121c is smaller in width than the upper flange 121a. Next, the formwork surrounding the lower flange 121c of the I-shaped steel 121 is installed, the reinforcing bar is disposed around it, and the tension member 123 is installed inside the sheath tube (not shown), and then the concrete is formed in the formwork. When the second casing concrete 122 exhibits a predetermined strength by pouring and curing, the tension material 123 is pulled out to introduce compression prestress into the second casing concrete 122 to form a second rigid girder as a constant moment resistance girder. Complete the production of 120.
단계 3: 제2강합성거더(120)와 동일한 방법으로 제1강합성 거더(110)를 제작한다. 단계 1 내지 단계 3은 동시에 행해져도 무방하며, 순서가 뒤바뀌어도 무방하다. Step 3 : The first composite girder 110 is manufactured in the same manner as the second composite girder 120. Steps 1 to 3 may be performed at the same time, or the order may be reversed.
단계 4: 제3교각(22)의 상부에 제3교좌 장치(22a)를 설치하고, 연속지점부인 제3교좌 장치 (22a)위에는 단계 1에서 제작한 제3강합성 거더(130)를 크레인으로 인상하여 거치시킨다. Step 4 : The third bridge device 22a is installed on the upper portion of the third bridge 22, and the third composite girder 130 manufactured in Step 1 is mounted on the third bridge device 22a, which is a continuous point. Raise and mount.
단계 5: 제3교각(22a)과 인접한 제1교각(21)의 사이에 가설 교각(미도시)을 가설하고, 단계 3에서 제작한 제1강합성거더(110)를 인상하여 제1교각(21)과 제3교각(22) 사이의 가설 교각에 각각 양단 지지시킨 상태에서, 제1강합성거더(110)의 일단과 제3강합성거더(130)의 일단을 접합한다. 이 때, 상호 맞닿은 제1강합성거더(110)의 일단과 제3강합성거더(130)의 일단은 케이싱 콘크리트(112,132)가 없는 강형(111,131)만으로 이루어져 있으므로, 용접이나 볼트로 간단히 접합할 수 있다. Step 5 : Temporary bridge piers (not shown) are constructed between the third bridge piers 22a and the first bridge piers 21 adjacent thereto, and the first steel composite girders 110 manufactured in Step 3 are raised to raise the first piers ( 21 and the one end of the first rigid composite girder 110 and one end of the third rigid composite girder 130 are bonded to each other in a state where both ends are supported by the temporary pier between the third piers 22. At this time, since one end of the first composite girder 110 and the third composite girder 130, which are in contact with each other, are made of only the steel molds 111 and 131 without the casing concrete 112 and 132, welding or bolts can be easily joined. have.
도5, 도7 및 도8에 도시된 바와 같이, 서로 단면이 동일하여 완전히 단면 전체가 완전히 맞닿은 제1강합성거더(110)와 제3강합성거더(130)는 용접으로 상부 플랜지와 하부 플랜지를 접합한 후, 볼트로 강형(111,131)의 복부(131b)와 플레이트(77)를 함께 관통하는 것에 의해 제1강합성거더(110)와 제3강합성거더(130)가 일체로 거동하도록 접합된다. 5, 7 and 8, the first composite girder 110 and the third composite girder 130, which have the same cross section with each other and completely contact the entire cross section, are welded to the upper flange and the lower flange. After joining, by joining the abdomen 131b and the plate 77 of the rigid (111,131) and the plate 77 together with bolts, the first rigid girder 110 and the third rigid girder 130 are joined so as to be integrally behaved. do.
단계 6: 마찬가지로 제3교각(22a)과 인접한 제2교각(23)의 사이에 가설 교각(미도시)을 가설하고, 단계 2에서 제작한 제2강합성거더(120)를 인상하여 제2교각(23)과 제3교각(22) 사이의 가설 교각에 각각 양단 지지시킨 상태에서, 제2강합성거더(120)의 일단과 제3강합성거더(130)의 일단을 접합한다. 이 때, 상호 맞닿은 제2강합성거더(120)의 일단과 제3강합성거더(130)의 일단은 케이싱 콘크리트(122,132)가 없는 강형(121,131)만으로 이루어져 있으므로, 용접이나 볼트로 간단히 접합할 수 있다. Step 6 : Similarly, a temporary pier (not shown) is constructed between the third pier 22a and the second pier 23 adjacent thereto, and the second pier is fabricated by raising the second steel composite girder 120 manufactured in step 2. One end of the second rigid composite girder 120 and one end of the third rigid composite girder 130 are bonded to each other in a state where both ends of the temporary pier between the 23 and the third piers 22 are supported. At this time, one end of the second composite girder 120 and the one end of the third composite girder 130 which are in contact with each other consists of only the steel (121, 131) without the casing concrete (122, 132), it can be easily joined by welding or bolts have.
단계 7: 단계 4 내지 단계 6은 교량의 폭에 따라 교축 직각 방향으로 다수의 열로 거더(110,120,130)가 배열되도록 시공한다. 그리고 나서, 상기 거더(110,120,130)의 상면에 바닥판 거푸집을 설치하고, 철근을 배근한 후, 굳지 않은 콘크리트를 타설, 양생하여 바닥판 콘크리트(30)를 형성한다. Step 7 : Steps 4 to 6 are constructed such that the girders 110, 120 and 130 are arranged in a plurality of rows in the direction perpendicular to the bridge depending on the width of the bridge. Then, the bottom plate formwork is installed on the upper surfaces of the girders (110, 120, 130), after reinforcing the reinforcing bars, and cast and harden the concrete to form the bottom plate concrete (30).
그 다음, 바닥판 콘크리트(30)의 상면에 아스콘으로 포장을 하고 난간과 보도를 설치하여 부모멘트 저항거더인 제3강합성거더(130)를 이용하여 연속화된 강합성 거더 교량의 상부 구조(100)를 시공할 수 있게 된다. Subsequently, the upper structure of the rigid composite girder bridge (100), which is paved with ascon on the top surface of the bottom plate concrete (30) and installed a railing and a sidewalk, is formed using the third rigid girder (130), which is a parent resistance girder (100). ) Can be built.
이와 같이, 본 발명에 따른 연속화된 강합성 거더 교량의 상부 구조(100)는 바닥판 콘크리트(30)를 제외하고는 모두 공장에서 제작할 수 있는 강합성 거더(110,120,130)이어서 현장에서의 시공 시간이 단축되고 시공이 간단해지는 유리한 효과가 얻어진다. 또한, 정모멘트 저항부재인 하부 플랜지(121a)에 케이싱 콘크리트(112, 122)가 합성된 제1강합성거더(110) 및 제2강합성거더(120)와 동일한 단면 높이로 상부 플랜지(131a)에 케이싱 콘크리트(132)가 합성된 제3강합성거더(130)를 부모멘트 저항거더로 연속하는 교각(22) 상부에 설치되므로, 연속교에서 크게 작용하는 부모멘트를 작은 단면으로 지지할 수 있으며, 이를 통해 보다 긴 경간의 교량의 시공을 가능하게 하는 잇점도 얻어진다.As such, the upper structure 100 of the continuous composite girder bridge according to the present invention is a steel composite girders (110,120,130) that can be manufactured in the factory except the bottom plate concrete 30, the construction time in the field is shortened And the advantageous effect of simplifying construction is obtained. In addition, the upper flange 131a with the same cross-sectional height as the first steel composite girder 110 and the second steel composite girder 120, in which casing concrete 112 and 122 are synthesized on the lower flange 121a, which is a constant moment resistance member. Since the casing concrete 132 is synthesized by the third steel composite girder 130 is installed on the pier 22 continuous to the parent cement resistance girder, it is possible to support the parent moment acting largely in the continuous bridge with a small cross section This also provides the advantage of enabling the construction of longer span bridges.
도면에 도시된 바와 같이, 본 발명의 제5실시예에 따른 복합 형식을 갖는 연속화 교량의 상부구조(500)는 2경간 연속화 교량을 예시적으로 나타낸 것으로서, 일단이 양 끝의 제1교각(10) 상부의 교좌장치(10a)에 각각 거치되는 박스 거더(510)와, 연속 지점부를 형성하는 제2교각(20) 상부의 교좌장치(20a)에 중앙부가 거치되고 상기 박스 거더(510)에 양단이 교축 방향으로 연결된 트러스 거더(520)와, 차량 등이 통행하도록 박스 거더(510)와 트러스 거더(520)의 상측에 형성된 바닥판 콘크리트(530)를 포함하여 구성된다.As shown in the figure, the superstructure 500 of the continuous bridge having a complex type according to the fifth embodiment of the present invention is an exemplary two-span continuous bridge, one end of the first bridge 10 (10) The center portion is mounted on the box girders 510 respectively mounted on the upper bridge device 10a and the bridge device 20a on the upper portion of the second piers 20 forming a continuous point portion, and both ends of the box girders 510 are mounted. The truss girder 520 connected in the throttle direction, and the bottom plate concrete 530 formed on the upper side of the box girder 510 and the truss girder 520 so that the vehicle and the like pass.
상기 박스 거더(510)는 고정 하중에 의해 정모멘트가 발생하는 영역(Ⅲ)에 설치되며, 도19에 도시된 바와 같이 한 쌍의 복부판(510b)과 상기 한 쌍의 복부판의 하부에 동시에 접하도록 연결된 하부플랜지(510a)와 상기 한 쌍의 복부판의 상부에 동시에 접하도록 연결된 상부플랜지(510c)로 형성된 박스 단면으로 형성된다. 그리고 상부플랜지(510c) 상부에는 상방으로 뻗은 전단 연결재(511)를 구비하여, 바닥판 콘크리트(530)와의 결합을 보다 견고하게 한다. 박스 거더(510)의 내벽에는 휨 강도를 보강하는 보강 리브(510f)가 하부 플랜지(510a)의 상면과 상부 플랜지(510b)의 저면에 결합된다.The box girder 510 is installed in an area III where a static moment is generated by a fixed load, and as shown in FIG. 19, the box girder 510 is in contact with a pair of abdominal plates 510b and a lower part of the pair of abdominal plates simultaneously. The lower flange 510a and the upper flange 510c are connected to the upper portion of the pair of abdominal plates simultaneously. In addition, the upper flange 510c is provided with a shear connecting member 511 extending upward, thereby more firmly coupled with the bottom plate concrete 530. On the inner wall of the box girder 510, a reinforcing rib 510f for reinforcing bending strength is coupled to the upper surface of the lower flange 510a and the lower surface of the upper flange 510b.
