WO2011001656A1 - スパークプラグ及びスパークプラグの製造方法 - Google Patents

スパークプラグ及びスパークプラグの製造方法 Download PDF

Info

Publication number
WO2011001656A1
WO2011001656A1 PCT/JP2010/004263 JP2010004263W WO2011001656A1 WO 2011001656 A1 WO2011001656 A1 WO 2011001656A1 JP 2010004263 W JP2010004263 W JP 2010004263W WO 2011001656 A1 WO2011001656 A1 WO 2011001656A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
alumina
sintered body
spark plug
insulator
Prior art date
Application number
PCT/JP2010/004263
Other languages
English (en)
French (fr)
Inventor
高岡勝哉
上垣裕則
黒野啓一
本田稔貴
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to JP2011520778A priority Critical patent/JP5172016B2/ja
Priority to US13/382,116 priority patent/US8482187B2/en
Priority to CN2010800299691A priority patent/CN102474080B/zh
Priority to EP10793830.0A priority patent/EP2451034B1/en
Priority to KR1020127002952A priority patent/KR101478885B1/ko
Publication of WO2011001656A1 publication Critical patent/WO2011001656A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/38Selection of materials for insulation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T21/00Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs
    • H01T21/02Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs of sparking plugs
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/528Spheres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Definitions

  • the present invention relates to a spark plug and a method for manufacturing the spark plug, and more particularly to a spark plug that achieves a high withstand voltage characteristic at a high temperature and that does not easily deteriorate at a high temperature, and a method for manufacturing the spark plug.
  • Patent Document 1 "Y 2 O 3, ZrO 2, La 2 O 3 , at least one additive was more chosen, or selected from Y 2 O 3, ZrO 2, La 2 O 3
  • a highly insulating high-alumina porcelain composition using a mixed raw material powder composed of at least one additive and a solid solution composite oxide of alumina and an alumina fine-grained powder having a particle size of 0.5 ⁇ m or less is described. (See claim 1 of Patent Document 1).
  • Al 2 O 3 alumina having an average particle diameter of 1 ⁇ m or less, yttria (Y 2 O 3 ), magnesia (MgO), zirconia formed in a grain boundary phase. (ZrO 2 ) and at least one of compounds and mixtures of Al 2 O 3 with at least one of lanthanum oxide (La 2 O 3 ) and a porosity of 6% by volume or less ” (See claim 1 of Patent Document 2).
  • the “high voltage endurance alumina-based sintered body” according to Patent Document 3 describes “the content of each of the Si component, Ca component, and Mg component contained in 100 parts by weight of the alumina-based sintered body in terms of oxides. (Unit: part by weight), C (unit: part by weight), and M (unit: part by weight), the contents of the above three components satisfy the following relational expression, and mullite (Al 6 Si 2 O 13 ) having at least a crystal phase ... 0.95 ⁇ S / (S + C + M) ⁇ 0.75 ”(see claim 1 of Patent Document 3).
  • Patent Document 4 states that “a sintered body of rare earth oxide 5 to 95 wt%, alumina 94.9 to 4.9 wt% and silica 0.1 to 10 wt%, and that the crystal grain size of the sintered body is 30 ⁇ m or less. A characteristic rare earth oxide-alumina-silica sintered body is described (see claim 1 of Patent Document 4).
  • Patent Document 5 states that “the total component is 100% by mass, the Al component is 95 to 99.8% by mass, and the rare earth element and the Si component are rare earth elements (R RE ). And the Si component (R si / R si ) ratio (R RE / R si ) is 0.1 to 1.0, and the maximum length per 1 mm 2 of the cut surface is 10 ⁇ m or more. Further, it is described as “insulator for spark plug, wherein the number of alumina particles having an aspect ratio of 3 or more is less than 10” (see claim 1 of Patent Document 5).
  • Patent Document 6 states that “alumina-based porcelain composition containing alumina as a main component, the alumina as the main component, and a composition of at least one element selected from Al, Si, Mg, and rare earth elements; When the alumina as the main component is 100 parts by weight, the composition of at least one element selected from Al, Si, Mg and rare earth elements is 5 parts by weight or less. It is described as “alumina porcelain composition characterized by this” (see claim 1 of Patent Document 6).
  • the spark plug for an internal combustion engine described in Patent Document 7 is composed of “one or two or more selected from Si, Ca, Mg, Ba and B components as components other than the alumina component.
  • the content of the additive element-based powder is the total content of each component in terms of oxide, and should be blended within the range of 4 to 7% by mass.
  • each additive element powder for example, Si component is SiO 2 powder, Ca component is CaCO 3 powder, Mg component is MgO powder, Ba component is BaCO 3 powder, and B component is H 3 BO 3 powder (or aqueous solution may be used) ⁇ ⁇ Si, Ca, Mg and Ba components in the additive element powders, in addition to oxides, hydroxides, carbonates, chlorides, sulfates, nitrates and phosphorus It is also possible to use various inorganic raw material powders such as acid salts. " (Refer to column 0055).
  • the spark plug has much higher withstand voltage characteristics, particularly, more excellent withstand voltage characteristics at high temperatures at which dielectric breakdown easily occurs, and further withstand voltage characteristics at high temperatures. Therefore, there has been a demand for a spark plug that is difficult to decrease and an efficient manufacturing method of the spark plug.
  • the problem to be solved by the present invention is to provide a spark plug provided with an insulator that achieves high withstand voltage characteristics at high temperatures and that does not easily lower the withstand voltage characteristics at high temperatures.
  • Another problem to be solved by the present invention is to provide a spark plug having an insulator exhibiting high withstand voltage characteristics at high temperatures while maintaining thermal shock and sinterability.
  • Still another problem to be solved by the present invention is to provide a spark plug including an insulator that exhibits high withstand voltage characteristics at high temperatures and is resistant to high temperature leakage while maintaining thermal shock and / or sinterability. That is.
  • Another problem to be solved by the present invention is to provide a spark plug manufacturing method capable of efficiently manufacturing the spark plug.
  • a spark plug comprising a center electrode, a substantially cylindrical insulator provided on the outer periphery of the center electrode, and a substantially cylindrical metal shell provided on the outer periphery of the insulator,
  • the insulator includes an alumina containing a silicon component (hereinafter referred to as an Si component), a Group 2 element component of the periodic table based on the IUPAC 1990 recommendation, and a rare earth element component (hereinafter referred to as an RE component).
  • the alumina-based sintered body consists of a glass phase and an alumina crystal phase as a result of analysis by X-ray diffraction,
  • the grain boundary phase of the alumina-based sintered body was observed with a transmission electron microscope, and the mass ratio [alkali metal / RE] in terms of oxide of the alkali metal component and the RE component in a circular spot having a diameter of 0.3 nm was determined.
  • the average value of the mass ratios of the 30 spots calculated and arbitrarily selected in the observation region is either 0.01 or more and 0.45 or less, and 0.45 or more and 1.0 or less.
  • Spark plug characterized by being in the range of (2)
  • the spark plug according to (1) wherein a mass ratio in terms of oxide of the RE component and the Si component contained in the alumina-based sintered body satisfies 0.45 ⁇ RE / SiO 2 ⁇ 1.2, (3)
  • the mass ratio in terms of oxides of the SiO 2 component, the SiO 2 component, and the Group 2 element component contained in the alumina-based sintered body is 0.2 ⁇ SiO 2 / (SiO 2 +2 group) ⁇
  • the spark plug according to (1) or (2) which satisfies 0.75
  • the average particle diameter of the alumina particles contained in the alumina-based sintered body is 2.5 to 6 ⁇ m
  • the sparking step is characterized in that the temperature is raised from 900 ° C. to the firing temperature at an average heating rate of 8 to 20 ° C./min, and the firing temperature is maintained within a temperature range of 1510 to 1650 ° C.
  • a manufacturing method of a plug can be mentioned.
  • a spark plug including an insulator that achieves a high withstand voltage characteristic at a high temperature and further has a low withstand voltage characteristic at a high temperature.
  • a spark plug including an insulator that exhibits high withstand voltage characteristics at high temperatures while maintaining thermal shock and sinterability.
  • a spark plug including an insulator that exhibits high withstand voltage characteristics at high temperatures and does not leak at high temperatures while maintaining thermal shock and / or sinterability.
  • FIG. 1 is an explanatory view showing an embodiment of a spark plug according to the present invention
  • FIG. 1 (a) is a partial cross-sectional explanatory view showing the spark plug according to the embodiment
  • FIG. FIG. 3 is a cross-sectional explanatory view showing a tip portion of the spark plug.
  • FIG. 2 shows an example of an apparatus for measuring a withstand voltage characteristic of an insulator in a spark plug according to the present invention at a high temperature
  • FIG. 2A is an overhead view of a sintered body and a metal ring.
  • FIG. 2B is a cross-sectional view of the sintered body and the ring.
  • a spark plug according to the present invention includes a center electrode, a substantially cylindrical insulator provided on the outer periphery of the center electrode, and a substantially cylindrical metal shell provided on the outer periphery of the insulator.
  • the insulator includes a silicon component (hereinafter referred to as Si component), a Group 2 element component of the periodic table based on the IUPAC 1990 recommendation, and a rare earth element component (hereinafter referred to as RE component).
  • the alumina-based sintered body comprises a glass phase and an alumina crystal phase as a result of analysis by X-ray diffraction, and transmits the grain boundary phase of the alumina-based sintered body.
  • the average value of the mass ratio of the 30 selected spots is in the range of 0.01 or more and 0.45 or less and in the range of 0.45 or more and 1.0 or less, that is, 0 It is characterized by being in the range of .01 to 1.0.
  • the alumina-based sintered body includes a Si component, a Group 2 element component of the periodic table based on the IUPAC 1990 recommendation (hereinafter sometimes simply referred to as “Group 2 component”), a RE component, and most of them. And an alkali component as an inevitable impurity.
  • the Al component is mostly aluminum oxide (Al 2 O 3 ), that is, alumina, and is contained in the alumina-based sintered body.
  • the content of the Al component is preferably in the range of 85 to 96% by mass in terms of oxide when the alumina-based sintered body after firing is 100% by mass.
  • the content of the Al component is 85 to 96% by mass in terms of oxide, the withstand voltage characteristic of the insulator in the spark plug according to the present invention can be maintained at a high level.
  • the Si component is a component derived from a sintering aid and is present in the alumina-based sintered body as an oxide or an ion.
  • the Si component melts during sintering and usually generates a liquid phase, and thus functions as a sintering aid that promotes densification of the sintered body.
  • the Si component often forms a low-melting glass phase or the like in the grain boundary phase of alumina crystal particles after sintering.
  • the Si component is not only a low-melting glass phase but also a high-melting glass phase or the like. Is easily formed with priority. Therefore, the alumina-based sintered body is difficult to melt at a low temperature, and thus migration or the like that can cause dielectric breakdown is unlikely to occur.
  • Examples of the raw material of the Si component include silicon oxide and a compound that is converted into the Si component by firing.
  • Examples of the compound to be converted into the Si component include various inorganic powders such as silicon oxide, composite oxide, hydroxide, carbonate, chloride, sulfate, nitrate, and phosphate, and natural minerals. Etc. Specifically, mention may be made of SiO 2 powder or the like as a preferable compound powder.
  • the usage-amount shall be the oxide conversion mass% when converted into an oxide.
  • the purity and average particle diameter of the raw material powder of the Si component are basically the same as those of the compound powder that can be the Al component.
  • the Group 2 component contained in the alumina-based sintered body is a component derived from a sintering aid.
  • the Group 2 component may be a compound containing a Group 2 element of the periodic table based on the IUPAC 1990 recommendation.
  • the Group 2 component is present in the alumina-based sintered body as an oxide, ion, or the like, and functions as a sintering aid during sintering, like the Si component.
  • examples of the Group 2 component include a magnesium component (hereinafter sometimes referred to as an Mg component) such as magnesium oxide, and a calcium component (hereinafter sometimes referred to as a Ca component) such as calcium oxide.
  • the alumina-based sintered body in the spark plug according to the present invention only needs to contain one or more of the group 2 components. It is preferable that the alumina-based sintered body contains a Group 2 component because the high-temperature strength of the resulting alumina-based sintered body can be improved. More preferably, an aspect in which the alumina-based sintered body includes two or more types of the Group 2 components can be exemplified, and an aspect in which the alumina-based sintered body includes three or more types of the Group 2 components is particularly preferable. be able to.
  • the raw material for the Group 2 component is not particularly limited as long as it is an oxide of a Group 2 element that is a Group 2 component and a compound that can become a Group 2 component by firing.
