WO2010150685A1 - Method for producing carbon materials - Google Patents

Method for producing carbon materials Download PDF

Info

Publication number
WO2010150685A1
WO2010150685A1 PCT/JP2010/060147 JP2010060147W WO2010150685A1 WO 2010150685 A1 WO2010150685 A1 WO 2010150685A1 JP 2010060147 W JP2010060147 W JP 2010060147W WO 2010150685 A1 WO2010150685 A1 WO 2010150685A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
ashless coal
ashless
carbon material
solvent
Prior art date
Application number
PCT/JP2010/060147
Other languages
French (fr)
Japanese (ja)
Inventor
眞基 濱口
憲幸 奥山
信行 小松
貴洋 宍戸
康爾 堺
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CA2766032A priority Critical patent/CA2766032C/en
Priority to CN2010800275292A priority patent/CN102803136A/en
Priority to AU2010263737A priority patent/AU2010263737B2/en
Priority to KR1020117030586A priority patent/KR101365365B1/en
Publication of WO2010150685A1 publication Critical patent/WO2010150685A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/08Non-mechanical pretreatment of the charge, e.g. desulfurization
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/02Treating solid fuels to improve their combustion by chemical means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/08Treating solid fuels to improve their combustion by heat treatments, e.g. calcining
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/10Dry methods smelting of sulfides or formation of mattes by solid carbonaceous reducing agents

