WO2010124588A1 - 测量参考信号的多天线发送方法及装置 - Google Patents

测量参考信号的多天线发送方法及装置 Download PDF

Info

Publication number
WO2010124588A1
WO2010124588A1 PCT/CN2010/072084 CN2010072084W WO2010124588A1 WO 2010124588 A1 WO2010124588 A1 WO 2010124588A1 CN 2010072084 W CN2010072084 W CN 2010072084W WO 2010124588 A1 WO2010124588 A1 WO 2010124588A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
uplink
antenna
resources
uplink srs
Prior art date
Application number
PCT/CN2010/072084
Other languages
English (en)
French (fr)
Inventor
张戎
郝鹏
王瑜新
朱鹏
张禹强
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP10769277.4A priority Critical patent/EP2426831A4/en
Publication of WO2010124588A1 publication Critical patent/WO2010124588A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0684Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using different training sequences per antenna
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0026Division using four or more dimensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • the present invention relates to the field of communications, and in particular to a multi-antenna transmission method and apparatus for measuring a reference signal (SRS, Sounding Reference Signal). Background technique
  • the SRS is a signal used by a terminal device (UE, User Equipment) and a base station (eNB, e-Node-B) to measure channel state information (CSI).
  • UE User Equipment
  • eNB base station
  • CSI channel state information
  • the UE periodically sends uplink SRS according to parameters such as bandwidth, frequency domain location, period, and subframe offset indicated by the eNB.
  • the eNB determines the uplink CSI of the UE according to the received SRS, and performs operations such as frequency domain selection scheduling and closed loop power control according to the obtained CSI.
  • the SRS sequence sent by the UE is obtained by cyclically shifting a root sequence 7 uv (n) in the time domain.
  • different SRS sequences can be obtained, and the obtained SRS sequences are orthogonal to each other. Therefore, these SRS sequences can be allocated to different UEs to implement inter-UE communication.
  • Code division multiple access In the LTE system, the SRS sequence defines eight cyclic shifts, indicated by 3-bit signaling, which are 0, 1, 2, 3, 4, 5, 6, and 7, respectively. That is to say, in the same time-frequency resource, the UE in the cell has 8 available code resources, and the eNB can configure up to 8 UEs to simultaneously send the SRS on the same time-frequency resource.
  • the frequency domain bandwidth of the SRS is configured in a tree structure.
  • Each SRS bandwidth configuration corresponds to a tree structure, and the highest SRS bandwidth (SRS-Bandwidth) corresponds to the maximum SRS bandwidth configured by the SRS bandwidth, or is called the SRS bandwidth range.
  • Tables 1 through 4 show the SRS bandwidth configurations in different uplink SRS bandwidths.
  • A is the number of resource blocks (RBs) corresponding to the uplink SRS bandwidth.
  • Table 2 40 ⁇ ⁇ 60 SRS bandwidth configuration
  • the SRS bandwidth of this layer is 32.
  • the bandwidth corresponding to each RB is the maximum SRS bandwidth of SRS bandwidth configuration 1;
  • B SRS 1 layer, the SRS bandwidth of this layer is the bandwidth corresponding to 16 RBs, and the upper layer, that is, one SRS of layer 0
  • the bandwidth is split into two 1 layer SRS bandwidths;
  • SRS bandwidth, its tree structure is shown in Figure 1.
  • the subcarriers of the SRS are placed at intervals, that is, the SRS is transmitted using a comb structure, and the number of frequency combs in the LTE system is 2.
  • Comb 0.
  • Comb l
  • the UE transmits the SRS using only sub-carriers whose frequency domain index is even or odd.
  • This comb structure allows more UEs to transmit SRS within the same SRS bandwidth.
  • the eNB first allocates an SRS bandwidth configuration index C ss to all UEs in the cell, and the UE can determine which one of the tables 1 to 4 is used according to C ⁇ and the number of RBs corresponding to the current uplink bandwidth, that is, A. Then, according to C ss , the SRS bandwidth configuration used by the current cell can be determined. For some UEs, the eNB also assigns an SRS bandwidth index ss (or an index of the layer). The UE can obtain the SRS bandwidth used by the UE according to the SRS bandwidth configuration and the SRS bandwidth index B SRS in the cell.
  • the UE determines that the SRS bandwidth configuration of the current cell is the second row in Table 2. If the SRS bandwidth index allocated by the eNB of the current cell to the UE is 1, the SRS bandwidth of the UE occupies 16 RBs, and the location of the SRS bandwidth of the UE is within the range of the SRS bandwidth, that is, the range of the maximum SRS bandwidth of 48 RBs. Inside.
  • the UE After obtaining the SRS bandwidth of the UE, the UE determines the initial frequency domain position of the SRS to be transmitted according to the upper layer signaling frequency domain location 3 ⁇ 4c sent by the eNB. As shown in Figure 3, UEs assigned different / 3 ⁇ 4 ⁇ will send SRS in different areas of the cell SRS bandwidth.
  • the UE transmits the SRS only on the last single carrier frequency division multiplexing (SC-FDMA) symbol of the subframe.
  • the configuration in which the UE transmits the SRS in the time domain is related to four parameters: a cell-specific period T SFC and a subframe offset A SFC , and a UE-specific period T SRS and a subframe offset l T .
  • Ffset a cell-specific period and subframe offset in the Frequency Division Duplexing (FDD) system.
  • Table 6 shows the cell-specific periods and subframes in the Time Division Duplexing (TDD) system. Offset.
  • the cell-specific period and subframe offsets give the time domain subframe positions in which all UEs in the cell may transmit SRS, while in other subframes, the use of the last SC-FDMA symbol is independent of the transmission of the SRS.
  • Table 7 shows the UE-specific period and subframe offsets for the FDD system.
  • Table 8 shows the UE-specific period and subframe offsets for the TDD system.
  • the UE-specific period and subframe offsets give the time domain period and subframe position at which a UE transmits the SRS.
  • the UE transmits an SRS every 20ms, and its time domain location is transmitted on the first subframe within 20ms.
  • the LTE system does not support uplink single-user multiple input multiple output (SU-MIMO). Therefore, the UE can only transmit one SRS at each moment.
  • the UE of the LTE system is equipped with two transmit antennas to support antenna selection. When the antenna selection of the UE is set to enable, the UE may select an antenna for transmitting the SRS according to different times; 3 ⁇ 4 s .
  • the parameter / 3 ⁇ 4 5 is used to count the number of SRSs that have been sent, since the period in which the UE sends the SRS is fixed, so / 3 ⁇ 4 5 also indicates the time.
  • the formula is:
  • the LTE-Advanced (LTE-A, LTE-Advanced) system is the next-generation evolution of the LTE system.
  • System. SU-MIMO is supported in the uplink, and up to 4 antennas can be used as the uplink transmitting antenna. That is, the UE can simultaneously transmit SRS on multiple antennas at the same time, and the eNB needs to estimate the state on each channel according to the SRS received on each antenna.
  • Sending SRS on multiple antennas can be divided into two different ways according to whether precoding is used: ⁇ precoded SRS and non-precoded SRS.
  • the UE can configure multiple antennas to use the same orthogonal resource through a precoding matrix (PM, Precoding Matrix), for example, using only one cyclic shift code resource.
  • PM Precoding Matrix
  • the UE sends the SRS encoded by a certain precoding matrix on the configured time-frequency resource, and sends the SRS encoded by the other precoding matrix on the resource orthogonal thereto.
  • the UE may transmit the SRS encoded by the precoding matrix PM1 in subframe 0, and transmit the SRS encoded by the precoding matrix PM2 on subframe 1.
  • the eNB can determine which precoding matrix to use by comparing and notify the UE by signaling.
  • the main object of the present invention is to provide a multi-antenna measurement for measuring a reference signal.
  • the sending method and device clarify the specific implementation of transmitting the uplink SRS on multiple antennas.
  • SRS reference signal
  • the method includes: allocating orthogonal resources to different antennas by means of code division multiplexing (CDM), or time division multiplexing (TDM), or frequency division multiplexing (FDM), or any combination of the above, each antenna is in The uplink SRS is transmitted on the orthogonal resources.
  • CDM code division multiplexing
  • TDM time division multiplexing
  • FDM frequency division multiplexing
  • the allocating orthogonal resources to different antennas by using the TDM method includes: transmitting orthogonal time domain resources of the uplink SRS by using different antennas of the TDM side;
  • Allocating orthogonal resources to different antennas by using the FDM method including: passing the FDM side
  • the code domain resource is: a cyclic shift of a root sequence and/or a root sequence
  • the time domain resource is: a subframe position or a subframe offset
  • the frequency domain resources are: a frequency band and/or a frequency comb.
  • the method further includes:
  • the base station (eNB) notifies the terminal device (UE) antennas of the uplink SRS resources by signaling; or
  • the eNB notifies the part of the antenna of the UE to send the resource of the uplink SRS, and the UE determines the resource for sending the SRS by each antenna according to the configured implicit mapping relationship.
  • the frame offset or the subframe position, the implicit mapping relationship is: transmitting the uplink SRS, T in the subframe offset that is allowed to transmit the uplink SRS with the nearest subframe position of ⁇ « ;.
  • Ffset , ⁇ is a known antenna port
  • the subframe offset of the uplink SRS is transmitted; the source is the frequency comb, and the implicit mapping relationship is:
  • the uplink SRS is transmitted on a frequency comb different from C3 ⁇ 4mb, and C3 ⁇ 4mb is the frequency comb used by the antenna j.
  • a multi-antenna transmission method for measuring a reference signal, wherein the uplink SRS is transmitted by using precoding comprising: allocating positive uplink SRSs with different precoding matrices by CDM, or TDM, or FDM, or any combination thereof Crossed resources, each antenna is sent on orthogonal resources Uplink SRS encoded by different precoding matrices.
  • Uplink SRS of the coding matrix is allocated orthogonal resources
  • CDM Code Division Multiple Access
  • TDM Time Division Multiple Access
  • FDM Frequency Division Multiple Access
  • the frequency domain resource is a frequency band and/or a frequency comb
  • the code domain resource is: a cyclic shift of a root sequence and/or a root sequence
  • the time domain resource is: a subframe position or a subframe offset.
