WO2010140186A1 - 光送受信モジュール - Google Patents

光送受信モジュール Download PDF

Info

Publication number
WO2010140186A1
WO2010140186A1 PCT/JP2009/002435 JP2009002435W WO2010140186A1 WO 2010140186 A1 WO2010140186 A1 WO 2010140186A1 JP 2009002435 W JP2009002435 W JP 2009002435W WO 2010140186 A1 WO2010140186 A1 WO 2010140186A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
optical
wavelength
band limiting
wavelength band
Prior art date
Application number
PCT/JP2009/002435
Other languages
English (en)
French (fr)
Inventor
近藤彰宏
大畠伸夫
片山政利
緒方健滋
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2009554648A priority Critical patent/JP4578569B1/ja
Priority to US13/203,761 priority patent/US8655181B2/en
Priority to CN200980159623.0A priority patent/CN102449518B/zh
Priority to PCT/JP2009/002435 priority patent/WO2010140186A1/ja
Priority to KR1020117027274A priority patent/KR101256379B1/ko
Priority to TW098125325A priority patent/TWI389474B/zh
Publication of WO2010140186A1 publication Critical patent/WO2010140186A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4236Fixing or mounting methods of the aligned elements
    • G02B6/4244Mounting of the optical elements

Definitions

  • the present invention is applicable to an optical subscriber system such as FTTB (Fiber To The Building), an FTTH (Fiber To The Home), etc., and an internet service with a transmission rate of 1 gigabit / sec or 2.5 gigabits / sec.
  • the present invention relates to an optical transmission / reception module mounted in a network unit.
  • the GEPON system comprises a station-side optical line terminal (OLT) installed at a center station, an optical splitter for branching transmission lines up to 32 and a subscriber-side optical set installed in a subscriber's house. And a line termination device.
  • OLT station-side optical line terminal
  • the wavelength of the 1310 nm band is assigned to the upstream digital data signal transmitted from the subscriber-side optical line termination device to the station-side optical line termination device, and the station-side optical line termination device to the subscriber-side optical line
  • the downstream digital data signal (including digital audio signal) to be transmitted to the termination device is assigned a wavelength of 1490 nm
  • the downstream video signal (including analog video signal) is assigned a wavelength of 1550 nm.
  • the wavelength band of (1) is also used as an optical wavelength band for investigating the disconnection of the transmission line optical fiber connecting between the station-side optical line terminal and the subscriber-side optical line terminal.
  • WDM wavelength division multiplexing
  • the light wavelength band limiting performance of the light wavelength band limiting filter generally has a large light incident angle dependency on the filter. That is, when the light incident angle component increases, it becomes superimposed light wavelength band limiting performance according to each light incident angle component.
  • the wavelength interval between the reception wavelength bands is narrow, while the optical signal of the wavelength band to be transmitted is originally blocked, the wavelength band to be restricted is allowed to pass, and I can not demonstrate enough.
  • an optical wavelength band limiting filter that has high performance requirements for crosstalk of optical reception signals is often used in parallel optical systems that can reduce the light incident angle component, and is used in diffusion optical systems. There is little to be done.
  • the parallel optical system has a complicated configuration as described later.
  • the light incident angle to the light wavelength band limiting filter is a difference due to the mounting angle with the optical fiber, a difference due to the mounting angle with the wavelength division multiplexing filter (WDMF), a mounting angle of the light wavelength band limiting filter itself It depends on the gap due to In addition, since it is impossible to measure the light incident angle to the light wavelength band limiting filter, it is necessary to design the optical transmission / reception module in consideration of the amount of angular deviation within the design assurance range in structural design. .
  • the optical transmission / reception module mounted on the subscriber-side optical circuit termination device needs to include an optical wavelength band limiting filter for preventing interference, which is disclosed in Patent Document 1 below.
  • an optical transmission / reception module single-core bidirectional optical communication is realized by separating and multiplexing optical signals of a plurality of wavelengths by using a wavelength multiplexing / demultiplexing filter.
  • the lens coupling optical element is merely connected between the wavelength multiplexing / demultiplexing filter and the optical fiber, the optical wavelength of the downstream digital data signal and the optical wavelength of the video signal are It can not be applied to a GEPON system in which light wavelengths adjacent to each other exist.
  • the optical wavelength band performance of the light wavelength band limiting filter can be exhibited by installing the coating optical device or the like and using the light wavelength band limiting filter in the parallel optical system.
  • the number of parts increases, and it becomes a problem to take a complicated configuration.
  • the diffusion optical system if the light incident angle to the light wavelength band limiting filter can be managed with high accuracy, it is possible to improve the light wavelength band limiting performance. However, in order to adjust the light incident angle, advanced alignment technology is required.
  • the conventional light transmitting / receiving module is configured as described above, installing collimating optical equipment and applying a collimated optical system ensures sufficient light wavelength band limiting performance of the light wavelength band limiting filter. Although this is easy, there is a problem that the number of parts increases and the configuration becomes complicated. On the other hand, in the diffusion optical system, if the light incident angle to the light wavelength band limiting filter can be managed with high accuracy, it is possible to improve the light wavelength band limiting performance, but to adjust the light incident angle There was a problem that advanced alignment technology was required.
  • the present invention has been made to solve the problems as described above, and it is possible to obtain a desired light wavelength band without using a complex parallel optical system and without using an advanced alignment technology in a diffusion optical system.
  • An object of the present invention is to obtain an optical transceiver module capable of securing limited performance.
  • the optical transmission / reception module is provided with a mounting surface on which the wavelength multiplexing / demultiplexing filter and the light wavelength band limiting filter are attached, and a filter holder in which a hole for guiding the optical signal is provided on the mounting surface. It is incorporated such that the wavelength multiplexing / demultiplexing filter and the light wavelength band limiting filter are attached to the mounting surface applied to the filter holder.
  • the filter holder having the attachment surface for attaching the wavelength multiplexing / demultiplexing filter and the light wavelength band limiting filter and having the hole for guiding the optical signal to the attachment surface is incorporated in the housing. Since the wavelength multiplexing / demultiplexing filter and the light wavelength band limiting filter are attached to the attachment surface applied to the filter holder, the relative position between the filters can be determined with high accuracy, As a result, it is possible to ensure the desired light wavelength band limiting performance without using a complex parallel optical system and without using a sophisticated alignment technology in a diffusion optical system.
  • FIG. 1 is a block diagram showing an optical transmission / reception module according to a first embodiment of the present invention.
  • the optical transmission and reception module of FIG. 1 is an apparatus mounted on a subscriber-side optical line termination apparatus.