Definitions

  • the present invention relates to a method for producing a carbon material constituting a non-ferrous metal reducing agent, a structural carbon material, or a carbon material for an electrical material, and in particular, a method for producing a carbon material used as an aggregate of an anode for aluminum electrolytic production. About.
  • coal coke used for blast furnace ironmaking has properties similar to petroleum coke as carbon, and the amount is too large as a main raw material for anodes for aluminum electrolytic production.
  • coal coke contains about 10% by mass of coal-derived ash, there is a problem in quality, so it is not used in this application.
  • ashless coal hyper coal
  • ashless coal is produced by extracting coal with a solvent, separating only the components soluble in the solvent, and then removing the solvent.
  • the molecular weight of the ashless coal is widely distributed from a relatively low molecular weight component having a few condensed aromatic rings to a high molecular weight component having about 5 or 6.
  • ashless coal does not substantially contain ash, exhibits high fluidity under heating, and is excellent in thermal fluidity.
  • Some coals like caking coal, exhibit thermoplasticity at around 400 ° C, but ashless coal generally melts at 200-300 ° C regardless of the quality of the raw coal (softening and melting). Have sex). Therefore, application development as a binder for coke production is being promoted taking advantage of this characteristic, and in recent years, attempts have been made to produce carbon materials by using this ashless coal as a carbon material raw material. .
  • the conventional method for producing a carbon material has the following problems.
  • ashless coal does not contain ash and has the characteristic of softening and melting properties. Therefore, it has been found that ashless coal is effective as a caking additive when producing coke for iron making. Moreover, it is a property preferable as an aggregate (main raw material) of the anode for aluminum electrolysis manufacture not to contain ash.
  • carbonization (carbonization) of ashless charcoal is caused by another general property. This is a problem in manufacturing (hereinafter, appropriately referred to as anode coke).
  • the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a carbon material production method capable of economically obtaining a high-purity carbon material that is dense and has an extremely low ash content. Is to provide.
  • the present inventors have found that as a raw material for anode coke, nonferrous metal reducing agent, structural carbon material, carbon material for electrical materials other than anode coke, etc. It has been found that it is preferable to adjust the atomic ratio of carbon to carbon (hereinafter, appropriately referred to as the H / C atomic ratio) within a predetermined range.
  • the ashless coal is heated.
  • chemical / physical changes such as decomposition of alkyl groups, aromatization reaction, decomposition of oxygen-containing functional groups, removal of low molecular weight components, etc. that decrease the hydrogen content progress, and the number of H / C atoms The ratio gradually decreases.
  • the present inventors have found that foaming during carbonization can be suppressed as a result of suppressing the expansibility of ashless coal, and have reached the present invention.
  • the method for producing a nonferrous metal reducing agent, a structural carbon material, a carbon material for electrical material, or a carbon material used as a raw material thereof according to the present invention is modified by reforming coal using a solvent.
  • Ashless coal production process for producing ashless coal which is a tempered coal
  • ashless coal heating process for heat-treating the ashless coal produced in the ashless coal production process and heating in the ashless coal heating process
  • a carbonization step of carbonizing the treated ashless coal to obtain a carbon material, and an atomic ratio of hydrogen to carbon of the ashless coal heat-treated in the ashless coal heating step ( H / C) is 0.6 to 0.67.
  • ashless coal which is a modified coal having a very low ash concentration
  • the ashless coal heating step the ashless coal is heat-treated, so that the H / C atomic ratio of the ashless coal is regulated within the range of 0.6 to 0.67.
  • a carbon material is obtained by carbonizing this ashless coal in a carbonization process.
  • the H / C atomic ratio of the ashless coal after heat processing is 0.6 or more, the sinterability of ashless coal becomes sufficient, and the H / C atomic ratio is 0.67 or less.
  • the expandability of ashless coal is suppressed, and during the carbonization treatment, foaming of ashless coal is suppressed, resulting in a dense and extremely low ash content carbon material.
  • the heat treatment of the ashless coal is the same solvent as the solvent used for reforming the coal in the ashless coal production step. It is preferable to be carried out in the presence of
  • a dense carbon material having an extremely low ash content can be obtained. Moreover, such a carbon material can be obtained economically.
  • the method for producing a carbon material according to the present invention includes an ashless coal production process, an ashless coal heating process, and a carbonization process. Hereinafter, each step will be described.
  • An ashless coal manufacturing process is a process of manufacturing ashless coal which is reformed coal by modifying coal using a solvent.
  • the ashless coal as used in the field of this invention is what is called hyper coal, and is manufactured by solvent-extracting coal and removing ash and an insoluble coal component.
  • This ashless coal has an extremely small amount of ash (ash concentration of 1.0% by mass or less) and water of approximately 0.5% by mass or less.
  • a method for obtaining ashless coal known methods can be used, and the solvent type and production conditions are appropriately selected in view of the properties of coal and the design as a raw material for carbon materials.
  • a typical method is to heat a mixture of a solvent having a large dissolving power to coal, often an aromatic solvent (hydrogen donating or non-hydrogen donating solvent) and coal, There is a method of extracting organic components.
  • it is preferable to produce ashless coal by the following method. In the method, first, a coal component soluble in the non-hydrogen donating solvent is extracted by heating a mixture (slurry) of coal and the non-hydrogen donating solvent. Next, the slurry after extraction is separated into a liquid part and a non-liquid part, and the non-hydrogen donating solvent is separated from the liquid part to produce ashless coal.
  • inferior coal As the ashless coal raw coal (hereinafter also referred to as raw coal), inferior coal is preferably used. By using inexpensive inferior coal, ashless coal can be produced at a lower cost, so that the economic efficiency can be further improved.
  • the coal used is not limited to inferior coal, and bituminous coal may be used as necessary.
  • the inferior coal there are coals such as non-slightly caking coal, steam coal, low-grade coal (brown coal, subbituminous coal, etc.).
  • the low-grade coal include lignite, lignite, and sub-bituminous coal.
  • lignite include Victoria charcoal, North Dakota charcoal, and Belga charcoal.
  • sub-bituminous coal include West Banco charcoal, Vinungan charcoal, and Samarangau charcoal.
  • the low-grade coal is not limited to those exemplified above. Any coal that contains a large amount of water and is desired to be dewatered is included in the low-grade coal referred to in the present invention.
  • the non-hydrogen-donating solvent is a coal derivative that is a solvent mainly composed of a bicyclic aromatic and purified mainly from a dry distillation product of coal.
  • This non-hydrogen donating solvent is stable even when heated, and has an excellent affinity for coal. For this reason, when a non-hydrogen-donating solvent is used, the ratio of the soluble component (herein, the coal component) extracted into the solvent increases (hereinafter also referred to as the extraction rate).
  • the solvent can be easily recovered.
  • the main component of the non-hydrogen donating solvent include naphthalene, methylnaphthalene, dimethylnaphthalene, and trimethylnaphthalene, which are bicyclic aromatics.
  • the components of the non-hydrogen donating solvent include naphthalenes having an aliphatic side chain, anthracenes, fluorenes, and biphenyl and alkylbenzene having a long chain aliphatic side chain.
  • the extraction rate of coal can be improved by heat extraction using a non-hydrogen donating solvent. Also, unlike polar solvents, non-hydrogen donating solvents can be easily recovered and thus are easily recycled. Furthermore, since it is not necessary to use expensive hydrogen, a catalyst, or the like, ashless coal can be obtained by solubilizing coal at a low cost, and economic efficiency can be improved.
  • the coal concentration with respect to the solvent is preferably in the range of 10 to 50 mass%, more preferably in the range of 20 to 35 mass%, based on dry coal, although it depends on the type of raw coal.
  • the coal concentration with respect to the solvent is less than 10% by mass, the proportion of the coal component extracted into the solvent decreases with respect to the amount of the solvent, which is not economical.
  • the higher the coal concentration the better.
  • the viscosity of the prepared slurry becomes high, so that it is difficult to move the slurry and separate the liquid part and the non-liquid part (described later).
  • the heating temperature of the slurry is preferably in the range of 300 to 450 ° C.
  • the heating temperature is preferably 300 to 400 ° C.
  • the standard of heating time is the time to reach dissolution equilibrium, but its realization is economically disadvantageous. Therefore, the heating time is usually about 10 to 60 minutes, although it cannot be generally stated because it varies depending on conditions such as the particle size of the coal and the type of solvent. When the heating time is less than 10 minutes, extraction of the coal component tends to be insufficient. On the other hand, even if the heating time exceeds 60 minutes, the extraction does not proceed any further, which is not economical.
  • Extraction of the coal component soluble in the non-hydrogen donating solvent is preferably carried out in the presence of an inert gas.
  • the inert gas used is preferably inexpensive nitrogen, but is not particularly limited.
  • the pressure is preferably 1.0 to 2.0 MPa, although it depends on the temperature during extraction and the vapor pressure of the solvent used. When the pressure is lower than the vapor pressure of the solvent, the solvent volatilizes and is not trapped in the liquid phase, and extraction is impossible. In order to confine the solvent in the liquid phase, a pressure higher than the vapor pressure of the solvent is required. On the other hand, if the pressure is too high, the cost of the equipment and the operating cost increase, which is not economical.
  • the slurry is separated into a liquid part and a non-liquid part.
  • the liquid part is a solution containing a coal component extracted into a solvent
  • the non-liquid part is a solute containing a coal component insoluble in the solvent (coal containing ash, that is, ash coal).
  • ashless coal is obtained by isolate
  • a method for separating the solvent from the supernatant liquid (liquid part) a general distillation method, an evaporation method (spray drying method, etc.) or the like can be used. From the supernatant, ashless coal substantially free of ash is obtained.
  • the ash content of this ashless coal is 1.0 mass% or less, and hardly contains ash.
  • moisture content of this ashless coal is about 0.5 mass% or less, and shows the calorific value higher than raw material coal. Therefore, by carbonizing this ashless coal, a highly pure carbon material having a very low ash content can be obtained.
  • the ashless coal heating step is a step of heat-treating the ashless coal manufactured in the ashless coal manufacturing step.
  • Ashless charcoal is generally highly expansible in the as-manufactured state. Therefore, heat treatment is performed to suppress expansion.
  • the heat treatment needs to be performed so that the atomic ratio (H / C) of hydrogen to carbon of the ashless coal after the heat treatment is in the range of 0.6 to 0.67.
  • the H / C atomic ratio of the as-produced ashless coal that has not been treated varies depending on the raw coal type and the production conditions of the ashless coal, but is generally 0.7 to 1.0. It is in the range.
  • chemical / physical changes such as alkyl group decomposition, aromatization reaction, decomposition of oxygen-containing functional groups, removal of low molecular weight components, etc. will decrease the hydrogen content.
  • Advances, and the H / C atomic ratio gradually decreases. Therefore, the H / C atomic ratio is adjusted to be in the range of 0.6 to 0.67 by heat treatment.
  • the H / C atomic ratio is smaller than 0.6, it means that the heat treatment is excessive. If the heat treatment is excessive, the sinterability becomes insufficient, and even if this ashless coal is carbonized, only a powdery carbon material can be obtained. Therefore, if the H / C atomic ratio is less than 0.6, a carbon material used as a raw material for anode coke cannot be obtained. On the other hand, the H / C atomic ratio being larger than 0.67 indicates that the heat treatment is insufficient, and ashless coal contains a relatively large amount of hydrogen. Therefore, if the H / C atomic ratio exceeds 0.67, ashless coal will foam during carbonization in the carbonization step. Thus, by adjusting the H / C atomic ratio in the range of 0.6 to 0.67 by heat treatment of ashless coal, while maintaining appropriate sinterability, Foaming can be suppressed.
  • the method of heat treatment of ashless coal is not particularly limited, and can be performed by a known method.
  • ashless coal is heated to 350 to 500 ° C., preferably 380 to 460 ° C. in a vacuum, high pressure, or inert atmosphere.
  • the required treatment time varies depending on the properties of ashless coal and the treatment temperature, but is generally in the range of 10 minutes to 5 hours. In this way, the H / C atomic ratio is controlled in the range of 0.6 to 0.67 by appropriately adjusting the processing temperature and processing time in consideration of the properties of ashless coal.
  • the heat treatment of ashless coal is preferably performed in the presence of the same solvent as the solvent used for coal reforming in the ashless coal production process. That is, the ashless coal is heat-treated after being mixed with a solvent so as to form a slurry.
  • the amount of the solvent with respect to the ashless coal is not particularly limited, but from the viewpoint of obtaining a slurry having an appropriate viscosity, the concentration of the ashless coal with respect to the solvent is, for example, 10 to 50% by mass on the basis of dry coal, preferably 20 to It may be in the range of 35% by mass.
  • the heat processing of ashless coal said here may be performed, without isolate
  • a general distillation method, an evaporation method (spray drying method or the like) or the like can be used as a method for separating the solvent from the ashless coal after the heat treatment.
  • the heat transfer efficiency becomes higher than when ashless coal is heated as it is, and uniform heating becomes possible. Furthermore, the manufacturing cost can be reduced by using the same solvent as the solvent used for coal reforming.
  • a solvent used for the heat treatment of ashless coal alkylnaphthalene, anthracene oil, and the like are preferable.
  • a carbonization process is a process of obtaining a carbon material by carbonizing the ashless coal heat-processed at the said ashless coal heating process. By this carbonization process, ashless coal is carbonized and a carbon material is obtained.
  • the method and conditions for the carbonization treatment are not particularly limited, and known techniques can be used.
  • ashless coal is converted into carbon by steaming and baking ashless coal at about 1000 ° C. in an inert atmosphere such as nitrogen or argon.
  • the temperature raising rate may be about 0.1 to 5 ° C./min.
  • This carbonization treatment may be performed under pressure using a hot isostatic pressing apparatus or the like.
  • binder components such as asphalt pitch and tar, may be added as needed.
  • the carbonization step may be performed after the heat-treated ashless coal is appropriately formed.
  • Examples thereof include a pot furnace, a lead hammer furnace, a kiln, a rotary kiln, a shaft furnace, and a chamber furnace.
  • the heat treatment furnace is not limited to these, and other heat treatment furnaces may be used.
  • the carbon material obtained by the production method of the present invention can be suitably used as a main raw material coke for an anode for aluminum electrolytic production.
  • the carbon material obtained in the present invention can also be used as a non-ferrous metal reducing agent, a structural carbon material, or a carbon material for electrical materials other than an anode for aluminum electrolytic production, or a non-ferrous metal reducing agent. It can also be used as a raw material for structural carbon materials or carbon materials for electrical materials.
  • the nonferrous metal reducing agent is a reducing agent used for reduction of nonferrous metals such as silicon and titanium.
  • the structural carbon material is, for example, a carbon material used as a raw material for a carbon heat insulating material or a carbon structural material such as a crucible.
  • the carbon material for electric materials is a carbon material used as a raw material for carbon-made electric materials such as carbon electrodes in addition to the anode for aluminum electrolytic production.
  • the description of being used as these raw materials is because, for example, it may be necessary to subject the carbon material to a secondary treatment such as heat treatment.
  • the method for producing a carbon material of the present invention includes an ashless coal production process, an ashless coal heating process, and a carbonization process.
  • Other processes such as a process and an ashless charcoal drying process for drying ashless charcoal may be included.
  • ashless coal was manufactured by the following method.
  • the raw coal is a raw coal for producing coke that is bituminous coal (coal A) or a thermal coal for thermal power generation that is bituminous coal (coal B).
  • a slurry is prepared by mixing 4 kg (20 kg) of a solvent (1-methylnaphthalene (manufactured by Nippon Steel Chemical Co., Ltd.)) with 5 kg of the raw coal.
  • This slurry was pressurized with 1.2 MPa of nitrogen and extracted in an autoclave with an internal volume of 30 L at 370 ° C. for 1 hour.
  • This slurry was separated into a supernatant and a solid concentrate in a gravity sedimentation tank maintained at the same temperature and pressure, and the solvent was separated and recovered from the supernatant by a distillation method to obtain ashless coal.
  • the ashless coal is heat-treated by the following method.
  • the heat treatment of ashless coal is performed under the condition that 1-methylnaphthalene (manufactured by Nippon Steel Chemical Co., Ltd.) is used as a solvent three times as much as the ashless coal (three times by mass) or no solvent is used Done.
  • the heat treatment is performed in a hermetic autoclave having an initial nitrogen pressure of 0.1 MPa, while raising the temperature up to a predetermined temperature shown in Table 1 at 10 ° C./min while stirring ashless coal, as shown in Table 1. It was performed by holding for a predetermined time.
  • the gas in the autoclave is discharged and heated to 150 ° C. under a pressure of 0.001 MPa for 1 hour to distill off the solvent and the oil that may have been produced. It was recovered. And H / C atomic ratio is calculated
  • the ashless coal is carbonized by the following method. 5 g of ashless coal that has been heat-treated and crushed to 1 mm or less is packed in a quartz test tube with an inner diameter of 20 mm so that the bulk density becomes 0.8 g / cc, and then in a nitrogen atmosphere at 3 ° C./min. The temperature was raised to 1000 ° C. and kept at this temperature for 30 minutes for carbonization, whereby a carbide (carbon material) was obtained.
  • the produced carbide was cut to a length of 10 mm and then subjected to a crush test, and the strength was measured.
  • the crush test is performed by placing the sample on the lower pressure plate, compressing the sample with the upper pressure indenter, and measuring the strength (collapse strength) when the sample collapses. And it is judged that the sample which has the intensity
  • strength also changes depending on the conditions of carbonization treatment (packing density of raw materials, presence / absence of molding, or heat treatment temperature), this value is a value for relative comparison to the last.
  • a carbon material having higher strength is denser and suitable as a coke raw material for an anode.
  • Table 1 shows the test results. In Table 1, numerical values that do not satisfy the scope of the present invention are shown underlined. Further, 1-methylnaphthalene is indicated as MN in the table. Furthermore, FIG. 1 shows a graph showing the relationship between intensity and the H / C atomic ratio. The strength “0.00” indicates that the strength could not be measured because the strength was not strong enough to be measured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Coke Industry (AREA)

Abstract

Provided is an accurate method for producing a carbon material in which a high purity carbon material having an extremely low concentration of ash can be economically obtained. The method for producing a carbon material that can be used as a nonferrous metal reducing agent, a structural-use carbon material, an electric material-use carbon material, or as a raw material in each, involves an ashless coal producing process for producing ashless coal, which is modified coal, by modifying coal with the use of a solvent, an ashless coal heating process for heating the ashless coal that was produced by the ashless coal producing process, and a carbonizing process for obtaining the carbon material by carbonizing the ashless coal that was heated by the ashless coal heating process. The ratio of the number of hydrogen atoms and carbon atoms (H/C) in the ashless coal that was heated by the ashless coal heating process is in the range of 0.6 to 0.67.