  • the method further includes: The eNB notifies the resources corresponding to the precoding matrices of the UE by signaling, or the eNB notifies the resources corresponding to the precoding matrix of the UE by signaling, and the UE determines the resources corresponding to the precoding matrices according to the configured implicit mapping relationship.
  • the resource is a subframe offset or a subframe position, and the implicit mapping relationship is: a child that is allowed to send an uplink SRS frame offset with ⁇ «;.
  • the mapping relationship is as follows: The uplink SRS is transmitted on a frequency comb different from C3 ⁇ 4mb, and the C3 ⁇ 4mb is a frequency comb for transmitting the uplink SRS encoded by the precoding matrix j.
  • the " 1; Among them, 73 ⁇ 4 is the number of transmitting antennas.
  • a multi-antenna transmitting apparatus for measuring a reference signal SRS, which does not use precoding to transmit an uplink SRS includes: an allocating unit and a multi-antenna transmitting unit, wherein the multi-antenna transmitting unit includes a plurality of antennas, and each antenna is used for The uplink SRS is transmitted on the orthogonal resource.
  • the device further includes:
  • a receiving unit configured to receive, by the eNB, the uplink SRS resource by using each antenna sent by the signaling;
  • the receiving unit is configured to receive a part of the day that the eNB sends the signaling
  • the line sends the resource of the uplink SRS.
  • the mapping unit is configured to determine, according to the configured implicit mapping relationship and the resource for sending the uplink SRS by the part of the antenna, the resources for sending the uplink SRS by each antenna.
  • a multi-antenna transmitting apparatus for measuring a reference signal SRS, wherein the uplink SRS is transmitted by using a precoding, the apparatus comprising: a precoding unit, an allocating unit, and a multi-antenna transmitting unit, where
  • the precoding unit is configured to encode the transmitted uplink SRS by using different precoding matrices
  • the multi-antenna transmitting unit includes a plurality of antennas for transmitting uplink SRSs encoded by different precoding matrices on orthogonal resources.
  • the device further includes:
  • a receiving unit configured to receive resources corresponding to each precoding matrix delivered by the eNB by using signaling
  • the UE may provide orthogonal resources for different precoding matrices by using CDM, or TDM, or FDM, or a combination of them; in the case of transmitting the uplink SRS without using precoding, the UE
  • the SRS can be transmitted on orthogonal resources by CDM, or TDM, or FDM, or in combination with each other.
  • the solution of the invention provides a practical implementation for transmitting uplink SRS in the case of multiple antennas.
  • the LTE system can be used in the code domain resource, the time domain resource, and the frequency domain according to the actual situation when the SRS is transmitted by using the precoding, or when the SRS is not used for the precoding. Optimize the combination of resources to improve the efficiency and performance of the LTE-A system.
  • Figure 1 is a schematic diagram of a tree structure of SRS bandwidth
  • FIG. 2 is a schematic view of a comb structure of the SRS
  • FIG. 3 is a schematic diagram of a frequency domain initial position for transmitting a SRS by a UE that allocates different times;
  • FIG. 4 is a schematic diagram of a UE periodically transmitting an SRS on a specific subframe offset;
  • FIG. 5 is a schematic diagram of transmitting an uplink SRS by using a precoding in an FDM mode according to the present invention
  • FIG. 6 is a schematic diagram of Embodiment 1 of transmitting an uplink SRS by using a precoding in a CDM mode according to the present invention
  • FIG. 7 is a schematic diagram of Embodiment 2 of the present invention for transmitting uplink SRS without using precoding in the CDM mode;
  • Embodiment 8 is a schematic diagram of Embodiment 1 of transmitting an uplink SRS without using precoding in a TDM mode according to the present invention
  • FIG. 9 is a schematic diagram of Embodiment 2 of the method for transmitting uplink SRS without using precoding in the TDM mode according to the present invention.
  • FIG. 10 is a schematic diagram of an embodiment of transmitting an uplink SRS without using precoding in an FDM mode according to the present invention
  • FIG. 11 is a schematic diagram of transmitting uplink SRS without using precoding in a combination of CDM & FDM in the present invention
  • FIG. 12 is a schematic structural diagram of an apparatus for transmitting an uplink SRS by using multiple pre-codings in a multi-antenna according to the present invention
  • FIG. 13 is a schematic structural diagram of an apparatus for transmitting an uplink SRS by using multiple pre-codings without precoding.
  • the present invention aims to propose a scheme for transmitting an uplink SRS under multi-antenna conditions. Therefore, it is necessary to consider how to allocate specific resources on multiple antennas and whether precoding needs to be used.
  • orthogonal resources are allocated for the uplink SRSs with different precoding matrices by CDM, or TDM, or FDM, or any combination of the above, and each antenna is transmitted on the orthogonal resources.
  • Upstream SRSs encoded by different precoding matrices such that uplink SRSs encoded by different precoding matrices are transmitted on orthogonal resources; when uplink SRS is transmitted by using precoding, by CDM, or TDM, or FDM, or above Any combination of modes allocates orthogonal resources for different antennas, and each antenna transmits an uplink SRS on orthogonal resources.
  • the uplink SRS is transmitted by using precoding in the FDM mode, the uplink SRS is not used in the CDM mode, and the uplink SRS is not used in the TDM mode.
  • the UE allocates subcarriers in different frequency combs for the SRSs with different precoding matrices. .
  • the UE can obtain the frequency comb for transmitting the uplink SRS encoded by each precoding matrix in two ways: One is a signaling manner, that is, the eNB notifies the UE to send the uplink SRS encoded by each precoding matrix by signaling.
  • the frequency comb is the implicit mapping method, that is, the eNB notifies the frequency comb of the partial precoding matrix of the UE by signaling, such as the frequency comb of one of the precoding matrix codes, and the other precoding matrix
  • the frequency comb used is obtained by the known frequency mapping of the transmitted uplink SRS.
  • the implicit mapping relationship may be pre-configured in the UE, or may be notified to the UE in advance by signaling.
  • the specific implementation of the implicit mapping relationship may be various. In an actual application, if there is only one implicit mapping relationship, the implicit mapping relationship may be pre-configured in the UE; if there are multiple implicit mapping relationships, the UE may be notified by signaling which implicit mapping relationship is currently used.
  • the number of precoding matrices is 2, which are respectively PM0 and PM1; and, the UE has two transmit antennas, which are TX0 and TX1 respectively, and as shown in FIG. 5, the UE is determined by signaling or implicit mapping.
  • Each antenna transmits a frequency comb of an uplink SRS, and allocates TX0 through an FDM method.
  • the uplink SRS encoded with PM1 is transmitted on orthogonal subcarriers.
  • the uplink SRS is transmitted without using precoding.
  • Different antennas transmit uplink SRS on orthogonal code domain resources.
  • the UE may allocate orthogonal code resources by allocating different cyclic shifts used for transmitting uplink SRSs for different antennas, so that different antennas transmit uplink SRSs on orthogonal code domain resources. .
  • the UE can obtain the cyclic shift used by each antenna to send the uplink SRS in two ways: one is a signaling manner, that is, the eNB notifies the UE to transmit the cyclic shift used by the uplink SRS by signaling; This is a way of implicit mapping, that is, the eNB notifies the partial antenna of the UE by signaling, such as the cyclic shift used by one antenna to transmit the uplink SRS, and the implicit shift of the cyclic shift used by other antennas to transmit the uplink SRS The mapping relationship is obtained by this known cyclic shift.
  • the implicit mapping relationship may be pre-configured in the UE, or may be notified to the UE by signaling in advance.
  • FIG. 6 is a schematic diagram of Embodiment 1 of the present invention for transmitting uplink SRS without using precoding in the CDM mode. As shown in FIG.
  • the UE has two transmit antennas, namely TX0 and TX1, respectively, and is explicitly notified by signaling.
  • the cyclic shift used by the two antennas ( ⁇ , ⁇ ) of the UE to transmit the uplink SRS is 3 ⁇ 4. And / S 1 .
  • the eNB after the UE receives signaling on the transmission of the root sequence TX0 SRS0 sequence cyclic shift obtained cs o n, transmitting SRS1 root sequence cyclically shifted sequence obtained in the TX1 3 ⁇ 4, SRS1 sequence sequence SRS0 In the code domain orthogonal, in this way, the UE can transmit different SRSs whose code domains are orthogonal through orthogonal code domain resources.
  • FIG. 7 is a schematic diagram of Embodiment 2 of the present invention for transmitting uplink SRS without using precoding in the CDM mode.
  • the UE has two transmit antennas, namely TX0 and TX1, respectively, and is explicitly notified by signaling.
  • the cyclic shift used by UE TX0 to transmit the uplink SRS is n cs o .
  • the UE transmits on the root sequence cyclic shift TXO n CS () SRS0 sequence obtained, the transmission of the root sequence circulates TX1 Shift/i cs l obtained SRS1 sequence, SRS0 sequence and SRS 1 sequence are orthogonal in the code domain, so that the UE can allocate different cyclic shifts used for transmitting uplink SRS on different antennas by CDM to obtain orthogonality.
  • the code domain resource enables different antennas to transmit SRSs whose code domains are orthogonal.
  • each sequence of the uplink SRS has good orthogonality
  • the UE may allocate different subframe positions of the uplink SRS for different antennas, so that different antennas transmit the uplink SRS on the orthogonal time domain resources.
  • the UE can obtain the subframe position of each antenna transmitting the uplink SRS in two ways: one is a signaling manner, that is, the eNB notifies the UE to transmit the subframe position of the uplink SRS by signaling; the other is implicit
  • the manner of mapping that is, the eNB notifies the UE part of the antenna by signaling, such as one of the antennas transmitting the uplink SRS subframe position, and the other antenna transmits the uplink SRS subframe position by the configured implicit mapping relationship by the known transmission
  • the subframe position of the uplink SRS is obtained.
  • the implicit mapping relationship may be pre-configured in the UE, or may be notified to the UE by signaling in advance.
  • the implicit mapping relationship For example, it is known that the subframe offset of antenna port 0 transmitting the uplink SRS is ⁇ «.
