WO2011000394A1 - Strangförmiges element - Google Patents

Strangförmiges element Download PDF

Info

Publication number
WO2011000394A1
WO2011000394A1 PCT/EP2009/004956 EP2009004956W WO2011000394A1 WO 2011000394 A1 WO2011000394 A1 WO 2011000394A1 EP 2009004956 W EP2009004956 W EP 2009004956W WO 2011000394 A1 WO2011000394 A1 WO 2011000394A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
nanotube
layer
bath
auxiliary
Prior art date
Application number
PCT/EP2009/004956
Other languages
English (en)
French (fr)
Inventor
Johannes Schnieders
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP09777052.3A priority Critical patent/EP2449562B1/de
Priority to PCT/EP2009/004956 priority patent/WO2011000394A1/de
Publication of WO2011000394A1 publication Critical patent/WO2011000394A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • D06M11/74Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon or graphite; with carbides; with graphitic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/83Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/08Processes in which the treating agent is applied in powder or granular form
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/02Single bars, rods, wires, or strips

Definitions

  • the invention relates to a method for producing a strand-like element, for example a mechanical cable, an electrical conductor or an electric cable. Electrical conductors and electrical cables are known to form with copper wires.
  • the invention has for its object to provide a method for producing a strand-like element, which can achieve particularly good mechanical and / or electrical properties of the strand-like element and can be carried out easily and inexpensively.
  • Step (a) - immersing at least one fiber section of a fiber in a bath containing a liquid auxiliary material and nanotubes therein, - in a step (b) - removing the fiber section from the bath and the nanotubes of the bath remaining on the fiber section form a nanotube layer on the fiber section, and - in a step c) - with the at least partially coated with nanotubes fiber, the strand-shaped element is formed.
  • a significant advantage of the method according to the invention is the fact that can be produced with this example, electrical conductors with very low weight, but still very good conductivity. For example, if carbon nanotubes, or CNTs (CNTs: carbon nanotubes), are deposited on a carbon fiber, it is very easy to produce highly conductive conductors with less weight than metal conductors.
  • a coating bath allows a large fiber throughput at a low cost and is therefore very suitable for industrial production.
  • Another significant advantage of the method according to the invention is the fact that it can - depending on the process - when removing the fiber portion of the bath, so during the formation of layers on the fiber, can come to a preferential orientation of the nanotubes. If the nanotubes are aligned mainly or predominantly parallel to the fiber longitudinal direction, or at least approximately parallel to the fiber longitudinal direction, the nanotubes, if they are electrically conductive, can lead to a particularly high conductivity of the coated fiber and thus to a particularly high conductivity of the strand-shaped Elements contribute. Such a preferred orientation of the nanotubes is advantageous, but of course not absolutely necessary. With the method according to the invention can also be mechanically very stable strand-like elements form, for example, heavy-duty tension cables or the like. According to a particularly preferred embodiment of the method, it is provided that the steps a) and b) are repeated at least once, preferably several times, around the
  • the layer thickness is increased or multiplied by applying new nanotube layers to preexisting nanotube layers, as in a candle pulling process in which a wick is repeatedly dipped in a wax bath or repeatedly pulled through a wax bath concentrically arranged in the middle.
  • the steps a) and b) can be repeated almost as often as desired until the nanotube layer on the fiber section has reached a desired or predetermined nominal layer thickness.
  • the fiber portion located in the bath for example, can be pivoted, in particular along the fiber longitudinal direction or transverse to the fiber longitudinal direction, or rotated about its own axis or moved in any other way; however, a rotational movement about the central axis of the fiber is considered to be particularly advantageous.
  • the removal of the fiber section from the bath takes place along the fiber longitudinal direction of the fiber in order to achieve a preferred orientation of the nanotubes parallel to the fiber longitudinal direction.
  • an auxiliary material is used, which makes it possible for liquid auxiliary material remaining on the fiber section to become solid after removal of the fiber section from the bath and together with the nanotubes therein forms a solid nanotube-containing auxiliary layer as nanotube layer on the fiber section.
  • the temperature of the bath is adjusted so that the auxiliary material melts and the nanotubes float in the molten coating material, and the ambient temperature outside the bath is set to a value below the melting temperature of the auxiliary material, so that after removal of the fiber section from the bath, the liquid auxiliary material remaining on the fiber section solidifies and thereby the solid nanotube-containing
  • a coating material dissolved in a solvent is used as the liquid auxiliary material and the solvent evaporates after removal of the fiber section from the bath, thereby forming the solid nanotube-containing auxiliary layer from the nanotubes and the coating material.
  • the auxiliary material or the coating material in the nanotube-containing auxiliary layer is preferably replaced by a metal to form a nanotube.
  • the metal used is preferably copper or aluminum.