  • the housing 1 mounts the light transmitting module 2, which is a component of the light transmitting / receiving module, the light receiving modules 3 and 4, etc. by means such as adhesion or welding, and the filter holder 20 (see FIGS. 2 and 3) ) Is incorporated.
  • the optical transmission module 2 is a module that converts an electric signal, which is an upstream digital data signal, into an optical signal of a wavelength of 1310 nm band, and outputs the optical signal to the condensing lens 8.
  • the condenser lens 8 is a member that condenses the light signal output from the light transmission module 2 and outputs the light signal to the wavelength combining / splitting filter 9.
  • the optical receiving module 3 receives an optical signal (optical signal having a wavelength of 1490 nm band, which is a downstream digital data signal) among the optical signals reflected by the wavelength multiplexing / demultiplexing filter 9. And convert the optical signal into an electrical signal.
  • the optical receiving module 4 receives an optical signal passing through the optical wavelength band limiting filter 12 (optical signal of wavelength of 1550 nm band, which is a signal for downstream video). And convert the optical signal into an electrical signal.
  • an optical signal transmitted by the optical transmission module 2 is an optical signal of a wavelength of 1310 nm
  • an optical signal received by the optical reception module 3 is an optical signal of a wavelength of 1490 nm
  • the optical reception module 4 Although an example in which the optical signal is an optical signal having a wavelength of 1550 nm band is shown, this is merely an example, and it is needless to say that the optical signal of each wavelength band may be an optical signal of another wavelength band. .
  • the end face of the fiber ferrule 5 is obliquely cut (for example, the end face of the fiber ferrule 5 is obliquely cut at about 8 degrees), and is fixed to the right of the wavelength multiplexing / demultiplexing filter 10 in the figure. There is.
  • One end of the optical fiber 6 is connected to the connector 7, the other end is connected to the fiber ferrule 5, and the optical signal of the wavelength of 1310 nm transmitted through the wavelength multiplexing / demultiplexing filter 10 is transmitted to the connector 7 side.
  • the connector 7 is a connecting member to which one end of the optical fiber 6 is connected and to which one end of the single mode fiber is connected. The other end of the single mode fiber is connected to the station-side optical line termination device.
  • the wavelength multiplexing / demultiplexing filter 9 transmits the optical signal of the wavelength of 1310 nm transmitted from the optical transmission module 2 to the side of the wavelength multiplexing / demultiplexing filter 10 while the wavelength of 1490 nm of the wavelength transmitted through the wavelength multiplexing / demultiplexing filter 10. It is a wavelength division multiplex filter that reflects an optical signal to the light receiving module 3 side.
  • the wavelength multiplexing / demultiplexing filter 10 transmits the optical signal of the wavelength of 1310 nm band transmitted through the wavelength multiplexing / demultiplexing filter 9 to the end face side of the fiber ferrule 5 and of the wavelength of 1490 nm band emitted from the end face of the fiber ferrule 5.
  • the optical wavelength band limiting filter 11 is disposed between the wavelength multiplexing / demultiplexing filter 9 and the optical receiving module 3 and is a filter whose passband is set to a wavelength of 1490 nm band.
  • the optical wavelength band limiting filter 12 is a filter disposed between the wavelength multiplexing / demultiplexing filter 10 and the optical receiving module 4 and having a pass band set to a wavelength of 1550 nm.
  • the filter holder 20 is provided with a mounting surface for attaching the wavelength multiplexing / demultiplexing filters 9 and 10 and the light wavelength band limiting filters 11 and 12 (in the filter holder 20 of FIG. 2, a mounting surface for attaching the light wavelength band limiting filter 11 is provided Although not shown in the filter holder 20 of FIG. 3, a mounting surface for mounting the light wavelength band limiting filter 11 is also provided) and a member having a hole for guiding an optical signal to the mounting surface, the filter The holder 20 is incorporated into the housing 1.
  • FIG. 2 is a block diagram showing a filter holder 20 incorporated in the housing 1 of the optical transmission / reception module according to the first embodiment of the present invention.
  • the filter attachment surface 21 is an attachment surface to which the wavelength multiplexing / demultiplexing filter 9 is attached.
  • the filter attachment surface 22 is an attachment surface to which the wavelength multiplexing / demultiplexing filter 10 is attached.
  • the filter mounting surface 23 is a mounting surface to which the light wavelength band limiting filter 12 is attached.
  • the optical path 24 is a hole provided for guiding the optical signal of the wavelength of 1310 nm transmitted from the optical transmission module 2 to the filter attachment surface 21 to which the wavelength multiplexing / demultiplexing filter 9 is attached.
  • the optical path 25 guides an optical signal of a wavelength of 1490 nm and an optical signal of a wavelength of 1550 nm emitted from the end face of the fiber ferrule 5 to the filter attachment surface 22 to which the wavelength multiplexing / demultiplexing filter 10 is attached. It is a hole provided for guiding the optical signal of the wavelength of 1550 nm band reflected by the filter 10 to the filter mounting surface 23 to which the optical wavelength band limiting filter 12 is attached.
  • the optical path 25 is also a hole for guiding the optical signal of the wavelength of 1310 nm transmitted through the wavelength multiplexing / demultiplexing filter 10 to the end face of the fiber ferrule 5.
  • the filter holder 20 of FIG. 2 attaches three filters, the light wavelength band limiting filter 11 can not be attached.
  • the filter holder 20 of FIG. 2 it is necessary to fix it to the housing 1 or the light receiving module 3 by means such as adhesion or welding, so the filter holder 20 of FIG. It is not very suitable for the optical transmission / reception module which needs to mount the band limiting filter 11 (the filter holder 20 of FIG. 2 is suitable for the optical transmission / reception module which does not need to mount the optical wavelength band limiting filter 11).
  • the filter attachment surface 26 is an attachment surface to which the light wavelength band limiting filter 11 is attached.
  • FIG. 4 is an explanatory view showing a method of incorporating the filter holder 20 into the housing 1
  • FIG. 5 is an explanatory view showing the filter holder 20 as viewed from directly above.
  • the surface 27 is an end of the light path 24 provided to the filter holder 20.
  • the surface 28 is provided with a hole for inserting the fiber ferrule 5 and is an end of the light passage 25.
  • a cylindrical hole 1a is provided on one surface of the housing 1 (the upper surface of the housing 1 in the example of FIG. 4), and the diameter of the hole 1a is formed in the housing 1 A slightly smaller concentric hole 1b is provided.
  • the hole 1 a has a smaller diameter toward the lower portion, and an inclined portion is provided. Since the stepped portion is formed inside the housing 1 by the two holes 1a and 1b having different diameters, the shape of the two holes 1a and 1b is almost similar to a bolt.
  • the filter holder 20 Since the filter holder 20 is incorporated in the holes 1a and 1b provided in the housing 1 (in the example of FIG. 4, the filter holder 20 is press-fit from the top of the housing 1 downward), the filter The shape of the holder 20 is formed in accordance with the shape of the two holes 1a and 1b. That is, the upper portion of the filter holder 20 has a disk shape having a slope structure, and the lower portion of the filter holder 20 has a cylindrical shape.
  • the press-fitting of the filter holder 20 with respect to the housing 1 is performed until the disk-shaped lower end portion forming the upper portion of the filter holder 20 hits the step inside the housing 1. That is, the lower end of the disk-shaped lower part forming the upper part of the filter holder 20 stops at the position where it hits the step inside the housing 1, and the position of the filter holder 20 is determined.
