WO2010124627A1 - 位置检测装置及其信号处理装置 - Google Patents

位置检测装置及其信号处理装置 Download PDF

Info

Publication number
WO2010124627A1
WO2010124627A1 PCT/CN2010/072261 CN2010072261W WO2010124627A1 WO 2010124627 A1 WO2010124627 A1 WO 2010124627A1 CN 2010072261 W CN2010072261 W CN 2010072261W WO 2010124627 A1 WO2010124627 A1 WO 2010124627A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
position detecting
detecting device
signal
ring
Prior art date
Application number
PCT/CN2010/072261
Other languages
English (en)
French (fr)
Inventor
郝双晖
郝明晖
Original Assignee
浙江关西电机有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江关西电机有限公司 filed Critical 浙江关西电机有限公司
Publication of WO2010124627A1 publication Critical patent/WO2010124627A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/40Position sensors comprising arrangements for concentrating or redirecting magnetic flux

Definitions

  • the present invention relates to a position detecting device and a signal processing device thereof, and particularly to a position detecting device for a submersible motor and a signal processing device therefor.
  • submersible motors are widely used in oil fields to drive submersible electric pumps to extract crude oil.
  • the traditional submersible electric pump system is mainly powered by two-pole three-phase asynchronous motors.
  • the oil production system has the following problems in the oil production process:
  • the motor speed is lower than the synchronous speed, and the motor efficiency and power factor are low.
  • the speed is too high and it is difficult to reduce the speed to the speed corresponding to the screw pump. Even with the reducer, the oil recovery cost is greatly improved and the efficiency of the system is greatly reduced. If the frequency conversion speed regulating device is used, the motor is prone to low frequency operation for a long time, and the temperature rise of the motor is easily accelerated, causing motor failure. The system cannot achieve flexible control and is inefficient.
  • the servo submersible pumping system has become a development trend of submersible pumping systems.
  • the sensor system is one of the core parts of the servo system and plays a vital role in the success or failure of servo control.
  • the submersible oil system is in a complex underground environment and is in direct contact with the well fluid. It requires the position detection device to have the ability to work normally in complex environments. It has sealing, anti-vibration, anti-oil, working temperature, ease of assembly, etc. Higher requirements. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a magnetoelectric position detecting device and a signal processing device thereof for use in a submersible permanent magnet synchronous servo motor according to the deficiencies of the prior art, and the position detecting device of the present invention is resistant to vibration and resistance. Oil stain, dust ability, high reliability, simple installation structure, easy to operate, suitable for high-precision detection of motor rotor position in harsh environments.
  • a position detecting device mainly comprises a sensor body, a stainless steel cover, a sealing device and a casing, wherein the sensor body comprises a magnetic steel ring, a magnetic conductive ring and a magnetic induction element; the magnetic conductive ring is arranged on the outer wall of the stainless steel cover, consisting of two segments Or a plurality of arcs of the same radius and the same center, and gaps are left between the two arcs; the magnetic induction element is placed in the gap; the magnetic steel ring is disposed in the inner cavity of the stainless steel cover, and is fixed on the motor shaft; The sealing device is sealed and fixed to the outer casing; when the magnetic steel ring and the magnetic conductive ring rotate relative to each other, the magnetic induction element converts the sensed magnetic signal into a voltage signal, and transmits the voltage signal to the corresponding servo controller.
  • the magnetic flux ring is composed of two arc segments of the same radius and the same center, which are respectively a quarter arc segment and a 3/4 arc segment, and the corresponding magnetic induction elements are two; or, the magnetic permeability ring is composed of three segments.
  • the arc segments of the radius are respectively 1/3 arc segments, and the corresponding magnetic induction elements are three; or, the magnetic flux ring is composed of four arc segments of the same radius, respectively, which are 1/4 arc segments, and the corresponding magnetic induction elements are 4;
  • the magnetic flux ring is composed of six segments of the same radius, which are respectively 1/6 arc segments, and the corresponding magnetic induction elements are 6.
  • the end of the arc of the magnetically permeable ring is chamfered to form a chamfer formed by axial or radial or simultaneous axial, radial cutting.
  • a skeleton is further included for fixing the magnetic conductive ring; the magnetic conductive ring is disposed on the skeleton forming mold, and is fixed to the skeleton when the skeleton is integrally formed.
  • the present invention also provides a signal processing device for the above position detecting device, which comprises an A/D conversion module, a synthesis module, an angle acquisition module, a storage module, etc.; the A/D conversion module transmits a voltage signal from the magnetic induction element in the position detecting device.
  • the synthesizing module processes the A/D converted plurality of voltage signals sent by the position detecting device to obtain a reference signal D; the angle obtaining module is based on the reference signal D, in the standard The angle relative to the angle table is selected as the offset angle; the storage module is used to store the standard angle table and the correction data table.
  • a temperature compensation module is further included between the A/D conversion module and the synthesis module, for eliminating the influence of temperature on the voltage signal sent by the position detecting device;
  • the output signal of the synthesis module further includes a signal R;
  • the temperature compensation module includes a coefficient correction module and a multiplier, and the coefficient correction module compares the signal R of the output of the synthesis module with the signal R Q of the standard state corresponding to the signal to obtain an output signal K;
  • the multiplier is a plurality of each of the multipliers multiplying a voltage signal A/D converted from the position detecting device by an output signal K of the coefficient correction module, and outputting the multiplied result to the synthesis module .
  • a differential module is further included before the temperature compensation module for suppressing temperature and zero drift, and improving data accuracy.
  • an angle between adjacent two magnetic sensing elements corresponding to said second magnetic steel ring is 360° /N.
  • an angle between each adjacent two magnetic induction elements is 90° /N
  • the angle between each adjacent two magnetic induction elements is 120° / N; when m is 6, the angle between each adjacent two magnetic induction elements is 60 ° /N.
  • the magnetic sensing element can be directly attached to the outer surface of the stainless steel cover.
  • the position detecting device further includes two magnetic conductive rings, each of the magnetic conductive rings is composed of a plurality of arcs of the same center and the same radius, and the adjacent two arc segments have a gap corresponding to the two magnetic steels.
  • the magnetic sensing elements of the ring are respectively disposed within the gap.
  • the end portion of the arc of the magnetic flux ring is chamfered to be a chamfer formed by cutting axially or radially or simultaneously in the axial direction and in the radial direction.
  • the magnetic pole magnetization sequence of the second magnetic steel ring is such that the output of the n magnetic induction elements is in a Gray code format, and the adjacent two outputs have only one bit change; on the stainless steel cover, corresponding to the first magnetic steel ring, the first The center of the magnetic steel ring is provided with m magnetic induction elements distributed at an angle on the same circumference of the center, m is an integral multiple of 2 or 3, the total magnetic pole of the first magnetic steel ring and the second magnetic steel ring The total number of magnetic poles is equal, and two adjacent The polarity of the pole is opposite; the magnetic sensing element is disposed on the outer wall of the stainless steel cover; the outside of the stainless steel cover is sealed and fixed to the outer casing by the sealing device; when the rotor rotates relative to the stator, the magnetic sensing element senses the magnetic signal It is converted into a voltage signal, and the voltage signal is output to a signal processing device.
  • the included angle is 90° / g; when m is 3, the included angle is 120° / g; when m is 6, the angle is 60° / g, where g is the total number of magnetic poles of the second magnetic steel ring.
  • the magnetic sensing element can be directly attached to the outer surface of the stainless steel cover.
  • the position detecting device further includes two magnetic conductive rings, each of the magnetic conductive rings is composed of a plurality of arcs of the same center and the same radius, and the adjacent two arc segments have a gap corresponding to the two magnetic steels.
  • the magnetic sensing elements of the ring are respectively disposed within the gap.
  • the end portion of the arc of the magnetic flux ring is chamfered to be a chamfer formed by cutting axially or radially or simultaneously in the axial direction and in the radial direction.
  • the present invention further provides a signal processing apparatus for the above position detecting apparatus, which comprises an A/D conversion module, a relative offset angle calculation module, an absolute offset calculation module, an angle synthesis and output module, a storage module, and an A/D conversion module.
  • the relative offset angle calculating module is configured to calculate the first transmission of the magnetic sensing element corresponding to the first magnetic steel ring in the position detecting device a relative offset of a voltage signal in a signal period; an absolute offset calculation module, determined by a second voltage signal sent from a magnetic induction element corresponding to the second magnetic steel ring in the position detecting device An absolute offset of the first position of the signal period at which the voltage signal is located; an angle synthesis and output module, configured to add the relative offset and the absolute offset, and synthesize the first voltage signal to represent The rotation angle of the moment; the storage module is used to store data.
  • the signal processing device further comprises a signal amplifying module for amplifying the voltage signal from the position detecting device before the A/D conversion module performs A/D conversion.
  • the relative offset angle calculation module includes a first synthesis unit and a first angle acquisition unit, and the first synthesis unit processes the A/D-converted voltage signals sent by the position detection device to obtain a reference signal D; the first angle acquiring unit selects an angle opposite thereto as an offset angle in the first standard angle table according to the reference signal D.
  • the relative offset angle calculation module further comprises a temperature compensation unit for eliminating the influence of temperature on the voltage signal sent by the position detecting device.
  • the output of the first synthesizing unit further comprises a signal.
  • the temperature compensating unit comprises a coefficient aligner and a multiplier, the signal R of the output of the synthesizing module by the coefficient aligner and the signal R of the standard state corresponding to the signal. Comparing to obtain an output signal K; the multiplier is a plurality, and each of the multipliers outputs a voltage signal that is A/D converted from the position detecting device and an output signal K of the coefficient correction module. Multiply, and the multiplied result is output to the first synthesizing unit.
  • the absolute offset calculation module includes a second synthesis unit and a second angle acquisition unit, and the second synthesis unit is configured to transmit a second voltage signal corresponding to the position detecting device corresponding to the second magnetic steel ring. Synthesizing, a signal E is obtained; the second angle acquiring unit selects an angle opposite thereto in the second standard angle table according to the signal E as an absolute offset of the first position of the signal period in which the first voltage signal is located.
  • the magnetic sensing elements in the above embodiments are Hall sensing elements.
  • the sealing device comprises a sealing device body and a wire disposed therein, the stainless steel cover and the sealing connecting flange, the sealing housing form a sealing device body, the sealing connecting flange is connected with the sealing housing, and the stainless steel cover is worn Between the two, the sealed shell
  • the first insulating baffle is disposed in the body, and the first insulating baffle, the stainless steel cover and the sealing shell are enclosed as a sealing space; the first insulating baffle and the sealing shell respectively have an outlet opening, and the wire is threaded from the sealing connecting flange
  • the sealing space of the sealing device body is inserted out from the outlet opening; the sealing space is filled with the sealing filler.
  • a second insulating baffle is further disposed in the sealed space, and an outlet port is opened thereon; and the second insulating baffle is disposed in more than one, and the sealed space is divided into a multi-stage sealed space.
  • the sealing device comprises a sealing device body, the sealing device body is composed of a connecting flange, a sealing shell and the stainless steel cover, the connecting flange is connected with the sealing shell, and the stainless steel cover is disposed between the two, sealing A sealing block and a first insulating plate are respectively disposed at two ends of the inner cavity of the casing, and the sealing block, the first insulating plate, the stainless steel cover and the sealing shell are enclosed as a sealing space, and a pressing block is arranged between the sealing block and the connecting flange.
  • a through hole is formed in the sealing block, the first insulating plate and the sealing housing, and the first copper rod penetrates from the through hole of the sealing housing into the sealing space of the sealing device body, and passes through the first insulating plate;
  • the space is filled with a sealing filler.
  • the first copper rod is stepped, and the outer diameter of the stepped column disposed at the middle portion is larger than the outer diameter of the copper rod at both ends, and the lower stepped surface of the stepped column is in contact with the first insulating plate; the end of the first copper rod With a connection plug.
  • a second insulating plate is further disposed between the first insulating plate and the sealing block, and the second insulating plate and the sealing block enclose a sealed space in the second copper bar; the first copper bar is passed through the sealing case The hole penetrates into the sealed space of the sealing device body, passes through the first insulating plate, and passes through the second insulating plate to meet the second copper bar end to end; the second copper bar passes through the through hole of the sealing block.
  • a support plate is further disposed between the first insulating plate and the second insulating plate, and a through hole is defined in the inner cavity of the sealing case; and the supporting plate is fixed on the boss.
  • the number of the second insulating plate and the second copper bar is one or more, and the sealed space is divided into a multi-stage sealed space.
  • the second copper rod is stepped, one end is set as a stepped column, the outer diameter of the cylinder is larger than the outer diameter of the second copper rod at the other end, and the lower step surface of the stepped column is in contact with the second insulating plate; the second copper A connector plug is provided at the end of the rod.
  • the present invention has the following advantages:
  • the non-contact measurement mode of the magnetoelectric position detecting device satisfies the sealing requirements of the servo system in the downhole control box in the submersible servo system.
  • the magnetoelectric position detecting device is resistant to vibration, oil stain, dust, and high reliability. High-precision detection of motor rotor position in harsh environments. These characteristics make the magnetoelectric position detection device a better choice for the submersible servo motor sensing system.
  • the operating temperature range is wider than that of the photoelectric position detecting device.
  • the installation structure of the invention is simple and easy to operate, and the application problem of the magnetoelectric position detecting device in the underground submersible oil servo system is better solved.
  • FIG. 1 is a schematic view showing the overall installation structure of a magnetoelectric position detecting device on a submersible servo motor
  • Figure 2 is an exploded view showing the mounting structure of the magnetoelectric position detecting device
  • Figure 3 is a schematic view of a magnetic steel ring in a magnetoelectric position detecting device
  • FIGS. 4A and 4B are schematic views showing the arrangement of a magnetic induction element and a magnetically permeable ring
  • Figure 5 is an exploded schematic view of a position detecting device scheme in which two magnetic sensing elements are mounted according to a first embodiment of the present invention
  • Figure 6 is a block diagram of a signal processing apparatus of a position detecting device scheme in which two magnetic sensing elements are mounted according to a first embodiment of the present invention
  • Figure 7 is an exploded perspective view showing a scheme of a position detecting device mounted with three magnetic sensing elements according to a first embodiment of the present invention
  • Figure 8 is a block diagram of a signal processing device of a position detecting device scheme in which three magnetic sensing elements are mounted according to a first embodiment of the present invention
  • Figure 9 is an exploded schematic view showing a scheme of a position detecting device mounted with four magnetic sensing elements according to a first embodiment of the present invention.
  • Figure 10 is a block diagram of a signal processing apparatus of a position detecting device scheme in which four magnetic sensing elements are mounted according to a first embodiment of the present invention
  • Figure 11 is an exploded perspective view showing a scheme of a position detecting device mounted with six magnetic sensing elements according to a first embodiment of the present invention
  • Figure 12 is a block diagram of a signal processing apparatus of a position detecting device scheme in which six magnetic sensing elements are mounted according to a first embodiment of the present invention
  • 13A-13D are schematic views of a chamfering design of a magnetically permeable ring
  • Figure 14 is a flowchart of a signal processing method of the position detecting device of the first embodiment
  • Figure 15 is an exploded perspective view of the key components of the position detecting device according to the second embodiment of the present invention
  • Figure 16 is a schematic view showing the mounting of the position detecting device according to the second embodiment of the present invention
  • Figure 17 is a schematic view showing the arrangement of two magnetic induction elements corresponding to the first magnetic steel ring in the second embodiment
  • Figure 18 is a schematic view showing the arrangement of the magnetic induction element when the first magnetic steel ring is uniformly magnetized into six pairs of poles in the second embodiment;
  • Figure 19 is the number of magnetic induction elements corresponding to the second magnetic steel ring in the second embodiment.
  • Figure 20 is a coded sequence of the second magnetic steel ring in the second embodiment;
  • Figure 21 is a schematic view showing the arrangement of the magnetic induction elements corresponding to the second magnetic steel ring in the second embodiment
  • 22 to 25 are flowcharts showing signal processing of the position detecting device of the second embodiment
  • Figure 26 is a block diagram of a signal processing device of the position detecting device of the second embodiment
  • Figure 27 is a schematic view showing the structure of a position detecting device in which a magnetic induction element is mounted by a surface mount;
  • Figure 28 is an exploded perspective view of the position detecting device according to the third embodiment.
  • Figure 29 is a flow chart of an algorithm for determining the magnetic order of the magnetic steel ring 303;
  • Figure 30 is a diagram showing a magnetization structure of a magnetic steel ring obtained in Figure 29 and an arrangement example of a magnetic induction element
  • Figure 31 is a block diagram of a signal processing device of the position detecting device according to the third embodiment
  • Figure 32 is a cross-sectional view of a sealing device of the present invention.
  • Figure 33 is a cross-sectional view showing another sealing device of the present invention.
  • Figure 34 is a schematic view showing the structure of a first copper rod in a sealing device
  • Figure 35 is a schematic view showing the structure of a second copper rod in a sealing device
  • Figure 36 is a schematic view showing the overall structure of the mounting of the sealing device. Detailed ways
  • FIG. 1 is a schematic view showing the overall mounting structure of a magnetoelectric position detecting device on a submersible servo motor 700.
  • the magnetoelectric position detecting device system is composed of a magnetoelectric position detecting device circuit board 701, a magnetic induction element 702, a magnetic steel ring 703, a magnetic conductive ring 704, a sealing device 705, a position detecting device line 706, a stainless steel cover 708, and a casing (not shown).