  • the subframe position at which the antenna port transmits the uplink SRS may be uniquely determined by the subframe offset; according to the implicit mapping relationship of the configuration, the other antenna ports are in the subframe offset that allows the uplink SRS to be transmitted. ⁇ .
  • the uplink SRS is transmitted at the most recent subframe position.
  • the implicit mapping relationship may be pre-configured in the UE; if there are multiple implicit mapping relationships, the UE may be notified by signaling which implicit mapping relationship is currently used.
  • FIG. 8 is a schematic diagram of Embodiment 1 of transmitting TRS in the TDM mode without using precoding.
  • the UE has two transmit antennas, namely TX0 and TX1, respectively, and the UE notifies by signaling.
  • the method obtains the subframe position at which each antenna transmits the uplink SRS.
  • the eNB explicitly informs the UE that the two antennas ( ⁇ , ⁇ ) transmit the subframe position of the uplink SRS, that is, the subframe offset is ⁇ «. And oh. # ⁇ .
  • TX0 is offset to ⁇ « in the subframe.
  • the subframe position transmits the uplink SRS, and TX1 is offset to T in the subframe.
  • the uplink SRS is transmitted in the subframe position of the ffset l , and the SRSs sent by the two antennas are orthogonal in the time domain, so that the UE can send the uplink SRS on different time domain resources by using the TDM method to obtain the time domain orthogonality. , making different antennas Send time-domain orthogonal SRS.
  • FIG. 9 is a schematic diagram of Embodiment 2 of the method for transmitting uplink SRS by using precoding in the TDM mode according to the present invention.
  • the cell-specific period of the cell is 5 ms
  • the subframe offset is ⁇ 0, 1 ⁇ .
  • One UE in the cell has two transmit antennas, namely TX0 and TX1, respectively, and the UE obtains the subframe position of each antenna transmitting the uplink SRS by means of implicit mapping.
  • the UE After receiving the signaling of the eNB, the UE according to the implicit mapping relationship TX1 is in the relationship with ⁇ «.
  • TX0 is offset to T in the subframe. Ffset , the subframe position of 0 transmits the uplink SRS, and TX1 transmits the uplink SRS in the subframe position where the subframe offset is ⁇ ⁇ , and the SRSs sent by the two antennas are orthogonal in the time domain, so that the UE can make different antennas by TDM mode.
  • the uplink SRS is transmitted on different time domain resources to obtain time domain orthogonality, so that different antennas transmit time-domain orthogonal SRS.
  • the uplink SRS is transmitted without using precoding.
  • Different antennas transmit uplink SRS on orthogonal frequency domain resources.
  • the UE may allocate different frequency combs for transmitting uplink SRSs for different antennas, so that different antennas transmit uplink SRSs on orthogonal frequency domain resources.
  • the UE can obtain the frequency comb used by each antenna to send the uplink SRS in two ways: one is a signaling manner, that is, the eNB notifies the UE to transmit the frequency comb used by the uplink SRS by signaling; the other is Implicit mapping, that is, the eNB notifies the partial antenna of the UE by signaling, such as the frequency comb used by one of the antennas to transmit the uplink SRS, and the frequency comb used by the other antennas for transmitting the uplink SRS is configured by the implicit mapping relationship.
  • the known frequency comb used to transmit the uplink SRS is obtained.
  • the implicit mapping relationship may be pre-configured in the UE, or may be notified to the UE by signaling in advance.
  • the specific implementation of the implicit mapping relationship may be various, for example, sending an uplink SRS on a frequency comb different from C3 ⁇ 4mb. ⁇ mb is the frequency comb used by the antenna_.
  • the implicit mapping relationship may be pre-configured in the UE; if there are multiple implicit mapping relationships, the UE may be notified by signaling which implicit mapping relationship is currently used.
  • the UE has two transmit antennas, TX0 and TX1, respectively, and the UE signaling explicitly informs the UE that the two antennas ( ⁇ , ⁇ ) transmit the frequency domain position used by the uplink SRS, that is, the frequency comb CombO. And Combl.
  • the TX0 sends an uplink SRS on the carrier with the CombO in the frequency domain
  • the TX1 sends the uplink SRS on the carrier in the frequency domain
  • the SRS sent by the two antennas is orthogonal in the frequency domain.
  • the UE sends the uplink SRS on different frequency domain resources by using the FDM mode to obtain frequency domain orthogonality, so that different antennas transmit orthogonal SRS.
  • the UE has two transmit antennas, TX0 and TX1, respectively, and the UE obtains the frequency comb used by each antenna to send the uplink SRS by implicit mapping.
  • the TX1 of the UE sends the uplink SRS on the carrier whose frequency domain is Combl, and two The SRSs sent by the antennas are orthogonal in the frequency domain.
  • the UE sends different uplink antennas on different frequency domain resources by FDM to obtain frequency domain orthogonality, so that different antennas transmit orthogonal SRSs.
  • each antenna in addition to the implementation of the frequency ⁇ ⁇ , each antenna can be transmitted with uplink SRS on orthogonal frequency domain resources by allocating orthogonal frequency bands for different antennas.
  • CDM CDM combined with TDM
  • CDM combined with FDM CDM combined with FDM
  • TDM & FDM TDM combined with FDM
  • CDM & TDM mode when the uplink SRS is transmitted without precoding, the antennas are grouped, and the CDM and/or TDM modes are used between the groups, and the TDM and/or CDM modes are used in the group.
  • Each antenna transmits an uplink SRS on orthogonal code domain resources and/or time domain resources.
  • the UE may obtain the code domain resource for sending the uplink SRS by each antenna by means of signaling notification or implicit mapping, by signaling or implicitly
  • the antennas are grouped, and the CDM and/or FDM modes are used between the groups, and the FDM and/or CDM modes are used in the group.
  • Each antenna transmits an uplink SRS on orthogonal code domain resources and/or frequency domain resources.
  • the UE may obtain the code domain resource for sending the uplink SRS by each antenna by means of signaling notification or implicit mapping, and use the signaling notification or the hidden picture 11 to transmit the uplink SRS without using precoding in the combination of CDM & FDM in the present invention.
  • the antenna is divided into two groups, TX0 and TX1 are one group, and TX2 and TX3 are another group, and the UE allocates code resources for transmitting uplink SRS for different antennas through CDM mode.
  • the orthogonal frequency resources are allocated to the antenna by the FDM method.
  • the uplink SRS transmitted on TX0 uses cyclic shift CS0
  • the uplink SRS transmitted on TX1 uses cyclic shift CS1
  • the uplink SRS transmitted on TX2 Using cyclic shift CSO, the uplink SRS transmitted on TX3 uses cyclic shift CS1, and each antenna transmits an uplink SRS on orthogonal code resources and/or frequency resources.
  • the antennas are grouped, and the FDM and/or TDM modes are used between the groups, and the TDM and/or FDM modes are used in the group.
  • Each antenna transmits an uplink SRS on orthogonal time domain resources and/or frequency domain resources.
  • the UE may obtain the time domain resource of each uplink antenna sent by each antenna by means of signaling notification or implicit mapping, by signaling or implicitly
  • the different antennas are configured to allocate the orthogonal code domain resources of the uplink SRS to the same antenna
  • the TDM mode is to allocate the orthogonal time domain resources for transmitting the uplink SRS for different antennas, and pass the FDM.
  • the method refers to allocating orthogonal frequency domain resources for transmitting uplink SRS for different antennas.
  • the code domain resource and/or the time domain resource and/or the frequency domain resource for transmitting the uplink SRS by each antenna may be obtained by means of signaling, or may be obtained by means of implicit mapping.
  • the specific implementation is basically the same as the above description. The only difference is that the object of resource allocation is no longer an antenna, but a precoding matrix, and therefore, it will not be described again.
  • the apparatus includes a pre-coding unit, an allocating unit, and a multi-antenna transmitting unit, where the pre-encoding unit is configured to transmit
  • the uplink SRS is encoded by using different precoding matrices;
  • the allocation unit is configured to allocate orthogonal resources for uplink SRSs with different precoding matrices;
  • the multi-antenna transmitting unit includes multiple antennas, and each antenna is used for orthogonal resources.
  • the uplink SRS encoded by the different precoding matrix is transmitted.
  • the device further includes: a receiving unit, configured to receive resources corresponding to each precoding matrix delivered by the eNB by using the signaling, and provide the resources to the allocating unit; or, the device further includes: a receiving unit and a mapping unit, where the receiving unit is configured to receive And the mapping unit is configured to send, according to the configured implicit mapping relationship and the resource corresponding to the precoding matrix, the uplink SRS sent by using different precoding matrices according to the configured implicit mapping relationship and the resource corresponding to the precoding matrix. Resources and provide them to the allocation unit.
  • FIG. 13 is a schematic structural diagram of an apparatus for transmitting an uplink SRS by using multiple pre-codings in a multi-antenna according to the present invention.
  • the apparatus includes an allocating unit and a multi-antenna transmitting unit, where the allocating unit is configured to allocate and transmit uplinks for different antennas.
  • the multi-antenna transmitting unit includes a plurality of antennas, and each antenna is configured to transmit an uplink SRS on an orthogonal resource.
  • the device further includes: And a receiving unit, configured to receive, by the eNB, the uplink SRS resource sent by the eNB, and provide the resource to the allocating unit, and provide the resource to the allocating unit; or the device further includes: a receiving unit and a mapping unit, where the receiving unit is configured to receive the eNB by using signaling
  • the transmitting part of the antenna transmits the resource of the uplink SRS and provides the resource to the mapping unit.
  • the mapping unit is configured to determine, according to the configured implicit mapping relationship and the resource for transmitting the uplink SRS by the part of the antenna, the resource for sending the uplink SRS by each antenna, and provide the resource to the allocation unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种测量参考信号的多天线发送方法及装置。本发明方案中,在采用预编码发送上行SRS的情况下,UE可以通过CDM、 或 TDM、FDM、或相互结合的方式为不同的预编码矩阵提供正交的资源;在不采用预编码发送上行SRS的情况下,UE可以通过CDM、或 TDM、或FDM、或相互结合的方式在正交的资源上发送SRS。本发明方案为多天线情况下发送上行SRS提供了切实可行的实现方式。

Description

测量参考信号的多天线发送方法及装置 技术领域
本发明涉及通信领域, 特别是指一种测量参考信号 (SRS , Sounding Reference Signal ) 的多天线发送方法及装置。 背景技术
SRS是一种终端设备 ( UE, User Equipment )与基站( eNB, e-Node-B ) 间用来测量无线信道信息 (CSI, Channel State Information ) 的信号。 在长 期演进( LTE , Long Term Evolution ) ***中, UE按照 eNB指示的带宽、 频域位置、 周期和子帧偏置等参数, 定时发送上行 SRS。 eNB根据接收到 的 SRS判断 UE上行的 CSI, 并根据得到的 CSI进行频域选择调度、 闭环 功率控制等操作。
LTE***中, UE发送的 SRS序列是通过对一条根序列 7u v (n)在时域进 行循环移位 得到的。对同一条根序列进行不同的循环移位 , 就能够得到 不同的 SRS序列, 并且得到的这些 SRS序列之间相互正交, 因此, 可以将 这些 SRS序列分配给不同的 UE使用, 以实现 UE间的码分多址。 在 LTE ***中, SRS序列定义了 8个循环移位,通过 3bit的信令来指示,分别为 0、 1、 2、 3、 4、 5、 6和 7。 也就是说, 在同一时频资源下, 小区内的 UE有 8 个可用的码资源, eNB最多可以配置 8个 UE在相同的时频资源上同时发 送 SRS。
LTE***中, SRS的频域带宽釆用树型结构进行配置。 每一种 SRS带 宽配置 (SRS bandwidth configuration )对应一个树形结构, 最高层的 SRS 带宽( SRS-Bandwidth )对应该 SRS带宽配置的最大 SRS带宽,或称为 SRS 带宽范围。 表 1至表 4给出了不同上行 SRS带宽范围内的 SRS带宽配置, 其中 A 为上行 SRS带宽所对应的资源块( RB , Resource Block )数量。
Figure imgf000004_0001
表 2 40 < ≤ 60的 SRS带宽配置
Figure imgf000004_0002
4 48 1 16 3 8 2 4 2
5 40 1 20 2 4 5 4 1
6 36 1 12 3 4 3 4 1
7 32 1 16 2 8 2 4 2 表 3 60 < NH≤ 80的 SRS带宽配置
SRS bandwidth SRS-Bandwidth SRS-Bandwidth SRS-Bandwidth SRS-Bandwidth configuration DSRS = 0 DSRS = 1 DSRS = 2 DSRS = 3
c ^SRS mSRS,b Nb mSRS,b Nb mSRS,b Nb mSRS,b Nb
0 96 1 48 2 24 2 4 6
1 96 1 32 3 16 2 4 4
2 80 1 40 2 20 2 4 5
3 72 1 24 3 12 2 4 3
4 64 1 32 2 16 2 4 4
5 60 1 20 3 4 2 4 1
6 48 1 24 2 12 2 4 3
7 48 1 16 3 8 2 4 2 表 4 80 < ≤ 110的 SRS带宽配置
以表 1中 SRS带宽配置索引 1、 即 Cs s = l为例对 SRS带宽的树形结构 进行说明, ^ = 0为 0层, 是树形结构的最高层, 这一层的 SRS带宽为 32 个 RB所对应的带宽, 是 SRS带宽配置 1的最大 SRS带宽; BSRS = 为 1层, 这一层的 SRS带宽为 16个 RB所对应的带宽, 且上一层、 即 0层的一个 SRS带宽拆分成 2个 1层的 SRS带宽; BSRS = 2为 2层, 这一层的 SRS带宽 为 8个 RB所对应的带宽,且上一层、 即 1层的一个 SRS带宽拆分成 2个 2 层的 SRS带宽; s s = 3为 3层, 这一层的 SRS带宽为 4个 RB所对应的带 宽, 且上一层、 即 2层的一个 SRS带宽拆分成 2个 3层的 SRS带宽, 其树 形结构如图 1所示。
另外, 在同一个 SRS带宽内, SRS的子载波是间隔放置的, 也就是说, SRS的发送釆用梳状结构, LTE***中频率梳 ( frequency comb ) 的数量为 2。如图 2所示,每个 UE发送 SRS时,只使用两个频率梳中的一个, Comb=0 或 Comb=l ,这样, UE只使用频域索引为偶数或奇数的子载波( sub-carrier ) 发送 SRS。 这种梳状结构允许更多的 UE在同一 SRS带宽内发送 SRS。
LTE***中, eNB首先为小区内的所有 UE分配一个 SRS带宽配置索 引 Cs s , UE根据 C ^和当前上行带宽所对应的 RB数、 即 A 能够确定使用 表 1至表 4中的哪一个表,然后再根据 Cs s就可以确定当前小区使用的 SRS 带宽配置。 对于一些 UE, eNB还会为其分配一个 SRS带宽索引 s s (或称 为所在层的索引)。 UE根据小区内的 SRS带宽配置和 SRS带宽索引 BSRS , 就可以得到该 UE使用的 SRS带宽。 例如, 当前小区 SRS带宽配置索引 CSRS = NR U B L = 50 ,则 UE确定当前小区的 SRS带宽配置为表 2中的第二行。 如果当前小区的 eNB为 UE分配的 SRS带宽索引为 1 , 则该 UE的 SRS带 宽占 16个 RB, 且该 UE的 SRS带宽的位置在 SRS带宽的范围内, 即最大 SRS带宽 48个 RB的范围内。
UE得到自身的 SRS带宽后,将根据 eNB发送的上层信令频域位置 ¾c 来确定自身发送 SRS的频域初始位置。 如图 3所示, 分配了不同/ ¾^的 UE 将会在小区 SRS带宽的不同区域发送 SRS。
LTE ***中, 从时域上看, UE 只在子帧的最后一个单载波频分复用 ( SC-FDMA, Single Carrier Frequency Division Multiple Access )符号上发 送 SRS。UE在时域发送 SRS的配置与四个参数有关:小区专属( cell-specific ) 的周期 TSFC和子帧偏置 ASFC , 及 UE专属( UE-specific ) 的周期 TSRS和子帧偏 l T。ffset。 表 5给出了频分双工 ( FDD, Frequency Division Duplexing ) *** 中小区专属的周期和子帧偏置, 表 6给出了时分双工(TDD, Time Division Duplexing ) ***中小区专属的周期和子帧偏置。 小区专属的周期和子帧偏 置给出了小区内所有 UE可能发送 SRS的时域子帧位置, 而在其他子帧上, 最后一个 SC-FDMA符号的使用与 SRS的发送无关。
Figure imgf000006_0001
TSFC (subframes) ASFC (subframes)
0 0000 1 {0}
1 0001 2 {0}
2 0010 2 {1}
3 0011 5 {0}
4 0100 5 {1}
5 0101 5 {2}
6 0110 5 {3}
7 0111 5 {0,1}
8 1000 5 {2,3}
9 1001 10 {0}
10 1010 10 {1}
11 1011 10 {2}
12 1100 10 {3}
13 1101 10 {0,1,2,3,4,6,8}
14 1110 10 {0,1,2,3,4,5,6,8}
15 1111 reserved reserved
FDD***中发送 SRS的子帧配置 (FDD sounding reference signal subframe configuration)
Figure imgf000007_0001
15 1111 reserved reserved
TDD***中发送 SRS的子帧配置 (TDD sounding reference signal subframe configuration) 例如, 表 5 中第八行 srsSubframeConfiguration=7 , 对应的 TSFC = 5、 ASFC = {0,1 } , 则小区内小区专属的周期为 5个子帧, 每个周期内的子帧 0和 子帧 1的位置将可以被 UE用来发送 SRS。
表 7给出了 FDD*** UE专属的周期和子帧偏置, 表 8给出了 TDD ***中 UE专属的周期和子帧偏置。 UE专属的周期和子帧偏置给出了一个 UE发送 SRS的时域周期和子帧位置。
Figure imgf000008_0001
表 7 FDD***中 UE专属 SRS周期 7 ^和子帧偏置 Γσ/ 配置 (UE Specific SRS Periodicity Ts and Subframe Offset Configuration Toffset,FDD
SRS Configuration Index I SRS SRS Periodicity TSRS (ms) SRS Subframe Offset T ,
0 2 0,1
1 2 0,2
2 2 1,2
3 2 0,3
4 2 1,3
5 2 0,4 9 2 3,4
10-14 5
15-24 10 I SRS
25-44 20 I 1 SRS -25 J
45-84 40 I _45
1 SRS ^
85-164 80 I SRS
165-324 160 -165
325-644 320 I SRS -325
645-1023 reserved reserved 表 8 TDD***中 UE专属 SRS周期 7 ^和子帧偏置 Γσ/ 配置 (UE Specific SRS Periodicity Ts and Subframe Offset Configuration Toffset,TDD
例如, 表 7中 /s s = 17 , 如图 4所示, UE每隔 20ms发送一个 SRS, 其 时域位置在 20ms内的第一个子帧上发送。
LTE ***不支持上行单用户多输入多输出 (SU-MIMO , Single User Multiple Input Multiple Output ), 因此, UE在每一时刻只能有一根天线发送 SRS。 为对抗时间衰落, LTE***的 UE配有 2根发射天线, 以支持天线选 择。 当 UE的天线选择置为使能, UE可以根据不同时间的; ¾s来选择发送 SRS的天线。 参数/ ¾5用来统计已经发送过的 SRS的数量, 因为 UE发送 SRS的周期是固定的, 所以/ ¾5也指示了时间。 SRS在频域的跳频没有使能 时, 天线索引 +SRS )的计算公式为: +SRS ) = nSRS mod 2; SRS 在频域的跳频 使 能 时 , 天 线 索 引 a(¾s ) 的 计 算 公 式 为 :
Figure imgf000009_0001
高级 LTE ( LTE-A, LTE- Advanced ) ***是 LTE***的下一代演进系 统。在上行支持 SU-MIMO,并且最多可以使用 4根天线作为上行发射天线。 也就是说, UE在同一时刻可以在多根天线上同时发送 SRS , 而 eNB需要 根据每根天线上收到的 SRS来估计每条信道上的状态。
在多天线上发送 SRS可以按照是否釆用预编码(precoding )分为两种 不同的方式: 釆用预编码 ( precoded ) 发送 SRS 和不釆用预编码 ( non-precoded )发送 SRS。
釆用预编码发送 SRS 时, UE可以通过预编码矩阵(PM, Precoding Matrix )配置多根天线使用相同的正交资源, 例如只使用一个循环移位码资 源。釆用预编码发送 SRS,则 UE在配置的时频资源上发送经过某个预编码 矩阵编码后的 SRS , 并通过在与其正交的资源上发送经过其他预编码矩阵 编码后的 SRS。 例如, UE可以在子帧 0发送被预编码矩阵 PM1编码过的 SRS, 在子帧 1上发送被预编码矩阵 PM2编码过的 SRS。 eNB可以通过对 比确定釆用何种预编码矩阵, 并通过信令来通知 UE。 但是, 釆用预编码发 送 SRS的相关实现中, 还没有涉及到频分复用 (FDM, Frequency Division Multiplexing ) 方式下的具体处理, 也没有涉及到码分复用 (CDM , Code Division Multiplexing ). 时分复用 (TDM, Time Division Multiplexing )的具 体实现方式。
不釆用预编码发送 SRS时, 可以获得全信道矩阵, 从而得到更准确的 信道估计。 不釆用预编码发送 SRS , 则需要为不同的天线配置一组相互正 交的资源。 但是, 如何得到正交的资源在现有方案中还没有给出具体实现 方式的描述。
综上所述, 在多根天线上发送 SRS的实现方案就成了一个亟待解决的 问题。 发明内容
有鉴于此, 本发明的主要目的在于提供一种测量参考信号的多天线发 送方法及装置, 明确多天线上发送上行 SRS的具体实现。
为达到上述技术问题, 本发明的技术方案是这样实现的:
一种测量参考信号(SRS )的多天线发送方法, 不釆用预编码发送上行
SRS , 该方法包括: 通过码分复用 (CDM )、 或时分复用 (TDM )、 或频分 复用 (FDM )、 或以上任意组合的方式为不同天线分配正交的资源, 各天线 在正交的资源上发送上行 SRS。
, 包括: 通过 CDM方
Figure imgf000011_0001
所述通过 TDM方式为不同天线分配正交的资源, 包括: 通过 TDM方 不同天线分配发送上行 SRS的正交时域资源;
所述通过 FDM方式为不同天线分配正交的资源, 包括: 通过 FDM方
Figure imgf000011_0002
所述通过 CDM、 TDM、 FDM相结合的方式为不同天线分配正交的资 和 /或通过 TDM方式为不同天线分配发送上行 SRS 的正交时域资源, 和 / 高级长期演进( LTE- A ) ***中,
所述码域资源为: 根序列和 /或根序列的循环移位;
所述时域资源为: 子帧位置或子帧偏置;
所述频域资源为: 频带和 /或频率梳。
所述为不同天线分配正交的资源之前, 进一步包括:
基站(eNB)通过信令通知终端设备 (UE)各天线发送上行 SRS的资 源; 或者,
eNB通过信令通知 UE部分天线发送上行 SRS的资源, UE根据配置的 隐含映射关系确定各天线发送 SRS的资源。 源为根序列的循环移位, 所述隐含映射关系为: )modN , 其中, 为天线端口索引, 《=±1, ¾;为已知的天线端口 _ 发送上行 SRS所 使用的循环移位, A=0,1,2,...,N_1, N为循环移位的总数量, = 0,1,...,N_1, ; = 0,l,...,N-l; 源为子帧偏置或子帧位置, 所述隐含映射关系为: 在允许发送上行 SRS的 子帧偏置中与 Γ«;.最近的子帧位置上发送上行 SRS, T。ffset,〗为已知天线端口
_ 发送上行 SRS的子帧偏置; 源为频率梳, 所述隐含映射关系为: 在与 C¾mb 不同的频率梳上发送上行 SRS, C¾mb是天线 j所釆用的频率梳。
所述《=1;
Figure imgf000012_0001
其中, 7¾为发送天线数量。
一种测量参考信号的多天线发送方法, 釆用预编码发送上行 SRS, 该 方法包括: 通过 CDM、 或 TDM、 或 FDM、 或以上任意组合的方式为釆用 不同预编码矩阵的上行 SRS分配正交的资源, 各天线在正交的资源上发送 经不同预编码矩阵编码后的上行 SRS。
所述通过 CDM方式为釆用不同预编码矩阵的上行 SRS分配正交的资 所述通过 TDM方式为釆用不同预编码矩阵的上行 SRS分配正交的资 所述通过 FDM方式为釆用不同预编码矩阵的上行 SRS分配正交的资
所述通过 CDM、 TDM、 FDM相结合的方式为釆用不同预编码矩阵的 上行 SRS分配正交的资源, 包括: 通过 CDM方式为不同预编码矩阵分配
LTE-A***中,
所述频域资源为频带和 /或频率梳;
所述码域资源为: 根序列和 /或根序列的循环移位;
所述时域资源为: 子帧位置或子帧偏置。
所述为不同天线分配正交的频域资源之前, 进一步包括: eNB通过信令通知 UE各预编码矩阵对应的资源; 或者 , eNB通过信令通知 UE部分预编码矩阵对应的资源, UE根据配置的隐 含映射关系确定各预编码矩阵对应的资源。
如果为不同预编码矩阵分配正交的资
所述资源为根序列 的循环移位, 所述隐含映射关 系 为 : nCS i = {a . nCS J + A ) mod N , 其中, 为预编码矩阵索引, "= ± 1 , nCS j为已知发 送釆用预编码矩阵 j编码的上行 SRS所使用的循环移位, A = 0,1,2,..., N _1 , N为循环移位的总数量, i = 0,l,..., N - l , ; = 0,l, ..., N-l ; 所述资源为子帧偏置或子帧位置, 所述隐含映射关系为: 在允许发送上行 SRS的子帧偏置中与 Γ«;.最近的子帧位置上发送上行 SRS, Τ 为已知发 送釆用预编码矩阵 j编码的上行 SRS的子帧偏置; 所述资源为频率梳, 所述隐含映射关系为: 在与 C¾mb 不同的频率梳上发 送上行 SRS , C¾mb是发送釆用预编码矩阵 j编码的上行 SRS的频率梳。
所述《=1 ; 所述
Figure imgf000014_0001
其中, 7¾为发送天线数量。
一种测量参考信号 SRS 的多天线发送装置, 不釆用预编码发送上行 SRS, 该装置包括: 分配单元和多天线发送单元, 其中, 所述多天线发送单元包括多个天线, 各天线用于在正交资源上发送上 行 SRS。
该装置进一步包括:
接收单元,用于接收 eNB通过信令下发的各天线发送上行 SRS的资源; 或者,
接收单元和映射单元, 接收单元用于接收 eNB通过信令下发的部分天 线发送上行 SRS的资源; 映射单元用于根据配置的隐含映射关系和部分天 线发送上行 SRS的资源确定各天线发送上行 SRS的资源。
一种测量参考信号 SRS的多天线发送装置,釆用预编码发送上行 SRS, 该装置包括: 预编码单元、 分配单元和多天线发送单元, 其中,
所述预编码单元用于对发送的上行 SRS 釆用不同预编码矩阵进行编 码; 源;
所述多天线发送单元包括多个天线, 用于在正交的资源上发送经不同 预编码矩阵编码后的上行 SRS。
该装置进一步包括:
接收单元, 用于接收 eNB通过信令下发的各预编码矩阵对应的资源; 或者,
接收单元和映射单元, 接收单元用于接收 eNB通过信令下发的部分预 编码矩阵对应的资源; 映射单元用于根据配置的隐含映射关系和部分预编 本发明方案中, 在釆用预编码发送上行 SRS 的情况下, UE可以通过 CDM、 或 TDM、 或 FDM、 或相互结合的方式为不同的预编码矩阵提供正 交的资源; 在不釆用预编码发送上行 SRS的情况下, UE可以通过 CDM、 或 TDM、 或 FDM、 或相互结合的方式在正交的资源上发送 SRS。 本发明 方案为多天线情况下发送上行 SRS提供了切实可行的实现方式。 根据本发 明提供的方案, 能够使 LTE***在釆用预编码发送 SRS的情况下, 或者不 釆用预编码发送 SRS的情况下, 都可以根据实际情况在码域资源、 时域资 源和频域资源间做优化组合, 从而提升 LTE-A***的效率与性能。 附图说明
图 1为 SRS带宽的树形结构示意图;
图 2为 SRS的梳状结构示意图;
图 3为分配不同 ¾^的 UE发送 SRS的频域初始位置示意图; 图 4为 UE周期性地在特定子帧偏置上发送 SRS的示意图;
图 5为本发明中 FDM方式下釆用预编码发送上行 SRS的示意图; 图 6为本发明中 CDM方式下不釆用预编码发送上行 SRS实施例一的 示意图;
图 7为本发明中 CDM方式下不釆用预编码发送上行 SRS实施例二的 示意图;
图 8为本发明中 TDM方式下不釆用预编码发送上行 SRS实施例一的 示意图;
图 9为本发明中 TDM方式下不釆用预编码发送上行 SRS实施例二的 示意图;
图 10为本发明中 FDM方式下不釆用预编码发送上行 SRS实施例的示 意图;
图 11为本发明中 CDM&FDM相结合的方式下不釆用预编码发送上行 SRS的示意图;
图 12为本发明中多天线釆用预编码发送上行 SRS的装置结构示意图; 图 13为本发明中多天线不釆用预编码发送上行 SRS 的装置结构示意 图。 具体实施方式
本发明旨在提出多天线条件下发送上行 SRS的方案, 因此, 需要考虑 如何在多根天线上分配具体的资源, 以及是否需要使用预编码。 本发明中, 釆用预编码发送上行 SRS时, 通过 CDM、 或 TDM、 或 FDM、 或以上任意 组合的方式为釆用不同预编码矩阵的上行 SRS分配正交的资源, 各天线在 正交的资源上发送经不同预编码矩阵编码后的上行 SRS, 以使经过不同预 编码矩阵编码的上行 SRS 在正交的资源上发送; 不釆用预编码发送上行 SRS时, 通过 CDM、 或 TDM、 或 FDM、 或以上任意组合的方式为不同天 线分配正交的资源, 各天线在正交的资源上发送上行 SRS。
下面首先分别描述 FDM方式下釆用预编码发送上行 SRS、 CDM方式 下不釆用预编码发送上行 SRS、 TDM方式下不釆用预编码发送上行 SRS、
FDM方式下釆用预编码发送上行 SRS
由于 SRS带宽中釆用梳状结构, 不同频率梳的频率之间是正交的, 因 此, 本发明提出 FDM方式下, UE为釆用不同预编码矩阵的 SRS分别分配 不同频率梳中的子载波。 UE可以通过两种方式来获得用来发送各预编码矩 阵编码后的上行 SRS的频率梳: 一种是信令通知的方式, 即 eNB通过信令 通知 UE发送各预编码矩阵编码的上行 SRS的频率梳; 另一种是隐含映射 的方式, 即 eNB通过信令通知 UE部分预编码矩阵釆用的频率梳、 如其中 一个预编码矩阵编码釆用的频率梳, 而其他预编码矩阵所釆用的频率梳通 过配置的隐含映射关系由该已知的发送上行 SRS的频率梳来得到。 所述隐 含映射关系可以预先配置在 UE中, 也可以预先通过信令通知给 UE, 隐含 映射关系的具体实现可以有很多种。 实际应用中, 如果只有一个隐含映射 关系,可以将该隐含映射关系预先配置在 UE中;如果有多个隐含映射关系, 则可以通过信令通知 UE当前使用哪个隐含映射关系。
例如, 预编码矩阵的数量为 2, 分别为 PM0和 PM1 ; 并且, UE有两 根发射天线, 分别为 TX0和 TX1 , 如图 5所示, 通过信令通知或隐含映射 的方式使 UE确定各天线发送上行 SRS的频率梳,通过 FDM方式分配 TX0、 TX1在 Comb=0的载波上发送釆用 PMO编码的上行 SRS, 分配 TX0、 TX1 在 Comb=l的载波上发送釆用 PM1编码的上行 SRS,这样,就使得釆用 PM0 编码的上行 SRS和釆用 PM1编码的上行 SRS在正交的子载波上发送。
另外, 在 FDM方式下, 除了频率^ ^的实现方式外, 也可以通过为不同 预编码矩阵分配正交的频带, 或通过分配正交的频带和不同频率梳的方式
CDM方式下不釆用预编码发送上行 SRS 不同天线在正交的码域资源上发送上行 SRS。 具体地, LTE-A***中, UE 可以通过为不同天线分配发送上行 SRS所使用的不同循环移位来实现正交 码资源的分配, 以使不同天线在正交的码域资源上发送上行 SRS。 UE可以 通过两种方式来获得各天线发送上行 SRS所使用的循环移位: 一种是信令 通知的方式, 即 eNB通过信令通知 UE各天线发送上行 SRS所使用的循环 移位; 另一种是隐含映射的方式, 即 eNB通过信令通知 UE部分天线、 如 其中一根天线发送上行 SRS所使用的循环移位, 而其他天线发送上行 SRS 所使用的循环移位通过配置的隐含映射关系由该已知的循环移位来得到。
所述隐含映射关系可以预先配置在 UE中,也可以预先通过信令通知给 UE。 隐含映射关系的具体实现可以有很多种, 例如, 已知天线端口 0发送 上行 SRS所使用的循环移位为 ncs o , 则其他天线端口发送上行 SRS所使用 的循环移位的计算公式可以为: wCSi
Figure imgf000018_0001
+A )modN , 其中, "=±1 ,
=0,1,2,...,N-1, 为天线端口索引, = 0,1,...,N_1, N为循环移位的总数量。 对于 LTE-A***, N = 8。所述计算公式即为配置的隐含映射关系。较佳地, 其中, 《=1, t=NITx-i, 为发送天线数量。 实际应用中, 如果只有一个 隐含映射关系,可以将该隐含映射关系预先配置在 UE中; 如果有多个隐含 映射关系, 则可以通过信令通知 UE当前使用哪个隐含映射关系。 图 6为本发明中 CDM方式下不釆用预编码发送上行 SRS实施例一的 示意图, 如图 6所示, UE有两才艮发射天线, 分别为 TX0和 TX1 , 并且, 通过信令明确通知 UE两根天线 (ΤΧΟ,ΤΧΙ)发送上行 SRS所使用的循环移位 分别为 ¾。和/ S 1。 UE收到 eNB的信令后, 在 TX0上发送对根序列进行循 环移位 ncs o得到的 SRS0序列, 在 TX1上发送对根序列进行循环移位 ¾得 到的 SRS1序列, SRS0序列与 SRS1序列在码域正交, 这样, UE可以通过 正交码域资源, 使不同天线发送码域正交的 SRS。
图 7为本发明中 CDM方式下不釆用预编码发送上行 SRS实施例二的 示意图, 如图 7所示, UE有两才艮发射天线, 分别为 TX0和 TX1 , 并且, 通过信令明确通知 UE TX0发送上行 SRS所使用的循环移位为 ncs o。 UE收 到 eNB的信令后,根据配置的隐含映射关系 ¾ 1 = ("cs,。 + A )modN、 A = N / 2 , 由 TXO发送上行 SRS所使用的《es,。获得 TX1上发送上行 SRS需要的循环 移位 ¾ i , LTE-A***中 N = 8。 UE在 TXO上发送对根序列进行循环移位 nCS () 得到的 SRS0序列, 在 TX1上发送对根序列进行循环移位/ ics l得到的 SRS1 序列, SRS0序列与 SRS 1序列在码域正交, 这样, UE可以通过 CDM方式 在不同天线上分配发送上行 SRS所使用的不同循环移位, 以获得正交码域 资源, 使不同天线发送码域正交的 SRS。
另夕卜,由于得到上行 SRS的各根序列具有艮好的正交性,因此,在 CDM 方式下, 也可以通过为不同天线分配不同的根序列, 或通过分配不同根序 列和根序列的循环移位相结合的方式, 来使各天线在正交的码域资源上发 送上行 SRS。
TDM方式下不釆用预编码发送上行 SRS 不同天线在正交的时域资源上发送上行 SRS。 具体地, LTE-A***中, UE 可以通过为不同天线分配发送上行 SRS的不同子帧位置, 以使不同天线在 正交的时域资源上发送上行 SRS。 UE可以通过两种方式来获得各天线发送 上行 SRS的子帧位置: 一种是信令通知的方式, 即 eNB通过信令通知 UE 各天线发送上行 SRS的子帧位置; 另一种是隐含映射的方式, 即 eNB通过 信令通知 UE部分天线、 如其中一根天线发送上行 SRS的子帧位置, 而其 他天线发送上行 SRS的子帧位置通过配置的隐含映射关系由该已知的发送 上行 SRS的子帧位置来得到。
所述隐含映射关系可以预先配置在 UE中,也可以预先通过信令通知给 UE。 隐含映射关系的具体实现可以有很多种, 例如, 已知天线端口 0发送 上行 SRS的子帧偏置为 Γ«。,则该天线端口发送上行 SRS的子帧位置可以 由该子帧偏置唯一确定; 根据配置的隐含映射关系, 其他天线端口在允许 发送上行 SRS的子帧偏置中与 Γ。^。最近的子帧位置上发送上行 SRS。 实际 应用中, 如果只有一个隐含映射关系, 可以将该隐含映射关系预先配置在 UE中; 如果有多个隐含映射关系, 则可以通过信令通知 UE当前使用哪个 隐含映射关系。
图 8为本发明中 TDM方式下不釆用预编码发送上行 SRS实施例一的 示意图, 如图 8所示, UE有两才艮发射天线, 分别为 TX0和 TX1 , 并且, UE通过信令通知的方式获得各天线发送上行 SRS的子帧位置。 eNB通过 信令明确通知 UE两根天线 (ΤΧΟ,ΤΧΙ)发送上行 SRS的子帧位置、即子帧偏 置分别为 Γ«。和 Γ。#^。 UE收到 eNB的信令后, TX0在子帧偏置为 Γ«。的 子帧位置发送上行 SRS, TX1在子帧偏置为 T。ffset l的子帧位置发送上行 SRS, 两根天线发送的 SRS在时域正交, 这样, UE可以通过 TDM方式使不同天 线在不同的时域资源上发送上行 SRS, 以获得时域正交性, 使不同天线发 送时域正交的 SRS。
图 9为本发明中 TDM方式下不釆用预编码发送上行 SRS实施例二的 示意图, 如图 9所示, 小区内小区专属的周期为 5ms , 子帧偏置为 {0,1 } , 该小区中的一个 UE有两根发射天线, 分别为 TX0和 TX1 , 并且, UE通过 隐含映射的方式获得各天线发送上行 SRS的子帧位置。 eNB通过信令明确 通知 UE TX0发送上行 SRS的子帧位置、 即子帧偏置为 Γ。/ 。 = 0。 UE收到 eNB的信令后, 根据配置的隐含映射关系 TX1在与 Γ«。最近的子帧位置发 送上行 SRS , 由 Γ。/ 。 = 0、 及子帧偏置为 {0,1 }确定 7;#^ = 1 , 因此, UE 的
TX0在子帧偏置为 T。ffset,0的子帧位置发送上行 SRS, TX1在子帧偏置为 Τ ^ 的子帧位置发送上行 SRS, 两根天线发送的 SRS 在时域正交, 这样, UE 可以通过 TDM方式使不同天线在不同的时域资源上发送上行 SRS,以获得 时域正交性, 使不同天线发送时域正交的 SRS。
FDM方式下不釆用预编码发送上行 SRS 不同天线在正交的频域资源上发送上行 SRS。 具体地, LTE-A***中, UE 可以通过为不同天线分配发送上行 SRS的不同频率梳, 以使不同天线在正 交的频域资源上发送上行 SRS。 UE可以通过两种方式来获得各天线发送上 行 SRS所使用的频率梳: 一种是信令通知的方式, 即 eNB通过信令通知 UE各天线发送上行 SRS所使用的频率梳; 另一种是隐含映射的方式, 即 eNB通过信令通知 UE部分天线、 如其中一根天线发送上行 SRS所使用的 频率梳, 而其他天线发送上行 SRS所使用的频率梳通过配置的隐含映射关 系由该已知的发送上行 SRS所使用的频率梳来得到。 所述隐含映射关系可 以预先配置在 UE中, 也可以预先通过信令通知给 UE, 隐含映射关系的具 体实现可以有很多种, 例如, 在与 C¾mb不同的频率梳上发送上行 SRS , O^mb是天线 _ 所釆用的频率梳。实际应用中,如果只有一个隐含映射关系, 可以将该隐含映射关系预先配置在 UE中; 如果有多个隐含映射关系,则可 以通过信令通知 UE当前使用哪个隐含映射关系。
如图 10所示, UE有两才艮发射天线, 分别为 TX0和 TX1 , 并且, UE 信令明确通知 UE两根天线 (ΤΧΟ,ΤΧΙ)发送上行 SRS所使用的频域位置、即 频率梳 CombO和 Combl。 UE收到 eNB的信令后, TX0在频域位置为 CombO 的载波上发送上行 SRS, TX1在频域位置为 Combl的载波上发送上行 SRS, 两根天线发送的 SRS在频域正交, 这样, UE通过 FDM方式使不同天线在 不同频域资源上发送上行 SRS , 以获得频域正交性, 使不同天线发送正交 的 SRS。
再参见图 10 , LTE-A***中频率梳的数量为 2 , 即 Comb ={ 0, 1 }。 UE 有两才艮发射天线, 分别为 TX0和 TX1 , 并且, UE通过隐含映射的方式获 得各天线发送上行 SRS所使用的频率梳。 eNB通过信令明确通知 UE TX0 发送上行 SRS所使用的频域位置、 即频率梳 Comb=0。 UE收到 eNB的信 令后, 根据配置的隐含映射关系确定 TX1发送上行 SRS 所使用的频率梳 Comb=l , 因此, UE的 TX1在频域位置为 Combl的载波上发送上行 SRS, 两根天线发送的 SRS在频域正交, 这样, UE通过 FDM方式使不同天线在 不同频域资源上发送上行 SRS , 以获得频域正交性, 使不同天线发送正交 的 SRS。
另外, 在 FDM方式下, 除了频率^ ^的实现方式外, 也可以通过为不同 天线分配正交的频带, 来使各天线在正交的频域资源上发送上行 SRS。
不釆用预编码发送上行 SRS 时, 还可以基于 CDM 结合 TDM ( CDM&TDM )、 CDM 结合 FDM ( CDM&FDM )、 TDM 结合 FDM ( TDM&FDM )、 CDM、 TDM、 FDM相结合( CDM&TDM&FDM )的方式 进行。 CDM&TDM方式下不釆用预编码发送上行 SRS时, 对天线进行分组, 组间使用 CDM和 /或 TDM方式, 组内使用 TDM和 /或 CDM方式。 各天线 在正交的码域资源和 /或时域资源上发送上行 SRS。UE可以通过信令通知或 隐含映射的方式获得各天线发送上行 SRS的码域资源, 通过信令通知或隐
CDM&FDM方式下不釆用预编码发送上行 SRS时, 对天线进行分组, 组间使用 CDM和 /或 FDM方式, 组内使用 FDM和 /或 CDM方式。 各天线 在正交的码域资源和 /或频域资源上发送上行 SRS。UE可以通过信令通知或 隐含映射的方式获得各天线发送上行 SRS的码域资源, 通过信令通知或隐 图 11为本发明中 CDM&FDM相结合的方式下不釆用预编码发送上行 SRS的示意图, 如图 11所示, 4天线情况下, 将天线划分为两组, TX0和 TX1为一组, TX2和 TX3为另一组, UE通过 CDM方式为不同天线分配发 送上行 SRS的码资源, 通过 FDM方式为天线分配正交的频率资源。 UE通 过信令通知或隐含映射的方式获得两个循环移位的码资源 CS0和 CS1、 以 及两个正交频率资源 CombO和 Combl , 然后分配 TX0和 TX1在 Comb=0 的频率资源上发送上行 SRS , 并且 TX0上发送的上行 SRS使用循环移位 CS0 , TX1上发送的上行 SRS使用循环移位 CS1;分配 TX2和 TX3在 Comb=l 的频率资源上发送上行 SRS , 并且 TX2上发送的上行 SRS使用循环移位 CSO, TX3上发送的上行 SRS使用循环移位 CS1 , 各天线在正交的码资源 和 /或频率资源上发送上行 SRS。
TDM&FDM方式下不釆用预编码发送上行 SRS时, 对天线进行分组, 组间使用 FDM和 /或 TDM方式, 组内使用 TDM和 /或 FDM方式。 各天线 在正交的时域资源和 /或频域资源上发送上行 SRS。UE可以通过信令通知或 隐含映射的方式获得各天线发送上行 SRS的时域资源, 通过信令通知或隐 CDM&TDM&FDM方式下不釆用预编码发送上行 SRS时,不同天线使 同天线分配发送上行 SRS的正交码域资源, 通过 TDM方式是指为不同天 线分配发送上行 SRS的正交时域资源, 通过 FDM方式是指为不同天线分 配发送上行 SRS的正交频域资源。各天线发送上行 SRS的码域资源和 /或时 域资源和 /或频域资源既可以通过信令通知的方式来获得, 也可以通过隐含 映射的方式来获得。
釆用预编码发送上行 SRS时, 具体实现与以上描述基本相同, 区别仅 在于资源分配的对象不再是天线, 而是预编码矩阵, 因此, 不再赘述。
图 12为本发明中多天线釆用预编码发送上行 SRS的装置结构示意图, 如图 12所示, 该装置包括预编码单元、分配单元和多天线发送单元, 其中, 预编码单元用于对发送的上行 SRS釆用不同预编码矩阵进行编码; 分配单 元用于为釆用不同预编码矩阵的上行 SRS分配正交的资源; 多天线发送单 元包括多个天线, 各天线用于在正交的资源上发送经不同预编码矩阵编码 后的上行 SRS。 该装置进一步包括: 接收单元, 用于接收 eNB通过信令下 发的各预编码矩阵对应的资源, 并提供给分配单元; 或者, 该装置进一步 包括: 接收单元和映射单元, 接收单元用于接收 eNB通过信令下发的部分 预编码矩阵对应的资源, 并提供给映射单元; 映射单元用于根据配置的隐 含映射关系和预编码矩阵对应的资源确定发送釆用不同预编码矩阵的上行 SRS的资源, 并提供给分配单元。
图 13为本发明中多天线不釆用预编码发送上行 SRS 的装置结构示意 图, 如图 13所示, 该装置包括分配单元和多天线发送单元, 其中, 分配单 元用于为不同天线分配发送上行 SRS的正交资源; 多天线发送单元包括多 个天线, 各天线用于在正交资源上发送上行 SRS。 该装置进一步包括: 接 收单元, 用于接收 eNB通过信令下发的各天线发送上行 SRS的资源, 并提 供给分配单元; 或者, 该装置进一步包括: 接收单元和映射单元, 接收单 元用于接收 eNB通过信令下发的部分天线发送上行 SRS的资源, 并提供给 映射单元; 映射单元用于根据配置的隐含映射关系和部分天线发送上行 SRS的资源确定各天线发送上行 SRS的资源, 并提供给分配单元。 分配单 元在各种方式下的具体处理见前面部分的描述, 此处不再赘述。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。

Claims

权利要求书
1、 一种测量参考信号 (SRS ) 的多天线发送方法, 不釆用预编码发送 上行 SRS , 其特征在于, 该方法包括: 通过码分复用 (CDM )、 或时分复用
( TDM )、 或频分复用 (FDM )、 或以上任意组合的方式为不同天线分配正 交的资源, 各天线在正交的资源上发送上行 SRS。
2、 根据权利要求 1所述的方法, 其特征在于,
, 包括: 通过 CDM方
Figure imgf000026_0001
所述通过 TDM方式为不同天线分配正交的资源 包括: 通过 TDM方 不同天线分配发送上行 SRS的正交时域资源;
所述通过 FDM方式为不同天线分配正交的资源 包括: 通过 FDM方
Figure imgf000026_0002
所述通过 CDM、 TDM、 FDM相结合的方式为不同天线分配正交的资 和 /或通过 TDM方式为不同天线分配发送上行 SRS 的正交时域资源, 和 /
3、 根据权利要求 2所述的方法, 其特征在于, 高级长期演进(LTE-A) ***中,
所述码域资源为: 根序列和 /或根序列的循环移位;
所述时域资源为: 子帧位置或子帧偏置;
所述频域资源为: 频带和 /或频率梳。
4、 根据权利要求 1至 3任一所述的方法, 其特征在于, 所述为不同天 线分配正交的资源之前, 进一步包括:
基站(eNB)通过信令通知终端设备 (UE)各天线发送上行 SRS的资 源; 或者,
eNB通过信令通知 UE部分天线发送上行 SRS的资源, UE根据配置的 隐含映射关系确定各天线发送 SRS的资源。
5、 根据权利要求 4所述的方法, 其特征在于, 源为根序列的循环移位, 所述隐含映射关系为: )modN , 其中, 为天线端口索引, 《=±1, ¾;为已知的天线端口 _ 发送上行 SRS所 使用的循环移位, A=0,1,2,...,N_1, N为循环移位的总数量, = 0,1,...,N_1, ; = 0,l,...,N-l; 源为子帧偏置或子帧位置, 所述隐含映射关系为: 在允许发送上行 SRS的 子帧偏置中与 Γ«;.最近的子帧位置上发送上行 SRS, T。ffset,〗为已知天线端口
_ 发送上行 SRS的子帧偏置; 源为频率梳, 所述隐含映射关系为: 在与 C¾mb 不同的频率梳上发送上行 SRS, C¾mb是天线 j所釆用的频率梳。
6、根据权利要求 5所述的方法,其特征在于,所述《=1;所述 = N / 7¾ . , 其中, 为发送天线数量。
7、 一种测量参考信号的多天线发送方法, 釆用预编码发送上行 SRS, 其特征在于, 该方法包括: 通过 CDM、 或 TDM、 或 FDM、 或以上任意组 合的方式为釆用不同预编码矩阵的上行 SRS分配正交的资源, 各天线在正 交的资源上发送经不同预编码矩阵编码后的上行 SRS。
8、 根据权利要求 7所述的方法, 其特征在于,
所述通过 CDM方式为釆用不同预编码矩阵的上行 SRS分配正交的资 所述通过 TDM方式为釆用不同预编码矩阵的上行 SRS分配正交的资 所述通过 FDM方式为釆用不同预编码矩阵的上行 SRS分配正交的资
所述通过 CDM、 TDM、 FDM相结合的方式为釆用不同预编码矩阵的 上行 SRS分配正交的资源, 包括: 通过 CDM方式为不同预编码矩阵分配
9、 根据权利要求 8所述的方法, 其特征在于, LTE-A***中, 所述频域资源为频带和 /或频率梳;
所述码域资源为: 根序列和 /或根序列的循环移位;
所述时域资源为: 子帧位置或子帧偏置。
10、 根据权利要求 7至 9任一所述的方法, 其特征在于, 所述为不同 天线分配正交的频域资源之前, 进一步包括:
eNB通过信令通知 UE各预编码矩阵对应的资源; 或者,
eNB通过信令通知 UE部分预编码矩阵对应的资源, UE根据配置的隐 含映射关系确定各预编码矩阵对应的资源。
11、 根据权利要求 10所述的方法, 其特征在于, 所述资源为根序列 的循环移位, 所述隐含映射关 系 为 : nCS i = {a . nCS J + A ) mod N , 其中, 为预编码矩阵索引, "= ± 1 , nCS j为已知发 送釆用预编码矩阵 j编码的上行 SRS所使用的循环移位, A = 0,1,2,..., N _1 , N为循环移位的总数量, i = 0,l,..., N - l , ; = 0,l, ..., N-l ; 所述资源为子帧偏置或子帧位置, 所述隐含映射关系为: 在允许发送上行 SRS的子帧偏置中与 Γ«;.最近的子帧位置上发送上行 SRS, Τ 为已知发 送釆用预编码矩阵 j编码的上行 SRS的子帧偏置; 所述资源为频率梳, 所述隐含映射关系为: 在与 C¾mb 不同的频率梳上发 送上行 SRS , C¾mb是发送釆用预编码矩阵 j编码的上行 SRS的频率梳。
12、 根据权利要求 11 所述的方法, 其特征在于, 所述《=1 ; 所述
Figure imgf000029_0001
其中, 7¾为发送天线数量。
13、 一种测量参考信号 SRS的多天线发送装置, 不釆用预编码发送上 行 SRS, 其特征在于, 该装置包括: 分配单元和多天线发送单元, 其中,
^ iffi? Ιϊΐ IS1 4·¾ JS? 4r:-l \- ^ τ> AA 六 、 所述多天线发送单元包括多个天线, 各天线用于在正交资源上发送上 行 SRS。
14、 根据权利要求 13所述的装置, 其特征在于, 该装置进一步包括: 接收单元,用于接收 eNB通过信令下发的各天线发送上行 SRS的资源; 或者,
接收单元和映射单元, 接收单元用于接收 eNB通过信令下发的部分天 线发送上行 SRS的资源; 映射单元用于根据配置的隐含映射关系和部分天 线发送上行 SRS的资源确定各天线发送上行 SRS的资源。
15、 一种测量参考信号 SRS的多天线发送装置, 釆用预编码发送上行 SRS,其特征在于,该装置包括: 预编码单元、分配单元和多天线发送单元, 其中,
所述预编码单元用于对发送的上行 SRS 釆用不同预编码矩阵进行编 码;
SRS 分配正交的责 所述多天线发送单元包括多个天线, 用于在正交的资源上发送经不同 预编码矩阵编码后的上行 SRS。
16、 根据权利要求 15所述的装置, 其特征在于, 该装置进一步包括: 接收单元, 用于接收 eNB通过信令下发的各预编码矩阵对应的资源; 或者,
接收单元和映射单元, 接收单元用于接收 eNB通过信令下发的部分预 编码矩阵对应的资源; 映射单元用于根据配置的隐含映射关系和部分预编 码矩阵对应的资源确定发送釆用不同预编^
PCT/CN2010/072084 2009-04-27 2010-04-22 测量参考信号的多天线发送方法及装置 WO2010124588A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10769277.4A EP2426831A4 (en) 2009-04-27 2010-04-22 TRANSMISSION METHOD WITH MULTIPLE ANTENNAS AND APPARATUS FOR SENDING REFERENCE SIGNAL (SRS)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910083055.2A CN101540631B (zh) 2009-04-27 2009-04-27 测量参考信号的多天线发送方法及装置
CN200910083055.2 2009-04-27

Publications (1)

Publication Number Publication Date
WO2010124588A1 true WO2010124588A1 (zh) 2010-11-04

Family

ID=41123640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/072084 WO2010124588A1 (zh) 2009-04-27 2010-04-22 测量参考信号的多天线发送方法及装置

Country Status (3)

Country Link
EP (1) EP2426831A4 (zh)
CN (1) CN101540631B (zh)
WO (1) WO2010124588A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107733548A (zh) * 2016-08-10 2018-02-23 华为技术有限公司 信息的传输方法及相关装置
CN108112076A (zh) * 2017-05-05 2018-06-01 中兴通讯股份有限公司 配置上行信号的方法及装置
CN108288988A (zh) * 2017-01-09 2018-07-17 中兴通讯股份有限公司 上行参考信号的发送、接收处理方法、装置及基站、终端
KR20190035838A (ko) * 2016-08-12 2019-04-03 후아웨이 테크놀러지 컴퍼니 리미티드 데이터 송신 방법, 및 시그널링 송신 방법, 장치 및 시스템
CN109792285A (zh) * 2016-08-10 2019-05-21 Idac控股公司 用于上行链路(ul)信道相互性的方法、装置、***和过程

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120008615A1 (en) * 2009-04-10 2012-01-12 Nec Corporation Wireless communication system, base station, terminal, wireless communication method, and program
CN101540631B (zh) * 2009-04-27 2014-03-12 中兴通讯股份有限公司 测量参考信号的多天线发送方法及装置
CN102460991B (zh) * 2009-05-11 2014-09-17 Lg电子株式会社 多天线***中的基准信号发射方法和装置
CN101695191B (zh) * 2009-09-29 2014-04-09 中兴通讯股份有限公司 一种分配测量参考信号资源的***及方法
CN102036301B (zh) * 2009-09-29 2015-05-20 中兴通讯股份有限公司 中继链路下行解调参考信号的传输方法、装置及中继***
US8824384B2 (en) * 2009-12-14 2014-09-02 Samsung Electronics Co., Ltd. Systems and methods for transmitting channel quality information in wireless communication systems
CN102098084B (zh) * 2009-12-15 2016-10-05 上海贝尔股份有限公司 发送和接收信道探测参考信号的方法及装置
WO2011082686A1 (en) * 2010-01-08 2011-07-14 Mediatek Inc. Resource allocation and signaling method for lte sounding
JP2013516817A (ja) * 2010-01-08 2013-05-13 聯發科技股▲ふん▼有限公司 無線通信システムにおけるアップリンクチャネルサウンディングのマルチアンテナリソース割り当て方法
PT2526632T (pt) * 2010-01-20 2017-02-03 ERICSSON TELEFON AB L M (publ) Método de mapeamento de porto de antena e dispositivo para desmodulação de sinais de referência
CN101795145B (zh) * 2010-02-08 2014-11-05 中兴通讯股份有限公司 测量参考信号的发送方法及***
CN101808409B (zh) * 2010-04-01 2015-03-25 中兴通讯股份有限公司 一种lte-a***中测量参考信号的配置方法和***
WO2011120238A1 (zh) * 2010-04-02 2011-10-06 富士通株式会社 发送上行探测参考信号的方法、估计信道的方法、移动终端、基站和无线通信***
KR101828621B1 (ko) * 2010-04-02 2018-03-22 인터디지탈 패튼 홀딩스, 인크 업링크 사운딩 기준 신호 구성 및 전송 방법
CN102215591B (zh) * 2010-04-06 2013-12-04 华为技术有限公司 一种信道状态信息的传输方法及用户设备及基站
CN102223167B (zh) 2010-04-16 2015-11-25 华为技术有限公司 多天线***中的探测参考信号发送方法及装置
US8917687B2 (en) 2010-04-20 2014-12-23 China Mobile Communications Corporation Method, apparatus and system for sending and receiving sounding reference signal
CN102244557B (zh) * 2010-05-12 2014-06-11 ***通信集团公司 发送与接收信道探测参考信号的方法及装置
KR20130007632A (ko) * 2010-04-29 2013-01-18 후지쯔 가부시끼가이샤 사운딩 참조 신호들 및 그의 파라미터들을 송신하는 방법, 기지국 및 이동국
US8948196B2 (en) * 2010-05-03 2015-02-03 Qualcomm Incorporated Method and apparatus for sounding antennas in wireless communication
KR101699493B1 (ko) 2010-05-03 2017-01-26 주식회사 팬택 Mimo 환경에서 직교성을 제공하는 사이클릭 쉬프트 파라메터를 송수신하는 방법 및 장치
KR101868621B1 (ko) * 2010-06-04 2018-06-18 엘지전자 주식회사 단말의 비주기적 사운딩 참조신호 트리거링 기반 srs 전송 방법 및 비주기적 srs를 전송하기 위한 상향링크 전송 전력을 제어 방법
ES2748164T3 (es) 2010-06-04 2020-03-13 Lg Electronics Inc Método y UE para transmitir una señal de referencia de sondeo en base a un desencadenamiento de señal de referencia de sondeo aperiódica y para para controlar la potencia de transmisión de enlace ascendente de una señal de referencia de sondeo
CN101867403B (zh) * 2010-06-13 2016-06-29 中兴通讯股份有限公司 一种测量参考信号的多天线发送方法、终端
CN102625354B (zh) 2010-07-13 2014-03-26 华为技术有限公司 一种触发终端发送测量参考信号的方法、终端和基站
CN102377714A (zh) * 2010-08-12 2012-03-14 普天信息技术研究院有限公司 一种增强上行侦听参考信号的方法和装置
CN101917380B (zh) * 2010-08-16 2016-06-15 中兴通讯股份有限公司 多天线***下上行控制信令的发送方法和装置
JP2012114901A (ja) * 2010-11-05 2012-06-14 Sharp Corp 移動局装置、基地局装置、方法および集積回路
CN102469604B (zh) * 2010-11-12 2014-04-09 大唐移动通信设备有限公司 资源分配的方法及设备
CN102076026B (zh) * 2011-01-06 2013-06-05 大唐移动通信设备有限公司 探测参考信号发送方法、装置及终端
CN102158310A (zh) * 2011-02-15 2011-08-17 中兴通讯股份有限公司 一种实现多小区预编码的方法和装置
CN102170330B (zh) * 2011-04-29 2017-08-08 中兴通讯股份有限公司 测量参考信号的发送方法及***
CN102223726A (zh) * 2011-06-10 2011-10-19 中兴通讯股份有限公司 一种srs的发送方法和***
WO2014073846A1 (ko) * 2012-11-07 2014-05-15 주식회사 팬택 무선통신시스템에서 채널 정보 송수신 방법 및 장치
CN104717659B (zh) * 2013-12-11 2019-08-30 中兴通讯股份有限公司 一种下行导频的传输方法及装置
EP3285533B1 (en) * 2015-05-14 2020-08-19 Huawei Technologies Co., Ltd. Terminal, base station, and configuration and transmission method for sounding reference signal
CN106571860A (zh) * 2015-10-10 2017-04-19 中兴通讯股份有限公司 一种上行数据信道多天线合并方法及装置
JP6644904B2 (ja) 2016-03-16 2020-02-12 華為技術有限公司Huawei Technologies Co.,Ltd. 信号伝送方法及び装置
CN107332600B (zh) * 2016-04-29 2020-03-24 电信科学技术研究院 一种信道状态信息反馈和接收方法、装置
WO2018126474A1 (en) 2017-01-09 2018-07-12 Qualcomm Incorporated Transmitting multiplexed sounding reference signal ports in new radio
WO2018166627A1 (en) * 2017-03-17 2018-09-20 Sony Mobile Communications Inc. Operating a terminal device and a base station in a wireless mimo system
CN108631999B (zh) * 2017-03-25 2021-07-09 华为技术有限公司 信令的发送方法,装置和***
WO2018227572A1 (en) 2017-06-16 2018-12-20 Qualcomm Incorporated Frequency selective uplink precoding for new radio
CN109327290B (zh) * 2017-07-31 2022-05-13 ***通信有限公司研究院 探测参考信号的发送方法、装置、终端、基站及通信设备
CN114142980B (zh) * 2017-08-11 2023-07-14 中兴通讯股份有限公司 参考信号的传输方法及装置
CN109756255B (zh) * 2017-11-01 2022-04-05 华为技术有限公司 一种信道测量方法和用户设备
CN109802801B (zh) 2017-11-17 2021-12-14 华为技术有限公司 发送和接收信号的方法、装置和***
WO2019129274A1 (zh) * 2017-12-29 2019-07-04 中兴通讯股份有限公司 测量参考信号的传输方法及装置
CN114826536A (zh) 2017-12-29 2022-07-29 中兴通讯股份有限公司 测量参考信号的传输方法及装置
CN108260219B (zh) * 2018-01-12 2021-11-12 中兴通讯股份有限公司 一种参考信号的接收和发送方法、设备及计算机可读存储介质
CN110535581B (zh) * 2018-08-10 2022-11-08 中兴通讯股份有限公司 上行信号的资源确定方法、设备和计算机可读存储介质
CN111786752B (zh) * 2019-04-03 2023-01-13 华为技术有限公司 Csi测量方法及装置
CN111867034B (zh) * 2019-04-30 2021-12-17 大唐移动通信设备有限公司 一种定位探测参考信号的配置方法、装置及设备
CN110167119B (zh) * 2019-06-14 2022-03-29 Oppo广东移动通信有限公司 射频电路及电子设备
CN111835488B (zh) * 2019-08-15 2022-12-23 维沃移动通信有限公司 一种确定天线端口映射方法和终端

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101227703A (zh) * 2007-01-17 2008-07-23 北京三星通信技术研究有限公司 分配多种类型的ack/nack信道的设备和方法
CN101325739A (zh) * 2007-06-14 2008-12-17 北京三星通信技术研究有限公司 传输上行数据和上行控制信令的方法
CN101346923A (zh) * 2005-10-27 2009-01-14 高通股份有限公司 用于多输入多输出***的预编码的方法与设备
CN101540631A (zh) * 2009-04-27 2009-09-23 中兴通讯股份有限公司 测量参考信号的多天线发送方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7773535B2 (en) * 2004-08-12 2010-08-10 Motorola, Inc. Method and apparatus for closed loop transmission
RU2475969C9 (ru) * 2007-04-30 2013-06-20 Нокиа Сименс Нетворкс Ой Координированный циклический сдвиг и скачкообразная перестройка частоты последовательности для последовательности задова-чу, модифицированной последовательности задова-чу и последовательности поблочного расширения
EP2306659B1 (en) * 2008-07-22 2018-01-24 Lg Electronics Inc. Method for allocating phich in a system using su-mimo with multiple codewords in uplink
CN102165720B (zh) * 2008-09-26 2015-10-14 三星电子株式会社 支持多个天线的探测参考信号发射的装置及方法
RU2504094C2 (ru) * 2009-02-27 2014-01-10 Нокиа Сименс Нетуоркс Ой Устройство и способ однопользовательской связи с множеством входов и множеством выходов с применением циклических сдвигов

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101346923A (zh) * 2005-10-27 2009-01-14 高通股份有限公司 用于多输入多输出***的预编码的方法与设备
CN101227703A (zh) * 2007-01-17 2008-07-23 北京三星通信技术研究有限公司 分配多种类型的ack/nack信道的设备和方法
CN101325739A (zh) * 2007-06-14 2008-12-17 北京三星通信技术研究有限公司 传输上行数据和上行控制信令的方法
CN101540631A (zh) * 2009-04-27 2009-09-23 中兴通讯股份有限公司 测量参考信号的多天线发送方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2426831A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11489563B2 (en) 2016-08-10 2022-11-01 Idac Holdings, Inc. Methods, apparatus, systems and procedures for uplink (ul) channel reciprocity
CN107733548B (zh) * 2016-08-10 2023-04-18 华为技术有限公司 信息的传输方法及相关装置
US11528685B2 (en) * 2016-08-10 2022-12-13 Huawei Technologies Co., Ltd. Uplink control information transmission method and related apparatus
CN107733548A (zh) * 2016-08-10 2018-02-23 华为技术有限公司 信息的传输方法及相关装置
CN109792285A (zh) * 2016-08-10 2019-05-21 Idac控股公司 用于上行链路(ul)信道相互性的方法、装置、***和过程
KR20190035838A (ko) * 2016-08-12 2019-04-03 후아웨이 테크놀러지 컴퍼니 리미티드 데이터 송신 방법, 및 시그널링 송신 방법, 장치 및 시스템
KR102220840B1 (ko) 2016-08-12 2021-02-25 후아웨이 테크놀러지 컴퍼니 리미티드 데이터 송신 방법, 및 시그널링 송신 방법, 장치 및 시스템
US10924201B2 (en) 2016-08-12 2021-02-16 Huawei Technologies Co., Ltd. Data sending method, signaling sending method, apparatus, and system
CN108288988B (zh) * 2017-01-09 2022-12-09 中兴通讯股份有限公司 上行参考信号的发送、接收处理方法、装置及基站、终端
CN108288988A (zh) * 2017-01-09 2018-07-17 中兴通讯股份有限公司 上行参考信号的发送、接收处理方法、装置及基站、终端
CN108112076A (zh) * 2017-05-05 2018-06-01 中兴通讯股份有限公司 配置上行信号的方法及装置
US11711812B2 (en) 2017-05-05 2023-07-25 Zte Corporation Method and apparatus for configuring uplink signal, and method and apparatus for determining uplink signal
CN108112076B (zh) * 2017-05-05 2023-11-21 中兴通讯股份有限公司 配置上行信号的方法及装置

Also Published As

Publication number Publication date
EP2426831A1 (en) 2012-03-07
EP2426831A4 (en) 2015-05-06
CN101540631A (zh) 2009-09-23
CN101540631B (zh) 2014-03-12

Similar Documents

Publication Publication Date Title
WO2010124588A1 (zh) 测量参考信号的多天线发送方法及装置
CN110431905B (zh) 在无线通信***中在终端和基站之间发送和接收调度请求的方法以及支持该方法的装置
JP6339119B2 (ja) 特定タイプのリソースエレメント群を無線通信システムにおいて信号伝達する方法
KR101603856B1 (ko) 무선 통신 네트워크에서 제어 채널을 위한 기준 신호
KR101700003B1 (ko) 복조 기준신호를 위한 안테나 포트 맵핑방법 및 장치
US8155070B2 (en) Method for receiving ACK/NACK signal in mobile communication system
CA2928133C (en) Method and apparatus for transmitting and receiving downlink control information for repeater
KR101306735B1 (ko) 복수개의 안테나를 이용한 사운딩 기준 신호 시퀀스 전송 방법
CN110447196B (zh) 用于在通信***中传输上行链路控制信道的方法和设备
US20110170497A1 (en) Resource allocation and signaling method for multi-antenna LTE sounding
US20120082119A1 (en) Data transmission/reception method and apparatus using a transmission diversity technique in a wireless communication system
WO2011038606A1 (zh) 一种分配测量参考信号资源的***及方法
WO2012103774A1 (zh) 一种测量参考信号的多天线参数的配置方法及装置
WO2014032544A1 (zh) 一种物理下行共享信道的传输方法及***
JP2016134917A (ja) 無線通信システムにおけるマルチユーザ多入力多出力伝送方法および基地局
WO2012019412A1 (zh) 一种测量参考信号的配置方法及***
KR20210024203A (ko) 기준 신호를 송신하는 방법 및 장치
WO2010124597A1 (zh) 载波聚合情况下测量参考信号的发送方法和装置
KR20120135201A (ko) 엘티이 어드밴스 시스템에서 리소스 블록 번들링을 가능하게 하기 위한 방법 및 시스템
JP2011525079A (ja) サウンディング・レファレンス信号の送受信方法、基地局及び移動端末
WO2011157042A1 (zh) 一种测量参考信号的多天线发送方法、终端和基站
WO2010124622A1 (zh) 一种信号的发送方法
KR20140057324A (ko) 무선 통신 시스템에서 기지국이 하향링크 제어 채널을 다중화하는 방법 및 이를 위한 장치
WO2014114113A1 (zh) Dmrs处理方法及装置
AU2011204052B2 (en) Method and apparatus for generating a reference signal sequence in a wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10769277

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010769277

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE