WO2011004596A1 - ハウス用換気装置およびハウス用空気調和システム - Google Patents

ハウス用換気装置およびハウス用空気調和システム Download PDF

Info

Publication number
WO2011004596A1
WO2011004596A1 PCT/JP2010/004428 JP2010004428W WO2011004596A1 WO 2011004596 A1 WO2011004596 A1 WO 2011004596A1 JP 2010004428 W JP2010004428 W JP 2010004428W WO 2011004596 A1 WO2011004596 A1 WO 2011004596A1
Authority
WO
WIPO (PCT)
Prior art keywords
house
air
hygroscopic liquid
liquid
filler
Prior art date
Application number
PCT/JP2010/004428
Other languages
English (en)
French (fr)
Inventor
宮内彦夫
三上芳宏
Original Assignee
ダイナエアー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイナエアー株式会社 filed Critical ダイナエアー株式会社
Publication of WO2011004596A1 publication Critical patent/WO2011004596A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1417Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with liquid hygroscopic desiccants
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/246Air-conditioning systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/001Compression cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • F24F2110/70Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses

Definitions

  • the present invention relates to a house ventilation device and house air conditioning system used for house cultivation of agricultural products and the like.
  • plant factories that cultivate plants in an environment that is not easily affected by changes in weather and temperature are attracting attention.
  • a plant factory is a technique for strictly controlling room temperature and illuminance than conventional house cultivation in order to create an environment suitable for plant growth.
  • Patent Document 1 In a conventional house, for example, as described in Patent Document 1, it is known that a part of the house is opened and ventilated. In this method, pests that cause illness and mold enter the house.
  • Patent Document 2 discloses a ventilation system that performs ventilation while preventing the invasion of harmful pests into the house.
  • Patent Document 2 cannot prevent the environment in the house from being disturbed by ventilation.
  • Humidity is an important factor in growing plants. For example, when the humidity is high, gray mold disease or the like is caused, and when the humidity is low, powdery mildew or the like is caused. Therefore, maintaining an appropriate range of humidity is as important as maintaining the temperature.
  • Patent Document 2 no consideration is given to the humidity in the house.
  • Patent Document 2 it is described that when the outside air temperature is high, the temperature in the house is lowered by humidification. However, this pays attention to the temperature in the house, and does not consider humidity. In the Japanese climate, the humidity is high in the summer when the outside temperature is high. However, in Patent Document 2, the humidity is increased when the temperature is high, and the humidity further increases. Such problems arise.
  • the present invention provides a new house ventilation apparatus and house air conditioning system that can perform appropriate ventilation in consideration of the air environment in the house.
  • the house ventilator of the present invention has a fan for sending air into the house from the outside of the house, a filler provided in a passage of air flowing from the outside of the house into the house, and a sterilizing effect on the filler.
  • a hygroscopic liquid supply section for supplying a hygroscopic liquid that also has, a liquid tank for containing the hygroscopic liquid that has passed through the filler, and a hygroscopic liquid having a concentration changed by gas-liquid contact with air in the filler And a playback device.
  • the filler may be provided so as to block an air passage.
  • the house ventilator of the present invention may be provided with a sensor for measuring the carbon dioxide concentration in the house and ventilate so that the carbon dioxide concentration becomes a predetermined threshold value or more.
  • This configuration can maintain the carbon dioxide concentration in the house at an appropriate value by ventilation and promote plant growth.
  • the house ventilation device of the present invention may include an insect repellent filter on the air passage from the outside of the house to the filler.
  • the house ventilation apparatus of the present invention may include a dustproof filter on the air passage from the outside of the house to the filler.
  • the regenerator includes a housing having an intake port for taking in air and an exhaust port for discharging air, a hygroscopic liquid supply unit for supplying a hygroscopic liquid to be regenerated, A filler that temporarily retains the hygroscopic liquid in order to bring the hygroscopic liquid supplied from the hygroscopic liquid supply section into air-liquid contact with the air, and an air passage from the intake to the filler; An insect filter may be provided on an air passage from the filler to the exhaust port.
  • insects there are many insects in the environment where the house is installed.
  • the insect filter on the inlet side of the filler, it is possible to prevent contamination of the hygroscopic liquid due to the invasion of insects and to extend the life of the hygroscopic liquid.
  • insects can be prevented from entering even when the operation of the regenerator is stopped.
  • the air conditioning system for a house of the present invention includes the above-described ventilation device for a house and an indoor air combustion type heating device installed in the house.
  • the temperature inside the house can be raised by an energy efficient internal air combustion type heating device.
  • the air conditioning system for a house includes the above-described ventilation device for a house and a cooling device using ground water or service water installed in the house.
  • the present invention by the hygroscopic liquid having a bactericidal effect, by treating the air taken from the outside, can be ventilated while maintaining the environment in the house.
  • FIG. 1 is a diagram illustrating an overall configuration of an air conditioning system 70 for a house.
  • the house H to which the house air conditioning system 70 is applied is, for example, a plastic house or a plastic house, and provides an environment for growing the plant P.
  • an illumination 71 for cultivation is provided in the house H. Electric power generated by the cogeneration generator 72 is supplied to the lighting 71 for cultivation.
  • the installation target of the air conditioning system is referred to as “house”, but the house air conditioning system 70 of the present invention can also be applied to a facility referred to as “plant factory”. It is.
  • the house air conditioning system 70 has a house ventilator (hereinafter referred to as “ventilator”) 1 for taking outside air into the house H.
  • the air in the house H is exhausted from an exhaust port (not shown).
  • the exhaust port is opened only when air is taken in by the ventilator 1, and is closed when the ventilator 1 is not operating.
  • the exhaust port is relatively small, and the flow of air from the inside of the house H to the outside of the house H is formed by the supply pressure of air from the ventilation device 1. Thereby, invasion of microscopic organisms and the like from the exhaust port can be prevented.
  • the ventilator 1 adjusts the humidity of the air taken in from the outside, cleans it, and supplies it to the house H. Exhaust heat generated by the cogeneration generator 72 is supplied to the ventilation device 1.
  • the house air conditioning system 70 uses the exhaust heat of the cogeneration generator 72 to improve energy use efficiency.
  • the house air conditioning system 70 has an inside air combustion hot air heater 73 and a cooling fan 74 in the house H.
  • the indoor air combustion warm air device 73 is a device that generates warm air by burning oxygen in the house H.
  • the inside-air combustion warm air device 73 also has a function as a carbon dioxide gas applicator. When the carbon dioxide concentration in the house H is lowered, carbon dioxide can be applied by the internal air combustion hot air heater 73.
  • the cooling fan 74 generates cold air by cooling the air with groundwater or water.
  • the humidity (latent heat) is adjusted, so that the thermal energy in the house H can be obtained without reducing the room temperature (sensible heat) by cooling. Can be reduced. Therefore, an environment suitable for the growth of the plant P can be created by gentle cooling using groundwater or irrigation water.
  • FIG. 2 is a diagram showing a detailed configuration of the ventilation device 1 used in the air conditioning system 70 for a house.
  • the ventilation device 1 has a processing machine 10 that processes air taken from the outside of the house H and introduces the air into the house H.
  • the processor 10 adjusts the humidity by bringing the taken-in air into gas-liquid contact with the hygroscopic liquid L.
  • lithium chloride (LiCl) is used as the hygroscopic liquid L.
  • FIG. 3A is a diagram showing the dust removal rate of lithium chloride
  • FIG. 3B is a diagram showing the sterilizing power of lithium chloride.
  • lithium chloride can remove almost 100% of dust having a particle size of 5 ⁇ m or more.
  • FIG. 3B is a diagram showing the time and concentration required for sterilizing the test bacteria species.
  • Escherichia coli can be sterilized by exposing it to lithium chloride having a concentration of 20% or more for 10 minutes or more.
  • the ventilator 1 of the present embodiment uses lithium chloride having a concentration of about 27 to 30%, and thus exhibits a high sterilizing effect.
  • the hygroscopic liquid L is not limited to lithium chloride, but a salt solution having deliquescence such as saline, polyhydric alcohols having high hygroscopicity such as glycerin, ethylene glycol, propylene glycol, and other hygroscopic properties, An inexpensive liquid having sterilizing power and dust removing power may be used.
  • the ventilation device 1 has a regenerator 40 that regenerates the hygroscopic liquid L used for the processing in the processing device 10.
  • the regeneration of the hygroscopic liquid L refers to returning the hygroscopic liquid L whose concentration has changed by performing humidity adjustment to the state before the humidity adjustment treatment.
  • moisture in the air is absorbed by the hygroscopic liquid L by cooling the hygroscopic liquid L having a high solution concentration and passing air through the cooled hygroscopic liquid L.
  • the solution concentration of the hygroscopic liquid L is lowered by this treatment, the hygroscopic liquid L having a low solution concentration cannot perform sufficient dehumidification.
  • the hygroscopic liquid L having a high solution concentration is returned to the hygroscopic liquid L having a high solution concentration by a regeneration process for desorbing moisture from the hygroscopic liquid L having a low solution concentration.
  • the hygroscopic liquid L is returned to the low solution concentration by the regeneration process in which the hygroscopic liquid L absorbs moisture.
  • FIG. 2 shows an example in which one regenerator 40 is connected to one processor 10.
  • FIG. 2 shows an example in which one regenerator 40 is connected to one processor 10.
  • FIG. 1 shows an example in which one regenerator 40 is connected to one processor 10.
  • the processor 10 and the regenerator 40 are connected by a first hygroscopic liquid conduit 61 and a second hygroscopic liquid conduit 62.
  • the first hygroscopic liquid pipe 61 is a pipe for sending the hygroscopic liquid L from the processor 10 to the regenerator 40
  • the second hygroscopic liquid pipe 62 is a hygroscopic pipe from the regenerator 40 to the processor 10. This is a conduit for feeding the sex liquid L.
  • the processing machine 10 includes a housing 11 that contains a filler 14 for performing gas-liquid contact between air and the hygroscopic liquid L, and a hygroscopic liquid supply unit 15 that drops the hygroscopic liquid L on the filler 14. It has.
  • the hygroscopic liquid L dropped from the hygroscopic liquid supply unit 15 slowly flows down through the filler 14. Therefore, the hygroscopic liquid L stays temporarily in the filler.
  • the housing 11 is formed with an intake port 12 for taking in air and an exhaust port 13 for discharging air.
  • a dustproof filter 18 that prevents sand and dust from entering the housing 11 and an insectproof filter 19 that prevents insects from passing through the dustproof filter 18 are attached to the intake port 12.
  • the exhaust port 13 is provided with a fan 17 for sending air taken from outside into the house H. As the fan 17 rotates, air is taken into the housing 11 from the outside of the house H, and is sent into the house H through a path indicated by an arrow in FIG.
  • the ventilation amount by the ventilation device 1, that is, the rotation speed of the fan 17 is controlled by the control unit 66.
  • An insect filter 20 is also attached to the exhaust port 13.
  • the filler 14 since the filler 14 is provided on a passage through which air passes, the air taken in from the intake port 12 passes through the filler 14. As described above, since the hygroscopic liquid L stays in the filler 14, moisture is exchanged between the hygroscopic liquid L and the air passing through the filler 14 to perform dehumidification or humidification. Is called. Further, the air passing through the filler 14 is purified by the dust removing action and the sterilizing action of lithium chloride. As shown in FIG. 2, the filler 14 is provided so as to block the air passage, and there is no gap between the inner surface of the housing 11 and the filler 14. Therefore, the air introduced into the house H surely passes through the filler 14.
  • the processing machine 10 has a pipe 21 for supplying the hygroscopic liquid L in the liquid tank 16 to the hygroscopic liquid supply unit 15.
  • a pump 22 is attached to the pipe 21 to suck up the hygroscopic liquid L in the liquid tank 16.
  • This pipe 21 is provided with a first heat exchanger 31 of a heat pump 30, and the hygroscopic liquid L is heated or cooled by the first heat exchanger 31.
  • the first heat exchanger 31 controls the temperature of the hygroscopic liquid L supplied from the hygroscopic liquid supply unit 15 of the processor 10. Whether the hygroscopic liquid L is heated or cooled depends on whether the processor 10 humidifies or dehumidifies the air. That is, when the processor 10 performs the humidification process, the hygroscopic liquid L is heated in order to release the moisture contained in the hygroscopic liquid L into the air. Conversely, when the processor 10 performs the dehumidifying process, the hygroscopic liquid L is cooled in order to make the hygroscopic liquid L easily absorb moisture in the air.
  • the first hygroscopic liquid pipe 61 for sending the hygroscopic liquid L in the liquid tank 16 to the regenerator 40 is connected to the pipe 21 for sucking the hygroscopic liquid L from the liquid tank 16 through the three-way valve 23. ing.
  • the three-way valve 23 controls the amount of the hygroscopic liquid L sent to the hygroscopic liquid supply unit 15 of the processor 10 and the amount of the hygroscopic liquid L sent to the regenerator 40 through the first hygroscopic liquid pipe 61.
  • the three-way valve 23 is configured such that (amount of hygroscopic liquid L sent to the hygroscopic liquid supply unit 15): (amount of hygroscopic liquid L sent to the regenerator 40) is from 8: 2 to 9: 1. Control to be a percentage.
  • the first hygroscopic-liquid pipe path 61, the second heat exchanger 32 is provided, to cool or heat the hygroscopic liquid L supplied to the regenerator 40.
  • the second heat exchanger 32 controls the temperature of the hygroscopic liquid L supplied to the regenerator 40.
  • the first heat exchanger 31 and the second heat exchanger 32 constitute a heat pump 30, and heat moves between the first heat exchanger 31 and the second heat exchanger 32.
  • the heat pump 30 includes a first heat exchanger 31, a second heat exchanger 32, a compressor 33, an expansion valve 34, and a refrigerant pipe 35 that connects them.
  • the heat pump 30 can cause the first heat exchanger 31 to function as an evaporator or a condenser by reversing the refrigerant flow.
  • the second heat exchanger 32 performs a process opposite to that of the first heat exchanger 31.
  • the regenerator 40 regenerates the hygroscopic liquid L by bringing the hygroscopic liquid L sent from the processor 10 into air-liquid contact.
  • the regenerator 40 includes a casing 41 that houses a filler 44 for performing gas-liquid contact between air and the hygroscopic liquid L, and a hygroscopic liquid supply unit 45 that drops the hygroscopic liquid L on the filler 44. have.
  • a liquid tank 46 that stores the hygroscopic liquid L that has passed through the filler 44 is provided at the lower portion of the housing 41.
  • the hygroscopic liquid supply unit 45 is filled with the hygroscopic liquid supply unit 45 a that supplies the hygroscopic liquid L sent through the first hygroscopic liquid pipe 61 to the filler 44, and the hygroscopic liquid L sucked up from the liquid tank 46. And a hygroscopic liquid supply unit 45 b for supplying the material 44. Whether the second heat exchanger 32 of the heat pump 30 provided in the first hygroscopic liquid pipe 61 heats or cools the hygroscopic liquid L is whether the hygroscopic liquid L is concentrated or diluted by the regenerator 40. by.
  • the regenerator 40 concentrates the hygroscopic liquid L
  • the hygroscopic liquid L is heated in order to release the moisture contained in the hygroscopic liquid L into the air.
  • the regenerator 40 dilutes the hygroscopic liquid L
  • the hygroscopic liquid L is cooled in order to make the hygroscopic liquid L easily absorb moisture in the air.
  • the housing 41 is formed with an intake port 42 for taking in air and an exhaust port 43 for discharging air.
  • a dustproof filter 56 that prevents sand and dust from entering the housing 41 and an insectproof filter 57 that prevents insects from passing through the dustproof filter 56 are attached to the intake port 42.
  • the exhaust port 43 is provided with a fan 47 for exhausting air from the inside of the housing 41.
  • a fan 47 for exhausting air from the inside of the housing 41.
  • the air in the housing 41 is discharged to the outside, and the inside of the housing 41 has a negative pressure with respect to the outside of the housing 41.
  • An insect filter 58 is also attached to the exhaust port 43. Thereby, even when the fan 47 is stopped, insects can be prevented from entering the housing 41 from the exhaust port 43.
  • the arrows indicate the flow of air.
  • the air taken in from the intake 42 passes through the filler 44. Since the hygroscopic liquid L stays in the filler 44, moisture is exchanged between the hygroscopic liquid L and air. Thereby, the hygroscopic liquid L is regenerated.
  • the regenerator 40 has a pipe 49 that supplies the hygroscopic liquid L in the liquid tank 46 to the first hygroscopic liquid conduit 61.
  • the hygroscopic liquid L in the liquid tank 46 is sucked up by the pump 50 to the first hygroscopic liquid pipe 61.
  • the hygroscopic liquid L is supplied again to the regenerator 40 through the second heat exchanger 32.
  • the regenerator 40 has a supply pipe 51 for supplying the hygroscopic liquid L in the liquid tank 46 to the hygroscopic liquid supply unit 45b.
  • a pump 52 is attached to the supply pipe 51 and sucks up the hygroscopic liquid L in the liquid tank 46.
  • the tube 51 is provided with a heating source 53. This heating source heats the hygroscopic liquid L flowing through the pipe 51 using the exhaust heat of the cogeneration generator 72.
  • the heating source 53 heats the hygroscopic liquid L sucked up from the liquid tank 46 when it is desired to increase the temperature in addition to the temperature control by the second heat exchanger 32.
  • the heated hygroscopic liquid L is dropped onto the filler 44 from the hygroscopic liquid supply unit 45 b and is brought into gas-liquid contact with the filler 44.
  • the hygroscopic liquid L that has passed through the filler 44 enters the liquid tank 46.
  • the regenerator 40 performs a regeneration process of the hygroscopic liquid L.
  • the regenerator 40 has a water supply pipe 54 for supplying water to the liquid tank 46.
  • a valve 55 is provided on the water supply pipe 54, and water supply is controlled by the valve 55.
  • the hygroscopic liquid L in the liquid tank 46 returns to the processing machine 10 through the second hygroscopic liquid conduit 62.
  • the amount of the hygroscopic liquid L that returns from the regenerator 40 to the processor 10 is adjusted by a valve 63.
  • the valve 63 controls the amount of the hygroscopic liquid L that is returned to the processor 10 so that the liquid level of the hygroscopic liquid L in the liquid tank 46 is constant.
  • the ventilator 1 has a heat exchanger 64 that exchanges heat between the first hygroscopic liquid conduit 61 and the second hygroscopic liquid duct 62.
  • This heat exchanger 64 reduces the temperature difference between the hygroscopic liquid L flowing through the first hygroscopic liquid conduit 61 and the hygroscopic liquid L flowing through the second hygroscopic liquid conduit 62, and the pumping temperature difference of the heat pump 30 is reduced. Contributes to reduction.
  • the configuration of the ventilation device 1 has been described in detail above.
  • the house air conditioning system 70 measures the carbon dioxide concentration in the house H by the sensor 65 that measures the carbon dioxide concentration.
  • the ventilation device 1 adjusts the ventilation amount by the control unit 66 so that the carbon dioxide concentration in the house H maintains a predetermined threshold value. For example, ventilation is started when the carbon dioxide concentration falls below a predetermined threshold, and ventilation is performed until it becomes equal to the external carbon dioxide concentration.
  • the ventilation device 1 supplies the outside air to the house H after dehumidifying the outside air to the same degree as the humidity in the house H.
