WO2010124587A1 - 位置检测装置及其信号处理装置和方法 - Google Patents

位置检测装置及其信号处理装置和方法 Download PDF

Info

Publication number
WO2010124587A1
WO2010124587A1 PCT/CN2010/072057 CN2010072057W WO2010124587A1 WO 2010124587 A1 WO2010124587 A1 WO 2010124587A1 CN 2010072057 W CN2010072057 W CN 2010072057W WO 2010124587 A1 WO2010124587 A1 WO 2010124587A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
position detecting
magnetic
detecting device
steel ring
Prior art date
Application number
PCT/CN2010/072057
Other languages
English (en)
French (fr)
Inventor
郝双晖
郝明晖
Original Assignee
浙江关西电机有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江关西电机有限公司 filed Critical 浙江关西电机有限公司
Publication of WO2010124587A1 publication Critical patent/WO2010124587A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D1/00Measuring arrangements giving results other than momentary value of variable, of general application
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D15/00Component parts of recorders for measuring arrangements not specially adapted for a specific variable

Definitions

  • the present invention relates to a sensor, and in particular to a position detecting device for precise position control and a signal processing device and method therefor. Background technique
  • a position sensor In industrial control, in order to achieve accurate motor position, a position sensor is used to convert a physical quantity such as a rotation angle and an angular velocity of the motor into an electric signal. Such a position sensor is generally called an encoder.
  • an encoder With the development of industrial automation, the transition from DC motors to AC motors and the transition from analog control to digital control are inseparable from the development of encoders. The manufacturing technology of encoders and the level of signal processing directly affect the level of automation.
  • the encoders used in the field of engineering technology are mainly photoelectric encoders, and the photoelectric encoders are available in both incremental and absolute modes.
  • the incremental encoder when the axis rotates, the grating disk rotates, and the light emitted by the light-emitting element is cut into intermittent light by the slit of the grating disk, and then the receiving component receives and outputs a corresponding pulse signal, the direction of rotation and the number of pulses. It needs to be implemented by means of a decision circuit and a counter.
  • the starting point of the counting can be set arbitrarily.
  • the rotary incremental encoder rotates, the pulse is output, and the position is memorized by the internal storage unit of the counting device. However, during the operation of the encoder, no interference is allowed and the pulse is lost. Otherwise, the zero point remembered by the counting device is offset and is unknown.
  • the absolute encoder outputs a code that corresponds one-to-one with the position.
  • the change in the size of the code can determine the direction of rotation and the current position of the rotor.
  • Photoelectric encoders are made of glass materials by scribe lines, which are not strong against vibration and impact, and are not suitable for harsh environments such as dust and condensation, and complicated in structure and positioning. There is a limit to the line spacing. To increase the resolution, the code wheel must be increased, which is difficult to achieve miniaturization. High assembly accuracy must be ensured in production, which directly affects production efficiency and ultimately affects product cost.
  • the stator and rotor of the conventional magnetoelectric sensor are composed of pure iron, and a permanent magnet is fixed on the stator to form a magnetic circuit system.
  • the number of uniformly designed teeth and slots on the opposite end faces of the stator and the rotor is equal.
  • the rotor and the shaft are fastened.
  • the shaft is connected to the shaft to be measured.
  • the shaft drives the rotor to rotate. When the rotor teeth and the stator teeth are opposite, the air gap is the smallest. Maximum, and vice versa.
  • the detection principle is that the magnetic sensitive element fixed on the circumference of the stator is used to sense the change of the magnetic field strength caused by the rotation of the magnetic steel on the shaft to output a voltage signal, and the voltage value is used to determine the rotation angle of the shaft, thereby realizing the detection of the position.
  • the measurement accuracy is relatively low, and only incremental output can be realized.
  • patents No. 200410024190.7, 200410024191.1 200410024192.6 respectively propose a magnetoelectric encoder
  • patents of patent numbers 200410024195.X, 200410024194.5, 200410024193.0 also respectively propose an encoder
  • patent numbers 200410024198.3, 200410024197.9 and 200410024196.4 The patents respectively propose a memory writer for the encoder.
  • the magnetic induction element is surface-applied, that is, a magnetic induction element is disposed on the inner side wall of the toroidal stator, and a rotating magnetic field is sensed, and then the rotation angle value is obtained from the sensor voltage value.
  • the inner side of the stator is generally circular and smooth, and the sensor is not easy to install and fix. It is easy to cause positioning error, which causes phase deviation of the signal, which makes the high-order harmonic component of the signal large.
  • the processing and manufacturing process is complicated, which is not conducive to industrialization;
  • the tensile strength of the contact with the processing body is not high, and it is easy to be broken, which increases the processing difficulty and affects the life of the product;
  • the induced magnetic field leaks greatly, and the magnetic field cannot be fully applied, which makes the noise in the signal large and affects the measurement accuracy;
  • the sensor is required to be small in size, resulting in a relatively high product cost.
  • B-phase analog signals generally contain higher harmonics and noise.
  • the above method of finding the inverse tangent value is affected by higher harmonics. If the influence of higher harmonics cannot be reduced or eliminated, it is not easy to obtain.
  • the technical problem to be solved by the present invention is that the prior art has insufficient impact resistance, high processing cost, limited application range and low precision, and provides a position detecting device, a signal processing circuit and a processing method thereof.
  • the position detecting device is fast in response, high in processing precision, low in cost, and simple in manufacturing process.
  • the present invention provides a position detecting device including a rotor and a stator that surrounds the rotor, the rotor including a first magnetic steel ring and a second magnetic steel ring; wherein the first magnetic steel
  • the magnetization order of the magnetic poles of the second magnetic steel ring is such that the n magnetic induction elements are outputted in the form of Gray code, and the adjacent two outputs have only one bit change; on the stator, corresponding to the a magnetic steel ring, wherein the same circumference of the center of the first magnetic steel ring is provided with m (m is an integer multiple of 2 or 3) angularly distributed magnetic induction elements, the first magnetic steel ring
  • the total number of poles is equal to the total number of poles of the second magnet ring, and the polarities of the adjacent poles are opposite; when the rotor rotates relative to the stator, the magnetic sensing element converts the sensed magnetic signal into a voltage signal And Voltage signal output to a signal processing apparatus.
  • the angle between the adjacent two magnetic induction elements corresponding to the first magnetic steel ring when m is 2 or 4, the angle is 90 ° / g; when m is 3, the The angle is 120 ° / g; when m is 6, the angle is 60 ° / g, where g is the total number of magnetic poles of the second magnetic steel ring.
  • the magnetic sensing element is directly attached to the inner surface of the stator.
  • the method further includes two magnetic conductive rings respectively embedded on the inner surface of the stator and corresponding to the first magnetic steel ring and the first magnetic steel ring, wherein each of the magnetic conductive rings is composed of a plurality of the same center and the same radius
  • the arc segments are formed, and the adjacent two arc segments are left with gaps, and the magnetic induction elements corresponding to the two magnetic steel rings are respectively disposed in the gaps.
  • the end of the arc of the magnetic flux ring is chamfered.
  • the chamfer is a chamfer formed by cutting axially or radially or simultaneously in the axial direction and in the radial direction.
  • the magnetic sensing element is a Hall sensing element.
  • the present invention also provides a signal processing apparatus based on the above various position detecting devices, comprising: an A/D conversion module, a relative offset angle calculation module, an absolute offset calculation module, an angle synthesis and output module, and a storage module.
  • the A/D conversion module performs A/D conversion on the voltage signal sent by the position detecting device to convert the analog signal into a digital signal; and the relative offset angle calculating module is configured to calculate a position detecting device corresponding to the first a relative offset of a first voltage signal transmitted by a magnetic induction element of a magnetic steel ring in a signal period; the absolute offset calculation module, according to a magnetic induction element corresponding to the second magnetic steel ring in the position detecting device Transmitting a second voltage signal, determining, by calculation, an absolute offset of a first position of a signal period at which the first voltage signal is located; the angle combining and outputting module, configured to use the relative offset and the absolute offset Adding, synthesizing the rotation angle of the first voltage signal at the moment of the
  • the method further includes: a signal amplifying module, configured to amplify the voltage signal from the position detecting device before the A/D conversion module performs A/D conversion.
  • a signal amplifying module configured to amplify the voltage signal from the position detecting device before the A/D conversion module performs A/D conversion.
  • the relative offset angle calculation module includes a first synthesis unit and a first angle acquisition unit, and the first synthesis unit processes the A/D-converted voltage signals sent by the position detection device, Obtaining a reference signal D; the first angle acquiring unit selects an angle opposite thereto as an offset angle in the first standard angle table according to the reference signal D.
  • the relative offset angle calculation module further includes a temperature compensation unit for canceling the influence of the temperature on the voltage signal sent by the position detecting device.
  • the output of the first synthesizing unit further includes a signal R.
  • the temperature compensating unit includes a coefficient corrector and a multiplier, and the signal R of the output of the synthesizing module by the coefficient rectifying module is The signal R in the standard state corresponding to the signal. Comparing to obtain an output signal K; the multiplier is a plurality, and each of the multipliers outputs a voltage signal that is A/D converted from the position detecting device and an output signal K of the coefficient correction module. Multiply, and the multiplied result is output to the first synthesizing unit.