  • the magnetoelectric position detecting device circuit board 701 is composed of a circuit board and a magnetic sensing element 702, and the magnetic sensing element can be a Hall element.
  • the magnetic steel ring 703 is mounted on the submersible servo motor tail shaft 707, and is disposed at a position corresponding to the magnetic conductive ring 704 outside the stainless steel cover 708, and rotates together with the motor rotor to generate a sinusoidal magnetic field.
  • the magnetically conductive ring 704 is divided into several magnetic ring blocks, and the solution of the magnetic conductive ring 704 is determined according to the number of magnetic sensing elements of the entire position detecting device.
  • the magnetically conductive ring 704 is mounted on the step of the stainless steel cover 708 to form a circumference, and a slit is left between each of the two magnetically conductive rings, and the magnetic sensing element 702 is located in the slit of the two magnetically conductive rings.
  • the pin of the magnetic sensing element 702 is directly connected to the magnetoelectric position detecting device circuit board 701, and is extended by the circuit board so that the magnetic sensing element reaches between the two magnetic conducting rings, and the magnetoelectric position detecting device circuit board 701 has a CPU.
  • the electronic component, the magnetoelectric position detecting device circuit board 701 is used to process the signal generated by the magnetic sensing element 702, and the feedback signal is transmitted to the servo controller in the downhole control box 709 via the position detecting device line 706.
  • the first embodiment is taken as an example in FIG. 1 , wherein the magnetic steel ring 703, the magnetic conductive ring 704 and the magnetic induction element 702 have only one set, and the magnetic steel ring is a single pair of magnetic poles.
  • the invention is not limited thereto, the magnetic steel ring and the magnetic conductive There may be two sets of rings and magnetic sensing elements, and the magnetic steel ring may have multiple pairs of poles, which will be described later in connection with the embodiment.
  • the magnetoelectric position detecting device system is installed in two places, and the magnetic steel ring 703 which generates a sinusoidal magnetic field is installed on the tail shaft of the submersible servo motor.
  • the steel cover of the sealing device 705 of the magnetoelectric position detecting device is selected as a non-magnetic material, so that a stainless steel material, that is, a stainless steel cover 708, can be used, which satisfies both the sealing strength requirement and the magnetoelectric position.
  • a stainless steel material that is, a stainless steel cover 708, can be used, which satisfies both the sealing strength requirement and the magnetoelectric position.
  • the requirements of the magnetic circuit for the detection device system may also be used.
  • the magnetic steel ring mainly produces a sinusoidal magnetic field; the magnetic conductive ring acts as a magnetic collecting force, and the magnetic flux generated by the magnetic steel ring passes through the magnetic conductive ring.
  • the board is a fixed magnetic induction element and outputs six signal lines.
  • the magnetic induction element converts the magnetic field passing through the magnetically permeable ring into a voltage signal, and the voltage signal directly enters the main control board chip.
  • the voltage signal is processed by the chip on the main control board, and finally the angular displacement is obtained.
  • the magnetoelectric position detecting device is a position detecting device that detects the rotational speed of the motor, the position of the rotor, and the like by using the Hall effect.
  • the magnetic sensing element can sense the change of the magnetic field, convert the magnetic field passing through the magnetic conductive ring into a voltage signal, and the magnetic steel ring rotates once. Producing one or more cycles of sinusoidal magnetic fields, generating different magnetic fields at different angles, the magnetic induction element induces different voltage signals, and the circuit board transmits the voltage signal of each magnetic induction element to the CPU through the connector, and the CPU according to the voltage signal Calculate the angular position of the shaft.
  • the magnetic sensing element is preferably a Hall sensing element.
  • the Hall sensor module is low in cost, because the magnetic induction element, the magnet ring, and the magnetic ring are low in cost, and the board only transmits the induced voltage of the magnetic sensing element to the CPU, so the total cost is also low.
  • the mounting structure of the position detecting device not only meets the requirements of the sealing of the position detecting device, but also enables the magnetoelectric position detecting device to work normally in a harsh submersible servo motor environment.
  • the magnetic steel ring rotates to generate a rotating magnetic field.
  • the magnetic conductive ring on the outer surface of the stainless steel cover conducts a magnetic field, and the magnetic induction element senses a change of the magnetic field between the two magnetic flux gaps to generate a voltage signal.
  • the signal is processed on the magnetoelectric position detecting device circuit board, and the processed signal is transmitted to the control box to obtain signals such as the rotor position and speed of the motor.
  • Fig. 2 is a perspective exploded view showing the mounting structure of the magnetoelectric position detecting device. As can be seen from Fig. 2, the entire mounting structure is modularized, and the position detecting device circuit board 701, the magnetic sensing element 702, the magnetic conductive ring 704 and the sealing device 705 are integrally assembled as one component. This makes the application of the magnetoelectric position detecting device in the submersible servo motor convenient and reliable.
  • FIG. 3 is a schematic view of a magnetic steel ring in a magnetoelectric position detecting device.
  • the magnetic steel ring is mounted on the tail shaft of the motor, and rotates together with the rotor of the motor to form a sinusoidal magnetic field of rotation change required by the magnetoelectric position detecting device system, the magnetizing mode and direction of the magnetic steel ring and the corresponding magnetoelectric type The requirements of the position detecting device system correspond.
  • the magnetic steel ring in the first embodiment is a plurality of pairs of magnetic poles, and the plurality of pairs of magnetic poles are evenly arranged;
  • the magnetic steel ring in the third embodiment is a plurality of pairs of magnetic poles, and the plurality of pairs of magnetic poles are arranged at an angle.
  • FIG. 4A and 4B are schematic views for explaining the arrangement of the magnetic induction element and the magnetically permeable ring by taking the scheme of two magnetic induction elements as an example.
  • the magnetic sensing elements 100, 101 are surface-applied, that is, disposed on the inner side wall of the toroidal stator 102, and the magnetic steel ring 103 is disposed inside the toroidal stator 102, in the scheme of two magnetic induction elements.
  • the two magnetic sensing elements 100, 101 are arranged 90° apart. In Fig.
  • two magnetic sensing elements 109, 110 are sandwiched between two or more concentrically mounted arc segments (here two arc segments 111, 112) of the magnetically permeable ring, and a magnetic steel ring 113 is placed in the guide The middle of the magnetic ring.
  • the solution of two magnetic sensing elements is taken as an example here, the present invention is not limited thereto, and the number of magnetic sensing elements per column may be three, four, or six, and the arc segments of the corresponding magnetic conducting rings are correspondingly Three, four, six.
  • a two-row magnetic induction element and two magnetic steel ring schemes can be used, and the arc of the second magnetic conductive ring also changes accordingly, and is not limited to the 1/4 arc segment and the 3/4 arc segment. Program or evenly segmented solution.
  • the present invention also provides a signal processing apparatus based on the position detecting apparatus of the above structure, comprising: an A/D conversion module, a synthesis module, an angle acquisition module, and a storage module, wherein the A/D conversion module detects the magnetic induction in the position detecting device
  • the voltage signal sent from the component is A/D converted, and the analog signal is converted into a digital signal corresponding to the number of magnetic sensing elements.
  • the module has a plurality of A/D converters for transmitting to each magnetic sensing element.
  • the voltage signal is subjected to A/D conversion; the synthesis module processes the A/D converted plurality of voltage signals to obtain a reference signal D; and the angle acquisition module selects in the angle storage table according to the reference signal 0 An angle opposite thereto is used as an offset angle; the storage module is configured to store data.
  • Each of the above modules may constitute an MCU.
  • the position detecting device of the present invention and its signal processing device and method will be described in detail below by way of embodiments.
  • Fig. 5 is an exploded perspective view showing a scheme of a position detecting device mounted with two magnetic sensing elements according to a first embodiment of the present invention.
  • the position detecting device includes an sensing element 710, a circuit board 711, a magnetic conductive ring 712, a stainless steel cover 713, a magnetic steel ring 715, and a casing (not shown).
  • the magnetic steel ring 715 is mounted on the motor tail shaft 716, and the remaining portion can be Mounted on the stainless steel cover 713 of the sealing device 714.
  • the present invention is characterized in that the position detecting device has two magnetic sensing elements, and the magnetic conducting ring 712 is also composed of two parts, one is a 1/4 magnetic ring and the other is a 3/4 magnetic ring. Two incomplete magnetic rings form two slits for use with the two magnetic sensing elements.
  • FIG. 6 is a block diagram of a signal processing apparatus of a position detecting device scheme in which two magnetic sensing elements are mounted according to a first embodiment of the present invention.
  • the output signals of the magnetic sensing elements H la and H 2a are connected to the analog input port of the built-in A/D converter of the MCU, and the output signals are multiplied by the analog-to-digital converters 20a, 21a, and the output signal K of the coefficient corrector 5a is connected to the multiplier 20a.
  • the output signals of the multipliers 20a, 21a are coupled to the input of the 3a, the synthesizer 3a outputs the signals D and R, and the coefficient corrector 5a receives the signals D and R output by the synthesizer 3a, and obtains signals by operation.
  • K by multiplying the signals of the magnetic induction elements H la and H 2a by the signal K, thereby performing temperature compensation to eliminate the influence of temperature on the signal.
  • An angle storage table is stored in the memory 40a, and the MCU selects an angle opposite thereto in the angle storage table as the offset angle according to the signal D.
  • a standard angle table is stored in the storage module in which a series of codes are stored, each code corresponding to an angle.
  • the table is obtained by calibration, and the calibration method is: using the detecting device of the embodiment and a high-precision position sensor, the signals output by the magnetic sensing element in the embodiment and the angle of the high-precision position sensor output are in one-to-one correspondence. In order to establish a relationship between the signal and the angle of the output of a magnetic induction element.
  • some data correction tables are also stored in the storage module, and the tables include a signal D and a signal R.
  • Correspondence table where signal R.
  • the signal D obtained by the synthesizing module that is, the synthesizer 3a
  • the table can get a signal R. , by passing the signal R. Compare with signal R, such as division, to get signal 1 ⁇ .
  • the processing of the signal that is, the processing principle of the synthesizer 3a on the signal is: comparing the magnitude of the values of the two signals, the signal D having a small value for output, and the structure of the signal D is ⁇ the coincidence of the first signal, The coincidence bit of the second signal, the numerical value of the signal of the smaller value ⁇ .
  • _0 indicates the value bit of the data X (the absolute value of the data), that is, the remaining data bits are removed from the sign bit.
  • R lA 2 + B 2 .
  • Fig. 7 is an exploded perspective view showing the arrangement of a position detecting device equipped with three magnetic sensing elements according to a first embodiment of the present invention.
  • the assembly of each component is similar to that of the two magnetic induction components, and therefore will not be repeated here.
  • the present invention is characterized in that the position detecting device has three magnetic sensing elements, and the magnetic conducting ring is also composed of three parts. Each two incomplete magnetic rings form slits, and a total of three slits are formed for the same three magnetic inductions. The components are used together.
  • FIG. 8 is a block diagram of a signal processing device of a position detecting device scheme in which three magnetic sensing elements are mounted according to a first embodiment of the present invention.
  • the position detecting device includes an inductive element 717, a circuit board 718, a magnetic conductive ring 719, a stainless steel cover 720, a magnetic steel ring 722, and a casing (not shown), and the motor tail shaft is passed through the sealing device 721.
  • the 723 is sealed within the stainless steel cover 720.
  • the signal processing device of the present scheme is similar to that of the two magnetic sensing elements, except that there are three magnetic sensing elements and three signals output to the synthesizer, and the synthesizer has a signal in the above-mentioned scheme. different. Here, just explain how the synthesizer chooses the signal.
  • the principle of processing the signal by the synthesizer 3c is: first determine the coincidence bits of the three signals, and compare the magnitudes of the values of the signals conforming to the same bit.
  • the value of the signal D for the output is small, and the structure of the signal D is ⁇ first The coincidence bit of the signal, the coincidence bit of the second signal, the coincidence bit of the third signal, and the value bit of the signal of the smaller value ⁇ .
  • _0 indicates the value bit of the data X (the absolute value of the data), that is, the remaining data bits are removed from the sign bit.
  • FIG 9 is an exploded schematic view of a position detecting device scheme in which four magnetic induction elements are mounted according to a first embodiment of the present invention.
  • the position detecting device includes a sensing element 724, a circuit board 725, a magnetic ring 726, a stainless steel cover 727, a magnetic steel ring 729, and a casing (not shown).
  • the sealing device 728 seals the motor tail shaft 730 in the stainless steel cover 727. Inside. The mounting of each component is similar to that of the two magnetic sensing components and will not be repeated here.
  • the present invention is characterized in that the position detecting device has four magnetic sensing elements, and the magnetic conducting ring is also composed of four parts, and each two incomplete magnetic rings form slits, and a total of four slits are formed for the same four Magnetic induction components are used together.
  • FIG 10 is a block diagram of a signal processing apparatus of a position detecting device scheme in which four magnetic sensing elements are mounted according to a first embodiment of the present invention.
  • the signal processing device of the scheme is similar to that of the two magnetic induction components, except that the differential amplification module is added, and the temperature and zero drift are suppressed by the differential amplification module, thereby improving the data precision and finally outputting to
  • the signal of the synthesizer is still two, and the processing and method are the same as those of the two sensors, and will not be repeated here.
  • FIG 11 is an exploded perspective view showing a scheme of a position detecting device mounted with six magnetic sensing elements according to a first embodiment of the present invention.
  • the position detecting device includes an inductive element 731, a circuit board 732, a magnetic conductive ring 733, a stainless steel cover 734, a magnetic steel ring 736, and a casing (not shown).
  • the motor tail shaft 737 is sealed to the stainless steel cover 734 by a sealing device 735. Inside. The mounting of each component is similar to that of the two magnetic sensing components and will not be repeated here.
  • the present invention is characterized in that the position detecting device has six magnetic sensing elements, and the magnetic conducting ring is also composed of six parts, and each two incomplete magnetic rings form slits, and a total of six slits are formed for the same six Magnetic induction components are used together.
  • Figure 12 is a block diagram of a signal processing apparatus of a position detecting device scheme in which six magnetic sensing elements are mounted according to a first embodiment of the present invention.
  • the signal processing device of the scheme is similar to that of the three magnetic induction components, except that the difference is increased.
  • the dynamic amplification module suppresses temperature and zero drift by the differential amplification module, thereby improving data accuracy, and finally outputting three signals to the synthesizer, and the processing and method are the same as those of the three sensors. No longer repeat.
  • Figs. 13A to 13D illustrate a chamfering design of the magnetic flux guiding ring of the present invention by taking a magnetic conducting ring composed of a 1/4 arc segment and a 3/4 arc segment as an example.
  • the magnetic flux ring is composed of two or more segments of the same radius and the same center, and the magnetic ring shown in FIG. 13A is not designed to be chamfered, and the arc shown in FIG. 13B to FIG. 13D.
  • the end portion is provided with a chamfering, and the chamfering is a chamfer formed by cutting in the axial direction (Fig. 13B) or the radial direction (Fig.
  • it can be known that when ⁇ is certain, ⁇ can be increased by decreasing s. Since the magnetic flux generated by the permanent magnet is constant and large in the magnetically permeable ring, ⁇ is relatively small, so that heat generation due to alternating magnetic fields can be reduced. By reducing the area of the end of the magnetic ring, the magnetic field strength of the end portion can be increased, so that the output signal of the magnetic induction element is enhanced.
  • Such a signal pickup structure has a simple manufacturing process, low signal noise picked up, low production cost, high reliability, and small size.
  • the chamfering design of the magnetic flux ring is described by taking the scheme of two arc segments as an example, the present invention is not limited thereto, and the scheme in which the magnetic flux ring is a three-arc segment, a four-arc segment, and a six-arc segment can be similarly inverted.
  • the corner design is not described in detail here.
  • Fig. 14 is a flow chart showing a signal processing method of the position detecting device of the first embodiment. As shown in Fig. 14, the signal processing method of the position detecting device according to the present embodiment includes the following steps:
  • S100 performing A/D conversion on a plurality of voltage signals sent by the position detecting device;
  • S101 processing the A/D converted plurality of voltage signals sent by the position detecting device to obtain a reference signal D;
  • S102 According to the reference signal D, an angle opposite thereto is selected as an offset angle in the angle storage table.
  • the method further includes: in step S101, when processing the A/D converted plurality of voltage signals, obtaining the reference signal D while obtaining the signal R; Step S103, according to the obtained reference signal R . Calculating with R to obtain a signal K; multiplying the plurality of voltage signals by the signal K before processing the A/D-converted voltage signals transmitted from the position detecting device, thereby realizing the voltage signal Temperature compensation.
  • the mounting scheme of the position detecting device of the present invention has been described above by taking a scheme using a magnetically permeable ring as an example, and the present invention can also mount a magnetic sensing element by means of a surface mount. Since the mounting of the remaining portions other than the mounting manner of the magnetic sensing element is similar to that in the above embodiment, it will not be described herein.
  • the magnetic steel ring and the magnetic flux ring are each two, and the magnetic induction element has two columns correspondingly. These are the key components of the position detecting device, and the installation and structure of the other components are the same. Similarities in an embodiment are not described herein.
  • FIG 15 is an exploded perspective view of key components of a position detecting device scheme in accordance with a second embodiment of the present invention.
  • Figure 16 is a schematic view showing the installation of a position detecting device according to a second embodiment of the present invention.
  • the position detecting device of this embodiment includes a rotor and a stator that surrounds the rotor, and the rotor includes a first magnetic steel ring 201 a and a second magnetic steel ring 201 b, and a first magnetic conductive ring 205 a and a second magnetic conductive ring 205 b, A magnetic steel ring 201a and a second magnetic steel ring 201b are respectively fixed to the motor shaft 200, wherein the stator is a bracket 203.
  • the first magnetic conductive ring 205a and the second magnetic conductive ring 205b are respectively formed by a plurality of arcs of the same center and the same radius, and a gap is left between the adjacent two arc segments, corresponding to the magnetic sensing elements 204 of the two magnetic steel rings. They are respectively disposed in the gap.
  • the magnetic induction element is disposed on the outer wall of the stainless steel cover, and the outer portion of the stainless steel cover is sealed and fixed to the outer casing by a sealing device. When the rotor rotates, the magnetic induction element converts the sensed magnetic signal into a voltage signal, and outputs the voltage signal. Give a signal processing device.
  • the uniform magnetization of the first magnet ring 201a is g (the value of g is equal to the total number of poles in the second magnet ring) and the opposite pole (the N pole and the S pole are alternately arranged), when the total number of magnetic poles in the second magnet ring is At 6 o'clock, the number of pole pairs of the first magnet ring 201a is six pairs.
  • m magnetic induction elements such as two, are provided, and as shown in Fig. 17, the angle between the two magnetic induction elements 204 is 90° /6.
  • the arrangement of the magnetic induction element when the first magnetic steel ring is uniformly magnetized to 6 poles is as shown in FIG.
  • the magnetic sensing element converts the sensed magnetic signal into a voltage signal when the rotor is relatively rotationally moved relative to the stator, and outputs the voltage signal to a signal processing device.
  • the mechanical angle corresponding to any "NS" is 360° / g (g is the number of "NS"), assuming that the rotor rotates at the moment.
  • the angle is within the " ⁇ 3 ⁇ 4 signal period, then the angular displacement can be considered to consist of two parts: 1.
  • the relative offset in the first signal period, the magnetic induction element and H 2 induce the magnetic field of the first magnetic steel ring to determine The offset in this "NS" signal period (value greater than 0 is less than 360° / g); 2.
  • the absolute offset of the first position of the "signal period”, sensed by sensors H 3 , H 4 , ... 3 ⁇ 4 > The magnetic field of the magnetic ring 2 is used to determine which "NS" the rotor is in at that time.
  • the magnetic pole magnetization sequence of the second magnetic steel ring causes the output of the n magnetic induction originals to be in the form of a Gray code.
  • the polarity of the magnetic pole is that the first position of the Gray code is "0" corresponding to the "N/S" pole, and the first position is "1" corresponding to the "S/N” pole.
  • n 3
  • the code shown in Fig. 19 is obtained
  • the magnetization sequence of the second magnetic steel ring as shown in Fig. 20 is obtained.
  • the three magnetic induction elements are uniformly distributed around the cloth.
  • the present invention also provides a signal processing apparatus based on the position detecting apparatus and the principle thereof, comprising: an A/D conversion module, a relative offset calculation module, an absolute offset calculation module, and a storage module.
  • A/D conversion is performed on the voltage signal sent from the first magnetic steel ring and the second magnetic steel ring in the sensor body to convert the analog signal into a digital signal;
  • the quantity calculation module performs an angle solution on the first voltage signal corresponding to the first magnetic steel ring sent by the position detecting device, and calculates a relative offset of the signal corresponding to the first magnetic steel ring in the signal period;
  • the offset calculation module performs an angle solution on the first voltage signal corresponding to the second magnetic steel ring sent by the position detecting device to determine an absolute offset of the first position of the signal period where the first voltage signal is located;
  • an output module such as an adder, for adding the relative offset and the absolute offset to synthesize a rotation angle ⁇ represented by the first voltage signal at the moment.
  • FIG. 23 a signal amplifying module added on the basis of FIG. 22, specifically as an amplifier, is used to amplify a voltage signal from the sensor body before the A/D conversion module performs A/D conversion.
  • FIG. 24 is a flow chart of signal processing including temperature compensation, and includes a process of temperature compensation before performing angle solving;
  • FIG. 25 is a specific process based on temperature compensation of FIG. 24, that is, when performing temperature compensation, coefficient correction is performed first. The temperature compensation is then performed by a specific method in which the signal output from the A/D converter and the coefficient corrected output are multiplied by a multiplier.
  • a multiplier Of course, there are many specific ways to compensate for temperature, and they will not be introduced one by one.
  • the relative offset calculation module includes a signal synthesis unit, a first angle acquisition unit, and a temperature compensation unit.
  • the signal synthesis unit processes the A/D converted voltage signal sent by the different position detection devices to obtain a reference signal D.
  • the first angle acquiring unit selects an angle opposite to the first standard angle table as an offset angle; wherein, before obtaining the reference signal D, the signal input to the signal synthesizing unit is firstly temperature
  • the compensation unit performs temperature compensation, and then processes the temperature-compensated signal to obtain a signal D. The processing described here will be described in detail later.
  • the absolute offset calculation module includes a second synthesizer and the second angle acquisition unit, configured to synthesize the second voltage signal sent by the position detecting device corresponding to the second magnetic steel ring to obtain a shaft rotation signal period a number, thereby determining an absolute offset of the first position of the signal period in which the first voltage signal is located, in a specific implementation manner, the second synthesizer sends a position detecting device corresponding to the second magnetic steel ring The second voltage signal is sent to be combined to obtain a signal E.
  • the second angle acquiring unit selects an angle opposite to the signal in the second standard angle table as the first signal period of the first voltage signal. The absolute offset of the position.
  • Fig. 26 is a block diagram showing a signal processing device of the position detecting device of the embodiment.
  • the first magnetic steel ring is provided with two magnetic induction elements, and the output signals of the sensors l_la and l_2a are amplified by the amplifiers 2_la, 2_2a, and then connected to the A/D converters 3_la, 3_2a, and the output signals are obtained after analog-to-digital conversion.
  • the multipliers 4_la, 5_la, the coefficient aligner 10_la outputs the input terminals of the signal multipliers 4_la, 5_la, the output signals A, B of the multipliers 4_la, 5_la are connected to the input end of the first synthesizer 6_la, the first synthesizer 6_la pairs
  • the signals A, B are processed to obtain signals D, R, and an angle opposite thereto is selected from the standard angle table stored in the memory 8_la as an offset angle based on the signal D.
  • the output signal R of the first synthesizer 6_la is supplied to the coefficient aligner 10_la, and the coefficient aligner 10_la obtains the signal R based on the signal R and the lookup table from the memory 9_la.
  • a signal K is obtained, which is used as the other input of the multipliers 4_la, 5_la, and multiplied by the signals Cl, C2 output from the amplifiers 2_la, 2_2a to obtain the signals A, B as inputs to the first synthesizer 6_la.
  • the output signals of the sensors l_3a, l_4a, ... l_na are amplified by the amplifiers 2_3a, 2_4a, ... 2_na, respectively, and then connected to the A/D converters 3_3a, 3_4a, ... 3_na for analog-to-digital conversion and then by the second synthesis.
  • the device 7_la performs synthesis to obtain a signal E; according to the signal E, a relative angle between the second standard angle table in the memory 11_la is selected as the absolute offset of the first position of the signal period in which the first voltage signal is located, and The measured absolute angular displacement output is obtained by the adder 12_la.
  • the function of the second synthesizer 7_la is to synthesize the signal of the second magnetic steel ring of the sensor to obtain which "N-S" signal period the rotor is at this time.
  • E ⁇ C3_0; C4_0; Cn_0 ⁇ .
  • the processing of the signal by the first synthesizer 6 is: comparing the magnitudes of the values of the two signals, the signal having a small value for outputting 0, the structure of the signal D is ⁇ the coincidence of the first signal, and the second signal The coincidence bit, the numerical value of the signal of a smaller value ⁇ . details as follows:
  • the signal K is generally passed by the signal R. And R is divided.
  • first and second standard angle tables two tables are stored in the memory, each table corresponding to a series of codes, each code corresponding to an angle.
  • the table is obtained by calibration, and the calibration method is: using the detecting device of the embodiment and a high-precision position sensor, the signals output by the magnetic sensing element in the embodiment and the angle of the high-precision position sensor output are in one-to-one correspondence.
  • a first standard angle table is stored corresponding to the signal D, and each signal D represents a relative offset.
  • a second standard angle table is stored, each signal E representing an absolute offset.
  • the present invention is not limited to the above example, the first magnetic steel ring may also be provided with three, four, six magnetic induction elements, and the corresponding magnetic conductive ring and signal processing circuit also have to be changed accordingly, however, the variation is the same as in the first embodiment. The similarities are described, so they are not described here.
  • the end of the arc of the magnetically permeable ring is chamfered to form a chamfer formed by cutting axially or radially or simultaneously in the axial direction and in the radial direction.
  • the magnetic sensing element can be directly attached to the outer surface of the stainless steel cover, i.e., without the magnetically conductive ring, as shown in FIG.
  • Other components and their signal processing devices are similar to those having a magnetically permeable ring and will not be described herein.
  • the number of the respective components and the mounting scheme thereof are similar to those in the second embodiment, and the difference is the magnetization mode of the magnetic steel ring and the arrangement position of the magnetic induction element.
  • Figure 28 is an exploded perspective view of the position detecting device according to the third embodiment.
  • two rows of magnetic sensing elements 307 are provided corresponding to the magnetic steel ring 302 and the magnetic steel ring 303, respectively.
  • the first magnetic sensing elements of the first row that is, the plurality of magnetic sensing elements corresponding to the magnetic steel ring 302 and the magnetic conductive ring 304 are all represented by the magnetic sensing element 307
  • the second magnetic sensing element is the corresponding magnetic steel ring 303 and magnetically conductive.
  • the plurality of magnetic sensing elements of the ring 305 are all represented by magnetic sensing elements 307.
  • the magnetic steel ring 302 is defined as a first magnetic steel ring
  • the magnetic steel ring 303 is defined as a second magnetic steel ring
  • the magnetic conductive ring 304 is defined to correspond to the first magnetic steel ring 302, which will be magnetically guided.
  • the ring 305 is defined to correspond to the second magnet ring 303, although the invention is not limited to the above definition.
  • the total number is N, and the magnetic order is determined according to the magnetic order algorithm; on the shaft 301, corresponding to the first magnetic steel ring 302, m is distributed at an angle on the same circumference centered on the center of the first magnetic steel ring 302.
  • the total number of magnetic poles of the second magnetic steel ring 303 is the same as the number of Gray codes in which the adjacent two bits are different by one bit, and the polarity of the magnetic pole is "0" in the first position of the Gray code. "N" pole, the first position is "1" corresponding to the "S” pole.
  • the total magnetic pole number of the second magnetic steel ring is equal to the total number of magnetic poles of the first magnetic steel ring, and the polarities of the adjacent two poles are opposite.
  • FIG. 29 is a flow chart of a magnetic sequence algorithm of the magnetic steel ring 303.
  • the current code last bit is decremented by 0; then it is checked whether the current code has entered the code set, and if the code set is not entered, the current code is added to the code set. Perform the above steps. If the code set has been entered, check whether the current code is "0...0", and then it ends. Otherwise, the current coded direct forward code bit is decremented to 0 by 1; then it is checked whether the current code has been encoded. Set, if the code set is not entered, the current code is entered into the code set to continue the above steps. If the code set has been entered, it is checked whether the current code is "0...0", and then the following procedure is continued. Where 0 is magnetized as "N” and 1 magnetized as "S”. Thus, the magnetization structure diagram of the magnetic steel ring 303 shown in Fig. 30 and the arrangement order of H 3 and H 4 are obtained.
  • the angle between adjacent two magnetic sensing elements corresponding to the second magnetic steel ring is 360° /N.
  • the angle between each adjacent two magnetic induction elements corresponding to the first magnetic steel ring when m is 2 or 4, the angle between each adjacent two magnetic induction elements is 90° /N, when When m is 3, the angle between each adjacent two magnetic induction elements is 120° / N; when m is 6, the angle between each adjacent two magnetic induction elements is 60 ° /N.
  • Figure 31 is a block diagram of a signal processing device of a position detecting device according to a third embodiment. Due to its signal processing method and second The embodiments are similar, so they are not described here.
  • the first magnetic steel ring may be provided with two, three, four, six magnetic induction elements, and the corresponding magnetic conductive ring and signal processing circuit also have corresponding changes, but the changes are similar to those described in the first embodiment. Therefore, it will not be repeated here.
  • the end of the arc of the magnetically permeable ring is chamfered to form a chamfer formed by cutting axially or radially or simultaneously in the axial direction and in the radial direction.
  • the magnetic sensing element may be directly attached to the outer surface of the stainless steel cover, i.e., the magnetically permeable ring is not provided, and other components and their signal processing means are similar to those of the magnetically permeable ring, and will not be described herein.
  • FIG. 32 is a schematic cross-sectional view showing the entire sealing device of the present invention.
  • the present embodiment provides a sealing device 901 which includes a sealing device body and a wire 910 disposed therein.
  • the seal body is composed of a seal connection flange 911, a seal housing 912, and a stainless steel cover 913.
  • the seal connection flange 911 is connected to the seal housing 912, and the stainless steel cover 913 is interposed therebetween.
  • the stainless steel cover 913 is made of stainless steel and selected materials.
  • the seal housing 912 is a support for the entire seal 901.
  • a first insulating barrier 914 is disposed within the sealed housing 912.
  • the first insulating baffle 914, the outer wall of the stainless steel cover 913, and the inner wall of the seal housing 912 are enclosed as a sealed space.
  • a wire outlet 915 is defined in each of the first insulating baffle 914 and the sealing housing 912. The wire 910 penetrates from the sealing connecting flange 911 into the sealed space of the sealing device body, is wound in the sealed space, and then is taken out from the outlet 915. Wear it out.
  • the seal housing 912 is threadedly coupled to the stainless steel cover 913 at its outlet 915 end and is coated with a thread sealant to seal between the seal housing 912 and the stainless steel cover 913.
  • the sealed space is filled with a sealing filler 916, such as an epoxy glue.
  • a sealing filler 916 such as an epoxy glue.
  • a second insulating baffle 917 may be provided in the sealed space surrounded by the first insulating baffle 914, the stainless steel cover 913, and the sealed casing 912.
  • a wire outlet (not shown) is also formed in the second insulating shutter 917 for the wire 910 to pass through.
  • a second insulating baffle is further disposed in the sealed space, and an outlet port is formed on the outlet; the second insulating baffle is disposed in one or more, and the sealed space is divided into a multi-stage sealed space.
  • FIG. 33 is a cross-sectional view showing another sealing device of the present invention.
  • a second insulating plate 960 may be disposed between the first insulating plate 957 and the sealing block 956.
  • the insulating plate may be a high-strength insulating plate, and a hole for passing the copper rod is opened thereon, and a second copper rod 961 is disposed in the sealing space surrounded by the insulating plate 960 and the sealing block 956; the first copper rod 954 penetrates from the through hole of the sealing housing 952 into the sealed space of the sealing device body, from the first insulating plate
  • the 957 is pierced and connected to the second copper bar 961 through the second insulating plate 960; the second copper bar 961 passes through the through hole of the sealing block 956.
  • a support plate 962 may be disposed between the first insulating plate 957 and the second insulating plate 960, and a through hole is formed in the support plate 962. It should be noted that the inner diameter of the through hole formed in the support plate 962 is larger than the outer diameter of the first copper rod 954 or the second copper rod 961 to prevent the support plate 962 from being between the first copper rod 954 or the second copper rod 961. Turn on. Further, a boss 965 is provided on the inner cavity of the seal housing 952, and the support plate 962 can be fixed to the boss 965.
  • Figure 34 is a schematic view showing the structure of the first copper rod in the sealing device.
  • the first copper rod 954 is stepped, that is, in the form of a middle thick, two-stepped stepped shaft, and the outer diameter of the stepped column 963 disposed at the middle portion is larger than the outer diameter of the copper rod at both ends, the stepped column 963
  • the lower step surface is in abutting contact with the first insulating plate 957.
  • the first copper rod 954 is prevented from being pressed by the excessive pressure, and the pressure is transmitted to the first insulating plate 957, so that the pressure is uniform, and the pressure is transmitted to the sealed casing 952 through the first insulating plate 957.
  • the end of the first copper rod 954 is provided with a connection plug 955.
  • FIG. 35 is a schematic view showing the structure of a second copper rod in the sealing device.
  • the second copper rod 961 is also stepped, that is, the order Ladder shaft form.
  • the bottom end is a thick stepped column 964, the outer diameter of the cylindrical body is larger than the outer diameter of the other end, and the lower stepped surface of the stepped post 964 is in abutting contact with the second insulating plate 960. Since the lower end of the second copper rod 961 is thicker and in contact with the second insulating plate 960, the pressure applied to the second copper rod 961 is evenly distributed to the second insulating plate 960, and then transmitted to the lower supporting plate 962, and finally transmitted. To the sealed housing 952.
  • the copper rod is in the form of a stepped shaft, which can prevent the wire from being directly pressed out of the sealing device due to excessive pressure in the potted epoxy layer, resulting in seal failure.
  • a threaded hole is provided in the thick stepped column 964 for connection with the first copper rod 954, thereby achieving conduction between the first copper rod 954 and the second copper rod 961 in the sealing device.
  • a connector plug 955 is provided at the end of the smaller outer diameter of the second copper bar 961.
  • a support plate is further disposed between the first insulating plate and the second insulating plate, and a through hole is defined in the upper portion; the inner cavity of the sealing case is provided with a boss, and the supporting plate is fixed on the boss .
  • the number of the second insulating sheets 960 and the second copper rods 961 may be set to be plural depending on the specific circumstances and needs, thereby dividing the sealed space into a multi-stage sealed space.
  • a support plate 962 may be disposed between the adjacent two second insulating plates 960, and a through hole is formed in the support plate 962.
  • Figure 36 is a schematic view showing the overall structure of the mounting of the sealing device.
  • the sealing device 971 is interposed between the submersible servo motor 972 and the control box 973, and is connected to the submersible servo motor 972 and the control box 973.
  • the sealing housing 952 of the sealing device 971 is connected to the control box 973 at the end through which the first copper rod 954 passes, for example, by threading.
  • the sealing connection flange 951 of the sealing device 971 is connected to the submersible servo motor 972, for example, by bolts.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

位置检测装置及其信号处理装置 技术领域
本发明涉及一种位置检测装置及其信号处理装置, 具体地涉及一种用于潜油电机的位置检测 装置及其信号处理装置。 背景技术
目前我国和世界其它产油国家, 油田上都广泛使用潜油电机来驱动潜油电泵来汲取原油, 传 统的潜油电泵***, 其动力源主要是二极三相异步电动机, 现有的采油***在采油工艺配套中存 在如下问题:
与离心潜油泵配套时因电机转速低于同步转速, 电机效率和功率因数偏低; 与潜油螺杆泵配 套上时, 转速过高很难经过转速器将速度降低到与螺杆泵相适应的转速, 即使采用减速器也大大 的提高了采油成本和降低了***的效率, 若采用变频调速装置, 使电机长期处于低频工作状态又 容易引起电机的温升加快, 引起电机故障。 ***不能实现灵活控制, 效率低。
随着新技术的发展, 伺服技术的逐渐成熟, 伺服潜油抽油***成为潜油抽油***的一种发展 趋势。 传感器***是伺服***的核心部分之一, 对伺服控制的成败起着至关重要的作用。 潜油伺 ***处于复杂的井下环境当中, 与井液直接接触, 要求位置检测装置具有在复杂环境中能正常工 作的能力, 对密封、 抗振、 抗油污、 工作温度、 装配简便程度等方面有较高的要求。 发明内容
本发明所要解决的技术问题在于, 针对现有技术的不足提供一种应用于潜油永磁同步伺服电 机的磁电式位置检测装置及其信号处理装置, 本发明的位置检测装置抗振动, 抗油污, 尘埃能力 极强, 可靠性高, 安装结构简单, 易于操作, 适用于恶劣环境下电机转子位置的高精度检测。
本发明所解决的技术问题是通过如下技术方案实现的:
一种位置检测装置, 其主要包括传感器本体、 不锈钢罩、 密封装置和外壳, 其中, 传感器本 体包括磁钢环、 导磁环和磁感应元件; 导磁环设置在不锈钢罩的外壁上, 由两段或多段同半径、 同圆心的弧段构成, 相邻两弧段留有缝隙; 磁感应元件置于该缝隙内; 磁钢环设置在不锈钢罩的 内腔中, 固定在电机转轴上; 不锈钢罩外部通过密封装置与外壳密封并固定; 当磁钢环与导磁环 发生相对旋转运动时, 磁感应元件将感测到的磁信号转换为电压信号, 并将该电压信号传输给相 应的伺服控制器。
优选地, 导磁环由两段同半径、 同圆心的弧段构成, 分别为 1/4弧段和 3/4弧段, 对应的磁感 应元件为 2个; 或者, 导磁环由三段同半径的弧段构成, 分别为 1/3弧段, 对应的磁感应元件为 3 个; 或者, 导磁环由四段同半径的弧段构成, 分别为 1/4弧段, 对应的磁感应元件为 4个; 或者, 导磁环由六段同半径的弧段构成, 分别为 1/6弧段, 对应的磁感应元件为 6个。
优选地, 导磁环的弧段端部设有倒角, 为沿轴向或径向或同时沿轴向、 径向切削而形成的倒 角。
优选地, 还包括骨架, 用于固定所述导磁环; 导磁环设置在骨架成型模具上, 在所述骨架一 体成型时与骨架固定在一起。 本发明还提供了上述位置检测装置的信号处理装置, 其包括 A/D转换模块、 合成模块、 角度 获取模块、 存储模块等; A/D转换模块对位置检测装置中磁感应元件发送来的电压信号进行 A/D 转换, 将模拟信号转换为数字信号; 合成模块对位置检测装置发送来的经过 A/D转换的多个电压 信号进行处理得到基准信号 D ; 角度获取模块根据基准信号 D, 在标准角度表中选择与其相对的 角度作为偏移角度 ; 存储模块用于存储标准角度表和修正数据表。
优选地, 在 A/D转换模块和合成模块之间还包括温度补偿模块, 用于消除温度对位置检测装 置发送来的电压信号的影响; 所述合成模块的输出信号还包括信号 R; 所述温度补偿模块包括系 数矫正模块和乘法器, 所述系数矫正模块对所述合成模块的输出的信号 R和对应该信号的标准状 态下的信号 RQ进行比较得到输出信号 K; 所述乘法器为多个, 每一所述乘法器将从位置检测装置 发送来的、 经过 A/D转换的一个电压信号与所述系数矫正模块的输出信号 K相乘, 将相乘后的结 果输出给合成模块。
优选地, 如果位置检测装置发送来的一个电压信号为 2或 3的倍数, 则在所述温度补偿模块 之前还包括差分模块, 对用于抑制温度和零点漂移, 并提高数据精度。
本发明提供了一种位置检测装置, 其主要包括传感器本体、 不锈钢罩、 密封装置和外壳, 传 感器本体包括转子, 所述转子包括第一磁钢环、 第二磁钢环, 其中, 所述第一磁钢环和第二磁钢 环分别固定在电机轴上, 设置在不锈钢罩的内腔中, 所述第一磁钢环被均匀地磁化为 N对磁极, 其中?<=2°且11=0, 1, 2…! 1, 并且相邻两极的极性相反; 所述第二磁钢环的磁极总数为 2n, 其磁 序按照磁序算法确定; 在不锈钢罩上, 对应于第一磁钢环, 以第一磁钢环的中心为圆心的同一圆 周上设有 m个呈一定角度分布的磁感应元件, m为 2或 3的整数倍, 对应于第二磁钢环, 以第二 磁钢环的中心为圆心的同一圆周上设有 n个均匀分布呈一定角度分布的磁感应元件, n=0, 1, 2— n, 磁感应元件设置在不锈钢罩的外壁上; 不锈钢罩外部通过密封装置与外壳密封并固定; 当转子 旋转运动时, 所述磁感应元件将感测到的磁信号转变为电压信号, 并将该电压信号输出给信号处 理装置。
优选地, 对应于所述的第二磁钢环的相邻两个磁感应元件之间的夹角为 360° /N。
优选地, 对应于所述的第一磁钢环相邻两个磁感应元件之间的夹角, 当 m为 2或 4时, 每相 邻两个磁感应元件之间的夹角为 90° /N,当 m为 3时,每相邻两个磁感应元件之间的夹角为 120° /N; 当 m为 6时, 每相邻两个磁感应元件之间的夹角为 60° /N。
磁感应元件可以直接表贴在不锈钢罩的外表面上。 或者, 该位置检测装置还包括两个导磁环, 每一所述导磁环是由多个同圆心、 同半径的弧段构成, 相邻两弧段留有空隙, 对应于两个磁钢环 的磁感应元件分别设在该空隙内。
优选地, 当设有导磁环时, 导磁环的弧段端部设有倒角, 为沿轴向或径向或同时沿轴向、 径 向切削而形成的倒角。
本发明还提供了一种位置检测装置, 其主要包括传感器本体、 不锈钢罩、 密封装置和外壳, 传感器本体包括转子, 所述转子包括第一磁钢环、 第二磁钢环, 其中, 所述第一磁钢环和第二磁 钢环分别固定在电机轴上, 设置在不锈钢罩的内腔中, 对应于第二磁钢环, 以第二磁钢环的中心 为圆心的同一圆周上设有 n个均匀分布的磁感应元件, n=l, 2…! 1, 所述第二磁钢环的磁极磁化顺 序使得 n个磁感应元件输出呈格雷码格式, 相邻两个输出只有一位变化; 在不锈钢罩上, 对应于 第一磁钢环, 以第一磁钢环的中心为圆心的同一圆周上设有 m个呈一定角度分布的磁感应元件, m为 2或 3的整数倍, 所述第一磁钢环的磁极总对数与第二磁钢环的磁极总数相等, 并且相邻两 极的极性相反; 磁感应元件设置在不锈钢罩的外壁上; 不锈钢罩外部通过密封装置与外壳密封并 固定; 当转子相对于定子发生相对旋转运动时, 所述磁感应元件将感测到的磁信号转变为电压信 号, 并将该电压信号输出给一信号处理装置。
优选地, 对应于第一磁钢环的相邻两个磁感应元件之间的夹角, 当 m为 2或 4时, 该夹角为 90° /g; 当 m为 3时, 该夹角为 120° /g; 当 m为 6时, 该夹角为 60° /g, 其中, g为第二磁钢环 的磁极总数。
磁感应元件可以直接表贴在不锈钢罩的外表面上。 或者, 该位置检测装置还包括两个导磁环, 每一所述导磁环是由多个同圆心、 同半径的弧段构成, 相邻两弧段留有空隙, 对应于两个磁钢环 的磁感应元件分别设在该空隙内。
优选地, 当设有导磁环时, 导磁环的弧段端部设有倒角, 为沿轴向或径向或同时沿轴向、 径 向切削而形成的倒角。
本发明再提供了上述位置检测装置的信号处理装置, 其包括 A/D转换模块、 相对偏移角度 计算模块、 绝对偏移量 计算模块、 角度合成及输出模块、 存储模块; A/D转换模块对位置检测 装置发送来的电压信号进行 A/D转换, 将模拟信号转换为数字信号; 相对偏移角度 计算模块用 于计算位置检测装置中对应于第一磁钢环的磁感应元件发送来的第一电压信号在所处信号周期内 的相对偏移量 ; 绝对偏移量 计算模块, 根据位置检测装置中对应于第二磁钢环的磁感应元件 发送来的第二电压信号, 通过计算来确定第一电压信号所处的信号周期首位置的绝对偏移量 ; 角度合成及输出模块, 用于将上述相对偏移量 和绝对偏移量 相加, 合成所述第一电压信号所 代表的在该时刻的旋转角度 ; 存储模块, 用于存储数据。
优选地, 该信号处理装置还包括信号放大模块, 用于在 A/D转换模块进行 A/D转换之前, 对 来自于位置检测装置的电压信号进行放大。
优选地, 所述相对偏移角度 计算模块包括第一合成单元和第一角度获取单元, 所述第一合 成单元对位置检测装置发送来的经过 A/D转换的多个电压信号进行处理, 得到一基准信号 D ; 所 述第一角度获取单元根据该基准信号 D, 在第一标准角度表中选择一与其相对的角度作为偏移角 度 。
优选地, 所述相对偏移角度 计算模块还包括温度补偿单元, 用于消除温度对位置检测装置 发送来的电压信号的影响。
优选地, 所述第一合成单元的输出还包括信号 。
优选地, 所述温度补偿单元包括系数矫正器和乘法器, 所述系数矫正器对所述合成模块的输 出的信号 R和对应该信号的标准状态下的信号 R。进行比较得到输出信号 K; 所述乘法器为多个, 每一所述乘法器将从位置检测装置发送来的、 经过 A/D转换的一个电压信号与所述系数矫正模块 的输出信号 K相乘, 将相乘后的结果输出给第一合成单元。
优选地, 所述绝对偏移量 计算模块包括第二合成单元和第二角度获取单元, 所述第二合成 单元用于对对应于第二磁钢环的位置检测装置发送来的第二电压信号进行合成, 得到一信号 E ; 所述第二角度获取单元根据该信号 E在第二标准角度表中选择一与其相对的角度作为第一电压信 号所处的信号周期首位置的绝对偏移量 。
优选地, 以上各实施例中的磁感应元件为霍尔感应元件。
优选地, 密封装置包括密封装置本体和穿设在其中的导线, 所述的不锈钢罩和密封连接法兰、 密封壳体组成密封装置本体, 密封连接法兰与密封壳体相连, 不锈钢罩穿设在两者之间, 密封壳 体内设有第一绝缘挡板, 第一绝缘挡板、 不锈钢罩和密封壳体围设成密封空间; 第一绝缘挡板和 密封壳体上分别开设有出线口, 导线从密封连接法兰穿入该密封装置本体的密封空间中, 从出线 口穿出; 密封空间中充满密封填充物。
优选地, 密封空间内还设有第二绝缘挡板, 其上开设有出线口; 第二绝缘挡板的设置数量为 一个以上, 将密封空间分割为多级密封空间。
优选地, 密封装置包括密封装置本体, 该密封装置本体由连接法兰、 密封壳体和所述的不锈 钢罩组成, 连接法兰与密封壳体相连, 不锈钢罩穿设在两者之间, 密封壳体内腔的两端分别设有 密封块和第一绝缘板, 密封块、 第一绝缘板、 不锈钢罩和密封壳体围设成密封空间, 密封块与连 接法兰之间设有压紧块; 密封块、 第一绝缘板和密封壳体上分别开设有通孔, 第一铜棒从密封壳 体的通孔穿入该密封装置本体的密封空间中, 从第一绝缘板穿出; 密封空间中充满密封填充物。
优选地, 第一铜棒为阶梯状, 设置在其中部的台阶柱外径大于两端的铜棒外径, 该台阶柱的 下台阶面与第一绝缘板抵顶接触; 第一铜棒的末端设有连接插头。
优选地, 第一绝缘板和密封块之间还设有第二绝缘板, 第二绝缘板与密封块围设的密封空间 内穿设第二铜棒; 第一铜棒从密封壳体的通孔穿入该密封装置本体的密封空间中, 从第一绝缘板 穿出, 并穿过第二绝缘板与第二铜棒首尾相接; 第二铜棒从密封块的通孔穿出。
优选地, 第一绝缘板和第二绝缘板之间还设有支承板, 其上开设有通孔; 密封壳体的内腔上 设有凸台, 支承板固设在凸台上。
优选地, 第二绝缘板和第二铜棒的设置数量为一个以上, 将密封空间分割为多级密封空间。 优选地, 第二铜棒为阶梯状, 一端设置为台阶柱, 柱体外径大于另一端的第二铜棒外径, 该 台阶柱的下台阶面与第二绝缘板抵顶接触; 第二铜棒的末端设有连接插头。
综上所述, 本发明具有以下优点:
1、 磁电式位置检测装置非接触式测量方式, 满足了潜油伺服***中井下控制箱中伺服***的 密封要求。
2、 磁电式位置检测装置抗振动, 抗油污, 尘埃能力极强, 可靠性高。 适用于恶劣环境下电机 转子位置的高精度检测。 这些特点使得磁电式位置检测装置成为潜油伺服电机传感***的较好选
3、 与光电式位置检测装置相比, 工作温度范围宽。
4、 制造装配工艺简单, 成本低。
5、 能实现角度的绝对位置检测。
6、 本发明的安装结构简单, 易于操作, 较好的解决了磁电式位置检测装置在井下潜油伺服系 统当中的应用问题。 附图说明
图 1是磁电式位置检测装置在潜油伺服电机上的整体安装结构示意图;
图 2是磁电式位置检测装置安装结构分解图;
图 3是磁电式位置检测装置中的磁钢环的示意图;
图 4A与图 4B是磁感应元件与导磁环的布置示意图;
图 5 是根据本发明的第一实施例的安装有两个磁感应元件的位置检测装置方案的分解示意 图 6是根据本发明的第一实施例的安装有两个磁感应元件的位置检测装置方案的信号处理装 置的框图;
图 7 是根据本发明的第一实施例的安装有三个磁感应元件的位置检测装置方案的分解示意 图;
图 8是根据本发明的第一实施例的安装有三个磁感应元件的位置检测装置方案的信号处理装 置的框图;
图 9 是根据本发明的第一实施例的安装有四个磁感应元件的位置检测装置方案的分解示意 图;
图 10 是根据本发明的第一实施例的安装有四个磁感应元件的位置检测装置方案的信号处理 装置的框图;
图 11 是根据本发明的第一实施例的安装有六个磁感应元件的位置检测装置方案的分解示意 图;
图 12 是根据本发明的第一实施例的安装有六个磁感应元件的位置检测装置方案的信号处理 装置的框图;
图 13A-图 13D是导磁环的倒角设计的示意图;
图 14是第一实施例的位置检测装置的信号处理方法的流程图;
图 15是根据本发明的第二实施例的位置检测装置方案的关键部件的分解立体图; 图 16是根据本发明的第二实施例的位置检测装置方案的安装示意图;
图 17是第二实施例中的与第一磁钢环对应的两个磁感应元件的布置示意图;
图 18是第二实施例中的第一磁钢环均匀磁化为六对极时磁感应元件的布置示意图; 图 19是第二实施例中的第二磁钢环所对应的磁感应元件个数为三个时所得到的编码; 图 20是第二实施例中的第二磁钢环的充磁顺序;
图 21是第二实施例中的第二磁钢环所对应的磁感应元件布置示意图;
图 22-图 25是第二实施例的位置检测装置信号处理流程图;
图 26是第二实施例的位置检测装置的一个信号处理装置的框图;
图 27是磁感应元件采用表贴式安装的位置检测装置的结构示意图;
图 28是根据第三实施例的位置检测装置的分解立体图;
图 29是确定磁钢环 303的磁序的算法流程图;
图 30是由图 29得到的磁钢环的充磁结构图以及磁感应元件的排布顺序的一个示例; 图 31是根据第三实施例的位置检测装置的信号处理装置的框图;
图 32是本发明的一种密封装置的剖视图;
图 33是本发明的另一种密封装置的剖视图;
图 34为一种密封装置中第一铜棒的结构示意图;
图 35为一种密封装置中第二铜棒的结构示意图; 以及
图 36为一种密封装置的安装整体结构示意图。 具体实施方式
以下参照附图, 结合本发明的优选实施例对本发明进行描述, 以使本领域的技术人员更加明 白和容易实现本发明。 图 1是磁电式位置检测装置在潜油伺服电机 700上的整体安装结构示意图。 磁电式位置检测 装置***由磁电式位置检测装置电路板 701、 磁感应元件 702、 磁钢环 703、 导磁环 704、 密封装 置 705、 位置检测装置线 706、 不锈钢罩 708及外壳(未图示)等组成, 磁电式位置检测装置电路 板 701 由电路板和磁感应元件 702组成, 磁感应元件可以采用霍尔元件。 磁钢环 703安装在潜油 伺服电机尾轴 707上, 它的设置位置同不锈钢罩 708外的导磁环 704对应, 跟随电机转子一起旋 转, 从而产生正弦磁场。 导磁环 704被分成几个磁环块, 导磁环 704的方案要根据整个位置检测 装置磁感应元件个数方案来确定。 导磁环 704安装在不锈钢罩 708的台阶上, 构成一周, 每两个 导磁环之间留有狭缝, 磁感应元件 702处在两个导磁环的狭缝当中。 磁感应元件 702的管脚直接 接在磁电式位置检测装置电路板 701上, 由电路板伸出, 使得磁感应元件到达两个导磁环之间, 磁电式位置检测装置电路板 701上有 CPU等电子元器件,磁电式位置检测装置电路板 701用于处 理磁感应元件 702产生的信号, 反馈信号经过位置检测装置线 706传入井下控制箱 709中的伺服 控制器。 图 1中以第一实施例为例, 其中磁钢环 703、 导磁环 704以及磁感应元件 702只有一套, 磁钢环为单对磁极, 然而本发明不限于此, 磁钢环、 导磁环以及磁感应元件可以有两套, 磁钢环 可以有多对极, 后面将会结合实施例对多对极的情况加以描述。
磁电式位置检测装置***分两处安装, 产生正弦磁场的磁钢环 703安装在潜油伺服电机尾轴
707上, 剩下的部分与密封装置 705构成一体, 成组件化安装。 安装磁电式位置检测装置的密封 装置 705 的钢罩, 材料要选为不导磁材料, 所以可以采用不锈钢材料, 也就是不锈钢罩 708, 既 满足了密封强度要求, 又满足了磁电式位置检测装置***对磁路的要求。 需要说明的是除了不锈 钢罩, 其它不导磁、 强度满足密封强度要求的材料也可以选用。
磁钢环主要是产生正弦磁场; 导磁环起聚磁作用, 磁钢环产生的磁通通过导磁环。 电路板是 固定磁感应元件并且输出六路信号线。 磁感应元件把通过导磁环的磁场转换成电压信号, 电压信 号直接进入主控板芯片。 由主控板上芯片对电压信号进行处理, 最后得到角位移。
磁电式位置检测装置是利用霍尔效应来检测电机转速、 转子位置等信息的位置检测装置, 磁 感应元件能感应磁场的变化, 把通过导磁环的磁场转换成电压信号, 磁钢环转动一周产生一个或 多个周期的正弦磁场, 在不同的角度产生不同的磁场, 磁感应元件感应出不同的电压信号, 电路 板通过接插件, 将每个磁感应元件的电压信号传递给 CPU, CPU根据电压信号计算出转轴的角度 位置。 磁感应元件优选地为霍尔感应元件。 霍尔感应元件模块的成本低, 因为磁感应元件、 磁钢 环、 导磁环成本低, 电路板只是将磁感应元件的感应电压传递给 CPU, 因此总成本也低。
这种位置检测装置的安装结构既达到了位置检测装置密封性的要求, 要使得磁电式位置检测 装置在恶劣的潜油伺服电机环境中得以正常工作。 电机旋转时带动磁钢环旋转, 从而产生旋转磁 场, 在不锈钢罩外表面上的导磁环导通磁场, 在两个导磁环间隙之间磁感应元件感应磁场的变化, 产生电压信号, 这些变化的信号在磁电式位置检测装置电路板上被处理, 并将处理后的信号传递 给控制箱, 从而获得电机的转子位置、 速度等信号。
图 2是磁电式位置检测装置安装结构的立体分解示意图。 由图 2可知, 整个安装结构成组件 化设计, 位置检测装置电路板 701、 磁感应元件 702、 导磁环 704与密封装置 705安装为一体可以 单独成立为一个组件。 这使得这种磁电式位置检测装置在潜油伺服电机中的应用安装方便可靠。
图 3是磁电式位置检测装置中的磁钢环的示意图。 磁钢环安装在电机的尾轴上, 随着电机转 子一起旋转, 形成磁电式位置检测装置***所需的旋转变化的正弦磁场, 磁钢环的充磁方式和方 向与相应的磁电式位置检测装置***的要求对应。 在如下所述的内容中, 第一实施例中的磁钢环 为一对磁极; 第二实施例中的磁钢环为多对磁极, 该多对磁极均匀排列; 第三实施例中的磁钢环 为多对磁极, 该多对磁极按一定角度排列。
图 4A与图 4B是以两个磁感应元件的方案为例解释磁感应元件与导磁环的布置的示意图。 如 图 4A所示, 磁感应元件 100、 101采用表面贴的方式, 即在圆环形定子 102内侧壁布置, 磁钢环 103设置在圆环形定子 102的内部, 在两个磁感应元件的方案中, 两个磁感应元件 100、 101相隔 90° 布置。 在图 4B中, 两个磁感应元件 109、 110夹于导磁环的两个或多个同心安装的弧段 (此 处为两个弧段 111、 112 ) 之间, 磁钢环 113设置在导磁环的中部。 尽管此处以两个磁感应元件的 方案为例加以解释, 然而本发明不限于此, 每列磁感应元件的数目可以是三个、 四个、 六个, 对 应的导磁环的弧段也相应地为三个、 四个、 六个。 而且可以采用两列磁感应元件和两个磁钢环的 方案,此时第二个导磁环的弧段也相应地有所变化,而不局限于 1/4弧段与 3/4弧段的方案或均匀 分段的方案。
本发明还提供了一种基于上述结构的位置检测装置的信号处理装置, 包括: A/D 转换模块、 合成模块、 角度获取模块和存储模块, 其中, A/D转换模块对位置检测装置中磁感应元件发送来 的电压信号进行 A/D转换, 将模拟信号转换为数字信号, 对应于磁感应元件的个数, 该模块中具 有多个 A/D转换器, 分别用于对每个磁感应元件发送来的电压信号进行 A/D转换; 所述合成模块 对经过 A/D转换的多个电压信号进行处理, 得到基准信号 D ; 所述角度获取模块, 根据该基准信 号0, 在角度存储表中选择与其相对的角度作为偏移角度 ; 所述存储模块用于存储数据。
上述各个模块可以构成一 MCU。以下通过实施例详细描述本发明的位置检测装置及其信号处 理装置与方法。
第一实施例
图 5 是根据本发明的第一实施例的安装有两个磁感应元件的位置检测装置方案的分解示意 图。 位置检测装置包括感应元件 710、 电路板 711、 导磁环 712、 不锈钢罩 713、 磁钢环 715及外 壳 (未图示) 等部分, 磁钢环 715安装于电机尾轴 716上, 其余部分可安装于密封装置 714的不 锈钢罩 713上。 本方案的特征之处在于, 位置检测装置有两个磁感应元件, 导磁环 712也由两部 分组成, 一个是 1/4的磁环, 一个是 3/4的磁环。 两个不完整的磁环形成两个狭缝, 用于同两个磁 感应元件配合使用。
图 6是根据本发明的第一实施例的安装有两个磁感应元件的位置检测装置方案的信号处理装 置的框图。磁感应元件 Hla和 H2a的输出信号接 MCU的内置 A/D转换器模拟输入口, 经模数转换 后得到输出信号接乘法器 20a、 21a, 系数矫正器 5a的输出信号 K接乘法器 20a、 21a 的输入端, 乘法器 20a、 21a 的输出信号接合成器 3a的输入端, 合成器 3a输出信号 D和 R, 系数矫正器 5a 接收合成器 3a输出的信号 D和 R, 通过运算得到信号 K, 通过使磁感应元件 Hla和 H2a的信号与 该信号 K进行相乘, 以此来进行温度补偿, 消除温度对信号的影响。 存储器 40a中存储有一角度 存储表, MCU根据信号 D在角度存储表中选择与其相对的角度作为偏移角度 。
在存储模块中存储有一标准角度表, 其中存储了对应于一系列的码, 每一个码对应于一个角 度。 该表是通过标定得到的, 标定方法是, 利用本施例的检测装置和一高精度位置传感器, 将本 施例中的磁感应元件输出的信号和该高精度位置传感器输出的角度进行一一对应, 以此建立出一 磁感应元件输出的信号与角度之间的关系表。
另外,在存储模块中还存储了一些数据修正表,这些表中包括一个信号 D与信号 R。的对应表, 其中信号 R。为信号 R在标准状态下的信号, 通过合成模块, 即合成器 3a得到的信号 D, 通过査 表可以得到一信号 R。, 通过将信号 R。和信号 R进行比较, 如除法运算, 得到信号1^。
其中对信号的处理, 即合成器 3a对信号的处理原则是: 比较两个信号的数值的大小, 数值小 的用于输出的信号 D, 信号 D的结构为 {第一个信号的符合位, 第二个信号的符合位, 较小数值 的信号的数值位}。 以本实施例为例, 说明如下:
约定:
当数据 X为有符号数时, 数据 X的第 0位 (二进制左起第 1位) 为符号位, X_0=1表示数据
X为负, X_0=0表示数据 X为正。
_0表示数据 X的数值位 (数据的绝对值), 即去除符号位剩下数据位。
如果 A_D>=B_D
Figure imgf000010_0001
否则:
D={ A_0; B_0; A_D }
R= lA2+B2
图 7 是根据本发明的第一实施例的安装有三个磁感应元件的位置检测装置方案的分解示意 图。 其各部分组件的安装方式与两个磁感应元件的方案的相似, 故在此不再重复。 本方案的特征 之处在于, 位置检测装置有三个磁感应元件, 导磁环也由三部分组成, 每两个不完整的磁环形成 狭缝, 总共形成三个狭缝, 用于同三个磁感应元件配合使用。
图 8是根据本发明的第一实施例的安装有三个磁感应元件的位置检测装置方案的信号处理装 置的框图。如图 7所示,位置检测装置包括感应元件 717、电路板 718、导磁环 719、不锈钢罩 720、 磁钢环 722及外壳 (未图示) 等部分, 通过密封装置 721, 将电机尾轴 723密封在不锈钢罩 720 内。 本方案的信号处理装置与两个磁感应元件的方案中的相似, 不同之处在于, 磁感应元件有三 个, 输出给合成器的信号为三个, 合成器在取舍信号时与上述方案中的有所不同。 在这里, 仅说 明合成器如何取舍信号。
合成器 3c对信号的处理原则是: 先判断三个信号的符合位, 并比较符合位相同的信号的数值 的大小, 数值小的用于输出的信号 D, 信号 D的结构为 {第一个信号的符合位, 第二个信号的符 合位, 第三个信号的符合位, 较小数值的信号的数值位 }。 以本实施例为例:
约定:
当数据 X为有符号数时, 数据 X的第 0位 (二进制左起第 1位) 为符号位, X_0=1表示数据 X为负, X_0=0表示数据 X为正。
_0表示数据 X的数值位 (数据的绝对值), 即去除符号位剩下数据位。
如果 { A_0; B_0; C_0}=010 并且 A_D>= C_D
D={ A_0; B_0; C_0; C_D }
如果 { A_0; B_0; C_0}=010 并且 A_D<C_D
D={ A_0; B_0; C_0; A_D }
如果 { A_0; B_0; C_0}=101 并且 A_D>= C_D
D={ A_0; B_0; C_0; C_D }
如果 { A_0; B_0; C_0}=101 并且 A_D< C_D
D={ A_0; B_0; C_0; A_D } 如果 { A.— 0; B. _0; C_0}: =011 并且 B_D>=C_D
D= A_ — 0; B_0; C_0 ; c— D }
如果 { A. — 0; B. _0; C_0}: =011 并且 B_D<C_D
D= A_ — 0; B_0; C_0 ; B— D }
如果 { A. — 0; B. _0; C_0}: = 100 并且 B_D>=C_D
D= A_ — 0; B_0; C_0 ; c— D }
如果 { A. — 0; B. _0; C_0}: = 100 并且 B_D<C_D
D= A_ — 0; B_0; C_0 ; B— D }
如果 { A. — 0; B. _0; C_0}: =001 并且 B_D>=A_D
D= A_ — 0; B_0; C_0 ; A— -D }
如果 { A. — 0; B. _0; C_0}: =001 并且 B_D<A_D
D= A_ — 0; B_0; C_0 ; B— D }
如果 { A. — 0; B. _0; C_0}: = 110 并且 B_D>=A_D
D= A_ — 0; B_0; C_0 ; A— -D }
如果 { A. — 0; B. _0; C_0}: = 110 并且 B_D<A_D
D= A_ — 0; B_0; C_0 ; B— D }
cr = A -fixcos (―) - Cxcos (―) β = Βχ sin (―) - C x sin (―)
Figure imgf000011_0001
图 9 是根据本发明的第一实施例的安装有四个磁感应元件的位置检测装置方案的分解示意 图。 位置检测装置包括感应元件 724、 电路板 725、 导磁环 726、 不锈钢罩 727、 磁钢环 729及外 壳 (未图示) 等部分, 通过密封装置 728, 将电机尾轴 730密封在不锈钢罩 727内。 其各部分组 件的安装方式与两个磁感应元件的方案的相似, 故在此不再重复。 本方案的特征之处在于, 位置 检测装置有四个磁感应元件, 导磁环也由四部分组成, 每两个不完整的磁环形成狭缝, 总共形成 四个狭缝, 用于同四个磁感应元件配合使用。
图 10 是根据本发明的第一实施例的安装有四个磁感应元件的位置检测装置方案的信号处理 装置的框图。 方案的信号处理装置与两个磁感应元件的方案中的相似, 不同之处在于, 增加了差 动放大模块, 通过该差动放大模块抑制温度和零点漂移, 以此来提高数据精度, 最终输出给合成 器的信号仍为两个, 处理过程及方法与两个传感器的方案的相同, 在此不再重复。
图 11 是根据本发明的第一实施例的安装有六个磁感应元件的位置检测装置方案的分解示意 图。 位置检测装置包括感应元件 731、 电路板 732、 导磁环 733、 不锈钢罩 734、 磁钢环 736及外 壳 (未图示) 等部分, 通过密封装置 735, 将电机尾轴 737密封在不锈钢罩 734内。 其各部分组 件的安装方式与两个磁感应元件的方案的相似, 故在此不再重复。 本方案的特征之处在于, 位置 检测装置有六个磁感应元件, 导磁环也由六部分组成, 每两个不完整的磁环形成狭缝, 总共形成 六个狭缝, 用于同六个磁感应元件配合使用。
图 12 是根据本发明的第一实施例的安装有六个磁感应元件的位置检测装置方案的信号处理 装置的框图。 方案的信号处理装置与三个磁感应元件的方案中的相似, 不同之处在于, 增加了差 动放大模块, 通过该差动放大模块抑制温度和零点漂移, 以此来提高数据精度, 最终输出给合成 器的信号仍为三个, 处理过程及方法与三个传感器的方案的相同, 在此不再重复。
图 13A到图 13D以由 1/4弧段和 3/4弧段构成的导磁环为例, 图示了本发明的导磁环的倒角 设计。 如图 13A到图 13D所示, 导磁环由两段或多段同半径、 同圆心的弧段构成, 图 13A所示 的导磁环没有设计倒角, 图 13B到图 13D所示的弧段端部设有倒角, 所述倒角为沿轴向(图 13B ) 或径向 (图 13C ) 或同时沿轴向、 径向 (图 13D ) 切削而形成的倒角, 分别为轴向切面 151、 153, 径向切面 152、 154。 相邻两弧段间留有缝隙, 磁感应元件置于该缝隙内, 当磁钢环与导磁环发生 相对旋转运动时, 所述磁感应元件将感测到的磁信号转换为电压信号, 并将该电压信号传输给相 应的控制器。
_ Φ
根据磁密公式 β = 可以知道, 当 ^一定时候, 可以通过减少 s, 增加 β 。 因为永磁体产生的 磁通是一定的, 在导磁环中 较大, 所以 β比较小, 因此可以减少因为磁场交变而导致的发热。 而通过减少导磁环端部面积能够增大端部的磁场强度, 使得磁感应元件的输出信号增强。 这样的 信号拾取结构制造工艺简单, 拾取的信号噪声小, 生产成本低, 可靠性高, 而且尺寸小。 虽然以 两个弧段的方案为例描述了导磁环的倒角设计, 然而本发明不限于此, 导磁环为三弧段、 四弧段、 六弧段的方案都可以采用类似的倒角设计, 在此不再详细描述。
图 14是第一实施例的位置检测装置的信号处理方法的流程图。 如图 14所示, 根据本实施例 的位置检测装置的信号处理方法包括以下步骤:
S 100, 对位置检测装置发送来的多个电压信号进行 A/D转换; S 101 , 对位置检测装置发送来 的经过 A/D转换的多个电压信号进行处理得到基准信号 D ; S 102, 根据该基准信号 D, 在角度存 储表中选择与其相对的角度作为偏移角度 。
优选地, 所述方法还包括: 在步骤 S 101 中, 对经过 A/D转换的多个电压信号进行处理时, 得到基准信号 D的同时得到信号 R; 步骤 S 103 , 根据得到的基准信号 R。和 R进行运算, 得到信 号 K; 在对位置检测装置发送来的经过 A/D转换的多个电压信号进行处理之前, 将所述多个电压 信号分别与信号 K相乘, 从而实现对电压信号的温度补偿。
以上以采用导磁环的方案为例描述了本发明的位置检测装置的安装方案, 而本发明还可以采 用表贴的方式安装磁感应元件。 由于除了磁感应元件的安装方式之外的其余部分的安装方式与上 述实施例中的类似, 故在此不再赘述。
第二实施例
在第二实施例中, 磁钢环、 导磁环各为两个, 磁感应元件也相应地有两列, 这些是位置检测 装置的关键部件, 除此之外的其它部件的安装与结构与第一实施例中的相似, 在此不再赘述。
图 15是根据本发明的第二实施例的位置检测装置方案的关键部件的分解立体图。 图 16是根 据本发明的第二实施例的位置检测装置方案的安装示意图。 本实施例的位置检测装置包括转子和 将转子套在内部的定子,转子包括第一磁钢环 201 a和第二磁钢环 201b以及第一导磁环 205a和第 二导磁环 205b, 第一磁钢环 201a和第二磁钢环 201b分别固定在电机轴 200上, 其中定子为支架 203。 第一导磁环 205a和第二导磁环 205b分别由多个同圆心、 同半径的弧段构成, 相邻两个弧段 之间留有空隙, 对应于两个磁钢环的磁感应元件 204分别设在该空隙内。 磁感应元件设置在不锈 钢罩的外壁上, 不锈钢罩外部通过密封装置与外壳密封并固定, 当转子旋转运动时, 所述磁感应 元件将感测到的磁信号转变为电压信号, 并将该电压信号输出给一信号处理装置。 第一磁钢环 201a均匀的磁化为 g ( g的取值等于第二磁钢环中的磁极总数) 对极 (N极和 S 极交替排列), 当第二磁钢环中的磁极总数为 6时, 第一磁钢环 201a的极对数为 6对。 以第一磁 钢环 201a的中心为圆心的同一圆周上, 设置有 m个磁感应元件, 如 2个, 如图 17所示, 二个磁 感应元件 204之间的夹角为 90° /6。 第一磁钢环均匀地磁化为 6对极时磁感应元件的布置如图 18 所示。 当转子相对于定子发生相对旋转运动时, 所述磁感应元件将感测到的磁信号转变为电压信 号, 并将该电压信号输出给一信号处理装置。
定义第一磁钢环中相邻一对 " N-S " 为一个信号周期, 因此, 任一 " N-S "对应的机械角度为 360° /g ( g为 " N-S "个数), 假定转子在 时刻旋转角度 位于第" ί¾信号周期内, 则此时刻角位 移 可认为由两部分构成: 1. 在第 信号周期内的相对偏移量,磁感应元件 和 H2感应第一磁 钢环的磁场来确定在此 " N-S "信号周期内的偏移量 (值大于 0小于 360° /g ) ; 2. 第" 信号周 期首位置的绝对偏移量 , 用传感器 H3, H4, ...¾>感应磁环 2的磁场来确定此时转子究竟是处 于哪一个 " N-S "来得到 。
对应于第二磁钢环 201b, 以第二磁钢环 201b的中心为圆心的同一圆周上设有 n个均匀分布 的磁感应元件, n=l, 2…! 1, 第二磁钢环的磁极磁化顺序使得 n个磁感应原件输出呈格雷码形式。 磁极的极性为格雷码的首位为 " 0"对应于 " N/S " 极, 首位为 " 1 "对应于 " S/N"极。 例如, 当 n为 3时, 得到如图 19所示的编码, 得到如图 20所示的第二磁钢环的充磁顺序, 如图 21所示, 三个磁感应元件均布周围进行读数。
本发明还提供了一种基于该位置检测装置及其原理的信号处理装置, 其包括: A/D转换模块、 相对偏移量 计算模块、 绝对偏移量 计算模块和存储模块。 其信号处理流程如图 22-25所示, 对传感器本体中第一磁钢环和第二磁钢环发送来的电压信号进行 A/D转换, 将模拟信号转换为数 字信号; 由相对偏移量 计算模块对位置检测装置发送来的对应于第一磁钢环的第一电压信号进 行角度 求解, 计算对应于第一磁钢环的信号在所处信号周期内的相对偏移量 ; 由绝对偏移量 计算模块对位置检测装置发送来的对应于第二磁钢环的第一电压信号进行角度 求解,来确定 第一电压信号所处的信号周期首位置的绝对偏移量 ; 通过角度合成及输出模块, 如加法器用于 将上述相对偏移量 和绝对偏移量 相加, 合成所述第一电压信号所代表的在该时刻的旋转角度 θ。 对于图 23, 为在图 22的基础上增加的信号放大模块, 具体如放大器, 用于在 A/D转换模块 进行 A/D转换之前, 对来自于传感器本体的电压信号进行放大。 图 24是包括温度补偿的信号处 理流程图, 在进行角度 求解之前, 还包括温度补偿的过程; 图 25为基于图 24的温度补偿的具 体过程, 即进行温度补偿时, 要先进行系数矫正, 而后再将 A/D转换器输出的信号与系数矫正的 输出通过乘法器进行相乘的具体方式来进行温度补偿。 当然, 温度补偿的具体方式还有很多种, 在些就不一一介绍。
相对偏移量 计算模块包括信号合成单元、 第一角度获取单元和温度补偿单元, 信号合成单 元对不同位置检测装置发送来的经过 A/D转换的电压信号进行处理, 得到一基准信号 D ; 所述第 一角度获取单元根据该基准信号 D,在第一标准角度表中选择一与其相对的角度作为偏移角度 ; 其中, 在得到基准信号 D之前, 先对输入给信号合成单元的信号由温度补偿单元进行温度补偿, 再将温度补偿后的信号进行处理得到信号 D。 这里所述的处理将在后面详细说明。 绝对偏移量 计算模块包括第二合成器和所述第二角度获取单元, 用于对对应于第二磁钢环的位置检测装置发 送来的第二电压信号进行合成, 得到轴转过信号周期数, 从而确定第一电压信号所处的信号周期 首位置的绝对偏移量 , 具体实现方式是所述第二合成器对对应于第二磁钢环的位置检测装置发 送来的第二电压信号进行合成, 得到一信号 E; 所述第二角度获取单元根据该信号 E在第二标准 角度表中选择一与其相对的角度作为第一电压信号所处的信号周期首位置的绝对偏移量 。
图 26是本实施例的位置检测装置的一个信号处理装置的框图。 本示例中, 第一磁钢环设有两 个磁感应元件, 传感器 l_la和 l_2a的输出信号接放大器 2_la、 2_2a进行放大, 然后接 A/D转换 器 3_la、 3_2a, 经模数转换后得到输出信号接乘法器 4_la、 5_la, 系数矫正器 10_la输出信号接 乘法器 4_la、 5_la的输入端, 乘法器 4_la、 5_la的输出信号 A、 B接第一合成器 6_la的输入端, 第一合成器 6_la对信号 A、 B进行处理, 得到信号 D、 R, 根据信号 D从存储器 8_la中存储的标 准角度表中选择一与其相对的角度作为偏移角度 。 其中, 第一合成器 6_la的输出信号 R输送 给系数矫正器 10_la, 系数矫正器 10_la根据信号 R和从存储器 9_la中査表得到信号 R。得到信 号 K, 该信号 Κ作为乘法器 4_la、 5_la的另一输入端, 与从放大器 2_la、 2_2a输出的信号 Cl、 C2分虽相乘得到信号 A、 B作为第一合成器 6_la的输入。
传感器 l_3a、 l_4a、 ...l_na的输出信号分别接放大器 2_3a、 2_4a、 ...2_na进行放大, 然后接 A/D转换器 3_3a、 3_4a、 ...3_na进行模数转换后通过第二合成器 7_la进行合成, 得到一信号 E; 根据该信号 E在存储器 ll_la中的第二标准角度表中选择一与其相对的角度作为第一电压信号所 处的信号周期首位置的绝对偏移量 , 和 通过加法器 12_la得到测量的绝对角位移输出 。
第二合成器 7_la的功能是, 通过对传感器第二磁钢环的信号进行合成, 得到此时刻转子处于 哪一个 "N-S"信号周期内。 第二合成器 7_la的处理是: 当数据 X为有符号数时, 数据 X的第 0 位 (二进制左起第 1位) 为符号位, X_0=1表示数据 X为负, X_0=0表示数据 X为正。 也即当感 应的磁场为 N时, 输出为 X_0=0, 否则为 X_0=1。
则对于本实施例, E ={ C3_0; C4_0; Cn_0 }。
其中, 第一合成器 6对信号的处理是: 比较两个信号的数值的大小, 数值小的用于输出的信 号0,信号 D的结构为{第一个信号的符合位,第二个信号的符合位,较小数值的信号的数值位 }。 具体如下:
这里约定 (后文各合成器均使用该约定), 当数据 X为有符号数时, 数据 X的第 0位 (二进 制左起第 1位) 为符号位, X_0=1表示数据 X为负, X_0=0表示数据 X为正。 X_D表示数据 X 的数值位 (数据的绝对值), 即去除符号位剩下的数据位。
如果 A_D>=B_D
否则:
Figure imgf000014_0001
信号 K一般是通过将信号 R。和 R进行除法运算得到。
对于第一、 二标准角度表, 在存储器中存储了两个表, 每个表对应于一系列的码, 每一个码 对应于一个角度。 该表是通过标定得到的, 标定方法是, 利用本施例的检测装置和一高精度位置 传感器, 将本施例中的磁感应元件输出的信号和该高精度位置传感器输出的角度进行一一对应, 以此建立出一磁感应元件输出的信号与角度之间的关系表。 也就是, 对应于信号 D存储了一个第 一标准角度表, 每一个信号 D代表一个相对偏移量 。 对应于信号 E, 存储了一个第二标准角度 表, 每一个信号 E代表一个绝对偏移量 。 本发明不限于上述示例, 第一磁钢环还可以设有三个、 四个、 六个磁感应元件, 相应的导磁 环和信号处理电路也要做相应变化, 然而其变化与第一实施例中所述的类似, 故在此不再赘述。
当设有导磁环时, 导磁环的弧段端部设有倒角, 为沿轴向或径向或同时沿轴向、 径向切削而 形成的倒角。
作为替代,磁感应元件可以直接表贴在不锈钢罩的外表面上, 即不设有导磁环,如图 27所示。 其它部件以及其信号处理装置与有导磁环的类似, 在此不再赘述。
第三实施例
第三实施例中, 各个部件的个数及其安装方案与第二实施例中的类似, 所不同的是磁钢环的 充磁方式及磁感应元件的布置位置。
图 28是根据第三实施例的位置检测装置的分解立体图。 在骨架 306上, 对应于磁钢环 302、 磁钢环 303分别设有两列磁感应元件 307。 为了说明方便, 这里将第一列磁感应元件即对应磁钢 环 302和导磁环 304的多个磁感应元件都用磁感应元件 307表示, 而将第二列磁感应元件即对应 磁钢环 303和导磁环 305的多个磁感应元件都用磁感应元件 307表示。 为了说明方便, 这里将磁 钢环 302定义为第一磁钢环, 将磁钢环 303定义为第二磁钢环, 将导磁环 304限定为对应于第一 磁钢环 302, 将导磁环 305限定为对应于第二磁钢环 303, 然而本发明不限于上述的限定。
第一磁钢环 302被均匀地磁化为 N对磁极, 其中?<=2°且11=0, 1, 2…! 1, 当 N = 2n时为本发 明的最佳实施例, 当 N< 2n的时候, 也可以实现本发明的发明目的, 并且相邻两极的极性相反, 第二磁钢环的磁极总数为 N, 其磁序按照磁序算法确定; 在轴 301上, 对应于第一磁钢环 302, 以第一磁钢环 302的中心为圆心的同一圆周上设有 m个呈一定角度分布的磁感应元件 308, m为 2或 3 的整数倍; 对应于第二磁钢环 303, 以第二磁钢环 303 的中心为圆心的同一圆周上设有 n 个呈 360° /N角度分布的磁感应元件 309, n=0, 1, 2…! ι。 第二磁钢环 303的磁极总数与以 n为 位数排成的、 相邻两位只有一位不同的格雷码的个数相同, 磁极的极性为格雷码的首位为 " 0 "对 应于 " N "极, 首位为 " 1 "对应于 " S "极。 第二磁钢环的磁极总对数与第一磁钢环的磁极总数 相等, 并且相邻两极的极性相反。
图 29是磁钢环 303的磁序算法流程图。 如图 29所示, 以三个磁感应元件的情况为例, 首先 进行初始化 a[3]= " 0, 0, 0"; 然后将当前编码入编码集, 即编码集中有 " 0, 0, 0"; 接着检验入 编码集的集合元素是否达到 2n, 如果是则程序结束, 反之将当前编码左移一位, 后面补 0; 然后 检验当前编码是否已入编码集, 如果未入编码集则将当前编码入编码集继续进行上述步骤, 如果 已入编码集则将当前码末位去 0补 1 ; 接着检验当前编码是否已入编码集, 如果未入编码集则将 当前编码入编码集继续进行上述步骤,如果已入编码集则检验当前码是否为" 0…… 0",是则结束, 否则将当前编码的直接前去码末位去 0补 1 ; 接着检验当前编码是否已入编码集, 如果未入编码 集则将当前编码入编码集继续进行上述步骤, 如果已入编码集则检验当前码是否为 " 0…… 0", 然 后继续进行下面的程序。 其中 0磁化为 " N", 1磁化为 " S "。 这样得到了图 30所示的磁钢环 303 充磁结构图以及 H3、 H4和 的排布顺序。
本实施例中, 对应于所述的第二磁钢环的相邻两个磁感应元件之间的夹角为 360° /N。 关于 对应于所述的第一磁钢环相邻两个磁感应元件之间的夹角, 当 m为 2或 4时, 每相邻两个磁感应 元件之间的夹角为 90° /N, 当 m为 3时, 每相邻两个磁感应元件之间的夹角为 120° /N ; 当 m为 6时, 每相邻两个磁感应元件之间的夹角为 60° /N。
图 31是根据第三实施例的位置检测装置的信号处理装置的框图。由于其信号处理方式与第二 实施例的类似, 故在此不再赘述。
第一磁钢环可以设有两个、 三个、 四个、 六个磁感应元件, 相应的导磁环和信号处理电路也 要做相应变化, 然而其变化与第一实施例中所述的类似, 故在此不再赘述。
当设有导磁环时, 导磁环的弧段端部设有倒角, 为沿轴向或径向或同时沿轴向、 径向切削而 形成的倒角。
作为替代, 磁感应元件可以直接表贴在不锈钢罩的外表面上, 即不设有导磁环, 其它部件以 及其信号处理装置与有导磁环的类似, 在此不再赘述。
本实施例的位置检测装置的信号处理方法与第二实施例中的类似,故在此省略对其重复描述。 图 32为本发明的一种密封装置的整体剖面示意图。 如图 32所示, 本实施例提供一种密封装 置 901, 该密封装置 901包括密封装置本体和穿设在其中的导线 910。 该密封装置本体由密封连接 法兰 911、 密封壳体 912和不锈钢罩 913组成。 密封连接法兰 911与密封壳体 912相连, 而不锈 钢罩 913穿设在两者之间。 本实施例中为了满足潜油伺服电机的需要, 不锈钢罩 913的材质为不 锈钢, 而选定的材质。 应理解地是, 在特定的使用场合下, 为保证结构不变, 可以根据实际情况 来选择不锈钢罩 913的材质。 密封壳体 912是整个密封装置 901的支承件。 在密封壳体 912内设 有第一绝缘挡板 914。第一绝缘挡板 914、不锈钢罩 913外壁和密封壳体 912内壁围设成密封空间。 在第一绝缘挡板 914和密封壳体 912上分别开设有出线口 915, 导线 910从密封连接法兰 911穿 入该密封装置本体的密封空间中, 在密封空间中缠绕, 然后从出线口 915穿出。 密封壳体 912在 其出线口 915端与不锈钢罩 913螺纹连接, 并涂有螺纹密封胶, 从而使密封壳体 912与不锈钢罩 913之间密封。 密封空间中充满密封填充物 916, 例如环氧胶。 当然, 根据实际需要也可以采用耐 高温、 粘性好的粘接胶, 同样可以达到良好的密封效果。
此外, 在由第一绝缘挡板 914、 不锈钢罩 913和密封壳体 912围成的密封空间中, 还可以设 有第二绝缘挡板 917。 在第二绝缘挡板 917上也开设有出线口 (图未示), 以便导线 910穿出。
密封空间内还设有第二绝缘挡板, 其上开设有出线口; 所述的第二绝缘挡板的设置数量为一 个以上, 将密封空间分割为多级密封空间。
图 33为本发明的另一种密封装置的剖视图。 如图 33所示, 第一绝缘板 957和密封块 956之 间还可以设有第二绝缘板 960, 绝缘板可以采用高强度绝缘板, 并且其上开设有用于通过铜棒的 孔, 第二绝缘板 960与密封块 956围设的密封空间内穿设第二铜棒 961 ; 第一铜棒 954从密封壳 体 952的通孔穿入该密封装置本体的密封空间中,从第一绝缘板 957穿出,并穿过第二绝缘板 960 与第二铜棒 961首尾相接; 第二铜棒 961从密封块 956的通孔穿出。
此外, 在第一绝缘板 957和第二绝缘板 960之间可以设有支承板 962, 支承板 962上开设有 通孔。 应注意的是, 支承板 962上开设的通孔的内径大于第一铜棒 954或第二铜棒 961的外径, 以防止支承板 962与第一铜棒 954或第二铜棒 961之间导通。 此外, 密封壳体 952的内腔上设有 凸台 965, 可以将支承板 962固设在凸台 965上。
图 34为密封装置中第一铜棒的结构示意图。 如图 34所示, 第一铜棒 954为阶梯状, 即采用 中间粗, 两头细的阶梯轴形式, 设置在其中部的台阶柱 963外径大于两端的铜棒外径, 该台阶柱 963的下台阶面与第一绝缘板 957抵顶接触。 通过这个台阶来防止第一铜棒 954因承受压力过大 而压穿, 同时将压力传递给第一绝缘板 957, 使得压力均匀, 再通过第一绝缘板 957将压力传递 到密封壳体 952的底端。 此外, 第一铜棒 954的末端均设有连接插头 955。
图 35为密封装置中第二铜棒的结构示意图。 如图 35所示, 第二铜棒 961也为阶梯状, 即阶 梯轴形式。 其底端为粗台阶柱 964, 柱体外径大于另一端的外径, 该台阶柱 964的下台阶面与第 二绝缘板 960抵顶接触。 由于第二铜棒 961的下端较粗且与第二绝缘板 960接触, 因此将第二铜 棒 961受到的压力均匀分配给第二绝缘板 960后, 再传递给下面的支承板 962, 最后传递到密封 壳体 952上。 铜棒采用阶梯轴形式, 能避免导线在灌封的环氧树脂层中因压力过大而直接被压出 密封装置导致密封失效。 此外, 在较粗的台阶柱 964上设有螺纹孔, 用于与第一铜棒 954连接, 从而实现密封装置内第一铜棒 954与第二铜棒 961之间导通。 第二铜棒 961的较小外径的末端设 有连接插头 955。
作为替代, 第一绝缘板和第二绝缘板之间还设有支承板, 其上开设有通孔; 所述的密封壳体 的内腔上设有凸台, 支承板固设在凸台上。
第二绝缘板 960和第二铜棒 961 的数量可以根据具体情况和需要而设置为多个, 从而将密封 空间分割为多级密封空间。 相邻两个第二绝缘板 960之间可以设有支承板 962, 支承板 962上开 设有通孔。
图 36为密封装置的安装整体结构示意图。如图 36所示,密封装置 971介于潜油伺服电机 972 和控制箱 973之间, 并且与潜油伺服电机 972和控制箱 973相连接。 具体来说, 密封装置 971的 密封壳体 952在第一铜棒 954穿出的一端与控制箱 973连接, 例如可以通过螺纹进行连接。 密封 装置 971的密封连接法兰 951与潜油伺服电机 972连接, 例如可以通过螺栓进行连接。 最后应说明的是: 以上实施例仅用以说明本发明的技术方案而非限制。 尽管参照上述实施例 对本发明进行了详细说明, 本领域的普通技术人员应当理解, 依然可以对本发明的技术方案进行 修改和等同替换, 而不脱离本技术方案的精神和范围, 其均应涵盖在本发明的权利要求范围当中。

Claims

权利要求书
1、 一种位置检测装置, 其特征在于, 该位置检测装置主要包括传感器本体、 不锈钢罩、 密封 装置和外壳, 传感器本体包括磁钢环、 导磁环和磁感应元件; 导磁环设置在不锈钢罩的外壁上, 由两段或多段同半径、 同圆心的弧段构成, 相邻两弧段留有缝隙; 磁感应元件置于该缝隙内; 磁 钢环设置在不锈钢罩的内腔中, 固定在电机转轴上; 不锈钢罩外部通过密封装置与外壳密封并固 定; 当磁钢环与导磁环发生相对旋转运动时, 所述磁感应元件将感测到的磁信号转换为电压信号, 并将该电压信号传输给相应的信号处理装置。
2、 如权利要求 1所述的位置检测装置, 其特征在于, 所述的导磁环由两段同半径、 同圆心的 弧段构成, 分别为 1/4弧段和 3/4弧段, 对应的磁感应元件为 2个; 或者, 所述的导磁环由三段同 半径的弧段构成, 分别为 1/3弧段, 对应的磁感应元件为 3个; 或者, 所述的导磁环由四段同半 径的弧段构成, 分别为 1/4弧段, 对应的磁感应元件为 4个; 或者, 所述的导磁环由六段同半径 的弧段构成, 分别为 1/6弧段, 对应的磁感应元件为 6个。
3、 如权利要求 1所述的位置检测装置, 其特征在于, 所述的导磁环的弧段端部设有倒角; 所 述倒角为沿轴向或径向或同时沿轴向、 径向切削而形成的倒角。
4、 如权利要求 1所述的位置检测装置, 其特征在于, 还包括骨架, 用于固定所述导磁环; 所 述导磁环设置在骨架成型模具上, 在所述骨架一体成型时与骨架固定在一起。
5、 一种基于权利要求 1-4任一项所述位置检测装置的信号处理装置, 其特征在于, 包括: A/D转换模块, 对位置检测装置中磁感应元件发送来的电压信号进行 A/D转换, 将模拟信号 转换为数字信号;
合成模块,对位置检测装置发送来的经过 A/D转换的多个电压信号进行处理得到基准信号 D ; 角度获取模块, 根据该基准信号 D, 在标准角度表中选择与其相对的角度作为偏移角度 ; 以及
存储模块, 用于存储标准角度表和修正数据表。
6、 如权利要求 5所述的位置检测装置的信号处理装置, 其特征在于, 在 A/D转换模块和合 成模块之间还包括温度补偿模块, 用于消除温度对位置检测装置发送来的电压信号的影响; 所述 合成模块的输出信号还包括信号 R; 所述温度补偿模块包括系数矫正模块和乘法器, 所述系数矫 正模块对所述合成模块的输出的信号 R和对应该信号的标准状态下的信号 R。进行比较得到输出 信号 K; 所述乘法器为多个, 每一所述乘法器将从位置检测装置发送来的、 经过 A/D转换的一个 电压信号与所述系数矫正模块的输出信号 K相乘, 将相乘后的结果输出给合成模块。
7、 如权利要求 5所述的位置检测装置的信号处理装置, 其特征在于, 在所述温度补偿模块之 前还包括差分模块, 当位置检测装置发送来的一个电压信号为 2或 3的倍数时, 用于抑制温度和 零点漂移, 并提高数据精度。
8、 一种位置检测装置, 其特征在于, 该位置检测装置主要包括传感器本体、 不锈钢罩、 密封 装置和外壳,
传感器本体包括转子, 所述转子包括第一磁钢环、 第二磁钢环,
其中, 所述第一磁钢环和第二磁钢环分别固定在电机轴上, 设置在不锈钢罩的内腔中, 对应 于第二磁钢环, 以第二磁钢环的中心为圆心的同一圆周上设有 n个均匀分布的磁感应元件, n= l, 2…! 1, 所述第二磁钢环的磁极磁化顺序使得 n个磁感应元件输出呈格雷码格式, 相邻两个输出只 有一位变化; 在不锈钢罩上, 对应于第一磁钢环, 以第一磁钢环的中心为圆心的同一圆周上设有 m个呈一 定角度分布的磁感应元件, m为 2或 3的整数倍, 所述第一磁钢环的磁极总对数与第二磁钢环的 磁极总数相等, 并且相邻两极的极性相反; 磁感应元件设置在不锈钢罩的外壁上;
不锈钢罩外部通过密封装置与外壳密封并固定;
当转子相对于定子发生相对旋转运动时,所述磁感应元件将感测到的磁信号转变为电压信号, 并将该电压信号输出给一信号处理装置。
9、 如权利要求 8所述的位置检测装置, 其特征在于, 在所述的不锈钢罩上, 对应于第一磁钢 环的相邻两个磁感应元件之间的夹角, 当 m为 2或 4时, 该夹角为 90° /g; 当 m为 3时, 该夹角 为 120° /g; 当 m为 6时, 该夹角为 60° /g, 其中, g为第二磁钢环的磁极总数。
10、 如权利要求 8所述的位置检测装置, 其特征在于, 所述磁感应元件直接表贴在不锈钢罩 的外表面。
11、 如权利要求 8所述的位置检测装置, 其特征在于, 还包括两个导磁环, 每一所述导磁环 是由多个同圆心、 同半径的弧段构成, 相邻两弧段留有空隙, 对应于两个磁钢环的磁感应元件分 别设在该空隙内。
12、 如权利要求 11所述的位置检测装置, 其特征在于, 所述的导磁环的弧段端部设有倒角, 为沿轴向或径向或同时沿轴向、 径向切削而形成的倒角。
13、 一种位置检测装置, 其特征在于, 该位置检测装置主要包括传感器本体、 不锈钢罩、 密 封装置和外壳,
传感器本体包括转子, 所述转子包括第一磁钢环、 第二磁钢环,
其中, 所述第一磁钢环和第二磁钢环分别固定在转轴上, 所述第一磁钢环被均匀地磁化为 N 对磁极, 其中, ?<=2°且11=0, 1, 2…! 1, 并且相邻两极的极性相反; 所述第二磁钢环的磁极总数 为 N, 其磁序按照特定磁序算法确定;
在不锈钢罩上, 对应于第一磁钢环, 以第一磁钢环的中心为圆心的同一圆周上设有 m个呈一 定角度分布的磁感应元件, m为 2或 3的整数倍; 对应于第二磁钢环, 以第二磁钢环的中心为圆 心的同一圆周上设有 n个呈一定角度分布的磁感应元件, n=0, 1, 2—n; 磁感应元件设置在不锈 钢罩的外壁上;
不锈钢罩外部通过密封装置与外壳密封并固定;
当转子相对于定子发生相对旋转运动时,所述磁感应元件将感测到的磁信号转变为电压信号, 并将该电压信号输出给一信号处理装置。
14、 如权利要求 13所述的位置检测装置, 其特征在于, 在所述的不锈钢罩上, 对应于第二 磁钢环的相邻两个磁感应元件之间的夹角为 360° /N。
15、 如权利要求 13所述的位置检测装置, 其特征在于, 在所述的不锈钢罩上, 对应于第一磁 钢环相邻两个磁感应元件之间的夹角,当 m为 2或 4时,每相邻两个磁感应元件之间的夹角为 90° /N, 当 m为 3时, 每相邻两个磁感应元件之间的夹角为 120° /N; 当 m为 6时, 每相邻两个磁感 应元件之间的夹角为 60° /N。
16、 如权利要求 13所述的位置检测装置, 其特征在于, 所述磁感应元件直接表贴在不锈钢罩 的外表面。
17、 如权利要求 13所述的位置检测装置, 其特征在于, 还包括两个导磁环, 每一所述导磁环 是由多个同圆心、 同半径的弧段构成, 相邻两弧段留有空隙, 对应于两个磁钢环的磁感应元件分 别设在该空隙内。
18、 如权利要求 17所述的位置检测装置, 其特征在于, 所述的导磁环的弧段端部设有倒角, 为沿轴向或径向或同时沿轴向、 径向切削而成的倒角。
19、 一种基于上述权利要求 8-18任一项所述位置检测装置的信号处理装置, 其特征在于, 包 括:
A/D转换模块, 对位置检测装置发送来的电压信号进行 A/D转换, 将模拟信号转换为数字信 号 ·
相对偏移角度 计算模块, 用于计算位置检测装置中对应于第一磁钢环的磁感应元件发送来 的第一电压信号在所处信号周期内的相对偏移量 ;
绝对偏移量 计算模块, 根据位置检测装置中对应于第二磁钢环的磁感应元件发送来的第二 电压信号, 通过计算来确定第一电压信号所处的信号周期首位置的绝对偏移量 ;
角度合成及输出模块, 用于将上述相对偏移量 和绝对偏移量 相加, 合成所述第一电压信 号所代表的在该时刻的旋转角度 ;
存储模块, 用于存储数据。
20、 根据权利要求 19所述的位置检测装置的信号处理装置, 其特征在于, 还包括: 信号放大模块, 用于在 A/D转换模块进行 A/D转换之前, 对来自于位置检测装置的电压信号 进行放大。
21、 根据权利要求 19所述的位置检测装置的信号处理装置, 其特征在于,
所述相对偏移角度 计算模块包括第一合成单元和第一角度获取单元, 所述第一合成单元对 位置检测装置发送来的经过 A/D转换的多个电压信号进行处理, 得到一基准信号 D ; 所述第一角 度获取单元根据该基准信号 D, 在第一标准角度表中选择一与其相对的角度作为偏移角度 。
22、 如权利要求 21所述的位置检测装置的信号处理装置, 其特征在于, 所述相对偏移角度 计算模块还包括温度补偿单元, 用于消除温度对位置检测装置发送来的电压信号的影响。
23、 如权利要求 21所述的位置检测装置的信号处理装置, 其特征在于, 所述第一合成单元 的输出还包括信号 R。
24、 如权利要求 22所述的位置检测装置的信号处理装置, 其特征在于, 所述温度补偿单元包 括系数矫正器和乘法器, 所述系数矫正器对所述合成模块的输出的信号 R和对应该信号的标准状 态下的信号 R。进行比较得到输出信号 K; 所述乘法器为多个, 每一所述乘法器将从位置检测装置 发送来的、 经过 A/D转换的一个电压信号与所述系数矫正模块的输出信号 K相乘, 将相乘后的结 果输出给第一合成单元。
25、根据权利要求 19所述的位置检测装置的信号处理装置, 其特征在于, 所述绝对偏移量 计算模块包括第二合成单元和第二角度获取单元, 所述第二合成单元用于对对应于第二磁钢环的 位置检测装置发送来的第二电压信号进行合成, 得到一信号 E; 所述第二角度获取单元根据该信 号 E在第二标准角度表中选择一与其相对的角度作为第一电压信号所处的信号周期首位置的绝对 偏移量 。
26、 如权利要求 1、 8或 13任一项所述的位置检测装置, 其特征在于, 所述的磁感应元件为 霍尔感应元件。
27、 如权利要求 1、 8或 13任一项所述的位置检测装置, 其特征在于, 所述的密封装置包括 密封装置本体和穿设在其中的导线, 所述的不锈钢罩和密封连接法兰、 密封壳体组成密封装置本 体, 密封连接法兰与密封壳体相连, 不锈钢罩穿设在两者之间, 密封壳体内设有第一绝缘挡板, 第一绝缘挡板、 不锈钢罩和密封壳体围设成密封空间; 第一绝缘挡板和密封壳体上分别开设有出 线口, 导线从密封连接法兰穿入该密封装置本体的密封空间中, 从出线口穿出; 密封空间中充满 密封填充物。
28、 如权利要求 27所述的位置检测装置, 其特征在于, 所述的密封空间内还设有第二绝缘挡 板, 其上开设有出线口; 所述的第二绝缘挡板的设置数量为一个以上, 将密封空间分割为多级密 封空间。
29、 如权利要求 1、 8或 13任一项所述的位置检测装置, 其特征在于, 所述的密封装置包括 密封装置本体, 该密封装置本体由连接法兰、 密封壳体和所述的不锈钢罩组成, 连接法兰与密封 壳体相连, 不锈钢罩穿设在两者之间, 密封壳体内腔的两端分别设有密封块和第一绝缘板, 密封 块、 第一绝缘板、 不锈钢罩和密封壳体围设成密封空间, 密封块与连接法兰之间设有压紧块; 密 封块、 第一绝缘板和密封壳体上分别开设有通孔, 第一铜棒从密封壳体的通孔穿入该密封装置本 体的密封空间中, 从第一绝缘板穿出; 密封空间中充满密封填充物。
30、 根据权利要求 29所述的位置检测装置, 其特征在于, 所述的第一铜棒为阶梯状, 设置在 其中部的台阶柱外径大于两端的铜棒外径, 该台阶柱的下台阶面与第一绝缘板抵顶接触; 所述的 第一铜棒的末端设有连接插头。
31、 根据权利要求 29所述的位置检测装置, 其特征在于, 所述的第一绝缘板和密封块之间还 设有第二绝缘板, 第二绝缘板与密封块围设的密封空间内穿设第二铜棒; 第一铜棒从密封壳体的 通孔穿入该密封装置本体的密封空间中, 从第一绝缘板穿出, 并穿过第二绝缘板与第二铜棒首尾 相接; 第二铜棒从密封块的通孔穿出。
32、 根据权利要求 31所述的位置检测装置, 其特征在于, 所述的第一绝缘板和第二绝缘板之 间还设有支承板, 其上开设有通孔; 所述的密封壳体的内腔上设有凸台, 支承板固设在凸台上。
33、 根据权利要求 31所述的位置检测装置, 其特征在于, 所述的第二绝缘板和第二铜棒的设 置数量为一个以上, 将密封空间分割为多级密封空间。
34、 根据权利要求 31所述的位置检测装置, 其特征在于, 所述的第二铜棒为阶梯状, 一端设 置为台阶柱, 柱体外径大于另一端的第二铜棒外径, 该台阶柱的下台阶面与第二绝缘板抵顶接触; 所述的第二铜棒的末端设有连接插头。
PCT/CN2010/072261 2009-04-30 2010-04-27 位置检测装置及其信号处理装置 WO2010124627A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910137767.8 2009-04-30
CN2009101377678A CN101876556B (zh) 2009-04-30 2009-04-30 位置检测装置及其信号处理装置

Publications (1)

Publication Number Publication Date
WO2010124627A1 true WO2010124627A1 (zh) 2010-11-04

Family

ID=43019173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/072261 WO2010124627A1 (zh) 2009-04-30 2010-04-27 位置检测装置及其信号处理装置

Country Status (2)

Country Link
CN (1) CN101876556B (zh)
WO (1) WO2010124627A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108180822A (zh) * 2017-12-18 2018-06-19 西安航天动力测控技术研究所 一种完全密封角度检测装置
CN111610467A (zh) * 2020-05-19 2020-09-01 上海舒盈科技股份有限公司 一种自动检测触头啮合状态的开关柜及其检测方法
CN113056147A (zh) * 2021-03-03 2021-06-29 南京斯诶福工程项目管理有限公司 一种5g信号检测用抗干扰设备
CN115096175A (zh) * 2022-06-21 2022-09-23 河北航天晟达精密机械有限公司 一种集成式霍尔测角装调***
CN115912801A (zh) * 2023-01-04 2023-04-04 娄底市创微达电器有限公司 一种直流无刷电机转子位置检测装置及其检测方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103903051B (zh) * 2014-04-08 2017-02-01 佛山职业技术学院 一种计量凿岩设备累计凿岩深度的计数装置及计数方法
FR3040565B1 (fr) * 2015-08-24 2018-07-27 Valeo Systemes De Controle Moteur Dispositif de detection de position destine a etre monte dans un boitier qui comprend une machine electrique et un dispositif electronique de commande de la machine electrique
WO2018126909A1 (zh) * 2017-01-05 2018-07-12 广东美的制冷设备有限公司 空调器及空调器中运动部件的检测控制装置和方法
US20190390984A1 (en) * 2017-02-20 2019-12-26 Hitachi Automotive Systems, Ltd. Angle detection device
JP6791033B2 (ja) * 2017-06-16 2020-11-25 株式会社デンソー ポジションセンサ
CN111174902B (zh) * 2019-12-31 2020-09-15 神州高铁技术股份有限公司 磁钢信号处理方法、***以及存储介质、轨边检测***
CN111457830B (zh) 2020-04-10 2021-08-13 北京航空航天大学宁波创新研究院 磁悬浮转子***的位移检测电路及其位移自传感***
CN111486878A (zh) * 2020-05-08 2020-08-04 长春晟博光学技术开发有限公司 一种具有限位功能的集成式磁栅尺编码器
CN114145954A (zh) * 2020-09-08 2022-03-08 邱胜烽 自动式复健按摩椅
CN112461273A (zh) * 2020-11-11 2021-03-09 珠海格力电器股份有限公司 编码器、编码器的信号处理装置、编码***和伺服电机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4779454A (en) * 1987-11-12 1988-10-25 Brunswick Corp. Crankshaft angle sensing system
US6211588B1 (en) * 1997-11-28 2001-04-03 Saia-Burgess Electronics Ag Electromoter having a position sensor with a plurality of field sensitive elements on a semiconductor chip
EP1612563A2 (en) * 2001-09-11 2006-01-04 Koyo Seiko Company, Ltd. Magnetic pulser ring
US7170279B2 (en) * 2000-08-22 2007-01-30 Robert Bosch Gmbh Device and method for measuring angles
CN201488742U (zh) * 2009-04-30 2010-05-26 浙江关西电机有限公司 位置检测装置及其信号处理装置
CN201503275U (zh) * 2009-04-30 2010-06-09 浙江关西电机有限公司 位置检测装置及其信号处理装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1445739A (fr) * 1965-06-04 1966-07-15 Alcatel Sa Procédé de codage numérique et ses applications
CN1420635A (zh) * 2002-12-03 2003-05-28 浙江大学 绝对式编码器的单道编码方法和编码器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4779454A (en) * 1987-11-12 1988-10-25 Brunswick Corp. Crankshaft angle sensing system
US6211588B1 (en) * 1997-11-28 2001-04-03 Saia-Burgess Electronics Ag Electromoter having a position sensor with a plurality of field sensitive elements on a semiconductor chip
US7170279B2 (en) * 2000-08-22 2007-01-30 Robert Bosch Gmbh Device and method for measuring angles
EP1612563A2 (en) * 2001-09-11 2006-01-04 Koyo Seiko Company, Ltd. Magnetic pulser ring
CN201488742U (zh) * 2009-04-30 2010-05-26 浙江关西电机有限公司 位置检测装置及其信号处理装置
CN201503275U (zh) * 2009-04-30 2010-06-09 浙江关西电机有限公司 位置检测装置及其信号处理装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108180822A (zh) * 2017-12-18 2018-06-19 西安航天动力测控技术研究所 一种完全密封角度检测装置
CN108180822B (zh) * 2017-12-18 2023-08-29 西安航天动力测控技术研究所 一种完全密封角度检测装置
CN111610467A (zh) * 2020-05-19 2020-09-01 上海舒盈科技股份有限公司 一种自动检测触头啮合状态的开关柜及其检测方法
CN113056147A (zh) * 2021-03-03 2021-06-29 南京斯诶福工程项目管理有限公司 一种5g信号检测用抗干扰设备
CN115096175A (zh) * 2022-06-21 2022-09-23 河北航天晟达精密机械有限公司 一种集成式霍尔测角装调***
CN115912801A (zh) * 2023-01-04 2023-04-04 娄底市创微达电器有限公司 一种直流无刷电机转子位置检测装置及其检测方法
CN115912801B (zh) * 2023-01-04 2024-02-02 娄底市创微达电器有限公司 一种直流无刷电机转子位置检测装置及其检测方法

Also Published As

Publication number Publication date
CN101876556A (zh) 2010-11-03
CN101876556B (zh) 2013-06-12

Similar Documents

Publication Publication Date Title
WO2010124627A1 (zh) 位置检测装置及其信号处理装置
WO2010124595A1 (zh) 多节伺服潜油电机
WO2010124611A1 (zh) 抽油***的控制***
US8179126B2 (en) Hall rotary transformer and hall rotation angle encoder made of it
WO2010124606A1 (zh) 潜油伺服拖动***
CN105393090B (zh) 旋转编码器
WO2010124629A1 (zh) 油田控制***
WO2010124600A1 (zh) 伺服电动阀及其控制方法
EP2715921B1 (en) Motor assembly comprising a brushless dc motor with control electronics
CN103944317B (zh) 无刷直流电机转子位置任意角度检测方法
CN101552122B (zh) 双转子磁阻式旋转变压器
CN111740672B (zh) 基于线性霍尔传感器的永磁同步电机角度检测方法和***
CN106767386A (zh) 一种绝对式时栅角位移传感器
CN109617464A (zh) 一种基于pwm信号激磁的旋转变压器解码方法及***
WO2010124626A1 (zh) 电动缝纫机
WO2010124590A1 (zh) 电动机
CN107040172B (zh) 一种无轴承磁通切换电机转子径向偏移观测方法
WO2010124587A1 (zh) 位置检测装置及其信号处理装置和方法
CN201478959U (zh) 多节伺服潜油电机
CN112097804B (zh) 一种电涡流感应式绝对值旋转编码器
CN107276481B (zh) 基于旋转变压器的矢量控制方法、***及电机***
CN201018327Y (zh) 一种磁阻式多极旋变变压器
CN207819722U (zh) 一种eps无刷电机转子位置传感器
CN114089231A (zh) 一种磁传感器模组、印制永磁同步电机及其应用方法
CN108539931A (zh) 以旋转变压器为传感器的伺服驱动装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10769316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10769316

Country of ref document: EP

Kind code of ref document: A1