  • the ventilation device 1 causes the first heat exchanger 31 of the heat pump 30 to function as an evaporator and the second heat exchanger 32 as a condenser.
  • a hygroscopic liquid L having a high solution concentration is placed in the liquid tank 16 of the processor 10.
  • the processor 10 sucks up the hygroscopic liquid L having a high solution concentration from the liquid tank 16, cools the hygroscopic liquid L in the first heat exchanger 31 functioning as an evaporator, and supplies the hygroscopic liquid L to the hygroscopic liquid supply unit 15. To do.
  • the hygroscopic liquid supply unit 15 drops the hygroscopic liquid L onto the filler 14. The dropped hygroscopic liquid L slowly passes through the filler 14 and returns to the liquid tank 16.
  • the processor 10 rotates the fan 17 provided at the exhaust port 13 to take in air into the housing 11, and the air and liquid of the hygroscopic liquid L are filled with the filler 14.
  • the treated air is supplied into the house H through the exhaust port 13.
  • the filler 14 includes the hygroscopic liquid L having a high solution concentration and a low temperature, the moisture in the air is absorbed by the hygroscopic liquid L, and the dehumidified air is supplied into the house H.
  • heat exchange is also performed simultaneously between the hygroscopic liquid L and air, air is cooled.
  • the hygroscopic liquid L is diluted and becomes difficult to absorb moisture in the air, so that the dehumidifying efficiency is lowered. Therefore, the hygroscopic liquid L is regenerated by the regenerator 40.
  • the ventilator 1 supplies a part of the hygroscopic liquid L sucked out from the liquid tank 16 of the processing machine 10 to the first hygroscopic liquid pipe 61 and sends it to the regenerator 40.
  • the amount of the hygroscopic liquid L sent to the regenerator 40 is adjusted by the three-way valve 23.
  • a second heat exchanger 32 functioning as a condenser is disposed in the middle of the first hygroscopic liquid pipe 61, and the hygroscopic liquid L sent to the regenerator 40 is the second heat exchanger 32. Heated by.
  • the regenerator 40 regenerates the hygroscopic liquid L having a low solution concentration supplied from the first hygroscopic liquid conduit 61.
  • the hygroscopic liquid supply unit 45 a drops the hygroscopic liquid L heated by the second heat exchanger 32 onto the filler 44.
  • the dropped hygroscopic liquid L enters the liquid tank 46 through the filler 44.
  • the regenerator 40 discharges air from the inside of the casing 41 by the fan 47 provided at the discharge port 43 simultaneously with the above operation. Thereby, air flows into the housing 41 through the intake port 42. The air that has flowed in comes into gas-liquid contact with the hygroscopic liquid L by the filler 44 and is then discharged from the discharge port 43. When the air contacts the hygroscopic liquid L, moisture is desorbed from the high temperature hygroscopic liquid L and escapes into the air, and the concentration of the hygroscopic liquid L increases. The hygroscopic liquid L that has passed through the filler 44 enters the liquid tank 46.
  • Part of the hygroscopic liquid L in the liquid tank 46 is sucked up by the pump 52 and supplied to the hygroscopic liquid supply unit 45 b through the supply pipe 51. At this time, the heating source 53 heats the hygroscopic liquid L. As a result, the moisture of the hygroscopic liquid L is more easily released, and the regenerator 40 can perform an efficient concentration process.
  • hygroscopic liquid L in the liquid tank 46 is supplied to the first hygroscopic liquid pipe 61.
  • the hygroscopic liquid L supplied to the first hygroscopic liquid conduit 61 is heated by the second heat exchanger 32 and supplied again to the hygroscopic liquid supply unit 45a.
  • the concentration of the hygroscopic liquid L gradually increases.
  • the hygroscopic liquid L in the liquid tank 46 that has been subjected to the regeneration process returns to the processor 10 through the second hygroscopic liquid conduit 62.
  • the hygroscopic liquid L undergoes heat exchange with the hygroscopic liquid L toward the regenerator 40 by the heat exchanger 64 on the way back to the processor 10, and the temperature decreases.
  • the operation of supplying dehumidified air into the house H using the ventilation device 1 of the house air conditioning system 70 has been described above.
  • the ventilator 1 supplies the outside air to the house H after humidifying it to the same degree as the humidity in the house H.
  • the heat pump 30 causes the first heat exchanger 31 to function as a condenser and the second heat exchanger 32 to function as an evaporator.
  • a hygroscopic liquid L having a low solution concentration (containing a lot of water) is placed in the liquid tank 16 of the processing machine 10.
  • the ventilation device 1 basically performs an operation opposite to the dehumidification process.
  • the processor 10 heats the hygroscopic liquid L having a low solution concentration and drops it onto the filler 14, the processor 10 releases the moisture from the hygroscopic liquid L by passing the taken-in air through the filler 14. Humidify. In addition, heat exchange is also performed simultaneously between the hygroscopic liquid L and air, and air is heated.
  • the hygroscopic liquid L is concentrated and the moisture released into the air is reduced, so the hygroscopic liquid L is regenerated by the regenerator 40.
  • the ventilator 1 supplies a part of the hygroscopic liquid L sucked out from the liquid tank 16 of the processing machine 10 to the first hygroscopic liquid pipe 61 and sends it to the regenerator 40.
  • Hygroscopic liquid L to be sent to the player 40 is cooled by the second heat exchanger 32 in the first hygroscopic-liquid pipe path 61.
  • the cooled hygroscopic liquid L is supplied to the hygroscopic liquid supply unit 45a of the regenerator 40.
  • Regeneration in which the hygroscopic liquid L absorbs moisture by passing the air taken in from the outside through the filler 44 while dropping the hygroscopic liquid L having a high concentration cooled by the hygroscopic liquid supply unit 45a onto the filler 44.
  • the hygroscopic liquid L that has passed through the filler 44 enters the liquid tank 46.
  • Part of the hygroscopic liquid L in the liquid tank 46 is sucked up by the pump 52 and supplied to the hygroscopic liquid supply unit 45 b through the supply pipe 51.
  • a part of the hygroscopic liquid L in the liquid tank 46 is supplied to the first hygroscopic liquid pipe 61.
  • the hygroscopic liquid L supplied to the first hygroscopic liquid conduit 61 is cooled by the second heat exchanger 32 and supplied again to the hygroscopic liquid supply unit 45a.
  • the hygroscopic liquid L circulates between the filler 44 and the liquid tank 46, so that the concentration of the hygroscopic liquid L gradually decreases.
  • the hygroscopic liquid L may be diluted by supplying water directly to the hygroscopic liquid L instead of taking moisture from the outside air into the hygroscopic liquid L. .
  • the regenerator 40 opens the valve 55 of the water supply pipe 54 and supplies water to the liquid tank 46.
  • the hygroscopic liquid L in the liquid tank 46 that has been subjected to the regeneration process returns to the processor 10 through the second hygroscopic liquid conduit 62.
  • the operation of supplying humidified air into the house H using the ventilation device 1 of the house air conditioning system 70 has been described above.
  • the ventilator 1 can adjust the humidity of the air taken in from the outside and adjust the temperature.
  • the ventilator 1 performs the control using the humidity as a target, the temperature of the intake air may be different from the target temperature in the house H. In such a case, the temperature in the house H is adjusted to the target temperature using the inside-air combustion hot air heater 73 or the cooling fan 74.
  • the temperature change in the house H accompanying ventilation is predicted, Before the remarkable temperature change occurs, the temperature may be adjusted using the inside-air combustion hot air heater 73 or the cooling fan 74.
  • the house air conditioning system 70 according to the embodiment has been described above.
  • the air conditioning system for a house 70 of the present embodiment supplies the air into the house H after adjusting the humidity, it is possible to ventilate while maintaining the humidity in the house H.
  • the humidity in the house H By maintaining the humidity in the house H in this way, it is possible to suppress the occurrence of disease and promote the growth of plants.
  • dew condensation can be suppressed by appropriately maintaining the humidity.
  • water condensed on the top surface of the house falls and adheres to the plant, causing discoloration and the like.
  • the house air conditioning system 70 of the present embodiment such a problem is caused. Can be solved.
  • FIG. 4A is a diagram showing the results of measuring the temperature and humidity measured at a height of 4 m in the house
  • FIG. 4B is the temperature and humidity measured at a height of 1.5 m in the house. It is a figure which shows the result.
  • FIG. 4C is a diagram showing temperature and humidity data outside the house for reference. Conventionally, the temperature differs depending on the height from the ground, but by using the house air conditioning system 70 of the present embodiment, the temperatures at the height of 4 m and the height of 1.5 m coincide. (See FIGS. 4A and 4B).
  • the ventilator 1 of the air conditioning system for a house 70 is in gas-liquid contact with lithium chloride, harmful bacteria that may be contained in the external air are removed, and the purified air is removed from the house H. Can be supplied to.
  • the house air conditioning system 70 has a configuration for performing ventilation, the house air combustion system 70 can burn oxygen in the house H, and therefore uses an indoor air combustion warm air heater 73 that is more energy efficient than the outside air combustion type. it can. Thereby, heating cost can be reduced and the running cost of house H cultivation can be suppressed.
  • the house air conditioning system 70 adjusts humidity (latent heat), it is not necessary to reduce the room temperature (sensible heat) so much by cooling, and the cooling fan 74 using ground water or water is suitable for the environment. Can produce. Thereby, a cooling cost can be reduced and the running cost of house H cultivation can be suppressed.
  • the heat pump 30 is not necessarily used.
  • the hygroscopic liquid L may be heated using this, or the hygroscopic liquid L may be used using groundwater or irrigation water. It may be cooled.
  • the present invention has an excellent effect that ventilation can be performed while maintaining the environment in the house, and can be applied to a house such as a plant factory that manages the growth environment of plants.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Environmental Sciences (AREA)
  • Central Air Conditioning (AREA)
  • Ventilation (AREA)
  • Greenhouses (AREA)