  • the absolute offset calculation module includes a second synthesis unit and a second angle acquisition unit, and the second synthesis unit is configured to perform a second voltage signal sent by the position detecting device corresponding to the second magnetic steel ring. Synthesizing, the signal E is obtained; the second angle acquiring unit selects an angle opposite thereto in the second standard angle table according to the signal E as an absolute offset of the first position of the signal period in which the first voltage signal is located.
  • the second synthesizing unit combines the sign bits of the output signals of the magnetic sensing elements corresponding to the second magnetic ring to obtain a signal E.
  • the present invention further provides a signal processing method based on the above position detecting apparatus, comprising the following steps: Step S300, performing A/D conversion on a voltage signal sent by the position detecting device; Step S301, calculating a corresponding position in the position detecting device a relative offset of the first voltage signal sent by the magnetic induction element of the first magnetic steel ring in the signal period; step S302, according to the magnetic sensing element corresponding to the second magnetic steel ring of the position detecting device And determining, by the calculation, an absolute offset of the first position of the signal period where the first voltage signal is located; Step S303, adding the foregoing relative offset and the absolute offset to synthesize the first voltage The angle of rotation of the signal at that moment.
  • step S301 specifically includes: Step S3011: processing the A/D converted plurality of voltage signals sent by the position detecting device to obtain a reference signal D; Step S3012, according to the reference signal D, In the first standard angle table, the angle opposite thereto is selected as the offset angle.
  • the signal R is obtained while obtaining the reference signal D.
  • step S301 further includes querying, according to the obtained signal R, the signal R in a standard state opposite to the memory. And compare the two to get the signal K step.
  • step S3011 the plurality of voltage signals are respectively multiplied by the signal K, thereby achieving temperature compensation of the voltage signals.
  • step S302 specifically includes the following steps: Step S3021: synthesizing the second voltage signal sent by the position detecting device corresponding to the second magnetic steel ring to obtain the signal E; Step S3022, according to the signal E in the second The angle opposite thereto is selected as the absolute offset of the first position of the signal period in which the first voltage signal is located.
  • the position detecting device and the signal processing circuit and the processing method thereof provided by the invention have the following advantages: a) by increasing the magnetic conductive ring, the magnetic field distribution inside the magnetic conductive ring is uniform, the leakage is small, and the signal induced by the magnetic induction element is integral type, The signal noise is small, and the components of the higher harmonic components are small, which is beneficial to improve the original signal quality and improve the signal to noise ratio.
  • the magnetic sensing element can be directly fixed on the circuit board, and no adapter is needed, which is beneficial to improve the reliability of the product.
  • the manufacturing process is simple.
  • the magnetic conductive ring can be fixed by a stator cage, such as a skeleton, and formed into a finishing, one-time forming, signal sensor, that is, the magnetic sensing element is directly placed in the slit (positioning groove), which can ensure the maximum signal.
  • the phase difference is different, the stator cage is directly fixed on the motor, and the installation process is convenient, which is beneficial to improve production efficiency.
  • the utility model adopts two magnetic steel rings and a magnetic conductive ring, which increases the detection precision, makes the position detecting device have higher processing precision, and has the advantages of low cost and simple manufacturing process.
  • the amplitude of the signal output by the magnetic induction element is large, and the analog amplification circuit is not needed, and the output signal of the magnetic induction element is directly input to the A/D converter for analog-to-digital conversion, and digital differential processing is performed as needed.
  • the advantages of digital differential processing are: It can eliminate the signal deviation caused by the misalignment of the installation.
  • the digital signal is used for better effect, and is not affected by external factors such as temperature and zero drift;
  • the magnitude of the input amount is equivalent to an increase in the accuracy of the A/D converter by one bit, which improves the accuracy of the encoder measurement.
  • FIG. 1 is an exploded perspective view of a position detecting device according to a first embodiment of the present invention
  • Figure 2 is a view showing the mounting of the position detecting device shown in Figure 1;
  • Figure 3 is another mounting view of the position detecting device shown in Figure 1;
  • Figure 4 is a structural view of a magnetically permeable ring
  • Figure 5 is another structural view of the magnetically permeable ring
  • Figure 6 is a further structural view of the magnetically permeable ring
  • Figure 7 is another structural view of the magnetically permeable ring
  • Figure 8 is a flow chart of a signal processing method of the position detecting device of the present invention.
  • FIG. 9 is a second flowchart of a signal processing method of the position detecting device of the present invention.
  • FIG. 10 is a third flowchart of a signal processing method of the position detecting device of the present invention.
  • Figure 11 is a fourth flowchart of the signal processing method of the position detecting device of the present invention.
  • FIG. 12 is a code obtained when the third magnetic steel ring is provided with three magnetic induction elements according to the embodiment of the present invention
  • FIG. 13 is a second embodiment of the present invention corresponding to the second magnetic steel ring having three magnetic induction elements. Magnetizing sequence of the magnetic steel ring;
  • Figure 14 is a structural view of a second magnetic steel ring, a magnetic flux ring and a magnetic induction element according to a first embodiment of the present invention
  • Figure 15 is a second magnetic induction ring corresponding to two magnetic inductions when the first magnetic steel ring is uniformly magnetized to six poles according to the first embodiment of the present invention. Arrangement of components;
  • FIG. 16 is a structural diagram of a first magnetic steel ring, a magnetic flux ring, and a magnetic induction element according to Embodiment 1 of the present invention
  • FIG. 17 is a circuit block diagram of a signal processing device according to Embodiment 1 of the present invention.
  • FIG. 18 is a structural diagram of a first magnetic steel ring, a magnetic flux ring, and a magnetic induction element according to a second embodiment of the present invention
  • FIG. 19 is a circuit block diagram of a signal processing device according to a second embodiment of the present invention
  • FIG. 20 is a structural diagram of a first magnetic steel ring, a magnetic flux ring, and a magnetic induction element according to a third embodiment of the present invention
  • FIG. 21 is a circuit block diagram of a signal processing apparatus according to a third embodiment of the present invention
  • Figure 22 is a block diagram of a first magnetic steel ring, a magnetic flux ring, and a magnetic induction element according to a fourth embodiment of the present invention
  • Figure 23 is a circuit block diagram of a signal processing device according to a third embodiment of the present invention
  • Figure 24 is an embodiment 1 to an embodiment of the present invention
  • the position detecting device includes a rotor and a stator that surrounds the rotor, and the rotor includes a first magnetic steel ring 201a and a second magnetic steel ring 201b, and a first magnetic conductive ring 205a and a second guide.
  • the magnetic ring 205b, the first magnetic steel ring 201a and the second magnetic steel ring 201b are respectively fixed to the motor shaft 200, wherein the stator is a bracket 203.
  • the first magnetic conductive ring 205a and the second magnetic conductive ring 205b are respectively formed by a plurality of arcs of the same center and the same radius, and a gap is left between the adjacent two arc segments, corresponding to Magnetic sensing elements 204 of the two magnetic steel rings are respectively disposed in the gap.
  • the ends of the arcs of the two magnetic rings are chamfered, and the chamfering A chamfer formed by cutting in the axial direction 251 or the radial direction 252 or both the axial direction 251 and the radial direction 252.
  • the magnetic density formula ⁇ it can be known that when ⁇ is certain, ⁇ can be increased by decreasing.
  • the magnetic pole magnetization sequence causes the n magnetic induction original outputs to be in the form of a Gray code.
  • the polarity of the magnetic pole is the first position of the Gray code is "0" corresponding to the "N/S” pole, and the first position is "1" corresponding to the "S/N” pole.
  • the uniform magnetization of the first magnetic steel ring 201a is g (the value of g is equal to the total number of magnetic poles in the second magnetic steel ring), the opposite pole (the N pole and the S pole are alternately arranged), and the total number of magnetic poles in the second magnetic steel ring is At 6 o'clock, the number of pole pairs of the first magnet ring 201a is six pairs.
  • a magnetic sensing element m such as 2, as shown in FIG. 15, the angle between the two elements the magnetic induction and H is 90 ° / 6.
  • the arrangement of the magnetic induction element when the first magnetic steel ring is uniformly magnetized to 6 poles is as shown in FIG.
  • the magnetic sensing element converts the sensed magnetic signal into a voltage signal when the rotor is relatively rotationally moved relative to the stator, and outputs the voltage signal to a signal processing device.
  • the mechanical angle corresponding to any "NS" is 360° / g (g is the number of "NS"), assuming that the rotor is at time
  • the rotation angle is within the " ⁇ 3 ⁇ 4 signal period, then the angular displacement can be considered to consist of two parts: 1.
  • the magnetic sensing elements HI and H2 induce the magnetic field of the first magnetic steel ring.
  • the absolute offset of the first position of the ' 3'4 signal period sensing the second magnetic steel ring with the sensor The magnetic field is used to determine which "NS" the rotor is in at that time.
  • the signal processing device based on the position detecting device and the principle includes: an A/D conversion module, a relative offset calculation module, an absolute offset calculation module, and a storage module.
  • the signal processing flow is shown in Figure 8-11.
  • the voltage signal sent from the first magnetic steel ring and the second magnetic steel ring in the position detecting device is A/D converted, and the analog signal is converted into Digital signal; performing an angle solution on the first voltage signal corresponding to the first magnetic steel ring sent by the position detecting device by the relative offset calculating module, and calculating a signal corresponding to the first magnetic steel ring within the signal period Relative offset;
  • the absolute offset calculation module performs an angle solution on the first voltage signal corresponding to the second magnetic steel ring sent by the position detecting device to determine the absolute position of the first cycle of the signal period where the first voltage signal is located Offset; through the angle synthesis and output module, such as an adder for adding the relative offset and the absolute offset, synthesizing the rotation angle represented by the first voltage signal at the moment.