상기 트러스 거더(520)는 고정 하중에 의해 부모멘트가 발생하는 영역(Ⅰ)에 설치되며, 도20에 도시된 바와 같이 하현재(520a)와 상현재(520b)가 교축 방향으로 배열되고, 하현재(520a)와 상현재(520b)의 사이에는 이들과 수직 방향 및 경사 방향으로 용접이나 볼트 체결 등의 방법으로 연결된 다수의 연결재(520c)가 배열된다. 그리고 교축 방향으로 뻗은 트러스 강재의 상현재와 하현재를 각각 횡방향으로 연결하는 가로재(520d)가 교축 방향으로 소정 거리마다 연결 설치된다. 마찬가지로, 상현재(520b)의 상부에는 전단 연결재(521)가 상방으로 뻗도록 결합되어 상현재(520b)와 바닥판 콘크리트(530)와의 결합을 보다 견고하게 한다.The truss girder 520 is installed in the region (I) where the parent moment is generated by the fixed load, the lower chord 520a and the upper chord 520b are arranged in the axial direction, as shown in FIG. A plurality of connecting members 520c are arranged between the chord 520a and the top chord 520b by welding or bolting in the vertical direction and the oblique direction. And the cross member 520d for connecting the upper chord and the lower chord of the truss steel extending in the throttling direction in the lateral direction, respectively, is installed at predetermined distances in the axial direction. Similarly, the shear connector 521 is coupled to the upper portion of the upper chord 520b to extend upward, thereby more firmly coupling the upper chord 520b and the bottom plate concrete 530.
트러스 거더(520)의 하현재(520a)에는 도18 및 도20에 도시된 바와 같이 콘크리트(528)가 합성되어, 교각(20) 상부의 연속 지점부에 부모멘트가 작용할 때에 중립축 하연의 압축 응력에 대한 저항능력을 보다 향상시킨다. 그리고, 트러스 거더(520)의 연결재(520c)는 폐단면으로 형성되어 도20에 도시된 바와 같이 그 내부에 콘크리트(520z)가 타설되어 합성될 수도 있다. 이에 의하여, 트러스 거더(520)의 연결재에 작용하는 압축 응력을 효과적으로 지지한다. 도면에는 연결재(520c)에만 콘크리트(520z)가 합성되는 것을 예로 들었지만, 본 발명의 다른 실시 형태에 따르면, 트러스 거더(520)의 하현재(520a), 상현재(520b) 및 연결재(520c)가 모두 폐단면으로 형성되어, 폐단면 내에 콘크리트가 타설되어 합성될 수도 있다. Concrete 528 is synthesized in the lower chord 520a of the truss girder 520, as shown in FIGS. 18 and 20, and the compressive stress at the lower edge of the neutral axis when the parent moment acts on the continuous point above the pier 20. Improves resistance to In addition, the connecting member 520c of the truss girder 520 may be formed as a closed cross section, and concrete 520z may be poured into the composite as shown in FIG. 20. This effectively supports the compressive stress acting on the connecting member of the truss girder 520. In the drawings, the concrete 520z is synthesized only in the connecting member 520c, but according to another embodiment of the present invention, the lower chord 520a, the upper chord 520b and the connecting member 520c of the truss girder 520 are All are formed in a closed cross-section, concrete may be poured into the closed cross-section to be synthesized.
트러스 거더(520)의 연결재(520c)는 상현재(520b) 및 하현재(520a)에 직접 용접이나 볼트 체결로 연결될 수도 있고, 상,하현재(520b, 520a)에 고정된 거셋(gusset)에 연결되게 설치될 수도 있다.The connecting member 520c of the truss girder 520 may be directly connected to the upper chord 520b and the lower chord 520a by welding or bolting, and the gusset fixed to the upper and lower chords 520b and 520a. It may be installed to be connected.
서로 다른 형식인 박스 거더(510)와 트러스 거더(520)는 도18의 도면부호 Ⅱ로 표시된 복합 영역에서 하나의 구조계로서 상호 연결된다.(도21 참조) 복합 영역(II)은 고정 하중에 의하여 휨모멘트가 발생하지 않는 지점이 포함되도록 위치가 정해진다. 이를 위하여, 도21의 'B'부분의 확대도인 도23에 도시된 바와 같이, 트러스 거더(520)의 일단부가 박스 거더(510)의 내부에 삽입되어 설치된다. 이는, 외부에서 트러스 거더(520)가 박스 거더(510)에 의해 가려 보이지 않게 되므로, 깔끔한 미관을 구현할 수 있다는 점에서 바람직하다. The box girders 510 and the truss girders 520, which are different types, are interconnected as one structural system in the composite region indicated by reference numeral II in FIG. 18 (see FIG. 21). The position is determined to include the point where no bending moment occurs. To this end, as shown in FIG. 23, which is an enlarged view of part 'B' of FIG. 21, one end of the truss girder 520 is inserted into the box girder 510 and installed. This is preferable because the truss girder 520 is not hidden by the box girder 510 from the outside, so that a neat aesthetic can be realized.
보다 구체적으로는, 트러스 거더(520)의 상현재(520b)는 박스 거더의 상부 플랜지(510c) 및 복부판(510b)과 교축 방향으로 따라 접촉하도록 배열되어 이 접촉부를 따라 용접(88)되고, 마찬가지로 트러스 거더(520)의 하현재(520a)는 박스 거더(510)의 하부 플랜지(510a) 및 복부판(510b)과 교축 방향을 따라 접촉하도록 배열되어 이 접촉부를 따라 용접(88)됨으로써, 박스 거더(510)와 트러스 거더(520)가 복합 영역(Ⅱ)에서 상호 연결된다. More specifically, the upper chord 520b of the truss girder 520 is arranged to be in contact with the upper flange 510c and the abdominal plate 510b of the box girder along the axial direction and welded 88 along the contact portion. The lower chord 520a of the truss girder 520 is arranged to be in contact with the lower flange 510a and the abdominal plate 510b of the box girder along the axial direction and welded 88 along this contact, thereby providing a box girder ( 510 and truss girder 520 are interconnected in the composite region II.
여기서, 트러스 거더(520)의 하현재(520a) 및 상현재(520b)는 복합 영역(Ⅱ)에서 박스 거더(510)와 직접 접촉한 상태로 배열되어 용접 결합될 수도 있지만, 트러스 거더(520)의 하현재(520a) 및 상현재(520b)는 복합 영역(Ⅱ)에서 별도의 부재를 매개로 하여 박스 거더(510)와 간접적으로 접촉한 상태로 배열되어 트러스 거더(520)와 별도의 부재와의 접촉면을 용접 결합하고 이 별도의 부재와 박스 거더(510)를 용접 결합하여, 박스 거더(510)와 트러스 거더(520)가 복합 영역(Ⅱ)에서 상호 연결될 수도 있다. Here, although the lower chord 520a and the upper chord 520b of the truss girder 520 may be arranged in direct contact with the box girder 510 in the composite region II, the truss girder 520 may be joined. The lower chord 520a and the upper chord 520b are arranged in indirect contact with the box girder 510 through separate members in the composite region (II), so that the lower chord 520a and the upper chord 520b are separated from the truss girder 520. By joining the contact surfaces of and welding the separate member and the box girder 510, the box girder 510 and the truss girder 520 may be interconnected in the composite region II.
그리고, 도22에 도시된 바와 같이, 복합 영역(II)의 박스 거더(510)의 내부에는 다이어프램(550)이 한 쌍의 복부(510c) 및 상,하부 플랜지(510a, 510b)에 용접 고정되고, 복합 영역(II)의 박스 거더(510) 내에 설치되는 다이어프램(550)에 트러스 거더(520)의 하현재(520a) 및 상현재(520b)가 용접 결합된다. 또한, 상,하현재(520a, 120b)를 연결하는 다수의 연결재(520c)들 중 수직하게 배열된 수직 연결재(520x)가 트러스 거더(520)의 끝단에 위치하여, 횡방향으로 고정된 다이어프램(550)의 판면에 용접(520y) 결합된다. As shown in FIG. 22, the diaphragm 550 is welded and fixed to the pair of abdomen 510c and the upper and lower flanges 510a and 510b in the box girder 510 of the composite region II. The lower chord 520a and the upper chord 520b of the truss girder 520 are welded to the diaphragm 550 installed in the box girder 510 of the composite region II. In addition, among the plurality of connecting members 520c connecting the upper and lower chords 520a and 120b, vertically arranged vertical connecting members 520x are positioned at the ends of the truss girder 520, and the diaphragms fixed in the transverse direction ( A weld 520y is coupled to the plate surface of 550.
복합 영역(II)에서 박스 거더(510)와 트러스 거더(520)의 결합을 보다 견고하게 하기 위하여, 트러스 거더(520)의 한 쌍의 상현재(520b)와 상부 플랜지(510b)의 저면을 일체로 결합하는 상측 보강재(541)와, 트러스 거더(520)의 한 쌍의 하현재(520a)와 하부 플랜지(510a)의 상면을 일체로 결합하는 하측 보강재(542)가 설치된다. 하측 보강재(542)에는 내부에 고인 물이 배출될 수 있도록 배수구(542i)가 형성된다.In order to further secure the coupling of the box girder 510 and the truss girder 520 in the compound region II, the pair of upper chords 520b of the truss girder 520 and the bottom surface of the upper flange 510b are integrally formed. The upper reinforcement 541 to be coupled to each other, and the lower reinforcement 542 to integrally couple the upper surface of the lower chord 520a of the truss girder 520 and the lower flange 510a are provided. The lower reinforcing material 542 is formed with a drain port 542i to allow the water accumulated therein to be discharged.
이와 같이, 서로 다른 단면으로 구성된 박스 거더(510)와 트러스 거더(520)의 연결은 하나의 위치(point)에서 상호 연결되기 보다는 박스 거더(510)와 트러스 거더(520)가 교축 방향을 따라 중복 배열되는 복합 영역(II)에 걸쳐 트러스 거더(520)와 박스 거더(510)의 내벽이 용접 결합될 뿐만 아니라, 다이어프램(550)과 상,하측 보강재(541, 542)에 의하여 보다 견고하게 결합됨으로써, 하나의 구조계로서 일체 거동된다. As such, the connection of the box girder 510 and the truss girder 520 having different cross sections overlaps the box girder 510 and the truss girder 520 along the axial direction, rather than being interconnected at one point. Not only the inner wall of the truss girder 520 and the box girder 510 is welded over the composite region II arranged, but also more firmly coupled by the diaphragm 550 and the upper and lower reinforcement members 541 and 542. It acts as one structural system.
또한, 본 발명에 따른 복합 형식의 연속화 교량(500)은 연속 지점부(20)에서는 큰 부모멘트를 효과적으로 지지할 수 있는 트러스 거더(520)로 제작되고, 그 사이에는 적은 강재의 사용량으로 정모멘트를 효과적으로 지지할 수 있는 박스 거더(510)로 제작되어 향상된 내하 능력을 가짐에 따라 50m 내지 70m의 장경간 교량을 구현할 수 있게 된다. In addition, the continuous bridge 500 of the composite type according to the present invention is made of a truss girder 520 that can effectively support the large parent moment in the continuous point portion 20, between which the constant moment with a small amount of steel Since the box girder 510 is capable of effectively supporting the improved load capacity, it is possible to implement a long span bridge of 50m to 70m.
한편, 상기와 같은 복합 형식의 연속화 교량(500)은 복합 영역(II)에 걸쳐 서로 다른 단면의 거더(510, 120)가 중복 배열되면서 견고하게 연결되지만, 교량의 시공 현장에서 박스 거더(510)에 트러스 거더(520)의 일부를 삽입하여 상호 연결 고정하는 공정은 매우 까다롭고 오랜 시간이 소요된다. On the other hand, the sequential bridge 500 of the complex type is rigidly connected while overlapping arrangement of the girder 510, 120 of different cross-section over the composite area (II), box girder 510 at the construction site of the bridge Inserting a portion of the truss girder 520 into the interconnect fixing process is very demanding and takes a long time.