Abstract

 ハウス用空気調和システムは、ハウス内の空気調和を行うシステムであって、外部の空気を取り込む換気装置1を有している。ハウスの外部からハウス内に空気を送り込むためのファン17と、ハウスの外部からハウス内へ流れる空気の通路を塞ぐようにして設けられた充填材14と、充填材14に殺菌効果をも有する吸湿性液体Lを供給する吸湿性液体供給部15と、充填材14を通った吸湿性液体Lを入れる液槽16と、充填材14において空気と気液接触することによって濃度の変化した吸湿性液体を再生する再生機40とを備える。これにより、ハウス内の空気の環境に配慮して適切に換気を行うことができる。

Description

ハウス用換気装置およびハウス用空気調和システム 関連する出願
 本出願では、2009年7月10日に日本国に出願された特許出願番号2009-163486の利益を主張し、当該出願の内容は引用することによりここに組み込まれているものとする。
 本発明は、農作物等のハウス栽培に用いるハウス用換気装置およびハウス用空気調和システムに関する。
 従来から、ビニールハウスやプラスチックハウス等で野菜や果物を栽培するハウス栽培が知られていた。また、最近では、天候や気温変化の影響を受けにくい環境で植物を栽培する「植物工場」が注目を集めている。植物工場は、植物の生育に適した環境を作り出すために、室温や照度を従来のハウス栽培より厳しく管理する手法である。
 上記のように閉鎖された空間で植物を栽培すると、植物が光合成を行うことに伴って、ハウス内の二酸化炭素濃度が低下する。従って、ハウス内に二酸化炭素を供給する必要があり、換気が行われる。
 従来のハウスでは、例えば、特許文献1に記載するように、ハウスの一部を開放して換気することが知られている。この方法では、病気やカビの原因となる有害動植物がハウス内に入ってしまう。
 特許文献2は、ハウス内への有害動植物の侵入を防止しつつ換気を行う換気システムを開示している。
特開2004-350506号公報 特開2008-283908号公報
 特許文献2に記載の換気システムでは、網目のサイズが0.1mmの外気ろ過フィルタを用いているので、0.1mmより大きい有害動植物の侵入を防止することができるが、数μm~数十μmの微細な菌類やウィルスの侵入を防止することはできない。
 また、特許文献2に記載の換気システムでは、換気によってハウス内の環境が乱されることまでは防止できない。植物を生育するうえで、湿度は重要なファクターである。例えば、湿度が高くなると、灰色かび病等の原因となり、湿度が低くなるとウドンコ病等の原因となる。従って、適切な範囲の湿度を保つことは、気温を保つことと同様に重要である。しかし、特許文献2では、ハウス内の湿度には全く配慮していない。
 なお、特許文献2では、外気温度が高い場合に、加湿によってハウス内の温度を下げることが記載されている。しかし、これはハウス内の温度に着目したものであって、湿度に配慮したものではない。日本の気候では、外気温が高くなる夏場は湿度が高くなるが、特許文献2では、気温が高い場合に湿度を上げているので、湿度がさらに高くなってしまい、上記したような灰色かび病等の問題が生じる。
 そこで、本発明は、ハウス内の空気の環境に配慮して適切に換気を行える新しいハウス用換気装置およびハウス用空気調和システムを提供する。
 本発明のハウス用換気装置は、ハウスの外部からハウス内に空気を送り込むためのファンと、ハウスの外部からハウス内へ流れる空気の通路に設けられた充填材と、前記充填材に殺菌効果をも有する吸湿性液体を供給する吸湿性液体供給部と、前記充填材を通った前記吸湿性液体を入れる液槽と、前記充填材において空気と気液接触することによって濃度の変化した吸湿性液体を再生する再生機とを備える。
 このように空気の通路に設けられた充填材において、外部から取り込んだ空気と殺菌効果を有する吸湿性液体とを気液接触させることによって、殺菌および調湿を行った空気をハウス内に供給するので、ハウス内の環境を保持しつつ換気を行うことができる。吸湿性液体としては、殺菌力の高い塩化リチウムを用いてもよい。
 本発明のハウス用換気装置において、前記充填材は、空気の通路を塞ぐようにして設けられていてもよい。
 この構成により、ハウス内に導入される空気は必ず充填材を通り、吸湿性液体と気液接触するので、確実に清浄化することができる。
 本発明のハウス用換気装置は、前記ハウス内の二酸化炭素濃度を測定するセンサを備え、前記二酸化炭素濃度が所定の閾値以上になるように換気を行ってもよい。
 この構成により、換気によりハウス内の二酸化炭素濃度を適切な値に維持し、植物の生育を促進できる。
 本発明のハウス用換気装置は、ハウスの外部から前記充填材までの空気の通路上に防虫フィルタを備えてもよい。
 ハウスが設置される環境には、多くの虫が存在する。本発明の構成により、虫の侵入による吸湿性液体の汚染を防止し、吸湿性液体の長寿命化を図ることができる。
 本発明のハウス用換気装置は、ハウスの外部から前記充填材までの空気の通路上に防塵フィルタを備えてもよい。
 ハウスが設置される環境においては、砂塵が発生し得る。本発明の構成により、砂塵による吸湿性液体の汚染を防止し、吸湿性液体の長寿命化を図ることができる。
 本発明のハウス用換気装置において、前記再生機は、空気を取り込む取込口と空気を排出する排気口を有する筐体と、再生すべき吸湿性液体を供給する吸湿性液体供給部と、前記吸湿性液体供給部から供給された吸湿性液体を空気と気液接触させるために吸湿性液体を一時的に滞留させる充填材と、前記取込口から前記充填材までの空気の通路上と、前記充填材から前記排気口までの空気の通路上に防虫フィルタを備えてもよい。
 ハウスが設置される環境には、多くの虫が存在する。充填材より取込口側に防虫フィルタを備えることにより、虫の侵入による吸湿性液体の汚染を防止し、吸湿性液体の長寿命化を図ることができる。また、排気口側にも防虫フィルタを設けることにより、再生機の運転が停止しているときにも虫の侵入を防止できる。
 本発明のハウス用空気調和システムは、上記したハウス用換気装置と、前記ハウス内に設置される内気燃焼式の暖房装置を備える。
 ハウス用換気装置によってハウス内に空気が取り込まれるので、エネルギー効率の良い内気燃焼式の暖房装置により、ハウス内の温度を上げることができる。
 本発明のハウス用空気調和システムは、上記したハウス用換気装置と、前記ハウス内に設置される地下水または用水を利用した冷房装置を備える。
 ハウス用換気装置によってハウス内の湿度を調整するので、高い冷房能力は必要とされず、地下水や用水を用いたコストの低い冷房を実現できる。
 本発明は、殺菌効果を有する吸湿性液体によって、外部から取り込んだ空気を処理することにより、ハウス内の環境を保持しつつ換気を行うことができる。
ハウス用空気調和システムの構成を示す図である。 ハウス用換気装置の構成を示す図である。 塩化リチウムの粉塵除去率を示す図である。 塩化リチウムの殺菌力を示す図である。 ハウス内の温度及び湿度の計測結果を示す図である。 ハウス内の温度及び湿度の計測結果を示す図である。 ハウス外の温度及び湿度の計測結果を示す図である。
 以下、本発明の実施の形態のハウス用空気調和システム70について、図面を参照しながら説明する。図1は、ハウス用空気調和システム70の全体構成を示す図である。
 ハウス用空気調和システム70が適用されるハウスHは、例えば、ビニールハウス、プラスチックハウスであり、植物Pを生育するための環境を提供している。ハウスH内には、栽培用の照明71が設けられている。栽培用の照明71には、コジェネ発電機72によって発電された電力が供給される。なお、本明細書では、空気調和システムの設置対象を「ハウス」と称しているが、本発明のハウス用空気調和システム70は、「植物工場」と称される施設にも適用することが可能である。
 ハウス用空気調和システム70は、外部の空気をハウスH内に取り込むためのハウス換気装置(以下、「換気装置」という)1を有している。ハウスH内の空気は、図示しない排気口から排出される。排気口は、換気装置1により空気の取り込みが行われるときにのみ開放され、換気装置1が作動していないときには閉じられる。排気口は比較的小さく、換気装置1による空気の供給圧力により、ハウスH内からハウスHの外への空気の流れが形成される。これにより、排気口からの微細生物等の侵入を防止できる。なお、比較的大きい虫の侵入を防止するために、排気口に防虫フィルタを設けることが好ましい。
 換気装置1は、外部から取り込んだ空気の湿度を調整するとともに清浄化して、ハウスH内に供給する。換気装置1には、コジェネ発電機72にて発生した排熱が供給される。ハウス用空気調和システム70は、コジェネ発電機72の排熱を利用することにより、エネルギー利用効率の向上を図っている。
 ハウス用空気調和システム70は、ハウスH内に、内気燃焼温風器73と、冷房用送風機74とを有している。内気燃焼温風器73は、ハウスH内の酸素を燃焼して温風を生成する装置である。内気燃焼温風器73は、炭酸ガス施用器としての機能をも有している。ハウスH内の二酸化炭素濃度が低下した場合には、内気燃焼温風器73によって二酸化炭素を施用できる。
 冷房用送風機74は、地下水または用水によって空気を水冷して冷風を生成する。本実施の形態では、換気装置1にて空気を取り込む際に、その湿度(潜熱)を調整しているので、冷房によって室温(顕熱)をそれほど低下させなくても、ハウスH内の熱エネルギーを低下させることができる。従って、地下水または用水を利用した緩やかな冷房によって、植物Pの生育に適切な環境を作り出すことができる。
 図2は、ハウス用空気調和システム70で用いられる換気装置1の詳細な構成を示す図である。換気装置1は、ハウスHの外部から取り込んだ空気を処理してハウスH内に導入する処理機10を有している。処理機10は、取り込んだ空気を吸湿性液体Lと気液接触させることにより、湿度を調整する。本実施の形態では、吸湿性液体Lとして、塩化リチウム(LiCl)を用いている。
 図3Aは塩化リチウムの粉塵除去率を示す図であり、図3Bは塩化リチウムの殺菌力を示す図である。図3Aに示すように、塩化リチウムは、粒径が5μm以上の粉塵をほぼ100%除去することができる。また、図3Bは、供試菌種を滅菌するために要するための時間と濃度を示す図である。例えば、大腸菌の場合、20%以上の濃度の塩化リチウムに10分以上さらすことで滅菌することができる。本実施の形態の換気装置1は、27~30%程度の濃度の塩化リチウムを用いているので、高い殺菌効果を発揮する。
 このように、塩化リチウムは、高い粉塵除去作用、殺菌力を有するので、外部から取り込まれた空気は、塩化リチウムと気液接触することにより清浄化される。なお、吸湿性液体Lとしては、塩化リチウムに限らず、食塩水などの潮解性を有する塩の溶液や、グリセリン、エチレングリコール、プロピレングリコールなどの吸湿性の高い多価アルコール、その他の吸湿性、殺菌力、粉塵除去力を有する安価な液体を用いてもよい。