  • a signal amplifying module added on the basis of Fig. 8, specifically, an amplifier is used to amplify a voltage signal from the position detecting device before the A/D conversion module performs A/D conversion.
  • 10 is a flow chart of signal processing including temperature compensation, and includes a process of temperature compensation before performing angle solving;
  • FIG. 11 is a specific process based on temperature compensation of FIG. 10, that is, when performing temperature compensation, coefficient correction is performed first. The temperature compensation is then performed by a specific method in which the signal output from the A/D converter and the coefficient corrected output are multiplied by a multiplier.
  • a multiplier there are many specific ways of temperature compensation, which are not introduced here.
  • the relative offset ⁇ calculation module includes a signal synthesis unit, a first angle acquisition unit, and a temperature compensation unit,
  • the signal synthesizing unit processes the A/D converted voltage signal sent by the different position detecting device to obtain a reference signal D.
  • the first angle acquiring unit selects one in the first standard angle table according to the reference signal D. The opposite angle is used as the offset angle.
  • the signal input to the signal synthesizing unit is temperature-compensated by the temperature compensating unit, and the temperature-compensated signal is processed to obtain the signal D. The processing described here will be described in detail later.
  • the absolute offset calculation module includes a second synthesizer and the second angle acquisition unit, configured to synthesize the second voltage signal sent by the position detecting device corresponding to the second magnetic steel ring to obtain a shaft rotation signal period a number, thereby determining an absolute offset of the first position of the signal period at which the first voltage signal is located, the specific implementation being the second voltage signal sent by the second synthesizer to the position detecting device corresponding to the second magnetic steel ring Synthesizing, a signal E is obtained; the second angle acquiring unit selects an angle opposite thereto according to the signal E as an absolute offset of the first position of the signal period in which the first voltage signal is located.
  • three magnetic induction elements are provided corresponding to the second magnetic steel ring, and two magnetic induction elements are provided corresponding to the first magnetic steel ring.
  • the n magnetic induction original outputs are in the form of a Gray code.
  • the polarity of the magnetic pole is that the first digit of the Gray code is "0" corresponding to the "N/S” pole, and the first digit is "1" corresponding to the "S/N” pole. Therefore, in the present embodiment, since n is 3, the code shown in FIG. 12 is obtained, and 6 codes are obtained, that is, 6 poles are obtained, and the magnetization sequence is as shown in FIG. 13, and the magnetic induction elements are read around the uniformity. .
  • the positional relationship of the second magnetic steel ring, the magnetic flux ring and the magnetic induction element is as shown in FIG.
  • the first magnetic steel ring Since the total number of magnetic poles of the second magnetic steel ring is 6, the first magnetic steel ring is uniformly magnetized to 6 pairs of poles, and the arrangement and magnetic sequence of the two magnetic induction elements are as shown in FIG. The positional relationship of the ring, the magnetically permeable ring and the magnetic induction element is shown in Fig. 16.
  • Fig. 17 is a circuit block diagram showing a signal processing apparatus in the embodiment in which two magnetic induction elements are provided for the first magnetic steel ring and three magnetic induction elements are provided for the second magnetic steel ring.
  • the output signals of the sensors l_la and l_2a are amplified by the amplifiers 2_la, 2_2a, and then connected to the A/D converters 3_la, 3_2a, and the output signals are multiplied by the analog-to-digital converters 4_la, 5_la, and the coefficient corrector 10_la outputs the signal multiplier
  • the input terminals of 4_la, 5_la, the output signals A, B of the multipliers 4_la, 5_la are connected to the input end of the first synthesizer 6_la, and the first synthesizer 6_la processes the signals A, B to obtain signals 0, R, according to the signal D
  • An angle opposite thereto is selected from the standard angle table stored in the memory 8_la as an offset angle.
  • the output signal R of the first synthesizer 6_la is supplied to the coefficient aligner 10_la, and the coefficient aligner 10_la obtains the signal K according to the signal R and the signal Ro obtained from the memory 9_la, which is used as the multipliers 4_la, 5_la.
  • An input is multiplied by the signals C1, C2 output from the amplifiers 2_la, 2_2a to obtain signals A, B as inputs to the first synthesizer 6_la.
  • the signal R is.
  • the output signals of the sensors l_3a, l_4a, ... l_na are amplified by the amplifiers 2_3a, 2_4a, ... 2_na, respectively, and then connected to the A/D converters 3_3a, 3_4a, ... 3_na for analog-to-digital conversion and then by the second synthesis.
  • the device 7_la performs synthesis to obtain a signal E; according to the signal E, a relative angle between the second standard angle table in the memory 111_la is selected as the absolute offset of the first position of the signal period in which the first voltage signal is located, And the measured absolute angular displacement output is obtained by the adder 12_la.
  • the function of the second synthesizer 7_la is to synthesize the signals of the sensors l_3a, l_4a, ... l_na to obtain which "NS" signal period the rotor is in at this time.
  • E ⁇ C3_0; C4_0; Cn_0 ⁇ .
  • the processing of the signal by the first synthesizer 6_la is: comparing the magnitudes of the values of the two signals, the signal D having a small value for output, the structure of the signal D is ⁇ the coincidence of the first signal, the second signal The match bit, the value bit of the smaller value signal ⁇ . details as follows:
  • the signal K is generally obtained by dividing the signals R Q and R.
  • first and second standard angle tables two tables are stored in the memory, each table corresponding to a series of codes, each code corresponding to an angle.
  • the table is obtained by calibration, and the calibration method is: using the detecting device of the embodiment and a high-precision position sensor, the signals output by the magnetic sensing element in the embodiment and the angle of the high-precision position sensor output are in one-to-one correspondence.
  • a first standard angle table is stored corresponding to the signal D, and each signal D represents a relative offset.
  • signal E corresponding to signal E, a second standard angle table is stored, and each signal E represents an absolute offset.
  • the embodiment four magnetic induction elements are disposed corresponding to the first magnetic steel ring, and the angle between the four magnetic induction elements H 2 , H 3 , and H 4 is 90° /6.
  • the structural relationship between the first magnetic steel ring, the magnetic flux ring and the magnetic induction element is as shown in FIG.
  • Fig. 19 is a circuit block diagram showing a signal processing device corresponding to the case where four magnetic induction elements are provided in the first magnetic steel ring.
  • the output signals of the sensors l_lc and l_2c are differentially amplified by the amplifying circuit 2_lc, and the output signals of the sensors l_3c and l_4c are differentially amplified by the amplifying circuit 2_2c, and then connected to the A/D converters 3_lc, 3_2c, and the subsequent processing is similar to the setting 2
  • the case of a magnetic sensing element is a circuit block diagram showing a signal processing device corresponding to the case where four magnetic induction elements are provided in the first magnetic steel ring.
  • the output signals of the sensors l_lc and l_2c are differentially amplified by the amplifying circuit 2_lc
  • the output signals of the sensors l_3c and l_4c are differentially amplified by the amplifying circuit 2_2c, and
  • the function of the second synthesizer 7_lc is to synthesize the signals of the sensors l_5c, l_6c, ... l_nc to obtain which "N-S" signal period the rotor is in at this time.
  • the signal processing method based on the position detecting device of the present embodiment is the same as that of the first embodiment.
  • This embodiment differs from the first embodiment and the second embodiment in that three magnetic induction elements are provided corresponding to the first magnetic steel ring, three The angle between the magnetic sensing elements, H 2 and H 3 is 120° 16, as shown in FIG.
  • Fig. 21 is a circuit block diagram showing a signal processing device corresponding to the case where three magnetic induction elements are provided in the first magnetic steel ring.
  • the processing procedure is basically the same as the first two embodiments, except that since the input signals of the first synthesizer 7_lb are three, the processing of the signals D, R is slightly different from the first two embodiments.
  • the principle of processing the signal by the first synthesizer 7_lb is: first judging the coincidence bits of the three signals, and comparing the magnitudes of the values of the signals conforming to the same bit, and the signal D for outputting the signal having a small value
  • the structure of D is ⁇ the coincidence bit of the first signal, the coincidence bit of the second signal, the coincidence bit of the third signal, and the numerical value of the signal of the smaller value ⁇ .
  • _0 indicates the value bit of the data X (the absolute value of the data), that is, the remaining data bits are removed from the sign bit.
  • the signal processing method based on the position detecting device of the present embodiment is the same as that of the first embodiment.
  • the first magnetic steel ring is provided with six magnetic induction elements, and the angle between the six magnetic induction elements is 60 ° 16, the first magnetic steel ring, the magnetic conductive ring and the magnetic induction element.
  • the structural relationship is shown in Figure 22.
  • Fig. 23 is a circuit block diagram showing a signal processing device corresponding to the case where six magnetic induction elements are provided in the first magnetic steel ring. The specific process has been explained in the first three embodiments, and the description is repeated here.
  • the signal processing method based on the position detecting device of the present embodiment is the same as the method of the first embodiment.
  • Fig. 24 is an exploded perspective view showing another configuration of the position detecting device according to the first to fourth embodiments of the present invention.
  • the position detecting device includes a rotor and a stator that surrounds the rotor, the rotor includes a first magnetic steel ring 201a and a second magnetic steel ring 201b, and the first magnetic steel ring 201a and the second magnetic steel ring 201b are respectively fixed to the motor shaft 200, wherein the stator is a bracket 203.
  • the magnetic sensing element 204 is directly attached to the inner surface of the bracket 203.
  • the first magnetic steel ring in the position detecting device of Fig. 22 may be provided with 2, 4,
  • the signal processing apparatus and the signal processing method based on the position detecting means of the different numbers of magnetic induction elements are the same as the methods of the first to fourth embodiments, respectively.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

