WO2010126116A1 - 光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム及び光導波路 - Google Patents

光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム及び光導波路 Download PDF

Info

Publication number
WO2010126116A1
WO2010126116A1 PCT/JP2010/057633 JP2010057633W WO2010126116A1 WO 2010126116 A1 WO2010126116 A1 WO 2010126116A1 JP 2010057633 W JP2010057633 W JP 2010057633W WO 2010126116 A1 WO2010126116 A1 WO 2010126116A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
group
meth
acrylate
forming
Prior art date
Application number
PCT/JP2010/057633
Other languages
English (en)
French (fr)
Inventor
竜也 牧野
俊彦 高崎
雅美 落合
敦之 高橋
Original Assignee
日立化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成工業株式会社 filed Critical 日立化成工業株式会社
Priority to US13/266,857 priority Critical patent/US8787723B2/en
Priority to JP2011511459A priority patent/JP5585578B2/ja
Priority to CN2010800193080A priority patent/CN102414591A/zh
Publication of WO2010126116A1 publication Critical patent/WO2010126116A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1221Basic optical elements, e.g. light-guiding paths made from organic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/06Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/06Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
    • C08F283/065Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals on to unsaturated polyethers, polyoxymethylenes or polyacetals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • C08F290/142Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1433Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds
    • C08G59/1438Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds containing oxygen
    • C08G59/1455Monocarboxylic acids, anhydrides, halides, or low-molecular-weight esters thereof
    • C08G59/1461Unsaturated monoacids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/138Integrated optical circuits characterised by the manufacturing method by using polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/46Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing halogen
    • C08G2650/48Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing halogen containing fluorine, e.g. perfluropolyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/05Polymer mixtures characterised by other features containing polymer components which can react with one another