 換気装置1は、処理機10での処理に用いた吸湿性液体Lの再生を行う再生機40を有する。ここで、吸湿性液体Lの再生とは、調湿を行うことによって濃度の変化した吸湿性液体Lを調湿処理前の状態に戻すことをいう。例えば、除湿処理は、溶液濃度の高い吸湿性液体Lを冷却し、冷却した吸湿性液体Lに空気を通すことにより、吸湿性液体Lによって空気中の水分を吸収する。この処理によって吸湿性液体Lの溶液濃度は低くなるが、溶液濃度が低い吸湿性液体Lでは十分な除湿を行えない。溶液濃度の低くなった吸湿性液体Lから水分を脱離させる再生処理によって、溶液濃度の高い吸湿性液体Lに戻す。加湿処理の場合は、逆に、吸湿性液体Lの溶液濃度が高くなるので、吸湿性液体Lに水分を吸収させる再生処理によって溶液濃度の低い吸湿性液体Lに戻す。
 図2では、一台の処理機10に対して一台の再生機40が接続された例を示しているが、例えば、複数のハウスHのそれぞれに処理機10が設けられている場合には、複数台の処理機10に対して一台の再生機40を接続する構成としてもよい。
 処理機10と再生機40は、第1の吸湿液管路61および第2の吸湿液管路62によって接続されている。第1の吸湿液管路61は、処理機10から再生機40へ吸湿性液体Lを送るための管路であり、第2の吸湿液管路62は、再生機40から処理機10へ吸湿性液体Lを送るための管路である。第1の吸湿液管路61、第2の吸湿液管路62を用いて、処理機10と再生機40との間で吸湿性液体Lを循環させることにより、処理機10にて用いた吸湿性液体Lを再生機40にて再生し、処理機10に戻す。
[処理機]
 次に、処理機10の構成について説明する。処理機10は、空気と吸湿性液体Lとの気液接触を行うための充填材14と、充填材14に対して吸湿性液体Lを滴下する吸湿液供給部15とを収容した筐体11を備えている。吸湿液供給部15から滴下された吸湿性液体Lは充填材14を通ってゆっくりと流れ落ちる。従って、吸湿性液体Lは、充填材に一時的に滞留する。筐体11の下部には、充填材14を通過した吸湿性液体Lを溜める液槽16を有する。
 筐体11には、空気を取り込むための取込口12と空気を排出するための排気口13とが形成されている。取込口12には、筐体11内への砂や埃の侵入を防止する防塵フィルタ18と、防塵フィルタ18を通過した虫の侵入を防止する防虫フィルタ19が取り付けられている。排気口13には、外部から取り込んだ空気をハウスHに送り込むためのファン17が設けられている。このファン17が回転することにより、ハウスHの外部から筐体11内に空気が取り込まれ、図2に矢印で示す経路を通ってハウスH内に送り込まれる。換気装置1による換気量、すなわち、ファン17の回転数は、制御部66によって制御される。また、排気口13にも防虫フィルタ20が取り付けられている。
 図2に示すように、充填材14は、空気が通る通路上に設けられているので、取込口12から取り込まれた空気は充填材14を通過する。前述したように、充填材14には、吸湿性液体Lが滞留しているので、吸湿性液体Lと充填材14を通過する空気との間で水分の授受が行われ、除湿または加湿が行われる。また、塩化リチウムの粉塵除去作用および殺菌作用により、充填材14を通過する空気は清浄化される。充填材14は、図2に示すように、空気の通路を塞ぐようにして設けられ、筐体11の内面と充填材14との隙間がない。従って、ハウスH内に導入される空気は、確実に充填材14を通過する。
 処理機10は、液槽16内の吸湿性液体Lを吸湿液供給部15に供給するための管21を有している。管21にはポンプ22が取り付けられており、液槽16内の吸湿性液体Lを吸い上げる。
 この管21には、ヒートポンプ30の第1の熱交換器31が設けられており、第1の熱交換器31によって吸湿性液体Lを加熱または冷却する。第1の熱交換器31は、処理機10の吸湿液供給部15から供給される吸湿性液体Lの温度を制御する。吸湿性液体Lを加熱するか冷却するかは、処理機10によって空気を加湿するか除湿するかによる。すなわち、処理機10が加湿処理を行う場合には、吸湿性液体Lに含まれた水分を空気中に放出させるために吸湿性液体Lを加熱する。逆に、処理機10が除湿処理を行う場合には、空気中の水分を吸湿性液体Lに吸収させやすくするために吸湿性液体Lを冷却する。
 液槽16内の吸湿性液体Lを再生機40に送るための第1の吸湿液管路61は、液槽16から吸湿性液体Lを吸い上げるための管21に三方バルブ23を介して接続されている。三方バルブ23は、処理機10の吸湿液供給部15に送る吸湿性液体Lの量と第1の吸湿液管路61を通じて再生機40に送る吸湿性液体Lの量を制御する。本実施の形態では、三方バルブ23は、(吸湿液供給部15へ送る吸湿性液体Lの量):(再生機40に送る吸湿性液体Lの量)が、8:2から9:1の割合になるように制御する。
 第1の吸湿液管路61には、第2の熱交換器32が設けられており、再生機40に供給される吸湿性液体Lを冷却または加熱する。第2の熱交換器32は、再生機40に供給される吸湿性液体Lの温度を制御する。第1の熱交換器31と第2の熱交換器32とはヒートポンプ30を構成しており、第1の熱交換器31と第2の熱交換器32との間で熱が移動する。
 ここでヒートポンプ30の構成について説明する。ヒートポンプ30は、第1の熱交換器31と、第2の熱交換器32と、圧縮機33と、膨張弁34と、これらをつなぐ冷媒管35とを備えている。ヒートポンプ30は、冷媒の流れを逆転させることにより、第1の熱交換器31を蒸発器あるいは凝縮器として機能させることができる。第2の熱交換器32は、第1の熱交換器31とは逆の処理を行う。
[再生機]
 次に、再生機40について説明する。再生機40は、処理機10から送られてきた吸湿性液体Lと空気とを気液接触させて、吸湿性液体Lを再生する。再生機40は、空気と吸湿性液体Lとの気液接触を行うための充填材44と、充填材44に対して吸湿性液体Lを滴下する吸湿液供給部45とを収容する筐体41を有している。また、筐体41の下部には、充填材44を通過した吸湿性液体Lを溜める液槽46を有する。
 吸湿液供給部45は、第1の吸湿液管路61を通じて送られてくる吸湿性液体Lを充填材44に供給する吸湿液供給部45aと、液槽46から吸い上げた吸湿性液体Lを充填材44に供給する吸湿液供給部45bとを有する。第1の吸湿液管路61に設けられたヒートポンプ30の第2の熱交換器32が吸湿性液体Lを加熱または冷却するかは、再生機40によって吸湿性液体Lを濃縮するか希釈するかによる。すなわち、再生機40が吸湿性液体Lの濃縮を行う場合には、吸湿性液体Lに含まれた水分を空気中に放出させるために吸湿性液体Lを加熱する。逆に、再生機40が吸湿性液体Lを希釈する場合には、空気中の水分を吸湿性液体Lに吸収させやすくするために吸湿性液体Lを冷却する。
 筐体41には、空気を取り込むための取込口42と空気を排出するための排気口43とが形成されている。取込口42には、筐体41内への砂や埃の侵入を防止する防塵フィルタ56と、防塵フィルタ56を通過した虫の侵入を防止する防虫フィルタ57が取り付けられている。
 排気口43には、筐体41内から空気を排出するためのファン47が設けられている。このファン47が回転することにより、筐体41内の空気が外部に排出され、筐体41内が筐体41の外部に対して負圧となるので、取込口42を通じて空気が筐体41内に流れ込む。また、排気口43にも防虫フィルタ58が取り付けられている。これにより、ファン47が停止している際にも、排気口43から筐体41内への虫の侵入を防止できる。
 図2において、矢印は、空気の流れを示す。図2に示すように、取込口42から取り込まれた空気は充填材44を通過する。充填材44には、吸湿性液体Lが滞留しているので、吸湿性液体Lと空気との間で水分の授受が行われる。これにより、吸湿性液体Lが再生される。
 再生機40は、液槽46内の吸湿性液体Lを第1の吸湿液管路61に供給する管49を有している。液槽46内の吸湿性液体Lは、ポンプ50によって第1の吸湿液管路61に吸い上げられる。吸湿性液体Lは、第2の熱交換器32を通じて再生機40に再び供給される。
 再生機40は、液槽46の吸湿性液体Lを吸湿液供給部45bに供給するための供給管51を有している。供給管51には、ポンプ52が取り付けられており、液槽46内の吸湿性液体Lを吸い上げる。また、この管51には、加熱源53が設けられている。この加熱源はコジェネ発電機72の排熱を利用して、管51を流れる吸湿性液体Lを加熱する。
 加熱源53は、第2の熱交換器32による温度制御に加えて温度を上昇させたい場合には、液槽46から吸い上げた吸湿性液体Lを加熱する。加熱された吸湿性液体Lは、吸湿液供給部45bから充填材44に滴下され、充填材44において気液接触される。充填材44を通過した吸湿性液体Lは、液槽46に入る。このように吸湿性液体Lを循環させることにより、再生機40は吸湿性液体Lの再生処理を行う。
 再生機40は、液槽46に給水を行う給水管54を有する。給水管54上には、バルブ55が設けられており、バルブ55によって給水の制御を行う。
 液槽46の吸湿性液体Lは、第2の吸湿液管路62を通じて処理機10に戻る。再生機40から処理機10に戻る吸湿性液体Lの量は、バルブ63によって調整される。本実施の形態では、バルブ63は、液槽46内の吸湿性液体Lの液面の高さが一定になるように、処理機10へ戻す吸湿性液体Lの量を制御する。
 換気装置1は、第1の吸湿液管路61と第2の吸湿液管路62との間で熱交換を行う熱交換器64を有している。この熱交換器64は、第1の吸湿液管路61を流れる吸湿性液体Lと第2の吸湿液管路62を流れる吸湿性液体Lの温度差を低減し、ヒートポンプ30の汲み上げ温度差の低減に寄与する。以上、換気装置1の構成について詳細に説明した。
[ハウス用空気調和システムの動作]
 次に、本実施の形態のハウス用空気調和システム70の動作について説明する。ハウス用空気調和システム70は、二酸化炭素濃度を測定するセンサ65によってハウスH内の二酸化炭素濃度を測定する。換気装置1は、ハウスH内の二酸化炭素濃度が所定の閾値を保持するように、制御部66によって換気量を調整する。例えば、二酸化炭素濃度が所定の閾値を下回った場合に換気を開始し、外部の二酸化炭素濃度と等しくなるまで換気を行う。また、(1)植物が光合成を行わない夜間、(2)多数の作業者がハウス内にいる場合、(3)内気燃焼暖房器73を作動している場合など、ハウスH内の二酸化炭素濃度が大きくなる場合には、二酸化炭素濃度が所定の閾値を上回った場合に換気を開始し、外部の二酸化炭素濃度と等しくなるまで換気を行う。
 最初に、ハウスH内より外気の方が、湿度が高い場合の換気動作について説明する。この場合、換気装置1は、外気をハウスH内の湿度と同程度まで除湿してから、ハウスH内に供給する。