따라서, 박스 거더(510)에 트러스 거더(520)의 일부를 삽입한 복합 영역(II)에서의 연결 구성에 해당하는 연결체(500')를 도26에 도시된 바와 같이 미리 제작해두고, 이를 이용하여 교량(500)을 시공할 수도 있다. Therefore, the connector 500 'corresponding to the connection configuration in the composite region II in which a part of the truss girder 520 is inserted into the box girder 510 is manufactured in advance as shown in FIG. The bridge 500 can also be constructed.
상기 연결체(500')는 교량(500)의 박스 거더(500)의 단면과 동일한 단면을 갖는 연결체 박스거더(510')와, 연결체 박스거더(510')의 일단부에 상,하부 플랜지(510a' 510b') 및 한 쌍의 복부(510c')에 용접 결합되어 고정된 다이어프램(550)과, 다이어프램(550)에 상,하현재(520a', 520b')의 단부 및 수직 보강재(520x)가 용접 결합된 연결체 트러스 거더(520')로 구성된다. The connector 500 'is connected to the box box girder 510' having the same cross-section as that of the box girder 500 of the bridge 500, and the upper and lower ends of the connector box girder 510 '. Diaphragm 550 welded to and fixed to flange 510a '510b' and a pair of abdomen 510c ', and ends of upper and lower chords 520a' and 520b 'on diaphragm 550 and vertical reinforcement ( 520x consists of a welded truss girder 520 '.
즉, 연결체(500')의 각 구성은 상기 교량(500)의 복합 영역(II)에서의 연결부 구성과 동일하게 미리 제작된다. 예를 들어, 연결체 트러스 거더(520')의 한 쌍의 상현재(520b')와 연결체 박스거더(510')의 상부 플랜지(510b')의 내벽에 함께 결합되는 상측 보강재(541)가 설치되고, 연결체 트러스 거더(520')의 한 쌍의 하현재(520a')와 연결체 박스거더(510')의 하부 플랜지(510a')의 내벽에 함께 결합되는 하측 보강재(542)가 설치된다. 또한, 연결체 트러스 거더(520')의 상,하현재(520a', 520b')는 연결체 박스 거더(510')의 상,하부 플랜지(510a', 510b')의 내벽과 견고하게 용접결합된다. That is, each structure of the connection body 500 'is previously manufactured similarly to the structure of the connection part in the composite area II of the bridge 500. As shown in FIG. For example, a pair of upper chords 520b 'of the connector truss girder 520' and an upper reinforcement 541 coupled together to the inner wall of the upper flange 510b 'of the connector box girder 510' And a lower reinforcement 542 which is coupled together to a pair of lower chords 520a 'of the connector truss girder 520' and to the inner wall of the lower flange 510a 'of the connector box girder 510'. do. In addition, the upper and lower chords 520a 'and 520b' of the connector truss girder 520 'are firmly welded to the inner walls of the upper and lower flanges 510a' and 510b 'of the connector box girder 510'. do.
그리고, 미리 제작된 연결체(500')의 양단의 단면은 별도로 제작되어 교량을 지지하는 박스 거더(510) 및 트러스 거더(520)의 끝단면과 동일한 단면으로 형성된다. 즉, 연결체(500')의 연결체 박스 거더(510')의 단부(510s)의 단면은 이에 연결되는 박스 거더(510)의 단부의 단면과 동일하고, 연결체(500')의 연결체 트러스 거더(520')의 단부(520s)의 단면은 이에 연결되는 트러스 거더(520)의 단부의 단면과 동일하게 형성되어, 이들이 용접이나 고정 플레이트를 이용한 볼트/리벳 체결로 상호 견고하게 연결된다.In addition, the cross-sections of both ends of the pre-fabricated connector 500 ′ are formed to have the same cross-sections as end faces of the box girder 510 and the truss girder 520 which are manufactured separately to support the bridge. That is, the cross section of the end 510s of the connector box girder 510 'of the connector 500' is the same as the cross section of the end of the box girder 510 connected thereto, and the connector of the connector 500 '. The cross section of the end 520s of the truss girder 520 'is formed in the same way as the cross section of the end of the truss girder 520 connected thereto, so that they are firmly connected to each other by bolting or riveting using welding or fixing plates.
이와 같이, 미리 제작된 연결체(500')를 이용하여 서로 다른 단면의 거더를 종방향으로 연결하는 복합 형식의 연속화 교량(500)을 시공함으로써, 현장에서의 교량의 시공 기간을 단축하고 공정을 보다 단순화시킬 수 있는 장점이 얻어진다. 상기 연결체(500')는 현장에서 제작될 수도 있지만, 본 발명의 다른 실시 형태에 따르면 공장에서 연결체(500')를 제작한 후 현장으로 운반하여 사용됨으로써 제작 공종의 효율을 보다 높일 수 있다. As such, by constructing a continuous bridge 500 of a composite type in which longitudinally connecting girders of different cross-sections using a pre-fabricated connector 500 ', the construction period of the bridge in the field can be shortened and the process can be completed. Advantages that can be simplified further are obtained. The connector 500 'may be manufactured in the field, but according to another embodiment of the present invention, the connector 500' may be manufactured at the factory and then transported to the site to increase the efficiency of the manufacturing work. .
이와 같이 구성된 본 발명의 제5실시예에 따른 복합 형식을 갖는 연속화 교량(500)은 다음과 같은 공정에 의해 시공된다.The sequential bridge 500 having the complex type according to the fifth embodiment of the present invention configured as described above is constructed by the following process.
단계 1: 먼저 도19에 도시된 단면의 박스 거더(510)를 공장에서 제작한 후, 차량에 실어 현장으로 운반한다. Step 1 : First, the box girder 510 of the section shown in FIG. 19 is manufactured at a factory, and then loaded into a vehicle and transported to a site.
단계 2: 단계 1과 독립적으로 트러스 형상의 트러스 거더(520)의 하현재(520a), 상현재(520b) 및 연결재(520c)를 공장에서 제작하여 현장으로 운반한 후, 이들 부재들을 볼트 이음 등에 의해 조립하여 트러스 형상의 트러스 거더(520)를 제작한다. 이 때, 차량으로 운반할 수 있는 범위 내에서 트러스 거더(520)의 하현재(520a), 상현재(520b) 및 연결재(520c)의 일부를 미리 공장에서 결합시키도록 제작할 수도 있다. Step 2 : After the lower chord 520a, the top chord 520b and the connecting member 520c of the truss girder 520 of the truss shape are manufactured at the factory and transported to the site independently of the step 1, these members are transferred to bolt joints or the like. By assembling, the truss girder 520 of the truss shape is produced. At this time, a part of the lower chord 520a, the upper chord 520b, and the connecting member 520c of the truss girder 520 may be manufactured in a factory in advance within the range that can be carried by the vehicle.
단계 3: 마찬가지로, 박스 거더(510)와 트러스 거더(520)가 중복 배열되어 연결되는 복합 영역(II)에서의 연결 구조에 해당하는 연결체(500')를 미리 공장에서 제작한다. 연결체(500')는 박스 거더(510)의 내부에 트러스 거더(520)가 삽입되는 형태로 중복 배열되므로, 공장에서 제작한 후 차량에 실어 현장으로 운반할 수 있다. Step 3 : Similarly, in the factory, the connector 500 'corresponding to the connection structure in the composite region II in which the box girder 510 and the truss girder 520 are overlapped and connected is manufactured in advance. Since the connection body 500 ′ is overlapped with the truss girder 520 inserted into the box girder 510, the connector 500 ′ may be manufactured at the factory and then carried in a vehicle and transported to the site.
단계 4: 도28에 도시된 바와 같이, 단계 1에서 제작되어 현장으로 운반된 박스 거더(510)를 크레인으로 인상하여, 일단이 제1교각(10)의 교좌 장치(10a)의 상부에 거치되고 타단이 또 다른 임시 교각에 의해 거치되도록 위치시킨다. Step 4 : As shown in Fig. 28, the box girder 510 manufactured in Step 1 and transported to the site is lifted by a crane, and one end is mounted on the top of the bridge device 10a of the first piers 10. Position the other end to be mounted by another temporary pier.
단계 5: 공장에서 제작되어 운반된 연결체(500')를 단계 2에서 제작된 트러스 거더(520)와 일체 거동할 수 있도록 고정 플레이트를 매개로 하여 다수의 볼트 및/또는 용접으로 상호 견고하게 연결한다. 즉, 연결체 트러스 거더(520')의 단부를 동일한 단면의 트러스 거더(520)의 단부와 연결 결합된다. Step 5 : Firmly connect the plurality of bolts and / or welds through the fixing plate so that the connector 500 'manufactured and transported at the factory can be integrally operated with the truss girder 520 manufactured in step 2. do. That is, the end of the connector truss girder 520 'is coupled to the end of the truss girder 520 of the same cross section.
그리고 나서, 연결체(500')와 결합된 트러스 거더(520)를 크레인으로 인상하여, 도29에 도시된 바와 같이, 연속 지점부인 제2교각(20)의 교좌 장치(20a)의 상부에 그 중앙부가 위치하도록 거치시킨다.Then, the truss girder 520 coupled with the connector 500 'is lifted by a crane, and as shown in FIG. 29, the upper portion of the bridge device 20a of the second piers 20, which is a continuous point portion, is lifted. Mount it so that its center is located.
단계 6: 도30에 도시된 바와 같이 박스 거더(510)와 트러스 거더(520)을 교축방향으로 견고하게 연결한 후 임시교각을 제거한다. 따라서, 박스 거더(510)와 트러스 거더(520)는 하나의 위치(point)에서가 아니라 복합 영역(II)에 해당하는 일정한 길이에 걸쳐 중복하여 배열되면서 상호 연결 결합된다. Step 6 : As shown in FIG. 30, the box girder 510 and the truss girder 520 are firmly connected in the axial direction, and then the temporary pier is removed. Thus, the box girder 510 and the truss girder 520 are interconnected while overlappingly arranged over a certain length corresponding to the composite region II, rather than at one point.
단계 7: 그리고 나서, 트러스 거더(520)의 하현재(520a)의 주변에 거푸집(미도시)이 설치되고, 이 거푸집에 콘크리트를 타설하여 하현재(520a)를 감싸는 보강 콘크리트(528)를 합성한다. 이를 통해, 연속 지점부(20)에 인가되는 커다란 부모멘트를 보다 효과적으로 지지할 수 있다. Step 7 : Then, formwork (not shown) is installed around the lower chord 520a of the truss girder 520, and the concrete is poured into the form to synthesize the reinforcement concrete 528 surrounding the lower chord 520a. do. Through this, it is possible to more effectively support the large parent applied to the continuous point portion 20.
그 다음, 강재거더(510)와 트러스 거더(520)의 상측에는 바닥판 콘크리트(530)를 시공하기 위한 거푸집이 설치되고, 이 거푸집에 철근을 배근한 후 굳지 않은 콘크리트를 현장 타설하는 것에 의하여 차량 등이 통행하는 바닥판 콘크리트(530)를 시공한다. 이 때, 박스 거더(510)의 상측과 트러스 거더(520)의 상측에는 전단 연결재(511)가 상방으로 돌출되도록 결합됨에 따라, 바닥판 콘크리트(530)는 박스 거더(510) 및 트러스 거더(520)와 견고하게 결합된다. Next, a formwork for constructing the bottom plate concrete 530 is installed on the upper side of the steel girder 510 and the truss girder 520, and after reinforcing the reinforcement to the formwork, the vehicle is cast by the site The bottom plate concrete 530 through the back is constructed. At this time, the shear connection member 511 is coupled to the upper side of the box girder 510 and the upper side of the truss girder 520 so that the bottom plate concrete 530 is the box girder 510 and the truss girder 520. ) And firmly combined.
한편, 본 발명의 다른 실시형태에 따르면, 서로 다른 단면 형상의 박스 거더(510)와 트러스 거더(520)의 복합 영역(II)에서의 연결부를 미리 공장에서 제작한 연결체(500')가 트러스 거더(520)에 연결 고정된 상태로 크레인에 의해 인상되어 제2교각(20)에 거치되는 대신에, 미리 제작해 둔 연결체(500')를 박스 거더(510)에 연결 고정한 상태로 제1교각(10)에 먼저 거치되도록 시공할 수도 있다. 또한, 미리 제작해 둔 연결체(500')를 박스 거더(510)나 트러스 거더(520)에 연결 고정하는 것을 지상에서 하지 않고, 연결체(500')만을 크레인으로 인상하여 또 다른 임시 교각 상에 거치시킨 후 이를 공중에서 박스 거더(510) 및 트러스 거더(520)와 상호 연결되도록 시공할 수도 있다.On the other hand, according to another embodiment of the present invention, the connector 500 'manufactured at the factory in advance in the joint area II of the box girder 510 and the truss girder 520 having different cross-sectional shapes is a truss. Instead of being pulled up by a crane in a fixed state connected to the girder 520 and mounted on the second piers 20, the first connection body 500 'prepared in advance is connected to the box girder 510 and fixed. It may be constructed to be first mounted on the piers 10. In addition, instead of fixing the connector 500 'previously manufactured to the box girder 510 or the truss girder 520 from the ground, only the connector 500' is lifted by a crane to form another temporary pier. After mounting on it, it may be constructed to be interconnected with the box girder 510 and the truss girder 520 in the air.
그러나, 본 발명의 다른 실시형태에 따르면, 상기 연결체(500')를 미리 제작하여 사용하지 않고, 현장에서 박스 거더(510)와 트러스 거더(520)를 상호 연결하는 복합 영역(II)을 시공하도록 구성될 수도 있다. However, according to another embodiment of the present invention, the composite area II for interconnecting the box girder 510 and the truss girder 520 in the field is constructed without using the connector 500 'in advance. It may be configured to.
한편, 본 발명의 실시예에 따른 박스 거더(510)의 단면형상은 도19에 나타낸 바와 같이 상부가 밀폐된 강재 거더를 사용하는 대신에, 상부가 개방된 U형상의 강재거더를 포함할 수도 있다. On the other hand, the cross-sectional shape of the box girder 510 according to an embodiment of the present invention may include a U-shaped steel girder, the top of which is open, instead of using a steel girder with the top closed as shown in FIG. .
한편, 복합 형식의 연속화 교량의 연속 지점부의 내하 능력을 보다 향상시키기 위하여, 본 발명의 제5실시예에 따른 복합 형식을 갖는 연속화 교량은 다음과 같이 시공될 수도 있다. On the other hand, in order to further improve the load carrying capacity of the continuous point portion of the continuous bridge of the composite type, the continuous bridge having the composite type according to the fifth embodiment of the present invention may be constructed as follows.
단계 1: 먼저 트러스 형상의 부모멘트용 강재거더(520)의 하현재(520a), 상현재(520b) 및 연결재(520c)를 공장에서 제작하여 현장으로 운반한 후, 이들 부재들을 볼트 이음 등에 의해 조립하여 트러스 형상의 부모멘트용 강재거더(520)를 제작한다(S110). 이 때, 차량으로 운반할 수 있는 범위 내에서 부모멘트용 강재거더(520)의 하현재(520a), 상현재(520b) 및 연결재(520c)의 일부를 미리 공장에서 결합시키도록 제작할 수도 있다. Step 1 : First, the lower chord 520a, the upper chord 520b, and the connecting material 520c of the truss-shaped parent girder 520 are manufactured at the factory and transported to the site, and then these members are bolted or the like. By assembling to produce a truss-shaped parent girder 520 (S110). At this time, a part of the lower chord 520a, the upper chord 520b and the connecting member 520c of the parent steel girder 520 may be manufactured in advance in a factory within a range that can be carried by a vehicle.
단계 2: 단계 1과 독립적으로 도3에 도시된 단면의 정모멘트용 강재거더(510)를 공장에서 제작한 후, 차량에 실어 현장으로 운반한다(S120). Step 2 : After the steel moment girder 510 for the positive moment of the cross-section shown in Figure 3 independent of the step 1 is manufactured in the factory, it is carried in the vehicle to the site (S120).
단계 3: 마찬가지로, 정모멘트용 강재거더(510)와 부모멘트용 강재거더(520)가 중복 배열되어 연결되는 복합 영역(II)에서의 연결 구조에 해당하는 연결체(500')를 미리 공장에서 제작한다(S130). 연결체(500')는 정모멘트용 강재거더(510)의 내부에 부모멘트용 강재거더(520)가 삽입되는 형태로 중복 배열되므로, 공장에서 제작한 후 차량에 실어 현장으로 운반할 수 있다. Step 3 : Similarly, in the factory, the connector 500 'corresponding to the connection structure in the composite region II in which the constant moment steel girder 510 and the parent moment steel girder 520 are overlapped and connected is pre-manufactured. Produce (S130). Since the connection body 500 ′ is arranged in such a manner that the parent moment steel girder 520 is inserted into the steel moment girder 510 for the positive moment, the connector 500 ′ may be transported to the site after being manufactured at the factory.
단계 4: 그리고 나서, 공장에서 제작되어 운반된 연결체(500')를 단계 1에서 제작된 부모멘트용 강재거더(520)와 일체 거동할 수 있도록 고정 플레이트를 매개로 하여 다수의 볼트 및/또는 용접으로 상호 견고하게 연결한다(S140). 즉, 연결체 박스거더(510')의 단부는 동일한 단면의 박스거더(510)의 단부와 연결 결합되며, 연결체 트러스 거더(520')의 단부는 동일한 단면의 부모멘트용 강재거더(520)의 단부와 연결 결합된다. Step 4 : Then, a plurality of bolts and / or via a fixing plate may be provided so that the connector 500 'manufactured and transported at the factory may be integrated with the steel girder 520 for the parent cement fabricated in step 1. It is firmly connected to each other by welding (S140). That is, the end of the connector box girder 510 ′ is coupled to the end of the box girder 510 of the same cross section, and the end of the connector truss girder 520 ′ is the steel girder 520 for the parent cement of the same cross section. Is connected to the end of the connection.
단계 5: 그 다음, 도32에 도시된 바와 같이, 단계 2에서 제작되어 현장으로 운반된 정모멘트용 강재거더(510)를 크레인으로 인상하여, 일단이 제1교각(10)의 교좌 장치(10a)의 상부에 거치되고 타단이 또 다른 임시 교각에 의해 거치되도록 위치시킨다. 그리고, 연결체(500')와 결합된 부모멘트용 강재거더(520)를 크레인으로 인상하여, 도34에 도시된 바와 같이, 연속 지점부인 제2교각(20)의 교좌 장치(20a)의 상부에 그 중앙부가 위치하도록 거치시킨다. Step 5 : Then, as shown in Fig. 32, the steel moment girder 510 for the positive moment produced in step 2 and transported to the site is lifted by a crane, and the end device 10a of the first piers 10 is lifted. ) Is positioned on top of the and the other end is mounted by another temporary pier. Then, the steel girder 520 for the parent cement coupled with the connecting member 500 'is pulled up by a crane, and as shown in FIG. 34, the upper portion of the bridge device 20a of the second piers 20 as a continuous point portion. Mount it at its center.
그리고 나서, 도34에 도시된 바와 같이 정모멘트용 강재거더(510)와 부모멘트용 강재거더(520)을 교축방향으로 견고하게 연결한 후 임시교각을 제거하여, 정모멘트용 강재거더(510)와 부모멘트용 강재거더(520)는 하나의 위치(point)에서가 아니라 복합 영역(II)에 해당하는 일정한 길이에 걸쳐 중복하여 배열되면서 상호 연결 결합된 상태로 교각(10, 20)상에 거치된 상태가 된다(S150).Then, as shown in FIG. 34, the steel moment girder 510 for the positive moment and the steel girder 520 for the parent moment are firmly connected in the axial direction, and then the temporary pier is removed to remove the temporary moment steel girder 510. And girder steel girders 520 are mounted on the piers 10 and 20 in an interconnected state while overlappingly arranged over a predetermined length corresponding to the complex region II, not at one point. It becomes the state (S150).
단계 6: 그 다음, 강재 거더(510, 520)의 상측에 바닥판 콘크리트(530i, 530f)를 타설하기 위한 거푸집(미도시)를 설치하고, 이 거푸집에 철근을 배근한다. 이 때, 정모멘트용 강재거더(510)의 상측에 바닥판 콘크리트(530i)를 타설하기 위한 거푸집과 부모멘트용 강재거더(520)의 상측에 바닥판 콘크리트(530f)를 타설하기 위한 거푸집은 서로 구분하여 콘크리트를 타설할 수 있도록 설치된다. Step 6 : Next, formwork (not shown) for placing the bottom plate concrete 530i and 530f on the upper side of the steel girders 510 and 520, and the reinforcing bars are placed in the formwork. At this time, the formwork for placing the bottom plate concrete 530i on the upper side of the steel moment girder 510 for static moment and the formwork for placing the bottom plate concrete 530f on the upper side of the steel girder 520 for the parent moment It is installed to pour concrete separately.
그리고 나서, 정모멘트용 강재거더(510)의 상측의 거푸집에만 굳지 않은 콘크리트를 현장 타설하여 바닥판 콘크리트(530i)를 정모멘트용 강재거더(510)에 합성시킨다(S160). 이 때, 정모멘트용 강재거더(510)의 상측에는 전단 연결재(511)가 상방으로 돌출되도록 결합됨에 따라, 바닥판 콘크리트(530i)는 정모멘트용 강재거더(510)와 견고하게 결합된다. Then, the concrete that is not hardened only in the formwork on the upper side of the steel moment girder 510 for static moment is placed on the floor plate concrete 530i to synthesize the steel moment girder 510 for the constant moment (S160). At this time, the shear connection member 511 is coupled to the upper side of the steel moment girder 510 for the positive moment, so that the bottom plate concrete 530i is firmly coupled with the steel girder 510 for the moment.
정모멘트 구간의 바닥판 콘크리트(530i)를 타설하기 이 전에 필요 시 트러스 거더(520)의 하현재(520a)의 주변에 거푸집(미도시)이 설치되고, 이 거푸집에 콘크리트를 타설하여 하현재(520a)를 감싸는 보강 콘크리트(528)를 합성할 수도 있다. 이를 통해, 공용 중 연속 지점부(20)의 중립축 하연에 인가되는 압축 응력을 보다 효과적으로 지지할 수 있다. 이와 동시에, 트러스 거더(520)의 단면 중 폐단면으로 형성된 하현재(520a) 및 연결재(520c)에 콘크리트를 타설하여 각 부재(520a-120c)에 작용하는 압축 응력을 보강할 수도 있다. Formwork (not shown) is installed around the lower chord 520a of the truss girder 520 before pouring the bottom plate concrete 530i of the constant moment section, and the concrete Reinforced concrete 528 surrounding 520a may be synthesized. Through this, it is possible to more effectively support the compressive stress applied to the lower edge of the neutral axis of the continuous point portion 20 in common. At the same time, concrete may be poured into the lower chord 520a and the connecting member 520c formed in the closed section of the cross section of the truss girder 520 to reinforce compressive stress acting on each member 520a-120c.
