WO2011004442A1 - 掘進装置 - Google Patents

掘進装置 Download PDF

Info

Publication number
WO2011004442A1
WO2011004442A1 PCT/JP2009/004049 JP2009004049W WO2011004442A1 WO 2011004442 A1 WO2011004442 A1 WO 2011004442A1 JP 2009004049 W JP2009004049 W JP 2009004049W WO 2011004442 A1 WO2011004442 A1 WO 2011004442A1
Authority
WO
WIPO (PCT)
Prior art keywords
caisson
scraping
excavation
excavator
traveling body
Prior art date
Application number
PCT/JP2009/004049
Other languages
English (en)
French (fr)
Inventor
山下経一
Original Assignee
光洋自動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 光洋自動機株式会社 filed Critical 光洋自動機株式会社
Publication of WO2011004442A1 publication Critical patent/WO2011004442A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D23/00Caissons; Construction or placing of caissons
    • E02D23/08Lowering or sinking caissons

Definitions

  • the present invention relates to a caisson digging apparatus for digging a direct base board at the lower end of a caisson.
  • a caisson has a wedge shape with a sharp cross-sectional shape at the lower end of the blade, and the caisson is placed while the sharp blade penetrates into the ground.
  • the conventional caisson method penetrates the entire caisson into the ground without excavating the direct base plate at the lower end of the caisson, a large frictional resistance is generated between the outer peripheral surface of the caisson and the natural ground.
  • a heavy object is mounted on the caisson, or the anchors anchored in the ground are forced to penetrate, but the caisson sinks.
  • the amount of sedimentation per unit time is limited to a very small range, and there are many problems such as a large burden of time and cost for the construction. .
  • Patent Documents 1 to 4 previously proposed a self-propelled excavating device for excavating the ground and discharging the soil.
  • FIG. 11 shows an example of the excavation apparatus.
  • the previously proposed excavation apparatus includes a pair of horizontal screw bodies 90, 90 arranged in parallel in the horizontal direction, means for rotationally driving these horizontal screw bodies 90, 90, and the excavation apparatus horizontally along the caisson 80. And self-propelled means for movement.
  • a pair of horizontal screw bodies 90, 90 are excavated bodies arranged between the lower end portion 81 of the caisson 80 and the straight base plate G in the transverse direction of the caisson housing, and on the rotary shaft 91 and the outer peripheral surface of the rotary shaft 91.
  • a spiral blade 92 is provided integrally therewith.
  • the pair of horizontal screw bodies 90, 90 are arranged close to each other in parallel, and the spiral shape of the opposing horizontal screw bodies 90, 90 can be scraped off by the other blade 92 so that the earth and sand that have entered between the blades 92 can be scraped off. Part of the blades 92 and 92 is polymerized.
  • the conventional excavation device has the following problems. (1) When a hard lump such as large and small rocks exists in the ground, a large hard lump is sandwiched between the spiral blades 92 constituting the horizontal screw body 90, or the pair of horizontal screw bodies 90, 90 A small hard lump is bitten into the overlapping portion of the spiral blades 92 and 92. In some cases, these hard lumps can be removed by the rotational force of the two blades 92, 92. However, if the hard lumps are strongly bitten between the blades and the side surfaces of the blades, the horizontal screw bodies 90, 90 may become unrotatable. In the worst case, part of the blade 92 or part of the power transmission mechanism may be damaged.
  • the depth H at which the horizontal screw body 90 can be excavated at one time is 30 cm to 50 cm, which is the same as the diameter of the blade 92.
  • the excavation depth by the horizontal screw body 90 is large, a large torsional force acts on the caisson housing when sinking, and a high horsepower motor must be mounted on the horizontal screw body 90 in order to obtain a large rotational excavation force.
  • the device cost increases.
  • the apparatus cost can be reduced while reducing the excavation depth H, but the soil removal performance is extremely lowered. As described above, it is technically difficult for the conventional excavation apparatus to achieve both efficient excavation and soil removal.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a caisson excavation device for any one of the following.
  • (1) It is possible to achieve both efficient excavation and soil removal even if the excavation depth of the direct base plate is reduced.
  • a smooth excavation work can be performed while avoiding the pinching or biting of hard masses such as rocks.
  • the excavation depth of the direct base plate can be adjusted with a simple operation.
  • Partial replacement of consumable parts is possible.
  • the structure is simple and the apparatus cost can be reduced.
  • a first invention of the present application is a caisson digging apparatus that movably engages along a lower end portion of a caisson having a horizontal support surface and excavates a direct base plate of the support surface of the caisson, the lower end portion of the caisson A traveling body that can be engaged and traveled, a traveling means for the traveling body, a scraping excavator mounted on the traveling body, and a rotation driving means for the scraping excavator, A plurality of scraping cutters extending radially in the horizontal direction about a vertical rotation axis, and the lower end of the caisson by running of the traveling body and rotation about the rotation axes of the plurality of scraping cutters It is characterized by excavating the direct foundation board of the part.
  • the scraping excavator in the first invention, includes a rotary shaft that pivotally supports the traveling body in a vertical direction, a rotary plate provided horizontally at a lower end of the rotary shaft, It is characterized by comprising a plurality of scraping cutters arranged radially on the rotating plate.
  • the third invention of the present application is characterized in that, in the first invention or the second invention, the scraping cutter is replaceable with respect to the rotating plate.
  • the present invention has the following remarkable effects. (1) Since the plurality of scraping cutters of the scraping excavator are excavating while traveling below the lower end portion of the caisson, the direct base plate can be excavated with a small excavation resistance and an excavation resistance. (2) Since the scraping cutter rotates horizontally around the vertical rotation axis, no excavated soil remains. Therefore, efficient excavation can be ensured even if the excavation depth is reduced, so that both excavation and excavation can be achieved. (3) Since the scraping cutter rotates horizontally around the vertical rotation axis, smooth excavation work avoiding the pinching or biting of rocks or other hard mass between adjacent scraping cutters Can be done. (4) The excavation depth that can be excavated at one time can be set smaller than that of a conventional excavator.
  • the caisson housing can be designed economically.
  • the structure of the excavator is simple and the scraping cutter constituting the scraping excavator can be removed. Therefore, even if some scraped cutters are broken or damaged, it is only necessary to replace the minimum necessary parts. Therefore, even if a portion of the scraped excavator that is a consumable part is worn, it is not necessary to replace the entire scraped excavator body, which is economical.