 換気装置1は、ヒートポンプ30の第1の熱交換器31を蒸発器、第2の熱交換器32を凝縮器として機能させる。処理機10の液槽16には、溶液濃度の高い吸湿性液体Lを入れておく。
 処理機10は、液槽16から溶液濃度の高い吸湿性液体Lを吸い上げ、蒸発器として機能する第1の熱交換器31にて吸湿性液体Lを冷却した上で吸湿液供給部15に供給する。吸湿液供給部15は、吸湿性液体Lを充填材14に滴下する。滴下された吸湿性液体Lは、充填材14をゆっくりと通過して液槽16に戻る。
 処理機10は、上記の動作と同時に、排気口13に設けられたファン17を回転させることにより、筐体11内に空気を取り込み、充填材14にて空気と吸湿性液体Lとの気液接触を行った後に、処理後の空気を、排気口13を通じてハウスH内に供給する。充填材14には溶液濃度が高くかつ低温の吸湿性液体Lが存在するので、空気中の水分が吸湿性液体Lによって吸収され、除湿された空気がハウスH内に供給される。なお、吸湿性液体Lと空気との間で熱交換も同時に行われるので、空気は冷却される。
 処理機10が除湿動作を継続して行うと、吸湿性液体Lは希釈されて、空気中の水分を吸収しにくくなり除湿効率が低下するので、吸湿性液体Lを再生機40によって再生する。換気装置1は、処理機10の液槽16から吸い出した吸湿性液体Lのうちの一部を第1の吸湿液管路61に供給し、再生機40に送る。再生機40に送る吸湿性液体Lの量は、三方バルブ23によって調節する。
 第1の吸湿液管路61の途中には、凝縮器として機能する第2の熱交換器32が配設されており、再生機40に送られる吸湿性液体Lは第2の熱交換器32によって加熱される。再生機40は、第1の吸湿液管路61から供給される溶液濃度の低くなった吸湿性液体Lの再生処理を行う。具体的には、吸湿液供給部45aは、第2の熱交換器32によって加熱された吸湿性液体Lを充填材44に滴下する。滴下された吸湿性液体Lは、充填材44を通って液槽46に入る。
 再生機40は、上記の動作と同時に、排出口43に設けられたファン47により、筐体41内から空気を排出する。これにより、取込口42を通じて筐体41内に空気が流れ込む。流れ込んだ空気は、充填材44にて吸湿性液体Lと気液接触した後、排出口43から排出される。空気が吸湿性液体Lと接触することにより、高温の吸湿性液体Lから水分が脱離して空気中に逃げ、吸湿性液体Lの濃度が高くなる。充填材44を通過した吸湿性液体Lは、液槽46に入る。
 液槽46内の吸湿性液体Lの一部は、ポンプ52によって吸い上げられ、供給管51を通じて吸湿液供給部45bに供給される。この際、加熱源53は、吸湿性液体Lを加熱する。これにより、吸湿性液体Lの水分がいっそう放出されやすい状態となり、再生機40は効率の良い濃縮処理を行える。
 また、液槽46内の吸湿性液体Lの一部は、第1の吸湿液管路61に供給される。第1の吸湿液管路61に供給された吸湿性液体Lは、第2の熱交換器32によって加熱されて吸湿液供給部45aに再び供給される。このように充填材44と液槽46との間で吸湿性液体Lが循環することにより、徐々に吸湿性液体Lの濃度が高くなっていく。
 再生処理が行われた液槽46内の吸湿性液体Lは、第2の吸湿液管路62を通って処理機10に戻る。吸湿性液体Lは、処理機10に戻る途中で、熱交換器64によって、再生機40に向かう吸湿性液体Lと熱交換が行われ、温度が低下する。以上、ハウス用空気調和システム70の換気装置1を用いて、除湿した空気をハウスH内に供給する動作について説明した。
 次に、ハウスH内より外気の方が、湿度が低い場合の換気動作について説明する。この場合、換気装置1は、外気をハウスH内の湿度と同程度まで加湿してから、ハウスH内に供給する。
 換気装置1にて空気を加湿する場合には、ヒートポンプ30は、第1の熱交換器31を凝縮器、第2の熱交換器32を蒸発器として機能させる。処理機10の液槽16には、溶液濃度の低い(水分を多く含んだ)吸湿性液体Lを入れておく。加湿処理の場合は、基本的には、換気装置1は、除湿処理と反対の動作を行う。
 処理機10は、溶液濃度の低い吸湿性液体Lを加熱して充填材14に滴下する一方で、取り込んだ空気を充填材14に通すことにより、吸湿性液体Lから水分を放出させて空気を加湿する。なお、吸湿性液体Lと空気との間で熱交換も同時に行われ、空気は加熱される。
 処理機10が加湿動作を継続して行うと、吸湿性液体Lは濃縮されて、空気中に放出される水分が少なくなるので、吸湿性液体Lを再生機40によって再生する。換気装置1は、処理機10の液槽16から吸い出した吸湿性液体Lのうちの一部を第1の吸湿液管路61に供給し、再生機40に送る。
 再生機40に送られる吸湿性液体Lは、第1の吸湿液管路61にある第2の熱交換器32によって冷却される。冷却された吸湿性液体Lは、再生機40の吸湿液供給部45aに供給される。吸湿液供給部45aが冷却された濃度の高い吸湿性液体Lを充填材44に滴下する一方で、外部から取り込んだ空気を充填材44に通すことにより、吸湿性液体Lに水分を吸収させる再生処理を行う。充填材44を通過した吸湿性液体Lは液槽46に入る。
 液槽46内の吸湿性液体Lの一部は、ポンプ52によって吸い上げられ、供給管51を通じて吸湿液供給部45bに供給される。また、液槽46内の吸湿性液体Lの一部は、第1の吸湿液管路61に供給される。第1の吸湿液管路61に供給された吸湿性液体Lは、第2の熱交換器32によって冷却されて吸湿液供給部45aに再び供給される。このように、充填材44と液槽46との間で吸湿性液体Lが循環することにより、徐々に吸湿性液体Lの濃度が低くなっていく。
 吸湿性液体Lの希釈再生を行う際には、外気から吸湿性液体Lへ水分を取り込むことに代えて、吸湿性液体Lに直接に給水することにより、吸湿性液体Lを希釈してもよい。再生機40は、給水管54のバルブ55を開け、液槽46に給水を行う。
 再生処理が行われた液槽46内の吸湿性液体Lは、第2の吸湿液管路62を通って処理機10に戻る。以上、ハウス用空気調和システム70の換気装置1を用いて、加湿した空気をハウスH内に供給する動作について説明した。
 上記したとおり、外部から取り込まれる空気は、除湿時には冷却した吸湿性液体Lと気液接触され、加湿時には加熱した吸湿性液体Lと気液接触されるので、吸湿性液体Lとの間で熱交換も行われる。つまり、換気装置1は、外部から取り込む空気の湿度を調整すると共に温度を調整することができる。ただし、換気装置1は、湿度をターゲットとして制御を行っているので、取り込み空気の温度がハウスH内の目標温度と異なる場合があり得る。このような場合には、内気燃焼温風器73または冷房用送風機74を用いて、ハウスH内の温度を目標温度に調整する。
 なお、吸湿性液体Lの溶液温度と外気の温度との温度差と、取り込み空気の流量と、吸湿性液体Lの供給量等に基づいて、換気に伴うハウスH内の温度変化を予測し、顕著な温度変化が生じる前に、内気燃焼温風器73または冷房用送風機74を用いて温度調整を行ってもよい。以上、実施の形態のハウス用空気調和システム70について説明した。
 本実施の形態のハウス用空気調和システム70は、湿度調整を行ってからハウスH内に空気を供給するので、ハウスH内の湿度を保持しつつ換気することができる。このようにハウスH内の湿度を保持することにより、病気の発生を抑制すると共に、植物の生育を促進させることができる。また、湿度を適切に保持することにより、結露を抑制できる。従来は、ハウスの天面において結露した水が落下して植物に付着し、変色などの原因となっていたが、本実施の形態のハウス用空気調和システム70を用いることにより、このような問題を解決できる。
 本実施の形態のハウス用空気調和システム70は、湿度を調節した空気を取り入れることにより、ハウスH内の空気に含まれる水分が拡散する。これにより、ハウスH内の空気の温度が均一化するという効果が得られる。図4Aは、ハウス内において、高さ4mの位置で測定した温度及び湿度を計測した結果を示す図、図4Bは、ハウス内において、高さ1.5mの位置で測定した温度及び湿度を計測した結果を示す図である。図4Cは、参考として、ハウス外の温度及び湿度のデータを示す図である。従来は、地面からの高さによって温度が異なっていたが、本実施の形態のハウス用空気調和システム70を用いたことにより、高さ4mと高さ1.5mの位置での温度が一致していることが分かる(図4A、図4B参照)。
 ハウス用空気調和システム70の換気装置1は、塩化リチウムとの気液接触を行っているので、外部の空気に含まれる可能性のある有害菌等を除去し、清浄化した空気をハウスH内に供給することができる。
 ハウス用空気調和システム70は、換気を行う構成を有しているので、ハウスH内の酸素を燃焼することが可能なため、外気燃焼式よりもエネルギー効率の良い内気燃焼温風器73を使用できる。これにより、暖房コストを低減し、ハウスH栽培のランニングコストを抑制することができる。
 ハウス用空気調和システム70は、湿度(潜熱)の調整を行っていることから、冷房によって室温(顕熱)をそれほど低下させる必要がなく、地下水または用水を利用した冷房用送風機74で適切な環境を作り出すことができる。これにより、冷房コストを低減し、ハウスH栽培のランニングコストを抑制することができる。
 以上、本発明のハウス用空気調和システムについて、実施の形態を挙げて詳細に説明したが、本発明は上記した実施の形態に限定されるものではない。
 上記した実施の形態では、ヒートポンプ30を用いて、吸湿性液体Lの温度を制御する例について説明したが、必ずしもヒートポンプ30を用いる必要はない。例えば、コジェネ発電機72から十分な温度の排熱が得られる場合には、これを利用して吸湿性液体Lを加熱することとしてもよいし、地下水や用水を利用して吸湿性液体Lを冷却してもよい。
 本発明は、ハウス内の環境を保持しつつ換気を行うことができるというすぐれた効果を有し、植物の生育環境を管理する植物工場等のハウスに適用することができる。
1 ハウス用換気装置
10 処理機
11 筐体
12 取込口
13 排気口
14 充填材
15 吸湿液供給部
16 液槽
17 ファン
18 防塵フィルタ
19 防虫フィルタ
20 防虫フィルタ
21 管
22 ポンプ
23 三方バルブ
30 ヒートポンプ
31 第1の熱交換器
32 第2の熱交換器
33 圧縮機
34 膨張弁
40 再生機
41 筐体
42 取込口
43 排気口
44 充填材
45 吸湿液供給部
46 液槽
47 ファン
49 管
50 ポンプ
51 供給管
52 ポンプ
53 加熱源
54 給水管
55 バルブ
56 防塵フィルタ
57 防虫フィルタ
58 防虫フィルタ
61 第1の吸湿液管路
62 第2の吸湿液管路
63 バルブ
64 熱交換器
65 センサ
66 制御部
70 ハウス用空気調和システム
71 照明
72 コジェネ発電機
73 内気燃焼温風器
74 冷房用送風機