Definitions

  • the present invention relates to an optical waveguide forming resin composition, an optical waveguide forming resin film, and an optical waveguide.
  • a polymer optical waveguide As an optical transmission line, a polymer optical waveguide has attracted attention because of its ease of processing, low cost, high degree of freedom of wiring, and high density.
  • a rigid type produced on a hard support substrate such as a glass epoxy resin that is supposed to be applied to an opto-electric hybrid substrate
  • a flexible type that does not have a hard support substrate that assumes connection between boards. It is considered preferable.
  • Polymer optical waveguides are required to have high transparency (low optical transmission loss) and high heat resistance from the viewpoint of the usage environment of equipment and component mounting.
  • Resins using (meth) acrylic polymers have been proposed (see Patent Documents 1 to 4).
  • evaluation of environmental reliability for example, light propagation loss after a high-temperature and high-humidity storage test or a temperature cycle test has not been made, and none has been satisfied.
  • the epoxy resin described in Patent Document 1 is excellent in transparency at a wavelength of 850 nm and has heat resistance of about 200 to 280 ° C., there is no description about the evaluation of the environmental reliability described above and has been studied. Absent.
  • the (meth) acrylic polymer described in Patent Document 2 is a film-like optical waveguide material, and has transparency with a light propagation loss of 0.3 dB / cm at a wavelength of 850 nm.
  • specific test results such as light propagation loss after high-temperature and high-humidity storage tests and temperature cycle tests, and it has not been studied.
  • specific test results such as evaluation of heat resistance, for example, light propagation loss after a solder reflow test.
  • the (meth) acrylic polymers described in Patent Documents 3 and 4 are film-like optical waveguide materials, have a light propagation loss of 0.5 dB / cm or less at a wavelength of 850 nm, and are allowed to stand at high temperature and high humidity.
  • the light propagation loss after the test is good, there is no description regarding the evaluation of heat resistance, for example, specific test results such as the light propagation loss after the solder reflow test, and it has not been studied.
  • the polyhydroxy polyether described in Patent Document 5 does not have an ethylenically unsaturated group in the side chain, and a film-like optical waveguide material using this has excellent transparency and heat resistance.
  • evaluation of low flexibility for example, elongation at break, and it has not been studied.
  • the present invention is excellent in transparency, heat resistance, toughness, can form a highly accurate thick film, and has high productivity. It is an object to provide a resin film for forming and an optical waveguide excellent in transparency, environmental reliability, and heat resistance.
  • the present inventors produce an optical waveguide using a resin composition for forming an optical waveguide comprising a polyhydroxy polyether having a specific structure, a polymerizable compound, and a radical polymerization initiator. It has been found that the above problems can be solved.
  • the present invention provides (A) a polyhydroxy polyether having an ethylenically unsaturated group in the side chain and an aromatic ring in the main chain, (B) a polymerizable compound having an ethylenically unsaturated group, and (C ) A resin composition for forming an optical waveguide comprising a radical polymerization initiator, a resin film for forming an optical waveguide, and a core portion formed using the resin composition for forming an optical waveguide or the resin film for forming an optical waveguide,
  • the present invention provides an optical waveguide having excellent properties, environmental reliability, and heat resistance.
  • the present invention is excellent in transparency, heat resistance, and toughness, and can form a highly accurate thick film. It is particularly effective for manufacturing an optical waveguide, and is extremely productive when producing an optical waveguide. It is possible to provide a resin composition for forming an optical waveguide useful for a resin film for forming an optical waveguide having a high height. Moreover, the optical waveguide excellent in transparency, environmental reliability, and heat resistance can be provided by forming an optical waveguide using the optical waveguide forming resin composition and the optical waveguide forming resin film.
  • the resin composition for forming an optical waveguide of the present invention comprises (A) a polyhydroxy polyether having an ethylenically unsaturated group in the side chain and an aromatic ring in the main chain, and (B) a polymerization having an ethylenically unsaturated group. And (C) a radical polymerization initiator.
  • the component (A) may be abbreviated as (A) polyhydroxy polyether.
  • the polyhydroxy polyether having (A) an ethylenically unsaturated group in the side chain and an aromatic ring in the main chain used in the present invention is a bifunctional phenol and a bifunctional epoxy resin, a bifunctional phenol and epichlorohydride.
  • the hydroxyl group is modified with ethylene oxide, propylene oxide, caprolactone, etc. Also included. Furthermore, a polymer in which a carboxyl group or the like is once introduced by utilizing the reactivity of the hydroxyl group of the polyhydroxy polyether and an ethylenically unsaturated group is introduced thereto is also included. By introducing an ethylenically unsaturated group into the side chain of the polyhydroxypolyether, it becomes possible to crosslink with the polymerizable compound having an ethylenically unsaturated group as component (B) during curing, and the resulting cured product is transparent. Heat resistance can be improved without impairing the properties.
  • polyhydroxy polyethers having structural units represented by the following general formulas (1) and (2) are preferable.
  • R 1 represents a hydrogen atom or an organic group having 1 to 20 carbon atoms.
  • the organic group having 1 to 20 carbon atoms include an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, a carbonyl group (meaning —CO—R, where R is a hydrocarbon group), an ester group ( -CO-O-R or -O-CO-R, where R is a hydrocarbon group), and monovalent organic groups such as a carbamoyl group, and further include a hydroxyl group, a halogen atom, an alkyl group Group, cycloalkyl group, aryl group, aralkyl group, carbonyl group, formyl group, ester group, amide group, alkoxy group, aryloxy group, alkylthio group, arylthio group, amino group, silyl group, silyloxy group, etc. Also good. Among these, an alkyl group, a
  • X 1 is not particularly limited as long as it is a divalent group.
  • hydroquinone, resorcinol, catechol, 1,4-naphthalenediol, 1,5-naphthalenediol, 1 Mononuclear bifunctional phenols such as 1,6-naphthalenediol, 1,7-naphthalenediol, groups derived from these organic group substituents and fluorine-containing organic group substituents; 2,2′-biphenol, 4,4′- Binuclear bifunctional phenols such as biphenol, bisphenol A, tetrabromobisphenol A, bisphenol F, bisphenol AD, bisphenol S, bisphenol Z, and fluorene type bisphenol, organic group substituents thereof, and fluorine-containing organic group substituents such as bisphenol AF Examples thereof include a divalent group containing an aromatic ring such as a group derived from an origin.
  • the above-mentioned polynuclear bifunctional phenols, these organic group-substituted products, and groups derived from fluorine-containing organic group-substituted products such as bisphenol AF are preferable.
  • These groups can be used alone or in combination of two or more kinds, and further an alkylene group, a cycloalkylene group, a polyether group, a polysiloxane group, a carbonyl group, an ester group, an amide group, to the extent that heat resistance is not impaired.
  • R 2 to R 18 in the above formula each independently represent a hydrogen atom, a fluorine atom, or an organic group having 1 to 20 carbon atoms.
  • Preferred examples of the organic group having 1 to 20 carbon atoms include those similar to those described as specific examples of R 1 above.
  • Z 1 represents a single bond, oxygen atom, sulfur atom, —CH 2 —, —C (CH 3 ) 2 —, —CF 2 —, —C (CF 3 ) 2 —, —SO 2 —,
  • a represents an integer of 2 to 10.
  • Y 1 represents a single bond or a divalent organic group having 1 to 20 carbon atoms
  • Y 2 represents a divalent organic group having 1 to 20 carbon atoms.
  • examples of the divalent organic group having 1 to 20 carbon atoms include an alkylene group, a cycloalkylene group, a phenylene group, a polyether group, a polysiloxane group, a carbonyl group, an ester group, an amide group, and a urethane group.
  • a divalent organic group which includes a halogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, a carbonyl group, a formyl group, an ester group, an amide group, an alkoxy group, an aryloxy group, and an alkylthio group.
  • Arylthio group silyl group, silyloxy group and the like.
  • the structural unit represented by the general formula (1) expresses transparency and heat resistance, and further has the following general formula having a urethane group and a (meth) acryloyl group from the viewpoint of imparting toughness and improving elongation. More preferably, it is represented by the formula (3).
  • the (meth) acryloyl group refers to a methacryloyl group and / or an acryloyl group.
  • R 36 represents a hydrogen atom or a methyl group.
  • Y 4 is not particularly limited as long as it is a divalent organic group having 1 to 18 carbon atoms.
  • alkylene group, cycloalkylene group, phenylene group, polyether group, polysiloxane group, carbonyl group, ester group Divalent organic groups including amide groups and the like, which further include halogen atoms, alkyl groups, cycloalkyl groups, aryl groups, aralkyl groups, carbonyl groups, formyl groups, ester groups, amide groups, alkoxy groups, It may be substituted with an aryloxy group, an alkylthio group, an arylthio group, a silyl group, a silyloxy group, or the like.
  • X 2 in the above formula (2) is not particularly limited as long as it is a divalent group like X 1.
  • hydroquinone, resorcinol, catechol, 1, 4 represented by the following general formula: -Mononuclear bifunctional phenols such as naphthalenediol, 1,5-naphthalenediol, 1,6-naphthalenediol, 1,7-naphthalenediol, groups derived from these organic group-substituted products, and fluorine-containing organic group-substituted products; Polynuclear bifunctional phenols such as 2,2′-biphenol, 4,4′-biphenol, bisphenol A, tetrabromobisphenol A, bisphenol F, bisphenol AD, bisphenol S, bisphenol Z, fluorene type bisphenol, and organic group substitution products thereof And an aromatic ring such as a group derived from a fluorine-containing organic group-substituted product such as bisphenol AF.
  • Divalent group Divalent group, and the like.
  • these organic group-substituted products and groups derived from fluorine-containing organic group-substituted products such as bisphenol AF are preferable.
  • These groups can be used alone or in combination of two or more kinds, and further an alkylene group, a cycloalkylene group, a polyether group, a polysiloxane group, a carbonyl group, an ester group, an amide group, to the extent that heat resistance is not impaired.
  • R 19 to R 35 each independently represents a hydrogen atom, a fluorine atom, or an organic group having 1 to 20 carbon atoms.
  • the organic group having 1 to 20 carbon atoms those similar to those described as specific examples of R 1 can be preferably used.
  • Z 2 represents a single bond, oxygen atom, sulfur atom, —CH 2 —, —C (CH 3 ) 2 —, —CF 2 —, —C (CF 3 ) 2 —, —SO 2 —,
  • b represents an integer of 2 to 10.
  • Y 3 in the formula (2) represents a single bond or a divalent organic group having 1 to 20 carbon atoms.
  • examples of the divalent organic group having 1 to 20 carbon atoms can be preferably used the same as those described as specific examples of Y 1 and Y 2 described above.
  • the content of the structural unit represented by the general formula (1) is: It is preferably 3 to 70 mol%. If it is 3 mol% or more, the cured product obtained by crosslinking sufficiently with the polymerizable compound having an ethylenically unsaturated group (B) at the time of curing has good heat resistance, and it should be 70 mol% or less. In this case, the crosslinking density does not become too high, and the resulting cured product does not become brittle. From the above viewpoint, the content is more preferably 5 to 60 mol%, particularly preferably 10 to 50 mol%.
  • the content of the structural unit represented by the general formula (2) is preferably 30 to 97 mol%. If it is 30 mol% or more, it does not become too brittle with the polymerizable compound having an ethylenically unsaturated group as component (B) at the time of curing, and the resulting cured product does not become brittle, and if it is 97 mol% or less By sufficiently crosslinking, the resulting cured product has good heat resistance. From the above viewpoint, the content is more preferably 40 to 95 mol%, and particularly preferably 50 to 90 mol%.
  • a polyhydroxy polyether having a skeleton derived from bisphenol A and bisphenol F in the main chain is commercially available, for example, as a phenoxy resin from Toto Kasei Co., Ltd. under the trade name “phenototo YP-70”.
  • the polyhydroxy polyether having an ethylenically unsaturated group in the side chain and an aromatic ring in the main chain is not particularly limited in its synthesis method.
  • a polyhydroxy polyether having an aromatic ring in the main chain Is dissolved in a solvent, and an ethylenically unsaturated isocyanate is added to the hydroxyl group of the polyhydroxypolyether.
  • the carboxyl group has an ethylenically unsaturated group-containing epoxide and an ethylenically unsaturated group-containing oxetane.
  • the ethylenically unsaturated isocyanate used in the synthesis is not particularly limited, and examples thereof include (meth) acryloyloxymethyl isocyanate, 2- (meth) acryloyloxyethyl isocyanate, 2- (meth) acryloyloxyethoxyethyl isocyanate, 1, Examples thereof include 1-bis ((meth) acryloyloxymethyl) ethyl isocyanate.
  • (meth) acryloyloxymethyl isocyanate, 2- (meth) acryloyloxyethyl isocyanate, and 2- (meth) acryloyloxyethoxyethyl isocyanate are preferable from the viewpoints of transparency and heat resistance. These compounds can be used alone or in combination of two or more.
  • the polybasic acid anhydride is not particularly limited, and examples thereof include succinic anhydride, glutaric anhydride, itaconic anhydride, maleic anhydride, citraconic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride.
  • examples include acid, trimellitic anhydride, hexahydrotrimellitic anhydride, and the like.
  • succinic anhydride, glutaric anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, and hexahydrotrimellitic anhydride are preferable from the viewpoints of transparency and heat resistance. These compounds can be used alone or in combination of two or more.
  • the ethylenically unsaturated group-containing epoxide is not particularly limited.
  • glycidyl (meth) acrylate 3,4-epoxybutyl (meth) acrylate, 3,4-epoxyheptyl (meth) acrylate, 6,7-epoxycyclohexylmethyl (meta ) Acrylate is preferred.
  • These compounds can be used alone or in combination of two or more.
  • the oxetane containing an ethylenically unsaturated group is not particularly limited, and examples thereof include (2-ethyl-2-oxetanyl) methyl (meth) acrylate, (2-methyl-2-oxetanyl) methyl (meth) acrylate, 2- ( 2-ethyl-2-oxetanyl) ethyl (meth) acrylate, 2- (2-methyl-2-oxetanyl) ethyl (meth) acrylate, 3- (2-ethyl-2-oxetanyl) propyl (meth) acrylate, 3- (2-methyl-2-oxetanyl) propyl (meth) acrylate and the like.
  • (2-ethyl-2-oxetanyl) methyl (meth) acrylate (2-methyl-2-oxetanyl) methyl (meth) acrylate, 2- (2-ethyl- 2-Oxetanyl) ethyl (meth) acrylate and 2- (2-methyl-2-oxetanyl) ethyl (meth) acrylate are preferred.
  • These compounds can be used alone or in combination of two or more.
  • the ethylenically unsaturated group-containing alcohol is not particularly limited, and examples thereof include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxypropyl-3-phenoxy (meth) acrylate, 3- Examples thereof include chloro-2-hydroxypropyl (meth) acrylate and 2-hydroxybutyl (meth) acrylate.
  • 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxypropyl-3-phenoxy (meth) acrylate, 2-hydroxybutyl (meta) ) Acrylate is preferred. These compounds can be used alone or in combination of two or more.
  • the organic solvent used as the reaction solvent is not particularly limited as long as it is an aprotic solvent capable of dissolving a polyhydroxy polyether having an aromatic ring in the main chain.
  • an aprotic solvent capable of dissolving a polyhydroxy polyether having an aromatic ring in the main chain.
  • Aromatic hydrocarbons such as: diethyl ether, tert-butyl methyl ether, cyclopentyl methyl ether, dibutyl ether and other chain ethers; tetrahydrofuran, 1,4-dioxane and other cyclic ethers; acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc.
  • Ketones such as methyl acetate, ethyl acetate, butyl acetate, and ⁇ -butyrolactone; carbonates such as ethylene carbonate and propylene carbonate; ethylene glycol dimethyl ether, ethylene glycol di Polyhydric alcohol alkyl ethers such as chill ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether; ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, Polyhydric alcohol alkyl ether acetates such as propylene glycol monoethyl ether acetate, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate; N, N-dimethylformamide, N, N-dimethylace
  • the weight average molecular weight of the polyhydroxy polyether having an ethylenically unsaturated group in the side chain and an aromatic ring in the main chain is preferably 1.0 ⁇ 10 3 to 1.0 ⁇ 10 6. .
  • 1.0 ⁇ 10 3 or more the molecular weight is large, the strength of the resin composition is sufficient, and when it is 1.0 ⁇ 10 6 or less, a layer of the photosensitive resin composition is selected by development described later.
  • development is possible with various known developing solutions, and the compatibility with the polymerizable compound having an ethylenically unsaturated group as the component (B) is good.
  • the weight average molecular weight of this invention is the value which measured by gel permeation chromatography (GPC, carrier solvent: tetrahydrofuran), and converted into standard polystyrene.
  • the blending amount of the polyhydroxy polyether having an ethylenically unsaturated group in the side chain of the component (A) and having an aromatic ring in the main chain has the ethylenically unsaturated group of the component (A) and the component (B).
  • the content is preferably 10 to 90% by mass based on the total amount of the polymerizable compound.
  • a resin composition for forming an optical waveguide comprising a polymerizable compound having an ethylenically unsaturated group as component (B) and a radical polymerization initiator as component (C) can be formed into a film.
  • the developer resistance is not deficient by sufficiently crosslinking with the polymerizable compound having an ethylenically unsaturated group as the component (B) during curing.
  • the blending amount of the component (A) is more preferably 15 to 80% by mass, and particularly preferably 20 to 70% by mass.
  • a polymerizable compound having an ethylenically unsaturated group as the component (B), it has an ethylenically unsaturated group in the side chain of the component (A) at the time of curing and has an aromatic ring in the main chain. It becomes possible to crosslink with the polyhydroxy polyether, and the heat resistance can be improved without impairing the transparency of the resulting cured product.
  • the polymerizable compound having an ethylenically unsaturated group (B) is not particularly limited as long as it is other than the component (A).
  • (meth) acrylate, vinyl ether, vinyl ester, vinyl amide, arylated vinyl Vinyl pyridine, vinyl halide, vinylidene halide, and the like are preferable from the viewpoint of transparency and heat resistance.
  • (meth) acrylate any of monofunctional, bifunctional, or trifunctional or higher functional groups can be used.
  • Examples of monofunctional (meth) acrylates include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, and sec-butyl.
  • alicyclic (meth) acrylates such as cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, and isobornyl (meth) acrylate , These ethoxylated compounds, these propoxylated compounds, these ethoxylated propoxylated compounds, and their caprolactone modified products; benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, p-cumylphenoxyethyl (meth) Acrylate, o-phenylphenoxyethyl (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, phenoxypolypropylene glycol (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate , Aromatic (meth) acrylates such as 2-hydroxy-3
  • a heterocyclic (meth) acrylate such as a heterocyclic (meth) acrylate, an ethoxylated product thereof, a propoxylated product thereof, an ethoxylated propoxylated product thereof, or a modified product of these caprolactones is preferred, and the following general formula ( 4) Aromatic mono (meth) acrylate is more preferred that.
  • an ethoxylated phenoxyethyl (meth) acrylate means a (meth) acrylate obtained by reacting an alcohol obtained by adding ethylene oxide to phenoxyethyl alcohol and acrylic acid or methacrylic acid.
  • the modified caprolactone means a (meth) acrylate using a modified alcohol obtained by modifying an alcohol used as a raw material for (meth) acrylate with caprolactone (for example, a ⁇ -caprolactone modified product of mono (meth) acrylate) CH 2 ⁇ CH (R 1 ) —COO — ((CH 2 ) 5 COO) n—R 2 (n, R 1 and R 2 are as defined above))).
  • R 37 represents a hydrogen atom or a methyl group.
  • R38 represents any monovalent group represented by the following formula.
  • R 39 to R 52 each independently represents a hydrogen atom, a fluorine atom, or an organic group having 1 to 20 carbon atoms. Preferred examples of the organic group having 1 to 20 carbon atoms are the same as those described as specific examples of R 1 described above.
  • Z 3 represents a single bond, oxygen atom, sulfur atom, —CH 2 —, —C (CH 3 ) 2 —, —CF 2 —, —C (CF 3 ) 2 —, —SO 2 —,
  • c represents an integer of 2 to 10.
  • W 1 represents an oxygen atom, a sulfur atom, -OCH 2 -, - SCH 2 -, - O (CH 2 CH 2 O) d -, - O [CH 2 CH (CH 3) O] e- , -O [(CH 2 ) 5 CO 2 ] f -and -OCH 2 CH (OH) CH 2 O- are included, and d to f are integers of 1 to 10 Indicates.
  • bifunctional (meth) acrylate examples include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, and dipropylene glycol di (meth) acrylate.
  • Alicyclic epoxy (meth) acrylate such as bisphenol A di (meth) acrylate, bisphenol F di (meth) acrylate, bisphenol AF di (meth) acrylate, biphenol di (meth) acrylate, fluorene type di (meth) acrylate (Meth) acrylates, ethoxylated compounds thereof, propoxylated compounds thereof, modified ethoxylated propoxy compounds thereof, and caprolactone modified compounds thereof; bisphenol A type epoxy di (meth) acrylates, bisphenol F type epoxy di (meth) acrylates , Aromatic epoxy (meth) acrylates such as bisphenol AF type epoxy di (meth) acrylate, biphenol type epoxy di (meth) acrylate,
  • aromatic (meth) acrylate represented by General formula (5) examples include those in which Z 4 is —C (CH 3 ) 2 — and a fluorene skeleton are preferable.
  • aromatic (meth) acrylate represented by the general formula (5) those in which Z 4 is —C (CH 3 ) 2 — and a fluorene skeleton are preferable.
  • “Ester A-BPEF” and the trade name "Fancrill FA-321A” are commercially available from Hitachi Chemical Co., Ltd.
  • Z 5 is preferably —C (CH 3 ) 2 —.
  • the product name “NK Oligo EA-5222 from Shin-Nakamura Chemical Co., Ltd.” “NK Oligo EA-1020” is commercially available.
  • the ethoxylated product, propoxylated product, ethoxylated propoxylated product, and caprolactone-modified product have the same meaning as described above.
  • R 53 and R 54 each independently represent a hydrogen atom or a methyl group.
  • R 55 to R 60 each independently represent a hydrogen atom, a fluorine atom, or an organic group having 1 to 20 carbon atoms. Preferred examples of the organic group having 1 to 20 carbon atoms are the same as those described as specific examples of R 1 described above.
  • Z 4 is a single bond, an oxygen atom, a sulfur atom, —CH 2 —, —C (CH 3 ) 2 —, —CF 2 —, —C (CF 3 ) 2 —, —SO 2 —,
  • W 2 and W 3 are each independently an oxygen atom, a sulfur atom, -OCH 2 -, - SCH 2 -, - O (CH 2 CH 2 O) h -, - O [ It includes any divalent group of CH 2 CH (CH 3 ) O] i — and —O [(CH 2 ) 5 CO 2 ] j —. h to j each independently represents an integer of 1 to 10. )
  • k represents an integer of 1 to 10.
  • R 61 and R 62 each independently represent a hydrogen atom or a methyl group.
  • R 63 to R 68 each independently represents a hydrogen atom, a fluorine atom, or an organic group having 1 to 20 carbon atoms. Preferred examples of the organic group having 1 to 20 carbon atoms are the same as those described as specific examples of R 1 described above.
  • Z 5 is a single bond, oxygen atom, sulfur atom, —CH 2 —, —C (CH 3 ) 2 —, —CF 2 —, —C (CF 3 ) 2 —, —SO 2 —,
  • W 4 and W 5 are each independently an oxygen atom, —O (CH 2 CH 2 O) m —, —O [CH 2 CH (CH 3 ) O] n — and —O [ (CH 2 ) 5 CO 2 ] o- is included, and m to o each independently represents an integer of 1 to 10.
  • tri- or higher functional (meth) acrylates examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol penta ( Aliphatic (meth) acrylates such as (meth) acrylate and dipentaerythritol hexa (meth) acrylate, ethoxylated products thereof, propoxylated products thereof, ethoxylated propoxylated products thereof, and caprolactone modified products thereof; phenol novolac Type epoxy (meth) acrylate, aromatic epoxy (meth) acrylate such as cresol novolac type epoxy poly (meth) acrylate; isocyanuric acid tri (meth) acrylate Heterocyclic (meth) acrylates such as carbonates,
  • the ethoxylated product, propoxylated product, ethoxylated propoxylated product, and caprolactone-modified product have the same meaning as described above.
  • the aromatic epoxy (meth) acrylate; the heterocyclic (meth) acrylate; and the isocyanuric acid type epoxy (meth) acrylate are preferable.
  • the above (meth) acrylates can be used alone or in combination of two or more, and can also be used in combination with other polymerizable compounds.
  • the blending amount of the polymerizable compound having an ethylenically unsaturated group is preferably 10 to 90% by mass with respect to the total amount of the component (A) and the component (B).
  • the developer resistance is insufficient due to sufficient crosslinking with the polyhydroxy polyether having an ethylenically unsaturated group in the side chain (A) and an aromatic ring in the main chain during curing.
  • it is 90% by mass or less, it becomes easy to form a resin composition for forming an optical waveguide comprising (A) a polyhydroxypolyether and (C) a radical polymerization initiator.
  • the blending amount of the component (B) is more preferably 20 to 85% by mass, and particularly preferably 30 to 80% by mass.
  • the radical polymerization initiator is not particularly limited as long as it initiates radical polymerization by heating or irradiation with actinic rays such as ultraviolet rays and visible rays.
  • actinic rays such as ultraviolet rays and visible rays.
  • a thermal radical polymerization initiator or a photo radical polymerization initiator Etc for example, a thermal radical polymerization initiator or a photo radical polymerization initiator Etc.
  • the thermal radical polymerization initiator is not particularly limited, and examples thereof include ketone peroxides, peroxyketals, hydroperoxides, dialkyl peroxides, diacyl peroxides described in paragraph [0083] of International Publication WO2007 / 105795. , Peroxycarbonate, peroxyester, and azo compound. Among these, from the viewpoints of curability, transparency, and heat resistance, the diacyl peroxide; the peroxy ester; and the azo compound are preferable.
  • the radical photopolymerization initiator is not particularly limited, and examples thereof include benzoinketal, ⁇ -hydroxyketone, glyoxyester, ⁇ -aminoketone, oxime ester described in paragraph [0084] of International Publication WO2007 / 105795, In addition to phosphine oxide, 2,4,5-triarylimidazole dimer, benzophenone compound, quinone compound, benzoin ether, benzoin compound, benzyl compound, acridine compound, N-phenylglycine, and coumarin.
  • the substituents of the aryl groups at the two triarylimidazole sites may give the same and symmetric compounds, but give differently asymmetric compounds. May be.
  • the ⁇ -hydroxyketone; the glyoxyester; the oxime ester; and the phosphine oxide are preferable.
  • 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy-2-methyl-1-propan-1-one, which is one of the above ⁇ -hydroxy ketones, is particularly preferable, and Ciba Japan Ltd.
  • Irgacure 2959 Bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, which is one of the above phosphine oxides, is particularly preferred and is commercially available as Irgacure 819 from Ciba Japan.
  • radical polymerization initiators such as a thermal radical polymerization initiator and a photo radical polymerization initiator
  • thermal radical polymerization initiator and a photo radical polymerization initiator can be used alone or in combination of two or more kinds, and can also be used in combination with an appropriate sensitizer.
  • the blending amount of the radical polymerization initiator is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass as a total of the components (A) and (B). When it is 0.01 parts by mass or more, curing is sufficient, and when it is 10 parts by mass or less, sufficient light transmittance is obtained. From the above viewpoint, the amount of component (C) is more preferably 0.05 to 7 parts by mass, and particularly preferably 0.1 to 5 parts by mass.
  • the resin composition for forming an optical waveguide of the present invention includes an antioxidant, an anti-yellowing agent, an ultraviolet absorber, a visible light absorber, a colorant, a plasticizer, a stabilizer, a filler, and the like. These so-called additives may be added as long as the effects of the present invention are not adversely affected.
  • the resin composition for forming an optical waveguide of the present invention may be diluted with a suitable organic solvent and used as a resin varnish for forming an optical waveguide.
  • the organic solvent used here is not particularly limited as long as it can dissolve the resin composition.
  • aromatic hydrocarbons such as toluene, xylene, mesitylene, cumene, p-cymene; diethyl ether, tert- Chain ethers such as butyl methyl ether, cyclopentyl methyl ether and dibutyl ether; cyclic ethers such as tetrahydrofuran and 1,4-dioxane; alcohols such as methanol, ethanol, isopropanol, butanol, ethylene glycol and propylene glycol; acetone, methyl ethyl ketone and methyl Ketones such as isobutyl ketone, cyclohexanone, 4-hydroxy-4-methyl-2-pentanone; esthetics such as methyl acetate, ethyl acetate, butyl acetate, methyl lactate, ethyl lactate, and ⁇ -butyrolactone Carbonates such as ethylene carbonate and propylene carbonate
  • the stirring method is not particularly limited, but stirring using a propeller is preferable from the viewpoint of stirring efficiency.
  • the rotation speed of the propeller at the time of stirring is not particularly limited, but is preferably 10 to 1,000 rpm. When it is 10 rpm or more, each component is sufficiently mixed, and when it is 1,000 rpm or less, entrainment of bubbles due to rotation of the propeller is reduced. From the above viewpoint, the rotation speed of the propeller is more preferably 50 to 800 rpm, and particularly preferably 100 to 500 rpm.
  • the stirring time is not particularly limited but is preferably 1 to 24 hours. When the stirring time is 1 hour or longer, the respective components are sufficiently mixed, and when it is 24 hours or shorter, the preparation time can be shortened, and the productivity is improved.
  • a filter having a pore diameter of 50 ⁇ m or less By using a filter having a pore diameter of 50 ⁇ m or less, large foreign matters are not removed, and repellency is not caused at the time of application, and light scattering is suppressed and transparency is not impaired. From the above viewpoint, it is more preferable to filter using a filter having a pore diameter of 30 ⁇ m or less, and it is particularly preferable to filter using a filter having a pore diameter of 10 ⁇ m or less.
  • the prepared resin composition for forming an optical waveguide is defoamed under reduced pressure.
  • the defoaming method For example, the method of using a vacuum pump and a bell jar, a defoaming apparatus with a vacuum apparatus, etc. are mentioned.
  • the pressure at the time of pressure reduction The pressure in which the low boiling point component contained in a resin composition does not boil is preferable.
  • the vacuum degassing time it is preferably 3 to 60 minutes. If it is 3 minutes or longer, bubbles dissolved in the resin composition can be removed, and if it is 60 minutes or less, the organic solvent contained in the resin composition does not volatilize and the defoaming time is shortened. And productivity can be improved.
  • the resin film for forming an optical waveguide of the present invention comprises the resin composition for forming an optical waveguide, and the resin composition for forming an optical waveguide containing the components (A) to (C) is applied to a suitable support film. By doing so, it can be easily manufactured. Moreover, when the resin composition for forming an optical waveguide is a resin varnish for forming an optical waveguide diluted with the organic solvent, the resin for forming an optical waveguide is obtained by applying the resin varnish to a support film and removing the organic solvent. A film can be produced.
  • the support film is not particularly limited.
  • polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate
  • polyolefins such as polyethylene and polypropylene
  • polycarbonates polyamides, polyimides, polyamideimides, polyetherimides, polyether sulfides
  • examples include polyethersulfone, polyetherketone, polyphenylene ether, polyphenylene sulfide, polyarylate, polysulfone, and liquid crystal polymer.
  • polyethylene terephthalate polybutylene terephthalate, polyethylene naphthalate, polypropylene, polycarbonate, polyamide, polyimide, polyamideimide, polyphenylene ether, polyphenylene sulfide, polyarylate, polysulfone.
  • a film that has been subjected to release treatment with a silicone compound, a fluorine-containing compound, or the like may be used as necessary.
  • the thickness of the support film may be appropriately changed depending on the intended flexibility, but is preferably 3 to 250 ⁇ m. When it is 3 ⁇ m or more, the film strength is sufficient, and when it is 250 ⁇ m or less, sufficient flexibility is obtained. From the above viewpoint, the thickness of the support film is more preferably 5 to 200 ⁇ m, and particularly preferably 7 to 150 ⁇ m.
  • An optical waveguide forming resin film manufactured by applying an optical waveguide forming resin composition on a support film is composed of a support film, a resin layer, and a protective film, with a protective film attached to the resin layer as necessary.
  • a three-layer structure may be used.
  • the protective film is not particularly limited, but from the viewpoint of flexibility and toughness, polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polyolefins such as polyethylene and polypropylene are preferable.
  • polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate
  • polyolefins such as polyethylene and polypropylene are preferable.
  • the thickness of the protective film may be appropriately changed depending on the intended flexibility, but is preferably 10 to 250 ⁇ m. When it is 10 ⁇ m or more, the film strength is sufficient, and when it is 250 ⁇ m or less, sufficient flexibility is obtained. From the above viewpoint, the thickness of the protective film is more preferably 15 to 200 ⁇ m, and particularly preferably 20 to 150 ⁇ m.
  • the thickness of the resin layer of the resin film for forming an optical waveguide of the present invention is not particularly limited, but it is preferably 5 to 500 ⁇ m after drying. If the thickness is 5 ⁇ m or more, the strength of the resin film or the cured product of the resin film is sufficient because the thickness is sufficient. On the other hand, if the thickness is 500 ⁇ m or less, the drying can be performed sufficiently and the amount of residual solvent in the resin film increases. Without foaming when the cured product of the resin film is heated.
  • the resin film for forming an optical waveguide thus obtained can be easily stored, for example, by winding it into a roll. Moreover, a roll-shaped film can be cut out into a suitable size and stored in a sheet shape.
  • the support film used in the production process of the core portion forming resin film is not particularly limited as long as it can transmit the actinic ray for exposure used for core pattern formation.
  • polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate examples of polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate.
  • Polyester such as phthalate; Polyolefin such as polyethylene and polypropylene; Polycarbonate, Polyamide, Polyimide, Polyamideimide, Polyetherimide, Polyethersulfide, Polyethersulfone, Polyetherketone, Polyphenylenesulfide, Polyarylate, Polysulfone, Liquid crystal polymer Etc.
  • the above polyesters and the above polyolefins are preferable.
  • Such highly transparent support films include “Cosmo Shine A1517” and “Cosmo Shine A4100” manufactured by Toyobo Co., Ltd.
  • a film that has been subjected to release treatment with a silicone compound, a fluorine-containing compound, or the like may be used as necessary.
  • the thickness of the support film of the core portion forming resin film is preferably 5 to 50 ⁇ m. When it is 5 ⁇ m or more, the strength as a support is sufficient, and when it is 50 ⁇ m or less, the gap between the photomask and the core portion forming resin layer is not increased when the core pattern is formed, and the pattern resolution is good. From the above viewpoint, the thickness of the support film is more preferably 10 to 40 ⁇ m, and particularly preferably 15 to 30 ⁇ m.
  • the optical waveguide 1 is formed on a substrate 5 and has a core part 2 made of a core part-forming resin composition having a high refractive index, a lower clad layer 4 made of a resin composition for forming a clad layer having a low refractive index, and An upper cladding layer 3 is used.
  • the resin composition for forming an optical waveguide and the resin film for forming an optical waveguide of the present invention are preferably used for at least one of the lower cladding layer 4, the core portion 2, and the upper cladding layer 3 of the optical waveguide 1.
  • the flatness of each layer, the interlayer adhesion between the clad and the core, and the resolution (correspondence between thin lines or narrow lines) at the time of forming the optical waveguide core pattern can be further improved. It is excellent in flatness, and it is possible to form a fine pattern with a small line width and line spacing.
  • the material of the base material 5 is not particularly limited.
  • a glass epoxy resin substrate, a ceramic substrate, a glass substrate, a silicon substrate, a plastic substrate, a metal substrate, a substrate with a resin layer, a substrate with a metal layer examples thereof include a plastic film, a plastic film with a resin layer, and a plastic film with a metal layer.
  • the optical waveguide 1 may be a flexible optical waveguide by using a base material having flexibility and toughness as the base material 5, for example, a support film of the resin film for forming an optical waveguide, as the base material 5. May function as a protective film for the optical waveguide 1. By disposing the protective film, the flexibility and toughness of the protective film can be imparted to the optical waveguide 1. Furthermore, since the optical waveguide 1 is not damaged or scratched, the ease of handling is improved. From the above viewpoint, the base material 5 is disposed as a protective film outside the upper clad layer 3 as shown in FIG. 1B, or the lower clad layer 4 and the upper clad layer as shown in FIG. The base material 5 may be arrange
  • the thickness of the lower cladding layer 4 is not particularly limited, but is preferably 2 to 200 ⁇ m. If it is 2 ⁇ m or more, it becomes easy to confine the propagating light inside the core, and if it is 200 ⁇ m or less, the entire thickness of the optical waveguide 1 is not too large.
  • the thickness of the lower cladding layer 4 is a value from the boundary between the core portion 2 and the lower cladding layer 4 to the lower surface of the lower cladding layer 4. There is no restriction
  • the height of the core part 2 is not particularly limited, but is preferably 10 to 150 ⁇ m.
  • the height of the core is 10 ⁇ m or more, the alignment tolerance is not reduced in coupling with the light emitting / receiving element or the optical fiber after the optical waveguide is formed, and when the core portion is 150 ⁇ m or less, the light is received and emitted after the optical waveguide is formed. In coupling with an element or an optical fiber, coupling efficiency is not reduced.
  • the height of the core part is more preferably 15 to 130 ⁇ m, and particularly preferably 20 to 120 ⁇ m.
  • Thickness is adjusted so that the height of the core part after hardening may become said range.
  • the thickness of the upper clad layer 3 is not particularly limited as long as the core portion 2 can be embedded, but the thickness after drying is preferably 12 to 500 ⁇ m.
  • the thickness of the upper clad layer 3 may be the same as or different from the thickness of the lower clad layer 4 formed first, but is thicker than the thickness of the lower clad layer 4 from the viewpoint of embedding the core portion 2. It is preferable.
  • the thickness of the upper cladding layer 3 is a value from the boundary between the core portion 2 and the lower cladding layer 4 to the upper surface of the upper cladding layer 3.
  • the light propagation loss is preferably 0.3 dB / cm or less. When it is 0.3 dB / cm or less, the loss of light becomes small and the strength of the transmission signal is sufficient. From the above viewpoint, the light propagation loss is more preferably 0.2 dB / cm or less, and particularly preferably 0.1 dB / cm or less.
  • the light propagation loss after a high temperature and high humidity leaving test at a temperature of 85 ° C. and a humidity of 85% for 1000 hours is preferably 0.3 dB / cm or less.
  • the loss of light becomes small and the strength of the transmission signal is sufficient.
  • the light propagation loss is more preferably 0.2 dB / cm or less, and particularly preferably 0.1 dB / cm or less.
  • the high-temperature and high-humidity storage test at a temperature of 85 ° C. and a humidity of 85% means a high-temperature and high-humidity storage test performed under conditions in accordance with the JPCA standard (JPCA-PE02-05-01S).
  • the light propagation loss after 1000 cycles of the temperature cycle test between ⁇ 55 ° C. and 125 ° C. is preferably 0.3 dB / cm or less.
  • the loss of light becomes small and the strength of the transmission signal is sufficient.
  • the light propagation loss is more preferably 0.2 dB / cm or less, and particularly preferably 0.1 dB / cm or less.
  • the temperature cycle test between ⁇ 55 ° C. and 125 ° C. means a temperature cycle test performed under conditions in accordance with the JPCA standard (JPCA-PE02-05-01S).
  • the light propagation loss after performing the reflow test at the maximum temperature of 265 ° C. three times is 0.3 dB / cm or less. If it is 0.3 dB / cm or less, the loss of light becomes small, and if the intensity of the transmission signal is sufficient, component mounting by the reflow process can be performed at the same time, so the applicable range is widened. From the above viewpoint, the light propagation loss is more preferably 0.2 dB / cm or less, and particularly preferably 0.1 dB / cm or less.
  • the reflow test at the maximum temperature of 265 ° C. means a lead-free solder reflow test that is performed under conditions in accordance with the JEDEC standard (JEDEC JESD22A113E).
  • the optical waveguide of the present invention is excellent in transparency, reliability, and heat resistance, and may be used as an optical transmission path of an optical module.
  • the optical module include an optical waveguide with an optical fiber in which optical fibers are connected to both ends of the optical waveguide, an optical waveguide with a connector in which connectors are connected to both ends of the optical waveguide, and an opto-electrical device in which the optical waveguide and the printed wiring board are combined.
  • Examples include a composite substrate, an optical / electrical conversion module that combines an optical waveguide and an optical / electrical conversion element that mutually converts an optical signal and an electrical signal, and a wavelength multiplexer / demultiplexer that combines an optical waveguide and a wavelength division filter.
  • the printed wiring board to be combined is not particularly limited, and examples thereof include rigid substrates such as glass epoxy substrates and ceramic substrates; flexible substrates such as polyimide substrates and polyethylene terephthalate substrates.
  • optical waveguide manufacturing method the manufacturing method for forming the optical waveguide 1 using the resin composition for forming an optical waveguide and / or the resin film for forming an optical waveguide of the present invention will be described.
  • the resin layer for optical waveguide formation on a base material using the resin composition for optical waveguide formation and / or the resin film for optical waveguide formation is used. And the like, and the like.
  • the base material used in the present invention is not particularly limited, and is a glass epoxy resin substrate, a ceramic substrate, a glass substrate, a silicon substrate, a plastic substrate, a metal substrate, a substrate with a resin layer, a substrate with a metal layer, a plastic film, a resin layer. And a plastic film with a metal layer and a plastic film with a metal layer.
  • the method for forming the optical waveguide forming resin layer is not particularly limited, for example, using the optical waveguide forming resin composition, spin coating method, dip coating method, spray method, bar coating method, roll coating method, Examples of the coating method include a curtain coating method, a gravure coating method, a screen coating method, and an inkjet coating method.
  • a drying step may be added after forming the resin layer as necessary.
  • a drying method For example, heat drying, reduced pressure drying, etc. are mentioned. Moreover, you may use these together as needed.
  • the optical waveguide forming resin layer there is a method of forming the optical waveguide forming resin film using the optical waveguide forming resin composition by a lamination method.
  • a method of manufacturing by a lamination method using a resin film for forming an optical waveguide is preferable.
  • the manufacturing method for forming the optical waveguide 1 using the resin film for optical waveguide formation for a lower clad layer, a core part, and an upper clad layer is demonstrated, this invention is not restrict
  • the resin film for lower clad layer formation is laminated
  • stacking method in a 1st process For example, the method of laminating
  • the flat plate laminator in the present invention refers to a laminator in which a laminated material is sandwiched between a pair of flat plates and pressed by pressing the flat plate.
  • a vacuum pressurizing laminator can be suitably used.
  • the laminating temperature is not particularly limited, but is preferably 20 to 130 ° C.
  • the laminating pressure is not particularly limited, but is preferably 0.1 to 1.0 MPa.
  • a resin film for forming a lower clad layer may be temporarily pasted on the substrate 5 in advance using a roll laminator.
  • temporary bonding it may be performed while heating using a laminator having a heat roll.
  • the laminating temperature is preferably 20 to 130 ° C. If it is 20 degreeC or more, the adhesiveness of the resin film for lower clad layer formation and the base material 5 will improve, and if it is 130 degrees C or less, the resin layer does not flow too much at the time of roll lamination, and the required film thickness is can get.
  • the temperature is more preferably 40 to 100 ° C.
  • the laminating pressure is not particularly limited, but is preferably 0.2 to 0.9 MPa, and the laminating speed is not particularly limited, but is preferably 0.1 to 3 m / min.
  • the lower clad layer forming resin layer laminated on the substrate 5 is cured by light and / or heat to form the lower clad layer 4.
  • the removal of the support film of the lower clad layer forming resin film may be performed either before or after curing.
  • the amount of irradiation with actinic rays when the lower clad layer-forming resin layer is cured with light is not particularly limited, but is preferably 0.1 to 5 J / cm 2 .
  • a heat treatment at 50 to 200 ° C. may be performed as necessary.
  • the heating temperature when the lower clad layer forming resin layer is cured by heat is not particularly limited, but is preferably 50 to 200 ° C.
  • the support film for the resin film for forming the lower clad layer functions as the protective film 5 for the optical waveguide 1, it is cured under the same conditions as described above by light and / or heat without laminating the resin film for forming the lower clad layer. Then, the lower cladding layer 4 may be formed.
  • the protective film for the resin film for forming the lower cladding layer may be removed before curing or after curing.
  • a core part-forming resin film is laminated on the lower clad layer 4 in the same manner as in the first step.
  • the resin layer for forming the core part is designed to have a higher refractive index than the resin layer for forming the lower clad layer, and is made of a photosensitive resin composition that can form the core part 2 (core pattern) with actinic rays. Is preferred.
  • the core portion 2 is exposed.
  • the method for exposing the core part 2 is not particularly limited. For example, a method of irradiating an actinic ray in an image form through a negative photomask called artwork, without passing through a negative photomask using direct laser drawing. For example, a method of directly irradiating an active ray on an image can be mentioned.
  • the light source of the actinic ray is not particularly limited, and for example, a light source that effectively emits ultraviolet rays such as an ultra-high pressure mercury lamp, a high-pressure mercury lamp, a mercury vapor arc lamp, a metal halide lamp, a xenon lamp, and a carbon arc lamp; Examples include a light source that effectively emits visible light such as a light bulb and a solar lamp.
  • the amount of actinic ray irradiation when exposing the core 2 is preferably 0.01 to 10 J / cm 2 .
  • the curing reaction proceeds sufficiently, and the core 2 is not washed away by development.
  • the core part 2 does not become thick due to excessive exposure, and a fine pattern can be formed.
  • the irradiation amount of actinic rays is more preferably 0.03 to 5 J / cm 2 , and particularly preferably 0.05 to 3 J / cm 2 .
  • the core part 2 may be exposed through the support film of the core part forming resin film or after the support film is removed.
  • post-exposure heating may be performed as necessary from the viewpoint of improving the resolution and adhesion of the core part 2.
  • the time from ultraviolet irradiation to post-exposure heating is preferably within 10 minutes, but this condition is not particularly limited.
  • the post-exposure heating temperature is preferably 40 to 160 ° C. and the time is preferably 30 seconds to 10 minutes, but these conditions are not particularly limited.
  • the development method is not particularly limited, and examples thereof include a spray method, a dip method, a paddle method, a spin method, a brushing method, and a scraping method. Moreover, you may use these image development methods together as needed.
  • a developing solution For example, organic-solvent type developers, such as an organic solvent, a semi-aqueous type developing solution which consists of an organic solvent, and water; Examples include alkaline developers such as developers.
  • the development temperature is adjusted according to the developability of the core layer forming resin layer.
  • organic solvent there is no restriction
  • the thing similar to the organic solvent used for dilution of the above-mentioned resin composition for optical waveguide formation can be used.
  • These organic solvents can be used alone or in combination of two or more.
  • a surface active agent, an antifoaming agent or the like may be mixed in the organic solvent.
  • the semi-aqueous developer is not particularly limited as long as it is composed of one or more organic solvents and water.
  • concentration of the organic solvent is usually preferably 2 to 90% by mass.
  • a small amount of a surfactant, an antifoaming agent or the like may be mixed in the semi-aqueous developer.
  • the base of the alkaline aqueous solution is not particularly limited, and examples thereof include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide; alkali metal carbonates such as lithium carbonate, sodium carbonate, and potassium carbonate; hydrogen carbonate Alkali metal bicarbonates such as lithium, sodium bicarbonate and potassium bicarbonate; alkali metal phosphates such as potassium phosphate and sodium phosphate; alkali metal pyrophosphates such as sodium pyrophosphate and potassium pyrophosphate; tetraboric acid Sodium salts such as sodium and sodium metasilicate; ammonium salts such as ammonium carbonate and ammonium hydrogen carbonate; tetramethylammonium hydroxide, triethanolamine, ethylenediamine, diethylenetriamine, 2-amino-2-hydroxymethyl-1, - propanediol, and organic bases such as 1,3-diamino-propanol-2-morpholine.
  • the pH of the alkaline aqueous solution used for development is preferably 9-14. Moreover, you may mix surfactant, an antifoamer, etc. in alkaline aqueous solution.
  • the alkaline quasi-aqueous developer is not particularly limited as long as it is composed of an alkaline aqueous solution and one or more organic solvents.
  • the pH of the alkaline quasi-aqueous developer is preferably as low as possible within a range where development can be sufficiently performed, preferably pH 8 to 13, and more preferably pH 9 to 12.
  • the concentration of the organic solvent is usually preferably 2 to 90% by mass. Further, a small amount of a surfactant, an antifoaming agent or the like may be mixed in the alkaline quasi-aqueous developer.
  • the organic solvent As a treatment after development, the organic solvent, a semi-aqueous cleaning solution composed of the organic solvent and water, or water may be used as necessary.
  • the cleaning method is not particularly limited, and examples thereof include a spray method, a dipping method, a paddle method, a spin method, a brushing method, and a scraping method. Moreover, you may use these washing
  • the said organic solvent can be used individually or in combination of 2 or more types.
  • the concentration of the organic solvent is usually preferably 2 to 90% by mass.
  • the washing temperature is adjusted in accordance with the developability of the core portion forming resin layer.
  • the heating temperature is not particularly limited, but is preferably 40 to 200 ° C.
  • the irradiation amount of active light is not particularly limited, but is preferably 0.01 to 10 J / cm 2 .
  • a resin film for forming an upper clad layer is laminated on the lower clad layer 4 and the core portion 2 in the same manner as in the first and second steps.
  • the upper clad layer forming resin layer is designed to have a lower refractive index than the core portion forming resin layer.
  • the thickness of the upper clad forming resin layer is preferably larger than the height of the core portion 2.
  • the upper clad layer forming resin layer is cured by light and / or heat to form the upper clad layer 3 in the same manner as in the first step.
  • the irradiation amount of actinic rays when the upper clad layer-forming resin layer is cured with light is not particularly limited, but is preferably 0.1 to 30 J / cm 2 .
  • transmits a base material in order to harden
  • the heating temperature during and / or after irradiation with actinic rays is not particularly limited, but is preferably 50 to 200 ° C.
  • the heating temperature when the upper clad layer-forming resin layer is cured by heat is not particularly limited, but is preferably 50 to 200 ° C.
  • the optical waveguide 1 can be manufactured through the above steps.
  • Synthesis example 1 [Preparation of polyhydroxy polyether A-1 having an ethylenically unsaturated group in the side chain and an aromatic ring in the main chain]
  • a polyhydroxy polyether having a skeleton derived from bisphenol A and bisphenol F in the main chain (“Phenotote YP-70 manufactured by Tohto Kasei Co., Ltd.) ”, Weight average molecular weight 5.0 ⁇ 10 4 to 6.0 ⁇ 10 4 , catalog value) 150 parts by mass and 191 parts by mass of cyclohexanone were added, and the mixture was stirred at 100 ° C.
  • the weight average molecular weight (converted to standard polystyrene) of A-1 was measured using GPC (SD-8022 / DP-8020 / RI-8020 manufactured by Tosoh Corporation), and was found to be 43,100.
  • GPC GPC
  • Gelpack GL-A150-S / GL-A160-S manufactured by Hitachi Chemical Co., Ltd. was used.
  • Synthesis example 2 [Production of polyhydroxypolyether A-2 having an ethylenically unsaturated group in the side chain and an aromatic ring in the main chain]
  • Polyhydroxy polyether having a skeleton derived from bisphenol A and bisphenol F in the main chain (Phenototo YP-70, manufactured by Tohto Kasei Co., Ltd.) in a flask equipped with a stirrer, a cooling pipe, a gas introduction pipe, a dropping funnel and a thermometer 150 parts by mass and 187 parts by mass of cyclohexanone were added, and the mixture was stirred at 100 ° C. while introducing nitrogen gas, to dissolve the polyhydroxy polyether.
  • Synthesis example 3 [Production of urethane acrylate UA-1]
  • a flask equipped with a stirrer, a cooling pipe, a gas introduction pipe, a dropping funnel and a thermometer 104 parts by mass of polytetramethylene glycol, 0.2 parts by mass of diethylene glycol, caprolactone-modified 2-hydroxyethyl acrylate (manufactured by Daicel Chemical Industries, Ltd.)
  • Plaquel FA2D 55 parts by mass, hydroquinone monomethyl ether 0.1 parts by mass, dibutyltin dilaurate 0.06 parts by mass were added, and 44 parts by mass of isophorone diisocyanate was added dropwise at 70 ° C. over 2 hours while introducing air gas. Thereafter, stirring was continued at 70 ° C. for 5 hours to obtain urethane acrylate UA-1.
  • the weight average molecular weight of UA-1 was measured by the same method as in Synthesis Example 1 and found to be 10,000.
  • Example 1 [Preparation of resin composition COV-1 for forming core part]
  • component (A) 67 parts by mass (solid content: 30% by mass) of the A-1 solution (solid content: 45% by mass), and as the component (B), ethoxylated bisphenol A diacrylate (manufactured by Hitachi Chemical Co., Ltd. FA-321A) 30 parts by mass, propylene glycol monomethyl ether acetate solution of ethoxylated fluorene-type bisphenol diacrylate (NK Nakamura Chemical Co., Ltd.
  • NK Ester A-BPEF / PGMAC70 solid content 70% by mass 29 parts by mass (solid content 20 parts by mass), 20 parts by mass of bisphenol A type epoxy diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., NK OligoEA-1020), and as component (C), 1- [4- (2-hydroxyethoxy) phenyl] -2 -Hydroxy-2-methyl-1-propan-1-one (Ciba Japan) 1 part by mass of Irgacure 2959) manufactured by a formula company, 1 part by mass of bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide (Irgacure 819 manufactured by Ciba Japan Co., Ltd.), and 22 parts by mass of propylene glycol monomethyl ether acetate as a diluting solvent Were mixed with stirring.
  • component (C) 1- [4- (2-hydroxyethoxy) phenyl] -2 -Hydroxy-2-
  • the thickness of the resin layer can be arbitrarily adjusted by adjusting the gap of the coating machine, but in this example, the film thickness after curing is 70 ⁇ m for the core portion forming resin film, and curing for the tensile test. The film was adjusted to 50 ⁇ m.
  • the clad layer forming resin composition CLV-1 was applied on the non-treated surface of a PET film (Cosmo Shine A4100 manufactured by Toyobo Co., Ltd., thickness 50 ⁇ m) using the coating machine and dried at 100 ° C. for 20 minutes. Thereafter, a surface release-treated PET film (Purex A31 manufactured by Teijin DuPont Films Ltd., thickness 25 ⁇ m) was applied as a protective film to obtain a clad layer forming resin film CLF-1.
  • the thickness of the resin layer can be arbitrarily adjusted by adjusting the gap of the coating machine. In this embodiment, the thickness after curing is 20 ⁇ m for the resin film for forming the lower cladding layer, and the upper cladding. In the resin film for layer formation, it adjusted so that it might be set to 80 micrometers.
  • the core part-forming resin film COF-1 from which the protective film (Purex A31) has been removed is applied to the lower clad layer at a pressure of 0.4 MPa, a temperature of 50 ° C., and a speed of 0.4 m. Lamination was performed under the conditions of / min. Next, ultraviolet rays (wavelength 365 nm) were irradiated at 1000 mJ / cm 2 through a negative photomask having a width of 80 ⁇ m using the above-described ultraviolet exposure machine, and then post-exposure heating was performed at 80 ° C. for 5 minutes.
  • MVLP-500 / 600 manufactured by Meiki Seisakusho Co., Ltd. a vacuum pressure laminator
  • the clad layer it laminated
  • the support film (Cosmo Shine A4100) of the clad layer forming resin film CLF-1 was removed to obtain a flexible optical waveguide. Thereafter, a flexible optical waveguide having a width of 3 mm and a length of 100 mm was cut out using a dicing saw (DAD-341 manufactured by DISCO Corporation).
  • the light propagation loss of the optical waveguide after the temperature cycle test was measured using the same light source, light receiving element, incident fiber and output fiber as described above, and evaluated according to the following criteria. ⁇ ... 0.1 dB / cm or less ⁇ ... greater than 0.1 dB / cm, 0.2 dB / cm or less ⁇ ... greater than 0.2 dB / cm, 0.3 dB / cm or less ⁇ ... greater than 0.3 dB / cm
  • the light propagation loss of the optical waveguide after the reflow test was measured using the same light source, light receiving element, incident fiber and output fiber as described above, and evaluated according to the following criteria. ⁇ ... 0.1 dB / cm or less ⁇ ... greater than 0.1 dB / cm, 0.2 dB / cm or less ⁇ ... greater than 0.2 dB / cm, 0.3 dB / cm or less ⁇ ... greater than 0.3 dB / cm
  • Examples 2 to 5 and Comparative Example 1 According to the blending ratio shown in Table 3, core portion forming resin compositions COV-2 to 6 were prepared, and core portion forming resin films COF-2 to 6 were prepared in the same manner as in Example 1. Subsequently, a flexible optical waveguide was produced in the same manner as in Example 1 using these core part-forming resin films COF-2-6.
  • the obtained optical waveguide (length: 100 mm) was subjected to light propagation loss measurement, high temperature and high humidity standing test, temperature cycle test, and reflow test under the same conditions as described above. The results are shown in Table 4.
  • the resin composition for forming an optical waveguide of the present invention is excellent in transparency and heat resistance, excellent in toughness in terms of elongation at break and tensile elastic modulus, and produced using these. It can be seen that the optical waveguide has low light propagation loss and excellent transparency, high temperature and high humidity standing test and temperature cycle test, etc., excellent environmental reliability, good reflow test results, etc. and excellent heat resistance.
  • the optical waveguide forming resin composition not belonging to the present invention shown in Comparative Example 1 has some toughness, the optical waveguide manufactured using the optical waveguide forming resin composition has environmental reliability and It turns out that it is inferior to heat resistance.
  • the resin composition for forming an optical waveguide of the present invention is excellent in transparency, heat resistance, and toughness, and an optical waveguide manufactured using these is excellent in transparency, environmental reliability, and heat resistance. is there.
  • the optical waveguide forming resin film using the optical waveguide forming resin composition has a flatness of each layer, interlayer adhesion between a clad and a core, and resolution at the time of forming an optical waveguide core pattern in an optical waveguide manufacturing process. (Narrow line or narrow line compatibility) is further improved, flatness is excellent, and it is possible to form a fine pattern with a small line width and line.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Emergency Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Optical Integrated Circuits (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Polyethers (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

【課題】透明性、耐熱性、強靭性に優れ、高精度な厚膜形成が可能であり、しかも生産性の高い光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム、及び透明性、環境信頼性、耐熱性に優れた光導波路を提供すること。 【解決手段】(A)側鎖にエチレン性不飽和基を有し、主鎖に芳香環を有するポリヒドロキシポリエーテル、(B)エチレン性不飽和基を有する重合性化合物、及び(C)ラジカル重合開始剤を含んでなる光導波路形成用樹脂組成物、光導波路形成用樹脂フィル及び該光導波路形成用樹脂フィルムを用いてコア部を形成した光導波路である。

Description

光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム及び光導波路
 本発明は、光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム及び光導波路に関する。
 電子素子間や配線基板間の高速・高密度信号伝送において、従来の電気配線による伝送では、信号の相互干渉や減衰が障壁となり、高速・高密度化の限界が見え始めている。これを打ち破るため電子素子間や配線基板間を光で接続する技術、いわゆる光インターコネクション技術の開発が進められている。光伝送路としては、加工の容易さ、低コスト、配線の自由度が高く、かつ高密度化が可能な点からポリマー光導波路が注目を集めている。
 ポリマー光導波路の形態としては、光電気混載基板への適用を想定したガラスエポキシ樹脂などの硬い支持基板上に作製するリジッドタイプや、ボード同士の接続を想定した硬い支持基板を持たないフレキシブルタイプが好適と考えられている。
 ポリマー光導波路には、適用される機器の使用環境や部品実装などの観点から、高透明性(低光伝搬損失)と共に高耐熱性も要求されるが、このような光導波路材料としては、エポキシ樹脂、(メタ)アクリルポリマーなどを用いたものが提案されている(特許文献1~4参照)。
 しかしながら、従来、環境信頼性の評価、例えば、高温高湿放置試験や温度サイクル試験後の光伝搬損失などに関しての検討はなされてはおらず、要求を満たすものがなかった。
 たとえば、特許文献1に記載のエポキシ樹脂は、波長850nmにおいて透明性に優れ、200~280℃程度の耐熱性を有しているものの、上記の環境信頼性の評価に関する記述はなく、検討されていない。
 また、特許文献2に記載の(メタ)アクリルポリマーは、フィルム状の光導波路材料であり、かつ波長850nmにおいて光伝搬損失0.3dB/cmの透明性を有するものの、環境信頼性の評価、例えば、高温高湿放置試験や温度サイクル試験後の光伝搬損失などの具体的な試験結果に関する記述はなく、検討されていない。同様に、耐熱性の評価、例えば、はんだリフロー試験後の光伝搬損失などの具体的な試験結果に関する記述もない。
 また、特許文献3及び4に記載の(メタ)アクリルポリマーは、フィルム状の光導波路材料であり、波長850nmにおいて光伝搬損失0.5dB/cm以下の透明性を有し、かつ高温高湿放置試験後の光伝搬損失も良好であるものの、耐熱性の評価、例えば、はんだリフロー試験後の光伝搬損失などの具体的な試験結果に関する記述はなく、検討されていない。
 また、特許文献5に記載のポリヒドロキシポリエーテルは、側鎖にエチレン性不飽和基を有しておらず、これを用いたフィルム状の光導波路材料は、透明性及び耐熱性に優れているが、低屈曲性の評価、例えば、破断伸び率に関する記述はなく、検討されていない。
特開平6-228274号公報 特開2003-195080号公報 特開2006-146162号公報 特開2008-33239号公報 国際公開2006-038691号公報
 本発明は、上記した従来技術の問題に鑑み、透明性、耐熱性、強靭性に優れ、高精度な厚膜形成が可能であり、しかも生産性の高い光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム及び透明性、環境信頼性、耐熱性に優れた光導波路を提供することを目的とする。
 本発明者らは鋭意検討を重ねた結果、特定の構造を有するポリヒドロキシポリエーテル、重合性化合物、及びラジカル重合開始剤を含んでなる光導波路形成用樹脂組成物を用いて光導波路を製造することにより、上記問題を解決しうることを見出した。
 すなわち、本発明は、(A)側鎖にエチレン性不飽和基を有し、主鎖に芳香環を有するポリヒドロキシポリエーテル、(B)エチレン性不飽和基を有する重合性化合物、及び(C)ラジカル重合開始剤を含んでなる光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム及び該光導波路形成用樹脂組成物又は該光導波路形成用樹脂フィルムを用いてコア部を形成した、透明性、環境信頼性、耐熱性に優れた光導波路を提供するものである。
 本発明によれば、透明性、耐熱性、強靭性に優れ、高精度な厚膜形成が可能であり、特に、光導波路製造用として有効であって、光導波路を生産するに際して、極めて生産性の高い光導波路形成用樹脂フィルムに有用な光導波路形成用樹脂組成物を提供することができる。また、光導波路形成用樹脂組成物及び光導波路形成用樹脂フィルムを用いて光導波路を形成することにより、透明性、環境信頼性、耐熱性に優れた光導波路を提供することができる。
本発明の光導波路の形態を説明する断面図である。 本発明で実施したリフロー試験におけるリフロー炉内の温度プロファイルを示すグラフである。
(光導波路形成用樹脂組成物)
 本発明の光導波路形成用樹脂組成物は、(A)側鎖にエチレン性不飽和基を有し、主鎖に芳香環を有するポリヒドロキシポリエーテル、(B)エチレン性不飽和基を有する重合性化合物、及び(C)ラジカル重合開始剤を含んでなるものである。以下、(A)成分を(A)ポリヒドロキシポリエーテルと略記することがある。
((A)側鎖にエチレン性不飽和基を有し、主鎖に芳香環を有するポリヒドロキシポリエーテル)
 本発明に用いられる(A)側鎖にエチレン性不飽和基を有し、主鎖に芳香環を有するポリヒドロキシポリエーテルとは、2官能フェノール及び2官能エポキシ樹脂、2官能フェノール及びエピクロロヒドリン、又は2官能フェノール及び2官能オキセタン化合物をモノマーとし、これらを重合後、水酸基の反応性を利用して、側鎖にエチレン性不飽和基を導入したポリマーをいう。また、これらのモノマーを重合し、ポリヒドロキシポリエーテルとした後に、水酸基をエチレンオキシド、プロピレンオキシド、カプロラクトンなどで変性し、側鎖末端の水酸基の反応性を利用して、エチレン性不飽和基を導入したポリマーも含まれる。さらに、ポリヒドロキシポリエーテルの水酸基の反応性を利用して、一旦カルボキシル基などを導入し、これにエチレン性不飽和基を導入したポリマーも含まれる。
 ポリヒドロキシポリエーテルの側鎖にエチレン性不飽和基を導入することにより、硬化時に(B)成分のエチレン性不飽和基を有する重合性化合物と架橋することが可能となり、得られる硬化物の透明性を損なうことなく、耐熱性を向上させることができる。
 また、上記モノマーに由来する構造単位(下記一般式(2))が存在することにより、(B)成分のエチレン性不飽和基を有する重合性化合物と架橋しすぎない。以上の観点から、下記一般式(1)及び(2)で表される構造単位を有するポリヒドロキシポリエーテルが好ましい。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
 式(1)における、R1は、水素原子又は炭素数1~20の有機基を示す。炭素数1~20の有機基としては、例えば、アルキル基、シクロアルキル基、アリール基、アラルキル基、カルボニル基(-CO-Rを意味する。但しRは炭化水素基である)、エステル基(-CO-O-R又は-O-CO-Rを意味する。但しRは炭化水素基である)、カルバモイル基などの1価の有機基が挙げられ、それらは、さらに水酸基、ハロゲン原子、アルキル基、シクロアルキル基、アリール基、アラルキル基、カルボニル基、ホルミル基、エステル基、アミド基、アルコキシ基、アリーロキシ基、アルキルチオ基、アリールチオ基、アミノ基、シリル基、シリロキシ基などで置換されていてもよい。これらのうち、透明性、及び耐熱性の点から、アルキル基、シクロアルキル基、アリール基、及びアラルキル基が好ましい。
 次に、X1は、2価の基であれば、特に制限はなく、例えば、下記一般式で表されるヒドロキノン、レゾルシノール、カテコール、1,4-ナフタレンジオール、1,5-ナフタレンジオール、1,6-ナフタレンジオール、1,7-ナフタレンジオールなどの単核2官能フェノール、これらの有機基置換体、及び含フッ素有機基置換体由来の基;2,2’-ビフェノール、4,4’-ビフェノール、ビスフェノールA、テトラブロモビスフェノールA、ビスフェノールF、ビスフェノールAD、ビスフェノールS、ビスフェノールZ、フルオレン型ビスフェノールなどの多核2官能フェノール、これらの有機基置換体、及びビスフェノールAFなどの含フッ素有機基置換体由来の基といった芳香環を含有する2価の基が挙げられる。これらの中で、透明性及び耐熱性の観点から上記多核2官能フェノール、これらの有機基置換体、及びビスフェノールAFなどの含フッ素有機基置換体由来の基が好ましい。これらの基は単独で又は2種類以上を組み合わせて用いることができ、さらに耐熱性を損なわない程度にアルキレン基、シクロアルキレン基、ポリエーテル基、ポリシロキサン基、カルボニル基、エステル基、アミド基、ウレタン基などの芳香環を含有しない2価の基を併用してもよい。
Figure JPOXMLDOC01-appb-C000019
 上記式におけるR2~R18は、各々独立に水素原子、フッ素原子及び炭素数1~20の有機基のいずれかを示す。炭素数1~20の有機基としては、上述のR1の具体例として記載されたものと同様のものを好適に挙げることができる。
 また、Z1は、単結合、酸素原子、硫黄原子、-CH2-、-C(CH32-、-CF2-、-C(CF32-、-SO2-、
Figure JPOXMLDOC01-appb-C000020
のいずれかの2価の基を示す。aは、2~10の整数を示す。
 また、式(1)におけるY1は、単結合又は炭素数1~20の2価の有機基を示し、Y2は、炭素数1~20の2価の有機基を示す。
 ここで、炭素数1~20の2価の有機基としては、例えば、アルキレン基、シクロアルキレン基、フェニレン基、ポリエーテル基、ポリシロキサン基、カルボニル基、エステル基、アミド基、ウレタン基などを含む2価の有機基が挙げられ、それらは、さらにハロゲン原子、アルキル基、シクロアルキル基、アリール基、アラルキル基、カルボニル基、ホルミル基、エステル基、アミド基、アルコキシ基、アリーロキシ基、アルキルチオ基、アリールチオ基、シリル基、シリロキシ基などで置換されていてもよい。
 一般式(1)で表される構造単位は、透明性及び耐熱性を発現し、さらに強靭性を付与して伸び率を向上できるという観点から、ウレタン基及び(メタ)アクリロイル基を有する下記一般式(3)で表されることが、さらに好ましい。なお、(メタ)アクリロイル基とはメタクリロイル基及び/又はアクリロイル基を示す。
Figure JPOXMLDOC01-appb-C000021
 式中、R36は、水素原子又はメチル基を示す。また、Y4は、炭素数1~18の2価の有機基であれば特に制限はなく、例えば、アルキレン基、シクロアルキレン基、フェニレン基、ポリエーテル基、ポリシロキサン基、カルボニル基、エステル基、アミド基などを含む2価の有機基が挙げられ、それらは、さらにハロゲン原子、アルキル基、シクロアルキル基、アリール基、アラルキル基、カルボニル基、ホルミル基、エステル基、アミド基、アルコキシ基、アリーロキシ基、アルキルチオ基、アリールチオ基、シリル基、シリロキシ基などで置換されていてもよい。
 次に、上記式(2)におけるX2は、X1と同様に、2価の基であれば、特に制限はなく、例えば、下記一般式で表されるヒドロキノン、レゾルシノール、カテコール、1,4-ナフタレンジオール、1,5-ナフタレンジオール、1,6-ナフタレンジオール、1,7-ナフタレンジオールなどの単核2官能フェノール、これらの有機基置換体、及び含フッ素有機基置換体由来の基;2,2’-ビフェノール、4,4’-ビフェノール、ビスフェノールA、テトラブロモビスフェノールA、ビスフェノールF、ビスフェノールAD、ビスフェノールS、ビスフェノールZ、フルオレン型ビスフェノールなどの多核2官能フェノール、これらの有機基置換体、及びビスフェノールAFなどの含フッ素有機基置換体由来の基といった芳香環を含有する2価の基が挙げられる。これらの中で、透明性及び耐熱性の観点から上記多核2官能フェノール、これらの有機基置換体、及びビスフェノールAFなどの含フッ素有機基置換体由来の基が好ましい。これらの基は単独で又は2種類以上を組み合わせて用いることができ、さらに耐熱性を損なわない程度にアルキレン基、シクロアルキレン基、ポリエーテル基、ポリシロキサン基、カルボニル基、エステル基、アミド基、ウレタン基などの芳香環を含有しない2価の基を併用してもよい。
Figure JPOXMLDOC01-appb-C000022
上記式における、R19~R35は、各々独立に水素原子、フッ素原子及び炭素数1~20の有機基のいずれかを示す。炭素数1~20の有機基としては、上述のR1の具体例として記載されたものと同様のものを好適に用いることができる。
 また、Z2は、単結合、酸素原子、硫黄原子、-CH2-、-C(CH32-、-CF2-、-C(CF32-、-SO2-、
Figure JPOXMLDOC01-appb-C000023
のいずれかの2価の基を示す。bは、2~10の整数を示す。
 また、式(2)におけるY3は、単結合又は炭素数1~20の2価の有機基を示す。ここで、炭素数1~20の2価の有機基としては、上述のY1及びY2の具体例として記載されたものと同様のものを好適に用いることができる。
 本発明の(A)ポリヒドロキシポリエーテルが、上記一般式(1)及び一般式(2)で表わされる構造単位を有する場合の、一般式(1)で表される構造単位の含有率は、3~70モル%であることが好ましい。3モル%以上であれば硬化時に(B)成分のエチレン性不飽和基を有する重合性化合物と十分に架橋することにより、得られる硬化物の耐熱性が良好であり、70モル%以下であれば架橋密度が高くなりすぎず、得られる硬化物が脆くなることがない。以上の観点から、5~60モル%であることがさらに好ましく、10~50モル%であることが特に好ましい。
 また、一般式(2)で表される構造単位の含有率は、30~97モル%であることが好ましい。30モル%以上であれば硬化時に(B)成分のエチレン性不飽和基を有する重合性化合物と架橋しすぎないことにより、得られる硬化物が脆くなることがなく、97モル%以下であれば十分に架橋することにより、得られる硬化物の耐熱性が良好である。以上の観点から、40~95モル%であることがさらに好ましく、50~90モル%であることが特に好ましい。
 (A)成分としては、主鎖にビスフェノールA及びビスフェノールF由来の骨格を有するポリヒドロキシポリエーテルの側鎖にエチレン性不飽和基を導入したものが特に好ましい。ここで、主鎖にビスフェノールA及びビスフェノールF由来の骨格を有するポリヒドロキシポリエーテルは、例えば、フェノキシ樹脂として東都化成株式会社から商品名「フェノトートYP-70」が商業的に入手可能である。
 (A)側鎖にエチレン性不飽和基を有し、主鎖に芳香環を有するポリヒドロキシポリエーテルは、その合成方法に特に制限はなく、例えば、主鎖に芳香環を有するポリヒドロキシポリエーテルを溶媒に溶解させ、ポリヒドロキシポリエーテルの水酸基にエチレン性不飽和イソシアネートを付加させることにより得ることができる。また、ポリヒドロキシポリエーテルの水酸基に多塩基酸無水物を付加反応させて、カルボン酸変性ポリヒドロキシポリエーテルとした後に、カルボキシル基に、エチレン性不飽和基含有エポキシド、エチレン性不飽和基含有オキセタン、エチレン性不飽和イソシアネート、エチレン性不飽和基含有アルコールを付加させることにより得ることができる。これらの化合物の使用量は、一般式(1)及び(2)で表される構造単位の含有率が上記範囲となるように調整される。
 上記合成に用いるエチレン性不飽和イソシアネートとしては、特に制限はなく、例えば、(メタ)アクリロイルオキシメチルイソシアネート、2-(メタ)アクリロイルオキシエチルイソシアネート、2-(メタ)アクリロイルオキシエトキシエチルイソシアネート、1,1-ビス((メタ)アクリロイルオキシメチル)エチルイソシアネートなどが挙げられる。
 これらの中でも、透明性及び耐熱性の観点から、(メタ)アクリロイルオキシメチルイソシアネート、2-(メタ)アクリロイルオキシエチルイソシアネート、2-(メタ)アクリロイルオキシエトキシエチルイソシアネートが好ましい。
 これらの化合物は、単独で又は2種類以上を組み合わせて用いることができる。
 また、多塩基酸無水物としては、特に制限はなく、例えば、無水コハク酸、無水グルタル酸、無水イタコン酸、無水マレイン酸、無水シトラコン酸、無水フタル酸、無水テトラヒドロフタル酸、無水ヘキサヒドロフタル酸、無水トリメリト酸、無水ヘキサヒドロトリメリト酸などが挙げられる。
 これらの中でも、透明性及び耐熱性の観点から、無水コハク酸、無水グルタル酸、無水テトラヒドロフタル酸、無水ヘキサヒドロフタル酸、無水ヘキサヒドロトリメリト酸が好ましい。
 これらの化合物は、単独で又は2種類以上を組み合わせて用いることができる。
 エチレン性不飽和基含有エポキシドとしては、特に制限はなく、例えば、グリシジル(メタ)アクリレート、α-エチルグリシジル(メタ)アクリレート、α-n-プロピルグリシジル(メタ)アクリレート、α-n-ブチルグリシジル(メタ)アクリレート、2-メチルグリシジル(メタ)アクリレート、2-エチルグリシジル(メタ)アクリレート、2-プロピルグリシジル(メタ)アクリレート、3,4-エポキシブチル(メタ)アクリレート、6,7-エポキシヘプチル(メタ)アクリレート、α-エチル-6,7-エポキシヘプチル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、o-ビニルベンジルグリシジルエーテル、m-ビニルベンジルグリシジルエーテル、p-ビニルベンジルグリシジルエーテルなどが挙げられる。
 これらの中でも、透明性及び耐熱性の観点から、グリシジル(メタ)アクリレート、3,4-エポキシブチル(メタ)アクリレート、3,4-エポキシヘプチル(メタ)アクリレート、6,7-エポキシシクロヘキシルメチル(メタ)アクリレートが好ましい。
 これらの化合物は、単独で又は2種類以上を組み合わせて用いることができる。
 エチレン性不飽和基含有オキセタンとしては、特に制限はなく、例えば、(2-エチル-2-オキセタニル)メチル(メタ)アクリレート、(2-メチル-2-オキセタニル)メチル(メタ)アクリレート、2-(2-エチル-2-オキセタニル)エチル(メタ)アクリレート、2-(2-メチル-2-オキセタニル)エチル(メタ)アクリレート、3-(2-エチル-2-オキセタニル)プロピル(メタ)アクリレート、3-(2-メチル-2-オキセタニル)プロピル(メタ)アクリレートなどが挙げられる。
 これらの中でも、透明性及び耐熱性の観点から、(2-エチル-2-オキセタニル)メチル(メタ)アクリレート、(2-メチル-2-オキセタニル)メチル(メタ)アクリレート、2-(2-エチル-2-オキセタニル)エチル(メタ)アクリレート、2-(2-メチル-2-オキセタニル)エチル(メタ)アクリレートが好ましい。
 これらの化合物は、単独で又は2種類以上を組み合わせて用いることができる。
 エチレン性不飽和基含有アルコールとしては、特に制限はなく、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシプロピル-3-フェノキシ(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレートなどが挙げられる。
 これらの中でも、透明性及び耐熱性の観点から、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシプロピル-3-フェノキシ(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレートが好ましい。
 これらの化合物は、単独で又は2種類以上を組み合わせて用いることができる。
 反応溶媒として用いる有機溶剤としては、主鎖に芳香環を有するポリヒドロキシポリエーテルを溶解し得る非プロトン性の溶媒であれば特に制限はなく、例えば、トルエン、キシレン、メシチレン、クメン、p-シメンなどの芳香族炭化水素;ジエチルエーテル、tert-ブチルメチルエーテル、シクロペンチルメチルエーテル、ジブチルエーテルなどの鎖状エーテル;テトラヒドロフラン、1,4-ジオキサンなどの環状エーテル;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン;酢酸メチル、酢酸エチル、酢酸ブチル、γ-ブチロラクトンなどのエステル;エチレンカーボネート、プロピレンカーボネートなどの炭酸エステル;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテルなどの多価アルコールアルキルエーテル;エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテートなどの多価アルコールアルキルエーテルアセテート;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドンなどのアミドなどが挙げられる。
 これらの有機溶剤は、単独で又は2種類以上を組み合わせて用いることができる。
 (A)側鎖にエチレン性不飽和基を有し、主鎖に芳香環を有するポリヒドロキシポリエーテルの重量平均分子量は、1.0×103~1.0×106であることが好ましい。1.0×103以上であると分子量が大きいため樹脂組成物とした場合の強度が十分で、1.0×106以下であると、後述する現像により感光性樹脂組成物の層を選択的に除去してパターンを形成する工程において、公知の各種現像液により現像可能となり、また(B)成分のエチレン性不飽和基を有する重合性化合物との相溶性が良好である。以上の観点から3.0×103~5.0×105とすることがさらに好ましく、5.0×103~3.0×105であることが特に好ましい。
 なお、本発明の重量平均分子量は、ゲル浸透クロマトグラフィー(GPC、キャリア溶媒:テトラヒドロフラン)で測定し、標準ポリスチレン換算した値である。
 (A)成分の側鎖にエチレン性不飽和基を有し、主鎖に芳香環を有するポリヒドロキシポリエーテルの配合量は、(A)成分及び(B)成分のエチレン性不飽和基を有する重合性化合物の総量に対して、10~90質量%であることが好ましい。10質量%以上であると、(B)成分のエチレン性不飽和基を有する重合性化合物及び(C)成分のラジカル重合開始剤を含んでなる光導波路形成用樹脂組成物をフィルム化することが容易となり、90質量%以下であると、硬化時に(B)成分のエチレン性不飽和基を有する重合性化合物と十分に架橋することにより、耐現像液性が不足することがない。以上の観点から、(A)成分の配合量は、15~80質量%であることがさらに好ましく、20~70質量%であることが特に好ましい。
((B)エチレン性不飽和基を有する重合性化合物)
 本発明において、(B)成分としてエチレン性不飽和基を有する重合性化合物を用いることにより、硬化時に(A)成分の側鎖にエチレン性不飽和基を有し、主鎖に芳香環を有するポリヒドロキシポリエーテルと架橋することが可能となり、得られる硬化物の透明性を損なうことなく耐熱性を向上させることができる。
 (B)成分のエチレン性不飽和基を有する重合性化合物は、(A)成分以外のものであれば、特に制限はなく、例えば、(メタ)アクリレート、ビニルエーテル、ビニルエステル、ビニルアミド、アリール化ビニル、ビニルピリジン、ハロゲン化ビニル、ハロゲン化ビニリデンなどが挙げられる。
 これらの中でも、透明性及び耐熱性の観点から、(メタ)アクリレートやアリール化ビニルが好ましい。(メタ)アクリレートとしては、単官能のもの、2官能のもの、又は3官能以上のもののいずれも用いることができる。
 単官能(メタ)アクリレートとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチルヘプチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ドデシル(メタ)アクリレート、トリデシル(メタ)アクリレート、テトラデシル(メタ)アクリレート、ペンタデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、ベヘニル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、エトキシポリエチレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、エトキシポリプロピレングリコール(メタ)アクリレート、モノ(2-(メタ)アクリロイルオキシエチル)スクシネートなどの脂肪族(メタ)アクリレート、これらのエトキシ化体、これらのプロポキシ化体、これらのエトキシ化プロポキシ化体、及びこれらのカプロラクトン変性体;シクロペンチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、モノ(2-(メタ)アクリロイルオキシエチル)テトラヒドロフタレート、モノ(2-(メタ)アクリロイルオキシエチル)ヘキサヒドロフタレートなどの脂環式(メタ)アクリレート、これらのエトキシ化体、これらのプロポキシ化体、これらのエトキシ化プロポキシ化体、及びこれらのカプロラクトン変性体;フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、o-ビフェニル(メタ)アクリレート、1-ナフチル(メタ)アクリレート、2-ナフチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、p-クミルフェノキシエチル(メタ)アクリレート、o-フェニルフェノキシエチル(メタ)アクリレート、1-ナフトキシエチル(メタ)アクリレート、2-ナフトキシエチル(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、フェノキシポリプロピレングリコール(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、2-ヒドロキシ-3-(o-フェニルフェノキシ)プロピル(メタ)アクリレート、2-ヒドロキシ-3-(1-ナフトキシ)プロピル(メタ)アクリレート、2-ヒドロキシ-3-(2-ナフトキシ)プロピル(メタ)アクリレートなどの芳香族(メタ)アクリレート、これらのエトキシ化体、これらのプロポキシ化体、これらのエトキシ化プロポキシ化体、及びこれらのカプロラクトン変性体;2-テトラヒドロフルフリル(メタ)アクリレート、N-(メタ)アクリロイルオキシエチルテトラヒドロフタルイミド、N-(メタ)アクリロイルオキシエチルヘキサヒドロフタルイミド、イソシアヌル酸モノ(メタ)アクリレート、2-(メタ)アクリロイルオキシエチル-N-カルバゾールなどの複素環式(メタ)アクリレート、これらのエトキシ化体、これらのプロポキシ化体、これらのエトキシ化プロポキシ化体、及びこれらのカプロラクトン変性体などが挙げられる。
 これらの中でも、透明性及び耐熱性の観点から、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、イソボルニル(メタ)アクリレートなどの脂環式(メタ)アクリレート、これらのエトキシ化体、これらのプロポキシ化体、これらのエトキシ化プロポキシ化体、及びこれらのカプロラクトン変性体;ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、p-クミルフェノキシエチル(メタ)アクリレート、o-フェニルフェノキシエチル(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、フェノキシポリプロピレングリコール(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、2-ヒドロキシ-3-(o-フェニルフェノキシ)プロピル(メタ)アクリレートなどの芳香族(メタ)アクリレート、これらのエトキシ化体、これらのプロポキシ化体、これらのエトキシ化プロポキシ化体、及びこれらのカプロラクトン変性体;N-(メタ)アクリロイルオキシエチルテトラヒドロフタルイミド、N-(メタ)アクリロイルオキシエチルヘキサヒドロフタルイミド、イソシアヌル酸モノ(メタ)アクリレート、2-(メタ)アクリロイルオキシエチル-N-カルバゾールなどの複素環式(メタ)アクリレートなどの複素環式(メタ)アクリレート、これらのエトキシ化体、これらのプロポキシ化体、これらのエトキシ化プロポキシ化体、及びこれらのカプロラクトン変性体が好ましく、下記一般式(4)で表される芳香族モノ(メタ)アクリレートがさらに好ましい。
 ここで、(メタ)アクリレートのエトキシ化体、プロポキシ化体、エトキシ化プロポキシ化体とは、原料となるアルコール又はフェノール類[例えば、モノ(メタ)アクリレート;CH2=CH(R1)-COO-R2(R1は水素原子又はメチル基、R2は一価の有機基)の場合は、HO-R2で示されるもの]の代わりに、前記アルコール又はフェノール類に、それぞれ、1以上のエチレンオキシドを付加した構造のアルコール、1以上のプロピレンオキシドを付加した構造のアルコール、又は1以上のエチレンオキシド及びプロピレンオキシドを付加した構造のアルコールを、原料に用いて得られる(メタ)アクリレートを示す(例えば、エトキシ化体の場合はCH2=CH(R1)-COO-(CH2CH2O)n-R2(nは1以上の整数)で示される)。例えば、フェノキシエチル(メタ)アクリレートのエトキシ化体とは、フェノキシエチルアルコールにエチレンオキシドを付加したアルコールと、アクリル酸又はメタクリル酸とを反応させて得られる(メタ)アクリレートを意味する。また、カプロラクトン変性体とは、(メタ)アクリレートの原料となるアルコールをカプロラクトンで変性した変性アルコールを原料とする(メタ)アクリレートを示す(例えば、モノ(メタ)アクリレートのε-カプロラクトン変性体の場合、CH2=CH(R1)-COO-((CH25COO)n-R2(n、R1、R2は前記と同様))で示される)。
Figure JPOXMLDOC01-appb-C000024
 式中、R37は、水素原子又はメチル基を示す。R38は、下記式で示されるいずれかの1価の基を示す。
Figure JPOXMLDOC01-appb-C000025
ここで、R39~R52は、各々独立に水素原子、フッ素原子及び炭素数1~20の有機基のいずれかを示す。なお、炭素数1~20の有機基としては、上述のR1の具体例として記載されたものと同様のものを好適に挙げることができる。
 また、Z3は、単結合、酸素原子、硫黄原子、-CH2-、-C(CH32-、-CF2-、-C(CF32-、-SO2-、
Figure JPOXMLDOC01-appb-C000026
のいずれかの2価の基を示す。cは、2~10の整数を示す。
 また、式(4)における、W1は、酸素原子、硫黄原子、-OCH2-、-SCH2-、-O(CH2CH2O)d-、-O[CH2CH(CH3)O]e-、-O[(CH25CO2f-及び-OCH2CH(OH)CH2O-のいずれかの2価の基を含み、d~fは1~10の整数を示す。
 2官能(メタ)アクリレートとしては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、1,3-プロパンジオールジ(メタ)アクリレート、2-メチル-1,3-プロパンジオールジ(メタ)アクリレート、2-ブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレートなどの脂肪族(メタ)アクリレート、これらのエトキシ化体、これらのプロポキシ化体、これらのエトキシ化プロポキシ化体、及びこれらのカプロラクトン変性体;エチレングリコール型エポキシジ(メタ)アクリレート、ジエチレングリコール型エポキシジ(メタ)アクリレート、ポリエチレングリコール型エポキシジ(メタ)アクリレート、プロピレングリコール型エポキシジ(メタ)アクリレート、ジプロピレングリコール型エポキシジ(メタ)アクリレート、ポリプロピレングリコール型エポキシジ(メタ)アクリレート、1,3-プロパンジオール型エポキシジ(メタ)アクリレート、2-メチル-1,3-プロパンジオール型エポキシジ(メタ)アクリレート、2-ブチル-2-エチル-1,3-プロパンジオール型エポキシジ(メタ)アクリレート、1,4-ブタンジオール型エポキシジ(メタ)アクリレート、ネオペンチルグリコール型エポキシジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオール型エポキシジ(メタ)アクリレート、1,6-ヘキサンジオール型エポキシジ(メタ)アクリレート、1,9-ノナンジオール型エポキシジ(メタ)アクリレート、1,10-デカンジオール型エポキシジ(メタ)アクリレートなどの脂肪族エポキシ(メタ)アクリレート;シクロヘキサンジメタノールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、水添ビスフェノールAジ(メタ)アクリレート、水添ビスフェノールFジ(メタ)アクリレートなどの脂環式(メタ)アクリレート、これらのエトキシ化体、これらのプロポキシ化体、これらのエトキシ化プロポキシ化体、及びこれらのカプロラクトン変性体;シクロヘキサンジメタノール型エポキシジ(メタ)アクリレート、トリシクロデカンジメタノール型エポキシジ(メタ)アクリレート、水添ビスフェノールA型エポキシジ(メタ)アクリレート、水添ビスフェノールF型エポキシジ(メタ)アクリレートなどの脂環式エポキシ(メタ)アクリレート;ヒドロキノンジ(メタ)アクリレート、レゾルシノールジ(メタ)アクリレート、カテコールジ(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、ビスフェノールFジ(メタ)アクリレート、ビスフェノールAFジ(メタ)アクリレート、ビフェノールジ(メタ)アクリレート、フルオレン型ジ(メタ)アクリレートなどの芳香族(メタ)アクリレート、これらのエトキシ化体、これらのプロポキシ化体、これらのエトキシ化プロポキシ化体、及びこれらのカプロラクトン変性体;ヒドロキノン型エポキシジ(メタ)アクリレート、レゾルシノール型エポキシジ(メタ)アクリレート、カテコール型エポキシジ(メタ)アクリレート、ビスフェノールA型エポキシジ(メタ)アクリレート、ビスフェノールF型エポキシジ(メタ)アクリレート、ビスフェノールAF型エポキシジ(メタ)アクリレート、ビフェノール型エポキシジ(メタ)アクリレート、フルオレン型エポキシジ(メタ)アクリレートなどの芳香族エポキシ(メタ)アクリレート;イソシアヌル酸ジ(メタ)アクリレートなどの複素環式(メタ)アクリレート、これらのエトキシ化体、これらのプロポキシ化体、これらのエトキシ化プロポキシ化体、及びこれらのカプロラクトン変性体;イソシアヌル酸モノアリル型エポキシジ(メタ)アクリレートなどの複素環式(メタ)アクリレートなどが挙げられる。
 これらの中でも、透明性及び耐熱性の観点から、上記脂環式(メタ)アクリレート、これらのエトキシ化体、これらのプロポキシ化体、これらのエトキシ化プロポキシ化体、及びこれらのカプロラクトン変性体;上記脂環式エポキシ(メタ)アクリレート;ビスフェノールAジ(メタ)アクリレート、ビスフェノールFジ(メタ)アクリレート、ビスフェノールAFジ(メタ)アクリレート、ビフェノールジ(メタ)アクリレート、フルオレン型ジ(メタ)アクリレートなどの芳香族(メタ)アクリレート、これらのエトキシ化体、これらのプロポキシ化体、これらのエトキシ化プロポキシ化体、及びこれらのカプロラクトン変性体;ビスフェノールA型エポキシジ(メタ)アクリレート、ビスフェノールF型エポキシジ(メタ)アクリレート、ビスフェノールAF型エポキシジ(メタ)アクリレート、ビフェノール型エポキシジ(メタ)アクリレート、フルオレン型エポキシジ(メタ)アクリレートなどの芳香族エポキシ(メタ)アクリレート;上記複素環式(メタ)アクリレート、これらのエトキシ化体、これらのプロポキシ化体、これらのエトキシ化プロポキシ化体、及びこれらのカプロラクトン変性体;上記複素環式(メタ)アクリレートが好ましく、下記一般式(5)で表される芳香族(メタ)アクリレート及び下記一般式(6)で表される芳香族エポキシ(メタ)アクリレートがさらに好ましい。
 そして、一般式(5)で表される芳香族(メタ)アクリレート及び一般式(6)で表される芳香族エポキシ(メタ)アクリレートを併用することが特に好ましい。
 一般式(5)で表される芳香族(メタ)アクリレートとしては、Z4が-C(CH32-及びフルオレン骨格のものが好ましく、例えば、新中村化学工業株式会社から商品名「NKエステル A-BPEF」、日立化成工業株式会社から商品名「ファンクリル FA-321A」が商業的に入手可能である。
 また、一般式(6)で表される芳香族エポキシ(メタ)アクリレートを2種以上組み合わせて使用することが極めて好ましい。
 一般式(6)で表される芳香族エポキシ(メタ)アクリレートとしては、Z5が-C(CH32-が好ましく、例えば、新中村化学工業株式会社から商品名「NKオリゴ EA-5222」、「NKオリゴ EA-1020」が商業的に入手可能である。
 なお、エトキシ化体、プロポキシ化体、エトキシ化プロポキシ化体、カプロラクトン変性体とは、前記と同様の意味である。
Figure JPOXMLDOC01-appb-C000027
 式中、R53及びR54は、各々独立に水素原子又はメチル基を示す。R55~R60は、各々独立に水素原子、フッ素原子及び炭素数1~20の有機基のいずれかを示す。なお、炭素数1~20の有機基としては、上述のR1の具体例として記載されたものと同様のものを好適に挙げることができる。
 また、Z4は、単結合、酸素原子、硫黄原子、-CH2-、-C(CH32-、-CF2-、-C(CF32-、-SO2-、
Figure JPOXMLDOC01-appb-C000028
のいずれかの2価の基を示す。gは2~10の整数を示す。
 また、前記式(5)における、W2及びW3は、各々独立に酸素原子、硫黄原子、-OCH2-、-SCH2-、-O(CH2CH2O)h-、-O[CH2CH(CH3)O]i-及び-O[(CH25CO2j-のいずれかの2価の基を含む。h~jは、各々独立に1~10の整数を示す。)
Figure JPOXMLDOC01-appb-C000029
 式中、kは、1~10の整数を示す。R61及びR62は、各々独立に水素原子又はメチル基を示す。R63~R68は、各々独立に水素原子、フッ素原子及び炭素数1~20の有機基のいずれかを示す。なお、炭素数1~20の有機基としては、上述のR1の具体例として記載されたものと同様のものを好適に挙げることができる。
 また、Z5は、単結合、酸素原子、硫黄原子、-CH2-、-C(CH32-、-CF2-、-C(CF32-、-SO2-、
Figure JPOXMLDOC01-appb-C000030
のいずれかの2価の基を示す。lは、2~10の整数を示す。
 前記式(6)における、W4及びW5は、各々独立に酸素原子、-O(CH2CH2O)m-、-O[CH2CH(CH3)O]n-及び-O[(CH25CO2o-のいずれかの2価の基を含み、m~oは、各々独立に1~10の整数を示す。
 3官能以上の(メタ)アクリレートとして、例えばトリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートなどの脂肪族(メタ)アクリレート、これらのエトキシ化体、これらのプロポキシ化体、これらのエトキシ化プロポキシ化体、及びこれらのカプロラクトン変性体;フェノールノボラック型エポキシ(メタ)アクリレート、クレゾールノボラック型エポキシポリ(メタ)アクリレートなどの芳香族エポキシ(メタ)アクリレート;イソシアヌル酸トリ(メタ)アクリレートなどの複素環式(メタ)アクリレート、これらのエトキシ化体、これらのプロポキシ化体、これらのエトキシ化プロポキシ化体、及びこれらのカプロラクトン変性体;イソシアヌル酸型エポキシ(メタ)アクリレートなどの複素環式(メタ)エポキシアクリレートなどが挙げられる。なお、エトキシ化体、プロポキシ化体、エトキシ化プロポキシ化体、カプロラクトン変性体とは、前記と同様の意味である。
 これらの中でも、透明性及び耐熱性の観点から、上記芳香族エポキシ(メタ)アクリレート;上記複素環式(メタ)アクリレート;上記イソシアヌル酸型エポキシ(メタ)アクリレートが好ましい。
 以上の(メタ)アクリレートは、単独又は2種類以上組み合わせて用いることができ、さらにその他の重合性化合物と組み合わせて用いることもできる。
 (B)エチレン性不飽和基を有する重合性化合物の配合量は、前記(A)成分と(B)成分の総量に対して、10~90質量%であることが好ましい。10質量%以上であると、硬化時に(A)側鎖にエチレン性不飽和基を有し、主鎖に芳香環を有するポリヒドロキシポリエーテルと十分に架橋することにより、耐現像液性が不足することがなく、90質量%以下であると、(A)ポリヒドロキシポリエーテル及び(C)ラジカル重合開始剤を含んでなる光導波路形成用樹脂組成物をフィルム化することが容易となる。以上の観点から、(B)成分の配合量は、20~85質量%であることがさらに好ましく、30~80質量%であることが特に好ましい。
((C)ラジカル重合開始剤)
 (C)ラジカル重合開始剤としては、加熱又は紫外線、可視光線などの活性光線の照射によってラジカル重合を開始させるものであれば特に制限はなく、例えば、熱ラジカル重合開始剤、光ラジカル重合開始剤などが挙げられる。
 熱ラジカル重合開始剤としては、特に制限はなく、例えば、国際公開WO2007/105795号公報の段落[0083]に記載されたケトンパーオキシド、パーオキシケタール、ヒドロパーオキシド、ジアルキルパーオキシド、ジアシルパーオキシド、パーオキシカーボネート、パーオキシエステル、アゾ化合物が挙げられる。
 これらの中でも、硬化性、透明性、及び耐熱性の観点から、上記ジアシルパーオキシド;上記パーオキシエステル;上記アゾ化合物が好ましい。
 光ラジカル重合開始剤としては、特に制限はなく、例えば、国際公開WO2007/105795号公報の段落[0084]に記載されたベンゾインケタール、α-ヒドロキシケトン、グリオキシエステル、α-アミノケトン、オキシムエステル、ホスフィンオキシド、2,4,5-トリアリールイミダゾール二量体、ベンゾフェノン化合物、キノン化合物、ベンゾインエーテル、ベンゾイン化合物、ベンジル化合物、アクリジン化合物の他、N-フェニルグリシン及びクマリンなどが挙げられる。
 また、前記2,4,5-トリアリールイミダゾール二量体において、2つのトリアリールイミダゾール部位のアリール基の置換基は、同一で対称な化合物を与えてもよく、相違して非対称な化合物を与えてもよい。
 これらの中で、硬化性及び透明性の観点から、上記α-ヒドロキシケトン;上記グリオキシエステル;上記オキシムエステル;上記ホスフィンオキシドが好ましい。
 また、上記α-ヒドロキシケトンの1種である1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オンが特に好ましく、チバ・ジャパン株式会社からイルガキュア2959として商業的に入手可能である。
 上記ホスフィンオキシドの1種であるビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシドが特に好ましく、チバ・ジャパン株式会社からイルガキュア819として商業的に入手可能である。
 以上のラジカル重合開始剤(熱ラジカル重合開始剤及び光ラジカル重合開始剤など)は、単独で又は2種類以上組み合わせて用いることができ、さらに適切な増感剤と組み合わせて用いることもできる。
 (C)ラジカル重合開始剤の配合量は、(A)成分及び(B)成分の総量100質量部に対して、0.01~10質量部であることが好ましい。0.01質量部以上であると、硬化が十分であり、10質量部以下であると、十分な光透過性が得られる。以上の観点から、(C)成分の配合量は0.05~7質量部であることがさらに好ましく、0.1~5質量部であることが特に好ましい。
(その他成分)
 また、必要に応じて本発明の光導波路形成用樹脂組成物中には、酸化防止剤、黄変防止剤、紫外線吸収剤、可視光吸収剤、着色剤、可塑剤、安定剤、充填剤などのいわゆる添加剤を本発明の効果に悪影響を与えない範囲で添加してもよい。
(有機溶剤)
 本発明の光導波路形成用樹脂組成物は、好適な有機溶剤を用いて希釈し、光導波路形成用樹脂ワニスとして使用してもよい。ここで用いる有機溶剤としては、該樹脂組成物を溶解し得るものであれば特に制限はなく、例えば、トルエン、キシレン、メシチレン、クメン、p-シメンなどの芳香族炭化水素;ジエチルエーテル、tert-ブチルメチルエーテル、シクロペンチルメチルエーテル、ジブチルエーテルなどの鎖状エーテル;テトラヒドロフラン、1,4-ジオキサンなどの環状エーテル;メタノール、エタノール、イソプロパノール、ブタノール、エチレングリコール、プロピレングリコールなどのアルコール;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、4-ヒドロキシ-4-メチル-2-ペンタノンなどのケトン;酢酸メチル、酢酸エチル、酢酸ブチル、乳酸メチル、乳酸エチル、γ-ブチロラクトンなどのエステル;エチレンカーボネート、プロピレンカーボネートなどの炭酸エステル;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテルなどの多価アルコールアルキルエーテル;エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテートなどの多価アルコールアルキルエーテルアセテート;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドンなどのアミドなどが挙げられる。
 これらの有機溶剤は、単独で又は2種類以上を組み合わせて用いることができる。また、樹脂ワニス中の固形分濃度は、通常10~80質量%であることが好ましい。
(光導波路形成用樹脂組成物の調合)
 光導波路形成用樹脂組成物を調合する際は、撹拌により混合することが好ましい。撹拌方法としては、特に制限はないが、撹拌効率の観点からプロペラを用いた撹拌などが好ましい。撹拌する際のプロペラの回転速度には、特に制限はないが、10~1,000rpmであることが好ましい。10rpm以上であると、各成分が十分に混合され、1,000rpm以下であると、プロペラの回転による気泡の巻き込みが少なくなる。以上の観点から、プロペラの回転速度は50~800rpmであることがさらに好ましく、100~500rpmであることが特に好ましい。
 また、撹拌時間には、特に制限はないが、1~24時間であることが好ましい。撹拌時間が1時間以上であると、各成分が十分に混合され、24時間以下であると、調合時間を短縮することができ、生産性が向上する。
 調合した光導波路形成用樹脂組成物は、孔径50μm以下のフィルタを用いて濾過するのが好ましい。孔径50μm以下のフィルタを用いることで、大きな異物などが除去されて塗布時にはじきなどを生じることがなく、また、光の散乱が抑制されて透明性が損なわれることがない。以上の観点から、孔径30μm以下のフィルタを用いて濾過するのがさらに好ましく、孔径10μm以下のフィルタを用いて濾過するのが特に好ましい。
 また、調合した光導波路形成用樹脂組成物は、減圧下で脱泡することが好ましい。脱泡方法には、特に制限はなく、例えば、真空ポンプとベルジャー、真空装置付き脱泡装置を用いる方法などが挙げられる。減圧時の圧力には、特に制限はないが、樹脂組成物に含まれる低沸点成分が沸騰しない圧力が好ましい。減圧脱泡時間には、特に制限はないが、3~60分であることが好ましい。3分以上であれば、樹脂組成物内に溶解した気泡を取り除くことができ、60分以下であれば、樹脂組成物に含まれる有機溶剤が揮発することがなく、かつ脱泡時間を短縮することができ、生産性を向上させることができる。
(光導波路形成用樹脂フィルム)
 本発明の光導波路形成用樹脂フィルムは、前記光導波路形成用樹脂組成物を用いてなり、前記(A)~(C)成分を含有する光導波路形成用樹脂組成物を好適な支持フィルムに塗布することにより容易に製造することができる。また、前記光導波路形成用樹脂組成物が前記有機溶剤で希釈された光導波路形成用樹脂ワニスである場合、樹脂ワニスを支持フィルムに塗布し、有機溶剤を除去することにより、光導波路形成用樹脂フィルムを製造することができる。
 支持フィルムとしては、特に制限はなく、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル;ポリエチレン、ポリプロピレンなどのポリオレフィン;ポリカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルスルフィド、ポリエーテルスルホン、ポリエーテルケトン、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリアリレート、ポリスルホン、液晶ポリマーなどが挙げられる。これらの中で、柔軟性及び強靭性の観点から、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレン、ポリカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリアリレート、ポリスルホンであることが好ましい。
 なお、樹脂層との剥離性向上の観点から、シリコーン系化合物、含フッ素化合物などにより離型処理が施されたフィルムを必要に応じて用いてもよい。
 支持フィルムの厚みは、目的とする柔軟性により適宜変えてよいが、3~250μmであることが好ましい。3μm以上であると、フィルム強度が十分であり、250μm以下であると、十分な柔軟性が得られる。以上の観点から、支持フィルムの厚みは、5~200μmであることがさらに好ましく、7~150μmであることが特に好ましい。
 支持フィルム上に光導波路形成用樹脂組成物を塗布して製造した光導波路形成用樹脂フィルムは、必要に応じて保護フィルムを樹脂層上に貼り付け、支持フィルム、樹脂層、及び保護フィルムからなる3層構造としてもよい。
 保護フィルムは、特に制限はないが、柔軟性及び強靭性の観点から、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル;ポリエチレン、ポリプロピレンなどのポリオレフィンなどが好ましい。なお、樹脂層との剥離性向上の観点から、シリコーン系化合物、含フッ素化合物などにより離型処理が施されたフィルムを必要に応じて用いてもよい。
 保護フィルムの厚みは、目的とする柔軟性により適宜変えてよいが、10~250μmであることが好ましい。10μm以上であると、フィルム強度が十分であり、250μm以下であると、十分な柔軟性が得られる。以上の観点から、保護フィルムの厚みは15~200μmであることがさらに好ましく、20~150μmであることが特に好ましい。
 本発明の光導波路形成用樹脂フィルムの樹脂層の厚みも、特に制限はないが、乾燥後の厚みで、通常は5~500μmであることが好ましい。5μm以上であると、厚みが十分であるため樹脂フィルム又は樹脂フィルムの硬化物の強度が十分であり、一方、500μm以下であると、乾燥が十分に行えるため樹脂フィルム中の残留溶剤量が増えることなく、樹脂フィルムの硬化物を加熱したときに発泡することがない。
 このようにして得られた光導波路形成用樹脂フィルムは、例えばロール状に巻き取ることによって容易に保存することができる。また、ロール状のフィルムを好適なサイズに切り出して、シート状にして保存することもできる。
(光導波路形成用樹脂フィルム)
 以下、本発明の光導波路形成用樹脂フィルムを最も好適な用途である光導波路形成用樹脂フィルムとして用いた場合の適用例について説明する。
 なお、コア部形成用樹脂フィルムの製造過程で用いる支持フィルムとしては、コアパターン形成に用いる露光用活性光線が透過するものであれば特に制限はなく、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル;ポリエチレン、ポリプロピレンなどのポリオレフィン;ポリカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルスルフィド、ポリエーテルスルホン、ポリエーテルケトン、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリアリレート、ポリスルホン、液晶ポリマーなどが挙げられる。
 これらの中で、露光用活性光線の透過率、柔軟性、及び強靭性の観点から、上記ポリエステル;上記ポリオレフィンであることが好ましい。さらに、露光用活性光線の透過率向上及びコアパターンの側壁荒れ低減の観点から、高透明タイプな支持フィルムを用いることがさらに好ましい。このような高透明タイプな支持フィルムとして、例えば、東洋紡績株式会社製「コスモシャインA1517」、「コスモシャインA4100」などが挙げられる。
 なお、樹脂層との剥離性向上の観点から、シリコーン系化合物、含フッ素化合物などにより離型処理が施されたフィルムを必要に応じて用いてもよい。
 コア部形成用樹脂フィルムの支持フィルムの厚みは、5~50μmであることが好ましい。5μm以上であると、支持体としての強度が十分であり、50μm以下であると、コアパターン形成時にフォトマスクとコア部形成用樹脂層のギャップが大きくならず、パターン解像度が良好である。以上の観点から、支持フィルムの厚みは10~40μmであることがさらに好ましく、15~30μmであることが特に好ましい。
(光導波路)
 以下、本発明の光導波路について説明する。
 図1の(a)に光導波路の断面図を示す。光導波路1は基材5上に形成され、高屈折率であるコア部形成用樹脂組成物からなるコア部2、並びに低屈折率であるクラッド層形成用樹脂組成物からなる下部クラッド層4及び上部クラッド層3で構成されている。
 本発明の光導波路形成用樹脂組成物及び光導波路形成用樹脂フィルムは、光導波路1の下部クラッド層4、コア部2、及び上部クラッド層3のうち、少なくとも1つに用いることが好ましい。
 光導波路形成用樹脂フィルムを用いることによって、各層の平坦性、クラッドとコアの層間密着性、及び光導波路コアパターン形成時の解像度(細線又は狭線間対応性)をより向上させることができ、平坦性に優れ、線幅や線間の小さい微細パターンの形成が可能となる。
 光導波路1において、基材5の材質としては、特に制限はなく、例えば、ガラスエポキシ樹脂基板、セラミック基板、ガラス基板、シリコン基板、プラスチック基板、金属基板、樹脂層付き基板、金属層付き基板、プラスチックフィルム、樹脂層付きプラスチックフィルム、金属層付きプラスチックフィルムなどが挙げられる。
 光導波路1は、基材5として柔軟性及び強靭性のある基材、例えば前記光導波路形成用樹脂フィルムの支持フィルムを基材として用いることで、フレキシブル光導波路としてもよく、このとき基材5を光導波路1の保護フィルムとして機能させてもよい。保護フィルムを配置することにより、保護フィルムの柔軟性及び強靭性を光導波路1に付与することが可能となる。さらに、光導波路1が汚れや傷を受けなくなるため、取り扱いやすさが向上する。
 以上の観点から、図1の(b)のように上部クラッド層3の外側に保護フィルムとして基材5が配置されていたり、図1の(c)のように下部クラッド層4及び上部クラッド層3の両方の外側に保護フィルムとして基材5が配置されていたりしてもよい。
 なお、光導波路1に柔軟性や強靭性が十分に備わっているならば、図1の(d)のように、保護フィルム5が配置されていなくてもよい。
 下部クラッド層4の厚みは、特に制限はないが、2~200μmであることが好ましい。2μm以上であると、伝搬光をコア内部に閉じ込めるのが容易となり、200μm以下であると、光導波路1全体の厚みが大きすぎることがない。なお、下部クラッド層4の厚みとは、コア部2と下部クラッド層4との境界から下部クラッド層4の下面までの値である。
 下部クラッド層形成用樹脂フィルムの厚みについては、特に制限はなく、硬化後の下部クラッド層4の厚みが上記の範囲となるように厚みが調整される。
 コア部2の高さは、特に制限はないが、10~150μmであることが好ましい。コア部の高さが10μm以上であると、光導波路形成後の受発光素子又は光ファイバとの結合において位置合わせトレランスが小さくなることがなく、150μm以下であると、光導波路形成後の受発光素子又は光ファイバとの結合において、結合効率が小さくなることがない。以上の観点から、コア部の高さは、15~130μmであることがさらに好ましく、20~120μmであることが特に好ましい。なお、コア部形成用樹脂フィルムの厚みについては、特に制限はなく、硬化後のコア部の高さが上記の範囲となるように厚みが調整される。
 上部クラッド層3の厚みは、コア部2を埋め込むことができる範囲であれば特に制限はないが、乾燥後の厚みで12~500μmであることが好ましい。上部クラッド層3の厚みとして、最初に形成される下部クラッド層4の厚みと同一であっても異なってもよいが、コア部2を埋め込むという観点から、下部クラッド層4の厚みよりも厚くすることが好ましい。なお、上部クラッド層3の厚みとは、コア部2と下部クラッド層4との境界から上部クラッド層3の上面までの値である。
 本発明の光導波路において、光伝搬損失は0.3dB/cm以下であることが好ましい。0.3dB/cm以下であると、光の損失が小さくなり、伝送信号の強度が十分である。以上の観点から、光伝搬損失は0.2dB/cm以下であることがさらに好ましく、0.1dB/cm以下であることが特に好ましい。
 本発明の光導波路において、温度85℃、湿度85%の高温高湿放置試験を1000時間実施後の光伝搬損失は、0.3dB/cm以下であることが好ましい。0.3dB/cm以下であると、光の損失が小さくなり、伝送信号の強度が十分である。以上の観点から、光伝搬損失は0.2dB/cm以下であることがさらに好ましく、0.1dB/cm以下であることが特に好ましい。
 なお、温度85℃、湿度85%の高温高湿放置試験とはJPCA規格(JPCA-PE02-05-01S)に準じた条件で実施する高温高湿放置試験のことを意味する。
 本発明の光導波路において、温度-55℃と125℃の間の温度サイクル試験を1000サイクル実施後の光伝搬損失は、0.3dB/cm以下であることが好ましい。0.3dB/cm以下であると、光の損失が小さくなり、伝送信号の強度が十分である。以上の観点から、光伝搬損失は0.2dB/cm以下であることがさらに好ましく、0.1dB/cm以下であることが特に好ましい。
 なお、温度-55℃と125℃の間の温度サイクル試験とはJPCA規格(JPCA-PE02-05-01S)に準じた条件で実施する温度サイクル試験のことを意味する。
 本発明の光導波路において、最高温度265℃のリフロー試験を3回実施後の光伝搬損失は、0.3dB/cm以下であることが好ましい。0.3dB/cm以下であると、光の損失が小さくなり、伝送信号の強度が十分であれば同時に、リフロープロセスによる部品実装が行えるために、適用範囲が広くなる。以上の観点から、光伝搬損失は0.2dB/cm以下であることがさらに好ましく、0.1dB/cm以下であることが特に好ましい。
 なお、最高温度265℃のリフロー試験とはJEDEC規格(JEDEC JESD22A113E)に準じた条件で実施する鉛フリーはんだリフロー試験のことを意味する。
 本発明の光導波路は、透明性、信頼性、及び耐熱性に優れており、光モジュールの光伝送路として用いてもよい。光モジュールの形態として、例えば、光導波路の両端に光ファイバを接続した光ファイバ付き光導波路、光導波路の両端にコネクタを接続したコネクタ付き光導波路、光導波路とプリント配線板と複合化した光電気複合基板、光導波路と光信号と電気信号を相互に変換する光/電気変換素子を組み合わせた光電気変換モジュール、光導波路と波長分割フィルタを組み合わせた波長合分波器などが挙げられる。
 なお、光電気複合基板において、複合化するプリント配線板として、特に制限はなく、例えば、ガラスエポキシ基板、セラミック基板などのリジッド基板;ポリイミド基板、ポリエチレンテレフタレート基板などのフレキシブル基板などが挙げられる。
(光導波路の製造方法)
 以下、本発明の光導波路形成用樹脂組成物及び/又は光導波路形成用樹脂フィルムを用いて光導波路1を形成するための製造方法について説明する。
 本発明の光導波路1を製造する方法としては、特に制限はなく、例えば、光導波路形成用樹脂組成物及び/又は光導波路形成用樹脂フィルムを用いて、基材上に光導波路形成用樹脂層を形成して製造する方法などが挙げられる。
 本発明に用いられる基材としては、特に制限はなく、ガラスエポキシ樹脂基板、セラミック基板、ガラス基板、シリコン基板、プラスチック基板、金属基板、樹脂層付き基板、金属層付き基板、プラスチックフィルム、樹脂層付きプラスチックフィルム、金属層付きプラスチックフィルムなどが挙げられる。
 光導波路形成用樹脂層を形成する方法としては、特に制限はなく、例えば、光導波路形成用樹脂組成物を用いて、スピンコート法、ディップコート法、スプレー法、バーコート法、ロールコート法、カーテンコート法、グラビアコート法、スクリーンコート法、インクジェットコート法などにより塗布する方法などが挙げられる。
 光導波路形成用樹脂組成物が、前記有機溶剤で希釈されて光導波路形成用樹脂ワニスとなっている場合、必要に応じて樹脂層を形成後に、乾燥する工程を入れてもよい。乾燥方法としては、特に制限はなく、例えば、加熱乾燥、減圧乾燥などが挙げられる。また、必要に応じてこれらを併用してもよい。
 光導波路形成用樹脂層を形成するその他の方法としては、光導波路形成用樹脂組成物を用いた光導波路形成用樹脂フィルムを用いて、積層法により形成する方法が挙げられる。
 これらの中で、平坦性に優れ、線幅や線間の小さい微細パターンを有する光導波路が形成可能という観点から、光導波路形成用樹脂フィルムを用いて積層法により製造する方法が好ましい。
 以下、光導波路形成用樹脂フィルムを下部クラッド層、コア部、及び上部クラッド層に用いて光導波路1を形成するための製造方法について説明するが、本発明はこれに何ら制限されるものではない。
 まず、第1の工程として下部クラッド層形成用樹脂フィルムを基材5上に積層する。第1の工程における積層方法として、特に制限はなく、例えば、ロールラミネータ又は平板型ラミネータを用いて加熱しながら圧着することにより積層する方法などが挙げられる。なお、本発明における平板型ラミネータとは、積層材料を一対の平板の間に挟み、平板を加圧することにより圧着させるラミネータのことを指し、例えば、真空加圧式ラミネータを好適に用いることができる。ラミネート温度は、特に制限はないが、20~130℃であることが好ましく、ラミネート圧力は、特に制限はないが、0.1~1.0MPaであることが好ましい。下部クラッド層形成用樹脂フィルムに保護フィルムが存在する場合、保護フィルムを除去した後に積層する。
 真空加圧式ラミネータを用いて積層する場合、ロールラミネータを用いて、あらかじめ下部クラッド層形成用樹脂フィルムを基材5上に仮貼りしておいてもよい。ここで、密着性及び追従性向上の観点から、圧着しながら仮貼りすることが好ましく、圧着する際、ヒートロールを有するラミネータを用いて加熱しながら行っても良い。ラミネート温度は、20~130℃であることが好ましい。20℃以上であれば下部クラッド層形成用樹脂フィルムと基材5との密着性が向上し、130℃以下であれば樹脂層がロールラミネート時に流動しすぎることがなく、必要とする膜厚が得られる。以上の観点から、40~100℃であることがさらに好ましい。ラミネート圧力は、特に制限はないが、0.2~0.9MPaであることが好ましく、ラミネート速度は、特に制限はないが、0.1~3m/minであることが好ましい。
 基材5上に積層された下部クラッド層形成用樹脂層を光及び/又は熱により硬化し、下部クラッド層4を形成する。なお、下部クラッド層形成用樹脂フィルムの支持フィルムの除去は、硬化前及び硬化後のどちらで行ってもよい。
 下部クラッド層形成用樹脂層を光により硬化する際の活性光線の照射量は、特に制限はないが、0.1~5J/cm2とすることが好ましい。また、活性光線が基材を透過する場合、効率的に硬化させるために、両面から同時に活性光線を照射可能な両面露光機を使用することができる。また、加熱をしながら活性光線を照射してもよい。なお、光硬化前後の処理として、必要に応じて50~200℃の加熱処理を行ってもよい。
 下部クラッド層形成用樹脂層を熱により硬化する際の加熱温度は、特に制限はないが、50~200℃とすることが好ましい。
 下部クラッド層形成用樹脂フィルムの支持フィルムを、光導波路1の保護フィルム5として機能させる場合、下部クラッド層形成用樹脂フィルムを積層することなく、光及び/又は熱により前記と同様な条件で硬化し、下部クラッド層4を形成してもよい。
 なお、下部クラッド層形成用樹脂フィルムの保護フィルムは、硬化前に除去しても、硬化後に除去してもよい。
 第2の工程として、第1の工程と同様な方法で、下部クラッド層4上にコア部形成用樹脂フィルムを積層する。ここで、コア部形成用樹脂層は下部クラッド層形成用樹脂層より高屈折率であるように設計され、活性光線によりコア部2(コアパターン)を形成し得る感光性樹脂組成物からなることが好ましい。
 第3の工程として、コア部2を露光する。コア部2を露光する方法としては、特に制限はなく、例えば、アートワークと呼ばれるネガ型フォトマスクを通して活性光線を画像状に照射する方法、レーザ直接描画を用いてネガ型フォトマスクを通さずに直接活性光線を画像上に照射する方法などが挙げられる。
 活性光線の光源としては、特に制限はなく、例えば、超高圧水銀ランプ、高圧水銀ランプ、水銀蒸気アークランプ、メタルハライドランプ、キセノンランプ、カーボンアークランプなどの紫外線を有効に放射する光源;写真用フラッド電球、太陽ランプなどの可視光線を有効に放射する光源などが挙げられる。
 コア部2を露光する際の活性光線の照射量は、0.01~10J/cm2であることが好ましい。0.01J/cm2以上であると、硬化反応が十分に進行し、現像によりコア部2が流失することがない。一方、10J/cm2以下であると、露光量過多によりコア部2が太ることがなく、微細なパターンが形成でき好適である。以上の観点から、活性光線の照射量は、0.03~5J/cm2であることがさらに好ましく、0.05~3J/cm2であることが特に好ましい。
 コア部2の露光は、コア部形成用樹脂フィルムの支持フィルムを介して行っても、支持フィルムを除去してから行ってもよい。
 また、露光後に、コア部2の解像度及び密着性向上の観点から、必要に応じて露光後加熱を行ってもよい。紫外線照射から露光後加熱までの時間は、10分以内であることが好ましいが、この条件には特に制限はない。露光後加熱温度は40~160℃であることが好ましく、時間は30秒~10分であることが好ましいが、これらの条件には特に制限はない。
 第4の工程として、コア部形成用樹脂フィルムの支持フィルムを介して露光した場合、これを除去し、コア部形成用樹脂層の組成に適した現像液を用いて現像する。
 現像方法としては、特に制限はなく、例えば、スプレー法、ディップ法、パドル法、スピン法、ブラッシング法、スクラッピング法などが挙げられる。また、必要に応じてこれらの現像方法を併用してもよい。
 現像液としては、特に制限はなく、例えば、有機溶剤、有機溶剤と水からなる準水系現像液などの有機溶剤系現像液;アルカリ性水溶液、アルカリ性水溶液と1種類以上の有機溶剤からなるアルカリ性準水系現像液などのアルカリ性現像液などが挙げられる。
 また、現像温度は、コア部形成用樹脂層の現像性に合わせて調節される。
 有機溶剤としては、特に制限はなく、例えば、前述の光導波路形成用樹脂組成物の希釈に用いる有機溶剤と同様のものを用いることができる。
 これらの有機溶剤は、単独で又は2種類以上を組み合わせて使用することができる。また、有機溶剤中には、表面活性剤、消泡剤などを混入させてもよい。
 準水系現像液として、1種類以上の有機溶剤と水からなるものであれば特に制限はない。
 有機溶剤の濃度は、通常、2~90質量%であることが好ましい。また、準水系現像液中には、界面活性剤、消泡剤などを少量混入させてもよい。
 アルカリ性水溶液の塩基として、特に制限はないが、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物;炭酸リチウム、炭酸ナトリウム、炭酸カリウムなどのアルカリ金属炭酸塩;炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウムなどのアルカリ金属重炭酸塩;リン酸カリウム、リン酸ナトリウムなどのアルカリ金属リン酸塩;ピロリン酸ナトリウム、ピロリン酸カリウムなどのアルカリ金属ピロリン酸塩;四ホウ酸ナトリウム、メタケイ酸ナトリウムなどのナトリウム塩;炭酸アンモニウム、炭酸水素アンモニウムなどのアンモニウム塩;水酸化テトラメチルアンモニウム、トリエタノールアミン、エチレンジアミン、ジエチレントリアミン、2-アミノ-2-ヒドロキシメチル-1,3-プロパンジオール、1,3-ジアミノプロパノール-2-モルホリンなどの有機塩基などが挙げられる。
 これらの塩基は、単独で又は2種類以上を組み合わせて使用することができる。
 現像に用いるアルカリ性水溶液のpHは9~14であることが好ましい。また、アルカリ性水溶液中には、界面活性剤、消泡剤などを混入させてもよい。
 アルカリ性準水系現像液として、アルカリ性水溶液と1種類以上の前記有機溶剤からなるものであれば特に制限はない。アルカリ性準水系現像液のpHは、現像が十分にできる範囲でできるだけ小さくすることが好ましく、pH8~13であることが好ましく、pH9~12であることがさらに好ましい。
 有機溶剤の濃度は、通常、2~90質量%であることが好ましい。また、アルカリ性準水系現像液中には、界面活性剤、消泡剤などを少量混入させてもよい。
 現像後の処理として、必要に応じて前記有機溶剤、前記有機溶剤と水からなる準水系洗浄液、又は水を用いて洗浄してもよい。
 洗浄方法として、特に制限はないが、例えば、スプレー法、ディップ法、パドル法、スピン法、ブラッシング法、スクラッピング法などが挙げられる。また、必要に応じてこれらの洗浄方法を併用してもよい。
 前記有機溶剤は、単独で又は2種類以上を組み合わせて用いることができる。準水系洗浄液において、有機溶剤の濃度は通常、2~90質量%とすることが好ましい。また、洗浄温度はコア部形成用樹脂層の現像性に合わせて調節される。
 現像又は洗浄後の処理として、コア部2の硬化性及び密着性向上の観点から、必要に応じて露光及び/又は加熱を行ってもよい。加熱温度は、特に制限はないが、40~200℃であることが好ましく、活性光線の照射量は、特に制限はないが、0.01~10J/cm2であることが好ましい。
 第5の工程として、第1及び第2の工程と同様の方法で、下部クラッド層4及びコア部2上に上部クラッド層形成用樹脂フィルムを積層する。ここで、上部クラッド層形成用樹脂層は、コア部形成用樹脂層よりも低屈折率になるように設計されている。また、上部クラッド形成用樹脂層の厚みは、コア部2の高さより大きくすることが好ましい。
 次いで、第1の工程と同様な方法で上部クラッド層形成用樹脂層を光及び/又は熱により硬化し、上部クラッド層3を形成する。
 上部クラッド層形成用樹脂層を光により硬化する際の活性光線の照射量は、特に制限はないが、0.1~30J/cm2とすることが好ましい。また、活性光線が基材を透過する場合、効率的に硬化させるために、両面から同時に活性光線を照射可能な両面露光機を使用することができる。また、必要に応じて加熱をしながら活性光線を照射してもよく、光硬化前後の処理として加熱処理を行ってもよい。活性光線照射中及び/又は照射後の加熱温度は、特に制限はないが、50~200℃であることが好ましい。
 上部クラッド層形成用樹脂層を熱により硬化する際の加熱温度は、特に制限はないが、50~200℃であることが好ましい。
 なお、上部クラッド層形成用樹脂フィルムの支持フィルムの除去が必要な場合、硬化前に除去しても、硬化後に除去してもよい。
 以上の工程で、光導波路1を作製することができる。
 以下、本発明を実施例によりさらに具体的に説明するが、本発明はこれらの実施例になんら限定されるものではない。
合成例1
 [側鎖にエチレン性不飽和基を有し、主鎖に芳香環を有するポリヒドロキシポリエーテルA-1の作製]
 撹拌機、冷却管、ガス導入管、滴下ろうと及び温度計を備えたフラスコに、主鎖にビスフェノールA及びビスフェノールF由来の骨格を有するポリヒドロキシポリエーテル(東都化成株式会社製「フェノトートYP-70」、重量平均分子量5.0×104~6.0×104、カタログ値)150質量部及びシクロヘキサノン191質量部を加え、窒素ガスを導入しながら、100℃で撹拌し、ポリヒドロキシポリエーテルを溶解させた。室温に冷却後、ヒドロキノンモノメチルエーテル0.09質量部、ジブチルスズジラウレート0.07質量部を加え、空気ガスを導入しながら、2-メタクリロイルオキシエチルイソシアネート17質量部及びシクロヘキサノン14質量部の混合物を50℃で30分かけて滴下した。その後、50℃で5時間撹拌を続けて、側鎖にエチレン性不飽和基を有し、主鎖にビスフェノールA及びビスフェノールF由来の骨格を有するポリヒドロキシポリエーテルA-1溶液(固形分45質量%)を得た。
[重量平均分子量の測定]
 A-1の重量平均分子量(標準ポリスチレン換算)をGPC(東ソー株式会社製SD-8022/DP-8020/RI-8020)を用いて測定した結果、43,100であった。なお、カラムは日立化成工業株式会社製 Gelpack GL-A150-S/GL-A160-Sを使用した。
合成例2
 [側鎖にエチレン性不飽和基を有し、主鎖に芳香環を有するポリヒドロキシポリエーテルA-2の作製]
 撹拌機、冷却管、ガス導入管、滴下ろうと及び温度計を備えたフラスコに、主鎖にビスフェノールA及びビスフェノールF由来の骨格を有するポリヒドロキシポリエーテル(東都化成株式会社製 フェノトートYP-70)150質量部及びシクロヘキサノン187質量部を加え、窒素ガスを導入しながら、100℃で撹拌し、ポリヒドロキシポリエーテルを溶解させた。室温に冷却後、ヒドロキノンモノメチルエーテル0.04質量部、ジブチルスズジラウレート0.04質量部を加え、空気ガスを導入しながら、2-メタクリロイルオキシエチルイソシアネート9質量部及びシクロヘキサノン7質量部の混合物を50℃で30分かけて滴下した。その後、50℃で5時間撹拌を続けて、側鎖にエチレン性不飽和基を有し、主鎖にビスフェノールA及びビスフェノールF由来の骨格を有するポリヒドロキシポリエーテルA-2溶液(固形分45質量%)を得た。
 合成例1と同様な方法で、A-2の重量平均分子量を測定した結果、42,100であった。
合成例3
 [ウレタンアクリレートUA-1の作製]
 撹拌機、冷却管、ガス導入管、滴下ろうと及び温度計を備えたフラスコに、ポリテトラメチレングリコール104質量部、ジエチレングリコール0.2質量部、カプロラクトン変性2-ヒドロキシエチルアクリレート(ダイセル化学工業株式会社製 プラクセルFA2D)55質量部、ヒドロキノンモノメチルエーテル0.1質量部、ジブチルスズジラウレート0.06質量部を加え、空気ガスを導入しながら、イソホロンジイソシアネート44質量部を70℃で2時間かけて滴下した。その後、70℃で5時間撹拌を続けて、ウレタンアクリレートUA-1を得た。
 合成例1と同様な方法で、UA-1の重量平均分子量を測定した結果、10,000であった。
合成例4
 [(メタ)アクリルポリマーP-1の作製]
 撹拌機、冷却管、ガス導入管、滴下ろうと及び温度計を備えたフラスコに、メチルエチルケトン94質量部を秤量し、窒素ガスを導入しながら、ジシクロペンタニルメタクリレート15質量部、ベンジルメタクリレート62質量部、メチルメタクリレート12質量部、2-ヒドロキシエチルメタクリレート14質量部、2,2'-アゾビス(2,4-ジメチルバレロニトリル)0.8質量部、及びメチルエチルケトン63質量部の混合物を55℃で3時間かけて滴下した。55℃で5時間撹拌した後、さらに80℃で2時間撹拌を続けた。
 室温に冷却後、ジブチルスズジラウレート0.06質量部を加え、空気ガスを導入しながら、2-メタクリロイルオキシエチルイソシアネート16質量部及びメチルエチルケトン10質量部の混合物を50℃で30分かけて滴下した。その後、50℃で3時間撹拌を続けて、(メタ)アクリルポリマーP-1溶液(固形分42質量%)を得た。
 合成例1と同様な方法で、P-1の重量平均分子量を測定した結果、54,000であった。
実施例1
 [コア部形成用樹脂組成物COV-1の調合]
 (A)成分として、前記A-1溶液(固形分45質量%)67質量部(固形分30質量部)、(B)成分として、エトキシ化ビスフェノールAジアクリレート(日立化成工業株式会社製 ファンクリルFA-321A)30質量部、エトキシ化フルオレン型ビスフェノールジアクリレートのプロピレングリコールモノメチルエーテルアセテート溶液(新中村化学工業株式会社製 NKエステルA-BPEF/PGMAC70、固形分70質量%)29質量部(固形分20質量部)、ビスフェノールA型エポキシジアクリレート(新中村化学工業株式会社製 NKオリゴEA-1020)20質量部、(C)成分として、1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン(チバ・ジャパン株式会社製 イルガキュア2959)1質量部、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド(チバ・ジャパン株式会社製 イルガキュア819)1質量部、及び希釈溶剤としてプロピレングリコールモノメチルエーテルアセテート22質量部を攪拌しながら混合した。孔径2μmのポリフロンフィルタ(アドバンテック東洋株式会社製 PF020)を用いて加圧濾過後、減圧脱泡し、コア部形成用樹脂組成物COV-1を得た。
 [コア部形成用樹脂フィルムCOF-1の作製]
 コア部形成用樹脂組成物COV-1を、PETフィルム(東洋紡績株式会社製 コスモシャインA1517、厚み16μm)の非処理面上に、塗工機(株式会社ヒラノテクシード製 マルチコーターTM-MC)を用いて塗布し、100℃で20分乾燥後、保護フィルムとして表面離型処理PETフィルム(帝人デュポンフィルム株式会社製 ピューレックスA31、厚み25μm)を貼付け、コア部形成用樹脂フィルムCOF-1を得た。このとき樹脂層の厚みは、塗工機のギャップを調節することで任意に調整可能であるが、本実施例では硬化後の膜厚が、コア部形成用樹脂フィルムでは70μm、引張り試験用硬化フィルムでは50μmとなるように調節した。
 [引張り試験用硬化フィルムの作製]
 ロールラミネータ(日立化成テクノプラント株式会社製 HLM-1500)を用いて、保護フィルム(A31)を除去したコア部形成用樹脂フィルムCOF-1を、保護フィルム(A31)を除去したコア部形成用樹脂フィルムCOF-1に、圧力0.4MPa、温度50℃、速度0.4m/minの条件で積層した。次いで、紫外線露光機(大日本スクリーン株式会社製 MAP-1200-L)を用いて、紫外線(波長365nm)を2000mJ/cm2照射した。支持フィルム(A1517)を除去した後、160℃で1時間加熱処理して、厚み100μmの硬化フィルムを得た。
 [引張り試験]
 得られた硬化フィルムを幅10mm、長さ70mmに切り出し、引張り試験機(株式会社オリエンテック製 RTM-100)を用いて、温度25℃、引張り速度5mm/minで、JIS K 7127に準拠して引張り試験(つかみ具間距離50mm)を行った。
(1)引張り弾性率
 引張り弾性率は、引張り応力-ひずみ曲線の初めの直線部分を用いて、以下に示す式により算出した。
 引張り弾性率(MPa)=直線上の2点間の応力の差(N)÷硬化フィルムの元の平均断面積(mm2)÷同じ2点間のひずみの差
(2)破断伸び率
 破断伸び率は、以下に示す式により算出した。
 破断伸び率(%)=(破断時のつかみ具間距離(mm)-初期のつかみ具間距離(mm))÷初期のつかみ具間距離(mm)×100
 [クラッド層形成用樹脂組成物CLV-1の調合]
 エポキシ基含有アクリルゴムのシクロヘキサノン溶液(ナガセケムテックス株式会社製 HTR-860P-3、重量平均分子量80万、固形分12質量%)500質量部(固形分60質量部)、合成例3にて作製したUA-1 20質量部、ジペンタエリスリトールヘキサアクリレート(共栄社化学株式会社製 ライトアクリレートDPE-6A)20質量部、1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン(チバ・ジャパン株式会社製 イルガキュア2959)1質量部、及びビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド(チバ・ジャパン株式会社製 イルガキュア819)1質量部を攪拌しながら混合した。孔径2μmのポリフロンフィルタ(アドバンテック東洋株式会社製 PF020)を用いて加圧濾過後、減圧脱泡し、クラッド層形成用樹脂組成物CLV-1を得た。
 [クラッド層形成用樹脂フィルムCLF-1の作製]
 クラッド層形成用樹脂組成物CLV-1を、PETフィルム(東洋紡績株式会社製 コスモシャインA4100、厚み50μm)の非処理面上に、前記塗工機を用いて塗布し、100℃で20分乾燥後、保護フィルムとして表面離型処理PETフィルム(帝人デュポンフィルム株式会社製 ピューレックスA31、厚み25μm)を貼付け、クラッド層形成用樹脂フィルムCLF-1を得た。このとき樹脂層の厚みは、塗工機のギャップを調節することで任意に調整可能であるが、本実施例では硬化後の膜厚が、下部クラッド層形成用樹脂フィルムでは20μm、及び上部クラッド層形成用樹脂フィルムでは80μmとなるように調節した。
 [フレキシブル光導波路の作製]
 前記紫外線露光機を用いて、下部クラッド層形成用樹脂フィルムCLF-1に紫外線(波長365nm)を4000mJ/cm2照射した後、保護フィルム(ピューレックスA31)を除去して、下部クラッド層を形成した。
 続いて、前記ロールラミネータを用いて、保護フィルム(ピューレックスA31)を除去したコア部形成用樹脂フィルムCOF-1を、下部クラッド層上に、圧力0.4MPa、温度50℃、速度0.4m/minの条件で積層した。次いで、幅80μmのネガ型フォトマスクを介し、上記紫外線露光機を用いて、紫外線(波長365nm)を1000mJ/cm2照射し、次いで80℃で5分間露光後加熱を行った。支持フィルム(コスモシャインA1517)を除去し、現像液(プロピレングリコールモノメチルエーテルアセテート/N,N-ジメチルアセトアミド=70/30質量比)を用いて、コア部を現像した後、プロピレングリコールモノメチルエーテル、次いで2-プロパノールを用いて洗浄し、80℃で10分、100℃で10分加熱乾燥した。
 次に、真空加圧式ラミネータ(株式会社名機製作所製 MVLP-500/600)を用いて、保護フィルム(ピューレックスA31)を除去した上部クラッド層形成用樹脂フィルムCLF-1を、コア部及び下部クラッド層上に、圧力0.4MPa、温度120℃及び加圧時間30秒の条件で積層した。紫外線(波長365nm)を4000mJ/cm2照射し、160℃で1時間加熱処理して上部クラッド層を形成した。続いて、クラッド層形成用樹脂フィルムCLF-1の支持フィルム(コスモシャインA4100)を除去し、フレキシブル光導波路を得た。その後、ダイシングソー(株式会社ディスコ製 DAD-341)を用いて、幅3mm、長さ100mmのフレキシブル光導波路を切り出した。
 [光伝搬損失測定]
 得られた光導波路の光伝搬損失を、光源に波長850nmの光を中心波長とするVCSEL(EXFO社製 FLS-300-01-VCL)、受光センサ(株式会社アドバンテスト製 Q82214)、入射ファイバ(GI-50/125マルチモードファイバ、NA=0.20)及び出射ファイバ(SI-114/125、NA=0.22)を用いて、カットバック法(測定導波路長10、5、3、2cm)により測定し、以下の基準で評価した。
◎…0.1dB/cm以下
○…0.1dB/cmより大きく、0.2dB/cm以下
△…0.2dB/cmより大きく、0.3dB/cm以下
×…0.3dB/cmより大きい
 [高温高湿放置試験]
 得られた光導波路を、高温高湿試験機(エスペック株式会社製 PL-2KT)を用いて、JPCA規格(JPCA-PE02-05-01S)に準じた条件で温度85℃、湿度85%の高温高湿放置試験を1000時間実施した。
 高温高湿放置試験実施後の光導波路の光伝搬損失を、前記と同様の光源、受光素子、入射ファイバ及び出射ファイバを用いて測定し、以下の基準で評価した。
◎…0.1dB/cm以下
○…0.1dB/cmより大きく、0.2dB/cm以下
△…0.2dB/cmより大きく、0.3dB/cm以下
×…0.3dB/cmより大きい
 [温度サイクル試験]
 得られた光導波路を、温度サイクル試験機(楠本化成株式会社製 ETAC WINTECH NT1010)を用いて、JPCA規格(JPCA-PE02-05-01S)に準じた条件で温度-55℃と125℃の間の温度サイクル試験を1000サイクル実施した。詳細な温度サイクル試験条件を表1に示す。
Figure JPOXMLDOC01-appb-T000031
 温度サイクル試験実施後の光導波路の光伝搬損失を前記と同様の光源、受光素子、入射ファイバ及び出射ファイバを用いて測定し、以下の基準で評価した。
◎…0.1dB/cm以下
○…0.1dB/cmより大きく、0.2dB/cm以下
△…0.2dB/cmより大きく、0.3dB/cm以下
×…0.3dB/cmより大きい
 [リフロー試験]
 得られた光導波路を、リフロー試験機(古河電気工業株式会社製 サラマンダXNA-645PC)を用いて、IPC/JEDEC J-STD-020Bに準じた条件で最高温度265℃のリフロー試験を窒素雰囲気下で3回実施した。詳細なリフロー条件を表2、リフロー炉内の温度プロファイルを図2に示す。
Figure JPOXMLDOC01-appb-T000032
 リフロー試験実施後の光導波路の光伝搬損失を前記と同様の光源、受光素子、入射ファイバ及び出射ファイバを用いて測定し、以下の基準で評価した。
◎…0.1dB/cm以下
○…0.1dB/cmより大きく、0.2dB/cm以下
△…0.2dB/cmより大きく、0.3dB/cm以下
×…0.3dB/cmより大きい
実施例2~5、及び比較例1
 表3に示す配合比に従って、コア部形成用樹脂組成物COV-2~6を調合し、実施例1と同様な方法で、コア部形成用樹脂フィルムCOF-2~6を作製した。
 続いて、これらのコア部形成用樹脂フィルムCOF-2~6を用いて、実施例1と同様な方法で、フレキシブル光導波路を作製した。
Figure JPOXMLDOC01-appb-T000033
*1:合成例1で作製した側鎖にエチレン性不飽和基を有し、主鎖に芳香環を有するポリヒドロキシポリエーテルA-1のシクロヘキサノン溶液(固形分45質量%)
*2:合成例2で作製した側鎖にエチレン性不飽和基を有し、主鎖に芳香環を有するポリヒドロキシポリエーテルA-2のシクロヘキサノン溶液(固形分45質量%)
*3:エトキシ化ビスフェノールAジアクリレート(日立化成工業株式会社製 ファンクリルFA-321A)
*4:エトキシ化フルオレン型ビスフェノールジアクリレートのプロピレングリコールモノメチルエーテルアセテート溶液(新中村化学工業株式会社製 NKエステルA-BPEF/PGMAC、固形分70質量%)
*5:ビスフェノールA型エポキシジアクリレート(新中村化学工業株式会社製 NKオリゴ EA-1020)
*6:一般式(6)で表される芳香族エポキシ(メタ)アクリレート(Z5が-C(CH32-)(新中村化学工業株式会社製 NKオリゴ EA-5222)
*7:1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン(チバ・ジャパン株式会社製 イルガキュア2959)
*8:ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド(チバ・ジャパン株式会社製 イルガキュア819)
*9:プロピレングリコールモノメチルエーテルアセテート
*10:合成例4で作製した(メタ)アクリルポリマーP-1のメチルエチルケトン溶液(固形分42質量%)
*11:主鎖に芳香環を有するポリヒドロキシポリエーテル(東都化成株式会社製 フェノトートYP-70)のプロピレングリコールモノメチルエーテルアセテート溶液(固形分40質量%)
 得られた光導波路(長さ100mm)の光伝搬損失測定、高温高湿放置試験、温度サイクル試験、及びリフロー試験を前記と同様な条件で実施した。
 以上の結果を表4に示す。
Figure JPOXMLDOC01-appb-T000034
*12:◎…0.1dB/cm以下、○…0.1dB/cmより大きく、0.2dB/cm以下、×…0.3dB/cmより大きい
 表3及び表4から、本発明の光導波路形成用樹脂組成物は、透明性、耐熱性に優れ、破断伸び率及び引張り弾性率の点で強靭性に優れており、これらを用いて製造した光導波路は、光伝搬損失が低く透明性に優れ、高温高湿放置試験及び温度サイクル試験等が良好で環境信頼性に優れ、リフロー試験成績等が良好で耐熱性に優れていることがわかる。一方、比較例1に示した本発明に属さない光導波路形成用樹脂組成物はある程度の強靭性は有するものの、該光導波路形成用樹脂組成物を用いて製造した光導波路は、環境信頼性及び耐熱性に劣っていることがわかる。
 本発明の光導波路形成用樹脂組成物は、透明性、耐熱性、及び強靭性に優れており、これらを用いて製造した光導波路は透明性、環境信頼性、及び耐熱性に優れたものである。また、該光導波路形成用樹脂組成物を用いた光導波路形成用樹脂フィルムは、光導波路の製造過程において、各層の平坦性、クラッドとコアの層間密着性、及び光導波路コアパターン形成時の解像度(細線又は狭線間対応性)をより向上させ、平坦性に優れ、線幅や線間の小さい微細パターンの形成を可能とするものである。
1 光導波路
2 コア部
3 上部クラッド層
4 下部クラッド層
5 基材

Claims (15)

  1.  (A)側鎖にエチレン性不飽和基を有し、主鎖に芳香環を有するポリヒドロキシポリエーテル、(B)エチレン性不飽和基を有する重合性化合物、及び(C)ラジカル重合開始剤を含んでなる光導波路形成用樹脂組成物。
  2.  前記(A)成分が、下記一般式(1)及び(2)で表される構造単位を有する請求項1に記載の光導波路形成用樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は、水素原子又は炭素数1~20の有機基を示す。X1は、
    Figure JPOXMLDOC01-appb-C000002
    のいずれかの2価の基を示す。R2~R18は、各々独立に水素原子、フッ素原子、炭素数1~20の有機基のいずれかを示す。Z1は、単結合、酸素原子、硫黄原子、-CH2-、-C(CH32-、-CF2-、-C(CF32-、-SO2-、
    Figure JPOXMLDOC01-appb-C000003
    のいずれかの2価の基を示す。aは、2~10の整数を示す。Y1は、単結合又は炭素数1~20の2価の有機基を示す。Y2は、炭素数1~20の2価の有機基を示す。)
    Figure JPOXMLDOC01-appb-C000004
    (式中、X2は、
    Figure JPOXMLDOC01-appb-C000005
    のいずれかの2価の基を示す。R19~R35は、各々独立に水素原子、フッ素原子及び炭素数1~20の有機基のいずれかを示す。Z2は、単結合、酸素原子、硫黄原子、-CH2-、-C(CH32-、-CF2-、-C(CF32-、-SO2-、
    Figure JPOXMLDOC01-appb-C000006
    のいずれかの2価の基を示す。bは、2~10の整数を示す。Y3は、単結合又は炭素数1~20の2価の有機基を示す。)
  3.  一般式(1)で表される構造単位が、下記一般式(3)で表される請求項1又は2に記載の光導波路形成用樹脂組成物。
    Figure JPOXMLDOC01-appb-C000007
    (式中、R36は、水素原子又はメチル基を示す。X1は、
    Figure JPOXMLDOC01-appb-C000008
    のいずれかの2価の基を示す。R2~R18は、各々独立に水素原子、フッ素原子及び炭素数1~20の有機基のいずれかを示す。Z1は、単結合、酸素原子、硫黄原子、-CH2-、-C(CH32-、-CF2-、-C(CF32-、-SO2-、
    Figure JPOXMLDOC01-appb-C000009
    のいずれかの2価の基を示す。aは、2~10の整数を示す。Y1は、単結合又は炭素数1~20の2価の有機基を示す。Y4は、炭素数1~18の2価の有機基を示す。)
  4.  (A)成分の配合量が、(A)成分及び(B)成分の総量に対して、10~90質量%であり、(B)成分の配合量が、(A)成分及び(B)成分の総量に対して、10~90質量%であり、(C)成分の配合量が、(A)成分及び(B)成分の総量100質量部に対して、0.1~10質量部である請求項1~3のいずれかに記載の光導波路形成用樹脂組成物。
  5.  (B)エチレン性不飽和基を有する重合性化合物が、その分子中に脂環構造、複素環構造、アリール基、アリールオキシ基、及びアラルキル基、からなる群から選ばれる少なくとも1種を含む化合物である請求項1~4のいずれかに記載の光導波路形成用樹脂組成物。
  6.  (B)エチレン性不飽和基を有する重合性化合物が、(メタ)アクリレートである請求項1~5のいずれかに記載の光導波路形成用樹脂組成物。
  7.  (B)エチレン性不飽和基を有する重合性化合物が、下記一般式(4)~(6)で表される(メタ)アクリレートのうちの少なくとも1つである請求項6に記載の光導波路形成用樹脂組成物。
    Figure JPOXMLDOC01-appb-C000010
    (式中、R37は、水素原子又はメチル基を示す。R38は、
    Figure JPOXMLDOC01-appb-C000011
    のいずれかの1価の基を示す。R39~R52は、各々独立に水素原子、フッ素原子及び炭素数1~20の有機基のいずれかを示す。Z3は、単結合、酸素原子、硫黄原子、-CH2-、-C(CH32-、-CF2-、-C(CF32-、-SO2-、
    Figure JPOXMLDOC01-appb-C000012
    のいずれかの2価の基を示す。cは、2~10の整数を示す。W1は、酸素原子、硫黄原子、-OCH2-、-SCH2-、-O(CH2CH2O)d-、-O[CH2CH(CH3)O]e-、-O[(CH25CO2f-及び-OCH2CH(OH)CH2O-のいずれかの2価の基を含む。d~fは1~10の整数を示す。)
    Figure JPOXMLDOC01-appb-C000013
    (式中、R53及びR54は、各々独立に水素原子又はメチル基を示す。R55~R60は、各々独立に水素原子、フッ素原子及び炭素数1~20の有機基のいずれかを示す。Z4は、単結合、酸素原子、硫黄原子、-CH2-、-C(CH32-、-CF2-、-C(CF32-、-SO2-、
    Figure JPOXMLDOC01-appb-C000014
    のいずれかの2価の基を示す。gは2~10の整数を示す。W2及びW3は、各々独立に酸素原子、硫黄原子、-OCH2-、-SCH2-、-O(CH2CH2O)h-、-O[CH2CH(CH3)O]i-及び-O[(CH25CO2j-のいずれかの2価の基を含む。h~jは、各々独立に1~10の整数を示す。)
    Figure JPOXMLDOC01-appb-C000015
    (式中、kは、1~10の整数を示す。R61及びR62は、各々独立に水素原子又はメチル基を示す。R63~R68は、各々独立に水素原子、フッ素原子及び炭素数1~20の有機基のいずれかを示す。Z5は、単結合、酸素原子、硫黄原子、-CH2-、-C(CH32-、-CF2-、-C(CF32-、-SO2-、
    Figure JPOXMLDOC01-appb-C000016
    のいずれかの2価の基を示す。lは、2~10の整数を示す。W4及びW5は、各々独立に酸素原子、-O(CH2CH2O)m-、-O[CH2CH(CH3)O]n-及び-O[(CH25CO2o-のいずれかの2価の基を含む。m~oは、各々独立に1~10の整数を示す。)
  8.  (C)ラジカル重合開始剤が、光ラジカル重合開始剤である請求項1~7のいずれかに記載の光導波路形成用樹脂組成物。
  9.  請求項1~8のいずれかに記載の光導波路形成用樹脂組成物を用いて形成された光導波路形成用樹脂フィルム。
  10.  請求項1~8のいずれかに記載の光導波路形成用樹脂組成物を用いて形成されたコア部を有する光導波路。
  11.  請求項9に記載の光導波路形成用樹脂フィルムを用いて形成されたコア部を有する光導波路。
  12.  光伝搬損失が、0.3dB/cm以下である請求項10又は11に記載の光導波路。
  13.  温度85℃、相対湿度85%の高温高湿放置試験を1000時間実施後の、波長850nmの光源における光伝搬損失が、0.3dB/cm以下である請求項10~12のいずれかに記載の光導波路。
  14.  温度-55℃と125℃の間の温度サイクル試験を1000サイクル実施後の、波長850nmの光源における光伝搬損失が、0.3dB/cm以下である請求項10~13のいずれかに記載の光導波路。
  15.  最高温度265℃のリフロー試験を3回実施後の、波長850nmの光源における光伝搬損失が、0.3dB/cm以下である請求項10~14のいずれかに記載の光導波路。
PCT/JP2010/057633 2009-04-30 2010-04-28 光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム及び光導波路 WO2010126116A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/266,857 US8787723B2 (en) 2009-04-30 2010-04-28 Resin composition for forming optical waveguide, resin film for forming optical waveguide, and optical waveguide
JP2011511459A JP5585578B2 (ja) 2009-04-30 2010-04-28 光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム及び光導波路
CN2010800193080A CN102414591A (zh) 2009-04-30 2010-04-28 光波导形成用树脂组合物、光波导形成用树脂膜和光波导

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-111499 2009-04-30
JP2009111499 2009-04-30

Publications (1)

Publication Number Publication Date
WO2010126116A1 true WO2010126116A1 (ja) 2010-11-04

Family

ID=43032260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057633 WO2010126116A1 (ja) 2009-04-30 2010-04-28 光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム及び光導波路

Country Status (6)

Country Link
US (1) US8787723B2 (ja)
JP (1) JP5585578B2 (ja)
KR (1) KR20120022840A (ja)
CN (1) CN102414591A (ja)
TW (1) TW201040224A (ja)
WO (1) WO2010126116A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9004666B2 (en) 2010-11-05 2015-04-14 Canon Kabushiki Kaisha Process for producing substrate and substrate processing method
WO2017154921A1 (ja) * 2016-03-10 2017-09-14 日産化学工業株式会社 炭素原子間の不飽和結合による光架橋基を有する化合物を含む段差基板被覆組成物

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6026347B2 (ja) * 2013-04-23 2016-11-16 日東電工株式会社 感光性エポキシ樹脂組成物および光導波路コア層形成用硬化性フィルム、ならびにそれを用いた光導波路、光・電気伝送用混載フレキシブルプリント配線板
US10663666B2 (en) * 2013-12-05 2020-05-26 United States Of America As Represented By The Secretary Of The Navy Flexible, low profile kink resistant fiber optic splice tension sleeve
US9519096B2 (en) * 2013-12-23 2016-12-13 3M Innovative Properties Company Pressure sensitive adhesive light guides
JP6517043B2 (ja) * 2015-02-25 2019-05-22 ルネサスエレクトロニクス株式会社 光結合装置、光結合装置の製造方法および電力変換システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006038691A1 (ja) * 2004-10-07 2006-04-13 Hitachi Chemical Company, Ltd. 光学材料用樹脂組成物、光学材料用樹脂フィルム及びこれを用いた光導波路
WO2007105795A1 (ja) * 2006-03-15 2007-09-20 Hitachi Chemical Company, Ltd. 光学材料用フェノキシ樹脂、光学材料用樹脂組成物、光学材料用樹脂フィルム及びこれらを用いた光導波路
WO2008099787A1 (ja) * 2007-02-14 2008-08-21 Hitachi Chemical Company, Ltd. 光学材料用樹脂組成物、光学材料用樹脂フィルム及びこれらを用いた光導波路
WO2009041510A1 (ja) * 2007-09-25 2009-04-02 Panasonic Electric Works Co., Ltd. 樹脂成形体の製造方法、その製造方法により得られる樹脂成形体、光デバイス、マイクロレンズ、マイクロレンズアレイ、及びマイクロ流体デバイス

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06228274A (ja) 1993-02-04 1994-08-16 Nippon Telegr & Teleph Corp <Ntt> 耐熱性光学樹脂
JP4196563B2 (ja) 2001-12-26 2008-12-17 Jsr株式会社 光導波路形成用放射線硬化性ドライフィルム、光導波路ならびに光導波路の製造方法
JP4894995B2 (ja) 2004-10-21 2012-03-14 Jsr株式会社 光導波路用感光性樹脂組成物、光導波路及びその製造方法
JP4518089B2 (ja) 2006-07-05 2010-08-04 Jsr株式会社 光導波路用感光性樹脂組成物、ドライフィルム、光導波路及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006038691A1 (ja) * 2004-10-07 2006-04-13 Hitachi Chemical Company, Ltd. 光学材料用樹脂組成物、光学材料用樹脂フィルム及びこれを用いた光導波路
WO2007105795A1 (ja) * 2006-03-15 2007-09-20 Hitachi Chemical Company, Ltd. 光学材料用フェノキシ樹脂、光学材料用樹脂組成物、光学材料用樹脂フィルム及びこれらを用いた光導波路
WO2008099787A1 (ja) * 2007-02-14 2008-08-21 Hitachi Chemical Company, Ltd. 光学材料用樹脂組成物、光学材料用樹脂フィルム及びこれらを用いた光導波路
WO2009041510A1 (ja) * 2007-09-25 2009-04-02 Panasonic Electric Works Co., Ltd. 樹脂成形体の製造方法、その製造方法により得られる樹脂成形体、光デバイス、マイクロレンズ、マイクロレンズアレイ、及びマイクロ流体デバイス

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9004666B2 (en) 2010-11-05 2015-04-14 Canon Kabushiki Kaisha Process for producing substrate and substrate processing method
DE102011117498B4 (de) * 2010-11-05 2017-09-07 Canon Kabushiki Kaisha Verfahren zum fertigen eines substrats
WO2017154921A1 (ja) * 2016-03-10 2017-09-14 日産化学工業株式会社 炭素原子間の不飽和結合による光架橋基を有する化合物を含む段差基板被覆組成物
JPWO2017154921A1 (ja) * 2016-03-10 2019-01-10 日産化学株式会社 炭素原子間の不飽和結合による光架橋基を有する化合物を含む段差基板被覆組成物
TWI751141B (zh) * 2016-03-10 2022-01-01 日商日產化學工業股份有限公司 包含具有藉由碳原子間之不飽和鍵之光交聯基之化合物的段差基板被覆組成物
JP6997416B2 (ja) 2016-03-10 2022-01-17 日産化学株式会社 炭素原子間の不飽和結合による光架橋基を有する化合物を含む段差基板被覆組成物

Also Published As

Publication number Publication date
US8787723B2 (en) 2014-07-22
KR20120022840A (ko) 2012-03-12
US20120076468A1 (en) 2012-03-29
JP5585578B2 (ja) 2014-09-10
CN102414591A (zh) 2012-04-11
JPWO2010126116A1 (ja) 2012-11-01
TW201040224A (en) 2010-11-16

Similar Documents

Publication Publication Date Title
JP4241874B2 (ja) 光学材料用樹脂組成物、光学材料用樹脂フィルム及び光導波路
JP5359889B2 (ja) クラッド層形成用樹脂組成物およびこれを用いたクラッド層形成用樹脂フィルム、これらを用いた光導波路ならびに光モジュール
JP5321899B2 (ja) クラッド層形成用樹脂組成物、光導波路及び光モジュール
JP5892066B2 (ja) 光導波路形成用樹脂組成物、これを用いた光導波路形成用樹脂フィルム、及びこれらを用いた光導波路
JP5585578B2 (ja) 光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム及び光導波路
WO2015029261A1 (ja) 光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム及びそれらを用いた光導波路
JP5387370B2 (ja) 光導波路形成用樹脂組成物及びこれを用いた光導波路形成用樹脂フィルム、並びにこれらを用いた光導波路
JP5526740B2 (ja) 光導波路形成用樹脂組成物及びこれを用いた光導波路形成用樹脂フィルム、並びにこれらを用いた光導波路
JP5347529B2 (ja) クラッド層形成用樹脂組成物およびこれを用いたクラッド層形成用樹脂フィルム、これらを用いた光導波路ならびに光モジュール
JP2010091733A (ja) コア部形成用樹脂組成物及びこれを用いたコア部形成用樹脂フィルム、ならびにこれらを用いた光導波路
JP5003506B2 (ja) 光学材料用樹脂組成物、光学材料用樹脂フィルム、及びこれらを用いた光導波路
JP5515219B2 (ja) 光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム、及びこれらを用いた光導波路
JP2009175244A (ja) 光学材料用樹脂組成物、光学材料用樹脂フィルム、及びこれらを用いた光導波路
JP2010091734A (ja) コア部形成用樹脂組成物及びこれを用いたコア部形成用樹脂フィルム、ならびにこれらを用いた光導波路
JP2015145999A (ja) 光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム、それらを用いた光導波路及びその製造法
JP2015145998A (ja) 光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム、それらを用いた光導波路及びその製造法
JP5904362B2 (ja) 光学材料用樹脂組成物、光学材料用樹脂フィルム及び光導波路
JP2009167353A (ja) 光学材料用樹脂組成物、光学材料用樹脂フィルム、及びこれらを用いた光導波路
JP2016199719A (ja) 光学材料用樹脂組成物、光学材料用樹脂フィルム及び光導波路
JP2015146000A (ja) 光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム及びそれらを用いた光導波路
WO2017022055A1 (ja) 光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム、それらを用いた光導波路及びその製造方法
JP2013174776A (ja) 光学材料用樹脂組成物、光学材料用樹脂フィルム及びそれらを用いた光導波路
JP2010091732A (ja) コア部形成用樹脂組成物及びこれを用いたコア部形成用樹脂フィルム、ならびにこれらを用いた光導波路
JP2017187653A (ja) 光導波路クラッド材、光導波路クラッド層形成用樹脂フィルム及び光導波路
JP2017187655A (ja) 光導波路の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080019308.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10769814

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011511459

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20117025715

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13266857

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10769814

Country of ref document: EP

Kind code of ref document: A1