Description

炭素材料の製造方法Carbon material manufacturing method
 本発明は、非鉄金属還元剤、構造用炭素材、または、電気材料用炭素材を構成する炭素材料の製造方法に関し、特に、アルミニウム電解製造用アノードの骨材として使用される炭素材料の製造方法に関する。 The present invention relates to a method for producing a carbon material constituting a non-ferrous metal reducing agent, a structural carbon material, or a carbon material for an electrical material, and in particular, a method for producing a carbon material used as an aggregate of an anode for aluminum electrolytic production. About.
 アルミニウム電解製造用アノードの主原料としては、一般に石油精製プロセスの残渣から製造される石油コークスが使用される。しかし、石油コークスはガソリン等の輸送用燃料と併産されるために、供給量が制約されるという問題や、原油に含まれる硫黄等の不純物がアルミニウム純度に悪影響を及ぼすことがあるという問題などがある。 As the main raw material of the anode for aluminum electrolytic production, petroleum coke produced from the residue of the petroleum refining process is generally used. However, because petroleum coke is co-produced with transportation fuels such as gasoline, the problem is that the supply amount is limited, and the impurities such as sulfur contained in crude oil can adversely affect the aluminum purity. There is.
 一方、高炉法製鉄に使われる石炭コークスは、炭素としては石油コークスに近い性質を有しており、アルミニウム電解製造用アノードの主原料としては十分すぎるほどの量が市場に出回っている。しかし、石炭コークスは、石炭由来の灰分を10質量%程度含むことから、品質面で問題があるため、この用途には使用されていない。 On the other hand, coal coke used for blast furnace ironmaking has properties similar to petroleum coke as carbon, and the amount is too large as a main raw material for anodes for aluminum electrolytic production. However, since coal coke contains about 10% by mass of coal-derived ash, there is a problem in quality, so it is not used in this application.
 そこで、低灰分の炭素材料の原料という観点で、いわゆる無灰炭(ハイパーコール)が挙げられ(例えば、特許文献1参照)、最近、活発に開発が進められている。ここで、無灰炭は、石炭を溶剤で抽出処理し、この溶剤に溶ける成分だけを分離して、その後、溶剤を除去することによって、製造される。構造的には、この無灰炭の分子量は、縮合芳香環が2、3個である比較的低分子量成分から、5、6個程度である高分子量成分まで、広く分布している。また、灰分は溶剤には溶けないため、無灰炭は実質的に灰分を含まず、加熱下で高い流動性を示し、熱流動性に優れる。石炭の中には粘結炭のように400℃前後で熱可塑性を示すものもあるが、無灰炭は、一般的に、原料石炭の品位に関わらず200~300℃で溶融する(軟化溶融性がある)。そこで、この特性を生かしてコークス製造用バインダーとしての応用開発が進められており、また、近年においては、この無灰炭を炭素材料原料として用いることにより炭素材料を製造することが試みられている。 Therefore, so-called ashless coal (hyper coal) can be cited from the viewpoint of a raw material for a low ash carbon material (for example, see Patent Document 1), and development has been actively promoted recently. Here, ashless coal is produced by extracting coal with a solvent, separating only the components soluble in the solvent, and then removing the solvent. Structurally, the molecular weight of the ashless coal is widely distributed from a relatively low molecular weight component having a few condensed aromatic rings to a high molecular weight component having about 5 or 6. Moreover, since ash is not dissolved in a solvent, ashless coal does not substantially contain ash, exhibits high fluidity under heating, and is excellent in thermal fluidity. Some coals, like caking coal, exhibit thermoplasticity at around 400 ° C, but ashless coal generally melts at 200-300 ° C regardless of the quality of the raw coal (softening and melting). Have sex). Therefore, application development as a binder for coke production is being promoted taking advantage of this characteristic, and in recent years, attempts have been made to produce carbon materials by using this ashless coal as a carbon material raw material. .
日本国特開2001-26791号公報Japanese Unexamined Patent Publication No. 2001-26791
 しかしながら、従来の炭素材料の製造方法では、以下に示されるような問題がある。
 前記のとおり、無灰炭は、灰分を含まず、軟化溶融性を有するという特長を有するため、製鉄用コークスを製造するときの粘結性補填材として有効なことがわかっている。また、灰分を含まないことは、アルミニウム電解製造用アノードの骨材(主原料)として好ましい性質である。しかし、無灰炭を加熱処理して炭素材料とする炭素化(炭化)時に、無灰炭は別の一般的性質により発泡するが、これはアルミニウム電解製造用アノードの主原料コークス(炭素材料)(以下、適宜、アノード用コークスという)製造上、問題になる。すなわち、製造したままの無灰炭を炭素化すると、炭素化時に生成する低分子化合物ガス(水蒸気、CO、CO、炭化水素等)による気孔がそのまま残るため、アノード用コークスとして適当な緻密なコークスが生成しないという問題がある。なお、無灰炭を、非鉄金属還元剤や構造用炭素材、アノード用コークス以外の電気材料用炭素材等に使用する場合も、同様の問題が生ずる。
However, the conventional method for producing a carbon material has the following problems.
As described above, ashless coal does not contain ash and has the characteristic of softening and melting properties. Therefore, it has been found that ashless coal is effective as a caking additive when producing coke for iron making. Moreover, it is a property preferable as an aggregate (main raw material) of the anode for aluminum electrolysis manufacture not to contain ash. However, when carbonizing (carbonizing) ashless charcoal to heat it, carbonization (carbonization) of ashless charcoal is caused by another general property. This is a problem in manufacturing (hereinafter, appropriately referred to as anode coke). That is, when carbonized as-produced ashless coal, pores due to low-molecular compound gases (water vapor, CO, CO 2 , hydrocarbons, etc.) generated during carbonization remain as they are, so that the dense ash suitable for anode coke is suitable. There is a problem that coke is not generated. The same problem occurs when ashless coal is used for nonferrous metal reducing agents, structural carbon materials, carbon materials for electrical materials other than anode coke, and the like.
 本発明は、前記問題点に鑑みてなされたものであり、その目的は、緻密であり、かつ極めて低い灰分濃度を有する高純度の炭素材料を、経済的に得ることができる炭素材料の製造方法を提供することである。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a carbon material production method capable of economically obtaining a high-purity carbon material that is dense and has an extremely low ash content. Is to provide.
 本発明者らは、検討の結果、アノード用コークスをはじめ、非鉄金属還元剤や構造用炭素材、アノード用コークス以外の電気材料用炭素材等の原料とするためには、無灰炭の水素と炭素の原子数比(以下、適宜、H/C原子数比という)を所定範囲に調整することが好ましいことを見出した。 As a result of the study, the present inventors have found that as a raw material for anode coke, nonferrous metal reducing agent, structural carbon material, carbon material for electrical materials other than anode coke, etc. It has been found that it is preferable to adjust the atomic ratio of carbon to carbon (hereinafter, appropriately referred to as the H / C atomic ratio) within a predetermined range.
 無灰炭のH/C原子数比を所定範囲に調整するためには、具体的には、無灰炭を加熱処理する。加熱処理により、アルキル基の分解、芳香族化反応、含酸素官能基の分解、低分子量成分の除去等、水素含有率が低下するような化学・物理的変化が進行し、H/C原子数比が徐々に低下する。これにより、無灰炭の膨張性を抑制することができる結果、炭素化時の発泡を抑制できることを本発明者らは見出し、本発明に到達するに至った。 In order to adjust the H / C atomic ratio of ashless coal to a predetermined range, specifically, the ashless coal is heated. By heat treatment, chemical / physical changes such as decomposition of alkyl groups, aromatization reaction, decomposition of oxygen-containing functional groups, removal of low molecular weight components, etc. that decrease the hydrogen content progress, and the number of H / C atoms The ratio gradually decreases. As a result, the present inventors have found that foaming during carbonization can be suppressed as a result of suppressing the expansibility of ashless coal, and have reached the present invention.
 すなわち、本発明に係る非鉄金属還元剤、構造用炭素材、電気材料用炭素材、または、これらの原料として用いられる炭素材料の製造方法は、溶剤を用いて石炭を改質することにより、改質炭である無灰炭を製造する無灰炭製造工程と、前記無灰炭製造工程で製造された前記無灰炭を加熱処理する無灰炭加熱工程と、前記無灰炭加熱工程で加熱処理された前記無灰炭を炭素化処理することにより炭素材料を得る炭素化工程と、を含み、前記無灰炭加熱工程で加熱処理された前記無灰炭の水素と炭素の原子数比(H/C)が、0.6~0.67であることを特徴とする。 That is, the method for producing a nonferrous metal reducing agent, a structural carbon material, a carbon material for electrical material, or a carbon material used as a raw material thereof according to the present invention is modified by reforming coal using a solvent. Ashless coal production process for producing ashless coal, which is a tempered coal, ashless coal heating process for heat-treating the ashless coal produced in the ashless coal production process, and heating in the ashless coal heating process A carbonization step of carbonizing the treated ashless coal to obtain a carbon material, and an atomic ratio of hydrogen to carbon of the ashless coal heat-treated in the ashless coal heating step ( H / C) is 0.6 to 0.67.
 このような製造方法によれば、無灰炭製造工程において石炭が改質されることによって、灰分濃度が極めて低い改質炭である無灰炭が製造される。次に、無灰炭加熱工程において、この無灰炭が加熱処理されることで、無灰炭のH/C原子数比が0.6~0.67の範囲に規定される。次に、炭素化工程において、この無灰炭が炭素化処理されることで、炭素材料が得られる。そして、加熱処理後の無灰炭のH/C原子数比が0.6以上であることで、無灰炭の焼結性が十分となり、また、H/C原子数比が0.67以下であることで、無灰炭の膨張性が抑制され、炭素化処理の際、無灰炭の発泡が抑制されて、緻密で灰分濃度の極めて低い炭素材料となる。 According to such a production method, ashless coal, which is a modified coal having a very low ash concentration, is produced by reforming coal in the ashless coal production process. Next, in the ashless coal heating step, the ashless coal is heat-treated, so that the H / C atomic ratio of the ashless coal is regulated within the range of 0.6 to 0.67. Next, a carbon material is obtained by carbonizing this ashless coal in a carbonization process. And since the H / C atomic ratio of the ashless coal after heat processing is 0.6 or more, the sinterability of ashless coal becomes sufficient, and the H / C atomic ratio is 0.67 or less. As a result, the expandability of ashless coal is suppressed, and during the carbonization treatment, foaming of ashless coal is suppressed, resulting in a dense and extremely low ash content carbon material.
 また、本発明に係る炭素材料の製造方法では、前記無灰炭加熱工程において、前記無灰炭の加熱処理が、前記無灰炭製造工程において前記石炭の改質に使用された溶剤と同じ溶剤の存在下で行われることが好ましい。 In the method for producing a carbon material according to the present invention, in the ashless coal heating step, the heat treatment of the ashless coal is the same solvent as the solvent used for reforming the coal in the ashless coal production step. It is preferable to be carried out in the presence of
 このような製造方法によれば、溶剤を用いることで伝熱効率が高くなり、無灰炭の加熱が均一となる。さらに、石炭の改質に使用した溶剤と同じ溶剤が用いられるため、経済性が向上する。 According to such a manufacturing method, heat transfer efficiency is increased by using a solvent, and heating of ashless coal becomes uniform. Furthermore, since the same solvent used for the reforming of coal is used, the economy is improved.
 本発明に係る炭素材料の製造方法によれば、緻密であり、かつ極めて低い灰分濃度を有する炭素材料を得ることができる。また、このような炭素材料を経済的に得ることができる。 According to the method for producing a carbon material according to the present invention, a dense carbon material having an extremely low ash content can be obtained. Moreover, such a carbon material can be obtained economically.