位置检测装置及其信号处理装置和方法
技术领域
本发明涉及一种传感器, 具体地涉及一种用于精确位置控制的位置检测装置及其 信号处理装置和方法。 背景技术
在工业控制中, 为了达到精确的电机位置, 利用位置传感器将电机的旋转角度、 角速度等物理量转换为电信号, 这种位置传感器通常称为编码器。 随着工业自动化的 发展, 直流电机向交流电机的转变以及模拟控制向数字控制的转变, 都离不开编码器 的发展, 编码器的制造技术和信号的处理水平直接影响到自动化水平。
目前, 工程技术领域中应用的编码器主要是光电式编码器, 光电式编码器有增量 式和绝对式两种。 在增量式编码器中, 轴旋转时带动光栅盘旋转, 发光元件发出的光 被光栅盘的狭缝切割成断续光线, 再由接收元件接受并输出相应的脉冲信号, 旋转方 向和脉冲数量需要借助判向电路和计数器来实现。 计数起点可任意设定, 旋转增量编 码器转动时输出脉冲, 通过计数设备的内部存储单元来记住位置。 然而该编码器工作 过程中不允许有干扰进而丢失脉冲, 否则, 记数设备记忆的零点就会偏移并且无从知 道。
为了解决此问题, 出现了绝对式编码器。 绝对式编码器输出与位置一一对应的代 码, 从代码的大小变化能判别出旋转方向和转子的当前位置。 这样抗干扰性, 数据的 可靠性大大提高了, 绝对式编码器已经越来越多的应用于各种工业***的角度, 长度 测量和位置控制。
然而, 光电编码器存在一些难以克服的缺点: 光电编码器由玻璃物质通过刻线而 成, 其抗震动和冲击能力不强, 不适合于尘埃, 结露等恶劣环境, 并且结构和定位组 装复杂; 刻线间距有极限, 要提高分辨率必须增大码盘, 难以做到小型化; 在生产中 必须保证很高的装配精度, 直接影响到生产效率, 最终影响产品成本。
为了解决这些不足, 出现了磁电式编码器,近年来磁性编码器的研制正逐渐展开。 传统磁电传感器的定子和转子由纯铁组成, 定子上固定永久磁铁, 形成磁路***。 定 子和转子相对的环形端面上均匀的设计齿和槽数目相等, 转子和轴固紧, 轴与被测量 的转轴连接, 轴带动转子转动, 当转子齿和定子齿相对, 气隙最小, 磁通最大, 反之 最小。 其检测原理是, 利用固定在定子圆周上的磁敏元件感受固定在轴上磁钢转动引 起的磁场强度变化来输出电压信号, 用电压值来判断轴转动角度, 从而实现位置的检 此类编码器比较多, 但测量精度比较低, 只能实现增量输出。
例如, 专利号为 200410024190.7、 200410024191.1 200410024192.6的专利分别 提出了一种磁电编码器, 专利号为 200410024195.X、 200410024194.5、 200410024193.0 的专利也分别提出了一种编码器, 专利号为 200410024198.3、 200410024197.9 和 200410024196.4的专利分别提出了一种编码器的存储器写入器。
上述实现了绝对式位置检测,其原理相同, 以 200410024190.7为例,如图 1所示, 在该磁电编码器的结构中, 磁感应元件采用表面贴的方式, 即在圆环形定子内侧壁布 置磁感应元件, 进行旋转磁场的感应, 然后根据传感器电压值求出旋转角度值。
所述磁电编码器在物理结构上具有以下缺点:
定子内侧一般呈圆弧形且光滑, 传感器不易安装固定, 容易引起定位误差, 进而 引起信号的相位偏差, 使得信号中高次谐波分量大; 加工制造工艺复杂, 不利于产业 化;
可靠性低, 传感器均布于内侧壁, 传感器的支持基体必须为柔性体如 FPC等, 其 与处理本体接触处其抗拉强度不高, 容易破裂, 增加了加工难度, 影响产品的寿命; 传感器感应的磁场泄露大, 磁场不能得到充分应用, 使得信号中噪声大, 影响测 量精度;
要求传感器体积小, 使得产品成本比较高。
所述磁电编码器在信号处理上具有以下缺点:
从磁感应元件得到的 A相模拟信号 V。和 B相模拟信号 ,一般都含有高次谐波和 噪声, 利用上述求反正切值的方法就要受到高次谐波的影响, 若不能减小或消除高次 谐波的影响, 则不易得出精确的位置信号 Θ;
模拟器件导致温度漂移和零点漂移, 降低了电路的可靠性和稳定性; 模拟电路的 产品成本较高。 发明内容
本发明要解决的技术问题在于, 针对现有技术的抗冲击能力不强, 加工成本高, 适用范围受限以及精度低等不足, 提供了一种位置检测装置及其信号处理电路和处理 方法, 使位置检测装置响应快、 处理精度高, 并且成本低、 制造工艺简单。
为解决上述技术问题, 本发明提供一种位置检测装置, 包括转子和将转子套在内 部的定子, 所述转子包括第一磁钢环、 第二磁钢环; 其中, 所述第一磁钢环和第二磁 钢环可以分别固定在一转轴上; 在定子上, 对应于第二磁钢环, 以第二磁钢环的中心 为圆心的同一圆周上设有 n (n=l, 2…!)个均匀分布的磁感应元件, 所述第二磁钢环的 磁极的磁化顺序使得 n个磁感应元件输出为格雷码形式,相邻两个输出只有一位变化; 在定子上, 对应于第一磁钢环, 以第一磁钢环的中心为圆心的同一圆周上设有有 m(m 为 2或 3的整数倍)个呈一定角度分布的磁感应元件,所述第一磁钢环的磁极总对数与 第二磁钢环的磁极总数相等, 并且相邻两极的极性相反; 当转子相对于定子发生相对 旋转运动时, 所述磁感应元件将感测到的磁信号转变为电压信号, 并将该电压信号输 出给一信号处理装置。
进一步地, 在定子上对应于第一磁钢环的相邻两个磁感应元件之间的夹角, 当 m 为 2或 4时, 该夹角为 90 ° /g; 当 m为 3时, 该夹角为 120 ° /g ; 当 m为 6时, 该夹 角为 60° /g, 其中, g为第二磁钢环的磁极总数。
在本发明的一个实施例中, 所述磁感应元件直接表贴在定子的内表面。
进一步地, 还包括两个内置于定子内表面的、 分别与第一磁钢环、 第一磁钢环对 应的导磁环, 每一所述导磁环是由多个同圆心、 同半径的弧段构成, 相邻两弧段留有 空隙, 对应于两个磁钢环的磁感应元件分别设在该空隙内。 优选地, 所述的导磁环的弧段端部设有倒角。
优选地, 所述倒角为沿轴向或径向或同时沿轴向、 径向切削而形成的倒角。
优选地, 所述的磁感应元件为霍尔感应元件。
本发明还提供了一种基于上述各种位置检测装置的信号处理装置, 包括: A/D转 换模块、 相对偏移角度 计算模块、 绝对偏移量 计算模块、 角度合成及输出模块和 存储模块。 所述 A/D转换模块, 对位置检测装置发送来的电压信号进行 A/D转换, 将 模拟信号转换为数字信号; 所述相对偏移角度 计算模块, 用于计算位置检测装置中 对应于第一磁钢环的磁感应元件发送来的第一电压信号在所处信号周期内的相对偏移 量 ; 所述绝对偏移量 计算模块, 根据位置检测装置中对应于第二磁钢环的磁感应 元件发送来的第二电压信号, 通过计算来确定第一电压信号所处的信号周期首位置的 绝对偏移量 ; 所述角度合成及输出模块, 用于将上述相对偏移量 和绝对偏移量 相加, 合成所述第一电压信号所代表的在该时刻的旋转角度 所述存储模块, 用于 存储数据。
进一步地, 还包括: 信号放大模块, 用于在 A/D转换模块进行 A/D转换之前, 对 来自于位置检测装置的电压信号进行放大。
进一步地,所述相对偏移角度 ^计算模块包括第一合成单元和第一角度获取单元, 所述第一合成单元对位置检测装置发送来的经过 A/D转换的多个电压信号进行处理, 得到一基准信号 D; 所述第一角度获取单元根据该基准信号 D, 在第一标准角度表中 选择一与其相对的角度作为偏移角度 。
进一步地, 所述相对偏移角度 计算模块还包括温度补偿单元, 用于消除温度对 位置检测装置发送来的电压信号的影响。
进一步地, 所述第一合成单元的输出还包括信号 R, 在此基础上, 所述温度补偿 单元包括系数矫正器和乘法器, 所述系数矫正模块对所述合成模块的输出的信号 R和 对应该信号的标准状态下的信号 R。进行比较得到输出信号 K; 所述乘法器为多个, 每 一所述乘法器将从位置检测装置发送来的、 经过 A/D转换的一个电压信号与所述系数 矫正模块的输出信号 K相乘, 将相乘后的结果输出给第一合成单元。
此外, 所述绝对偏移量 计算模块包括第二合成单元和第二角度获取单元, 所述 第二合成单元用于对对应于第二磁钢环的位置检测装置发送来的第二电压信号进行合 成, 得到信号 E; 所述第二角度获取单元根据该信号 E在第二标准角度表中选择与其 相对的角度作为第一电压信号所处的信号周期首位置的绝对偏移量 。
第二合成单元将与第二磁环对应的磁传感元件的输出信号的符号位综合起来得 到信号 E。
本发明还提供了一种基于上述位置检测装置的信号处理方法, 包括以下步骤: 步 骤 S300, 用于对位置检测装置发送来的电压信号进行 A/D转换; 步骤 S301 , 计算位 置检测装置中对应于第一磁钢环的磁感应元件发送来的第一电压信号在所处信号周期 内的相对偏移量 ; 步骤 S302, 根据位置检测装置中对应于第二磁钢环的磁感应元件 发送来的第二电压信号, 通过计算来确定第一电压信号所处的信号周期首位置的绝对 偏移量 ; 步骤 S303, 用于将上述相对偏移量 和绝对偏移量 相加, 合成所述第一 电压信号所代表的在该时刻的旋转角度 。 进一步地, 所述步骤 S301中, 具体包括: 步骤 S3011 , 对位置检测装置发送来的 经过 A/D转换的多个电压信号进行处理, 得到基准信号 D; 步骤 S3012, 根据该基准 信号 D, 在第一标准角度表中选择与其相对的角度作为偏移角度 。
进一步地, 所述步骤 S301中, 在得到基准信号 D的同时得到信号 R。
进一步地, 步骤 S301中还包括根据得到的信号 R查询存储器中与其相对的标准 状态下的信号 R。, 并对二者进行比较运算, 得到信号 K的步骤。