  • the scraping cutter can be removed, the excavation depth and the excavation length by the scraping excavator can be adjusted with a simple operation by simply replacing the scraping cutter with a predetermined size.
  • the perspective view which shows the state which attached the excavation apparatus which concerns on this invention to the caisson A longitudinal sectional view of the caisson in a state where the excavation device is engaged with the lower end of the caisson Sectional view of III-III in Fig. 2 Sectional view of IV-IV in Fig. 3 Sectional view of VV in FIG.
  • Model diagram of scraped cutter Side view of a scraped cutter according to another embodiment
  • the perspective view of the scraping cutter which concerns on another form Model diagram of a pair of rotating cutter bodies constituting a conventional excavation device
  • FIGS. 1 and 2 are longitudinal sectional views of the lower end 21 of the caisson 20 with a part thereof omitted.
  • the caisson 20 is a concrete box having a horizontal cross-sectional shape of, for example, a rectangle, a polygon, a circle, an ellipse, and the like. The thickness and overall dimensions of the case are appropriately selected according to the use of the caisson 20.
  • the caisson 20 assumed by the present invention forms a horizontal support surface 22 at the bottom of the lower end 21.
  • the reason why the horizontal support surface 22 is formed in a horizontal plane at the lowermost part of the caisson 20 is to support the total weight of the caisson 20 on the direct base board.
  • a reaction force receiver 23 for obtaining a self-propelled reaction force of the excavation device 10 and a pair of guide rails 24 and 24 for guiding the excavation device 10 are provided inside the lower end portion 21 of the caisson 20.
  • a bottom frame 25 such as H-shaped steel is integrated with the lowermost end portion of the caisson 20, and a concave portion that is continuous with the inside of the bottom frame 25 that is the inner side of the lower end portion 21.
  • a space 26 is formed.
  • a pair of guide rails 24, 24 are provided on the upper and lower flanges 25 a, 25 b of the bottom frame 25 facing the recessed space 26, and at the inner center of the vertical plate 25 c, the moving range of the digging device 10 is provided.
  • a reaction force receiving tool 23 is provided.
  • the reaction force receiving member 23 is constituted by a chain element.
  • a linear rack straight gear
  • a rail or the like may be used. Select according to the self-propelled method.
  • the bottom frame 25 may be omitted, and the reaction force receiver 23 and the guide rails 24 and 24 may be provided directly on the casing of the caisson 2.
  • the excavation device 10 is a self-propelled device that has both a function of scraping and excavating the direct base board of the lower end 21 of the caisson 20 and a function of discharging excavated soil into the caisson, and guides the lower end 21 of the caisson 20.
  • a traveling body 30 that can travel by engaging with the rails 24, 24, traveling means of the traveling body 30, a scraping excavator 40 that is mounted on the traveling body 30 and scrapes and digs out the direct base plate of the lower end portion 21;
  • a rotation driving means of the excavator 40 is a self-propelled device that has both a function of scraping and excavating the direct base board of the lower end 21 of the caisson 20 and a function of discharging excavated soil into the caisson, and guides the lower end 21 of the caisson 20.
  • a traveling body 30 that can travel by engaging with the rails 24, 24, traveling means of the traveling body 30, a scraping excavator 40 that is mounted on the traveling body 30 and scrapes and digs out
  • the traveling body 30 includes a first guide mechanism G 1 and a second guide mechanism G 2 provided at intervals along the traveling direction. Engage with the guide rails 24 and 24 via G 1 and G 2 .
  • the front side with respect to the traveling direction R of the traveling body 30 is referred to as a first guide mechanism G 1
  • the rear side with respect to the traveling direction of the traveling body 30 is referred to as a second guide mechanism G 2 .
  • Both of these two guide mechanisms G 1 and G 2 have a common structure, and a support shaft 32 provided rotatably on a pair of horizontal substrates 31, 31 constituting the traveling body 30, and upper and lower ends of the support shaft 32.
  • the support bases 33 and 33 pivotally supported on the support bases 33, a pair of idling rollers 34 and 34 erected on the support bases 33 and 33 at intervals, and the idling roller 38 pivotally supported on the support bases 33 and 33. And have.
  • a pair of rollers 34, 34 that idle around the vertical axis abuts against the side surfaces of the guide rails 24, 24, and a roller 38 that idles around the horizontal axis abuts against the horizontal plane of the guide rails 24, 24, thereby driving
  • the body 30 is supported by the guide rails 24, 24 (FIGS. 4 and 5).
  • the traveling body 30 is smoothly provided even if the traveling path of the traveling body 30 is bent by providing the rollers 34 and 34 via the support shaft 32 and the support base 33. Can be moved to.
  • Traveling means As shown in FIGS. 2 and 3, the traveling body 30 is equipped with a driving source 35 and traveling wheels 36, and the traveling wheels 36 are rotated forward and backward by receiving the rotation of the driving source 35.
  • the traveling wheel 36 is made of, for example, a sprocket, a gear, a friction wheel, or the like, and causes the traveling body 30 to self-run in cooperation with the reaction force receiver 23 installed inside the caisson 20.
  • any one of an electric motor, a heat engine, a hydraulic motor, and the like can be used.
  • any one of a known gear transmission mechanism C, a belt transmission mechanism, a chain transmission mechanism, etc., or a combination of a plurality of these transmission mechanisms can be employed.
  • the traveling wheel 36 is provided on at least one of the support shafts 32 of the first or second guide mechanisms G 1 and G 2 .
  • the running wheel 36 is provided in the first guide mechanism G 1 of the support shaft 32.
  • a gear 37 is provided integrally with the traveling wheel 36 on the same axis as the support shaft 32, and the traveling wheel 36 rotates with the rotation of the drive source 35 transmitted to the gear 37.
  • the scraping excavator 40 includes a rotating shaft 41 that pivots through the traveling body 30 in the longitudinal direction, and a rotating plate that is provided horizontally at the lower end of the rotating shaft 41. 42 and a plurality of scraping cutters 43 arranged radially on the rotating plate 42. The rotating plate 42 and the scraping cutter 43 are rotated at a position below the support surface of the caisson 20 in response to the rotation of the rotating shaft 41.
  • the scraping cutter 43 of this example will be described.
  • the scraping cutter 43 has a plate shape or a rod shape as a whole, and at least the front surface 43a functions as a cutting surface.
  • a form in which super hard excavation tips 44 are attached to the front surface 43a and the lower surface 43b of the scraping cutter 43 is shown, but the excavation tips 44 are not essential.
  • the some excavation tip 45 is provided also in the lower surface of the rotating plate 42 as needed, this excavation tip 45 is not essential.
  • the function of the scraping cutter 43 will be described in detail.
  • the ground located on the excavation direction side is excavated by the front surface 43a of the scraping cutter 43, and the ground is positioned on the front surface 43a.
  • the unevenness of the ground dug down is cut flat and leveled.
  • the lower surface 43b of the scraping cutter 43 does not function for continuously excavating downward.
  • the scraping cutter 43 functions to carry the excavated earth and sand laterally on its side surface 43c.
  • the excavation radius of the scraping excavator 40 is determined by the total length of the scraping cutter 43, and the excavation depth of the scraping excavator 40 is determined by the total height of the scraping cutter 43.
  • the scraping cutter 43 is assembled to the rotating plate 42 via a bolt 46 on the base end side, and can be removed from the rotating plate 42 by removing the bolt 46. If some of the scraping cutters 43 are damaged, they can be replaced with separate scraping cutters 43 simply by attaching and detaching the bolts 46.
  • the above-described attachment / detachment structure of the scraping cutter 43 is an example, and a known detachable assembly means can be applied. Further, when it is desired to change the excavation depth or excavation length by the scraping excavator 40, it can be dealt with by a simple operation by simply replacing the scraping cutter 43 with a predetermined size.
  • the traveling body 30 is equipped with a drive source 45, and the scraped excavator 40 receives the rotation of the drive source 45 and the rotation axis 41 is the center. Forward and reverse.
  • the torque transmission means of the drive source 45 any one of a known gear transmission mechanism D, belt transmission mechanism, chain transmission mechanism, etc., or a combination thereof can be used.
  • the rotational speed of the scraping excavator 40 is set so as to be superior to the moving speed of the scraping excavator 40.
  • each drive source 35, 45 mounted on the traveling body 30 can be individually controlled.
  • the scraping excavator 40 rotates and a plurality of scraping cutters 43 around a rotating shaft 41 in the vertical direction while self-propelling, thereby scraping and excavating the direct base plate at the lower end 21 of the caisson 20. It is a device for doing.
  • the difference between the scraping excavator 40 and the conventional shield machine is that the scraping excavator 40 moves around the vertical axis while moving in the direction perpendicular to the vertical axis (horizontal direction).
  • the shield machine digs in the extending direction of the rotating shaft while rotating around the rotating shaft.
  • the difference from the conventional pair of horizontal screw bodies 90, 90 described above is that the scraping excavator 40 discharges excavated earth and sand in the direction perpendicular to the vertical rotating shaft 41 (horizontal direction).
  • a pair of conventional horizontal screw bodies 90, 90 discharges excavated earth and sand along the horizontal axis.
  • the difference between the pair of conventional horizontal screw bodies 90, 90 described above is that the scraped excavator 40 rotates in one axis (rotary shaft 41) in the vertical direction, whereas the conventional pair of horizontal screw bodies 90, 90 differs.
  • the horizontal screw bodies 90, 90 are biaxially rotated in the horizontal direction. Since the scraping excavator 40 is rotated by one axis (rotating shaft 41) around the vertical axis, the rock scraping cutter 43 and the scraping cutter 43 do not sandwich or bite a hard mass such as a rock. It is possible to achieve both efficient excavation and soil removal without any occurrence.
  • FIG. 8 shows a model diagram of the excavation principle by the scraping cutter 43.
  • a plurality of excavation tips 44 provided on the front surface 43a and the lower surface 43b of the scraping cutter 43 excavate the ground G into a planar circular shape.
  • the excavated soil is pushed by the side surface of the rotating scraping cutter 43 and discharged to the inside of the caisson 20. At this time, since the rotating scraping cutter 43 forcibly guides and extrudes the excavated earth and sand along the side surface 43c, the excavated earth and sand do not adhere.
  • the weight of the caisson 20 does not directly act on the excavation device 10.
  • the rotational speed of the plurality of scraping cutters 43, 43... Is set to be superior to the moving speed of the scraping excavator 40.
  • the ground 43 where the cutters 43, 43... Are located in the traveling direction is excavated one after another. That is, excavation is substantially performed only at the front end portions of the plurality of scraping cutters 43. That is, although the excavation function of the front surface 43a of the scraping cutter 43 is not changed, the entire length of the lower surface 43b does not exhibit the excavation function, but the front end portion of the lower surface 43b exhibits the excavation function.
  • the front 43a of the plurality of scraping cutters 43 excavates the ground G in small increments, even if the ground G is compacted hard ground or rock, it can be efficiently excavated.
  • the excavation resistance and the excavation amount per one of the scraping cutters 43 can be obtained from the relationship between the number of scraping cutters 43 constituting the scraping excavator 40 and the rotational speed with respect to the moving speed of the scraping excavator 40. it can. Therefore, the relationship between the number of the scraping cutters 43 installed and the rotational speed with respect to the moving speed of the scraping excavator 40 is appropriately selected according to the situation at the site so that an excessive load is not applied to the scraping cutter 43.
  • the caisson 20 is supported by the direct base plate through the horizontal support surface 22, so that the weight of the caisson 20 does not directly act on the excavation device 10.
  • the excavating device 10 excavates the caisson's direct foundation board while circling the caisson 20 or repeating forward and backward movements. Since the excavating diameter of the scraping excavator 40 is set so as to coincide with the outer surface of the caisson 20, the friction between the outer peripheral surface of the caisson 20 and the ground is zero when the caisson 20 sinks. Resistance need not be taken into consideration. Accordingly, the caisson 20 settles only by its own weight.
  • the support surface 22 is partially excavated by the excavation apparatus 10 while the support surface 22 at the lower end of the caisson 20 is supported by the direct base plate.
  • the caisson 20 sinks by the height of the scraping cutter 43. That is, as the excavation work of the ground progresses, the caisson 20 sinks in parallel. Since the depth of excavation by the scraping excavator 40 can be set small, it is possible to avoid a large torsional force from acting on the casing of the caisson 20 when sinking. Therefore, it is not necessary to make a design in which the strength of the caisson housing is excessively increased, and the caisson housing can be designed economically.
  • FIGS. 9 and 10 show another embodiment of the scraping cutter 43.
  • 9A shows a form in which corrugated cutting surfaces are formed on the front surface 43a and the lower surface 43b of the scraping cutter 43
  • FIG. 9B shows only the front surface 43a of the scraping cutter 43 in the corrugated cutting surface.
  • a flat cutting surface is formed on the lower surface 43b.
  • FIG. 10 shows a form in which the excavation tip 44 is provided only on the front surface 43 a of the scraping cutter 43.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Earth Drilling (AREA)

Abstract

[課題]直下地盤の掘削深さを小さくしても、効率のよい掘削性および排土性の両立が図れること。 [解決手段]走行可能な走行体と、走行体に搭載した掻出掘削機ととを具備し、掻出掘削機は鉛直の回転軸に設けた複数の掻出カッタを具備し、走行体の走行と、複数の掻出カッタの回転とによりケーソンの下端部の直下地盤を掘削する。

Description

掘進装置
 本発明はケーソンの下端部の直下地盤を掘進するケーソン用の掘進装置に関するものである。
 一般にケーソンは、その下端部の刃口の断面形状が先鋭な楔形を呈していて、尖鋭な刃口を地盤に貫入しながら沈設している。
 従来のケーソン工法は、ケーソンの下端部の直下地盤を掘削することなく、ケーソン全体を地中に貫入するため、ケーソンの外周面と地山との間に大きな摩擦抵抗を生じる。
 摩擦抵抗に打ち勝ってケーソンを沈降させるために従来は、ケーソンに重量物を搭載したり、地中に定着したアンカー類に反力を得て強制的に貫入しているが、ケーソンを沈降するための設備が大掛かりとなるだけでなく、ケーソンの傾きを回避するために単位時間当たりの沈降量が非常に小さい範囲に制限され、沈設に要する時間と費用の負担が大きい等の多くの問題がある。
 出願人は従来のケーソン工法の問題点に鑑み、ケーソンの全体重量を直下地盤に支持させつつ、掘進装置により直下地盤を掘進しながらケーソンを自重のみで沈設するケーソン工法と、ケーソン下端部の直下地盤を掘削して排土する自走式の掘進装置を特許文献1~4として先に提案した。
 図11に掘進装置の一例を示す。先に提案した掘進装置は、互いに水平方向向けて並列配置した一対の水平スクリュー体90,90と、これらの水平スクリュー体90,90を回転駆動する手段と、掘進装置をケーソン80に沿って水平移動させる自走手段とを具備する。
 一対の水平スクリュー体90,90はケーソン80の下端部81と直下地盤Gの間で、ケーソン躯体の横断方向に向けて配設した掘削体で、回転軸91と、回転軸91の外周面に一体に付設した螺旋状の羽根92を具備する。
 一対の水平スクリュー体90,90は互いに接近して並列され、一方の羽根92の間に入り込んだ土砂を他方の羽根92で掻き落とせるように、相対向する水平スクリュー体90,90の螺旋状の羽根92,92の一部が重合している。
特開2001-20293号公報 特開2002-121744号公報 特開2006-28830号公報 特開平11-269890号公報
 従来の掘進装置にあってはつぎのような問題点がある。
(1)地中に大小の岩石等の硬質塊が存在する場合、水平スクリュー体90を構成する螺旋状の羽根92の間に大きめの硬質塊を挟み込んだり、一対の水平スクリュー体90,90の螺旋状の羽根92,92の重合箇所に小さめの硬質塊を噛み込んだりする。
 これらの硬質塊は二つの羽根92,92の回転力で取り除くことができる場合もあるが、羽根と羽根の側面間に硬質塊が強く噛み込むと水平スクリュー体90,90が回転不能に陥ったり、最悪は羽根92の一部または動力伝達機構の一部が破損するおそれがある。
 そのため、硬質塊の挟み込みや噛み込みを生じたときは、掘進装置の運転を一時中断して作業員が硬質塊を手作業で取り除かねばならず、掘削作業の中断を強いられる。
(2)螺旋状の羽根92は回転軸91に対して斜めに傾斜している関係から、重合する羽根92と羽根92の間に土砂を掻き落せない領域が発生する。
 そのため、一対の水平スクリュー体90,90の羽根92や回転軸91に土砂が付着して残ったままとなり、掘削土砂の排出効率が低い。
(3)水平スクリュー体90の羽根92の一部が欠損、変形、又は偏摩耗を生じても部分的な交換ができない。そのために、水平スクリュー体90をまるごと交換しなければならず不経済である。
(4)水平スクリュー体90が一度に掘削できる深さHは羽根92の径と同じ30cm~50cmである。
 水平スクリュー体90による掘削深さが大きいと、沈降する際にケーソン躯体に大きなねじれ力が作用する問題と、水平スクリュー体90に大きな回転掘削力を得るために高馬力のモータを搭載しなければならず、装置コストが嵩むといった問題がある。
 反対に水平スクリュー体90を構成する羽根92の径のみを小さくすると、掘削深さHを小さくしつつ装置コストを低減できるが、排土性能が極端に低下する。
 以上のように従来の掘進装置は、効率のよい掘削性と排土性の両立を図ることが技術的に難しい。
 本発明は上記した問題点を解決するためになされたもので、その目的とするところは、つぎの何れかひとつのケーソン用の掘進装置を提供することにある。
(1)直下地盤の掘削深さを小さくしても、効率のよい掘削性および排土性の両立が図れること。
(2)岩石等の硬質塊の挟み込みや噛み込みを回避して、円滑な掘進作業を行なえること。
(3)直下地盤の掘削深さを簡単な操作で調整できること。
(4)消耗部品の部分的な交換が可能であること。
(5)構造が簡単で装置コストを低減できること。
 本願の第1発明は、水平な支持面を有するケーソンの下端部に沿って移動自在に係合し、ケーソンの支持面の直下地盤を掘削するケーソン用の掘進装置であって、ケーソンの下端部に係合して走行可能な走行体と、走行体の走行手段と、走行体に搭載した掻出掘削機と、掻出掘削機の回転駆動手段とを具備し、前記掻出掘削機は、鉛直の回転軸を中心に水平方向に向けて放射状に張り出した複数の掻出カッタを具備し、前記走行体の走行と、複数の掻出カッタの回転軸を中心とした回転とによりケーソンの下端部の直下地盤を掘削することを特徴とする。
 本願の第2発明は、前記第1発明において、前記掻出掘削機は、走行体を縦方向に貫通して軸支した回転軸と、前記回転軸の下端に水平に設けた回転板と、回転板に放射状に配設した複数の掻出カッタとにより構成することを特徴とする。
 本願の第3発明は、前記第1発明または第2発明おいて、回転板に対して掻出カッタを交換可能に構成したことを特徴とする。
 本発明はつぎの顕著な効果を奏する。
(1)掻出掘削機の複数の掻出カッタが、ケーソンの下端部の下方を走行しながら掘削するので、小さな掘削抵抗と掘進抵抗で以って直下地盤を掘削することができる。
(2)掻出カッタが鉛直の回転軸を中心に水平回転するので、従来と比べて掘削土砂の取り残しがなくなる。
 そのため、掘削深さを小さくしても効率のよい排土性を確保することができるから、掘削性および排土性の両立を図ることが可能となる。
(3)掻出カッタが鉛直の回転軸を中心に水平回転するので、隣り合う掻出カッタと掻出カッタの間で岩石等の硬質塊の挟み込みや噛み込みを回避して、円滑な掘進作業を行なえる。
(4)従来の掘削機と比べて一回に掘削できる掘削深さを小さく設定することができる。
 そのため、ケーソンを沈降する際にケーソン躯体に大きなねじれ力が作用することを回避できるから、ケーソン躯体を経済的に設計できる。
(5)掘削機の構造が簡単であり、かつ掻出掘削機を構成する掻出カッタを取り外し可能である。
 そのため、一部の掻出カッタが破損したり損傷した場合でも、必要最小限の部品を交換するだけで済む。
 したがって、消耗部品である掻出掘削機の一部が摩耗しても掻出掘削機体全体を交換せずに済むので、経済的である。
(6)掻出カッタを取り外し可能であるため、所定の寸法の掻出カッタに付け替えるだけの簡単な操作で以って、掻出掘削機による掘削深さや掘削長を調整することができる。
本発明に係る掘進装置をケーソンへ取付けた状態を示す斜視図 掘進装置をケーソンの下端部に係合させた状態におけるケーソンの縦断面図 図2におけるIII-IIIの断面図 図3におけるIV-IVの断面図 図4におけるV-Vの断面図 一部を省略した掻き出掘削機の斜視図 図2におけるVII-VIIの断面図 掻出カッタのモデル図 他の形態に係る掻出カッタの側面図 他の形態に係る掻出カッタの斜視図 従来の掘進装置を構成する一対の回転カッタ体のモデル図
 以下に図面を参照しながら本発明に係る掘進装置の一例について説明する。
[構成]
(1)ケーソン
 図1,2に一部を省略したケーソン20の下端部21の縦断面図を示す。
 ケーソン20はその水平断面形状が例えば矩形、多角形、円形、楕円形等を呈するコンクリート製の函体で、その躯体厚や全体寸法はケーソン20の使途に応じて適宜選択する。
 本発明が前提とするケーソン20は、下端部21の底部に水平な支持面22を形成する。ケーソン20の最下部に水平な支持面22を水平面に形成したのは、ケーソン20の総重量を直下地盤に支持させるためである。
 ケーソン20の下端部21の内側には掘進装置10の自走反力を得るための反力受け具23と、掘進装置10を誘導する一対のガイドレール24,24を設ける。
 本例における下端部21の構造について説明すると、ケーソン20の最下端部にはH形鋼等のボトムフレーム25が一体化していて、下端部21の内側であるボトムフレーム25の内側に連続した凹部空間26を形成している。
 凹部空間26に面したボトムフレーム25の上下のフランジ25a,25bには、相対向して一対のガイドレール24,24を設けるとともに、縦板25cの内側中央には、掘進装置10の移動範囲に亘って反力受け具23を設ける。
 本例では反力受け具23をチェーン要素で構成する場合について示すが、その他に反力受け具23としては直線状のラック(直線歯車)やレール等を使用してもよく、掘進装置10の自走方式に応じて適宜選択する。
 またボトムフレーム25を省略し、反力受け具23とガイドレール24,24をケーソン2の躯体に直接設けてもよい。
(2)掘進装置
 図1,2に基づいて掘進装置10の全体構成について説明する。
 掘進装置10は、ケーソン20の下端部21の直下地盤を掻き出し掘削する機能と、掘削土をケーソン内側へ排出する機能を併有した自走式の装置であり、ケーソン20の下端部21のガイドレール24,24に係合して走行可能な走行体30と、走行体30の走行手段と、走行体30に搭載し、下端部21の直下地盤を掻き出し掘削する掻出掘削機40と、掻出掘削機40の回転駆動手段とを具備する。
(3)走行体
 図3,4に示すように、走行体30は走行方向に沿って間隔を隔てて設けた第1ガイド機構G1と、第2ガイド機構G2を具備し、該ガイド機構G1、G2を介してガイドレール24,24と係合する。
 本例では走行体30の進行方向Rに対して前方側を第1ガイド機構G1、走行体30の進行方向に対して後方側を第2ガイド機構G2と呼んで区別して説明する。
 これら2つのガイド機構G1,G2は共に共通した構造を有し、走行体30を構成する一対の水平基板31,31に回転自在に設けた支軸32と、支軸32の上下端部に枢支した支持台33,33と、各支持台33,33に間隔を隔てて立設した一対の空転式のローラ34,34と、支持台33,33に枢支した空転式のローラ38とを有する。
 鉛直軸を中心に空転する一対のローラ34,34がガイドレール24,24の側面に当接するとともに、水平軸を中心に空転するローラ38がガイドレール24,24の水平面に当接することで、走行体30はガイドレール24,24に支持される(図4,5)。
 一対のローラ34,34を水平基板31,31に設けるにあたり、支軸32と支持台33を介して旋回自在に設けることで、走行体30の移動経路が屈曲していても走行体30を円滑に移動することができる。
 ガイド機構G1,G2は上記したローラ34,38以外に、ガイドレール24,24に嵌合可能な固定式のガイド溝を有する公知の係合機構を適用してもよい。
(4)走行手段
 図2,3に示すように、走行体30は駆動源35と走行輪36を装備していて、駆動源35の回転を受けて走行輪36が正逆転する。
 走行輪36は、例えばスプロケット、歯車、または摩擦車等からなり、ケーソン20の内側に設置した反力受け具23と協働して走行体30を自走させる。
 駆動源35としては、例えば電動機、熱機関、液圧モータ等の何れかひとつを使用できる。
 駆動源35の回転を走行輪36へ伝達するには、公知の歯車伝達機構C、ベルト伝達機構、チェーン伝達機構等の何れかひとつ、またはこれら複数の伝達機構の組合せを採用できる。
 走行輪36を設けるにあたり、第1または第2ガイド機構G1,G2のうち少なくとも何れか一方の支軸32に走行輪36を設ける。
 本例では第1ガイド機構G1の支軸32に走行輪36を設けた場合を示す。
 支軸32の同軸上には走行輪36と一体に歯車37が付設してあり、歯車37へ伝えられた駆動源35の回転に伴って走行輪36が回転する。
(5)掻出掘削機
 図2に示すように掻出掘削機40は、走行体30を縦方向に貫通して軸支した回転軸41と、回転軸41の下端に水平に設けた回転板42と、回転板42に放射状に配設した複数の掻出カッタ43とにより構成する。
 回転板42および掻出カッタ43は、回転軸41の回転を受けてケーソン20の支持面の下方位置で回転する。
 本例の掻出カッタ43について説明すると、掻出カッタ43は全体形状が板状または棒状を呈していて、少なくともその前面43aが切削面として機能する。
 本例では、掻出カッタ43の前面43a及び下面43bに超硬質の掘削チップ44を付設した形態を示すが、掘削チップ44は必須ではない。
 また必要に応じて回転板42の下面にも複数の掘削チップ45を設けるが、この掘削チップ45も必須ではない。
 掻出カッタ43の機能について詳述すると、掻出カッタ43の前面43aで以って掘進方向側に位置する地盤を開削して掘り下げ、掻出カッタ43の下面43bで以って、前面43aで掘り下げた地盤の凹凸を平に切削して均す。
 掻出カッタ43の下面43bは、下方へ向けて連続掘削するために機能するものではない。
 掻出カッタ43は掘削土砂をその側面43cで側方へ搬出するために機能する。
 掻出掘削機40の掘削半径は掻出カッタ43の全長によって求められ、また掻出掘削機40の掘削深さは掻出カッタ43の全高によって求められる。
 掻出カッタ43はその基端側にボルト46を介して回転板42に組付け、ボルト46の抜取りにより回転板42からの取外しが可能である。
 一部の掻出カッタ43が損傷した場合には、ボルト46の着脱操作だけで別途の掻出カッタ43と交換することができる。
 上記した掻出カッタ43の着脱構造は一例であり、公知の着脱可能な組付け手段を適用できる。
 また掻出掘削機40による掘削深さや掘削長を変更したい場合には、所定の寸法の掻出カッタ43に付け替えるだけの簡単な操作で対処することができる。
(6)掻出掘削機の回転駆動手段
 図2に示すように走行体30は駆動源45を搭載していて、駆動源45の回転を受けて掻出掘削機40が回転軸41を中心に正逆転する。
 駆動源45のトルク伝達手段としては、公知の歯車伝達機構D、ベルト伝達機構、チェーン伝達機構等の何れかひとつ、またはこれらの複数の組合せを使用できる。
 掻出掘削機40の回転速度は掻出掘削機40の移動速度に対して卓越するように設定してある。
 尚、走行体30に搭載した各駆動源35,45の稼動は個別制御が可能である。
(7)掘削原理の比較
 掻出掘削機40は自走しながら鉛直方向の回転軸41を中心に複数の掻出カッタ43が回転することで、ケーソン20の下端部21の直下地盤を掻き出し掘削するための装置である。
 掻出掘削機40が従来のシールドマシンと比較して異なるところは、掻出掘削機40が鉛直軸を中心に回転しながら鉛直軸の直交方向(水平方向)へ向けて移動しながら掘進するのに対して、シールドマシンが回転軸を中心に回転しながら回転軸の延長方向へ向けて掘進することである。
 掻出掘削機40が鉛直の回転軸41の直交方向(水平方向)へ向けて掘進する方式を採用することで、シールドマシンと比較して掘削抵抗と掘進抵抗が格段に小さくなる。
 また既述した従来の一対の水平スクリュー体90,90と比較して異なるところは、掻出掘削機40が鉛直の回転軸41の直交方向(水平方向)へ向けて掘削土砂を排出するのに対して、従来の一対の水平スクリュー体90,90が水平軸に沿って掘削土砂を排出することである。
 掻出掘削機40が回転軸41の直交方向(水平方向)へ向けて掘削土砂を排出する方式を採用することで、従来と比べて掘削土砂の取り残しがなくなり、掘削深さを小さくしても、効率のよい排土性を確保することができる。
 さらに既述した従来の一対の水平スクリュー体90,90と比較して異なるところは、掻出掘削機40が鉛直方向へ向けた一軸(回転軸41)回転であるのに対して、従来の一対の水平スクリュー体90,90が水平方向へ向けた二軸回転であることである。
 掻出掘削機40が鉛直軸を中心とした一軸(回転軸41)の回転であるから、隣り合う掻出カッタ43と掻出カッタ43の間で岩石等の硬質塊の挟み込みや噛み込みをまったく生じることなく、効率のよい掘削性および排土性の両立を図ることができる。
[作動]
 つぎに既述した掘進装置の作用について説明する。
(1)掻き出し掘削
 図2において、走行体30に搭載した駆動源45を作動すると、トルク伝達手段を介して駆動源45の回転力が掻出掘削機40を構成する回転軸41へ伝達される。その結果、走行体30が停止した状態で複数の掻出カッタ43が回転軸41を中心に一方向に回転を開始する。