本発明の実施例および比較例における、強度とH/C原子数比との関係を示すグラフである。It is a graph which shows the relationship between the intensity | strength and H / C atomic ratio in the Example and comparative example of this invention.
 次に、本発明に係る炭素材料の製造方法について詳細に説明する。
 本発明に係る炭素材料の製造方法は、無灰炭製造工程と、無灰炭加熱工程と、炭素化工程と、を含む。以下、各工程について説明する。
Next, the method for producing the carbon material according to the present invention will be described in detail.
The method for producing a carbon material according to the present invention includes an ashless coal production process, an ashless coal heating process, and a carbonization process. Hereinafter, each step will be described.
<無灰炭製造工程>
 無灰炭製造工程は、溶剤を用いて石炭を改質することにより、改質炭である無灰炭を製造する工程である。
 なお、本発明でいう無灰炭は、いわゆるハイパーコールであり、石炭を溶剤抽出して灰分と非溶解性の石炭成分とを除去することにより製造される。この無灰炭は、極めて少ない灰分(灰分濃度1.0質量%以下)と、概ね0.5質量%以下の水分を有する。
<Ashless coal manufacturing process>
An ashless coal manufacturing process is a process of manufacturing ashless coal which is reformed coal by modifying coal using a solvent.
In addition, the ashless coal as used in the field of this invention is what is called hyper coal, and is manufactured by solvent-extracting coal and removing ash and an insoluble coal component. This ashless coal has an extremely small amount of ash (ash concentration of 1.0% by mass or less) and water of approximately 0.5% by mass or less.
 無灰炭を得る方法としては公知の方法が利用可能であり、溶剤種や製造条件は、石炭の性状や炭素材料の原料としての設計を鑑みて、適宜選択される。典型的な方法としては、石炭に対して大きな溶解力を有する溶媒、多くの場合、芳香族溶剤(水素供与性あるいは非水素供与性の溶剤)と、石炭との混合物を加熱し、石炭中の有機成分を抽出する、という方法がある。しかし、より高効率に、かつ安価に無灰炭を得るため、例えば、次の方法により無灰炭を製造することが好ましい。その方法では、まず、石炭と非水素供与性溶剤との混合物(スラリー)を加熱することによって、非水素供与性溶剤に可溶な石炭成分が抽出される。次に、抽出後のスラリーを液部と非液部に分離すると共に、前記非水素供与性溶剤を前記液部から分離することによって、無灰炭が製造される。 As a method for obtaining ashless coal, known methods can be used, and the solvent type and production conditions are appropriately selected in view of the properties of coal and the design as a raw material for carbon materials. A typical method is to heat a mixture of a solvent having a large dissolving power to coal, often an aromatic solvent (hydrogen donating or non-hydrogen donating solvent) and coal, There is a method of extracting organic components. However, in order to obtain ashless coal more efficiently and inexpensively, for example, it is preferable to produce ashless coal by the following method. In the method, first, a coal component soluble in the non-hydrogen donating solvent is extracted by heating a mixture (slurry) of coal and the non-hydrogen donating solvent. Next, the slurry after extraction is separated into a liquid part and a non-liquid part, and the non-hydrogen donating solvent is separated from the liquid part to produce ashless coal.
 無灰炭の原料の石炭(以下、原料石炭ともいう)としては、劣質炭が使用されることが好ましい。安価な劣質炭を使用することにより無灰炭をさらに安価に製造することができるため、さらに経済性の向上を図ることができる。しかし、用いる石炭は、劣質炭に限られず、必要に応じて、瀝青炭が使用されても良い。 As the ashless coal raw coal (hereinafter also referred to as raw coal), inferior coal is preferably used. By using inexpensive inferior coal, ashless coal can be produced at a lower cost, so that the economic efficiency can be further improved. However, the coal used is not limited to inferior coal, and bituminous coal may be used as necessary.
 なお、ここで、劣質炭としては、非微粘結炭、一般炭、低品位炭(褐炭、亜瀝青炭等)等の石炭がある。低品位炭としては、例えば、褐炭、亜炭、亜瀝青炭等がある。また、例えば、褐炭としては、ビクトリア炭、ノースダコタ炭、ベルガ炭等があり、亜瀝青炭としては、西バンコ炭、ビヌンガン炭、サマランガウ炭等がある。低品位炭は、前記例示のものに限定されない。多量の水分を含有し、脱水することが望まれる石炭は、いずれも本発明でよばれる低品位炭に含まれる。なお、石炭をできるだけ小さい粒子に前もって粉砕しておくことが好ましく、粒径1mm以下であると好ましい。 Here, as the inferior coal, there are coals such as non-slightly caking coal, steam coal, low-grade coal (brown coal, subbituminous coal, etc.). Examples of the low-grade coal include lignite, lignite, and sub-bituminous coal. Examples of lignite include Victoria charcoal, North Dakota charcoal, and Belga charcoal. Examples of sub-bituminous coal include West Banco charcoal, Vinungan charcoal, and Samarangau charcoal. The low-grade coal is not limited to those exemplified above. Any coal that contains a large amount of water and is desired to be dewatered is included in the low-grade coal referred to in the present invention. In addition, it is preferable to pulverize coal into particles as small as possible in advance, and a particle size of 1 mm or less is preferable.
 非水素供与性溶剤は、主に石炭の乾留生成物から精製された、2環芳香族を主とする溶剤である石炭誘導体である。この非水素供与性溶剤は、加熱状態にある時でも安定であり、石炭との親和性に優れている。このため、非水素供与性溶剤を用いた場合には、溶剤に抽出される可溶成分(ここでは石炭成分)の割合(以下、抽出率ともいう)が高くなり、また、蒸留等の方法で容易に溶剤を回収することができる。非水素供与性溶剤の主たる成分としては、2環芳香族であるナフタレン、メチルナフタレン、ジメチルナフタレン、トリメチルナフタレン等が挙げられる。その他、非水素供与性溶剤の成分には、脂肪族側鎖をもつナフタレン類、アントラセン類、フルオレン類、また、これにビフェニルや長鎖脂肪族側鎖をもつアルキルベンゼンが含まれる。 The non-hydrogen-donating solvent is a coal derivative that is a solvent mainly composed of a bicyclic aromatic and purified mainly from a dry distillation product of coal. This non-hydrogen donating solvent is stable even when heated, and has an excellent affinity for coal. For this reason, when a non-hydrogen-donating solvent is used, the ratio of the soluble component (herein, the coal component) extracted into the solvent increases (hereinafter also referred to as the extraction rate). The solvent can be easily recovered. Examples of the main component of the non-hydrogen donating solvent include naphthalene, methylnaphthalene, dimethylnaphthalene, and trimethylnaphthalene, which are bicyclic aromatics. In addition, the components of the non-hydrogen donating solvent include naphthalenes having an aliphatic side chain, anthracenes, fluorenes, and biphenyl and alkylbenzene having a long chain aliphatic side chain.
 非水素供与性溶剤を使用して加熱抽出することにより、石炭の抽出率が向上できる。また、非水素供与性溶剤は、極性溶剤とは異なり、容易に回収可能であるために循環使用されやすい。さらに、高価な水素や触媒等を用いる必要がないため、安価なコストで石炭を可溶化することにより無灰炭が得られ、経済性の向上を図ることができる。 The extraction rate of coal can be improved by heat extraction using a non-hydrogen donating solvent. Also, unlike polar solvents, non-hydrogen donating solvents can be easily recovered and thus are easily recycled. Furthermore, since it is not necessary to use expensive hydrogen, a catalyst, or the like, ashless coal can be obtained by solubilizing coal at a low cost, and economic efficiency can be improved.
 溶剤に対する石炭濃度は、原料石炭の種類にもよるが、乾燥炭基準で、好ましくは10~50質量%の範囲であり、より好ましくは20~35質量%の範囲である。溶剤に対する石炭濃度が10質量%未満であると、溶剤の量に対し、溶剤に抽出する石炭成分の割合が少なくなるため、経済的ではない。一方、石炭濃度は高いほど好ましい。しかしながら、石炭濃度が50質量%を超えると、調製されたスラリーの粘度が高くなるため、スラリーの移動や、液部と非液部との分離(後述)が困難となりやすい。 The coal concentration with respect to the solvent is preferably in the range of 10 to 50 mass%, more preferably in the range of 20 to 35 mass%, based on dry coal, although it depends on the type of raw coal. When the coal concentration with respect to the solvent is less than 10% by mass, the proportion of the coal component extracted into the solvent decreases with respect to the amount of the solvent, which is not economical. On the other hand, the higher the coal concentration, the better. However, when the coal concentration exceeds 50% by mass, the viscosity of the prepared slurry becomes high, so that it is difficult to move the slurry and separate the liquid part and the non-liquid part (described later).
 スラリーの加熱温度は、300~450℃の範囲内であるのが好ましい。加熱温度がこの範囲内であると、石炭を構成する分子間の結合が緩んで緩和な熱分解が起こり、抽出率が最も高くなる。加熱温度が300℃未満であると、石炭を構成する分子間の結合を弱めるのに不十分となりやすく、抽出率が向上しにくい。一方、加熱温度が450℃を超えると、石炭の熱分解反応が非常に活発になり、生成した熱分解ラジカルの再結合が起こるため、抽出率が向上しにくく、石炭の変質が起こりにくくなる。なお、加熱温度は、好ましくは、300~400℃である。 The heating temperature of the slurry is preferably in the range of 300 to 450 ° C. When the heating temperature is within this range, the bonds between the molecules constituting the coal are loosened and mild thermal decomposition occurs, and the extraction rate becomes the highest. When the heating temperature is less than 300 ° C., it tends to be insufficient to weaken the bonds between the molecules constituting the coal, and the extraction rate is difficult to improve. On the other hand, when the heating temperature exceeds 450 ° C., the pyrolysis reaction of coal becomes very active and recombination of the generated pyrolysis radicals occurs, so that the extraction rate is difficult to improve and the coal is hardly changed. The heating temperature is preferably 300 to 400 ° C.
 加熱時間(抽出時間)の規準は、溶解平衡に達するまでの時間であるが、その実現は経済的に不利である。従って、石炭の粒子径、溶剤の種類等の条件によって異なるので一概には言えないが、加熱時間は通常は10~60分程度である。加熱時間が10分未満であると、石炭成分の抽出が不十分となりやすい。一方、加熱時間が60分を超えても、それ以上抽出が進行しないため、経済的ではない。 The standard of heating time (extraction time) is the time to reach dissolution equilibrium, but its realization is economically disadvantageous. Therefore, the heating time is usually about 10 to 60 minutes, although it cannot be generally stated because it varies depending on conditions such as the particle size of the coal and the type of solvent. When the heating time is less than 10 minutes, extraction of the coal component tends to be insufficient. On the other hand, even if the heating time exceeds 60 minutes, the extraction does not proceed any further, which is not economical.
 非水素供与性溶剤に可溶な石炭成分の抽出は、好ましくは不活性ガスの存在下で行われる。酸素に接触すると、発火する恐れがあるため危険であり、また、水素を用いると、コストが高くなるためである。
 用いられる不活性ガスとしては、安価な窒素が好ましいが、特に限定されない。また、圧力は、抽出の際の温度や用いる溶剤の蒸気圧にもよるが、好ましくは1.0~2.0MPaである。溶剤の蒸気圧より圧力が低い場合には、溶剤が揮発して液相に閉じ込められず、抽出が不可能となる。溶剤を液相に閉じ込めるには、溶剤の蒸気圧より高い圧力が必要となる。一方、圧力が高すぎると、機器のコスト、運転コストが高くなり、経済的ではない。
Extraction of the coal component soluble in the non-hydrogen donating solvent is preferably carried out in the presence of an inert gas. This is because contact with oxygen is dangerous because it may ignite, and using hydrogen increases costs.
The inert gas used is preferably inexpensive nitrogen, but is not particularly limited. The pressure is preferably 1.0 to 2.0 MPa, although it depends on the temperature during extraction and the vapor pressure of the solvent used. When the pressure is lower than the vapor pressure of the solvent, the solvent volatilizes and is not trapped in the liquid phase, and extraction is impossible. In order to confine the solvent in the liquid phase, a pressure higher than the vapor pressure of the solvent is required. On the other hand, if the pressure is too high, the cost of the equipment and the operating cost increase, which is not economical.