进一步地,在步骤 S3011对位置检测装置发送来的经过 A/D转换的多个电压信号 进行处理之前, 将所述多个电压信号分别与信号 K相乘, 从而实现对电压信号的温度 补偿。
此外, 所述步骤 S302具体包括以下步骤: 步骤 S3021 , 对对应于第二磁钢环的位 置检测装置发送来的第二电压信号进行合成, 得到信号 E; 步骤 S3022, 根据该信号 E 在第二标准角度表中选择与其相对的角度作为第一电压信号所处的信号周期首位置的 绝对偏移量 。
本发明提供的位置检测装置及其信号处理电路和处理方法, 具有以下优点: a)通过增加导磁环, 使得导磁环内部磁场分布均匀, 泄露小, 并且磁感应元件感 应的信号为积分型, 信号噪声小, 所含高次谐波分量成分小, 有利于提高原始信号质 量, 提高信号信噪比。
b) 采用导磁环, 并且通过增加倒角来縮小有效面积, 有利于提高磁感应元件表 面感应的磁场强度, 在一定程度上能减小对永磁体尺寸要求, 能减小整个编码器的机 械尺寸。
c)采用此改进型结构, 对磁感应元件的机械尺寸没有苛刻要求, 可选用型号范围 宽, 甚至是不用采用后续放大电路, 有利于减少产品成本, 提高性价比。
d) 采用此结构形式, 磁感应元件可直接固定在电路板上, 无需转接件, 有利于 提高产品的可靠性。
e)生产制造工艺简单, 导磁环可用定子保持架, 如一骨架, 固定一起形成一个整 理, 一次成型, 信号感应器, 即磁感应元件直接放于狭缝 (定位槽) 处, 能最大保证 信号之间相位差, 定子保持架直接固定在电机上, 安装工艺方便, 有利于提高生产效 率。
0采用两具磁钢环和导磁环,增加了检测精度,使位置检测装置的处理精度更高, 并且具有成本低、 制造工艺简单的优点。
g ) 采用本发明的磁放置方式, 磁感应元件输出的信号幅值大, 无需采用模拟放 大电路, 磁感应元件的输出信号直接输入到 A/D转换器进行模数转换, 根据需要再进 行数字差分处理, 这样使得整个电路非常简单, 并在很大程度上减少了因为模拟器件 导致的温度和零点漂移, 且磁感应元件可直接固定在电路板上, 无需转接件, 提高了 电路的可靠性和稳定性, 并且大幅降低了产品的成本。 进行数字差分处理的优点是: 能够消除由安装不对心引起的信号偏差, 与模拟差分处理相比, 采用数字信号进行处 理, 效果更好, 不受温度、 零点漂移等外界因素影响; 能扩大信号输入量的幅值, 在 效果上相当于 A/D转换器的精度增加了一位, 能够提高编码器测量的精度。
以下结合附图和具体的实施例对本发明进行详细地说明。 附图说明
图 1是本发明实施例一的位置检测装置的立体分解图;
图 2是图 1所示的位置检测装置的安装图;
图 3是图 1所示的位置检测装置的另一安装图;
图 4是导磁环的结构图;
图 5是导磁环的另一结构图;
图 6是导磁环的又一结构图;
图 7是导磁环的另一结构图;
图 8本发明所述位置检测装置的信号处理方法的流程图之一;
图 9本发明所述位置检测装置的信号处理方法的流程图之二;
图 10本发明所述位置检测装置的信号处理方法的流程图之三;
图 11本发明所述位置检测装置的信号处理方法的流程图之四;
图 12是本发明实施例一对应于第二磁钢环设有 3个磁感应元件时得到的编码; 图 13是本发明实施例一对应于第二磁钢环设有 3个磁感应元件时第二磁钢环的 充磁顺序;
图 14是本发明实施例一的第二磁钢环、 导磁环和磁感应元件的结构图; 图 15是本发明实施例一的第一磁钢环均匀磁化为 6对极时对应 2个磁感应元件 的布置图;
图 16为本发明实施例一的第一磁钢环、 导磁环和磁感应元件的结构图; 图 17为本发明实施例一的信号处理装置的电路框图;
图 18为本发明实施例二的第一磁钢环、 导磁环和磁感应元件的结构图; 图 19为本发明实施例二的信号处理装置的电路框图;
图 20为本发明实施例三的第一磁钢环、 导磁环和磁感应元件的结构图; 图 21为本发明实施例三的信号处理装置的电路框图;
图 22为本发明实施例四的第一磁钢环、 导磁环和磁感应元件的结构图; 图 23本发明实施例三的信号处理装置的电路框图; 图 24 为本发明的实施例一至实施例四的位置检测装置的另一种结构的立体分解 图。 具体实施方式
参照附图, 图 1是本发明实施例一的位置检测装置的立体分解图。 如图 1〜图 3 所示, 该位置检测装置包括转子和将转子套在内部的定子, 转子包括第一磁钢环 201a 和第二磁钢环 201b以及第一导磁环 205a和第二导磁环 205b, 第一磁钢环 201a和第 二磁钢环 201b分别固定在电机轴 200上, 其中定子为支架 203。
如图 1和图 3所示, 第一导磁环 205a和第二导磁环 205b分别由多个同圆心、 同 半径的弧段构成, 相邻两个弧段之间留有空隙, 对应于两个磁钢环的磁感应元件 204 分别设在该空隙内。 如图 4〜图 7所示, 两个导磁环的弧段端部设有倒角, 所述倒角 为沿轴向 251或径向 252或同时沿轴向 251、 径向 252切削而形成的倒角。 根据磁密公式 β 可以知道, 当 ^一定时候, 可以通过减少 , 增加 β。
因为永磁体产生的 ¾通是一定的, 在导磁环中 S较大, 所以 β比较小, 因此可以 减少因为磁场交变而导致的发热。 而通过减少导磁环端部面积能够增大端部的磁场强 度, 使得磁感应元件的输出信号增强。 这样的信号拾取结构制造工艺简单, 拾取的信 号噪声小, 生产成本低, 可靠性高, 而且尺寸小。
对应于第二磁钢环 201b, 以第二磁钢环 201b的中心为圆心的同一圆周上设有 n (n=l , 2…! i)个均匀分布的磁感应元件, 第二磁钢环的磁极磁化顺序使得 n个磁感应原 件输出呈格雷码形式。 磁极的极性为格雷码的首位为 " 0 "对应于 "N/S " 极, 首位为 " 1 " 对应于 " S/N" 极。
第一磁钢环 201a均匀的磁化为 g ( g的取值等于第二磁钢环中的磁极总数) 对极 ( N极和 S极交替排列), 当第二磁钢环中的磁极总数为 6时, 第一磁钢环 201a的极 对数为 6对。 以第一磁钢环 201a的中心为圆心的同一圆周上, 设置有 m个磁感应元 件, 如 2个, 如图 15所示, 二个磁感应元件 H2之间的夹角为 90° /6。 第一磁钢 环均匀地磁化为 6对极时磁感应元件的布置如图 16所示。当转子相对于定子发生相对 旋转运动时, 所述磁感应元件将感测到的磁信号转变为电压信号, 并将该电压信号输 出给一信号处理装置。
定义第一磁钢环中相邻一对 " N-S "为一个信号周期, 因此, 任一 "N-S "对应的 机械角度为 360° /g ( g为 "N-S "个数), 假定转子在 ^时刻旋转角度 位于第 "ί¾信号 周期内,则此时刻角位移 可认为由两部分构成: 1. 在第" ί¾信号周期内的相对偏移量, 磁感应元件 HI和 H2感应第一磁钢环的磁场来确定在此 "N-S "信号周期内的偏移量 (值大于 0 小于 360° /g) ; 2. 第" '¾信号周期首位置的绝对偏移量 , 用传感器感应 第二磁钢环的磁场来确定此时转子究竟是处于哪一个 " N-S " 来得到 。
基于该位置检测装置及原理的信号处理装置包括: A/D转换模块、相对偏移量 计 算模块、 绝对偏移量 计算模块和存储模块。 其信号处理流程如图 8-11所示, 如图 8 所示, 对位置检测装置中第一磁钢环和第二磁钢环发送来的电压信号进行 A/D转换, 将模拟信号转换为数字信号; 由相对偏移量 计算模块对位置检测装置发送来的对应 于第一磁钢环的第一电压信号进行角度 求解, 计算对应于第一磁钢环的信号在所处 信号周期内的相对偏移量 ; 由绝对偏移量 计算模块对位置检测装置发送来的对应 于第二磁钢环的第一电压信号进行角度 求解, 来确定第一电压信号所处的信号周期 首位置的绝对偏移量 ; 通过角度合成及输出模块, 如加法器用于将上述相对偏移量 和绝对偏移量 相加, 合成所述第一电压信号所代表的在该时刻的旋转角度 。 对 于图 9, 为在图 8的基础上增加的信号放大模块, 具体如放大器, 用于在 A/D转换模 块进行 A/D转换之前, 对来自于位置检测装置的电压信号进行放大。 图 10是包括温 度补偿的信号处理流程图, 在进行角度 求解之前, 还包括温度补偿的过程; 图 11为 基于图 10的温度补偿的具体过程, 即进行温度补偿时, 要先进行系数矫正, 而后再将 A/D转换器输出的信号与系数矫正的输出通过乘法器进行相乘的具体方式来进行温度 补偿。 当然, 温度补偿的具体方式还有很多种, 在此就不一一介绍。
相对偏移量 ^计算模块包括信号合成单元、 第一角度获取单元和温度补偿单元, 信号合成单元对不同位置检测装置发送来的经过 A/D转换的电压信号进行处理, 得到 一基准信号 D; 所述第一角度获取单元根据该基准信号 D, 在第一标准角度表中选择 一与其相对的角度作为偏移角度 ; 其中, 在得到基准信号 D之前, 先对输入给信号 合成单元的信号由温度补偿单元进行温度补偿, 再将温度补偿后的信号进行处理得到 信号 D。 这里所述的处理将在后面详细说明。 绝对偏移量 计算模块包括第二合成器 和所述第二角度获取单元, 用于对对应于第二磁钢环的位置检测装置发送来的第二电 压信号进行合成, 得到轴转过信号周期数, 从而确定第一电压信号所处的信号周期首 位置的绝对偏移量 , 具体实现方式是所述第二合成器对对应于第二磁钢环的位置检 测装置发送来的第二电压信号进行合成, 得到一信号 E; 所述第二角度获取单元根据 该信号 E在第二标准角度表中选择一与其相对的角度作为第一电压信号所处的信号周 期首位置的绝对偏移量 。
实施例一
在实施例一中, 对应于第二磁钢环设有 3磁感应元件, 对应于第一磁钢环设有 2 磁感应元件。