Claims (9)

  1.  ハウスの外部からハウス内に空気を送り込むためのファンと、
     ハウスの外部からハウス内に流れる空気の通路に設けられた充填材と、
     前記充填材に殺菌効果をも有する吸湿性液体を供給する吸湿性液体供給部と、
     前記充填材を通った前記吸湿性液体を入れる液槽と、
     前記充填材において空気と気液接触することによって濃度の変化した吸湿性液体を再生する再生機と、
     を備えるハウス用換気装置。
  2.  前記吸湿性液体として塩化リチウムを用いる請求項1に記載のハウス用換気装置。
  3.  前記充填材は、空気の通路を塞ぐようにして設けられている請求項1または2に記載のハウス用換気装置。
  4.  前記ハウス内の二酸化炭素濃度を測定するセンサを備え、
     前記二酸化炭素濃度が所定の閾値以上になるように換気を行う請求項1~3のいずれかに記載のハウス用換気装置。
  5.  ハウスの外部から前記充填材までの空気の通路上に防虫フィルタを備える請求項1~4のいずれかに記載のハウス用換気装置。
  6.  ハウスの外部から前記充填材までの空気の通路上に防塵フィルタを備える請求項1~5のいずれかに記載のハウス用換気装置。
  7.  前記再生機は、
     空気を取り込む取込口と空気を排出する排気口を有する筐体と、
     再生すべき吸湿性液体を供給する吸湿性液体供給部と、
     前記吸湿性液体供給部から供給された吸湿性液体を空気と気液接触させるために吸湿性液体を一時的に滞留させる充填材と、
     前記取込口から前記充填材までの空気の通路上と、前記充填材から前記排気口までの空気の通路上に防虫フィルタを備える請求項1~6のいずれかに記載のハウス用換気装置。
  8.  請求項1~7のいずれかに記載のハウス用換気装置と、
     前記ハウス内に設置される内気燃焼式の暖房装置と、
     を備えるハウス用空気調和システム。
  9.  請求項1~7のいずれかに記載のハウス用換気装置と、
     前記ハウス内に設置される地下水または用水を利用した冷房装置と、
     を備えるハウス用空気調和システム。
PCT/JP2010/004428 2009-07-10 2010-07-07 ハウス用換気装置およびハウス用空気調和システム WO2011004596A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-163486 2009-07-10
JP2009163486A JP4647018B2 (ja) 2009-07-10 2009-07-10 ハウス用換気装置およびハウス用空気調和システム

Publications (1)

Publication Number Publication Date
WO2011004596A1 true WO2011004596A1 (ja) 2011-01-13

Family

ID=43429024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004428 WO2011004596A1 (ja) 2009-07-10 2010-07-07 ハウス用換気装置およびハウス用空気調和システム

Country Status (3)

Country Link
JP (1) JP4647018B2 (ja)
TW (1) TW201101993A (ja)
WO (1) WO2011004596A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104456786A (zh) * 2014-11-11 2015-03-25 陕西优斯达环境科技有限公司 蒸发冷凝式一体化冷水机组
WO2017155409A1 (en) * 2016-03-11 2017-09-14 Maurice Kassenbouw B.V. Air circulation system, greenhouse fitted with such an air circulation system and method for dehumidifying air
WO2018034570A1 (en) * 2016-08-16 2018-02-22 Greencap Solutions As A system for climate control in closed or semi closed spaces
CN108502391A (zh) * 2018-04-13 2018-09-07 安徽知之信息科技有限公司 一种农业用牲畜运输集装箱
CN111447828A (zh) * 2017-12-07 2020-07-24 植物实验室株式会社 植物栽培用温室
CN112714611A (zh) * 2018-08-30 2021-04-27 G+Flas生命科学有限公司 封装型恒温恒湿器方式封闭型植物工厂的环境控制***及其控制方法
WO2021079263A1 (en) * 2019-10-21 2021-04-29 Universita' Degli Studi Di Genova Greenhouse heating system and method
JP2021533325A (ja) * 2018-07-31 2021-12-02 キング・アブドゥッラー・ユニバーシティ・オブ・サイエンス・アンド・テクノロジー 液体乾燥剤夜間冷却器システムおよび方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011179699A (ja) * 2010-02-26 2011-09-15 Dyna-Air Co Ltd 空調システム及び空調方法
JP5691040B2 (ja) * 2011-10-27 2015-04-01 ダイナエアー株式会社 調湿システム及びその運用監視方法
ES2593111T3 (es) * 2012-02-21 2016-12-05 Watergy Gmbh Sistema para la regulación de la temperatura en espacios cerrados
CN104456798B (zh) * 2014-12-12 2017-09-26 南京工业大学 实现能量平衡的热泵驱动溶液调湿及生活热水制取***
TWI564525B (zh) * 2015-05-07 2017-01-01 Wei Yi Chiang Energy saving method and device for direct heat recovery
BR112018076466B1 (pt) * 2016-06-20 2022-11-16 Xeda International S.A. Método para o tratamento da atmosfera de um armazém e unidade de tratamento da atmosfera de um armazém
US10667472B2 (en) 2016-12-14 2020-06-02 Mankaew MUANCHART Air movement control and air source device for cultivation
US11540452B2 (en) 2016-12-14 2023-01-03 Mankaew MUANCHART Air movement control and air source device for cultivation
KR101812211B1 (ko) 2017-05-25 2017-12-26 엄정일 식물재배 및 곤충사육을 위한 태양광 발전 컨테이너
WO2019221153A1 (ja) * 2018-05-15 2019-11-21 シャープ株式会社 霧化装置および調湿装置
JP2021533326A (ja) * 2018-07-30 2021-12-02 キング・アブドゥッラー・ユニバーシティ・オブ・サイエンス・アンド・テクノロジー 液体乾燥剤ベース湿度ポンプ、蒸発冷却器、および空気浄化システム
US20210212269A1 (en) * 2018-08-30 2021-07-15 G+Flas Life Sciences System for controlling environment of air conditioner-type closed plant factory and control method thereof
KR102477137B1 (ko) * 2020-10-14 2022-12-13 한국산업기술시험원 광촉매와 uv를 통한 공기질 개선 구조의 총진탑식 액체식 제습 시스템
KR102631139B1 (ko) * 2022-09-30 2024-01-31 엔트 주식회사 히트펌프를 이용한 액체식 조습 환기 전열 회수장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51116389A (en) * 1975-04-04 1976-10-13 Omron Tateisi Electronics Co The hothouse control apparatus
JPS6333761U (ja) * 1986-08-20 1988-03-04
JPH05103551A (ja) * 1991-10-14 1993-04-27 Hitachi Ltd 空調換気温室
JP2005214595A (ja) * 2004-02-02 2005-08-11 Dyna Air Kk 空調機
JP2005233435A (ja) * 2004-02-17 2005-09-02 Miyazaki Prefecture 吸収式除湿空調システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51116389A (en) * 1975-04-04 1976-10-13 Omron Tateisi Electronics Co The hothouse control apparatus
JPS6333761U (ja) * 1986-08-20 1988-03-04
JPH05103551A (ja) * 1991-10-14 1993-04-27 Hitachi Ltd 空調換気温室
JP2005214595A (ja) * 2004-02-02 2005-08-11 Dyna Air Kk 空調機
JP2005233435A (ja) * 2004-02-17 2005-09-02 Miyazaki Prefecture 吸収式除湿空調システム

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104456786A (zh) * 2014-11-11 2015-03-25 陕西优斯达环境科技有限公司 蒸发冷凝式一体化冷水机组
CN104456786B (zh) * 2014-11-11 2017-05-17 陕西优斯达环境科技有限公司 蒸发冷却与机械制冷相结合的一体化空调机组
WO2017155409A1 (en) * 2016-03-11 2017-09-14 Maurice Kassenbouw B.V. Air circulation system, greenhouse fitted with such an air circulation system and method for dehumidifying air
NL2016422B1 (nl) * 2016-03-11 2017-10-02 Proefstation Voor De Groenteteelt Vzw Luchtcirculatiesysteem, warenhuis voorzien van een dergelijk luchtcirculatiesysteem en werkwijze voor het ontvochtigen van lucht.
CN110087454A (zh) * 2016-08-16 2019-08-02 格林开普解决方案有限公司 用于封闭或半封闭空间中的气候控制的***
WO2018034570A1 (en) * 2016-08-16 2018-02-22 Greencap Solutions As A system for climate control in closed or semi closed spaces
EA035940B1 (ru) * 2016-08-16 2020-09-03 Гринкэп Солюшенз Ас Система для климат-контроля в замкнутых или полузамкнутых пространствах
US11388861B2 (en) 2016-08-16 2022-07-19 Greencap Solutions As System for climate control in closed or semi closed spaces
CN111447828A (zh) * 2017-12-07 2020-07-24 植物实验室株式会社 植物栽培用温室
CN108502391A (zh) * 2018-04-13 2018-09-07 安徽知之信息科技有限公司 一种农业用牲畜运输集装箱
JP2021533325A (ja) * 2018-07-31 2021-12-02 キング・アブドゥッラー・ユニバーシティ・オブ・サイエンス・アンド・テクノロジー 液体乾燥剤夜間冷却器システムおよび方法
CN112714611A (zh) * 2018-08-30 2021-04-27 G+Flas生命科学有限公司 封装型恒温恒湿器方式封闭型植物工厂的环境控制***及其控制方法
WO2021079263A1 (en) * 2019-10-21 2021-04-29 Universita' Degli Studi Di Genova Greenhouse heating system and method

Also Published As

Publication number Publication date
JP4647018B2 (ja) 2011-03-09
TW201101993A (en) 2011-01-16
JP2011015655A (ja) 2011-01-27

Similar Documents

Publication Publication Date Title
JP4647018B2 (ja) ハウス用換気装置およびハウス用空気調和システム
JP2011179699A (ja) 空調システム及び空調方法
JP5417213B2 (ja) 間接蒸発冷却型外調機システム
JP5227840B2 (ja) 調湿装置
JP2006288647A (ja) 滅菌システム
CN219080478U (zh) 基于热泵的水采集***
RU2678881C2 (ru) Система и способ регулирования темпертауры и очистки окружающего воздуха в здании
CN114364252B (zh) 温室
CN107270427A (zh) 一种带热回收功能的新型溶液调湿新风机组
JP2006177567A (ja) 空調システム
JP5691040B2 (ja) 調湿システム及びその運用監視方法
CN209386479U (zh) 低温型全新风恒温恒湿空调***
KR100886561B1 (ko) 수술실용 공조 시스템
CN104676789B (zh) 一种多功能转轮式节能换气机
KR100939591B1 (ko) 냉난방겸용이 가능한 농업시설용 열회수형 환기장치
JP4684219B2 (ja) 生芋の殺菌治療装置
KR20150137567A (ko) 축열식 공기소독 냉열 교환기
JP2008161151A5 (ja)
CN203771607U (zh) 一种多功能空气调节器
CN208871739U (zh) 一种恒温恒湿消毒的智能***
CN103822323A (zh) 一种多功能空气调节器
CN219995450U (zh) 一种热泵式溶液除湿机组
JP2005127544A (ja) 空調システム
WO2020218012A1 (ja) 空調装置
JP2005249367A (ja) 空調機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10796907

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC, EPO FORM 1205A DATED 08.05.2012

122 Ep: pct application non-entry in european phase

Ref document number: 10796907

Country of ref document: EP

Kind code of ref document: A1