 このようにして石炭成分を抽出した後、スラリーは液部と非液部とに分離される。
 ここで、液部は、溶剤に抽出された石炭成分を含む溶液であり、非液部は、溶剤に不溶な石炭成分(灰分を含む石炭すなわち灰炭)を含む溶質である。
After extracting the coal component in this way, the slurry is separated into a liquid part and a non-liquid part.
Here, the liquid part is a solution containing a coal component extracted into a solvent, and the non-liquid part is a solute containing a coal component insoluble in the solvent (coal containing ash, that is, ash coal).
 スラリーを液部と非液部とに分離する方法としては、各種の濾過方法や遠心分離による方法が一般的に知られている。しかしながら、濾過による方法ではフィルタの頻繁な交換が必要である。また、遠心分離による方法では未溶解石炭成分による閉塞が起こりやすいため、これらの方法を工業的に実施するのは困難である。従って、流体の連続操作が可能であり、低コストで大量の処理にも適している重力沈降法を用いることが好ましい。これにより、重力沈降槽の上部からは、溶剤に抽出された石炭成分を含む溶液である液部(以下、上澄み液ともいう)が得られる。また、重力沈降槽の下部からは、溶剤に不溶な石炭成分を含む溶質である非液部(以下、固形分濃縮液ともいう)が得られる。 As a method for separating a slurry into a liquid part and a non-liquid part, various filtration methods and centrifugal separation methods are generally known. However, the filtration method requires frequent replacement of the filter. Moreover, since clogging with undissolved coal components is likely to occur in the methods using centrifugation, it is difficult to implement these methods industrially. Therefore, it is preferable to use a gravity sedimentation method that allows continuous operation of fluid and is suitable for a large amount of processing at low cost. Thereby, the liquid part (henceforth a supernatant liquid) which is a solution containing the coal component extracted by the solvent is obtained from the upper part of a gravity sedimentation tank. Moreover, the non-liquid part (henceforth a solid content concentrate) which is a solute containing the coal component insoluble in a solvent is obtained from the lower part of a gravity sedimentation tank.
 そして、この液部から、非水素供与性溶剤を分離することによって、無灰炭が得られる。
 上澄み液(液部)から溶剤を分離する方法としては、一般的な蒸留法や蒸発法(スプレードライ法等)等が使用可能である。上澄み液からは、実質的に灰分を含まない無灰炭が得られる。この無灰炭の灰分含有量は1.0質量%以下であり、灰分をほとんど含まない。また、この無灰炭の水分は概ね0.5質量%以下であり、また原料石炭よりも高い発熱量を示す。従って、この無灰炭を炭素化することによって、極めて灰分濃度の低い高純度の炭素材料を得ることができる。
And ashless coal is obtained by isolate | separating a non-hydrogen donating solvent from this liquid part.
As a method for separating the solvent from the supernatant liquid (liquid part), a general distillation method, an evaporation method (spray drying method, etc.) or the like can be used. From the supernatant, ashless coal substantially free of ash is obtained. The ash content of this ashless coal is 1.0 mass% or less, and hardly contains ash. Moreover, the water | moisture content of this ashless coal is about 0.5 mass% or less, and shows the calorific value higher than raw material coal. Therefore, by carbonizing this ashless coal, a highly pure carbon material having a very low ash content can be obtained.
<無灰炭加熱工程>
 無灰炭加熱工程は、前記無灰炭製造工程で製造された無灰炭を加熱処理する工程である。
 無灰炭は、製造されたままの状態では、一般に膨張性が激しい。従って、膨張を抑制するために、加熱処理が行われる。加熱処理は、加熱処理後の無灰炭の水素と炭素の原子数比(H/C)が0.6~0.67の範囲となるように行われることが必要である。
<Ashless charcoal heating process>
The ashless coal heating step is a step of heat-treating the ashless coal manufactured in the ashless coal manufacturing step.
Ashless charcoal is generally highly expansible in the as-manufactured state. Therefore, heat treatment is performed to suppress expansion. The heat treatment needs to be performed so that the atomic ratio (H / C) of hydrogen to carbon of the ashless coal after the heat treatment is in the range of 0.6 to 0.67.
 ここで、何も処理されない、製造されたままの状態の無灰炭のH/C原子数比は、原料炭種や、無灰炭の製造条件によって異なるが、概ね0.7~1.0の範囲にある。しかし、この無灰炭に加熱処理を施すと、アルキル基の分解、芳香族化反応、含酸素官能基の分解、低分子量成分の除去等、水素含有率が低下するような化学・物理的変化が進行し、H/C原子数比は徐々に低下していく。そこで、加熱処理によって、H/C原子数比が0.6~0.67の範囲になるように調整する。 Here, the H / C atomic ratio of the as-produced ashless coal that has not been treated varies depending on the raw coal type and the production conditions of the ashless coal, but is generally 0.7 to 1.0. It is in the range. However, when this ashless coal is heated, chemical / physical changes such as alkyl group decomposition, aromatization reaction, decomposition of oxygen-containing functional groups, removal of low molecular weight components, etc. will decrease the hydrogen content. Advances, and the H / C atomic ratio gradually decreases. Therefore, the H / C atomic ratio is adjusted to be in the range of 0.6 to 0.67 by heat treatment.
 H/C原子数比が0.6より小さいということは、加熱処理が過剰であることを意味する。加熱処理が過剰であると、焼結性が不十分となり、この無灰炭を炭素化しても、粉状の炭素材料しか得ることができない。そのため、H/C原子数比が0.6未満では、アノード用コークスの原料として用いられる炭素材料を得ることができない。一方、H/C原子数比が0.67より大きいということは、加熱処理が不十分であることを示しており、無灰炭に比較的多くの水素が含まれている。そのため、H/C原子数比が0.67を超えると、炭素化工程における炭素化時に無灰炭が発泡してしまう。このように、無灰炭の加熱処理により、H/C原子数比を0.6~0.67の範囲に調整することで、適度な焼結性を残しつつ、無灰炭の炭素化時の発泡が抑制できる。 When the H / C atomic ratio is smaller than 0.6, it means that the heat treatment is excessive. If the heat treatment is excessive, the sinterability becomes insufficient, and even if this ashless coal is carbonized, only a powdery carbon material can be obtained. Therefore, if the H / C atomic ratio is less than 0.6, a carbon material used as a raw material for anode coke cannot be obtained. On the other hand, the H / C atomic ratio being larger than 0.67 indicates that the heat treatment is insufficient, and ashless coal contains a relatively large amount of hydrogen. Therefore, if the H / C atomic ratio exceeds 0.67, ashless coal will foam during carbonization in the carbonization step. Thus, by adjusting the H / C atomic ratio in the range of 0.6 to 0.67 by heat treatment of ashless coal, while maintaining appropriate sinterability, Foaming can be suppressed.
 無灰炭の加熱処理の方法は、特に限定されず、公知の方法で行うことができる。例えば、真空、高圧や、不活性雰囲気中で、無灰炭を350~500℃、好ましくは、380~460℃に加熱する。必要な処理時間は、無灰炭の性状や、処理温度により異なるが、概ね10分から5時間の範囲である。このように、無灰炭の性状を考慮し、処理温度、処理時間を適宜調整することによって、H/C原子数比が0.6~0.67の範囲に制御される。 The method of heat treatment of ashless coal is not particularly limited, and can be performed by a known method. For example, ashless coal is heated to 350 to 500 ° C., preferably 380 to 460 ° C. in a vacuum, high pressure, or inert atmosphere. The required treatment time varies depending on the properties of ashless coal and the treatment temperature, but is generally in the range of 10 minutes to 5 hours. In this way, the H / C atomic ratio is controlled in the range of 0.6 to 0.67 by appropriately adjusting the processing temperature and processing time in consideration of the properties of ashless coal.
 また、無灰炭の加熱処理は、好ましくは、無灰炭製造工程で石炭の改質に使用された溶剤と同じ溶剤の存在下で行われる。
 すなわち、無灰炭は、スラリー状となるように溶剤と混合されてから、加熱処理される。無灰炭に対する溶剤の量は特に限定されないが、適度な粘度のスラリーを得るという観点からは、溶剤に対する無灰炭濃度が、例えば、乾燥炭基準で10~50質量%、好ましくは、20~35質量%の範囲であればよい。また、前記溶剤に抽出された石炭成分である液部をそのまま加熱することによって、溶剤を分離することなく、ここで言う無灰炭の加熱処理が行われてもよい。なお、加熱処理後の無灰炭から溶剤を分離する方法としては、一般的な蒸留法や蒸発法(スプレードライ法等)等が使用可能である。
Moreover, the heat treatment of ashless coal is preferably performed in the presence of the same solvent as the solvent used for coal reforming in the ashless coal production process.
That is, the ashless coal is heat-treated after being mixed with a solvent so as to form a slurry. The amount of the solvent with respect to the ashless coal is not particularly limited, but from the viewpoint of obtaining a slurry having an appropriate viscosity, the concentration of the ashless coal with respect to the solvent is, for example, 10 to 50% by mass on the basis of dry coal, preferably 20 to It may be in the range of 35% by mass. Moreover, the heat processing of ashless coal said here may be performed, without isolate | separating a solvent by heating the liquid part which is the coal component extracted by the said solvent as it is. In addition, as a method for separating the solvent from the ashless coal after the heat treatment, a general distillation method, an evaporation method (spray drying method or the like) or the like can be used.
 溶剤を用いることによって、無灰炭をそのまま加熱するよりも伝熱効率が高くなり、均一な加熱が可能となる。さらに、石炭の改質に使用された溶剤と同じ溶剤を使用することで、製造コストを下げることができる。なお、無灰炭の加熱処理に用いられる溶剤としては、アルキルナフタレンやアントラセン油等が好適なものとして挙げられる。 By using a solvent, the heat transfer efficiency becomes higher than when ashless coal is heated as it is, and uniform heating becomes possible. Furthermore, the manufacturing cost can be reduced by using the same solvent as the solvent used for coal reforming. In addition, as a solvent used for the heat treatment of ashless coal, alkylnaphthalene, anthracene oil, and the like are preferable.
<炭素化工程>
 炭素化工程は、前記無灰炭加熱工程で加熱処理された無灰炭を炭素化処理することにより、炭素材料を得る工程である。この炭素化工程により無灰炭が炭素化され、炭素材料が得られる。
<Carbonization process>
A carbonization process is a process of obtaining a carbon material by carbonizing the ashless coal heat-processed at the said ashless coal heating process. By this carbonization process, ashless coal is carbonized and a carbon material is obtained.
 炭素化処理の方法や条件は、特に限定されず、公知の技術が使用可能である。典型的には、窒素やアルゴン等の不活性雰囲気中で、無灰炭を1000℃程度で蒸し焼きにして加熱処理されることによって、無灰炭が炭素へと変えられる。また、昇温速度は、0.1~5℃/分程度であればよい。この炭素化処理は、熱間静水圧プレス装置等を用いて、加圧下で行われてもよい。また、必要に応じて、アスファルトピッチやタール等のバインダー成分が添加されてもよい。さらに、加熱処理された無灰炭を適当に成形した後に、炭素化工程を行ってもよい。炭素化に用いられる熱処理炉の形式にも特に制約はなく、公知のものが使用可能である。例えば、ポット炉、リードハンマー炉、キルン、ロータリーキルン、シャフト炉、あるいは室炉等が挙げられる。しかし、熱処理炉はこれらに限定されず、この他のものが用いられてもよい。 The method and conditions for the carbonization treatment are not particularly limited, and known techniques can be used. Typically, ashless coal is converted into carbon by steaming and baking ashless coal at about 1000 ° C. in an inert atmosphere such as nitrogen or argon. The temperature raising rate may be about 0.1 to 5 ° C./min. This carbonization treatment may be performed under pressure using a hot isostatic pressing apparatus or the like. Moreover, binder components, such as asphalt pitch and tar, may be added as needed. Furthermore, the carbonization step may be performed after the heat-treated ashless coal is appropriately formed. There is no restriction | limiting in particular also in the form of the heat processing furnace used for carbonization, A well-known thing can be used. Examples thereof include a pot furnace, a lead hammer furnace, a kiln, a rotary kiln, a shaft furnace, and a chamber furnace. However, the heat treatment furnace is not limited to these, and other heat treatment furnaces may be used.
 そして、本発明の製造方法で得られた炭素材料は、アルミニウム電解製造用アノードの主原料コークスとして、好適に使用することができる。また、本発明で得られた炭素材料は、この他、非鉄金属還元剤、構造用炭素材またはアルミニウム電解製造用アノード以外の電気材料用炭素材として用いられることもでき、あるいは、非鉄金属還元剤、構造用炭素材または電気材料用炭素材の原料として用いられることもできる。ここで、非鉄金属還元剤は、シリコンやチタン等の非鉄金属の還元に用いられる還元剤である。また、構造用炭素材は、例えば、炭素製断熱材や、るつぼ等の炭素製の構造材の原料として用いられる炭材である。また、電気材料用炭素材は、アルミニウム電解製造用アノードの他、炭素製電極等の炭素製の電気材料の原料として用いられる炭材である。なお、これらの原料として用いられるとの記載は、例えば、炭素材料に、熱処理等の二次的な処理を施す必要がある場合があるためである。 The carbon material obtained by the production method of the present invention can be suitably used as a main raw material coke for an anode for aluminum electrolytic production. In addition, the carbon material obtained in the present invention can also be used as a non-ferrous metal reducing agent, a structural carbon material, or a carbon material for electrical materials other than an anode for aluminum electrolytic production, or a non-ferrous metal reducing agent. It can also be used as a raw material for structural carbon materials or carbon materials for electrical materials. Here, the nonferrous metal reducing agent is a reducing agent used for reduction of nonferrous metals such as silicon and titanium. The structural carbon material is, for example, a carbon material used as a raw material for a carbon heat insulating material or a carbon structural material such as a crucible. Moreover, the carbon material for electric materials is a carbon material used as a raw material for carbon-made electric materials such as carbon electrodes in addition to the anode for aluminum electrolytic production. In addition, the description of being used as these raw materials is because, for example, it may be necessary to subject the carbon material to a secondary treatment such as heat treatment.
 以上説明したように、本発明の炭素材料の製造方法は、無灰炭製造工程、無灰炭加熱工程、炭素化工程を含む。しかし、本発明を実施するにあたり、前記各工程に悪影響を与えない範囲において、前記各工程の間あるいは前後に、例えば、原料石炭を粉砕する石炭粉砕工程や、ごみ等の不要物を除去する除去工程や、無灰炭を乾燥させる無灰炭乾燥工程等、他の工程が含まれてもよい。 As described above, the method for producing a carbon material of the present invention includes an ashless coal production process, an ashless coal heating process, and a carbonization process. However, in carrying out the present invention, for example, a coal pulverization step for pulverizing raw coal, or removal for removing unnecessary substances such as dust, before or after each step within a range that does not adversely affect each step. Other processes such as a process and an ashless charcoal drying process for drying ashless charcoal may be included.
 次に、本発明に係る炭素材料の製造方法について、実施例、比較例を挙げて具体的に説明する。
[無灰炭の製造]
 まず、無灰炭は、以下の方法により製造された。
 原料石炭は、瀝青炭であるコークス製造用原料炭(石炭A)か、または、瀝青炭である火力発電用一般炭(石炭B)である。この原料石炭5kgに対し、4倍量(20kg)の溶剤(1-メチルナフタレン(新日鉄化学社製))を混合することにより、スラリーが調製される。このスラリーを1.2MPaの窒素で加圧して、内容積30Lのオートクレーブ中370℃、1時間の条件で抽出した。このスラリーを同一温度、圧力を維持した重力沈降槽内で上澄み液と固形分濃縮液とに分離し、上澄み液から蒸留法で溶剤を分離・回収して、無灰炭を得た。
Next, the manufacturing method of the carbon material according to the present invention will be specifically described with reference to examples and comparative examples.
[Manufacture of ashless coal]
First, ashless coal was manufactured by the following method.
The raw coal is a raw coal for producing coke that is bituminous coal (coal A) or a thermal coal for thermal power generation that is bituminous coal (coal B). A slurry is prepared by mixing 4 kg (20 kg) of a solvent (1-methylnaphthalene (manufactured by Nippon Steel Chemical Co., Ltd.)) with 5 kg of the raw coal. This slurry was pressurized with 1.2 MPa of nitrogen and extracted in an autoclave with an internal volume of 30 L at 370 ° C. for 1 hour. This slurry was separated into a supernatant and a solid concentrate in a gravity sedimentation tank maintained at the same temperature and pressure, and the solvent was separated and recovered from the supernatant by a distillation method to obtain ashless coal.
[加熱処理]
 次に、無灰炭は、以下の方法により加熱処理される。
 無灰炭の加熱処理は、溶剤として1-メチルナフタレン(新日鉄化学社製)を、無灰炭に対して3倍量(質量で3倍)用いる条件か、または溶剤を全く用いない条件下で行われる。加熱処理は、窒素初気圧0.1MPaの気密式のオートクレーブ中で、無灰炭を攪拌しながら、10℃/分で表1に示される所定の温度まで昇温すると共に、表1に示される所定の時間保持することにより行った。処理後、オートクレーブ内のガスを排出し、0.001MPaの圧力下で150℃に1時間加熱することによって、溶剤や生成したかもしれない油分を蒸留除去した後、加熱処理された無灰炭が回収された。そして、これらを元素分析することにより、H/C原子数比が求められる。
[Heat treatment]
Next, the ashless coal is heat-treated by the following method.
The heat treatment of ashless coal is performed under the condition that 1-methylnaphthalene (manufactured by Nippon Steel Chemical Co., Ltd.) is used as a solvent three times as much as the ashless coal (three times by mass) or no solvent is used Done. The heat treatment is performed in a hermetic autoclave having an initial nitrogen pressure of 0.1 MPa, while raising the temperature up to a predetermined temperature shown in Table 1 at 10 ° C./min while stirring ashless coal, as shown in Table 1. It was performed by holding for a predetermined time. After the treatment, the gas in the autoclave is discharged and heated to 150 ° C. under a pressure of 0.001 MPa for 1 hour to distill off the solvent and the oil that may have been produced. It was recovered. And H / C atomic ratio is calculated | required by carrying out elemental analysis of these.
[炭素化処理]
 次に、無灰炭は、以下の方法により炭素化処理される。
 加熱処理されて1mm以下に粉砕された無灰炭のうち5gを、内径20mmの石英試験管に、かさ密度0.8g/ccとなるように詰めた後、窒素雰囲気中、3℃/分で1000℃まで昇温し、この温度に30分保持して炭素化することによって、炭化物(炭素材料)が得られた。
[Carbonization treatment]
Next, the ashless coal is carbonized by the following method.
5 g of ashless coal that has been heat-treated and crushed to 1 mm or less is packed in a quartz test tube with an inner diameter of 20 mm so that the bulk density becomes 0.8 g / cc, and then in a nitrogen atmosphere at 3 ° C./min. The temperature was raised to 1000 ° C. and kept at this temperature for 30 minutes for carbonization, whereby a carbide (carbon material) was obtained.
 生成した炭化物を長さ10mmに切断した後に圧壊試験を行い、強度が測定された。圧壊試験は、下部加圧板に試料を載せて上部加圧圧子により試料を圧縮し、試料が崩壊するときの強度(圧壊強度)を測定することにより行われる。そして、5.0MPa以上の強度を有する試料が、緻密な炭素材料であると判断される。ただし、強度は、炭素化処理の条件(原料の充填密度、成形の有無、あるいは熱処理温度)によっても変化するので、この数値は、あくまでも相対比較の数値である。なお、高強度を有する炭素材料ほど緻密であり、アノード用コークス原料として好適である。 The produced carbide was cut to a length of 10 mm and then subjected to a crush test, and the strength was measured. The crush test is performed by placing the sample on the lower pressure plate, compressing the sample with the upper pressure indenter, and measuring the strength (collapse strength) when the sample collapses. And it is judged that the sample which has the intensity | strength of 5.0 Mpa or more is a dense carbon material. However, since the strength also changes depending on the conditions of carbonization treatment (packing density of raw materials, presence / absence of molding, or heat treatment temperature), this value is a value for relative comparison to the last. A carbon material having higher strength is denser and suitable as a coke raw material for an anode.
 表1は、この試験結果を示す。なお、表1において、本発明の範囲を満たさない数値は、下線を引かれて示されている。また、1-メチルナフタレンは、表中、MNと記されている。さらに、図1は、強度とH/C原子数比との関係を示すグラフを示す。なお、強度「0.00」は、測定ができるほど強度がなかったために強度の測定ができなかったことを示す。 Table 1 shows the test results. In Table 1, numerical values that do not satisfy the scope of the present invention are shown underlined. Further, 1-methylnaphthalene is indicated as MN in the table. Furthermore, FIG. 1 shows a graph showing the relationship between intensity and the H / C atomic ratio. The strength “0.00” indicates that the strength could not be measured because the strength was not strong enough to be measured.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1および図1に示されるように、No.1~3、14~20は、本発明の範囲を満たしている。そのため、これらは、炭素化工程において発泡することなく炭素化され、緻密な炭素材料となっており、強度が高かった。 As shown in Table 1 and FIG. 1 to 3 and 14 to 20 satisfy the scope of the present invention. Therefore, they are carbonized without foaming in the carbonization process, become dense carbon materials, and have high strength.
 一方、No.4~6、21、22は、H/C原子数比が下限値未満である。そのため、炭素材料が粉状となり、緻密な炭素材料とならず、強度が低かった。なお、No.6の強度は、測定できなかった。
 また、No.7~13、23~25は、H/C原子数比が上限値を超える。そのため、炭素化工程において無灰炭が発泡してしまい、緻密な炭素材料が得られず、強度は測定できなかった。
On the other hand, no. 4 to 6, 21, and 22 have an H / C atomic ratio that is less than the lower limit. For this reason, the carbon material became powdery and did not become a dense carbon material, and the strength was low. In addition, No. The intensity of 6 could not be measured.
No. In 7 to 13 and 23 to 25, the H / C atomic ratio exceeds the upper limit. Therefore, ashless coal foamed in the carbonization step, a dense carbon material could not be obtained, and the strength could not be measured.
 以上、本発明に係る炭素材料の製造方法について、実施形態および実施例を示して詳細に説明したが、本発明の趣旨は前記した内容に限定されることなく、その権利範囲は特許請求の範囲の記載に基づいて広く解釈しなければならない。なお、本発明の内容は、前記した記載に基づいて広く改変・変更等することができることはいうまでもない。 As mentioned above, although the manufacturing method of the carbon material which concerns on this invention was shown in detail, showing embodiment and an Example, the meaning of this invention is not limited to an above-described content, The scope of the right is a claim. Should be interpreted broadly based on the description. Needless to say, the contents of the present invention can be widely modified and changed based on the above description.
 本出願は、2009年6月22日出願の日本特許出願(特願2009-147296)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application (Japanese Patent Application No. 2009-147296) filed on June 22, 2009, the contents of which are incorporated herein by reference.