由于第二磁钢环的磁极磁化顺序使得 n个磁感应原件输出呈格雷码形式。 磁极的 极性为格雷码的首位为 " 0 "对应于 " N/S "极, 首位为 " 1 "对应于 " S/N"极。 因此, 在本实施例中, 由于 n为 3时, 得到如图 12所示的编码, 得到 6个码, 即得到 6个极, 充磁顺序如图 13所示, 磁感应元件均布周围进行读数。 第二磁钢环、 导磁环和磁感应 元件的位置关系如图 14所示。
由于第二磁钢环的磁极总数为 6, 因此, 第一磁钢环被均匀的磁化为 6对极, 其 与 2个磁感应元件的布置图及磁序如图 15所示, 第一磁钢环、导磁环和磁感应元件的 位置关系如图 16所示.
图 17示出了本实施例中对应于第一磁钢环设有 2个磁感应元件、 第二磁钢环设 有 3个磁感应元件时信号处理装置的电路框图。 传感器 l_la和 l_2a的输出信号接放 大器 2_la、 2_2a进行放大, 然后接 A/D转换器 3_la、 3_2a, 经模数转换后得到输出 信号接乘法器 4_la、 5_la,系数矫正器 10_la输出信号接乘法器 4_la、 5_la的输入端, 乘法器 4_la、 5_la的输出信号 A、 B接第一合成器 6_la的输入端, 第一合成器 6_la 对信号 A、 B进行处理, 得到信号0、 R, 根据信号 D从存储器 8_la中存储的标准角 度表中选择一与其相对的角度作为偏移角度 。 其中, 第一合成器 6_la的输出信号 R 输送给系数矫正器 10_la, 系数矫正器 10_la根据信号 R和从存储器 9_la中查表得到 信号 Ro得到信号 K,该信号 K作为乘法器 4_la、5_la的另一输入端,与从放大器 2_la、 2_2a输出的信号 Cl、 C2分虽相乘得到信号 A、 B作为第一合成器 6_la的输入。其中, 所述的信号 R。为信号 R标准状态下的数据, 通过信号 R。与信号 R的比较可以得知信 号 R的变化程度。
传感器 l_3a、 l_4a、 ... l_na的输出信号分别接放大器 2_3a、 2_4a、 ...2_na进行 放大, 然后接 A/D转换器 3_3a、 3_4a、 ...3_na进行模数转换后通过第二合成器 7_la 进行合成, 得到一信号 E; 根据该信号 E在存储器 l l_la中的第二标准角度表中选择 一与其相对的角度作为第一电压信号所处的信号周期首位置的绝对偏移量 , 和 通过加法器 12_la得到测量的绝对角位移输出 。 其中, 第二合成器 7_la的功能是, 通过对传感器 l_3a、 l_4a、 ... l_na 的信号进 行合成, 得到此时刻转子处于哪一个 " N-S "信号周期内。
第二合成器 7_la的处理是: 当数据 X为有符号数时, 数据 X的第 0位 (二进制 左起第 1位) 为符号位, X_0=1表示数据 X为负, X_0=0表示数据 X为正。 也即当感 应的磁场为 N时, 输出为 X_0=0, 否则为 X_0=1。
则对于本实施例, E ={ C3_0; C4_0; Cn_0 }。
其中, 第一合成器 6_la对信号的处理是: 比较两个信号的数值的大小, 数值小的 用于输出的信号 D, 信号 D的结构为 {第一个信号的符合位, 第二个信号的符合位, 较小数值的信号的数值位 }。 具体如下:
这里约定 (后文各合成器均使用该约定), 当数据 X为有符号数时, 数据 X的第 0位 (二进制左起第 1位) 为符号位, X_0=1表示数据 X为负, X_0=0表示数据 X为 正。 _0表示数据 X的数值位 (数据的绝对值), 即去除符号位剩下的数据位。
如果 A_D>=B_D
D={ A_0; B_0; B_D }
Figure imgf000010_0001
否则:
D={ A_0; B_0; A_D }
Figure imgf000010_0002
信号 K一般是通过将信号 RQ和 R进行除法运算得到。
对于第一、 二标准角度表, 在存储器中存储了两个表, 每个表对应于一系列的码, 每一个码对应于一个角度。 该表是通过标定得到的, 标定方法是, 利用本施例的检测 装置和一高精度位置传感器, 将本施例中的磁感应元件输出的信号和该高精度位置传 感器输出的角度进行一一对应, 以此建立出一磁感应元件输出的信号与角度之间的关 系表。 也就是, 对应于信号 D存储了一个第一标准角度表, 每一个信号 D代表一个相 对偏移量 。 对应于信号 E, 存储了一个第二标准角度表, 每一个信号 E代表一个绝 对偏移量 。
实施例二
与实施例一不同的, 在本实施例中, 对应于第一磁钢环设置有 4个磁感应元件, 四个磁感应元件 H2、 H3 、 H4之间的夹角为 90° /6, 第一磁钢环、 导磁环和磁感 应元件的结构关系如图 18所示。
图 19示出了对应于第一磁钢环设有 4个磁感应元件时信号处理装置的电路框图。 传感器 l_lc和 l_2c的输出信号接放大电路 2_lc进行差动放大, 传感器 l_3c和 l_4c 的输出信号接放大电路 2_2c进行差动放大, 然后接 A/D转换器 3_lc、 3_2c, 后续处 理类似于设有 2个磁感应元件时的情况。
其中, 第二合成器 7_lc的功能是, 通过对传感器 l_5c、 l_6c、 ... l_nc的信号进 行合成, 得到此时刻转子处于哪一个 " N-S "信号周期内。
基于本实施例的位置检测装置的信号处理方法与实施例一的方法相同。
实施例三
本实施例与实施例一和二不同的是对应于第一磁钢环设置有 3个磁感应元件, 三 个磁感应元件 、 H2、 H3之间的夹角为 120° 16, 如图 20所示,
图 21示出了对应于第一磁钢环设有 3个磁感应元件时信号处理装置的电路框图。 处理过程与前两个实施例基本相同, 不同的是, 由于第一合成器 7_lb的输入信号为 3 个, 因此, 信号 D、 R的处理与前两个实施例略有不同。 在本实施例中, 第一合成器 7_lb对信号的处理原则是: 先判断三个信号的符合位, 并比较符合位相同的信号的数 值的大小, 数值小的用于输出的信号 D, 信号 D的结构为 {第一个信号的符合位, 第 二个信号的符合位, 第三个信号的符合位, 较小数值的信号的数值位 }。 以本实施例为 例:
约定:
当数据 X为有符号数时,数据 X的第 0位(二进制左起第 1位)为符号位, X_0=1 表示数据 X为负, X_0= 0表示数据 X为正。
_0表示数据 X的数值位 (数据的绝对值), 即去除符号位剩下数据位。
如果 { A—0; B_0 C_0}=010 并且 A_D>= C_D
D={ A_0; B_0; C_0; C_D }
如果 { A—0; B_0 C_0}=010 并且 A_D< C_D
D={ A_0; B_0; C_0; A_D };
如果 { A_0; B_0 C_0}=101 并且 A_D>= C_D
D={ A_0; B_0; C_0; C_D };
如果 { A_0; B_0 C_0}=101 并且 A_D< C_D
D={ A_0; B_0; C_0; A_D };
如果 { A_0; B_0 C_0}=011 并且 B_D>=C_D
D={ A_0; B_0; C_0; C_D };
如果 { A_0; B_0 C_0}=011 并且 B_D<C_D
D={ A_0; B_0; C_0; B_D };
如果 { A_0; B_0 C_0}=100 并且 B_D>=C_D
D={ A_0; B_0; C_0; C_D };
如果 { A_0; B_0 C_0}=100 并且 B_D<C_D
D={ A_0; B_0; C_0; B_D };
如果 { A_0; B_0 C_0}=001 并且 B_D>=A_D
D={ A_0; B_0; C_0; A_D };
如果 { A_0; B_0 C_0}=001 并且 B_D<A_D
D={ A_0; B_0; C_0; B_D };
如果 { A_0; B_0 C_0}=110 并且 B_D>=A_D
D={ A_0; B_0; C_0; A_D };
如果 { A_0; B_( 〕; C_0}=110 并且 B_D<A_D
D={ A_0; B_0; C_0; B_D }; = A - B x cos (―) - Cx cos (―) β = Β χ sin(—) - C x sin (―)
R
基于本实施例的位置检测装置的信号处理方法与实施例一的方法相同。
实施例四
本实施例与实施例三不同的, 对应于第一磁钢环设置有 6个磁感应元件, 六个磁 感应元件之间的夹角为 60 ° 16 , 第一磁钢环、 导磁环和磁感应元件的结构关系如图 22 所示。
图 23示出了对应于第一磁钢环设有 6个磁感应元件时信号处理装置的电路框图。 其具体过程在前三个实施例已说明, 在此不同重复说明。
基于本实施例的位置检测装置的信号处理方法与实施一的方法相同。
图 24 是本发明的实施例一至实施例四的位置检测装置的另一种结构的立体分解 图。该位置检测装置包括转子和将转子套在内部的定子, 转子包括第一磁钢环 201 a和 第二磁钢环 201b, 第一磁钢环 201a和第二磁钢环 201b分别固定在电机轴 200上, 其 中定子为支架 203。 磁感应元件 204直接表贴在支架 203的内表面。
与实施例一至四类似, 图 22中的位置检测装置中的第一磁钢环可以设置有 2、 4、
3、 6个磁感应元件。 基于不同数目的磁感应元件的位置检测装置的信号处理装置和信 号处理方法分别与实施例一至四的方法相同。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案而非限制。 尽管参照 上述实施例对本发明进行了详细说明, 本领域的普通技术人员应当理解, 依然可以对 本发明的技术方案进行修改和等同替换, 而不脱离本技术方案的精神和范围, 其均应 涵盖在本发明的权利要求范围当中。

Claims

权利要求书
1. 一种位置检测装置, 其特征在于, 包括转子和将转子套在内部的定子, 所述转 子包括第一磁钢环、 第二磁钢环;
其中, 所述第一磁钢环和第二磁钢环分别固定在同一转动轴上;
在定子上, 对应于第二磁钢环, 以第二磁钢环的中心为圆心的同一圆周上设有 n (n=l, 2〜n)个均匀分布的磁感应元件,所述第二磁钢环的磁极磁化顺序使得 n个磁感应元件 输出呈格雷码格式, 相邻两个输出只有一位变化;
在定子上, 对应于第一磁钢环, 以第一磁钢环的中心为圆心的同一圆周上设有有 m(m 为 2或 3的整数倍)个呈一定角度分布的磁感应元件,所述第一磁钢环的磁极总对数与 第二磁钢环的磁极总数相等, 并且相邻两极的极性相反;
当转子相对于定子发生相对旋转运动时, 所述磁感应元件将感测到的磁信号转变为电 压信号, 并将该电压信号输出给信号处理装置。
2. 如权利要求 1所述的位置检测装置, 其特征在于, 在定子上对应于第一磁钢环 的相邻两个磁感应元件之间的夹角, 当 m为 2或 4时, 该夹角为 90 ° /g ; 当 m为 3 时, 该夹角为 120 ° /g ; 当 m为 6时, 该夹角为 60 ° /g, 其中, g为第二磁钢环的磁极 总数。
3. 如权利要求 1所述的位置检测装置, 其特征在于, 所述磁感应元件直接表贴在 定子的内表面。
4. 如权利要求 1所述的位置检测装置, 其特征在于, 还包括两个内置于定子内表 面、 分别与第一磁钢环、 第一磁钢环对应的导磁环, 每一所述导磁环是由多个同圆心、 同半径的弧段构成, 相邻两弧段留有空隙, 对应于两个磁钢环的磁感应元件分别设在 该空隙内。
5. 如权利要求 4所述的位置检测装置, 其特征在于, 所述的导磁环的弧段端部设 有倒角。
6. 如权利要求 5所述的位置检测装置, 其特征在于, 所述倒角为沿轴向或径向或 同时沿轴向、 径向切削而形成的倒角。
7. 如权利要求 1所述的位置检测装置, 其特征在于, 所述的磁感应元件为霍尔感 应元件。
8.—种基于上述权利要求 1-7 任一所述位置检测装置的信号处理装置, 其特征在 于, 包括:
A/D转换模块, 对位置检测装置发送来的电压信号进行 A/D转换, 将模拟信号转 换为数字信号;
相对偏移角度 计算模块, 用于计算位置检测装置中对应于第一磁钢环的磁感应 元件发送来的第一电压信号在所处信号周期内的相对偏移量 ;
绝对偏移量 计算模块, 根据位置检测装置中对应于第二磁钢环的磁感应元件发 送来的第二电压信号, 通过计算来确定第一电压信号所处的信号周期首位置的绝对偏 移量 ;
角度合成及输出模块, 用于将上述相对偏移量 和绝对偏移量 相加, 合成所述 第一电压信号所代表的在该时刻的旋转角度 存储模块, 用于存储数据。
9. 根据权利要求 8所述的位置检测装置的信号处理装置, 其特征在于, 还包括: 信号放大模块, 用于在 A/D转换模块进行 A/D转换之前, 对来自于位置检测装置的电 压信号进行放大。
10. 根据权利要求 8或 9所述的位置检测装置的信号处理装置, 其特征在于, 所述相对偏移角度 计算模块包括第一合成单元和第一角度获取单元, 所述第一合成 单元对位置检测装置发送来的经过 A/D转换的多个电压信号进行处理, 得到基准信号 D ; 所述第一角度获取单元根据该基准信号 D, 在第一标准角度表中选择与其相对的 角度作为偏移角度 。
11. 如权利要求 10所述的位置检测装置的信号处理装置, 其特征在于, 所述相对 偏移角度 计算模块还包括温度补偿单元, 用于消除温度对位置检测装置发送来的电 压信号的影响。
12. 如权利要求 11所述的位置检测装置的信号处理装置, 其特征在于, 所述第一 合成单元的输出还包括信号 R。
13. 如权利要求 12所述的位置检测装置的信号处理装置, 其特征在于, 所述温度 补偿单元包括系数矫正器和乘法器, 所述系数矫正模块对所述合成模块的输出的信号 R和对应该信号的标准状态下的信号 RQ进行比较得到输出信号 K;所述乘法器为多个, 每一所述乘法器将从位置检测装置发送来的、 经过 A/D转换的一个电压信号与所述系 数矫正模块的输出信号 K相乘, 将相乘后的结果输出给第一合成单元。
14. 根据权利要求 8或 9所述的位置检测装置的信号处理装置, 其特征在于, 所 述绝对偏移量 计算模块包括第二合成单元和第二角度获取单元, 所述第二合成单元 用于对对应于第二磁钢环的位置检测装置发送来的第二电压信号进行合成, 得到信号 E; 所述第二角度获取单元根据该信号 E在第二标准角度表中选择与其相对的角度作 为第一电压信号所处的信号周期首位置的绝对偏移量 。
15. 一种基于上述权利要求 1-7 任一所述位置检测装置的信号处理方法, 其特征 在于, 包括以下步骤:
步骤 S300 , 用于对位置检测装置发送来的电压信号进行 A/D转换;
步骤 S301 , 计算位置检测装置中对应于第一磁钢环的磁感应元件发送来的第一电 压信号在所处信号周期内的相对偏移量 ;
步骤 S302, 根据位置检测装置中对应于第二磁钢环的磁感应元件发送来的第二电 压信号, 通过计算来确定第一电压信号所处的信号周期首位置的绝对偏移量 ;
步骤 S303 , 用于将上述相对偏移量 和绝对偏移量 相加, 合成所述第一电压信 号所代表的在该时刻的旋转角度 。
16. 根据权利要求 15所述的位置检测装置的信号处理方法, 其特征在于, 所述步 骤 S301中, 具体包括:
步骤 S3011 , 对位置检测装置发送来的经过 A/D转换的多个电压信号进行处理, 得到基准信号 D ;
步骤 S3012, 根据该基准信号 D, 在第一标准角度表中选择与其相对的角度作为 偏移角度 。
17. 根据权利要求 16所述的位置检测装置的信号处理方法, 其特征在于, 所述步 骤 S301中, 在得到基准信号 D的同时得到信号 R。
18. 根据权利要求 17 所述的位置检测装置的信号处理方法, 其特征在于, 步骤 S301 中还包括根据得到的信号 R查询存储器中与其相对的标准状态下的信号 Ro, 并 对二者进行比较运算, 得到信号 K的步骤。
19. 根据权利要求 18所述的位置检测装置的信号处理方法, 其特征在于, 在步骤 S3011对位置检测装置发送来的经过 A/D转换的多个电压信号进行处理之前, 将所述 多个电压信号分别与信号 K相乘, 从而实现对电压信号的温度补偿。
20. 根据权利要求 15所述的位置检测装置的信号处理方法, 其特征在于, 所述步 骤 S302具体包括以下步骤:
步骤 S3021 , 对对应于第二磁钢环的位置检测装置发送来的第二电压信号进行合 成, 得到信号 E;
步骤 S3022 , 根据该信号 E在第二标准角度表中选择与其相对的角度作为第一电 压信号所处的信号周期首位置的绝对偏移量 。
PCT/CN2010/072057 2009-04-30 2010-04-22 位置检测装置及其信号处理装置和方法 WO2010124587A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 200910137781 CN101876558B (zh) 2009-04-30 2009-04-30 位置检测装置及其信号处理装置和方法
CN200910137781.8 2009-04-30

Publications (1)

Publication Number Publication Date
WO2010124587A1 true WO2010124587A1 (zh) 2010-11-04

Family

ID=43019175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/072057 WO2010124587A1 (zh) 2009-04-30 2010-04-22 位置检测装置及其信号处理装置和方法

Country Status (2)

Country Link
CN (1) CN101876558B (zh)
WO (1) WO2010124587A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109443451A (zh) * 2018-12-27 2019-03-08 中国科学院宁波材料技术与工程研究所 一种电机位置速度检测装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5652181B2 (ja) * 2010-12-10 2015-01-14 株式会社ジェイテクト 回転角検出装置、トルク検出装置、及び電動パワーステアリング装置
CN102297081B (zh) * 2011-09-09 2013-06-05 广东明阳风电产业集团有限公司 一种风力发电机组变桨编码器
CN106352780A (zh) * 2016-08-19 2017-01-25 苏州博众精工科技有限公司 周向检测装置及周向检测方法
CN106441381B (zh) * 2016-09-29 2019-12-06 重庆理工大学 一种磁电式转动参数测量装置
CN111748770B (zh) * 2020-06-18 2022-04-05 苏州希声科技有限公司 超声旋转编码器的格栅成型工艺
CN112067023A (zh) * 2020-07-26 2020-12-11 哈尔滨理工大学 一种两霍尔磁电编码器及其角度值温漂补偿方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5444370A (en) * 1993-03-18 1995-08-22 Honeywell Inc. Magnetic angular position sensor with two magnetically sensitive components arranged proximate two target tracks having complimentary magnetic and nonmagnetic segments
JPH10311742A (ja) * 1997-05-12 1998-11-24 Zexel Corp 位置検出センサ
US20010015588A1 (en) * 2000-02-03 2001-08-23 Parvex Multipolar resolver with variable magnetic coupling
CN1704723A (zh) * 2004-06-03 2005-12-07 威海华控电工有限公司 四传感器式编码装置
JP2007327800A (ja) * 2006-06-07 2007-12-20 Jtekt Corp 回転角度検出装置およびそれを備える電動パワーステアリング装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1445739A (fr) * 1965-06-04 1966-07-15 Alcatel Sa Procédé de codage numérique et ses applications
DE19716985A1 (de) * 1997-04-23 1998-10-29 A B Elektronik Gmbh Vorrichtung zur Ermittlung der Position und/oder Torsion rotierender Wellen

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5444370A (en) * 1993-03-18 1995-08-22 Honeywell Inc. Magnetic angular position sensor with two magnetically sensitive components arranged proximate two target tracks having complimentary magnetic and nonmagnetic segments
JPH10311742A (ja) * 1997-05-12 1998-11-24 Zexel Corp 位置検出センサ
US20010015588A1 (en) * 2000-02-03 2001-08-23 Parvex Multipolar resolver with variable magnetic coupling
CN1704723A (zh) * 2004-06-03 2005-12-07 威海华控电工有限公司 四传感器式编码装置
JP2007327800A (ja) * 2006-06-07 2007-12-20 Jtekt Corp 回転角度検出装置およびそれを備える電動パワーステアリング装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109443451A (zh) * 2018-12-27 2019-03-08 中国科学院宁波材料技术与工程研究所 一种电机位置速度检测装置
CN109443451B (zh) * 2018-12-27 2024-01-12 中国科学院宁波材料技术与工程研究所 一种电机位置速度检测装置

Also Published As

Publication number Publication date
CN101876558A (zh) 2010-11-03
CN101876558B (zh) 2013-03-06

Similar Documents

Publication Publication Date Title
WO2010124587A1 (zh) 位置检测装置及其信号处理装置和方法
CN108592956B (zh) 旋转编码器及其绝对角度位置检测方法
US8368392B2 (en) Magnetic encoder and method of detecting absolute rotational position
US8466672B2 (en) Method of processing encoder signals
CN103443590B (zh) 绝对编码装置及电动机
US6433536B1 (en) Apparatus for measuring the position of a movable member
CN110932514B (zh) 一种无刷电机及电机转子位置的检测方法
Park et al. A linear compensation method for improving the accuracy of an absolute multipolar magnetic encoder
WO2010124626A1 (zh) 电动缝纫机
JP2007333520A (ja) 回転角度検出装置
WO2013044441A1 (zh) 旋转变压器以及使用该变压器的运动编码器
CN101886932A (zh) 位置检测装置及其信号处理装置与方法
WO2010124604A1 (zh) 位置检测装置及其信号处理装置和方法
JP2018132357A (ja) ロータリエンコーダ
Yamamoto et al. Development of absolute magnetic rotary encoder with eccentric rotation
CN100339684C (zh) 四传感器式编码装置
CN117394609B (zh) 永磁同步伺服电机及电气设备
CN117411248B (zh) 超高精度伺服电机及电气设备
EP1016852B1 (en) Apparatus for measuring the position of a movable member
JP2020153980A (ja) 回転部材の少なくとも1つの回転パラメータを決定するシステム
WO2010124573A1 (zh) 导磁环
CN117040206B (zh) 高精度伺服电机及电气设备
JP2006197684A (ja) ブラシレスモータ
CN117040207B (zh) 大直径伺服电机及电气设备
CN117411247B (zh) 工业级伺服电机及电气设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10769276

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10769276

Country of ref document: EP

Kind code of ref document: A1