단계 7: 그리고 나서, 도35에 도시된 바와 같이, 정모멘트용 강재거더(510)에 무거운 웨이트(미도시)를 거치하거나 매다는 것에 의하여, 정모멘트용 강재거더(510)가 하방으로 처짐 변위가 발생되도록 강제로 하중(P)을 도입한다(S170). 이 하중(P)에 의하여 연속 지점부(20)의 부모멘트용 강재거더(520)는 상방(上方)으로 볼록해지는 변위가 발생된다. Step 7 : Then, as shown in FIG. 35, by placing or hanging a heavy weight (not shown) on the steel moment girder 510 for the positive moment, the displacement of the steel moment girder 510 for the positive moment is lowered. The force P is introduced to be generated (S170). The load P causes displacement of the steel girder 520 for the parent cement of the continuous point portion 20 to be convex upward.
단계 8: 단계 7에서 상방으로 볼록해진 변위가 발생한 상태에서, 부모멘트용 강재거더(520)의 상측에 설치된 거푸집에 콘크리트를 타설하여 연속 지점부(20)에서의 바닥판 콘크리트(520f)가 합성된다(S180). Step 8 : In the state in which the upwardly convex displacement occurs in step 7, the concrete is poured into the formwork installed on the upper side of the parent steel girder 520, and the bottom plate concrete 520f at the continuous point portion 20 is synthesized. (S180).
단계 9: 그리고 나서, 정모멘트용 강재거더(510)에 부과하였던 웨이트를 제거하여, 하방으로 볼록한 처짐 변위가 발생되었던 정모멘트용 강재거더(510)와 상방으로 볼록한 휨변위가 발생되었던 부모멘트용 강재거더(520)를 원래의 형상으로 복귀시킨다(S190). 이를 통해, 부모멘트용 강재거더(510)의 상측에 합성되는 바닥판 콘크리트(530f)에는 압축 프리스트레스가 도입되어, 공용 중 작용하는 부모멘트에 대하여 균열이 발생되지 않고 효과적으로 저항 능력을 갖게 된다. Step 9 : Then, the weight imposed on the steel moment girder 510 for the positive moment is removed, and the parent moment where the convex bending deflection is generated upwardly with the positive moment steel girder 510 in which the downwardly convex deflection displacement is generated. The steel girder 520 is returned to its original shape (S190). Through this, compression prestress is introduced to the bottom plate concrete 530f synthesized on the upper side of the parent steel girder 510, so that cracks do not occur with respect to the parent cement acting in common, thereby effectively having resistance.
이 때, 부모멘트용 강재거더(520)의 상측에는 전단 연결재(521)가 상방으로 돌출되도록 결합됨에 따라, 바닥판 콘크리트(530f)는 부모멘트용 강재거더(520)와 견고하게 결합된다. At this time, the shear connector 521 is coupled to the upper side of the parent cement girder 520 so as to protrude upward, the bottom plate concrete 530f is firmly coupled to the parent cement girder 520.
또 한편, 복합 형식의 연속화 교량의 연속 지점부의 내하 능력을 보다 향상시키기 위하여, 본 발명의 제5실시예에 따른 복합 형식을 갖는 연속화 교량은 도28내지 도31에 도시된 바와 같이 다음과 같은 또 다른 방법으로 시공될 수도 있다. 다만, 단계 1 내지 단계 6은 바로 이전에 설명한 시공 방법에서의 각 단계와 동일하게 행한다. On the other hand, in order to further improve the load carrying capacity of the continuous point portion of the continuous bridge of the composite type, the continuous bridge having the composite type according to the fifth embodiment of the present invention is as shown in Figs. It may be constructed in other ways. However, steps 1 to 6 are performed in the same manner as each step in the construction method just described.
단계 7: 부모멘트용 강재거더(520)의 상측에 설치된 거푸집(565)에 철근이 배근된 상태에서, 쉬스관에 내설된 긴장재(561)를 설치한다(S270). 여기서, 긴장재(561)를 긴장시키는 정착구(560)는 거푸집(565)의 하부에 위치하도록 배열된다. Step 7 : install the tension member 561 in the sheath tube in the state that the reinforcing bar in the formwork 565 installed on the upper side of the steel girder 520 for the parent cement (S270). Here, the fixing unit 560 for tensioning the tension member 561 is arranged to be located under the formwork 565.
단계 8: 그리고 나서, 부모멘트용 강재거더(520)의 상측에 설치된 거푸집(565)에 굳지 않은 콘크리트를 현장 타설한다(S280). Step 8 : Then, site-pouring concrete that is not hardened in the formwork 565 installed on the upper side of the parent steel girder 520 (S280).
단계 9: 타설된 콘크리트가 콘크리트 관련 규정에서 정한 강도에 도달하면, 긴장재(561)를 도면부호 160f로 표시된 방향으로 잡아당겨 긴장시킨 후 정착하여 연속 지점부(20)상의 바닥판 콘크리트(530f)에 압축 프리스트레스를 도입한다(S290). 이를 통해, 부모멘트용 강재거더(510)의 상측에 합성되는 바닥판 콘크리트(530f)에는 압축 프리스트레스가 도입되어, 공용 중 작용하는 부모멘트에 대하여 균열이 발생되지 않고 효과적으로 저항 능력을 갖게 된다. Step 9 : When the poured concrete reaches the strength specified in the concrete regulations, the tension member 561 is pulled in the direction indicated by the reference numeral 160f to tension and settled to the bottom plate concrete 530f on the continuous point portion 20. Compression prestress is introduced (S290). Through this, compression prestress is introduced to the bottom plate concrete 530f synthesized on the upper side of the parent steel girder 510, so that cracks do not occur with respect to the parent cement acting in common, thereby effectively having resistance.
한편, 또 다른 실시예에서는 쉬스관에 내설된 긴장재(561)를 타설된 콘크리트가 소정의 강도로 굳은 이후에 긴장, 정착하여 포스트텐션 방식에 의해 부모멘트가 작용하는 영역(I)의 바닥판 콘크리트(530f)에 압축 프리스트레스를 도입한 것을 예로 들었지만, 본 발명의 다른 실시 형태에 따르면, 부모멘트가 작용하는 영역(I)에 쉬스관에 내설되지 않은 긴장재를 미리 당긴 상태로 노출되게 설치하여 두고, 굳지 않은 콘크리트를 타설하여 최종적인 강도에 도달하도록 양생시킴으로써, 부모멘트가 작용하는 영역(I)의 바닥판 콘크리트(530f)에 압축 프리스트레스를 도입할 수도 있다.Meanwhile, in another embodiment, the bottom plate concrete of the region (I) in which the parent moment acts by a post tension method after tension and fixation of the tension material 561 in the sheath pipe is solidified to a predetermined strength. Although compression prestress was introduced at 530f as an example, according to another embodiment of the present invention, the tension member, which is not built in the sheath tube, is exposed in a state in which a tension material, which is not built in the sheath tube, is exposed in advance. Compression prestress may be introduced into the bottom plate concrete 530f in the region I in which the parent moment acts by pouring the hardened concrete and curing it to reach the final strength.
그리고, 긴장재(560)를 이용하여 부모멘트가 작용하는 영역(I)의 바닥판 콘크리트(530f)에 압축 프리스트레스를 도입하는 데 있어서, 바닥판 콘크리트(530i, 130f)를 각각 구분하여 강재 거더(510, 120)에 합성하는 것을 예로 들었지만, 강재 거더(510, 120)의 상측에 합성되는 바닥판 콘크리트(530i, 130f)는 한꺼번에 합성될 수도 있다. In addition, when the compressive prestress is introduced into the bottom plate concrete 530f in the region I in which the parent moment acts by using the tension member 560, the steel girder 510 is divided into the bottom plate concretes 530i and 130f, respectively. For example, the composite of the 120, but the bottom plate concrete (530i, 130f) synthesized on the upper side of the steel girders (510, 120) may be synthesized at once.
그리고, 본 발명의 다른 실시형태에 따르면, 서로 다른 단면 형상의 정모멘트용 강재거더(510)와 부모멘트용 강재거더(520)의 복합 영역(II)에서의 연결부를 미리 공장에서 제작한 연결체(500')가 부모멘트용 강재거더(520)에 연결 고정된 상태로 크레인에 의해 인상되어 제2교각(20)에 거치되는 대신에, 미리 제작해 둔 연결체(500')를 정모멘트용 강재거더(510)에 연결 고정한 상태로 제1교각(10)에 먼저 거치되도록 시공할 수도 있다. 또한, 미리 제작해 둔 연결체(500')를 정모멘트용 강재거더(510)나 부모멘트용 강재거더(520)에 연결 고정하는 것을 지상에서 하지 않고, 연결체(500')만을 크레인으로 인상하여 또 다른 임시 교각 상에 거치시킨 후 이를 공중에서 정모멘트용 강재거더(510) 및 부모멘트용 강재거더(520)와 상호 연결되도록 시공할 수도 있다. 그리고, 본 발명의 실시예에 따른 정모멘트용 강재거더(510)의 단면형상은 도3에 나타낸 바와 같이 상부가 밀폐된 강재 거더를 사용하는 대신에, 상부가 개방된 U형상의 강재거더를 포함할 수도 있다. In addition, according to another embodiment of the present invention, a connector in which the joint part in the composite area II of the steel moment girder 510 and the parent moment steel girder 520 having a different cross-sectional shape is manufactured at the factory in advance. Instead of being pulled up by the crane and mounted on the second piers 20 in a fixed state in which the 500 'is connected to the steel girder 520 for the parent moment, the prefabricated connector 500' is used for the constant moment. The steel girder 510 may be installed so as to be mounted on the first piers 10 in a fixed state. In addition, the connection member 500 'made in advance is fixed to the steel moment girder 510 or the parent moment steel girder 520 for the constant moment, and only the connection body 500' is lifted by a crane. After mounting on another temporary piers may be constructed so as to be interconnected with the steel girder 510 and the parent moment girder 520 for the moment in the air. In addition, the cross-sectional shape of the steel moment girder 510 for the positive moment according to the embodiment of the present invention, as shown in Figure 3, instead of using the steel girder closed top, the U-shaped steel girder is open You may.
이상에서는 본 발명의 바람직한 실시예를 예시적으로 설명하였으나, 본 발명의 범위는 이와 같은 특정 실시예에만 한정되는 것은 아니며, 특허청구 범위에 기재된 범주 내에서 적절하게 변경 가능한 것이다. 다시 말하면, 본 발명의 실시예에서는 2경간 연속화된 강합성거더 교량(100)을 예로 들어 설명하였지만, 위 실시 예를 참조하여 이를 3경간 이상의 연속화 교량에 적용하는 것은 당해 기술 분야의 당업자에게는 너무도 명확히 이해할 수 있으며, 특허청구범위에 기재된 범주 내에서 3경간 이상의 연속화 교량에 적용하는 것도 당연히 본 발명의 범주에 속하는 것이다.In the above, the preferred embodiments of the present invention have been described by way of example, but the scope of the present invention is not limited to these specific embodiments, and may be appropriately changed within the scope described in the claims. In other words, the embodiment of the present invention has been described by taking a two-span continuous steel composite girder bridge 100 as an example, it is too clear for those skilled in the art to apply this to three or more continuous bridges with reference to the above embodiment. As can be understood, it is naturally within the scope of the present invention to apply to three or more continuous bridges within the scope described in the claims.

Claims (30)

  1. 교량에 작용하는 정모멘트를 지지하기 위하여 제1강형이 포함되도록 제작된 제1거더와; A first girder manufactured to include a first steel in order to support a constant moment acting on the bridge;
    제1연속지점부에 작용하는 부모멘트를 지지하기 위하여 제3강형의 상부에 압축 프리스트레스가 도입된 제3케이싱 콘크리트가 합성되도록 미리 제작되고 동시에 일단이 상기 제1거더의 타단과 교축방향으로 연결되는 제3강합성거더와; In order to support the parent moment acting on the first continuous point portion, the pre-fabricated third casing concrete with compression prestress introduced into the upper part of the third steel is pre-fabricated and at the same time one end is axially connected to the other end of the first girder. A third rigid girder;
    교량에 작용하는 정모멘트를 지지하기 위하여 제2강형이 포함되도록 제작되고 동시에 일단이 상기 제3강합성거더의 타단과 교축 방향으로 연결된 제2거더와; A second girder fabricated such that a second steel die is included to support a constant moment acting on the bridge, and at one end thereof connected to the other end of the third rigid girder in the axial direction;
    상기 제1거더, 상기 제2거더, 상기 제3강합성 거더의 상측에 형성된 바닥판 콘크리트를; A bottom plate concrete formed on an upper side of the first girder, the second girder, and the third rigid girder;
    포함하여 구성된 것을 특징으로 하는 연속화 교량의 상부구조. Superstructure of the continuous bridge, characterized in that configured to include.
  2. 제 1항에 있어서,The method of claim 1,
    제2연속지점부에 작용하는 부모멘트를 지지하기 위하여 제4강형의 상부에 압축 프리스트레스가 도입된 제4케이싱 콘크리트가 합성되도록 미리 제작되고 동시에 일단이 상기 제2거더의 타단과 교축방향으로 연결되는 제4강합성거더와; In order to support the parent moment acting on the second continuous point portion, the pre-fabricated fourth casing concrete in which the compression prestress is introduced on the upper part of the fourth steel is pre-fabricated and at the same time one end is axially connected to the other end of the second girder. A fourth rigid composite girder;
    교량에 작용하는 정모멘트를 지지하기 위하여 제5강형이 포함되도록 제작되고 동시에 일단이 상기 제4강합성거더의 타단과 교축 방향으로 연결된 제5거더를;A fifth girder fabricated so as to include a fifth steel to support a constant moment acting on the bridge, and at one end thereof connected to the other end of the fourth rigid girder in the axial direction;
    추가적으로 포함하고, 상기 바닥판 콘크리트는 상기 제1거더, 상기 제2거더, 상기 제3강합성 거더, 상기 제4강합성거더, 상기 제5거더의 상측에 형성된 것을 특징으로 하는 연속화 교량의 상부구조.In addition, the bottom plate concrete is the upper structure of the continuous bridge, characterized in that formed on the upper side of the first girder, the second girder, the third rigid girder, the fourth rigid girder, the fifth girder .
  3. 제 1항에 있어서, The method of claim 1,
    상기 제3강합성거더의 중앙부는 연속되는 중간지점부의 제3교각에 지지되고 동시에 상기 제1거더의 일단과 상기 제2거더의 타단은 상기 제3교각과 교축 방향으로 서로 다른 방향으로 이격된 위치에 놓인 교각에 거치되어, 2경간 연속화 교량의 상부구조를 이루는 것을 특징으로 하는 연속화 교량의 상부구조. The central portion of the third rigid girder is supported by a third pier of the continuous intermediate point portion, and at the same time, one end of the first girder and the other end of the second girder are spaced apart from each other in the direction of the third pier and the axial direction. The superstructure of the continuous bridge, characterized in that mounted on the bridge to form a superstructure of the two-span continuous bridge.
  4. 제 1항 내지 제 3항 중 어느 한 항에 있어서, The method according to any one of claims 1 to 3,
    상기 제1거더와 상기 제2거더 각각의 하부에는 압축 프리스트레스가 미리 도입된 제1케이싱 콘크리트와 제2케이싱 콘크리트가 합성되어 있는 것을 특징으로 하는 연속화 교량의 상부 구조.The upper structure of the continuous bridge, characterized in that the first casing concrete and the second casing concrete in which the compression prestress is introduced in advance is synthesized in the lower portion of each of the first girder and the second girder.
  5. 제 4항에 있어서, The method of claim 4, wherein
    교축방향으로 연결되는 위치에서의 상기 제1거더와 상기 제2거더와 상기 제3강합성거더 각각의 단부에는 상기 제1케이싱 콘크리트와 상기 제2케이싱 콘크리트와 상기 제3케이싱 콘크리트가 합성되지 않은 상태이고, 동시에 상기 제1거더와 상기 제2거더와 상기 제3강합성거더 각각의 단부는 동일한 크기의 강재단면만으로 구성되는 것을 특징으로 하는 연속화 교량의 상부 구조.The first casing concrete, the second casing concrete, and the third casing concrete are not synthesized at ends of the first girder, the second girder, and the third composite girder at the positions connected in the axial direction. And at the same time the end of each of the first girder, the second girder and the third composite girder is composed of only steel cross-section of the same size.
  6. 제 5항에 있어서, The method of claim 5,
    상기 제3케이싱 콘크리트의 상면은 상기 제3강합성 거더의 양단부의 제3강형의 상부 플랜지보다 높지 않게 형성된 것을 특징으로 하는 연속화 교량.The upper surface of the third casing concrete is a continuous bridge, characterized in that not formed higher than the upper flange of the third steel type of both ends of the third composite girder.
  7. 제 1항 내지 제 3항 중 어느 한 항에 있어서, 상기 제3강합성거더는, The method according to any one of claims 1 to 3, wherein the third composite girder,
    상기 제3강형의 상기 제3케이싱 콘크리트가 합성되는 영역에서의 하부 플랜지로부터 상부 플랜지에 이르는 복부의 높이(H1)가 상기 제3강합성거더의 양단부에서의 하부 플랜지로부터 상부 플랜지에 이르는 복부의 높이(H2)보다 더 낮게 형성되고, The height H1 of the abdomen from the lower flange to the upper flange in the region where the third casing concrete of the third steel is synthesized is the height of the abdomen from the lower flange to the upper flange at both ends of the third steel composite girder. Lower than (H2),
    상기 제3강형의 상기 제3케이싱 콘크리트가 합성되는 영역과 상기 제3강형의 양단부의 사이에는 상기 복부의 높이가 점차 높아지는 사이 영역을 구비한 것을 특징으로 하는 연속화 교량.And a region between which the height of the abdomen gradually increases between a region where the third casing concrete of the third steel is synthesized and both ends of the third steel.
  8. 제 1항 내지 제 3항 중 어느 한 항에 있어서, 상기 제3강합성거더는, The method according to any one of claims 1 to 3, wherein the third composite girder,
    상기 제3강형의 상기 제3케이싱 콘크리트가 합성되는 영역에서의 상부 플랜지의 상면에 상기 제3케이싱 콘크리트가 합성되도록 상기 제3케이싱 콘크리트의 측면을 감싸는 보조 측면철판이 형성된 것을 특징으로 하는 연속화 교량.And an auxiliary side iron plate surrounding a side surface of the third casing concrete so that the third casing concrete is synthesized on the upper surface of the upper flange in the region where the third casing concrete of the third steel type is synthesized.
  9. 제 1항 내지 제 3항 중 어느 한 항에 있어서, 상기 제3강합성거더는, The method according to any one of claims 1 to 3, wherein the third composite girder,
    상기 제3강형이 휨변형된 상태에서 상기 제3케이싱 콘크리트가 상기 휨변형된 제3강형의 인장측에 타설되어, 상기 제3강형의 휨변형으로부터 원래의 형상으로 복귀하려는 탄성 복원력에 의해 상기 제3케이싱 콘크리트에 압축 프리스트레스가 도입되어 제작된 것을 특징으로 하는 연속화 교량.The third casing concrete is poured on the tensile side of the flexurally deformed third steel in the state where the third steel is flexurally deformed, and the third casing concrete is disposed by the elastic restoring force to return to the original shape from the bending deformation of the third steel. 3. A continuous bridge characterized by the introduction of compression prestress into the casing concrete.
  10. 제 1항 내지 제 3항 중 어느 한 항에 있어서, 상기 제3강합성거더는, The method according to any one of claims 1 to 3, wherein the third composite girder,
    하판과 상기 하판을 상방으로 연결하는 측판으로 이루어진 박스 형태의 제3강형의 중립축 상부에 상기 제3케이싱 콘크리트가 합성되어 제작된 것을 특징으로 하는 연속화 교량.A continuous bridge, characterized in that the third casing concrete is synthesized on the upper portion of the neutral shaft of the box-shaped third steel consisting of a side plate connecting the lower plate and the lower plate upward.
  11. 교축 방향으로 연속하여 배열된 다수의 거더를 연속화하여 시공되는 강합성 거더의 연속화 교량의 상부 구조의 시공 방법으로서, As a method of constructing a superstructure of a continuous bridge of a rigid composite girder constructed by successively constructing a plurality of girders arranged in succession in the axial direction,
    압축 프리스트레스가 미리 도입된 제3케이싱 콘크리트가 제3강형의 상부에 합성되도록 제3강합성거더를 제작하는 단계와;Manufacturing a third steel composite girder such that the third casing concrete into which the compression prestress is introduced in advance is synthesized on the upper portion of the third steel mold;
    압축 프리스트레스가 미리 도입된 제1케이싱 콘크리트가 제1강형의 하부에 합성되도록 제1강합성거더를 제작하는 단계와;Manufacturing a first composite girder such that the first casing concrete into which the compression prestress has been introduced is synthesized in the lower portion of the first steel mold;
    압축 프리스트레스가 미리 도입된 제2케이싱 콘크리트가 제2강형의 하부에 합성되도록 제2강합성거더를 제작하는 단계와;Manufacturing a second composite girder such that the second casing concrete, into which the compression prestress is introduced, is synthesized in the lower portion of the second steel mold;
    연속화하고자 하는 위치에 가설된 제3교각의 상부에 제3교좌 장치를 설치하고, 상기 제3교좌 장치 위에 상기 제3강합성 거더를 크레인으로 인상하여 거치시키는 단계와;Installing a third stabilization device on an upper part of the third piers hypothesized at a position to be continuous, and lifting and mounting the third rigid girder with a crane on the third stair device;
    제3교각과 인접한 제1교각의 사이와 상기 제3교각과 인접한 제2교각의 사이에 각각 가설 교각을 설치하는 단계와;Providing a temporary pier between a third pier and an adjacent first pier, and between a third pier and an adjacent second pier;
    상기 제1강합성거더를 인상하여 상기 제1교각과 상기 제3교각 사이의 상기 가설 교각에 지지시킨 상태에서 상기 제1강합성거더의 일단과 상기 제3강합성거더의 일단을 용접, 볼트 체결 중 어느 하나 이상의 방법으로 접합시키는 단계와;Welding and bolting one end of the first composite girder and one end of the third composite girder while raising the first composite girder to support the temporary pier between the first and third piers. Conjugating by any one or more of methods;
    상기 제2강합성거더를 인상하여 상기 제2교각과 상기 제3교각 사이의 상기 가설 교각에 지지시킨 상태에서 상기 제2강합성거더의 일단과 상기 제3강합성거더의 타단을 용접, 볼트 체결 중 어느 하나 이상의 방법으로 접합시키는 단계를; Welding and bolting one end of the second composite girder and the other end of the third composite girder while raising the second composite girder and supporting the temporary pier between the second pier and the third pier. Conjugating by any one or more of methods;
    포함하여 구성된 것을 특징으로 하는 연속화된 강합성 거더 교량의 상부 구조의 시공 방법. Construction method of the superstructure of the continuous composite girder bridge, characterized in that comprising a.
  12. 상부 플랜지와 하부 플랜지와 상기 상부 플랜지와 상기 하부 플랜지를 연결하는 한 쌍의 복부를 구비한 박스 거더와, 상현재와 하현재와 상기 상현재와 상기 하현재를 연결하는 다수의 연결재를 구비한 트러스 거더가 종방향으로 연결 제작되는 복합 형식의 연속화 교량의 상부구조에 있어서, A truss having a box girder having an upper flange and a lower flange and a pair of abdomen connecting the upper flange and the lower flange, and a plurality of connecting members connecting the upper chord and the lower chord and the upper chord and the lower chord. In the superstructure of the continuous bridge of the composite type in which girders are connected in the longitudinal direction,
    상기 연속교량의 일 경간 길이보다 작은 길이로 제작되고, 상기 박스 거더와 연속하여 연결되는 연결체 박스 거더와;A connector box girder made of a length smaller than one span length of the continuous bridge and continuously connected to the box girder;
    상기 트러스 거더와 연속하여 연결되고, 상기 연결체 박스 거더의 내부에 일부 이상이 삽입 설치되는 연결체 트러스 거더와;A connector truss girder connected in series with the truss girder and having at least a portion inserted into the connector box girder;
    상기 연결체 박스 거더의 상기 상부 플랜지와 상기 하부 플랜지 및 상기 한 쌍의 복부와 결합되도록 설치되고, 상기 연결체 트러스 거더의 상기 상현재의 단부와 상기 하현재의 단부가 결합되는 다이어프램을;A diaphragm installed to be engaged with the upper flange and the lower flange of the connector box girder and the pair of abdomen, and the end of the upper chord and the lower chord of the connector truss girder coupled;
    포함하여 구성되어, 상기 연속교량의 상기 박스 거더와 상기 트러스 거더가 종방향으로 중복 배열되어 연결되는 복합 영역에서 상기 연속교량의 일부로 사용되는 복합 형식의 연속화 교량의 상부구조 연결체.And a superstructure coupling of the continuous bridge of the composite type, wherein the box girder of the continuous bridge and the truss girder are used as part of the continuous bridge in a composite region in which the truss girder is vertically arranged and connected.
  13. 제 12항에 있어서,The method of claim 12,