Claims (2)

  1.  非鉄金属還元剤、構造用炭素材、電気材料用炭素材、または、これらの原料として用いられる炭素材料の製造方法であって、
     溶剤を用いて石炭を改質することにより、改質炭である無灰炭を製造する無灰炭製造工程と、
     前記無灰炭製造工程で製造された前記無灰炭を加熱処理する無灰炭加熱工程と、
     前記無灰炭加熱工程で加熱処理された前記無灰炭を炭素化処理することにより炭素材料を得る炭素化工程と、を含み、
     前記無灰炭加熱工程で加熱処理された前記無灰炭の水素と炭素の原子数比(H/C)が、0.6~0.67である炭素材料の製造方法。
    A non-ferrous metal reducing agent, a structural carbon material, a carbon material for electrical materials, or a method for producing a carbon material used as a raw material thereof,
    An ashless coal production process for producing ashless coal, which is a modified coal, by reforming coal using a solvent;
    Ashless coal heating step of heat-treating the ashless coal produced in the ashless coal production step;
    A carbonization step of obtaining a carbon material by carbonizing the ashless coal heat-treated in the ashless coal heating step,
    A method for producing a carbon material, wherein the ashless coal heat-treated in the ashless coal heating step has an atomic ratio (H / C) of hydrogen to carbon of 0.6 to 0.67.
  2.  前記無灰炭加熱工程において、前記無灰炭の加熱処理が、前記無灰炭製造工程において前記石炭の改質に使用された溶剤と同じ溶剤の存在下で行われる請求項1に記載の炭素材料の製造方法。 The carbon according to claim 1, wherein in the ashless coal heating step, the heat treatment of the ashless coal is performed in the presence of the same solvent as the solvent used for reforming the coal in the ashless coal production step. Material manufacturing method.
PCT/JP2010/060147 2009-06-22 2010-06-15 Method for producing carbon materials WO2010150685A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2766032A CA2766032C (en) 2009-06-22 2010-06-15 Method for producing carbon materials
CN2010800275292A CN102803136A (en) 2009-06-22 2010-06-15 Method For Producing Carbon Materials
AU2010263737A AU2010263737B2 (en) 2009-06-22 2010-06-15 Method for producing carbon materials
KR1020117030586A KR101365365B1 (en) 2009-06-22 2010-06-15 Method for producing carbon materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-147296 2009-06-22
JP2009147296A JP4660608B2 (en) 2009-06-22 2009-06-22 Carbon material manufacturing method