  • the nanotube-containing metal layer can be formed particularly simply and thus advantageously by immersing the fiber surface provided with the nanotube-containing auxiliary layer in a liquid metal bath in which the auxiliary material or coating material is melted or vaporized, the auxiliary material or the coating material in the nanotube-containing auxiliary layer is replaced by metal of the metal bath and the nanotube-containing metal layer is formed when the fiber section is removed from the metal bath.
  • the auxiliary material or the coating material can also be removed from the fiber in a separate step, so that an auxiliary material-free or coating material-free nanotube layer or nanotube structure is formed on the fiber surface.
  • the nanotubes will be interlocked or cross-linked with each other in the auxiliary material-free or coating-material-free nanotube layer, so that they can not fall off the fiber, at least not to a significant extent.
  • the nanotubes in the auxiliary material-free or coating-material-free nanotube layer form a mesh-like or grid-like or intrinsically crosslinked structure.
  • the removal of the auxiliary material or of the coating material can be carried out in a particularly simple form, for example by melting or evaporation or chemically, in particular with a solvent or etchant.
  • the fiber surface provided with the nanotube layer is preferably metallized in order to increase the electrical conductivity and / or the mechanical stability.
  • the metallization will be by fusing with a metal, for example by immersion in a metal bath with molten metal.
  • the described method can be carried out with single fibers; However, in view of greater mechanical strength of the strand-like element to be produced, it is considered advantageous if the fiber is twisted or intertwined or otherwise connected to other fibers to form a yarn or twine or thread-like braid and the yarn or twine or thread-like braid in the manner described above is coated at least in sections with a nanotube-containing auxiliary layer and / or with a nanotube layer and / or with a nanotube-containing metal layer.
  • the coated fiber, the coated yarn, the coated thread or the coated filamentary braid is subsequently stranded, for example together with copper wires.
  • the resulting rope can preferably be cast with a resin.
  • the strand-shaped element produced be it as a coated fiber, as a coated yarn, as a coated thread or as a coated filamentary braid or as a rope to a flat mesh, such as a mat or the like, further processed.
  • the nanotubes are carbon nanotubes and / or a carbon fiber is used as the fiber.
  • auxiliary material for example, a wax or an emulsion can be used.
  • Another aspect of the invention is a strand-like element which has at least one fiber which is provided, at least in sections, with a nanotube layer or nanotube-containing metal layer.
  • FIG. 1 shows a bath with a fiber located therein in sections
  • FIG. 2 shows the fiber after removal from the bath
  • FIG. 4 shows the fiber after removal from the bath after re-immersion
  • FIG. 5 shows a metal bath for metallizing the fiber
  • Figure 6 shows the fiber after metallizing
  • Figure 7 shows an embodiment of the automated
  • FIG. 1 shows a bath 10 containing an auxiliary material 20.
  • the auxiliary material is, for example, wax.
  • the temperature Ti of the bath 10 is adjusted so that the wax is melted and the carbon nanotubes 30 can float in the molten wax.
  • the outside temperature Ta ie the ambient temperature outside the bath 10, has a value below the melting temperature of the wax.
  • a fiber section 40 of a carbon fiber 50 is located in sections in the bath 10. The surface of the fiber section 40 thus comes into contact with the wax and the carbon nanotubes.
  • Form auxiliary layer in the form of a nanotube-containing wax layer This is shown by way of example in FIG. 2.
  • FIG. 2 shows the carbon fiber 50 and the solid nanotube-containing wax layer 60 on the fiber section 40.
  • the carbon nanotubes 30 may have a preferential direction in the nanotube-containing wax layer; thus the cohesion lenstoffnanorschreibchen 30 primarily in the fiber longitudinal direction.
  • the carbon fiber 50 is rotated in the bath 10, for example, as indicated by the arrow P2 in FIG.
  • the coating process can be repeated as often as desired in order to increase the thickness, analogously to a candle-pulling process.
  • FIG. 3 shows the fiber section 40 coated with the nanotube-containing wax layer 60 after the carbon fiber 50 has again been immersed in the bath 10.
  • liquid wax will again remain on the fiber section where it solidifies and thereby increase the thickness of the wax layer. This is shown by way of example in FIG. 4.
  • the wax of the nanotube-containing wax layer 60 is replaced by a metal, and a nanotube-containing metal layer is formed.
  • Such replacement of the wax can be carried out, for example, in a liquid copper or aluminum bath 100, as shown by way of example in FIG.
  • the wax will melt or evaporate, leaving the carbon nanotubes 30 on the fiber section 40; because the carbon
  • the tubes 30 are substantially tangled or completely interlocked or cross-linked so that they can not fall off the carbon fiber 50, at least to a significant extent.
  • the carbon nanotubes 30 on the carbon fiber 50 form a net-like or grid-like or self-crosslinked one
  • a strand-shaped element 150 with the carbon fiber 50 in the center and a nanotube-containing metal layer 160 on the outside are formed. This is shown by way of example in FIG. 6.
  • the strand-like element 150 can then be further processed, for example stranded, and further processed as a conductor in a conventional process.
  • FIG. 7 shows an exemplary embodiment for the automated coating of a carbon fiber 50 with carbon nanotube 30.
  • a fiber loop 200 formed with the carbon fiber 50 is shown, which is guided over one or more deflection rollers 210 and rotated or rotated along the direction of the arrow P3, so that there is always a fiber portion 220 within a nanotube-containing wax bath 230 and the remaining fiber 240 outside of the wax bath 230.
  • the thickness d of the resulting nanotube-containing wax layer 60 (compare FIGS. 2 and 4) on the carbon fiber 50 can be set as desired.

Abstract

Die Erfindung bezieht sich u.a. auf ein Verfahren zum Herstellen eines strangförmigen Elements (150). Erfindungsgemäß ist vorgesehen, dass: a) zumindest ein Faserabschnitt (40) einer Faser (50) in ein Bad (10) eingetaucht wird, das ein flüssiges Hilfsmaterial (20) und darin befindliche Nanoröhrchen (30) enthält, b) der Faserabschnitt aus dem Bad entnommen wird und die auf dem Faserabschnitt verbliebenen Nanoröhrchen des Bades auf dem Faserabschnitt eine Nanoröhrchenschicht bilden, c) mit der zumindest abschnittsweise mit Nanoröhrchen beschichteten Faser das strangförmige Element gebildet wird.

Description

Beschreibung Strangförmiges Element Die Erfindung bezieht sich auf ein Verfahren zum Herstellen eines strangförmigen Elements, beispielsweise eines mechanischen Kabels, eines elektrischen Leiters oder eines elektrischen Kabels. Elektrische Leiter und elektrische Kabel lassen sich bekanntermaßen mit Kupferdrähten bilden.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Herstellen eines strangförmigen Elements anzugeben, mit dem sich besonders gute mechanische und/oder elektrische Eigenschaften des strangförmigen Elements erreichen lassen und das sich einfach und kostengünstig durchführen lässt.
Diese Aufgabe wird erfindungsgemäß durch ein Verfahren mit den Merkmalen gemäß Patentanspruch 1 gelöst. Vorteilhafte
Ausgestaltungen des erfindungsgemäßen Verfahrens sind in Unteransprüchen angegeben.
Danach ist erfindungsgemäß vorgesehen, dass - in einem
Schritt (a) - zumindest ein Faserabschnitt einer Faser in ein Bad eingetaucht wird, das ein flüssiges Hilfsmaterial und darin befindliche Nanoröhrchen enthält, - in einem Schritt (b) - der Faserabschnitt aus dem Bad entnommen wird und die auf dem Faserabschnitt verbliebenen Nanoröhrchen des Bades auf dem Faserabschnitt eine Nanoröhrchenschicht bilden, und - in einem Schritt c) - mit der zumindest abschnittsweise mit Nanoröhrchen beschichteten Faser das strangförmige Element gebildet wird. Ein wesentlicher Vorteil des erfindungsgemäßen Verfahrens ist darin zu sehen, dass sich mit diesem beispielsweise elektrische Leiter mit sehr geringem Gewicht, aber dennoch sehr guten Leitfähigkeitswerten herstellen lassen. Werden beispiels- weise Kohlenstoffnanoröhrchen, fachsprachlich CNTs (CNT: Carbon nanotubes) auf einer Kohlenstofffaser abgeschieden, so lassen sich in sehr einfacher Weise hochleitfähige Leiter mit - im Vergleich zu Metallleitern - geringerem Gewicht herstellen.
Ein weiterer wesentlicher Vorteil des erfindungsgemäßen Verfahrens basiert auf dem Einsatz eines Beschichtungsbades . Ein Beschichtungsbad ermöglicht einen großen Faserdurchsatz bei geringen Kosten und ist daher für eine industrielle Produkti- on sehr geeignet.
Ein weiterer wesentlicher Vorteil des erfindungsgemäßen Verfahrens ist darin zu sehen, dass es - je nach Verfahrensführung - bei der Entnahme des Faserabschnitts aus dem Bad, also während der Schichtbildung auf der Faser, zu einer Vorzugsausrichtung der Nanoröhrchen kommen kann. Wenn die Nanoröhrchen hauptsächlich oder überwiegend parallel zur Faserlängsrichtung, oder zumindest näherungsweise parallel zur Faserlängsrichtung, ausgerichtet werden, so können die Nano- röhrchen, sofern sie elektrisch leitfähig sind, zu einer besonders hohen Leitfähigkeit der beschichteten Faser und damit zu einer besonders hohen Leitfähigkeit des strangförmigen Elements beitragen. Eine solche Vorzugsausrichtung der Nanoröhrchen ist vorteilhaft, aber selbstverständlich nicht zwin- gend nötig. Mit dem erfindungsgemäßen Verfahren lassen sich auch mechanisch sehr stabile strangförmige Elemente bilden, beispielsweise hochbelastbare Zugseile oder dergleichen. Gemäß einer besonders bevorzugten Ausgestaltung des Verfahrens ist vorgesehen, dass die Schritte a) und b) zumindest einmal, vorzugsweise mehrfach wiederholt werden, um die
Schichtdicke der Nanoröhrchenschicht auf dem Faserabschnitt zu erhöhen. Bei dieser Vorgehensweise wird die Schichtdicke wie bei einem Kerzenziehverfahren, bei dem ein Docht wiederholt in ein Wachsbad eingetaucht oder wiederholt durch ein Wachsbad hindurch gezogen wird, durch Auftragen neuer Nano- röhrchenschichten auf bereits vorhandenen Nanoröhrchenschich- ten erhöht bzw. vervielfacht, wobei die Faser stets konzen- trisch in der Mitte angeordnet bleibt. Die Schritte a) und b) können quasi beliebig oft wiederholt werden, bis die Nanoröhrchenschicht auf dem Faserabschnitt eine gewünschte bzw. vorgegebene Sollschichtdicke erreicht hat. Um eine gleichmäßige Verteilung der Nanoröhrchen auf der Faser zu erreichen, kann der im Bad befindliche Faserabschnitt beispielsweise geschwenkt, insbesondere entlang der Faserlängsrichtung oder quer zur Faserlängsrichtung, oder um die eigene Achse rotiert oder in anderer Weise bewegt werden; als besonders vorteilhaft wird jedoch eine Rotationsbewegung um die Mittelachse der Faser angesehen.
Als besonders bevorzugt wird es angesehen, wenn die Entnahme des Faserabschnitts aus dem Bad entlang der Faserlängsrich- tung der Faser erfolgt, um eine bevorzugte Ausrichtung der Nanoröhrchen parallel zur Faserlängsrichtung zu erreichen. Vorzugsweise wird ein Hilfsmaterial verwendet, das es ermöglicht, dass auf dem Faserabschnitt verbliebenes flüssiges Hilfsmaterial nach der Entnahme des Faserabschnitts aus dem Bad fest wird und gemeinsam mit den darin befindlichen Nano- röhrchen auf dem Faserabschnitt eine feste nanoröhrchenhalti- ge Hilfsschicht als Nanoröhrchenschicht bildet.
Gemäß einer bevorzugten Ausgestaltung des Verfahren ist vorgesehen, dass die Temperatur des Bades derart eingestellt wird, dass das Hilfsmaterial schmilzt und die Nanoröhrchen in dem geschmolzenen Beschichtungsmaterial schwimmen, und die Umgebungstemperatur außerhalb des Bades auf einen Wert unterhalb der Schmelztemperatur des Hilfsmaterials eingestellt wird, so dass nach der Entnahme des Faserabschnitts aus dem Bad das auf dem Faserabschnitt verbliebene flüssige Hilfsma- terial erstarrt und dabei die feste nanoröhrchenhaltige
Hilfsschicht bildet.
Gemäß einer alternativen Ausgestaltung ist vorgesehen, dass als flüssiges Hilfsmaterial ein in einem Lösungsmittel gelöstes Beschichtungsmaterial verwendet wird und das Lösungsmittel nach der Entnahme des Faserabschnitts aus dem Bad verdampft und dadurch aus den Nanoröhrchen und dem Beschichtungsmaterial die feste nanoröhrchenhaltige Hilfsschicht ge- bildet wird.
Nachdem die nanoröhrchenhaltige Hilfsschicht auf dem Faserabschnitt die vorgegebene Dicke erreicht hat, sei es nach einem einmaligen Eintauchen in das Bad oder nach einem mehrmaligen Eintauchen in das Bad, wird das Hilfsmaterial oder das Beschichtungsmaterial in der nanoröhrchenhaltigen Hilfsschicht vorzugsweise durch ein Metall unter Bildung einer nanoröhr- chenhaltigen Metallschicht ersetzt. Als Metall wird bevorzugt Kupfer oder Aluminium eingesetzt.
Die nanoröhrchenhaltige Metallschicht lässt sich besonders einfach und damit vorteilhaft bilden, indem die mit der nano- röhrchenhaltigen Hilfsschicht versehene Faseroberfläche in ein flüssiges Metallbad eingetaucht wird, in dem Metallbad das Hilfsmaterial bzw. Beschichtungsmaterial geschmolzen oder verdampft wird, das Hilfsmaterial oder das Beschichtungsmate- rial in der nanoröhrchenhaltigen Hilfsschicht durch Metall des Metallbades ersetzt wird und sich bei Entnahme des Faserabschnitts aus dem Metallbad die nanoröhrchenhaltige Metallschicht bildet. Alternativ kann das Hilfsmaterial oder das Beschichtungsmaterial auch in einem separaten Schritt von der Faser entfernt werden, so dass eine hilfsmaterialfreie bzw. beschichtungsma- terialfreie Nanoröhrchenschicht bzw. Nanoröhrchenstruktur auf der Faseroberfläche gebildet wird. Die Nanoröhrchen werden in der hilfsmaterialfreien bzw. beschichtungsmaterialfreien Nanoröhrchenschicht untereinander bzw. miteinander verhakt oder vernetzt sein, so dass sie von der Faser nicht, zumindest nicht in einem signifikanten Umfang, abfallen können. Beispielsweise bilden die Nanoröhrchen in der hilfsmaterialfrei- en bzw. beschichtungsmaterialfreien Nanoröhrchenschicht eine netz- oder gitterartige bzw. eigenvernetzte Struktur.
Das Entfernen des Hilfsmaterials bzw. des Beschichtungsmate- rials kann in besonders einfacher Form beispielsweise durch Schmelzen oder Verdampfen oder chemisch, insbesondere mit einem Lösungs- oder Ätzmittel, erfolgen. Nachfolgend wird die mit der Nanoröhrchenschicht versehene Faseroberfläche vorzugsweise metallisiert, um die elektrische Leitfähigkeit und/oder die mechanische Stabilität zu erhöhen. Vorzugsweise wird das Metallisieren durch ein Verschmelzen mit einem Metall erfolgen, beispielsweise durch ein Eintauchen in ein Metallbad mit geschmolzenem Metall.
Das beschriebene Verfahren kann mit Einzelfasern durchgeführt werden; im Hinblick auf eine größere mechanische Festigkeit des herzustellenden strangförmigen Elements wird es jedoch als vorteilhaft angesehen, wenn die Faser mit anderen Fasern unter Bildung eines Garnes oder Zwirns oder fadenförmiges Geflechts zusammengedreht oder verflochten oder auf andere Weise verbunden wird und das Garn oder das Zwirn oder das faden- förmige Geflecht in der oben beschriebenen Weise zumindest abschnittsweise mit einer nanoröhrchenhaltigen Hilfsschicht und/oder mit einer Nanoröhrchenschicht und/oder mit einer nanoröhrchenhaltigen Metallschicht beschichtet wird. Im Übrigen wird es als vorteilhaft angesehen, wenn die beschichtete Faser, das beschichtete Garn, das beschichtete Zwirn oder das beschichtete fadenförmige Geflecht nachfolgend verseilt wird, beispielsweise gemeinsam mit Kupferdrähten. Das entstehende Seil kann vorzugsweise mit einem Harz vergos- sen werden.
Auch kann das hergestellte strangförmige Element, sei es als beschichtete Faser, als beschichtetes Garn, als beschichteter Zwirn oder als beschichtetes fadenförmiges Geflecht oder als Seil zu einem flächigen Geflecht, beispielsweise einer Matte oder dergleichen, weiterverarbeitet werden. Mit Blick auf optimale elektrische Eigenschaften des strang- förmigen Elements wird es als vorteilhaft angesehen, wenn die Nanoröhrchen Kohlenstoffnanoröhrchen sind und/oder als Faser eine Kohlenstofffaser verwendet wird.
Als Hilfsmaterial kann beispielsweise ein Wachs oder eine Emulsion verwendet werden.
Als Erfindung wird außerdem ein strangförmiges Element ange- sehen, das mindestens eine Faser aufweist, die zumindest abschnittsweise mit einer Nanoröhrchenschicht oder nanoröhr- chenhaltigen Metallschicht versehen ist.
Die Erfindung wird nachfolgend anhand von Ausführungsbeispie- len näher erläutert; dabei zeigen beispielhaft
Figur 1 ein Bad mit einer darin abschnittsweise befindlichen Faser,
Figur 2 die Faser nach der Entnahme aus dem Bad,
Figur 3 die Faser nach einem erneuten Eintauchen in das Bad,
Figur 4 die Faser nach der Entnahme aus dem Bad nach dem erneuten Eintauchen,
Figur 5 ein Metallbad zum Metallisieren der Faser,
Figur 6 die Faser nach dem Metallisieren und
Figur 7 ein Ausführungsbeispiel zum automatisierten
Beschichten einer Faser mit Nanoröhrchen. In den Figuren werden der Übersicht halber für identische oder vergleichbare Komponenten stets dieselben Bezugszeichen verwendet . In der Figur 1 sieht man ein Bad 10, das ein Hilfsmaterial 20 enthält. Bei dem Hilfsmaterial handelt es sich beispielsweise um Wachs. In dem Wachs befinden sich Kohlenstoffnanoröhrchen 30. Die Temperatur Ti des Bades 10 ist derart eingestellt, dass das Wachs geschmolzen ist und die Kohlenstoffnanoröhrchen 30 in dem geschmolzenen Wachs schwimmen können. Die Außentemperatur Ta, also die Umgebungstemperatur außerhalb des Bades 10, weist einen Wert unterhalb der Schmelztemperatur des Wachses auf.
Wie sich in der Figur 1 erkennen lässt, befindet sich ein Faserabschnitt 40 einer Kohlenstofffaser 50 abschnittsweise in dem Bad 10. Die Oberfläche des Faserabschnitts 40 tritt also mit dem Wachs und den Kohlenstoffnanoröhrchen in Kontakt.
Wird der Faserabschnitt 40 wieder aus dem Bad 10 entnommen, beispielsweise entlang der Faserlängsrichtung Pl aus dem Bad 10 gezogen, so wird das auf dem Faserabschnitt verbliebene Wachs erstarren und dabei eine feste nanoröhrchenhaltige
Hilfsschicht in Form einer nanoröhrchenhaltigen Wachsschicht bilden. Dies zeigt beispielhaft die Figur 2.
Man erkennt in der Figur 2 die Kohlenstofffaser 50 sowie die feste nanoröhrchenhaltige Wachsschicht 60 auf dem Faserabschnitt 40. Außerdem sieht man, dass die Kohlenstoffnanoröhrchen 30 in der nanoröhrchenhaltigen Wachsschicht eine Vorzugsrichtung aufweisen können; so erstrecken sich die Koh- lenstoffnanoröhrchen 30 vornehmlich in der Faserlängsrichtung.
Um eine möglichst gleichmäßige Dickenverteilung der festen nanoröhrchenhaltigen Wachsschicht 60 zu erreichen, wird die Kohlenstofffaser 50 in dem Bad 10 beispielsweise gedreht, wie dies der Pfeil P2 in der Figur 1 andeutet.
Ist die Dicke d der nanoröhrchenhaltigen Wachsschicht 60 noch nicht ausreichend groß, so kann der Beschichtungsvorgang - analog zu einem Kerzenziehverfahren - beliebig häufig wiederholt werden, um die Dicke zu erhöhen.
Die Figur 3 zeigt den mit der nanoröhrchenhaltigen Wachs- Schicht 60 beschichteten Faserabschnitt 40, nachdem die Kohlenstofffaser 50 erneut in das Bad 10 eingetaucht worden ist.
Bei einem erneuten Herausziehen des Faserabschnitts 40 aus dem Bad 10, vorzugsweise entlang der Faserlängsrichtung Pl, wird auf dem Faserabschnitt erneut flüssiges Wachs verbleiben und dort erstarren und dabei die Dicke der Wachsschicht erhöhen. Dies zeigt beispielhaft die Figur 4.
Ist die Dicke der Wachsschicht 60 ausreichend groß, so wird das Wachs der nanoröhrchenhaltigen Wachsschicht 60 durch ein Metall ersetzt, und es wird eine nanoröhrchenhaltige Metallschicht gebildet. Ein solches Ersetzen des Wachses kann beispielsweise in einem flüssigen Kupfer- oder Aluminiumbad 100 erfolgen, wie dies beispielhaft die Figur 5 zeigt.
In dem Kupfer- oder Aluminiumbad 100 wird das Wachs schmelzen oder verdampfen, wobei jedoch die Kohlenstoffnanoröhrchen 30 auf dem Faserabschnitt 40 verbleiben; denn die Kohlenstoffna- noröhrchen 30 sind in erheblichem Umfange oder vollständig untereinander bzw. miteinander verhakt oder vernetzt, so dass sie von der Kohlenstofffaser 50 nicht, zumindest nicht in einem signifikanten Umfang, abfallen können. Beispielsweise bilden die Kohlenstoffnanoröhrchen 30 auf der Kohlenstofffaser 50 eine netz- oder gitterartige bzw. eigenvernetzte
Struktur .
Wird die Kohlenstofffaser 50 anschließend aus dem Kupfer- oder Aluminiumbad 100 entnommen, so entsteht ein strangförmi- ges Element 150 mit der Kohlenstofffaser 50 im Zentrum und einer nanoröhrchenhaltige Metallschicht 160 außen herum. Dies zeigt beispielhaft die Figur 6. Das strangförmige Element 150 kann anschließend weiterverarbeitet werden, beispielsweise verseilt und als Leiter in einem herkömmlichen Verfahren weiterverarbeitet werden.
Die Figur 7 zeigt ein Ausführungsbeispiel zum automatisierten Beschichten einer Kohlenstofffaser 50 mit Kohlenstoffnano- röhrchen 30. Man sieht eine mit der Kohlenstofffaser 50 gebildete Faserschleife 200, die über eine oder mehrere Umlenkrollen 210 geführt und entlang der Pfeilrichtung P3 gedreht bzw. rotiert wird, so dass sich stets ein Faserabschnitt 220 innerhalb eines nanoröhrchenhaltigen Wachsbads 230 und die übrige Faser 240 außerhalb des Wachsbads 230 befindet. Durch ein wiederholtes Durchtauchen der Kohlenstofffaser 50 durch das Wachsbad 230 lässt sich die Dicke d der resultierenden nanoröhrchenhaltigen Wachsschicht 60 (vgl. Figuren 2 und 4) auf der Kohlenstofffaser 50 beliebig einstellen. Bezugszeichen
10 Bad
20 Hilfsmaterial
30 Kohlenstoffnanoröhrchen
40 Faserabschnitt
50 Kohlenstofffaser
60 nanoröhrchenhaltige Wachsschicht
100 Kupfer- oder Aluminiumbad
150 strangförmiges Element
160 nanoröhrchenhaltige Metallschicht
200 Faserschleife
210 Umlenkrolle
220 Faserabschnitt
230 Wachsbad
240 übrige Faser
d Dicke
Pl Faserlängsrichtung
P2 Pfeilrichtung
P3 Pfeilrichtung
Ta Außentemperatur
Ti Badtemperatur

Claims

Patentansprüche
1. Verfahren zum Herstellen eines strangförmigen Elements (150),
d a d u r c h g e k e n n z e i c h n e t , dass
(a) zumindest ein Faserabschnitt (40) einer Faser (50) in ein Bad (10) eingetaucht wird, das ein flüssiges Hilfsmaterial (20) und darin befindliche Nanoröhrchen (30) enthält,
(b) der Faserabschnitt aus dem Bad entnommen wird und die auf dem Faserabschnitt verbliebenen Nanoröhrchen des Bades auf dem Faserabschnitt eine Nanoröhrchenschicht bilden,
c) mit der zumindest abschnittsweise mit Nanoröhrchen beschichteten Faser das strangförmige Element gebildet wird.
2. Verfahren nach Anspruch 1,
d a d u r c h g e k e n n z e i c h n e t , dass
die Schritte a) und b) zumindest einmal wiederholt werden.
3. Verfahren nach einem der vorangehenden Ansprüche,
d a d u r c h g e k e n n z e i c h n e t , dass
auf dem Faserabschnitt verbliebenes flüssiges Hilfsmaterial nach der Entnahme des Faserabschnitts aus dem Bad fest wird und gemeinsam mit den darin befindlichen Nanoröhrchen auf dem Faserabschnitt eine feste nanoröhrchenhaltige Hilfsschicht als Nanoröhrchenschicht bildet.
4. Verfahren nach Anspruch 3,
d a d u r c h g e k e n n z e i c h n e t , dass
die Temperatur (Ti) des Bades derart eingestellt wird, dass das Hilfsmaterial schmilzt und die Nanoröhrchen in dem geschmolzenen Hilfsmaterial schwimmen, und
die Außentemperatur (Ta) außerhalb des Bades auf einen Wert unterhalb der Schmelztemperatur des Hilfsmaterials eingestellt wird, so dass nach der Entnahme des Faserabschnitts aus dem Bad das auf dem Faserabschnitt verbliebene flüssige Hilfsmaterial erstarrt und dabei die feste na- noröhrchenhaltige Hilfsschicht bildet.
5. Verfahren nach einem der vorangehenden Ansprüche 1-3, d a d u r c h g e k e n n z e i c h n e t , dass
als flüssiges Hilfsmaterial ein Lösungsmittel mit darin gelöstem Beschichtungsmaterial verwendet wird und
- das Lösungsmittel nach der Entnahme des Faserabschnitts aus dem Bad verdampft und dadurch aus den Nanoröhrchen und dem Beschichtungsmaterial die feste nanoröhrchenhaltige Hilfsschicht gebildet wird.
6. Verfahren nach einem der vorangehenden Ansprüche 3-5, d a d u r c h g e k e n n z e i c h n e t , dass
nachdem die nanoröhrchenhaltige Hilfsschicht auf dem Faserabschnitt die vorgegebene Dicke (d) erreicht hat, das Hilfsma- terial oder das Beschichtungsmaterial in der nanoröhrchenhal- tigen Hilfsschicht durch ein Metall unter Bildung einer nano- röhrchenhaltigen Metallschicht (160) ersetzt wird.
7. Verfahren nach Anspruch 6,
d a d u r c h g e k e n n z e i c h n e t , dass
die nanoröhrchenhaltige Metallschicht gebildet wird, indem
- die mit der nanoröhrchenhaltigen Hilfsschicht versehene Faseroberfläche in ein flüssiges Metallbad (100) eingetaucht wird, und
- das Hilfsmaterial oder das Beschichtungsmaterial in der na- noröhrchenhaltigen Hilfsschicht durch Metall des Metallbades ersetzt wird und sich bei Entnahme des Faserabschnitts aus dem Metallbad die nanoröhrchenhaltige Metallschicht bildet.
8. Verfahren nach Anspruch 6,
d a d u r c h g e k e n n z e i c h n e t , dass
das Hilfsmaterial oder das Beschichtungsmaterial von der Faser entfernt und eine hilfsmaterialfreie bzw. beschichtungs- materialfreie Nanoröhrchenschicht auf der Faseroberfläche gebildet wird.
9. Verfahren nach Anspruch 8,
d a d u r c h g e k e n n z e i c h n e t , dass
das Entfernen des Hilfsmaterials bzw. des Beschichtungsmate- rials durch Schmelzen oder Verdampfen oder chemisch, insbesondere mit einem Lösungs- oder Ätzmittel, erfolgt.
10. Verfahren nach Anspruch 9,
d a d u r c h g e k e n n z e i c h n e t , dass
die mit der Nanoröhrchenschicht versehene Faseroberfläche metallisiert wird.
11. Verfahren nach einem der vorangehenden Ansprüche,
d a d u r c h g e k e n n z e i c h n e t , dass
die Faser mit anderen Fasern unter Bildung eines Garnes oder Zwirns zusammengedreht oder verflochten oder auf andere Weise verbunden wird und
das Garn oder das Zwirn in der in den Ansprüchen 1-10 be- schriebenen Weise zumindest abschnittsweise mit einer na- noröhrchenhaltigen Hilfsschicht und/oder mit einer Nanoröhrchenschicht und/oder mit einer nanoröhrchenhaltigen Metallschicht beschichtet wird.
12. Verfahren nach einem der vorangehenden Ansprüche,
d a d u r c h g e k e n n z e i c h n e t , dass
die beschichtete Faser, das beschichtete Garn oder das beschichtete Zwirn nachfolgend verseilt wird.
13. Verfahren nach einem der vorangehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Nanoröhrchen Kohlenstoffnanoröhrchen sind und/oder als Faser eine Kohlenstofffaser verwendet wird.
14. Verfahren nach einem der vorangehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass als Hilfsmaterial Wachs oder eine Emulsion verwendet wird.
15. Strangförmiges Element (150),
d a d u r c h g e k e n n z e i c h n e t , dass
das strangförmige Element mindestens eine Faser (50) aufweist, die zumindest abschnittsweise mit einer Nanoröhrchen- schicht oder nanoröhrchenhaltigen Metallschicht (160) verse- hen ist.
PCT/EP2009/004956 2009-06-29 2009-06-29 Strangförmiges element WO2011000394A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09777052.3A EP2449562B1 (de) 2009-06-29 2009-06-29 Strangförmiges element
PCT/EP2009/004956 WO2011000394A1 (de) 2009-06-29 2009-06-29 Strangförmiges element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2009/004956 WO2011000394A1 (de) 2009-06-29 2009-06-29 Strangförmiges element