 掻出掘削機40が回転することで、ケーソン20の支持面22の直下地盤が掻出カッタ43の高さと半径を有する平面円形状(平面円環状)に掘削される。
 図8に掻出カッタ43による掘削原理のモデル図を示す。
 掻出カッタ43の前面43aと下面43bに設けた複数の掘削チップ44が地盤Gを平面円形状に掘削する。
 掻き出し掘削に当たり、図示したように掻出カッタ43の前面43aの上半を切除して逃げ部を形成しておくと、逃げ部の分だけ掻出カッタ43の回転抵抗が小さくなるだけでなく、破線で示すオーバーハングとなった地盤Gの領域が土砂の自重で崩落するので直接掘削する必要がなくなる。
 オーバーハングの領域の土砂が自重崩落しないときでも、掻出カッタ43の前面43aの斜めの切削面で掘削できるので、掘削残しを生じることがない。
 掘削土砂は回転する掻出カッタ43の側面に押されてケーソン20の内側へ排出される。
 この際、回転する掻出カッタ43がその側面43cに沿って掘削土砂を強制的に誘導して押し出すので、掘削土砂が付着することがない。
 掻出掘削機40により所定の深さの平面円形状の掘削を完了した後に、掻出掘削機40が回転を継続しても、掻出掘削機40が移動しない限り、さらなる掘削は進行しない。
 掘進装置10はケーソン20に垂下され、またケーソン20は水平な支持面22を通じて直下地盤に支持されているため、掘進装置10にケーソン20の自重が直接作用することはない。
(2)掘進装置の走行
 図2において、走行体30に搭載した駆動源45に引き続いて駆動源35を作動すると、トルク伝達手段を介して駆動源35の回転が走行輪36へ伝達される。
 ケーソン20の内側の反力受け具23と噛合する走行輪36が回転することで、掘進装置10はケーソン20の下端部21のガイドレール24,24に沿って一方向へ向けて走行を開始する。
 回転を継続した掻出掘削機40がケーソン20に沿って水平移動を開始することで、掻出カッタ43の高さと径の寸法による支持面22の直下地盤の掻き出し掘削(掘進)が進行する。
 掻出掘削機40による掘進に当たり、掻出掘削機40の移動速度に対して、複数の掻出カッタ43,43・・・の回転速度が卓越するように設定してあるので、複数の掻出カッタ43,43・・・が進行方向に位置する地盤Gを次々と掘削することになる。つまり、複数の掻出カッタ43の前端部だけで実質的に掘削することになる。
 すなわち、掻出カッタ43の前面43aの掘削機能は変わらないが、下面43bはその全長が掘削機能を発揮するのではなく、下面43bの前端部分が掘削機能を発揮する。
 このように複数の掻出カッタ43の前面43aが小刻みに地盤Gを掻き出しながら掘削するため、地盤Gが締め固められた硬質地盤や岩盤質であっても効率的に掘削することができる。
 掻出カッタ43の1本当たりの掘削抵抗及び掘削量は、掻出掘削機40を構成する掻出カッタ43の設置本数と、掻出掘削機40の移動速度に対する回転速度の関係によって求めることができる。
 したがって、掻出カッタ43に過度の負荷がかからないように現場の状況に応じて、掻出カッタ43の設置本数と、掻出掘削機40の移動速度に対する回転速度の関係を適宜選択する。
 掘進装置10による掘進中も、ケーソン20は水平な支持面22を通じて直下地盤に支持されているため、掘進装置10にケーソン20の自重が直接作用しない。
(3)ケーソンの沈降
 以上のように掘進装置10はケーソン20を周回しながら、或いは前進と後退を繰り返しながらケーソンの直下地盤を掘削する。
 掻出掘削機40の掘削径がケーソン20の外側面と一致するように設定してあるので、ケーソン20の沈降時におけるケーソン20の外周面と地山間の摩擦はゼロとなるから、周面摩擦抵抗は特に考慮する必要がない。
 したがって、ケーソン20は自重だけで沈降する。
 既述したように掘進中において、ケーソン20の下端の支持面22を直下地盤に支持させた状態で、掘進装置10に支持面22を直下地盤を部分的に掘削していく。ケーソン20の一周分の掘削が完了することで、ケーソン20は掻出カッタ43の高さ分だけ沈降する。すなわち、地盤の掘削作業の進行に伴い、ケーソン20の沈降が並行して進行する。
 掻出掘削機40による掘削深さを小さく設定できるので、沈降する際にケーソン20の躯体に大きなねじれ力が作用することを回避できる。
 そのため、ケーソンの躯体強度を過剰に増強した設計をする必要がなくなり、ケーソン躯体を経済的に設計することができる。
(4)掘削板の部分交換
 掻出掘削機40を長時間に亘り使用すると、一部の掻出カッタ43が偏摩耗したり損傷する場合がある。
 本発明では、回転板42からボルト46を取り外すだけで、新たな掻出カッタ43と交換することが可能である。
 したがって、健全な掻出カッタ43はそのまま継続使用できるので、掻出掘削機40全体を交換せずに済み経済的である。
(5)他の実施形態
 図9,10に掻出カッタ43の他の形態を示す。
 図9の(A)は掻出カッタ43の前面43aと下面43bに、波形の切削面を形成した形態を示し、同図の(B)は掻出カッタ43の前面43aのみを波形の切削面を形成し、下面43bに平らな切削面を形成した形態を示す。
 図10は掻出カッタ43の前面43aのみに掘削チップ44を設けた形態を示す。
10・・・・・掘進装置
20・・・・・ケーソン
21・・・・・ケーソンの下端部
22・・・・・支持面
23・・・・・反力受け具
24,24・・ガイドレール
30・・・・・走行体
33・・・・・支持台
34・・・・・ローラ
35・・・・・駆動源
36・・・・・走行輪
40・・・・・掻出掘削機
41・・・・・掻出掘削機の回転軸
42・・・・・掻出掘削機の回転板
43・・・・・掻出カッタ

Claims (3)

  1.  水平な支持面を有するケーソンの下端部に沿って移動自在に係合し、ケーソンの支持面の直下地盤を掘削するケーソン用の掘進装置であって、
     ケーソンの下端部に係合して走行可能な走行体と、
     走行体の走行手段と、
     走行体に搭載した掻出掘削機と、
     掻出掘削機の回転駆動手段とを具備し、
     前記掻出掘削機は、鉛直の回転軸を中心に水平方向に向けて放射状に張り出した複数の掻出カッタを具備し、
     前記走行体の走行と、複数の掻出カッタの回転軸を中心とした回転とによりケーソンの下端部の直下地盤を掘削することを特徴とする、
     ケーソン用の掘進装置。
  2.  請求項1において、前記掻出掘削機は、走行体を縦方向に貫通して軸支した回転軸と、前記回転軸の下端に水平に設けた回転板と、回転板に放射状に配設した複数の掻出カッタとにより構成することを特徴とする、ケーソン用の掘進装置。
  3.  請求項1または請求項2において、回転板に対して掻出カッタを交換可能に構成したことを特徴とする、ケーソン用の掘進装置。
PCT/JP2009/004049 2009-07-08 2009-08-24 掘進装置 WO2011004442A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-161671 2009-07-08
JP2009161671A JP2011017161A (ja) 2009-07-08 2009-07-08 掘進装置

Publications (1)

Publication Number Publication Date
WO2011004442A1 true WO2011004442A1 (ja) 2011-01-13

Family

ID=43428884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004049 WO2011004442A1 (ja) 2009-07-08 2009-08-24 掘進装置

Country Status (2)

Country Link
JP (1) JP2011017161A (ja)
WO (1) WO2011004442A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6043006B1 (ja) * 2016-03-18 2016-12-14 光洋自動機株式会社 地中構造物の構築方法
JP7019183B2 (ja) * 2018-06-21 2022-02-15 光洋自動機株式会社 地中構造物の構築方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04221125A (ja) * 1990-12-20 1992-08-11 Komatsu Ltd ケーソン内部地盤の掘削装置
JP2002121744A (ja) * 2000-10-12 2002-04-26 Koyo Autom Mach Co Ltd ケーソン用掘削装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04221125A (ja) * 1990-12-20 1992-08-11 Komatsu Ltd ケーソン内部地盤の掘削装置
JP2002121744A (ja) * 2000-10-12 2002-04-26 Koyo Autom Mach Co Ltd ケーソン用掘削装置

Also Published As

Publication number Publication date
JP2011017161A (ja) 2011-01-27

Similar Documents

Publication Publication Date Title
US4542940A (en) Method and apparatus for cutting a trench through rock-like material
US4230372A (en) Dual rock cutter wheel trencher
AU2019200467A1 (en) Excavation devices and methods
JP5265487B2 (ja) 掘進装置
CN109183879B (zh) 一种用于开挖沟槽的挖沟机
WO2011004442A1 (ja) 掘進装置
HU220551B1 (hu) Csővezeték alatt ásó földmunkagép és annak lánctalpas önjáró egysége
US3888544A (en) System for chipping and moving ice
USRE29356E (en) System for chipping and moving ice
CN211395799U (zh) 一种小型链式开沟机
JP2965941B2 (ja) 穴掘り機用オーガー
US20130255112A1 (en) Soil trimming tool and methods of using same
CN113653112A (zh) 建筑施工用地基快速挖掘设备
MXPA03004769A (es) Metodo y aparato para la generacion de energia cinetica vibratoria y su aplicacion.
CN109653266B (zh) 一种耙斗链式成槽机
RU2348761C1 (ru) Скрепер
RU2187600C1 (ru) Рабочее оборудование гидравлического экскаватора
JP2010101123A (ja) 掘進装置
JP3215804B2 (ja) 排水暗渠形成工法およびその装置
CN116122723B (zh) 一种方形桩孔铣削用土料导出装置及其使用方法
CN219280790U (zh) 一种推土机的推土器
US11268260B2 (en) Cutting assembly
US4038763A (en) Orbital trench forming apparatus
JP2010144336A (ja) 掘進装置
CN114164880A (zh) 一种可移动的凿石开沟机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09847047

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09847047

Country of ref document: EP

Kind code of ref document: A1