    상기 연결부의 상기 연결체 트러스 거더의 단부에는 상기 상현재와 상기 하현재를 수직으로 연결하는 수직 연결재가 설치되어, 상기 수직 연결재가 상기 다이어프램에 결합된 것을 특징으로 하는 복합 형식의 연속화 교량의 상부구조 연결체.An upper structure of the continuation bridge of the composite type bridge, characterized in that the vertical connection member for vertically connecting the upper chord and the lower chord is installed at the end of the connecting body truss girder of the connecting portion. Connections.
  14. 제 12항에 있어서,The method of claim 12,
    상기 연결체 트러스 거더는 상기 트러스 거더와 연결되는 위치에서 서로 동일한 단면으로 형성되고, 상기 연결체 박스 거더는 상기 박스 거더와 연결되는 위치에서 서로 동일한 단면으로 형성된 것을 특징으로 하는 복합 형식의 연속화 교량의 상부구조 연결체.The connector truss girder is formed in the same cross-section with each other at the position connected with the truss girder, the connector box girder is formed with the same cross-section with each other at the position connected with the box girder Superstructure connector.
  15. 제 12항에 있어서,The method of claim 12,
    상기 박스 거더의 한 쌍의 복부의 내면은 상기 트러스 거더의 상기 상현재와 상기 하현재가 용접 결합된 것을 특징으로 하는 복합 형식의 연속화 교량의 상부구조 연결체.And an inner surface of the pair of abdomen of the box girder is welded to the upper chord and the lower chord of the truss girder.
  16. 제 12항에 있어서,The method of claim 12,
    상기 연결체 트러스 거더의 상기 상현재에 양단부가 결합되고, 동시에 상기 박스 거더의 상기 상부 플랜지의 저면에 결합된 상측 보강재와;An upper reinforcement coupled to both ends of the upper chord of the connecting truss girder and simultaneously coupled to a bottom of the upper flange of the box girder;
    상기 연결체 트러스 거더의 상기 하현재에 양단부가 결합되고, 동시에 상기 박스 거더의 상기 하부 플랜지의 상면에 결합된 하측 보강재; 중 어느 하나 이상이 구비된 것을 특징으로 하는 복합 형식의 연속화 교량의 상부구조 연결체.A lower reinforcement coupled to both ends of the lower chord of the connecting truss girder and simultaneously coupled to an upper surface of the lower flange of the box girder; The superstructure connecting body of the continuous bridge of the composite type characterized in that any one or more of the provided.
  17. 제 16항에 있어서,The method of claim 16,
    상기 하측 보강재에는 배수구가 형성된 것을 특징으로 하는 복합 형식의 연속화 교량의 상부구조 연결체.The upper structural connecting body of the continuous bridge of the composite type characterized in that the lower reinforcement is formed with a drain.
  18. 제 17항에 있어서,The method of claim 17,
    상기 상측 보강재, 상기 하측 보강재 중 어느 하나는 상기 연결체 트러스 거더의 종방향에 수직한 판면에 대하여 경사지게 배열된 것을 특징으로 하는 복합 형식의 연속화 교량의 상부구조 연결체.Any one of the upper reinforcement and the lower reinforcement is arranged inclined with respect to the plate perpendicular to the longitudinal direction of the connecting truss girder.
  19. 상부 플랜지와 하부 플랜지와 상기 상부 플랜지와 상기 하부 플랜지를 연결하는 한 쌍의 복부를 구비하고 고정 하중에 의하여 정모멘트가 발생되는 영역에 설치된 박스 거더와; A box girder having an upper flange and a lower flange and a pair of abdomen connecting the upper flange and the lower flange and installed in an area in which a constant moment is generated by a fixed load;
    상현재와 하현재와 상기 상현재와 상기 하현재를 연결하는 다수의 연결재를 구비하고 고정 하중에 의하여 부모멘트가 발생되는 영역에 설치된 트러스 거더와;A truss girder having a plurality of connecting members connecting the upper chord and the lower chord and the upper chord and the lower chord and installed in an area where a parent moment is generated by a fixed load;
    상기 박스 거더의 상기 상부 플랜지와 상기 하부 플랜지 및 상기 한 쌍의 복부와 결합되는 다이어프램을 설치하고, 상기 트러스 거더의 상기 상현재의 단부와 상기 하현재의 단부가 상기 다이어프램에 결합되어, 상기 트러스 거더와 상기 박스 거더가 중복하여 배치되는 복합 영역이 발생하도록 상기 트러스 거더와 상기 박스 거더를 종방향으로 연결하는 연결부를;A diaphragm coupled to the upper flange and the lower flange of the box girder and the pair of abdomen, and the upper chord end and the lower chord end of the truss girder are coupled to the diaphragm and the truss girder And a connecting part connecting the truss girder and the box girder in a longitudinal direction so that a composite area in which the box girder overlaps with each other is generated.
    포함하여 구성된 것을 특징으로 하는 복합 형식의 연속화 교량의 상부구조.Superstructure of the continuous bridge of the composite type, characterized in that configured to include.
  20. 제19항에 있어서,The method of claim 19,
    상기 연결부는 제1항 내지 제5항 중 어느 한 항에 따른 연결체를 구비하되, 상기 연결체 트러스 거더는 상기 트러스 거더에 종방향으로 연결되어 상기 트러스 거더와 일체화되고, 상기 연결체 박스 거더는 상기 박스 거더에 종방향으로 연결되어 상기 박스 거더에 일체화된 것을 특징으로 하는 복합 형식의 연속화 교량의 상부구조.The connecting portion includes a connecting body according to any one of claims 1 to 5, wherein the connecting truss girder is connected to the truss girder in a longitudinal direction to be integrated with the truss girder, and the connecting box girder is The superstructure of the continuous bridge of the composite type characterized in that the longitudinally connected to the box girder and integral with the box girder.
  21. 제 19항에 있어서,The method of claim 19,
    상기 트러스 거더의 상기 상현재, 상기 하현재, 상기 연결재 중 어느 하나 이상은 폐단면으로 형성되고, 상기 폐단면에는 콘크리트가 채워져 합성된 것을 특징으로 하는 연속교량의 상부 구조.At least one of the upper chord, the lower chord, and the connecting member of the truss girder is formed as a closed cross-section, the closed cross-sectional superstructure of the continuous bridge, characterized in that the concrete is filled.
  22. 제 19항에 있어서,The method of claim 19,
    상기 트러스 거더의 상기 하현재에는 콘크리트가 합성된 것을 특징으로 하는 연속교량의 상부 구조.The lower structure of the truss girder is a superstructure of a continuous bridge, characterized in that the concrete is synthesized.
  23. 상현재, 하현재 및 상기 상현재와 상기 하현재를 연결하는 다수의 연결재를 구비한 트러스 형상의 부모멘트용 거더를 제작하는 단계와;Manufacturing a truss-shaped parent girder having an upper chord, a lower chord and a plurality of connecting members connecting the upper chord and the lower chord;
    박스형상, '
    Figure PCTKR2010004391-appb-I000012
    '형상, I형상 중 어느 하나의 단면으로 형성된 정모멘트용 거더를 제작하는 단계와;
    Box shape,
    Figure PCTKR2010004391-appb-I000012
    Manufacturing a girder for a constant moment formed in one of the cross-sections of the shape and I shape;
    상기 정모멘트용 거더와 상기 부모멘트용 거더가 교량의 하부 구조 상에 거치된 상태로 상호 연결되도록 시공하는 단계와;Constructing the regular moment girders and the parent moment girders so as to be interconnected while mounted on the lower structure of the bridge;
    상기 정모멘트용 거더의 상부에 바닥판 콘크리트를 합성하는 단계와;Synthesizing bottom plate concrete on top of the girder for the constant moment;
    상기 정모멘트용 거더가 하방으로의 처짐 변위가 발생되도록 강제로 하중을 도입하는 하중도입단계와;A load introduction step of forcibly introducing a load such that the static moment girder causes a deflection displacement downward;
    상기 부모멘트용 거더의 상부에 바닥판 콘크리트를 합성하는 단계와;Synthesizing the bottom plate concrete on top of the parent girder;
    상기 정모멘트용 거더에 도입하였던 하중을 제거하는 단계를;Removing the load introduced to the constant moment girder;
    포함하여 구성되어, 상기 부모멘트용 거더의 상부에 합성된 바닥판 콘크리트에 압축 프리스트레스가 도입되는 것을 특징으로 하는 복합 형식의 연속화 교량의 시공 방법.And a compression prestress is introduced into the bottom plate concrete synthesized on top of the parent girder.
  24. 제23항에 있어서, The method of claim 23, wherein
    상기 하중도입단계는 상기 정모멘트용 거더에 웨이트를 부과하는 것에 의해 이루어지는 것을 특징으로 하는 복합 형식의 연속화 교량의 시공 방법. The load introduction step is a method of constructing a sequential bridge of the composite type characterized in that the weight is applied to the girder for the constant moment.
  25. 상현재, 하현재 및 상기 상현재와 상기 하현재를 연결하는 다수의 연결재를 구비한 트러스 형상의 부모멘트용 거더를 제작하는 단계와;Manufacturing a truss-shaped parent girder having an upper chord, a lower chord and a plurality of connecting members connecting the upper chord and the lower chord;
    Figure PCTKR2010004391-appb-I000013
    형상, I형상 중 어느 하나의 단면으로 형성된 정모멘트용 거더를 제작하는 단계와;
    Figure PCTKR2010004391-appb-I000013
    Manufacturing a girder for a constant moment formed in one of cross-sections of a shape and an I shape;
    상기 정모멘트용 거더와 상기 부모멘트용 거더가 교량의 하부 구조 상에 거치된 상태로 상호 연결되도록 시공하는 단계와;Constructing the regular moment girder and the parent moment girder to be connected to each other while being mounted on a lower structure of a bridge;
    상기 정모멘트용 거더의 상부에 바닥판 콘크리트를 합성하는 단계와;Synthesizing bottom plate concrete on top of the girder for the constant moment;
    상기 부모멘트용 거더의 상부의 바닥판 콘크리트를 타설할 거푸집을 설치하고, 상기 거푸집 내에 긴장재를 설치하는 단계와; Installing a formwork to pour the bottom plate concrete on the upper part of the girder for parenting, and installing a tension member in the formwork;
    상기 긴장재를 이용하여 상기 거푸집에 타설된 콘크리트에 압축 프리스트레스를 도입하는 압축 프리스트레스 도입단계를;A compression prestress introduction step of introducing a compression prestress to the concrete poured into the formwork using the tension member;
    포함하여 구성된 것을 특징으로 하는 복합 형식의 연속화 교량의 시공 방법.A construction method for a sequential bridge of a complex type, characterized in that configured to include.
  26. 제 25항에 있어서, The method of claim 25,
    상기 부모멘트용 거더의 상부에 합성되는 바닥판 콘크리트와 상기 정모멘트용 거더의 상부에 합성되는 바닥판 콘크리트는 동시에 타설되는 것을 특징으로 하는 복합 형식의 연속화 교량의 시공 방법. The bottom plate concrete synthesized on the upper portion of the girder for the parent and the bottom plate concrete synthesized on the upper portion of the girder for the constant moment is poured at the same time, characterized in that the construction method of the composite bridge.
  27. 제 25항에 있어서, 상기 압축프리스트레스 도입단계는, The method of claim 25, wherein the compression prestress introduction step,
    상기 긴장재가 긴장된 상태에서 상기 거푸집에 콘크리트가 타설되어 양생되는 것에 의해 이루어지는 것을 특징으로 하는 복합 형식의 연속화 교량의 시공 방법. And the concrete is poured into the mold and cured in a state where the tension member is in a tense state.
  28. 제 25항에 있어서, 상기 압축 프리스트레스 도입단계는, The method of claim 25, wherein the compression prestressing step,
    상기 긴장재는 쉬스관에 내설되고; 상기 거푸집에 타설된 콘크리트가 미리 정해진 강도로 양생되면 상기 긴장재를 긴장, 정착하는 것에 의해 이루어지는 것을 특징으로 하는 복합 형식의 연속화 교량의 시공 방법. The tension member is housed in a sheath tube; And when the concrete placed in the form is cured to a predetermined strength, the tension member is tensioned and fixed.
  29. 제23항 내지 제 28항 중 어느 한 항에 있어서, The method according to any one of claims 23 to 28, wherein
    상기 부모멘트용 거더의 상기 연결재에 콘크리트를 합성시키는 단계를; Synthesizing concrete with the connecting member of the parent girder;
    추가적으로 포함하는 복합 형식의 연속화 교량의 시공 방법.Construction method of a sequential bridge of the compound type which includes it additionally.
  30. 제23항 내지 제28항 중 어느 한 항에 있어서, The method according to any one of claims 23 to 28, wherein
    상기 부모멘트용 거더의 상부의 바닥판 콘크리트를 합성하는 단계 이전에, 상기 부모멘트용 거더의 하현재의 일부 이상에 콘크리트를 합성시키는 단계를; Synthesizing the concrete to at least a portion of the lower chord of the parent girder prior to the step of synthesizing the bottom plate concrete of the upper part of the girder;
    추가적으로 포함하는 복합 형식의 연속화 교량의 시공 방법.Construction method of a sequential bridge of the compound type which includes it additionally.
PCT/KR2010/004391 2009-07-07 2010-07-06 Upper part structure for a continuous bridge, which efficiently supports negative moment and has improved constructability, and method for constructing same WO2011005009A2 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR1020090061851A KR101079616B1 (en) 2009-07-07 2009-07-07 Upper structure of continuous steel composite girder bridge for achieving easy installation and effective endurance for negative moment and method of constructing same
KR10-2009-0061851 2009-07-07
KR10-2009-0088598 2009-09-18
KR1020090088598A KR101006835B1 (en) 2009-09-18 2009-09-18 Complex upper structure of continuous bridge and method of constructing same
KR10-2010-0049921 2010-05-28
KR1020100049923A KR101191647B1 (en) 2010-05-28 2010-05-28 Constructing method of continuous bridge with complex upper structure
KR1020100049921A KR101181665B1 (en) 2010-05-28 2010-05-28 Complex upper structure of continuous bridge and connecting structure used therein
KR10-2010-0049923 2010-05-28

Publications (2)

Publication Number Publication Date
WO2011005009A2 true WO2011005009A2 (en) 2011-01-13
WO2011005009A3 WO2011005009A3 (en) 2011-04-21

Family

ID=43429661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/004391 WO2011005009A2 (en) 2009-07-07 2010-07-06 Upper part structure for a continuous bridge, which efficiently supports negative moment and has improved constructability, and method for constructing same

Country Status (1)

Country Link
WO (1) WO2011005009A2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105002816A (en) * 2015-07-29 2015-10-28 广西交通科学研究院 Prefabricated-assembling fish-bellied I-shaped prestress steel-concrete combination continuous beam bridge and construction method
CN106120569A (en) * 2016-08-25 2016-11-16 中铁五局集团路桥工程有限责任公司 A kind of continuous rigid frame bridge closure section pushing reaction shelf structure
CN108978434A (en) * 2018-10-16 2018-12-11 河南省交通规划设计研究院股份有限公司 A kind of Novel steel-is mixed to be combined Continuous Box Girder Bridge and its industrializes construction method without bracket
CN109763603A (en) * 2019-03-11 2019-05-17 江南大学 A kind of wave inception shape steel-concrete combined beam
CN109811653A (en) * 2019-02-27 2019-05-28 中铁大桥勘测设计院集团有限公司 A kind of Multi-point supporting integrated deck system
CN109972533A (en) * 2019-04-24 2019-07-05 中铁十二局集团有限公司 A kind of thrustor for steel truss girder bridge closure
CN110714414A (en) * 2019-10-28 2020-01-21 中铁山桥集团有限公司 Longitudinal translation method of super-long overweight bridge member
CN113898123A (en) * 2021-10-19 2022-01-07 哈尔滨工业大学 U-shaped steel-solid waste concrete composite beam with composite structure and construction method
CN114232489A (en) * 2021-12-20 2022-03-25 福建宏盛建设集团有限公司 Construction method of large-span steel-concrete structure building
CN114936393A (en) * 2022-03-29 2022-08-23 中铁第四勘察设计院集团有限公司 Method and device for determining optimal beam height of cable-stayed bridge and electronic equipment
WO2022241814A1 (en) * 2021-05-20 2022-11-24 中南大学 Fabricated tie bar rectangular steel tube concrete truss composite beam and construction method therefor
CN115387537A (en) * 2022-09-13 2022-11-25 傅银新 Frame beam structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100615471B1 (en) * 2005-08-23 2006-08-28 우경건설 주식회사 Steel plate girder bridge and it's construction method is using a steel composite horizontal beam
US20080060146A1 (en) * 2004-09-25 2008-03-13 Han Man-Yop Hollow Prestressed Concrete (Hpc) Girder and Spliced Hollow Prestressed Concrete Girder (S-Hpc) Bridge Construction Method
KR100906400B1 (en) * 2008-12-02 2009-07-07 노윤근 Steel composite steel box girder bridge construction method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080060146A1 (en) * 2004-09-25 2008-03-13 Han Man-Yop Hollow Prestressed Concrete (Hpc) Girder and Spliced Hollow Prestressed Concrete Girder (S-Hpc) Bridge Construction Method
KR100615471B1 (en) * 2005-08-23 2006-08-28 우경건설 주식회사 Steel plate girder bridge and it's construction method is using a steel composite horizontal beam
KR100906400B1 (en) * 2008-12-02 2009-07-07 노윤근 Steel composite steel box girder bridge construction method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105002816A (en) * 2015-07-29 2015-10-28 广西交通科学研究院 Prefabricated-assembling fish-bellied I-shaped prestress steel-concrete combination continuous beam bridge and construction method
CN106120569A (en) * 2016-08-25 2016-11-16 中铁五局集团路桥工程有限责任公司 A kind of continuous rigid frame bridge closure section pushing reaction shelf structure
CN108978434A (en) * 2018-10-16 2018-12-11 河南省交通规划设计研究院股份有限公司 A kind of Novel steel-is mixed to be combined Continuous Box Girder Bridge and its industrializes construction method without bracket
CN108978434B (en) * 2018-10-16 2024-02-20 河南省交通规划设计研究院股份有限公司 Bracket-free industrialized construction method of steel-concrete combined continuous box girder bridge
CN109811653A (en) * 2019-02-27 2019-05-28 中铁大桥勘测设计院集团有限公司 A kind of Multi-point supporting integrated deck system
CN109763603A (en) * 2019-03-11 2019-05-17 江南大学 A kind of wave inception shape steel-concrete combined beam
CN109763603B (en) * 2019-03-11 2020-08-04 江南大学 Wave-forming steel-concrete combined beam
CN109972533A (en) * 2019-04-24 2019-07-05 中铁十二局集团有限公司 A kind of thrustor for steel truss girder bridge closure
CN109972533B (en) * 2019-04-24 2024-02-13 中铁十二局集团有限公司 Pushing device for closure of steel truss bridge
CN110714414A (en) * 2019-10-28 2020-01-21 中铁山桥集团有限公司 Longitudinal translation method of super-long overweight bridge member
WO2022241814A1 (en) * 2021-05-20 2022-11-24 中南大学 Fabricated tie bar rectangular steel tube concrete truss composite beam and construction method therefor
CN113898123A (en) * 2021-10-19 2022-01-07 哈尔滨工业大学 U-shaped steel-solid waste concrete composite beam with composite structure and construction method
CN113898123B (en) * 2021-10-19 2023-01-31 哈尔滨工业大学 U-shaped steel-solid waste concrete composite beam with composite structure and construction method
CN114232489B (en) * 2021-12-20 2023-08-25 福建宏盛建设集团有限公司 Construction method of large-span reinforced concrete structure building
CN114232489A (en) * 2021-12-20 2022-03-25 福建宏盛建设集团有限公司 Construction method of large-span steel-concrete structure building
CN114936393A (en) * 2022-03-29 2022-08-23 中铁第四勘察设计院集团有限公司 Method and device for determining optimal beam height of cable-stayed bridge and electronic equipment
CN115387537A (en) * 2022-09-13 2022-11-25 傅银新 Frame beam structure

Also Published As

Publication number Publication date
WO2011005009A3 (en) 2011-04-21

Similar Documents

Publication Publication Date Title
WO2011005009A2 (en) Upper part structure for a continuous bridge, which efficiently supports negative moment and has improved constructability, and method for constructing same
WO2011108781A1 (en) Manufacturing method of composite steel box girder and construction method of box girder bridge using same
KR101079616B1 (en) Upper structure of continuous steel composite girder bridge for achieving easy installation and effective endurance for negative moment and method of constructing same
WO2015002348A1 (en) Prefabricated frame for steel-concrete composite member having attachable and detachable formwork and prefabricated column integrated with corrugated deck formwork
WO2021107249A1 (en) Method for manufacturing prestressed girder for improvement of transverse curvature, and method for constructing girder bridge thereby
KR101208231B1 (en) Method for constructing continuous supporting structure of corrugated steel web PSC beam
JP2002004224A (en) Construction method of single span and multi span composite girder bridge
KR100923409B1 (en) Construction method of Spliced Prestressed Concrete Girder Bridge in consideration of the construction sequence
CN110331664B (en) Steel-concrete mixed continuous box girder bridge deck joint structure and construction method thereof
WO2018110960A1 (en) Modular frame lining assembly, method for producing same, and method for producing temporary structure using same
WO2018199528A1 (en) Prestressed concrete girder
WO2021157944A1 (en) Steel composite psc girder including arched reinforcement member
KR101191647B1 (en) Constructing method of continuous bridge with complex upper structure
KR200431821Y1 (en) The Method of Construction for Continuous Bridge made by Prestressed Concrete I-Shape Girder
KR100909004B1 (en) Hybrid composite girder continuous bridge and constructing method therefor
KR101006835B1 (en) Complex upper structure of continuous bridge and method of constructing same
KR20130081606A (en) Method for continuous supporting structure of corrugated steel plate web-psc composite beam
KR100456471B1 (en) Open-type steel wire holding device and Metod for construction of continuous bridge using of prestressed concret beam having it
KR100391713B1 (en) Continuous Preflex Beam Structures Using External Tendon and Constructing Method thereof
KR20110130542A (en) Complex upper structure of continuous bridge and connecting structure used therein
KR100334237B1 (en) Continous composite steel girder bridges and construction method using themperature gradient
KR20090084376A (en) Composite girder used steel-concrete of continuous of prestress bridge and it's building method
WO2020262735A1 (en) Method for alternately constructing underground vertical members using top-down construction method
KR101144603B1 (en) Superstructure of complex continuous bridge and connecting structure used therein
KR100944005B1 (en) Pre-stressed Steel Girder and Method for introducing pre-stress into the steel girder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10797283

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10797283

Country of ref document: EP

Kind code of ref document: A2