  • Examples include Group 2 element oxides, composite oxides, hydroxides, carbonates, chlorides, sulfates, nitrates, and various inorganic powders such as phosphates, and natural minerals.
  • examples of the Ca compound powder include CaO powder and CaCO 3 powder
  • examples of the Ba compound powder include BaO powder and BaCO 3 powder.
  • the usage-amount of the powder is the oxide conversion mass% when converted into an oxide.
  • the content of the Group 2 components is the sum of the contents of the Group 2 components.
  • the purity and average particle size of the Group 2 component powder are basically the same as those of the compound powder that can be an Al component.
  • the RE component is a component derived from a sintering aid and is present in the alumina-based sintered body as an oxide, an ion, or the like.
  • the RE component include scandium components (hereinafter sometimes referred to as Sc components), yttrium components (hereinafter sometimes referred to as Y components), such as yttrium oxide and lanthanoid components.
  • Specific examples of the RE component contained in the alumina-based sintered body include an Sc component, a Y component, a lanthanum component (hereinafter sometimes referred to as a La component), such as an oxide of lanthanum, a cerium component (hereinafter referred to as a Ce component).
  • Pr component Praseodymium component
  • Nd component neodymium component
  • Pm component promethium component
  • Sm component samarium component
  • Eu component europium component
  • Gd component gadolinium component
  • Tb component Terbium component
  • Dysprosium component hereinafter sometimes referred to as Dy component
  • Ho component holmium component
  • Er component erbium component
  • Tm components Thulium components
  • Yb components ytterbium components
  • Lu components ytterbium oxide and lutetium components
  • Etc. Preferred examples of the RE component include La component, Nd component, Pr component, Y component, and Yb component.
  • La component, Nd component, Pr component, Y component and Yb component have a small ionic radius and are easily dispersed uniformly in the alumina-based sintered body together with the Si component. It is thought that can be formed.
  • the RE component is contained in the alumina-based sintered body at the time of sintering, thereby suppressing excessive grain growth of alumina at the time of sintering and forming a glass phase in the grain boundary phase together with the Si component. Since the glass phase formed in the grain boundary phase has a high melting point, it can improve the withstand voltage characteristics of the alumina-based sintered body at a high temperature and can also improve the high-temperature strength of the alumina-based sintered body. .
  • the raw material for the RE component is not particularly limited as long as it is an oxide of RE, which is the RE component, or a compound that is converted to the RE component by firing.
  • the compound that is converted to the RE component upon firing include various inorganic powders such as oxides, composite oxides, hydroxides, carbonates, chlorides, sulfates, nitrates, and phosphates of RE elements, and natural substances.
  • a mineral etc. can be mentioned.
  • the content of the RE component contained in the alumina-based sintered body is an oxide equivalent mass% when the RE component is converted into an oxide.
  • content of RE component Pr component adopts oxide equivalent mass% when converted to “Pr 6 O 11 ”, and RE component other than Pr component when converted to “RE 2 O 3 ” Oxide equivalent mass% is adopted.
  • the RE component content is the sum of the content of each RE component.
  • the amount used is an oxide equivalent mass% when a compound other than the oxide to be used is converted into an oxide.
  • the purity and average particle size of the RE component raw material powder are basically the same as those of the compound powder that can be an Al component. Further, the purity and average particle size of the RE component compound powder are basically the same as those of the compound powder that can be the Al component.
  • the contents of the Al component, the Si component, the Group 2 component, and the RE component contained in the alumina-based sintered body are, for example, fluorescent X-ray analysis, chemical analysis, or It can be measured by quantitative analysis using an electron beam microanalyzer (EPMA), and the mass% in terms of oxide can be calculated.
  • EPMA electron beam microanalyzer
  • the result calculated by subjecting the alumina-based sintered body to fluorescent X-ray analysis or chemical analysis almost coincides with the mixing ratio of the raw material powders.
  • the alumina-based sintered body is composed of a glass phase and alumina crystals as a result of analysis by X-ray diffraction. That is, there is no crystal phase at a level detected by X-ray diffraction in the grain boundary phase present in the alumina-based sintered body. Note that “there is no crystal phase at a level detected by X-ray diffraction” means that the intensity ratio between the strongest peak derived from alumina obtained by X-ray diffraction and the strongest peak derived from a crystal phase other than alumina [crystal phase / Alumina] is 0 or more and 0.05 or less.
  • X-ray diffraction uses, for example, MiniFlex manufactured by Rigaku Corporation, and the measurement is performed under the conditions of a measurement angle range of 20 to 70 °, a voltage value of 30 kV, a current value of 15 mA, a scan speed of 1, and a step of 0.02. It can be carried out.
  • the BET specific surface area of the Si component raw material powder is usually adjusted to 30 to 45 m 2 / L, and the BET ratio of the Group 2 component raw material powder is adjusted.
  • the mixture of these raw material powders is fired by adjusting the surface area to 28 to 40 m 2 / L and adjusting the ratio of the Group 2 component raw material powder / Si component raw material powder to 0.7 to 1.3. Is good.
  • the specific surface area of the raw material powder is large, during firing, the raw material powder of the Si component and the raw material powder of the Group 2 component easily react, and as a result, a glass phase is formed, and alumina crystals are formed as the crystal phase. Generate.
  • a crystal phase-forming substance other than the alumina crystal cannot be detected by X-ray diffraction.
  • the RE component When the grain boundary phase present in the alumina-based sintered body has a crystal phase at a level detected by X-ray diffraction, the RE component is often unevenly dispersed in the alumina-based sintered body. . Since the RE component can block the conductive route, if the dispersion of the RE component is not uniform, the withstand voltage, particularly the withstand voltage at high temperatures, may vary. In addition, since the presence of the crystal phase itself causes the dielectric constant of the alumina-based sintered body to vary, the voltage application state is difficult to be uniform, and as a result, the withstand voltage varies.
  • the crystal phase By firing the crystal phase present in the grain boundary phase at a high temperature, the crystal phase melts into the glass phase of the grain boundary phase. When the crystal phase melts, the components contained in the grain boundary phase are uniformly dispersed in the glass phase, so that the variation in withstand voltage is reduced.
  • the alumina-based sintered body preferably does not contain a crystal phase in the grain boundary phase, as described above, the strongest peak derived from alumina obtained by X-ray diffraction and the strongest derived from a crystal phase other than alumina.
  • the intensity ratio with respect to the peak [crystalline phase / alumina] is preferably 0 or more and 0.05 or less.
  • alkali metal that is, a Group 1 element component of the periodic table based on the IUPAC 1990 recommendation.
  • alkali metal examples include lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), and francium (Fr).
  • Alkali metal is easy to move in the grain boundary phase. That is, the alkali metal tends to cause a dielectric breakdown of the alumina-based sintered body. However, if the alkali metal is contained in the high melting point glass phase, the alkali metal is difficult to move even at high temperatures. As a result, dielectric breakdown caused by movement of the alkali metal in the grain boundary phase is unlikely to occur, so that the withstand voltage characteristic at high temperature of the insulator in the spark plug according to the present invention is enhanced.
  • the glass phase of the alumina-based sintered body contains an alkali metal, and further includes an RE component that blocks the conductive route, so that the insulator has high withstand voltage characteristics at high temperatures. Can be secured.
  • an energy dispersive X-ray analyzer manufactured by EDAX
  • TEM transmission electron microscope
  • Examples thereof include a method of measuring by elemental analysis using EDX, model: Genesis 4000, detector: SUTW3.3 RTEM).
  • Examples of the analysis conditions include an acceleration voltage of 200 kV, an irradiation mode of HR, a spot size of 0.3 nm, and observation of arbitrary 30 points on the glass phase present in the grain boundary phase. At each spot, the alkali metal content can be measured.
  • the alkali metal and the RE component are contained in the alumina-based sintered body at a constant ratio. Therefore, an oxide-converted mass ratio, [alkali metal / RE], between the measured alkali metal content and the RE component content measured in advance by quantitative analysis using EPMA or the like is calculated.
  • [alkali metal / RE] the mass ratio is calculated for every 30 spots in the TEM observation region, and the average value of the 30 mass ratios is adopted.
  • the glass phase contains an appropriate amount of alkali metal and RE component. Become.
  • the content of alkali metal in the glass phase of the alumina-based sintered body is preferably large, but if the average value of [alkali metal / RE] exceeds 0.2, the withstand voltage is not greatly affected.
  • the mass ratio [alkali metal / RE] in the grain boundary phase of the alumina-based sintered body is 0.01 to 1.0, the insulator has excellent withstand voltage characteristics at high temperatures. Since the glass phase itself has a high melting point, the withstand voltage is hardly lowered even at high temperatures.
  • the mass ratio of the RE component and the Si component in terms of oxide is 0.45 ⁇ RE / SiO 2 ⁇ 1.2, preferably 0.55 ⁇ RE / SiO 2.
  • a spark plug including an alumina-based sintered body satisfying ⁇ 1 can be mentioned.
  • RE / SiO 2 satisfies 0.45 to 1.2, the melting point of the grain boundary phase becomes high due to the high melting point of SiO 2 , so that the insulation of the insulator at high temperatures, for example, 850 ° C. and 900 ° C. Withstand voltage characteristics are improved.
  • the mass ratio in terms of oxides of the SiO 2 component, the SiO 2 component, and the Group 2 element component is 0.2 ⁇ SiO 2 / (SiO 2 +2 group) ⁇
  • a spark plug including an alumina-based sintered body that satisfies 0.75, preferably 0.25 ⁇ SiO 2 / (SiO 2 +2 group) ⁇ 0.7 can be given.
  • SiO 2 / (SiO 2 +2 group) satisfies 0.2 to 0.75
  • SiO 2 and Group 2 components form a eutectic composition, thereby suppressing abnormal grain growth that may occur due to firing. Therefore, the high temperature strength can be improved, and further, the dielectric strength characteristics of the insulator at high temperatures, for example, 850 ° C. and 900 ° C. can be secured.
  • the average particle diameter of the alumina particles is there may be mentioned an embodiment in which 8 or more peaks derived from the RE component are observed when a line analysis is performed on an arbitrary part of the alumina-based sintered body over 180 ⁇ m.
  • the surface of the sintered body is mirror-polished and the polished surface is subjected to thermal etching treatment for 10 minutes at a temperature 100 ° C. lower than the firing temperature.
  • the surface which performed this process can be observed with a scanning electron microscope (SEM), and the method of measuring an average crystal grain diameter by the intercept method can be mentioned.
  • SEM scanning electron microscope
  • the surface of the sintered body is mirror-polished and the magnification of SEM is enlarged to about 700 times and observed with an energy dispersive X-ray analyzer (EDS).
  • EDS energy dispersive X-ray analyzer
  • An example is a method in which an arbitrary part of the sintered body is subjected to line analysis over 180 ⁇ m.
  • Condition (1) When a line analysis by EDS is performed, the sintered body is capable of observing eight or more peaks derived from the RE component within 180 ⁇ m.
  • Condition (2) The peak derived from the RE component has an intensity that is more than half that of the peak with the maximum intensity in the 180 ⁇ m line.
  • Condition (3) In the valley existing between adjacent peaks, if the size of the valley seen from the weak peak side among the adjacent peaks is not 10% or more of the maximum intensity peak in the line, the adjacent peak Be one.
  • a spark plug according to the present invention comprises a center electrode, a substantially cylindrical insulator provided on the outer periphery of the center electrode, and a ground electrode disposed so that one end faces the center electrode via a spark discharge gap. I have.
  • the spark plug according to the present invention is a spark plug having such a configuration, other members and configurations are not particularly limited, and various known members and configurations can be adopted.
  • FIG. 1 shows a spark plug as an embodiment of the spark plug according to the present invention.
  • FIG. 1 (a) is a partial cross-sectional explanatory view of a spark plug 1 which is an embodiment of a spark plug according to the present invention
  • FIG. 1 (b) is a spark which is an embodiment of a spark plug according to the present invention.
  • 2 is an explanatory cross-sectional view showing the main part of the plug 1.
  • FIG. 1A the lower side of the paper is the front end direction of the axis AX
  • the upper side of the paper is the rear end direction of the axis AX
  • FIG. 1B the upper side of the paper is the front side of the axis AX
  • the lower side of the paper is the rear side of the axis AX. This will be described as the end direction.
  • the spark plug 1 includes a substantially rod-shaped center electrode 2, a substantially cylindrical insulator 3 provided on the outer periphery of the center electrode 2, and an insulator 3. And a ground electrode 5 which is disposed so that one end thereof is opposed to the front end surface of the center electrode 2 via the spark discharge gap G and the other end is joined to the end surface of the metal shell 4. And.
  • the metallic shell 4 has a cylindrical shape and is formed so as to hold the insulator 3 by incorporating the insulator 3 therein.
  • a threaded portion 8 is formed on the outer peripheral surface in the front end direction of the metal shell 4, and the spark plug 1 is attached to a cylinder head (not shown) of the internal combustion engine using the threaded portion 8.
  • the nominal diameter of the screw portion 8 is usually adjusted to 10 mm or less.
  • the metal shell 4 can be formed of a conductive steel material, for example, low carbon steel.
  • the center electrode 2 is formed of an outer member 6 and an inner member 7 formed so as to be concentrically embedded in an axial center portion inside the outer member 6.
  • the center electrode 2 is fixed to the shaft hole of the insulator 3 with its tip portion protruding from the tip surface of the insulator 3, and is insulated and held with respect to the metal shell 4.
  • the outer material 6 of the center electrode 2 is formed of a nickel-based alloy having excellent heat resistance and corrosion resistance
  • the inner material 7 of the electrode 2 is formed of a metal material having excellent thermal conductivity such as copper (Cu) or nickel (Ni). Can be.
  • the ground electrode 5 is formed in, for example, a prismatic body, one end is joined to the end face of the metal shell 4, is bent into an approximately L shape in the middle, and the tip is positioned in the direction of the axis AX of the center electrode 2. As such, its shape and structure are designed. By designing the ground electrode 5 in this way, one end of the ground electrode 5 is disposed so as to face the center electrode 2 with the spark discharge gap G interposed therebetween.
  • the spark discharge gap G is a gap between the front end surface of the center electrode 2 and the surface of the ground electrode 5, and this spark discharge gap G is normally set to 0.3 to 1.5 mm. Since the ground electrode 5 is exposed to a higher temperature than the center electrode 2, the ground electrode 5 is preferably formed of a Ni-base alloy or the like that is more excellent in heat resistance and corrosion resistance than the Ni-base alloy that forms the center electrode 2.
  • the insulator 3 is held on the inner peripheral portion of the metal shell 4 via talc and / or packing (not shown), and the center electrode 2 along the axis AX direction of the insulator 3. It has a shaft hole for holding.
  • the insulator 3 is fixed to the metal shell 4 with the end of the insulator 3 in the tip direction protruding from the tip surface of the metal shell 4.
  • the insulator 3 includes an alumina-based sintered material containing a silicon (Si) component, a Group 2 element component of the periodic table based on the IUPAC 1990 recommendation, and a rare earth element (RE) component as described above.
  • the alumina-based sintered body has an intensity ratio [crystalline phase / alumina] of 0 to 0.05 inclusive, the strongest peak derived from alumina obtained by X-ray diffraction and the strongest peak derived from a crystal phase other than alumina.
  • the grain boundary phase of the alumina-based sintered body was observed with a transmission electron microscope, and the mass ratio in terms of oxides of the alkali metal component and the RE component in a circular spot having a diameter of 0.3 nm [alkali metal / RE] is calculated, and the average value of the mass ratios of 30 spots arbitrarily selected in the observation region is 0.01 to 1.0. Since the compounds and physical properties contained in the insulator 3 have been described above, they may be omitted.
  • raw material powder that is, powder of a compound that is converted into the Al component, the Si component, the Group 2 component, and the RE component by firing is mixed.
  • each powder of the same material as the Al component, the same material as the Si component, the same material as the Group 2 component, and the same material as the RE component (these powders are also referred to as raw material powders). Can be referred to)).
  • This mixing is preferably performed for 8 hours or more so that the mixed state of the raw material powders can be made uniform and the obtained sintered body can be highly densified.
  • the particle size of the compound powder converted into the Al component, the Si component, the Mg component, the Group 2 component excluding the Mg component, and the RE component are included.
  • the ratio of the particle size of the compound powder to be converted into the auxiliary material is 1.2 ⁇ alumina / auxiliary material ⁇ 4.4, the hexaaluminate phase is easily formed while ensuring good sinterability. This is preferable.
  • the particle size of the powder is, for example, an average particle size measured by a laser diffraction method using a Microtrac particle size distribution measuring device (MT-3000) manufactured by Nikkiso Co., Ltd.
  • a hydrophilic binder can be blended with the raw material powder as a binder.
  • the hydrophilic binder include polyvinyl alcohol, water-soluble acrylic resin, gum arabic, and dextrin.
  • distributes raw material powder water, alcohol, etc. can be used, for example.
  • These hydrophilic binders and solvents can be used alone or in combination of two or more.
  • the ratio of the hydrophilic binder and the solvent used is 0.1 to 7 parts by mass, preferably 1 to 5 parts by mass with respect to 100 parts by mass of the raw material powder. If water is used as the solvent, the amount can be 40 to 120 parts by mass, preferably 50 to 100 parts by mass.
  • a slurry in which the raw material powder is dispersed can be obtained by dispersing the raw material powder in a solvent and blending a hydrophilic binder.
  • the obtained slurry is spray-dried by a spray drying method or the like, and granulated to an average particle size of 30 to 200 ⁇ m, preferably 50 to 150 ⁇ m.
  • the granulated product is molded to obtain a green molded body.
  • the shape of the obtained green molded body is adjusted by grinding. Since the green compact is formed of a granulated product having a relatively large average particle size, it is excellent in processability and can be easily molded into a desired shape with high productivity.
  • the green molded body that has been ground and molded into a desired shape is subjected to a baking step.
  • the firing temperature is set to 1510 to 1650 ° C., more preferably 1550 to 1650 ° C. in the air atmosphere, and the temperature is raised from 900 ° C. to the firing temperature at an average temperature increase rate of 8 to 20 ° C./min. Firing for ⁇ 36 hours to obtain an alumina-based sintered body.
  • the firing temperature is 1510 to 1650 ° C., the sintered body is easily densified sufficiently, the crystal phase is easily melted into the glass phase in the grain boundary phase, and abnormal grain growth of the alumina component is unlikely to occur.
  • the withstand voltage characteristics and mechanical strength of the base sintered body can be ensured. If the average heating rate is less than 8 ° C./min, the glass phase that is the grain boundary phase becomes too low in melting point, which may cause abnormal grain growth of alumina particles and decrease strength.
  • the firing temperature include a temperature within a temperature range of 1510 to 1650 ° C., and a temperature at which the temperature increase at the average temperature increase rate is stopped. This firing temperature is a temperature that is kept constant within the range of 1510 to 1650 ° C., and may vary within the above temperature range depending on circumstances. Further, if the firing time is 8 to 36 hours, the sintered body is easily densified sufficiently, and abnormal grain growth of the alumina component is unlikely to occur. Therefore, the withstand voltage characteristics and mechanical strength of the obtained alumina-based sintered body are improved. Can be secured.
  • the obtained alumina-based sintered body is particularly suitable as the insulator 3 of the spark plug for an internal combustion engine with high output.
  • the alumina-based sintered body may be shaped again if desired. In this manner, the alumina-based sintered body and the insulator 3 for the spark plug 1 made of the alumina-based sintered body can be produced.
  • the obtained insulator 3 is subjected to a center electrode mounting step in which the center electrode 2 is assembled to the insulator 3.
  • the spark plug 1 can be manufactured by being subjected to a metal shell attachment step of attaching the insulator 3 to which the center electrode 2 is assembled to the metal shell 4.
  • a metal shell attachment step of attaching the insulator 3 to which the center electrode 2 is assembled to the metal shell 4.
  • alumina powder having an average particle diameter of 2.1 ⁇ m, carbonate powder of SiO 2 powder, Mg component, Ca component, Sr component, Ba component, and rare earth element-containing powder were mixed. Furthermore, a hydrophilic binder such as polyvinyl alcohol and water as a solvent were added to prepare a molding base slurry.
  • the obtained molding base slurry was spray-dried by a spray drying method or the like to prepare a spherical molding base granulated product. Further, the obtained green granulated material for molding was subjected to rubber press molding to produce a press-molded body serving as an original shape of the insulator.
  • this press-molded body is cut on the outside with a resinoid grindstone or the like.
  • this press-molded body was heated to 900 ° C. and then heated in the air atmosphere at an average temperature rising rate shown in Table 5.
  • the firing time was 8 to 8 as shown in Table 5.
  • the molded body was fired at 36 hours, and then subjected to finish firing with a glaze to obtain an insulator.
  • Alkali metal content The content of alkali metal contained in the grain boundary phase of the sintered body is determined by the energy dispersive X-ray analyzer manufactured by EDAX, which is attached to the transmission electron microscope (TEM, model: HD-2000) manufactured by Hitachi, Ltd. It was measured by elemental analysis using (EDX, model: Genesis 4000, detector: SUTW3.3 RTEM). Analytical conditions are as follows: acceleration voltage is 200 kV, irradiation mode is HR, spot size is 0.3 nm, and any 30 points are observed at the site where the hexaaluminate phase and the glass phase present in the grain boundary phase react. It was set to the condition to do.
  • the value obtained by calculating the average value of the observed 30 points of analysis results by mass% in terms of oxide was defined as the content of the alkali metal.
  • the mass ratio between the alkali metal content of each sample and the RE component content obtained by quantitative analysis was calculated and shown in Table 2.
  • samples “1 *” to “5 *” marked with “*” are comparative examples because the content ratio of “alkali metal / RE” is outside the range of 0.01 to 1.0. It is.
  • FIG. 2A is a view of the sintered body 30 and a metal ring 31 that causes dielectric breakdown
  • FIG. 2B is a cross-sectional view of the sintered body 30 and the ring 31. is there.
  • the ring 31 has an axial length L of 3 to 4 mm, and is fixed in a non-contact state near the tip of the sintered body 30 by fixing means (not shown).
  • One end of the sintered body 30 is fixed by the base 32, and the other end projects from the base 32.
  • the portion protruding from the base 32 of the sintered body 30 is heated at a high frequency to 600 to 950 ° C., and the portion close to the metal ring 31 that is easily heated in the sintered body 30 is 800.
  • the voltage value when reaching °C, 850 °C and 900 °C was measured as the withstand voltage value of the sample. Table 3 shows the measured withstand voltage values.
  • the high temperature strength of the sintered body was measured by a method according to JIS R 1604 using a sample of 36 ⁇ 4 ⁇ 3 mm and setting the three-point bending strength to a span of 30 mm. Table 4 shows the measurement results.
  • the particle size measurement of alumina was performed as follows. First, the surface of each sintered body was mirror-polished and subjected to thermal etching treatment for 10 minutes at a temperature 100 ° C. lower than the firing temperature. The surface subjected to this treatment was observed with a scanning electron microscope (SEM), and the average crystal grain size of the alumina particles was measured by the intercept method. The results are shown in Table 4.
  • Line analysis The line analysis of the sintered body was performed as follows. The surface of each sintered body was mirror-polished, the magnification of SEM (model: JSM-6460LA) manufactured by JEOL Ltd. was increased to about 700 times, and the polished surface was observed. Line analysis was carried out over 180 ⁇ m of an arbitrary part of the sintered body according to (model: EX-23000BU). The applied voltage was set to 20 kV, and the intensity of the detected peak was determined based on the K ⁇ ray. Line analysis was performed at any seven locations where the sintered bodies were different, and the peaks derived from the detected RE component when four or more of the analysis results satisfied the following four locations were counted. Table 4 shows the number of peaks counted.
  • Condition (1) When a line analysis by EDS is performed, the sintered body is capable of observing eight or more peaks derived from the RE component within 180 ⁇ m.
  • Condition (2) The peak derived from the RE component has an intensity that is more than half that of the peak with the maximum intensity in the 180 ⁇ m line.
  • Condition (3) In the valley existing between adjacent peaks, if the size of the valley seen from the weak peak side among the adjacent peaks is not 10% or more of the maximum intensity peak in the line, the adjacent peak Be one.
  • Table 5 shows the firing temperature, firing time, and heating rate after 900 ° C. when each sample was produced. In addition, as for withstand voltage characteristics and high temperature strength evaluation, both Tables 3 and 4 are also shown.
  • the insulator in the spark plug according to the present invention can be applied to a spark plug that can become high temperature during use, for example, a spark plug used in an internal combustion engine with high output.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Spark Plugs (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

 この発明が解決しようとする課題は、高温下で高耐電圧特性を達成し、更に高温下で耐電圧特性が低下し難いスパークプラグを提供することである。 この発明に係るスパークプラグは、中心電極と絶縁体と主体金具とを備えたスパークプラグであって、前記絶縁体は、ケイ素成分と第2族元素成分と希土類元素成分とを含有するアルミナ基焼結体を備え、前記アルミナ基焼結体は、X線回折により分析した結果としてガラス相とアルミナ結晶相とからなり、前記アルミナ基焼結体の粒界相を、透過型電子顕微鏡で観察し、直径0.3nmの円形のスポットにおけるアルカリ金属成分及び前記希土類元素成分の酸化物換算の重量比[アルカリ金属/希土類元素]を30個のスポットにおいて算出した平均値が0.01~1.0であることを特徴とする。

Description

スパークプラグ及びスパークプラグの製造方法
 この発明は、スパークプラグ及びその製造方法に関し、特に詳しくは、高温下で高耐電圧特性を達成し、更に高温下で耐電圧特性が低下し難いスパークプラグ、及びそのスパークプラグの製造方法に関する。
 従来においては、アルミナを含有する絶縁体の耐電圧を向上させる様々な技術が開発されてきた。
 例えば、特許文献1には、「Y2O3、ZrO2、La2O3、より選ばれた少なくとも一つの添加物、若しくは、Y2O3、ZrO2、La2O3より選ばれた少なくとも一つの添加物とアルミナとの固溶体複合酸化物の何れかと、粒径0.5μm以下のアルミナ徹粒粉とから構成された混合原料粉末」を用いる高絶縁性高アルミナ質磁器組成物が記載されている(特許文献1の請求項1参照)。
 また、特許文献2に係る「アルミナ磁器」は、「平均粒径1μm以下のアルミナ(Al2O3)と、粒界相に形成されたイットリア(Y2O3)、マグネシア(MgO)、ジルコニア(ZrO2)および酸化ランタン(La2O3)のうちの少なくとも1つとAl2O3との化合物および混合物の少なくとも1つと、からなり、空孔率が6体積%以下である」と記載されている(特許文献2の請求項1参照)。
 特許文献3に係る「高耐電圧性アルミナ基焼結体」は、「アルミナ基焼結体100重量部に含まれるSi成分、Ca成分及びMg成分の各含有量を酸化物換算でそれぞれ、S(単位:重量部)、C(単位:重量部)及びM(単位:重量部)とした場合において、上記三成分の各含有量が以下の関係式を満たすとともに、結晶相としてムライト(Al6Si2O13)結晶相を少なくとも有する・・・0.95≧S/(S+C+M)≧0.75」と記載されている(特許文献3の請求項1参照)。
 特許文献4には、「希土類酸化物5~95wt%,アルミナ94.9~4.9wt%およびシリカ0.1~10wt%の焼結体であって、この焼結体の結晶粒径が30μm以下であることを特徴とする希土類酸化物-アルミナ-シリカ焼結体」が記載されている(特許文献4の請求項1参照)。
 特許文献5には、「構成成分全体を100質量%とした場合に、Al成分・・・が95~99.8質量%であり、且つ希土類元素及びSi成分を、希土類元素・・・(RRE)と、Si成分・・・(Rsi)との比(RRE/Rsi)が0.1~1.0となるように含有し、更に、切断面1mm2あたりに存在する最大長さが10μm以上であり且つアスペクト比が3以上であるアルミナ粒子が10個未満であることを特徴とするスパークプラグ用絶縁体」と記載されている(特許文献5の請求項1参照)。
 特許文献6には、「アルミナを主成分とするアルミナ質磁器組成物であって、前記主成分であるアルミナと、Al、Si、Mgおよび希土類元素から選ばれる少なくとも1種の元素の組成物との複合焼結体からなり、前記主成分であるアルミナを100重量部としたとき、前記Al、Si、Mgおよび希土類元素から選ばれる少なくとも1種の元素の組成物は、5重量部以下であることを特徴とするアルミナ質磁器組成物」と記載されている(特許文献6の請求項1参照)。
 特許文献7に記載の内燃機関用スパークプラグは、アルミナ成分以外に含有する成分として、「Si成分、Ca成分、Mg成分、Ba成分及びB成分から選ばれる1種又は2種以上から構成されているとよい。・・・添加元素系粉末の含有量としては、・・・各成分の酸化物換算した質量での合計含有量で、4~7質量%の範囲内で配合するとよい。・・・各添加元素系粉末として、例えばSi成分はSiO2粉末、Ca成分はCaCO3粉末、Mg成分はMgO粉末、Ba成分はBaCO3粉末、B成分がH3BO3粉末(或いは水溶液でもよい)の形で配合することができる。・・添加元素系粉末におけるSi、Ca、Mg及びBaの各成分については、酸化物の他、水酸化物、炭酸塩、塩化物、硫酸塩、硝酸塩及びリン酸塩等の各種無機原料粉末を使用することもできる」と記載されている(特許文献7の段落番号0055欄参照)。
 ところで、上述したような従来のスパークプラグに比べて、耐電圧特性がより一層優れたスパークプラグ、特に絶縁破壊が生じ易い高温下での耐電圧特性がより一層優れ、更に高温下で耐電圧特性が低下し難いスパークプラグ、及びそのスパークプラグの効率的な製造方法が望まれていた。
特公平7-17436号公報 特公平7-12969号公報 特開2001-2464号公報 特許第2951771号 特開2001-335360号公報 国際公開2005/033041号公報 特開2007-250379号公報
 この発明が解決しようとする課題は、高温下で高耐電圧特性を達成し、更に高温下で耐電圧特性が低下し難い絶縁体を備えるスパークプラグを提供することである。
 この発明が解決しようとする別の課題は、熱衝撃性及び焼結性を維持しつつ、高温下で高耐電圧特性を示す絶縁体を備えるスパークプラグを提供することである。
 この発明が解決しようとする更に別の課題は、熱衝撃性及び/又は焼結性を維持しつつ、高温下で高耐電圧特性を示し、高温リークし難い絶縁体を備えるスパークプラグを提供することである。
 この発明が解決しようとする他の課題は、前記スパークプラグを効率的に製造することのできるスパークプラグの製造方法を提供することである。
 前記課題を解決するための手段としては、
(1)中心電極と、前記中心電極の外周に設けられた略円筒状の絶縁体と、前記絶縁体の外周に設けられた略円筒状の主体金具とを備えたスパークプラグであって、
 前記絶縁体は、ケイ素成分(以下においてSi成分と称する。)と、IUPAC1990年勧告に基づく周期表の第2族元素成分と、希土類元素成分(以下においてRE成分と称する。)とを含有するアルミナ基焼結体を備え、
 前記アルミナ基焼結体は、X線回折により分析した結果としてガラス相とアルミナ結晶相とからなり、
 前記アルミナ基焼結体の粒界相を、透過型電子顕微鏡で観察し、直径0.3nmの円形のスポットにおけるアルカリ金属成分及び前記RE成分の酸化物換算の質量比[アルカリ金属/RE]を算出し、観察領域中で任意に選択された30個の前記スポットの前記質量比の平均値が0.01以上0.45以下の範囲及び0.45を超え1.0以下の範囲のいずれかの範囲内にあることを特徴とするスパークプラグ、
(2)前記アルミナ基焼結体に含まれるRE成分とSi成分との酸化物換算での質量比が0.45≦RE/SiO≦1.2を満たす(1)に記載のスパークプラグ、
(3)前記アルミナ基焼結体に含まれるSiO成分とSiO成分及び前記第2族元素成分との酸化物換算での質量比が0.2≦SiO/(SiO+2族)≦0.75を満たす(1)又は(2)に記載のスパークプラグ、
(4)前記アルミナ基焼結体に含まれるアルミナ粒子の平均粒径が2.5~6μmであり、
 前記アルミナ基焼結体の任意の部位を180μmに亘ってライン分析したときに、RE成分由来のピークが8本以上観察される(1)~(3)のいずれか一つに記載のスパークプラグ、並びに
(5)(1)~(4)のいずれか一つに記載のスパークプラグを製造する方法であって、
 未焼成成形体を焼成して絶縁体を形成する焼成工程と、
 前記絶縁体に中心電極を組み付ける中心電極組付工程と、
 前記中心電極が組み付けられた中心電極付き絶縁体を主体金具に取付ける主体金具取付工程とを備え、
 前記焼成工程は、900℃から焼成温度まで平均昇温速度8~20℃/minで昇温し、前記焼成温度を1510~1650℃の温度範囲内に焼成温度を維持することを特徴とするスパークプラグの製造方法を挙げることができる。
 この発明によると、高温下で高耐電圧特性を達成し、更に高温下で耐電圧特性が低下し難い絶縁体を備えるスパークプラグを提供することができる。
 この発明によると、熱衝撃性及び焼結性を維持しつつ、高温下で高耐電圧特性を示す絶縁体を備えるスパークプラグを提供することができる。
 更に、この発明が解決によると、熱衝撃性及び/又は焼結性を維持しつつ、高温下で高耐電圧特性を示し、高温リークし難い絶縁体を備えるスパークプラグを提供することができる。
 また、この発明によると、前記スパークプラグを効率的に製造することのできるスパークプラグの製造方法を提供することができる。
図1は、この発明に係るスパークプラグの一実施態様を示す説明図であり、図1(a)は前記一実施態様であるスパークプラグを示す一部断面説明図であり、図1(b)は前記スパークプラグの先端部を示す断面説明図である。 図2は、この発明に係るスパークプラグにおける絶縁体の高温下での耐電圧特性を測定する装置の一例を示し、図2(a)は、焼結体と金属製のリングとを俯瞰した図であり、図2(b)は、焼結体とリングとの断面図である。
 この発明に係るスパークプラグは、中心電極と、前記中心電極の外周に設けられた略円筒状の絶縁体と、前記絶縁体の外周に設けられた略円筒状の主体金具とを備えたスパークプラグであって、前記絶縁体は、ケイ素成分(以下においてSi成分と称する。)と、IUPAC1990年勧告に基づく周期表の第2族元素成分と、希土類元素成分(以下においてRE成分と称する。)とを含有するアルミナ基焼結体を備え、前記アルミナ基焼結体は、X線回折により分析した結果としてガラス相とアルミナ結晶相とからなり、前記アルミナ基焼結体の粒界相を、透過型電子顕微鏡で観察し、直径0.3nmの円形のスポットにおけるアルカリ金属成分及び前記RE成分の酸化物換算の質量比[アルカリ金属/RE]を算出し、観察領域中で任意に選択された30個の前記スポットの前記質量比の平均値が0.01以上0.45以下の範囲及び0.45を超え1.0以下の範囲のいずれかの範囲内にあること、すなわち0.01以上1.0以下の範囲内にあることを特徴とする。
 前記アルミナ基焼結体は、Si成分と、IUPAC1990年勧告に基づく周期表の第2族元素成分(以下、単に「第2族成分」と称することがある。)と、RE成分と、大部分を占めるアルミニウム成分(以下においてAl成分と称することがある。)とを含有し、不可避不純物としてアルカリ金属を含んでいる。また、Al成分は、大部分が酸化アルミニウム(Al)、すなわちアルミナと成って前記アルミナ基焼結体に含有されている。
 前記アルミナ基焼結体において、前記Al成分の含有量は、焼成後のアルミナ基焼結体を100質量%としたときに酸化物換算で85~96質量%の範囲内であるのが好ましい。前記Al成分の含有量が酸化物換算で85~96質量%であると、この発明に係るスパークプラグにおける絶縁体の耐電圧特性を高い水準に維持することができる。
 前記Si成分は、焼結助剤由来の成分であり、酸化物又はイオン等として、アルミナ基焼結体中に存在する。前記Si成分は、焼結時には溶融して通常液相を生じるので、焼結体の緻密化を促進する焼結助剤として機能する。更に、Si成分は、焼結後はアルミナ結晶粒子の粒界相に低融点ガラス相等を形成することが多い。しかし、前記アルミナ基焼結体が、前記Si成分だけでなく後述の第2族成分及びRE成分を含有していると、前記Si成分は低融点ガラス相よりも他の成分と共に高融点ガラス相等を優先的に形成し易い。よって、前記アルミナ基焼結体は、低温において融解し難いので、絶縁破壊の原因と成り得るマイグレーション等が生じ難い。
 前記Si成分の原料としては、珪素酸化物、及び焼成によりSi成分に転化する化合物を挙げることができる。前記Si成分に転化する化合物として、例えば、ケイ素の酸化物、複合酸化物、水酸化物、炭酸塩、塩化物、硫酸塩、硝酸塩、及びリン酸塩等の各種無機系の粉末、並びに天然鉱物等を挙げることができる。具体的には、好ましい化合物粉末としてSiO粉末等を挙げることができる。なお、Si成分に成り得る化合物粉末として上記酸化物以外の粉末を使用する場合には、その使用量は酸化物に換算したときの酸化物換算質量%とする。Si成分の原料粉末の純度及び平均粒径は、Al成分に成り得る化合物粉末と基本的に同様である。
 前記アルミナ基焼結体に含まれる前記第2族成分は、焼結助剤由来の成分である。前記第2族成分は、IUPAC1990年勧告に基づく周期表の第2族元素を含有する化合物であれば良い。前記第2族成分は、酸化物、イオン等として前記アルミナ基焼結体中に存在し、前記Si成分と同様に、焼結時に焼結助剤として機能する。具体的には、前記第2族成分としては、マグネシウム成分(以下においてMg成分と称することがある。)例えば酸化マグネシウム等、カルシウム成分(以下においてCa成分と称することがある。)例えば酸化カルシウム等、ストロンチウム成分(以下においてSr成分と称することがある。)例えば酸化ストロンチウム等、及びバリウム成分(以下においてBaと称することがある。)例えば酸化バリウム等を挙げることができる。この発明に係るスパークプラグにおけるアルミナ基焼結体は、前記2族成分を1種以上含んでいれば良い。アルミナ基焼結体が第2族成分を含有していると、得られるアルミナ基焼結体の高温強度を向上させることができるので好ましい。更に好ましくは、前記アルミナ基焼結体が前記2族成分を2種以上含む態様を挙げることができ、特に好ましくは、前記アルミナ基焼結体が前記2族成分を3種以上含む態様を挙げることができる。
 前記第2族成分の原料としては、第2族成分である第2族元素の酸化物、及び焼成により第2族成分に成り得る化合物であれば特に制限はない。例えば、第2族元素の酸化物、複合酸化物、水酸化物、炭酸塩、塩化物、硫酸塩、硝酸塩等及びリン酸塩等の各種無機系粉末、並びに天然鉱物等を挙げることができる。具体的には、例えばCa化合物粉末としてCaO粉末及びCaCO粉末を挙げることができ、またBa化合物粉末としてBaO粉末及びBaCO粉末等を挙げることができる。
 なお、焼成により第2族成分に転化する化合物粉末として酸化物以外の粉末を使用する場合には、その粉末の使用量は酸化物に換算したときの酸化物換算質量%である。前記アルミナ基焼結体が複数種の第2族成分を含有するとき、第2族成分の含有量は、各第2族成分の含有量の合計である。前記第2族成分の原料粉末の純度及び平均粒径は、Al成分に成り得る化合物粉末と基本的に同様である。
 前記RE成分は、焼結助剤由来の成分であり、酸化物、イオン等として、アルミナ基焼結体中に存在する。RE成分としては、スカンジウム成分(以下においてSc成分と称することがある。)、イットリウム成分(以下においてY成分と称することがある。)例えばイットリウムの酸化物、及びランタノイド成分を挙げることができる。前記アルミナ基焼結体に含まれるRE成分の具体例としては、Sc成分、Y成分、ランタン成分(以下においてLa成分と称することがある。)例えばランタンの酸化物、セリウム成分(以下においてCe成分と称することがある。)、プラセオジム成分(以下においてPr成分と称することがある。)、ネオジム成分(以下においてNd成分と称することがある。)例えばネオジムの酸化物、プロメチウム成分(以下においてPm成分と称することがある。)例えばプロメチウムの酸化物、サマリウム成分(以下においてSm成分と称することがある。)、ユウロピウム成分(以下においてEu成分と称することがある。)、ガドリニウム成分(以下においてGd成分と称することがある。)、テルビウム成分(以下においてTb成分と称することがある。)、ジスプロシウム成分(以下においてDy成分と称することがある。)、ホルミウム成分(以下においてHo成分と称することがある。)、エルビウム成分(以下においてEr成分と称することがある。)、ツリウム成分(以下においてTm成分と称することがある。)、イッテルビウム成分(以下においてYb成分と称することがある。)例えばイッテルビウムの酸化物、及びルテチウム成分(以下においてLu成分と称することがある。)等を挙げることができる。好ましい前記RE成分としては、例えばLa成分、Nd成分、Pr成分、Y成分及びYb成分等を挙げることができる。なお、RE元素の中でもLa成分、Nd成分、Pr成分、Y成分及びYb成分は、イオン半径が小さく、前記Si成分と共にアルミナ基焼結体中に均一に分散し易いので、高融点のガラス相を形成することができると考えられる。
 前記RE成分は、焼結時にアルミナ基焼結体に含有されていることにより、焼結時におけるアルミナの過度の粒成長を抑制すると共に、前記Si成分と共にガラス相を粒界相に形成する。粒界相に形成されたガラス相は、融点が高いので、前記アルミナ基焼結体の高温下での耐電圧特性を向上させると共に、前記アルミナ基焼結体の高温強度も向上させることができる。
 前記RE成分の原料としては、RE成分であるREの酸化物、又は、焼成によりRE成分に転化する化合物であれば特に制限はない。焼成によりRE成分に転化する化合物としては、例えばRE元素の酸化物、複合酸化物、水酸化物、炭酸塩、塩化物、硫酸塩、硝酸塩等及びリン酸塩等の各種無機系粉末、並びに天然鉱物等を挙げることができる。
 前記アルミナ基焼結体に含まれるRE成分の含有量は、RE成分を酸化物に換算したときの酸化物換算質量%である。なお、RE成分の含有量として、Pr成分は「Pr11」に換算したときの酸化物換算質量%を採用し、Pr成分以外のRE成分は「RE」に換算したときの酸化物換算質量%を採用する。前記アルミナ基焼結体が複数種のRE成分を含有するとき、RE成分の含有量は、各RE成分の含有量の合計である。
 RE成分に成り得る化合物粉末として上記酸化物以外の粉末を使用する場合には、その使用量は、使用する酸化物以外の化合物を酸化物に換算したときの酸化物換算質量%である。前記RE成分の原料粉末の純度及び平均粒径は、Al成分に成り得る化合物粉末と基本的に同様である。また、RE成分の化合物粉末の純度及び平均粒径も、Al成分に成り得る化合物粉末と基本的に同様である。
 なお、この発明に係るスパークプラグにおいて、アルミナ基焼結体が含有する前記Al成分、前記Si成分、前記第2族成分並びに前記RE成分の各含有量は、例えば蛍光X線分析、化学分析又は電子線マイクロアナライザ(EPMA)を用いた定量分析により測定し、酸化物換算の質量%を算出することができる。なお、この発明に係るスパークプラグにおいては、アルミナ基焼結体を蛍光X線分析又は化学分析することにより算出した結果と、原料粉末の混合比とがほぼ一致する。
 この発明に係るスパークプラグにおいては、アルミナ基焼結体がX線回折により分析した結果としてガラス相とアルミナ結晶とからなる。つまり、前記アルミナ基焼結体に存在する粒界相に、X線回折により検出されるレベルの結晶相が存在しない。なお、「X線回折により検出されるレベルの結晶相が存在しない」とは、X線回折によって得られるアルミナ由来の最強ピークとアルミナ以外の結晶相由来の最強ピークとの強度比[結晶相/アルミナ]が0以上0.05以下であることを言う。X線回折は、例えば株式会社リガク製のMiniFlexを用い、測定は、測定角度域が20~70°、電圧値が30kV、電流値が15mA、スキャンスピードが1、ステップが0.02という条件で行うことができる。
 ガラス相とアルミナ結晶とからなるアルミナ基焼結体を得るには、Si成分の原料粉末のBET比表面積を通常30~45m/Lに調整するとともに、第2族成分の原料粉末のBET比表面積を28~40m/Lに調整し、しかも、第2族成分の原料粉末/Si成分の原料粉末の比を0.7~1.3に調整してこれら原料粉末の混合物を焼成するのがよい。このように原料粉末の比表面積が大きいと、焼成時には、Si成分の原料粉末と第2族成分の原料粉末とが反応しやすくなり、その結果としてガラス相が形成され、結晶相としてアルミナ結晶が生成する。しかも、結晶相はX線回折で測定した限りでは、アルミナ結晶以外の結晶相形成物質はX線回折によっても検出することができないのである。
 前記アルミナ基焼結体に存在する粒界相に、X線回折により検出されるレベルの結晶相が存在すると、前記RE成分がアルミナ基焼結体中に不均一に分散してしまうことが多い。RE成分は導電ルートを遮断することができるので、RE成分の分散が不均一であると、耐電圧、特に高温下での耐電圧にバラつきを生じ得る。また、結晶相の存在自体もアルミナ基焼結体の誘電率をバラつかせる原因となるので、電圧の印加状態が均一になり難く、結果として耐電圧のバラつきを招くことになる。
 粒界相に存在する結晶相を高温で焼成することにより、前記結晶相は粒界相のガラス相に融解する。結晶相が融解することにより、粒界相に含まれる成分がガラス相において均一に分散するので、耐電圧のバラつきが低減される。
 よって、前記アルミナ基焼結体は、粒界相に結晶相を含んでいないことが好ましいので、上述したように、X線回折によって得られるアルミナ由来の最強ピークとアルミナ以外の結晶相由来の最強ピークとの強度比[結晶相/アルミナ]が0以上0.05以下であると良い。
 更に、アルミナ基焼結体に含まれる不可避不純物としてアルカリ金属、すなわちIUPAC1990年勧告に基づく周期表の第1族元素成分がある。前記アルカリ金属としては、リチウム(Li)、ナトリウム(Na)、カリウム(K)、ルビジウム(Rb)、セシウム(Cs)及びフランシウム(Fr)が挙げられる。
 アルカリ金属は、粒界相を移動し易い。すなわち、アルカリ金属は、アルミナ基焼結体の絶縁破壊の原因と成り易い。しかしながら、アルカリ金属が高融点のガラス相内に含まれていれば、高温下であってもアルカリ金属が移動し難くなる。結果として、アルカリ金属が粒界相を移動することによって生じる絶縁破壊が生じ難くなるので、この発明に係るスパークプラグにおける絶縁体の高温下での耐電圧特性が高くなる。
 したがって、この発明に係るスパークプラグは、アルミナ基焼結体のガラス相が、アルカリ金属を含み、更に導電ルートを遮断するRE成分も含むことにより、絶縁体の高温下での高耐電圧特性を確保することができる。
 なお、前記アルカリ金属の含有量を測定する方法としては、例えば株式会社日立製作所製の透過型電子顕微鏡(TEM、型式:HD-2000)に付属のEDAX社製のエネルギー分散型X線分析装置(EDX、型式:Genesis4000、検出器:SUTW3.3RTEM)を用いて元素分析することによって測定する方法を挙げることができる。分析の条件としては、加速電圧が200kV、照射モードがHR、スポットサイズが0.3nm、粒界相に存在するガラス相について任意の30点を観察する、という条件を挙げることができる。各スポットにおいて、アルカリ金属の含有量を測定することができる。
 この発明に係るスパークプラグにおいては、アルカリ金属とRE成分とが一定の比率でアルミナ基焼結体に含まれていることが好ましい。したがって、測定したアルカリ金属の含有量と、予めEPMAを用いた定量分析等により測定しておいたRE成分の含有量との酸化物換算の質量比、[アルカリ金属/RE]を算出する。[アルカリ金属/RE]は、TEMの観察領域における任意の30個のスポット毎に質量比を算出し、30個の質量比の平均値を採用することとする。この[アルカリ金属/RE]の平均値が0.01~1.0、好ましくは0.2~1.0であると、ガラス相中にアルカリ金属とRE成分とが適量含まれていることになる。なお、アルミナ基焼結体のガラス相におけるアルカリ金属の含有量は多い方が良いが、[アルカリ金属/RE]の平均値が0.2を超えると耐電圧には大きく影響しなくなる。この発明に係るスパークプラグは、アルミナ基焼結体の粒界相における質量比[アルカリ金属/RE]が0.01~1.0であると、絶縁体が高温下での耐電圧特性に優れ、ガラス相自体が高融点であるので、高温下でも耐電圧が低下し難い。
 この発明に係るスパークプラグの更に好ましい態様として、RE成分とSi成分との酸化物換算での質量比が0.45≦RE/SiO≦1.2、好ましくは0.55≦RE/SiO≦1を満たすアルミナ基焼結体を備えたスパークプラグを挙げることができる。RE/SiOが0.45~1.2を満たしていると、高融点であるSiOによって粒界相の融点も高融点となるので、高温下、例えば850℃及び900℃における絶縁体の耐電圧特性が向上する。
 この発明に係るスパークプラグの更に好ましい態様として、SiO成分とSiO成分及び前記第2族元素成分との酸化物換算での質量比が0.2≦SiO/(SiO+2族)≦0.75、好ましくは0.25≦SiO/(SiO+2族)≦0.7を満たすアルミナ基焼結体を備えたスパークプラグを挙げることができる。SiO/(SiO+2族)が0.2~0.75を満たしていると、SiOと第2族成分とが共晶組成を形成することにより、焼成によって生じ得る異常粒成長を抑制することができるので、高温強度を向上させることができ、更に高温下、例えば850℃及び900℃における絶縁体の耐電圧特性も確保することができる。
 この発明に係るスパークプラグにおける絶縁体の高温下での高耐電圧特性の実現だけでなく、焼結性を維持しつつ、高温リークを抑制することができる態様として、アルミナ粒子の平均粒径が2.5~6μmであり、前記アルミナ基焼結体の任意の部位を180μmに亘ってライン分析したときに、RE成分由来のピークが8本以上観察される態様を挙げることができる。
 前記アルミナ基焼結体におけるアルミナ粒子の粒径の測定方法としては、例えば焼結体の表面を鏡面研磨し、焼成温度よりも100℃低い温度で10分にわたって研磨面にサーマルエッチング処理を施す。この処理を施した表面を走査型電子顕微鏡(SEM)で観察し、インターセプト法にて、平均結晶粒径を測定する方法を挙げることができる。アルミナ粒子の平均粒径が2.5~6μmであると、焼結性が低下することがなく、ガラス相をアルミナ粒子で分断することができるので、電圧を印加しても昇電圧しない高温リークを抑制することもできる。
 アルミナ焼結体のライン分析をする方法としては、例えば焼結体の表面を鏡面研磨し、SEMの倍率を700倍程度に拡大して観察しつつ、エネルギー分散型X線分析装置(EDS)により焼結体の任意の部位を180μmに亘ってライン分析する方法を挙げることができる。焼結体の異なる任意の7箇所においてライン分析を行い、その分析結果の4箇所以上が次の4つの条件を満たす場合には、この発明に係るスパークプラグにおける絶縁体の高温下での耐電圧特性が向上し易い。
条件(1):EDSによるライン分析を行うと、180μmの間にRE成分由来のピークが8本以上観察することのできる焼結体であること。
条件(2):上記RE成分由来のピークが、180μmのライン中最大強度のピークに比べて、その半分以上の強度を有していること。
条件(3):隣接するピークの間に存在する谷において、隣接するピークのうち弱いピーク側からみた谷の大きさが、ライン中最大強度のピークの10%以上でない場合には、隣接するピークは1本とすること。
条件(4):ピーク強度は、ピークトップが示す強度から、ライン中最小強度の点が示す強度を差し引いた大きさとすること。
 以下に、この発明に係るスパークプラグについて、説明する。
 この発明に係るスパークプラグは、中心電極と、中心電極の外周に設けられた略円筒状の絶縁体と、一端が中心電極に火花放電間隙を介して対向するように配置された接地電極とを備えている。この発明に係るスパークプラグは、このような構成を有するスパークプラグであれば、その他の部材及び構成は特に限定されず、公知の種々の部材及び構成を採ることができる。
 この発明に係るスパークプラグの一実施例であるスパークプラグを図1に示す。図1(a)はこの発明に係るスパークプラグの一実施例であるスパークプラグ1の一部断面全体説明図であり、図1(b)はこの発明に係るスパークプラグの一実施例であるスパークプラグ1の主要部分を示す断面説明図である。なお、図1(a)では紙面下方を軸線AXの先端方向、紙面上方を軸線AXの後端方向として、図1(b)では紙面上方を軸線AXの先端方向、紙面下方を軸線AXの後端方向として説明する。
 このスパークプラグ1は、図1(a)及び(b)に示されるように、略棒状の中心電極2と、中心電極2の外周に設けられた略円筒状の絶縁体3と、絶縁体3を保持する円筒状の主体金具4と、一端が中心電極2の先端面に火花放電間隙Gを介して対向するように配置されると共に他端が主体金具4の端面に接合された接地電極5とを備えている。
 前記主体金具4は、円筒形状を有しており、絶縁体3を内装することにより絶縁体3を保持するように形成されている。主体金具4における先端方向の外周面にはネジ部8が形成されており、このネジ部8を利用して内燃機関のシリンダヘッド(図示せず)にスパークプラグ1が装着される。近年の高出力化された内燃機関及び/又は小型化された内燃機関にスパークプラグ1が装着される場合には、通常、前記ネジ部8の呼び径は10mm以下に調整される。主体金具4は、導電性の鉄鋼材料、例えば、低炭素鋼により形成されることができる。
 中心電極2は、外材6と、外材6の内部の軸心部に同心的に埋め込まれるように形成されてなる内材7とにより形成されている。中心電極2は、その先端部が絶縁体3の先端面から突出した状態で絶縁体3の軸孔に固定されており、主体金具4に対して絶縁保持されている。中心電極2の外材6は耐熱性及び耐食性に優れたニッケル基合金で形成され、電極2の内材7は銅(Cu)又はニッケル(Ni)等の熱伝導性に優れた金属材料で形成されることができる。
 前記接地電極5は、例えば、角柱体に形成されてなり、一端が主体金具4の端面に接合され、途中で略L字に曲げられて、その先端部が中心電極2の軸線AX方向に位置するように、その形状及び構造が設計されている。接地電極5がこのように設計されることによって、接地電極5の一端が中心電極2と火花放電間隙Gを介して対向するように配置されている。火花放電間隙Gは、中心電極2の先端面と接地電極5の表面との間の間隙であり、この火花放電間隙Gは、通常、0.3~1.5mmに設定される。接地電極5は中心電極2よりも高温に曝されるため、中心電極2を形成するNi基合金よりも耐熱性及び耐食性等により一層優れたNi基合金等で形成されるのがよい。
 前記絶縁体3は、主体金具4の内周部に滑石(タルク)及び/又はパッキン等(図示せず。)を介して保持されており、絶縁体3の軸線AX方向に沿って中心電極2を保持する軸孔を有している。絶縁体3は、絶縁体3における先端方向の端部が主体金具4の先端面から突出した状態で、主体金具4に固着されている。
 スパークプラグ1において、絶縁体3は、上述したようにケイ素(Si)成分と、IUPAC1990年勧告に基づく周期表の第2族元素成分と、希土類元素(RE)成分とを含有するアルミナ基焼結体を備え、前記アルミナ基焼結体は、X線回折によって得られるアルミナ由来の最強ピークとアルミナ以外の結晶相由来の最強ピークとの強度比[結晶相/アルミナ]が0以上0.05以下であり、前記アルミナ基焼結体の粒界相を、透過型電子顕微鏡で観察し、直径0.3nmの円形のスポットにおけるアルカリ金属成分及び前記RE成分の酸化物換算の質量比[アルカリ金属/RE]を算出し、観察領域中で任意に選択された30個の前記スポットの前記質量比の平均値が0.01~1.0である。絶縁体3の含有する化合物及び物性については、上述したので省略することがある。
 この発明に係るスパークプラグの製造方法は、先ず原料粉末、すなわち焼成により前記Al成分、前記Si成分、前記第2族成分、及び前記RE成分にそれぞれ転化する化合物の粉末を混合する。また、場合によっては、前記Al成分と同じ物質、前記Si成分と同じ物質、前記第2族成分と同じ物質、及び前記RE成分と同じ物質の各粉末(なお、これらの粉末もまた原料粉末と称することができる。)を混合する。この混合は、原料粉末の混合状態を均一にし、かつ得られる焼結体を高度に緻密化することができるように、8時間以上にわたって混合されるのが好ましい。
 この原料粉末を混合する工程で混合される粉末において、Al成分に転化する化合物粉末の粒径と、前記Si成分、前記Mg成分、前記Mg成分を除く第2族成分、及び前記RE成分から成る副原料に転化する化合物粉末の粒径との比が、1.2≦アルミナ/副原料≦4.4であると、良好な焼結性を確保しつつ、前記ヘキサアルミネート相が形成し易くなるので好ましい。粉末の粒径は、例えば日機装株式会社製のマイクロトラック粒度分布測定装置(MT-3000)によりレーザー回折法で測定した平均粒径である。
 なお、前記原料粉末にバインダーとして、例えば親水性結合剤を配合することもできる。この親水性結合剤としては、例えば、ポリビニルアルコール、水溶性アクリル樹脂、アラビアゴム、デキストリン等を挙げることができる。また、原料粉末を分散させる溶媒としては、例えば、水、アルコール等を用いることができる。これらの親水性結合剤及び溶媒は1種単独でも、2種以上を併用することもできる。親水性結合剤及び溶媒の使用割合は、原料粉末を100質量部としたときに、親水性結合剤は0.1~7質量部、好ましくは1~5質量部である。また、溶媒として水を使用するのであれば40~120質量部、好ましくは50~100質量部とすることができる。
 原料粉末を混合した工程の次の工程としては、原料粉末を溶媒に分散させ、親水性結合剤を配合することにより、原料粉末が分散したスラリーを得ることができる。
 次いで、得られたスラリーをスプレードライ法等により噴霧乾燥して平均粒径30~200μm、好ましくは50~150μmに造粒する。
 続いて、造粒物を成形して未焼成成形体を得る。得られた未焼成成形体は研削されることにより形状が整えられる。この未焼成成形体は比較的大きな平均粒径を有する造粒物で形成されているから加工性に優れ、所望の形状に容易にかつ高い生産性で成形されることができる。
 所望の形状に研削成形された前記未焼成成形体を、焼成工程に供する。この焼成工程では、大気雰囲気で焼成温度を1510~1650℃、より好ましくは1550~1650℃に設定し、900℃から焼成温度までは平均昇温速度8~20℃/minで昇温し、8~36時間焼成してアルミナ基焼結体を得る。焼成温度が1510~1650℃であると、焼結体が十分に緻密化し易く、粒界相において結晶相がガラス相に融解し易く、更にアルミナ成分の異常粒成長が生じ難いので、得られるアルミナ基焼結体の耐電圧特性及び機械的強度を確保することができる。上記平均昇温速度が8℃/min未満であると、粒界相であるガラス相が低融点化し過ぎてしまうので、アルミナ粒子の異常粒成長を引き起こし、強度の低下を招くことがある。ここで、前記焼成温度としては、1510~1650℃の温度範囲内にある温度であって、前記平均昇温速度による昇温を停止した時点での温度を挙げることができる。この焼成温度は、1510~1650℃の範囲内で一定に維持される温度であり、場合によっては前記温度範囲内で変化しても良い。また、焼成時間が8~36時間であると、焼結体が十分に緻密化し易く、アルミナ成分の異常粒成長が生じ難いので、得られるアルミナ基焼結体の耐電圧特性及び機械的強度を確保することができる。
 得られるアルミナ基焼結体は、高出力化された内燃機関用のスパークプラグの絶縁体3として特に好適である。前記アルミナ基焼結体は、所望により、再度、その形状等を成形されてもよい。このようにして、アルミナ基焼結体及びこのアルミナ基焼結体で構成されたスパークプラグ1用の絶縁体3を作製することができる。
 次いで、得られた絶縁体3は、絶縁体3に中心電極2を組み付ける中心電極取付工程に供されることとなる。更に、中心電極2が組み付けられた絶縁体3を主体金具4に取付ける主体金具取付工程に供されることにより、スパークプラグ1を製造することができる。この発明に係るスパークプラグの製造方法において、中心電極と、絶縁体と、主体金具との組み付ける態様としては、例えば図1に示すところの、この発明に係るスパークプラグの一実施態様を挙げることができる。
(絶縁体の作製)
 原料粉末として、平均粒径2.1μmのアルミナ粉末と、SiO粉末、Mg成分、Ca成分、Sr成分、Ba成分の各炭酸塩粉末と、希土類元素含有粉末とを混合した。更に、親水性結合剤例えばポリビニルアルコールと、溶媒としての水とを添加して成形用素地スラリーを調製した。
 得られた成形用素地スラリーは、スプレードライ法等により噴霧乾燥されて球状の成形用素地造粒物に調製した。更に、得られた成形用素地造粒物をラバープレス成形することにより、絶縁体の原形となるプレス成形体を作製した。
 次に、このプレス成形体は、その外側をレジノイド砥石等にて切削加工される。次いでこのプレス成形体を900℃に加熱してから表5に示す平均昇温速度で大気雰囲気下で昇温し、表5に示す焼成温度で、表5に示されるように焼成時間を8~36時間に設定して成形体を焼成し、その後、釉薬をかけて仕上げ焼成することにより、絶縁体を得た。
(成分量)
 得られた絶縁体の各成分の含有量は、EPMAを用いた定量分析により測定した。絶縁体に含まれる各成分の含有量は、表1に示す。
Figure JPOXMLDOC01-appb-T000001
(アルカリ金属の含有量)
 焼結体の粒界相に含まれるアルカリ金属の含有量は、株式会社日立製作所製の透過型電子顕微鏡(TEM、型式:HD-2000)に付属のEDAX社製のエネルギー分散型X線分析装置(EDX、型式:Genesis4000、検出器:SUTW3.3RTEM)を用いて元素分析することによって、測定した。分析の条件は、加速電圧が200kV、照射モードがHR、スポットサイズが0.3nm、ヘキサアルミネート相と粒界相に存在するガラス相とが反応している部位について、任意の30点を観察するという条件に設定した。この観察した30点の分析結果の平均値を酸化物換算の質量%で割り出した値を、前記アルカリ金属の含有量とした。各試料のアルカリ金属の含有量と、定量分析により得られたRE成分の含有量との質量比を算出し、表2に示した。
 また、質量比、「RE/SiO」及び「SiO/(SiO+2族)」についても、定量分析により得られた含有量を用いて算出し、表2に示した。
Figure JPOXMLDOC01-appb-T000002
 表1及び2において、「*」を付した試料「1*」~「5*」は、「アルカリ金属/RE」の含有量比が0.01~1.0の範囲外であるので比較例である。
(耐電圧評価)
 各試料の高温下における耐電圧を測定した。耐電圧を測定する装置を図2に示す。図2(a)は、焼結体30と、絶縁破壊を引き起こす金属製のリング31とを俯瞰した図であり、図2(b)は、焼結体30と前記リング31との断面図である。リング31は、その軸線長さLが3~4mmであり、図示しない固定手段によって、焼結体30の先端近傍に未接触状態で固定されている。焼結体30は、基部32により一端部が固定され、他端部が基部32から突出している。この高温下での耐電圧評価は、焼結体30の基部32から突出した部位を600~950℃に高周波加熱し、焼結体30における加熱され易い金属製のリング31に近接した部位が800℃、850℃及び900℃に達したときの電圧値を試料の耐電圧値として測定することとした。測定した耐電圧値を、表3に示す。
Figure JPOXMLDOC01-appb-T000003
 試料「1」及び「1*」~「5*」は、耐電圧特性を測定するときに900℃において、絶縁破壊が生じたので測定することができなかった。よって、表3においては、測定不能の測定結果を「-」と示した。
 表2及び3の結果から分かるように、アルカリ金属/REの含有量比が0.01~1.0の範囲外である試料は、高温下での耐電圧特性が低下している。アルカリ金属/REの含有量比が0.01~1.0の範囲内である試料は、高温下での耐電圧特性に優れており、ほとんどの試料が900℃という高温下においても絶縁破壊を生じることなく絶縁性を維持している。
 また、表2及び3の結果から分かるように、RE/SiOの含有量比が0.45~1.2の範囲内である試料5~29は、0.45~1.2の範囲外である試料1~4に比べて、高温下での耐電圧特性が大きく向上している。
 更に、表2及び3の結果から分かるように、SiO/(SiO+2族)の含有量比が0.2~0.75の範囲内である試料9~29は、0.2~0.75の範囲外である試料1~8に比べて、高温下での耐電圧特性が向上していると共に、900℃という高温下においても耐電圧特性の低下量が少ない。
(強度測定)
 焼結体の高温強度の測定は、JIS R 1604に準拠した方法によって、36×4×3mmの大きさの試料を用いて3点曲げ強度をスパン30mmに設定して測定した。測定結果を表4に示す。
(アルミナの粒径測定)
 アルミナの粒径測定は、次のように行った。先ず、各焼結体の表面を鏡面研磨し、焼成温度よりも100℃低い温度で10分にわたって研磨面にサーマルエッチング処理を施した。この処理を施した表面を走査型電子顕微鏡(SEM)で観察し、インターセプト法にて、アルミナ粒子の平均結晶粒径を計測した。その結果を表4に示す。
(ライン分析)
 焼結体のライン分析は、次のように行った。各焼結体の表面を鏡面研磨し、日本電子株式会社製のSEM(型式:JSM-6460LA)の倍率を700倍程度に拡大して研磨面を観察しつつ、日本電子株式会社製のEDX(型式:EX-23000BU)により焼結体の任意の部位を180μmに亘ってライン分析を行った。加圧電圧は20kVに設定し、検出されるピークの強度は、Kα線で元素を判別することとした。焼結体の異なる任意の7箇所においてライン分析を行い、その分析結果の4つ以上が次の4箇所の条件を満たす場合の検出されたRE成分由来のピークを計数した。計数したピーク数を表4に示す。
条件(1):EDSによるライン分析を行うと、180μmの間にRE成分由来のピークが8本以上観察することのできる焼結体であること。
条件(2):上記RE成分由来のピークが、180μmのライン中最大強度のピークに比べて、その半分以上の強度を有していること。
条件(3):隣接するピークの間に存在する谷において、隣接するピークのうち弱いピーク側からみた谷の大きさが、ライン中最大強度のピークの10%以上でない場合には、隣接するピークは1本とすること。
条件(4):ピーク強度は、ピークトップが示す強度から、ライン中最小強度の点が示す強度を差し引いた大きさとすること。
(高温リーク)
 焼結体の高温リークの有無を確認した。詳しく言うと、所定の条件下で電圧を印加した後に、昇電圧負荷の状態になっている場合は高温リークが発生していると評価し、逆に昇電圧負荷の状態になっていない場合は高温リークが発生していないと評価した。上述の耐電圧評価と同一の装置を用いて、700℃、15kV、1時間という条件下において、高温リークの発生を検出することとした。高温リークの有無を表4に示し、高温リークが発生していた場合は「○」を示し、高温リークが発生していなかった場合は「×」を示した。
(相対密度)
 焼結体が緻密化されていることを確認するために、相対密度を算出した。各焼結体の相対密度は、先ずJIS R 1634に準拠した方法で見かけ密度を測定し、格子定数より算出した理論密度と測定した見かけ密度とを用いて算出した。算出した相対密度は、表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4の結果から分かるように、ライン分析によりRE由来のピークを8本以上検出されただけの試料は、RE成分により焼結体中に導電ルートが形成され難いと考えられ、高温リークが発生しなかった。また、RE由来のピークが8本以上検出され、更にアルミナ粒子の粒径が2.5~6μmである試料は、高温リークが発生しないだけでなく、高温強度及び相対密度の向上も図ることができた。
 各試料を作製したときの焼成温度、焼成時間、900℃以降の昇温速度を表5に示す。また、耐電圧特性及び高温強度評価について、表3及び4の一部も共に示す。
Figure JPOXMLDOC01-appb-T000005
 表5に示す結果では、焼成温度が1510~1650℃であり、900℃から焼成温度までの平均昇温速度が8~20℃/minである試料5、7及び9~19は、この条件を満たしていない試料1~4、6及び8に比べて、高温下での耐電圧及び高温強度の両立を図ることができたと分かる。
 この発明に係るスパークプラグにおける絶縁体は、使用中に高温になり得るスパークプラグ、例えば高出力化された内燃機関に用いられるスパークプラグに適用することができる。
 1 スパークプラグ
 2 中心電極
 3 絶縁体
 4 主体金具
 5 接地電極
 6 外材
 7 内材
 8 ネジ部
 G 火花放電間隙
 30 焼結体
 31 リング
 32 基部
 L 軸線長さ

Claims (5)

  1.  中心電極と、前記中心電極の外周に設けられた略円筒状の絶縁体と、前記絶縁体の外周に設けられた略円筒状の主体金具とを備えたスパークプラグであって、
     前記絶縁体は、ケイ素成分(以下においてSi成分と称する。)と、IUPAC1990年勧告に基づく周期表の第2族元素成分と、希土類元素成分(以下においてRE成分と称する。)とを含有するアルミナ基焼結体を備え、
     前記アルミナ基焼結体は、X線回折により分析した結果としてガラス相とアルミナ結晶相とからなり、
     前記アルミナ基焼結体の粒界相を、透過型電子顕微鏡で観察し、直径0.3nmの円形のスポットにおけるアルカリ金属成分及び前記RE成分の酸化物換算の重量比[アルカリ金属/RE]を算出し、観察領域中で任意に選択された30個の前記スポットの前記重量比の平均値が0.01以上0.45以下の範囲及び0.45を超え1.0以下の範囲のいずれかの範囲内にあることを特徴とするスパークプラグ。
  2.  前記アルミナ基焼結体に含まれるRE成分とSi成分との酸化物換算での質量比が0.45≦RE/SiO≦1.2を満たす請求項1に記載のスパークプラグ。
  3.  前記アルミナ基焼結体に含まれるSiO成分とSiO成分及び前記第2族元素成分との酸化物換算での質量比が0.2≦SiO/(SiO+2族)≦0.75を満たす請求項1又は2に記載のスパークプラグ。
  4.  前記アルミナ基焼結体に含まれるアルミナ粒子の平均粒径が2.5~6μmであり、
     前記アルミナ基焼結体の任意の部位を180μmに亘ってライン分析したときに、RE成分由来のピークが8本以上観察される請求項1~3のいずれか一項に記載のスパークプラグ1。
  5.  請求項1~4のいずれか一項に記載のスパークプラグを製造する方法であって、
     未焼成成形体を焼成して絶縁体を形成する焼成工程と、
     前記絶縁体に中心電極を組み付ける中心電極組付工程と、
     前記中心電極が組み付けられた中心電極付き絶縁体を主体金具に取付ける主体金具取付工程とを備え、
     前記焼成工程は、900℃から焼成温度まで平均昇温速度8~20℃/minで昇温し、前記焼成温度は1510~1650℃の温度範囲内に維持することを特徴とするスパークプラグの製造方法。
PCT/JP2010/004263 2009-07-03 2010-06-28 スパークプラグ及びスパークプラグの製造方法 WO2011001656A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011520778A JP5172016B2 (ja) 2009-07-03 2010-06-28 スパークプラグ及びスパークプラグの製造方法
US13/382,116 US8482187B2 (en) 2009-07-03 2010-06-28 Spark plug and process for producing spark plug
CN2010800299691A CN102474080B (zh) 2009-07-03 2010-06-28 火花塞及火花塞的制造方法
EP10793830.0A EP2451034B1 (en) 2009-07-03 2010-06-28 Spark plug and process for producing spark plug
KR1020127002952A KR101478885B1 (ko) 2009-07-03 2010-06-28 스파크 플러그 및 스파크 플러그의 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-159330 2009-07-03
JP2009159330 2009-07-03

Publications (1)

Publication Number Publication Date
WO2011001656A1 true WO2011001656A1 (ja) 2011-01-06

Family

ID=43410744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004263 WO2011001656A1 (ja) 2009-07-03 2010-06-28 スパークプラグ及びスパークプラグの製造方法

Country Status (6)

Country Link
US (1) US8482187B2 (ja)
EP (1) EP2451034B1 (ja)
JP (1) JP5172016B2 (ja)
KR (1) KR101478885B1 (ja)
CN (1) CN102474080B (ja)
WO (1) WO2011001656A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013128525A1 (ja) 2012-02-27 2013-09-06 日本特殊陶業株式会社 スパークプラグ
JP5349670B1 (ja) * 2012-11-08 2013-11-20 日本特殊陶業株式会社 スパークプラグ

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014187004A (ja) 2013-02-22 2014-10-02 Ngk Spark Plug Co Ltd 絶縁体およびスパークプラグ
JP5775544B2 (ja) * 2013-05-09 2015-09-09 日本特殊陶業株式会社 点火プラグ用絶縁体及び点火プラグ
US9054502B1 (en) * 2014-08-06 2015-06-09 Federal-Mogul Ignition Company Ceramic for ignition device insulator with low relative permittivity
CN104529408A (zh) * 2014-12-13 2015-04-22 宁波帝杨电子科技有限公司 一种氧化铝基火花塞绝缘材料及其制备方法
JP6299694B2 (ja) * 2015-07-17 2018-03-28 株式会社デンソー スパークプラグ用碍子の製造方法
JP6440602B2 (ja) * 2015-09-24 2018-12-19 日本特殊陶業株式会社 スパークプラグ
KR102456575B1 (ko) * 2015-09-25 2022-10-19 (주) 브이에스아이 무기절연체를 봉입한 초소형 엑스선헤드
JP6546624B2 (ja) * 2017-06-27 2019-07-17 日本特殊陶業株式会社 スパークプラグ
JP6623194B2 (ja) * 2017-06-27 2019-12-18 日本特殊陶業株式会社 スパークプラグ
JP7325275B2 (ja) * 2019-09-12 2023-08-14 株式会社ニッカトー 耐摩耗性アルミナ質焼結体
US11870221B2 (en) 2021-09-30 2024-01-09 Federal-Mogul Ignition Llc Spark plug and methods of manufacturing same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712969A (ja) 1993-04-26 1995-01-17 Asahi Natl Shomei Kk タイムスイッチ
JPH0717436A (ja) 1993-07-06 1995-01-20 Nissan Motor Co Ltd 自動車用センターピラーの補強構造
WO1999044266A1 (fr) * 1998-02-27 1999-09-02 Ngk Spark Plug Co., Ltd. Bougie d'allumage, isolant en alumine pour bougie d'allumage et son procede de production
JP2951771B2 (ja) 1991-09-26 1999-09-20 守 大森 希土類酸化物−アルミナ−シリカ焼結体およびその製造方法
JP2001002464A (ja) 1998-11-24 2001-01-09 Ngk Spark Plug Co Ltd 高耐電圧性アルミナ基焼結体及びその製造方法
JP2001335360A (ja) 2000-05-24 2001-12-04 Ngk Spark Plug Co Ltd スパークプラグ用絶縁体及びスパークプラグ
WO2005033041A1 (ja) 2003-10-03 2005-04-14 Nippon Soken, Inc. アルミナ質磁器組成物およびそれを用いたスパークプラグ
JP2007250379A (ja) 2006-03-16 2007-09-27 Ngk Spark Plug Co Ltd 内燃機関用スパークプラグ及びその製造方法
JP2008024583A (ja) * 2006-06-23 2008-02-07 Nippon Soken Inc アルミナ複合焼結体、その評価方法、及びスパークプラグ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04160061A (ja) * 1990-10-22 1992-06-03 Ngk Spark Plug Co Ltd 酸窒化物セラミック焼結体およびスパークプラグ
JPH1149571A (ja) * 1997-07-31 1999-02-23 Ngk Spark Plug Co Ltd 窒化珪素質焼結体とその製造方法
CN1284286C (zh) 1998-11-24 2006-11-08 日本特殊陶业株式会社 火花塞用绝缘子以及使用该绝缘子的火花塞
JP4530380B2 (ja) * 1999-11-29 2010-08-25 日本特殊陶業株式会社 スパークプラグ用絶縁体及びそれを備えるスパークプラグ
JP4544597B2 (ja) * 2000-05-01 2010-09-15 日本特殊陶業株式会社 スパークプラグ
CN2688916Y (zh) * 2004-04-09 2005-03-30 苏玄武 一种在侧电极设有黄金体的火花塞
US20070298245A1 (en) * 2006-06-23 2007-12-27 Denso Corporation Alumina composite sintered body, evaluation method thereof and spark plug
WO2009119098A1 (ja) 2008-03-27 2009-10-01 日本特殊陶業株式会社 スパークプラグ及びスパークプラグの製造方法
KR101123417B1 (ko) 2008-03-27 2012-03-23 니혼도꾸슈도교 가부시키가이샤 스파크 플러그
JP4705991B2 (ja) * 2008-10-30 2011-06-22 日本特殊陶業株式会社 スパークプラグ用アルミナ基焼結体及びその製造方法、並びにスパークプラグ及びその製造方法
JP4613242B2 (ja) 2009-03-26 2011-01-12 日本特殊陶業株式会社 スパークプラグ
WO2011001699A1 (ja) * 2009-07-03 2011-01-06 日本特殊陶業株式会社 スパークプラグ
JP5172018B2 (ja) * 2009-09-25 2013-03-27 日本特殊陶業株式会社 スパークプラグ及びスパークプラグの製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2951771B2 (ja) 1991-09-26 1999-09-20 守 大森 希土類酸化物−アルミナ−シリカ焼結体およびその製造方法
JPH0712969A (ja) 1993-04-26 1995-01-17 Asahi Natl Shomei Kk タイムスイッチ
JPH0717436A (ja) 1993-07-06 1995-01-20 Nissan Motor Co Ltd 自動車用センターピラーの補強構造
WO1999044266A1 (fr) * 1998-02-27 1999-09-02 Ngk Spark Plug Co., Ltd. Bougie d'allumage, isolant en alumine pour bougie d'allumage et son procede de production
JP2001002464A (ja) 1998-11-24 2001-01-09 Ngk Spark Plug Co Ltd 高耐電圧性アルミナ基焼結体及びその製造方法
JP2001335360A (ja) 2000-05-24 2001-12-04 Ngk Spark Plug Co Ltd スパークプラグ用絶縁体及びスパークプラグ
WO2005033041A1 (ja) 2003-10-03 2005-04-14 Nippon Soken, Inc. アルミナ質磁器組成物およびそれを用いたスパークプラグ
JP2007250379A (ja) 2006-03-16 2007-09-27 Ngk Spark Plug Co Ltd 内燃機関用スパークプラグ及びその製造方法
JP2008024583A (ja) * 2006-06-23 2008-02-07 Nippon Soken Inc アルミナ複合焼結体、その評価方法、及びスパークプラグ

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013128525A1 (ja) 2012-02-27 2013-09-06 日本特殊陶業株式会社 スパークプラグ
CN104137357A (zh) * 2012-02-27 2014-11-05 日本特殊陶业株式会社 火花塞
US9362722B2 (en) 2012-02-27 2016-06-07 Ngk Spark Plug Co., Ltd. Spark plug with improved withstand voltage characteristics and high mechanical strength at high temperatures
JP5349670B1 (ja) * 2012-11-08 2013-11-20 日本特殊陶業株式会社 スパークプラグ
WO2014073130A1 (ja) * 2012-11-08 2014-05-15 日本特殊陶業株式会社 スパークプラグ
US9466951B2 (en) 2012-11-08 2016-10-11 Ngk Spark Plug Co., Ltd. Spark plug

Also Published As

Publication number Publication date
KR20120050992A (ko) 2012-05-21
EP2451034A1 (en) 2012-05-09
CN102474080B (zh) 2013-09-18
EP2451034A4 (en) 2013-05-29
EP2451034B1 (en) 2018-03-14
JP5172016B2 (ja) 2013-03-27
JPWO2011001656A1 (ja) 2012-12-10
US20120187819A1 (en) 2012-07-26
US8482187B2 (en) 2013-07-09
KR101478885B1 (ko) 2015-01-02
CN102474080A (zh) 2012-05-23

Similar Documents

Publication Publication Date Title
JP5172016B2 (ja) スパークプラグ及びスパークプラグの製造方法
JP5216917B2 (ja) スパークプラグ
JP5172018B2 (ja) スパークプラグ及びスパークプラグの製造方法
JP4705991B2 (ja) スパークプラグ用アルミナ基焼結体及びその製造方法、並びにスパークプラグ及びその製造方法
KR101550162B1 (ko) 스파크 플러그
EP3148021B1 (en) Spark plug
JP6366555B2 (ja) スパークプラグ
JP6440602B2 (ja) スパークプラグ
JP6546624B2 (ja) スパークプラグ
KR101747568B1 (ko) 스파크 플러그
JP6521897B2 (ja) スパークプラグ
JP7390501B2 (ja) 絶縁体およびスパークプラグ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080029969.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10793830

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011520778

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010793830

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127002952

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13382116

Country of ref document: US