  • D-cuts are formed in the disk shape in the upper part of the filter holder 20 and in the holes 1a provided in the housing 1 as shown in FIG. It is provided. Therefore, when the filter holder 20 is press-fit into the housing 1, the positions of the two D-cuts are determined at a position where the two D-cuts naturally follow, so that the filter holder 20 can be incorporated into the housing 1 with high accuracy. Further, as described above, the disk-like shape in the upper part of the filter holder 20 and the hole 1a provided in the housing 1 are provided with the sloped portion, therefore, when the filter holder 20 is pressed into the housing 1 The position is determined with high accuracy at the position where both slopes follow each other.
  • the filter attachment surfaces 21, 22, 26, 23 for attaching the wavelength multiplexing / demultiplexing filters 9, 10 and the optical wavelength band limiting filters 11, 12 are provided, and A filter holder 20 having a hole for guiding an optical signal to the filter mounting surface is incorporated in the housing 1, and the wavelength multiplexing / demultiplexing filters 9, 10 and the light wavelength band limiting filters 11, 12 are mounted in the filter holder 20. Since it is configured to be attached to the applied filter attachment surfaces 21, 22, 26, 23, the relative position between each filter is determined with high accuracy, and as a result, a complex parallel optical system is used. In addition, in the diffusion optical system, the desired light wavelength band limiting performance can be secured without using the advanced alignment technology.
  • the accuracy of the relative angle between the filters is improved. be able to.
  • the filter holder 20 is incorporated in the housing 1, the positioning accuracy is not increased by the relationship between the individual filters and the housing 1 but by the relationship between one filter holder 20 and the housing 1. If this is increased, the relative position between the filters is determined with high accuracy, and the relative position of each filter and the optical fiber is determined with high accuracy.
  • the disk shape in the upper part of the filter holder 20 and the D-cut are partially formed on the circumference of the hole 1a provided in the housing 1
  • a notch may be provided on a part of the circumference of the filter holder and a projection having the same shape may be provided on the housing.
  • the positions of the filter holders are determined at a position where the notches of the filter holder follow naturally, so that the filter holder 20 is incorporated into the housing 1 with high accuracy.
  • the filter holder 20 is incorporated into the housing 1 by press-fitting the filter holder 20 into the housing 1.
  • the filter holder 20 may be screwed to the housing 1.
  • the rotation stop pin 1 d is provided in the housing 1 and the filter holder 20 is incorporated in the housing 1.
  • the filter holder 20 may be fixed by the rotation stop pin 1d (the rotation stop pin 1d may be passed through the hole 20a provided in the filter holder 20).
  • the wavelength combining / splitting filters 9 and 10 and the light wavelength band limiting filters 11 and 12 are attached to the filter mounting surfaces 21, 22, 26 and 23 of the filter holder 20.
  • the wave filters 9 and 10 and the light wavelength band limiting filters 11 and 12 are attached to the filter mounting surfaces 21, 22, 26 and 23, if the adhesive is used in excess, the excess adhesive The light paths 24 and 25 may be blocked or filters may float. Therefore, as shown in FIG. 9, the counterbore 29 may be provided on the filter mounting surfaces 21, 22, 26, 23 of the filter holder 20 so that excess adhesive may flow into the counterbore 29. By flowing the excess adhesive into the recess 29, a uniform adhesive thickness can be obtained.
  • one optical transmission module and two optical reception modules are mounted on the housing 1
  • two or more optical transmission modules and three or more optical reception modules are shown. May be mounted on the housing 1.
  • three or more wavelength multiplexing / demultiplexing filters and optical wavelength band limiting filters are also mounted.
  • one filter holder 20 is incorporated in the housing 1.
  • the number of light transmitting modules and light receiving modules is increased, the number of filters is also increased in proportion thereto.
  • the effects similar to those of the first embodiment can be achieved by connecting the plurality of filter holders 20 and incorporating them into the housing 1 as an integral body.
  • Second Embodiment 10 and 11 are block diagrams showing a filter holder 20 incorporated in a housing 1 of an optical transmission / reception module according to a second embodiment of the present invention, and in the figures, the same reference numerals as in FIGS. The description is omitted because However, the filter holder 20 of FIG. 10 is a type to which three filters are attached, and the filter holder 20 of FIG. 11 is a type to which four filters are attached.
  • the width of at least one side of the concave portion 31 is equal to the width of the wavelength multiplexing / demultiplexing filter 9, and is applied to the filter mounting surface 21 of the wavelength multiplexing / demultiplexing filter 9 in the filter holder 20.
  • the width of at least one side of the recess 32 is equal to the width of the wavelength multiplexing / demultiplexing filter 10, and the recess 32 is provided on the filter attachment surface 22 of the wavelength multiplexing / demultiplexing filter 10 in the filter holder 20.
  • the width of at least one side of the recess 33 is equal to the width of the light wavelength band limiting filter 12, and the recess 33 is provided on the filter mounting surface 23 of the light wavelength band limiting filter 12 in the filter holder 20.
  • the width of at least one side of the recess 34 is equal to the width of the light wavelength band limiting filter 11, and the recess 34 is provided on the filter mounting surface 26 of the light wavelength band limiting filter 11 in the filter holder 20.
  • the wavelength multiplexing / demultiplexing filters 9 and 10 and the light wavelength band limiting filters 11 and 12 are attached to the filter mounting surfaces 21, 22, 26 and 23 of the filter holder 20.
  • the width of at least one side of the filter mounting surfaces 21, 22, 26, and 23 of the filter holder 20 is equal to the width of the wavelength multiplexing / demultiplexing filters 9 and 10 and the light wavelength band limiting filters 11 and 12.
  • Certain recessed portions 31, 32, 34, 33 may be provided.
  • the wavelength multiplexing / demultiplexing filters 9, 10 and the light wavelength with respect to the filter mounting surfaces 21, 22, 26, 23 Since the positioning of the band limiting filters 11 and 12 is highly accurate, the relative position between the filters is determined more accurately. As a result, it is possible to secure the desired light wavelength band limiting performance without using a complex parallel optical system and without using a high-level alignment technology in a diffusion optical system.
  • the wavelength multiplexing / demultiplexing filters 9, 10 and the light wavelength band limiting filter 11 As the mounting position of 12 becomes clear, the assemblability is improved, and an inexpensive optical transceiver module can be obtained.
  • the filter mounting surfaces 21, 22, 26, 23 of the filter holder 20 are provided with the recesses 31, 32, 34, 33, but the recesses 31, 32, 34, 33
  • convex portions whose width at least one side is equal to the widths of the wavelength multiplexing / demultiplexing filters 9 and 10 and the light wavelength band limiting filters 11 and 12 are attached to the filter mounting surfaces 21, 22, 26 and 23 of the filter holder 20. It may be applied.
  • the present invention is suitable for those in which it is necessary to secure desired optical wavelength band limiting performance when the optical transmission / reception module is mounted on the subscriber-side optical line termination device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

 波長合分波フィルタ9,10及び光波長帯域制限フィルタ11,12を取り付けるフィルタ取付面21,22,26,23が施され、かつ、そのフィルタ取付面に光信号を導く穴が施されているフィルタホルダ20が筐体1に組み込まれ、その波長合分波フィルタ9,10及び光波長帯域制限フィルタ11,12がフィルタホルダ20に施されているフィルタ取付面21,22,26,23に取り付けられているように構成する。

Description

光送受信モジュール
 この発明は、FTTB(Fiber To The Building)などの光加入者システムや、FTTH(Fiber To The Home)等で、最大伝送速度1ギガビット/秒もしくは2.5ギガビット/秒の伝送速度のインターネットサービスを加入者に提供する光加入者アクセスネットワークシステムであるGEPONシステム(Gigabit Ethernet Passive Optical Network System/Ethernetは登録商標(以下、省略して記載))を構成する加入者側光回線終端装置(ONU:Optical Network Unit)内に搭載される光送受信モジュールに関するものである。
 GEPONシステムは、センター局に設置される局側光回線終端装置(OLT:Optical Line Terminal)と、伝送路を最大32本に分岐させる光分岐器と、加入者宅内に設置される加入者側光回線終端装置とから構成される。
 GEPONシステムでは、加入者側光回線終端装置から局側光回線終端装置に伝送される上りのデジタルデータ信号には、1310nm帯の波長が割り当てられ、局側光回線終端装置から加入者側光回線終端装置に伝送される下りのデジタルデータ信号(デジタル音声信号を含む)には1490nm帯の波長が割り当てられ、下りの映像用信号(アナログビデオ信号を含む)には1550nm帯の波長が割り当てられる。
 また、GEPONシステムでは、将来の技術革新を見据えて、1565nm以上の波長帯を10ギガビット/秒の速度で伝送するデジタルデータ信号用の波長に割り当てることが従来から検討されており、また、1565nm以上の波長帯は、局側光回線終端装置と加入者側光回線終端装置の間を接続している伝送路光ファイバの断線を調査する光波長帯としても利用されている。
 このように、GEPONシステムでは、複数の波長が割り当てられる波長多重方式(WDM:Wavelength Division Multiplexing)を使用して、一本の光ファイバで上り波長と下り波長を伝送する一芯双方向光通信を行うものである。
 ただし、GEPONシステムでは、加入者側光回路終端装置が、下りのデジタルデータ信号の波長と、下りの映像用信号の波長との間で、混信(クロストーク)を招くことがないようにする目的で、混信防止用の光波長帯域制限フィルタを具備する必要がある。
 即ち、加入者側光回路終端装置に搭載される光送受信モジュールが混信防止用の光波長帯域制限フィルタを具備する必要がある。
 光波長帯域制限フィルタの光波長帯域制限性能は、一般的に、フィルタへの光入射角度依存性が大きい。
 即ち、光入射角度成分が多くなると、それぞれの光入射角度成分に応じた重ね合わせの光波長帯域制限性能となる。
 特に、受信波長帯同士の波長間隔が狭い場合、本来的には、通過させたい波長帯の光信号を阻止してしまう一方、制限したい波長帯を通過させてしまって、光波長帯域制限性能を十分に発揮することができない。
 このため、光受信信号の混信(クロストーク)の要求性能が高い光波長帯域制限フィルタは、光入射角度成分を少なくすることができる平行光学系で使用されることが多く、拡散光学系で使用されることは少ない。ただし、平行光学系は、後述するように、構成が複雑である。
 光波長帯域制限フィルタへの光入射角度は、光ファイバとの取り付け角度によるズレ、波長合分波フィルタ(WDMF:Wavelength Division Multiplexing Filter)との取り付け角度によるズレ、光波長帯域制限フィルタ自体の取り付け角度によるズレなどに依存性している。
 なお、光波長帯域制限フィルタへの光入射角度を測定することは不可能であるため、構造設計における設計保証範囲内での角度ズレ量を考慮して、光送受信モジュールの設計を行う必要がある。
 GEPONシステムでは、上述したように、加入者側光回路終端装置に搭載される光送受信モジュールが混信防止用の光波長帯域制限フィルタを具備する必要があるが、以下の特許文献1に開示されている光送受信モジュールでは、波長合分波フィルタを用いて、複数の波長の光信号を分離多重することで、一芯双方向光通信を実現している。
 しかし、この光送受信モジュールでは、単に波長合分波フィルタと光ファイバの間にレンズ結合光学素子が接続されているだけであるため、下りのデジタルデータ信号の光波長及び映像用信号の光波長の近傍に隣接する光波長が存在するGEPONシステムには適用することができない。
 光波長帯域制限フィルタの光波長帯域制限性能を保持して、光受信信号の混信(クロストーク)を防止するには、光送受信モジュールの内部を平行光学系(コリメート光学系)に変換するコリメーティング光学機器等を設置して、平行光学系で光波長帯域制限フィルタを使用すれば、光波長帯域制限フィルタの光波長帯域性能を発揮することができる。
 しかしながら、平行光学系では、部品点数が増えて、複雑な構成を取ることが問題となる。
 また、拡散光学系において、光波長帯域制限フィルタへの光入射角度を高精度で管理することができれば、光波長帯域制限性能を向上させることは可能である。
 しかしながら、光入射角度を調整するには、高度な調芯技術が必要である。
特表2003-524789号公報
 従来の光送受信モジュールは以上のように構成されているので、コリメーティング光学機器を設置して、平行光学系を適用すれば、光波長帯域制限フィルタの十分な光波長帯域制限性能を確保することが容易であるが、部品点数が多くなり、構成が複雑になってしまう課題があった。
 一方、拡散光学系において、光波長帯域制限フィルタへの光入射角度を高精度で管理することができれば、光波長帯域制限性能を向上させることが可能であるが、光入射角度を調整するには、高度な調芯技術が必要となる課題があった。
 この発明は上記のような課題を解決するためになされたもので、複雑な平行光学系を用いることなく、また、拡散光学系において、高度な調芯技術を用いることなく、所望の光波長帯域制限性能を確保することができる光送受信モジュールを得ることを目的とする。
 この発明に係る光送受信モジュールは、波長合分波フィルタ及び光波長帯域制限フィルタを取り付ける取付面が施され、かつ、その取付面に光信号を導く穴が施されているフィルタホルダが筐体に組み込まれ、その波長合分波フィルタ及び光波長帯域制限フィルタが上記フィルタホルダに施されている取付面に取り付けられているようにしたものである。
 この発明によれば、波長合分波フィルタ及び光波長帯域制限フィルタを取り付ける取付面が施され、かつ、その取付面に光信号を導く穴が施されているフィルタホルダが筐体に組み込まれ、その波長合分波フィルタ及び光波長帯域制限フィルタが上記フィルタホルダに施されている取付面に取り付けられているように構成したので、各フィルタ間の相対位置が高精度に決まるようになり、その結果、複雑な平行光学系を用いることなく、また、拡散光学系において、高度な調芯技術を用いることなく、所望の光波長帯域制限性能を確保することができる効果がある。
この発明の実施の形態1による光送受信モジュールを示す構成図である。 この発明の実施の形態1による光送受信モジュールの筐体に組み込まれるフィルタホルダを示す構成図である。 この発明の実施の形態1による光送受信モジュールの筐体に組み込まれるフィルタホルダを示す構成図である。 筐体に対するフィルタホルダの組み込み方法を示す説明図である。 真上から見たフィルタホルダを示す説明図である。 筐体に対するフィルタホルダの組み込み方法を示す説明図である。 筐体に対するフィルタホルダのネジ止めを示す説明図である。 筐体に設けられている回転止めピンによるフィルタホルダの固定を示す説明図である。 さぐり部が設けられているフィルタ取付面を示す説明図である。 この発明の実施の形態2による光送受信モジュールの筐体に組み込まれるフィルタホルダを示す構成図である。 この発明の実施の形態2による光送受信モジュールの筐体に組み込まれるフィルタホルダを示す構成図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1はこの発明の実施の形態1による光送受信モジュールを示す構成図である。図1の光送受信モジュールは、加入者側光回線終端装置に実装される装置である。
 図1において、筐体1は光送受信モジュールの構成部品である光送信モジュール2、光受信モジュール3,4などを接着や溶接等の手段で実装し、フィルタホルダ20(図2及び図3を参照)が組み込まれる。
 光送信モジュール2は上りのデジタルデータ信号である電気信号を1310nm帯の波長の光信号に変換して、その光信号を集光レンズ8に出力するモジュールである。
 集光レンズ8は光送信モジュール2から出力された光信号を集光して、その光信号を波長合分波フィルタ9に出力する部材である。
 光受信モジュール3は波長合分波フィルタ9により反射された光信号のうち、光波長帯域制限フィルタ11を通過してきた光信号(下りのデジタルデータ信号である1490nm帯の波長の光信号)を受信して、その光信号を電気信号に変換するモジュールである。
 光受信モジュール4は波長合分波フィルタ10により反射された光信号のうち、光波長帯域制限フィルタ12を通過してきた光信号(下りの映像用信号である1550nm帯の波長の光信号)を受信して、その光信号を電気信号に変換するモジュールである。
 図1では、光送信モジュール2により送信される光信号が1310nm帯の波長の光信号、光受信モジュール3により受信される光信号が1490nm帯の波長の光信号、光受信モジュール4により受信される光信号が1550nm帯の波長の光信号である例を示しているが、これは一例に過ぎず、それぞれの波長帯の光信号が他の波長帯の光信号であってもよいことは言うまでもない。
 ファイバフェルール5は端面が斜めにカットされており(例えば、ファイバフェルール5の端面は8度程度の斜めカットが施されている)、図中、波長合分波フィルタ10の右隣に固定されている。
 光ファイバ6は一端がコネクタ7と接続されて、他端がファイバフェルール5と接続されており、波長合分波フィルタ10を透過してきた1310nm帯の波長の光信号を伝送してコネクタ7側に出力する一方、コネクタ7側から入射された1490nm帯の波長の光信号(局側光回線終端装置から送信された光信号)と、1550nm帯の波長の光信号(局側光回線終端装置から送信された光信号)とを伝送して波長合分波フィルタ10側に出力する光伝送路である。
 コネクタ7は光ファイバ6の一端が接続され、かつ、シングルモードファイバの一端が接続される接続部材である。なお、シングルモードファイバの他端は、局側光回線終端装置と接続されている。
 波長合分波フィルタ9は光送信モジュール2から送信された1310nm帯の波長の光信号を波長合分波フィルタ10側に透過させる一方、波長合分波フィルタ10を透過してきた1490nm帯の波長の光信号を光受信モジュール3側に反射させる波長分離多重フィルタである。
 波長合分波フィルタ10は波長合分波フィルタ9を透過してきた1310nm帯の波長の光信号をファイバフェルール5の端面側に透過させるとともに、ファイバフェルール5の端面から出射された1490nm帯の波長の光信号を波長合分波フィルタ9側に透過させる一方、ファイバフェルール5の端面から出射された1550nm帯の波長の光信号を光受信モジュール4側に反射させる波長分離多重フィルタである。
 光波長帯域制限フィルタ11は波長合分波フィルタ9と光受信モジュール3の間に設置され、通過帯が1490nm帯の波長に設定されているフィルタである。
 光波長帯域制限フィルタ12は波長合分波フィルタ10と光受信モジュール4の間に設置され、通過帯が1550nm帯の波長に設定されているフィルタである。
 フィルタホルダ20は波長合分波フィルタ9,10及び光波長帯域制限フィルタ11,12を取り付ける取付面が施され(図2のフィルタホルダ20では、光波長帯域制限フィルタ11を取り付ける取付面が施されていないが、図3のフィルタホルダ20では、光波長帯域制限フィルタ11を取り付ける取付面も施されている)、かつ、その取付面に光信号を導く穴が施されている部材であり、フィルタホルダ20は筐体1に組み込まれる。
 図2はこの発明の実施の形態1による光送受信モジュールの筐体1に組み込まれるフィルタホルダ20を示す構成図である。
 図2において、フィルタ取付面21は波長合分波フィルタ9を取り付ける取付面である。
 フィルタ取付面22は波長合分波フィルタ10を取り付ける取付面である。
 フィルタ取付面23は光波長帯域制限フィルタ12を取り付ける取付面である。
 光通路24は光送信モジュール2から送信された1310nm帯の波長の光信号を波長合分波フィルタ9が取り付けられるフィルタ取付面21に導くために施されている穴である。
 光通路25はファイバフェルール5の端面から出射された1490nm帯の波長の光信号及び1550nm帯の波長の光信号を波長合分波フィルタ10が取り付けられるフィルタ取付面22に導くとともに、波長合分波フィルタ10により反射された1550nm帯の波長の光信号を光波長帯域制限フィルタ12が取り付けられるフィルタ取付面23に導くために施されている穴である。
 また、光通路25は波長合分波フィルタ10を透過した1310nm帯の波長の光信号をファイバフェルール5の端面に導くための穴でもある。
 ただし、図2のフィルタホルダ20は、3枚のフィルタを取り付けるものであるため、光波長帯域制限フィルタ11を取り付けることができない。
 このため、光波長帯域制限フィルタ11を実装するには、例えば、筐体1もしくは光受信モジュール3に接着や溶接等の手段で固定する必要があるので、図2のフィルタホルダ20は、光波長帯域制限フィルタ11を実装する必要がある光送受信モジュールにはあまり適していない(図2のフィルタホルダ20は、光波長帯域制限フィルタ11を実装する必要がない光送受信モジュールに適している)。
 これに対して、図3に示すフィルタホルダ20は、4枚のフィルタを取り付けるものであり、光波長帯域制限フィルタ11も取り付けることができるため、光波長帯域制限フィルタ11を実装する必要がある光送受信モジュールに適している。
 図3において、フィルタ取付面26は光波長帯域制限フィルタ11を取り付ける取付面である。
 ここで、筐体1に対するフィルタホルダ20の組み込み方法を説明する。
 図4は筐体1に対するフィルタホルダ20の組み込み方法を示す説明図であり、図5は真上から見たフィルタホルダ20を示す説明図である。
 図5において、面27はフィルタホルダ20に施されている光通路24の端部である。
 面28はファイバフェルール5を挿入するための穴が施されているとともに光通路25の端部である。
 まず、筐体1の一つの面(図4の例では、筐体1の上面)には、筒状の穴1aが施されており、また、筐体1の内部には、穴1aの直径より一回り小さい同心円状の穴1bが施されている。ただし、穴1aは、図4に示すように、下部ほど直径が小さく、傾斜部が施されている。
 直径が異なる2つの穴1a,1bによって、筐体1の内部に段部が形成されるため、2つの穴1a,1bの形状は、概ねボルトに似たものとなる。
 フィルタホルダ20は、筐体1に施されている穴1a,1bに組み込むものであるため(図4の例では、筐体1の上部から下方向にフィルタホルダ20を圧入している)、フィルタホルダ20の形状は、2つの穴1a,1bの形状に合わせて形成されている。
 即ち、フィルタホルダ20の上部は、斜面構造を有する円盤形状をなしており、フィルタホルダ20の下部は、筒形状をなしている。
 筐体1に対するフィルタホルダ20の圧入は、フィルタホルダ20の上部を形成している円盤形状の下端部が、筐体1の内部の段部に当たる位置まで行われる。
 即ち、フィルタホルダ20の上部を形成している円盤形状の下端部が、筐体1の内部の段部に当たった位置で止まり、フィルタホルダ20の位置が決まる。
 また、フィルタホルダ20の上部における円盤形状と、筐体1に施されている穴1aには、図5に示すように、円周上の一部にDカット(同一長さの直線部分)が設けられている。
 このため、フィルタホルダ20を筐体1に圧入する際、双方のDカットが自然にならう位置で、互いの位置が決まるため、フィルタホルダ20を高精度に筐体1に組み込むことができる。
 また、フィルタホルダ20の上部における円盤形状と、筐体1に施されている穴1aには、上述したように、斜面部が施されているので、フィルタホルダ20を筐体1に圧入する際、双方の傾斜部同士がならう位置で高精度に位置が決まる。
 以上で明らかなように、この実施の形態1によれば、波長合分波フィルタ9,10及び光波長帯域制限フィルタ11,12を取り付けるフィルタ取付面21,22,26,23が施され、かつ、そのフィルタ取付面に光信号を導く穴が施されているフィルタホルダ20が筐体1に組み込まれ、その波長合分波フィルタ9,10及び光波長帯域制限フィルタ11,12がフィルタホルダ20に施されているフィルタ取付面21,22,26,23に取り付けられているように構成したので、各フィルタ間の相対位置が高精度に決まるようになり、その結果、複雑な平行光学系を用いることなく、また、拡散光学系において、高度な調芯技術を用いることなく、所望の光波長帯域制限性能を確保することができる効果を奏する。
 即ち、この実施の形態1によれば、光ファイバ6により伝送される光信号と密接に関連する全てのフィルタが、1つのフィルタホルダ20に取り付けられるため、各フィルタ間の相対角度の精度を高めることができる。
 また、フィルタホルダ20を筐体1に組み込むようにしているので、個々のフィルタと筐体1の関係で位置決め精度を高めるのではなく、1つのフィルタホルダ20と筐体1の関係で位置決め精度を高めれば、各フィルタ間の相対位置が高精度に決まるとともに、各フィルタと光ファイバの相対位置が高精度に決まるようになる。
 なお、この実施の形態1では、フィルタホルダ20の上部における円盤形状と、筐体1に施されている穴1aには、円周上の一部にDカット(同一長さの直線部分)が設けられているものを示したが、Dカットの代わりに、フィルタホルダの円周上の一部に切り欠き部を設け、それと同一形状の突起部が筐体に設けられていてもよい。
 この場合も、フィルタホルダ20を筐体1に圧入する際、フィルタホルダの切り欠き部が自然にならう位置で、互いの位置が決まるため、フィルタホルダ20を高精度に筐体1に組み込むことができる。
 また、この実施の形態1では、筐体1の上面に穴1aが施され、筐体1の内部に穴1bが施されているものを示したが、図6に示すように、筐体1の下面にも穴1c(フィルタホルダ20の下部における筒形状と嵌合する穴)を施すことで、フィルタホルダ20が筐体1に圧入されたとき、フィルタホルダ20の下部における筒形状が、筐体1の下面の穴1cと嵌合するようにしてもよい。
 この場合、フィルタホルダ20の軸の傾きを抑制することができる。
 また、この実施の形態1では、フィルタホルダ20を筐体1に圧入することで、フィルタホルダ20を筐体1に組み込むものについて示したが、図7に示すように、筐体1に対するフィルタホルダ20の位置決めをした後に、フィルタホルダ20を筐体1にネジ止めするようにしてもよい。
 また、このとき、筐体1に対するフィルタホルダ20の高精度の位置決めを可能にするため、図8に示すように、筐体1に回転止めピン1dを設け、フィルタホルダ20を筐体1に組み込む際、その回転止めピン1dでフィルタホルダ20を固定する(フィルタホルダ20に設けられている穴20aに回転止めピン1dを通す)ようにしてもよい。
 この実施の形態1では、波長合分波フィルタ9,10及び光波長帯域制限フィルタ11,12をフィルタホルダ20のフィルタ取付面21,22,26,23に取り付けるものについて示したが、波長合分波フィルタ9,10及び光波長帯域制限フィルタ11,12をフィルタ取付面21,22,26,23に取り付ける際、接着剤で固定する場合、接着剤の量が多すぎると、余剰の接着剤が光通路24,25を塞いでしまったり、フィルタが浮いてしまったりすることがある。
 そこで、図9に示すように、フィルタホルダ20のフィルタ取付面21,22,26,23に、さぐり部29を設けておき、余剰の接着剤がさぐり部29に流れ込むようにしてもよい。
 余剰の接着剤がさぐり部29に流れ込むことで、均一な接着厚を得ることができる。
 この実施の形態1では、1個の光送信モジュールと2個の光受信モジュールが筐体1に実装されているものついて示したが、2個以上の光送信モジュールと3個以上の光受信モジュールが筐体1に実装されていてもよい。
 なお、2個以上の光送信モジュールと3個以上の光受信モジュールが筐体1に実装される場合には、波長合分波フィルタ及び光波長帯域制限フィルタについても3個以上実装される。
 この実施の形態1では、一つのフィルタホルダ20を筐体1に組み込むものについて示したが、光送信モジュールや光受信モジュールの個数が増えた場合は、それに比例してフィルタの枚数も増える。
 この場合、複数のフィルタホルダ20を連結して、一体物として、筐体1に組み込むことで、この実施の形態1と同様の効果を奏することができる。
実施の形態2.
 図10及び図11はこの発明の実施の形態2による光送受信モジュールの筐体1に組み込まれるフィルタホルダ20を示す構成図であり、図において、図2及び図3と同一符号は同一又は相当部分を示すので説明を省略する。
 ただし、図10のフィルタホルダ20は3枚のフィルタを取り付けるタイプであり、図11のフィルタホルダ20は4枚のフィルタを取り付けるタイプである。
 凹部31は少なくとも一辺の幅が、波長合分波フィルタ9の幅と同等であり、フィルタホルダ20における波長合分波フィルタ9のフィルタ取付面21に施されている。
 凹部32は少なくとも一辺の幅が、波長合分波フィルタ10の幅と同等であり、フィルタホルダ20における波長合分波フィルタ10のフィルタ取付面22に施されている。
 凹部33は少なくとも一辺の幅が、光波長帯域制限フィルタ12の幅と同等であり、フィルタホルダ20における光波長帯域制限フィルタ12のフィルタ取付面23に施されている。
 凹部34は少なくとも一辺の幅が、光波長帯域制限フィルタ11の幅と同等であり、フィルタホルダ20における光波長帯域制限フィルタ11のフィルタ取付面26に施されている。
 上記実施の形態1では、波長合分波フィルタ9,10及び光波長帯域制限フィルタ11,12をフィルタホルダ20のフィルタ取付面21,22,26,23に取り付けるものについて示したが、図10及び図11に示すように、フィルタホルダ20のフィルタ取付面21,22,26,23に、少なくとも一辺の幅が波長合分波フィルタ9,10及び光波長帯域制限フィルタ11,12の幅と同等である凹部31,32,34,33を施すようにしてもよい。
 フィルタホルダ20のフィルタ取付面21,22,26,23に凹部31,32,34,33を施すことで、フィルタ取付面21,22,26,23に対する波長合分波フィルタ9,10及び光波長帯域制限フィルタ11,12の位置決めが高精度になるため、各フィルタ間の相対位置が更に高精度に決まる。その結果、複雑な平行光学系を用いることなく、また、拡散光学系において、高度な調芯技術を用いることなく、所望の光波長帯域制限性能を確保することができる効果を奏する。
 また、フィルタホルダ20のフィルタ取付面21,22,26,23に凹部31,32,34,33を施すことで、筐体1に対する波長合分波フィルタ9,10及び光波長帯域制限フィルタ11,12の取り付け位置が明確になるため、組立性が向上し、安価な光送受信モジュールを得ることができる。
 この実施の形態2では、フィルタホルダ20のフィルタ取付面21,22,26,23に凹部31,32,34,33が施されているものについて示したが、その凹部31,32,34,33の代わりに、少なくとも一辺の幅が波長合分波フィルタ9,10及び光波長帯域制限フィルタ11,12の幅と同等である凸部をフィルタホルダ20のフィルタ取付面21,22,26,23に施すようにしてもよい。
 この発明は、光送受信モジュールを加入者側光回線終端装置に搭載する際、所望の光波長帯域制限性能を確保する必要があるものに適している。

Claims (2)

  1.  電気信号を光信号に変換して、上記光信号を送信する光送信モジュールと、光信号を受信して、上記光信号を電気信号に変換する光受信モジュールと、光ファイバと接続されているファイバフェルールと、上記光送信モジュールから送信された光信号を上記ファイバフェルールの端面側に透過させる一方、上記ファイバフェルールの端面から出射された光信号を上記光受信モジュール側に反射させる波長合分波フィルタと、上記波長合分波フィルタと上記光受信モジュールの間に設置される光波長帯域制限フィルタと、上記光送信モジュール、上記光受信モジュール、上記波長合分波フィルタ、上記光波長帯域制限フィルタ及び上記ファイバフェルールを実装する筐体とを備えた光送受信モジュールにおいて、上記波長合分波フィルタ及び上記光波長帯域制限フィルタを取り付ける取付面が施され、かつ、上記取付面に光信号を導く穴が施されているフィルタホルダが上記筐体に組み込まれ、上記波長合分波フィルタ及び上記光波長帯域制限フィルタが上記フィルタホルダに施されている取付面に取り付けられていることを特徴とする光送受信モジュール。
  2.  フィルタホルダにおける波長合分波フィルタ及び光波長帯域制限フィルタの取付面に凹部又は凸部が施されており、上記凹部又は上記凸部の少なくとも一辺の幅が、上記波長合分波フィルタ及び上記光波長帯域制限フィルタの幅と同等であることを特徴とする請求項1記載の光送受信モジュール。
PCT/JP2009/002435 2009-06-01 2009-06-01 光送受信モジュール WO2010140186A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2009554648A JP4578569B1 (ja) 2009-06-01 2009-06-01 光送受信モジュール
US13/203,761 US8655181B2 (en) 2009-06-01 2009-06-01 Optical transmission/reception module
CN200980159623.0A CN102449518B (zh) 2009-06-01 2009-06-01 光发送接收模块
PCT/JP2009/002435 WO2010140186A1 (ja) 2009-06-01 2009-06-01 光送受信モジュール
KR1020117027274A KR101256379B1 (ko) 2009-06-01 2009-06-01 광 송수신 모듈
TW098125325A TWI389474B (zh) 2009-06-01 2009-07-28 Optical transceiver module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/002435 WO2010140186A1 (ja) 2009-06-01 2009-06-01 光送受信モジュール

Publications (1)

Publication Number Publication Date
WO2010140186A1 true WO2010140186A1 (ja) 2010-12-09

Family

ID=43297335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002435 WO2010140186A1 (ja) 2009-06-01 2009-06-01 光送受信モジュール

Country Status (6)

Country Link
US (1) US8655181B2 (ja)
JP (1) JP4578569B1 (ja)
KR (1) KR101256379B1 (ja)
CN (1) CN102449518B (ja)
TW (1) TWI389474B (ja)
WO (1) WO2010140186A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130183044A1 (en) * 2011-12-21 2013-07-18 Skorpios Technologies, Inc. Tunable bi-directional transceiver
JP2016156849A (ja) * 2015-02-23 2016-09-01 住友電工デバイス・イノベーション株式会社 光モジュール
US10200131B2 (en) 2012-08-06 2019-02-05 Skorpios Technologies, Inc. Method and system for the monolithic integration of circuits for monitoring and control of RF signals

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5040984B2 (ja) * 2009-11-25 2012-10-03 三菱電機株式会社 光送受信モジュール
CN101770054B (zh) * 2010-01-28 2012-07-04 武汉优信光通信设备有限责任公司 光信号管理用光器件模块式封装v型槽主体及其光器件模块
KR101342097B1 (ko) * 2011-10-26 2013-12-18 한국전자통신연구원 다채널 광모듈
US9337933B2 (en) 2012-10-19 2016-05-10 Skorpios Technologies, Inc. Integrated optical network unit
US9513448B2 (en) * 2014-04-11 2016-12-06 Innolight Technology (Suzhou) Ltd. Optical assembly
US11664902B2 (en) * 2019-08-19 2023-05-30 Nokia Solutions And Networks Oy Planar assemblies for optical transceivers
CN114200601B (zh) * 2020-09-18 2023-01-24 青岛海信宽带多媒体技术有限公司 一种光模块

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10111439A (ja) * 1996-09-30 1998-04-28 Siemens Ag オプトエレクトロニクスモジュール
JP2000258643A (ja) * 1999-03-05 2000-09-22 Kyocera Corp 光モジュール
JP2003270496A (ja) * 2002-03-19 2003-09-25 Matsushita Electric Ind Co Ltd 光送受信モジュール及びその実装方法、並びに光送受信装置
JP2003322770A (ja) * 2002-05-07 2003-11-14 Matsushita Electric Ind Co Ltd 光送受信モジュール及びその実装方法
JP2006285087A (ja) * 2005-04-04 2006-10-19 Sumitomo Electric Ind Ltd 双方向光モジュール
JP2009015298A (ja) * 2007-06-29 2009-01-22 Taida Electronic Ind Co Ltd 光学機械装置及びその光伝送素子

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0165495B1 (ko) * 1995-03-21 1999-04-15 김광호 광통신용 광합분파기 구조
JP3701775B2 (ja) * 1997-07-09 2005-10-05 アルプス電気株式会社 光送受信モジュール
WO1999057594A1 (de) * 1998-04-30 1999-11-11 Infineon Technologies Ag Bidirektionales optisches modul für mehrkanal-anwendung
JP2003307656A (ja) 2002-04-17 2003-10-31 Alps Electric Co Ltd 光送受信用モジュール
KR100527160B1 (ko) * 2003-07-29 2005-11-08 윤현재 양방향 광 모듈 팩키지
KR100566256B1 (ko) * 2004-02-13 2006-03-29 삼성전자주식회사 양방향 광송수신 모듈
KR100640421B1 (ko) * 2004-12-28 2006-10-31 삼성전자주식회사 다파장용 광소자 모듈
JP4809634B2 (ja) 2005-06-13 2011-11-09 Nttエレクトロニクス株式会社 発光モジュール及び一芯双方向光通信モジュール
JP5125235B2 (ja) 2006-06-26 2013-01-23 住友電気工業株式会社 光送受信装置および光送受信モジュール
WO2008098214A1 (en) * 2007-02-08 2008-08-14 Finisar Corporation Single piece triplexer housing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10111439A (ja) * 1996-09-30 1998-04-28 Siemens Ag オプトエレクトロニクスモジュール
JP2000258643A (ja) * 1999-03-05 2000-09-22 Kyocera Corp 光モジュール
JP2003270496A (ja) * 2002-03-19 2003-09-25 Matsushita Electric Ind Co Ltd 光送受信モジュール及びその実装方法、並びに光送受信装置
JP2003322770A (ja) * 2002-05-07 2003-11-14 Matsushita Electric Ind Co Ltd 光送受信モジュール及びその実装方法
JP2006285087A (ja) * 2005-04-04 2006-10-19 Sumitomo Electric Ind Ltd 双方向光モジュール
JP2009015298A (ja) * 2007-06-29 2009-01-22 Taida Electronic Ind Co Ltd 光学機械装置及びその光伝送素子

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130183044A1 (en) * 2011-12-21 2013-07-18 Skorpios Technologies, Inc. Tunable bi-directional transceiver
US9287984B2 (en) * 2011-12-21 2016-03-15 Skorpios Technologies, Inc. Tunable bi-directional transceiver
US10200131B2 (en) 2012-08-06 2019-02-05 Skorpios Technologies, Inc. Method and system for the monolithic integration of circuits for monitoring and control of RF signals
JP2016156849A (ja) * 2015-02-23 2016-09-01 住友電工デバイス・イノベーション株式会社 光モジュール
WO2016136693A1 (ja) * 2015-02-23 2016-09-01 住友電工デバイス・イノベーション株式会社 ハウジングに対して受動的に調芯された波長分割フィルタを有する光モジュール
US10094992B2 (en) 2015-02-23 2018-10-09 Sumitomo Electric Device Innovations, Inc. Optical module with wavelength dividing filter passively aligned with respect to housing

Also Published As

Publication number Publication date
TW201044804A (en) 2010-12-16
JPWO2010140186A1 (ja) 2012-11-15
KR20120024611A (ko) 2012-03-14
US8655181B2 (en) 2014-02-18
TWI389474B (zh) 2013-03-11
US20110311229A1 (en) 2011-12-22
KR101256379B1 (ko) 2013-04-25
CN102449518A (zh) 2012-05-09
CN102449518B (zh) 2014-07-02
JP4578569B1 (ja) 2010-11-10

Similar Documents

Publication Publication Date Title
WO2010140186A1 (ja) 光送受信モジュール
WO2010140185A1 (ja) 光送受信モジュール及び光送受信モジュールの製造方法
US7991290B2 (en) Optical prism and optical transceiver module for optical communications
US9372315B2 (en) Micro bi-directional optical sub-assembly
EP1816500B1 (en) Optical demultiplexing device
US7421157B2 (en) Optical demultiplexing device
US8805191B2 (en) Optical transceiver including optical fiber coupling assembly to increase usable channel wavelengths
JP4886819B2 (ja) 3波長多重光送受信モジュール
JP5040984B2 (ja) 光送受信モジュール
JP2003344709A (ja) ファイバ型光モジュール
JP2012189948A (ja) 光送受信モジュール
US20090257714A1 (en) Multimode Reflective Tap
US7376297B2 (en) Optical device
KR101741039B1 (ko) 양방향 광송수신 모듈
JP2010010155A (ja) 光モジュール
WO2010050081A1 (ja) 光送受信モジュール
KR20190068004A (ko) 광학계 구조를 단순화한 광 서브 어셈블리
US20050094696A1 (en) Compact front facet tap for laser device
JP2009216896A (ja) 一芯双方向光モジュール用サブアセンブリ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980159623.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2009554648

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09845472

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13203761

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 6342/CHENP/2011

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20117027274

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09845472

Country of ref document: EP

Kind code of ref document: A1