Publications (1)

Publication Number Publication Date
WO2010150685A1 true WO2010150685A1 (en) 2010-12-29

Family

ID=43386455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060147 WO2010150685A1 (en) 2009-06-22 2010-06-15 Method for producing carbon materials

Country Status (6)

Country Link
JP (1) JP4660608B2 (en)
KR (1) KR101365365B1 (en)
CN (1) CN102803136A (en)
AU (1) AU2010263737B2 (en)
CA (1) CA2766032C (en)
WO (1) WO2010150685A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014175121A1 (en) * 2013-04-26 2014-10-30 株式会社神戸製鋼所 Method for manufacturing ashless coal, and method for manufacturing carbon material
US20160272910A1 (en) * 2013-12-25 2016-09-22 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method for producing ashless coal

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012184125A (en) * 2011-03-03 2012-09-27 Kobe Steel Ltd Method for producing carbon material
AU2013321344B2 (en) * 2012-09-26 2016-01-21 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method for manufacturing ashless coal
JP6199020B2 (en) * 2012-10-12 2017-09-20 株式会社神戸製鋼所 Production method of ashless coal
JP2014065823A (en) * 2012-09-26 2014-04-17 Kobe Steel Ltd Production method of ashless coal
JP6017366B2 (en) * 2013-04-16 2016-10-26 株式会社神戸製鋼所 Production method of ashless coal
JP5990501B2 (en) * 2013-10-09 2016-09-14 株式会社神戸製鋼所 Production method of ashless coal
JP6014012B2 (en) * 2013-12-04 2016-10-25 株式会社神戸製鋼所 Coke production method and coke
JP6189811B2 (en) * 2014-10-07 2017-08-30 株式会社神戸製鋼所 Ashless coal blending amount determination method and blast furnace coke manufacturing method
JP6174004B2 (en) * 2014-12-08 2017-08-02 株式会社神戸製鋼所 Carbon material manufacturing method
JP7134755B2 (en) * 2018-07-10 2022-09-12 株式会社神戸製鋼所 coke production method
CN113583730A (en) * 2021-06-29 2021-11-02 山西沁新能源集团股份有限公司 High-carbon coke and preparation method of ultrapure coal for producing high-carbon coke

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5857498A (en) * 1981-09-30 1983-04-05 Mitsubishi Heavy Ind Ltd Preparation of reformed coal
JP2007142204A (en) * 2005-11-18 2007-06-07 Gunma Univ Carbon material for electric double layer capacitor and manufacturing method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3892654A (en) * 1974-03-04 1975-07-01 Us Interior Dual temperature coal solvation process
US4176041A (en) * 1977-02-24 1979-11-27 Kobe Steel, Ltd. Method for reforming low grade coals
JPS5582789A (en) * 1978-12-16 1980-06-21 Kawasaki Steel Corp Preparation of binder pitch for electrode
US4522628A (en) * 1981-12-16 1985-06-11 Mobil Oil Corporation Method for removing ash mineral matter of coal with liquid carbon dioxide and water
US5248413A (en) * 1992-02-28 1993-09-28 University Of Kentucky Research Foundation Process for removing sulfur and producing enhanced quality and environmentally acceptable products for energy production from coal
JP4061351B1 (en) * 2006-10-12 2008-03-19 株式会社神戸製鋼所 Production method of ashless coal
JP5128351B2 (en) * 2007-10-23 2013-01-23 株式会社神戸製鋼所 Carbon material manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5857498A (en) * 1981-09-30 1983-04-05 Mitsubishi Heavy Ind Ltd Preparation of reformed coal
JP2007142204A (en) * 2005-11-18 2007-06-07 Gunma Univ Carbon material for electric double layer capacitor and manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014175121A1 (en) * 2013-04-26 2014-10-30 株式会社神戸製鋼所 Method for manufacturing ashless coal, and method for manufacturing carbon material
JP2014214267A (en) * 2013-04-26 2014-11-17 株式会社神戸製鋼所 Method for manufacturing ashless coal, and method for manufacturing carbon material
US20160272910A1 (en) * 2013-12-25 2016-09-22 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method for producing ashless coal

Also Published As

Publication number Publication date
CA2766032A1 (en) 2010-12-29
CA2766032C (en) 2013-07-30
AU2010263737A1 (en) 2012-01-19
JP2011001240A (en) 2011-01-06
KR101365365B1 (en) 2014-02-24
CN102803136A (en) 2012-11-28
KR20120026561A (en) 2012-03-19
JP4660608B2 (en) 2011-03-30
AU2010263737B2 (en) 2013-01-31

Similar Documents

Publication Publication Date Title
WO2010150685A1 (en) Method for producing carbon materials
WO2012118151A1 (en) Method for producing carbon material
AU2007307596B2 (en) Method for production of ashless coal
JP5342794B2 (en) Carbon material manufacturing method
JP5314299B2 (en) Production method of ashless coal
JP2011157606A (en) Method for producing carbon anode
JP4708463B2 (en) Production method of ashless coal
JP5128351B2 (en) Carbon material manufacturing method
AU2013226908A1 (en) Coal blend briquette and process for producing same, and coke and process for producing same
WO2015178386A1 (en) Method for producing carbon material, and carbon material
WO2014175121A1 (en) Method for manufacturing ashless coal, and method for manufacturing carbon material
JP6193191B2 (en) Carbon material manufacturing method
US20180320083A1 (en) Method for producing coke, and coke
WO2012176896A1 (en) Method for producing ashless coal
WO2016093000A1 (en) Method for producing coke
JP7134755B2 (en) coke production method
JP5449685B2 (en) Method for producing highly reactive coke

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080027529.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10792003

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2766032

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20117030586

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010263737

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 9676/CHENP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2010263737

Country of ref document: AU

Date of ref document: 20100615

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10792003

Country of ref document: EP

Kind code of ref document: A1