Publications (1)

Publication Number Publication Date
WO2011000394A1 true WO2011000394A1 (de) 2011-01-06

Family

ID=41566438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/004956 WO2011000394A1 (de) 2009-06-29 2009-06-29 Strangförmiges element

Country Status (2)

Country Link
EP (1) EP2449562B1 (de)
WO (1) WO2011000394A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013083696A2 (de) 2011-12-07 2013-06-13 Toho Tenax Europe Gmbh Kohlenstofffaser für verbundwerkstoffe mit verbesserter leitfähigkeit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050181209A1 (en) * 1999-08-20 2005-08-18 Karandikar Prashant G. Nanotube-containing composite bodies, and methods for making same
WO2006107998A2 (en) * 2005-04-05 2006-10-12 Pettit John W High-reliability optical fiber having a nanocomposite coating
EP1956110A1 (de) * 2005-11-30 2008-08-13 Shimane Prefectural Government Auf metall basierender verbundwerkstoff, enthaltend sowohl mikroskalige kohlefaser als auch nanoskalige kohlefaser
FR2918082A1 (fr) * 2007-06-27 2009-01-02 Arkema France Procede d'impregnation de fibres continues par une matrice polymerique composite renfermant un polymere fluore greffe.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050181209A1 (en) * 1999-08-20 2005-08-18 Karandikar Prashant G. Nanotube-containing composite bodies, and methods for making same
WO2006107998A2 (en) * 2005-04-05 2006-10-12 Pettit John W High-reliability optical fiber having a nanocomposite coating
EP1956110A1 (de) * 2005-11-30 2008-08-13 Shimane Prefectural Government Auf metall basierender verbundwerkstoff, enthaltend sowohl mikroskalige kohlefaser als auch nanoskalige kohlefaser
FR2918082A1 (fr) * 2007-06-27 2009-01-02 Arkema France Procede d'impregnation de fibres continues par une matrice polymerique composite renfermant un polymere fluore greffe.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013083696A2 (de) 2011-12-07 2013-06-13 Toho Tenax Europe Gmbh Kohlenstofffaser für verbundwerkstoffe mit verbesserter leitfähigkeit
RU2615427C1 (ru) * 2011-12-07 2017-04-04 Тохо Тенакс Ойропе Гмбх Углеродное волокно для композитных материалов с улучшенной электропроводностью

Also Published As

Publication number Publication date
EP2449562A1 (de) 2012-05-09
EP2449562B1 (de) 2014-06-18

Similar Documents

Publication Publication Date Title
DE60024748T2 (de) Hochfester und leichter Leiter und verseilter und komprimierter Leiter
DE2365935C2 (de) Supraleitender Verbunddraht
EP2096645B1 (de) Elektrischer Leiter
EP2252732A1 (de) Strangförmiger materialverbund mit cnt-garnen und verfahren zu dessen herstellung
DE112011103325T5 (de) Elektrischer Draht
EP3183737A1 (de) Kabelsatz und verfahren zur herstellung eines solchen
DE102014109604B4 (de) Kontaktierung eines Litzenleiters
WO2009141075A1 (de) Kontakteinheit und verfahren zur herstellung einer kontakteinheit
DE102008011884B4 (de) Verfahren zur Herstellung eines Elementardrahtes, Elementardraht und elektrischer Draht
EP1927419A1 (de) Verlötbares Netz aus miteinander über einer Netzfläche verwebten, eine Dickschichtverzinnung aufweisenden Drähten
EP2260117A1 (de) Materialverbund, bestehend aus einer metallischen matrix, in der cnt-filamente verteilt sind, sowie verfahren zur herstellung eines solchen materialverbundes
EP2449562B1 (de) Strangförmiges element
DE102016124601B3 (de) Verbindung eines elektrischen Flachleiters mit elektrischen Litzenleitern
DE4305877C2 (de) Verbindungsverfahren und -struktur supraleitender Drähte
DE202011108573U1 (de) Draht zum Leiten eines elektrischen Stroms
EP3324493B1 (de) Verfahren zum anbringen eines kontaktelements am ende eines elektrischen leiters
DE102008064579B4 (de) Verfahren und Trägerzylinder zur Herstellung einer elektrischen Wicklung
DE102009016380B4 (de) Gewebe
DE3037587C2 (de) Aus mehreren Einzeldrähten bestehende Litze und Verfahren zu deren Herstellung
EP4064297A1 (de) Kabel sowie verfahren zur herstellung eines kabels
DE1037541B (de) Verfahren zum Aufbringen von Glasfasern enthaltenden Isolationsschichten auf elektrische Leiter
EP3766134B1 (de) Verfahren zum verbinden zweier leiter aus unterschiedlichen materialien, sowie verbinder und system damit
DE102016215733B4 (de) Elektrisch leitender Harzkörper und Fahrzeugerdungsstruktur
EP3283671B1 (de) Verfahren zum beschichten eines bauteils und verwendung des verfahrens
AT405295B (de) Verfahren und anlage zur herstellung von armierten drahtfilamenten bzw. drähten

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09777052

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009777052

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE