WO2010122928A1 - Method for forming graphene film - Google Patents

Method for forming graphene film Download PDF

Info

Publication number
WO2010122928A1
WO2010122928A1 PCT/JP2010/056653 JP2010056653W WO2010122928A1 WO 2010122928 A1 WO2010122928 A1 WO 2010122928A1 JP 2010056653 W JP2010056653 W JP 2010056653W WO 2010122928 A1 WO2010122928 A1 WO 2010122928A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
substrate
graphene film
graphene
insulating layer
Prior art date
Application number
PCT/JP2010/056653
Other languages
French (fr)
Japanese (ja)
Inventor
基 中尾
貴文 種平
Original Assignee
国立大学法人九州工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州工業大学 filed Critical 国立大学法人九州工業大学
Publication of WO2010122928A1 publication Critical patent/WO2010122928A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/186Preparation by chemical vapour deposition [CVD]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/04Specific amount of layers or specific thickness

Definitions

  • the present invention relates to a method for manufacturing a graphene film that can be applied to electronic devices and the like.
  • Graphene A is a sheet (film) of carbon atoms closely packed with a thickness of one atom to several atoms (single layer to several layers). It has a honeycomb hexagonal lattice structure made of carbon atoms and their bonds. Further, the graphene film shows a form in which carbon nanotubes are expanded.
  • the graphene film is the ultimate form of a graphite film, and is a graphite film composed of one to several layers of carbon atoms.
  • the thickness of the graphene monolayer is estimated to be about 0.15 nm from the spread of the electron cloud of carbon atoms obtained by quantum chemical calculation, and the thickness of the graphene number layer is also 1 nm or less. It is said that it is possible to produce a field effect transistor.
  • the graphene film has carrier mobility about 1000 times that of Si, and is expected as a promising new material for “post-Si” as a high-speed device.
  • a method for producing a graphene film As a method for producing a graphene film, a method of producing by vacuum-ultra high temperature heating (up to 1600 ° C. or higher) using a SiC substrate (a method of removing Si by high-temperature vacuum treatment of a SiC film) (for example, see Patent Document 1), graphite A method of peeling the film (for example, see Patent Document 2) has been common.
  • the SiC substrate is very expensive (up to 500,000 yen / 3 inch wafer) and requires an ultra-high temperature process, so it is very difficult to put it to practical use, and the graphite film is peeled off. This method is not efficient, and the development of an innovative industrial production method is eagerly desired.
  • An object of the present invention is to produce a high-quality graphene film by using a material / process based on a Si substrate or the like.
  • a silicon (Si) film formed on an insulating layer is carbonized with a hydrocarbon gas to modify the silicon film into a silicon carbide (SiC) film, and the silicon carbide.
  • SiC silicon carbide
  • a graphene film manufacturing method is characterized in that a graphene film is formed over the film.
  • Another embodiment of the present invention is a substrate in which an SiC film having a graphene film on the surface is formed on an insulating layer.
  • the insulating layer is preferably a substrate in which a SiO 2 layer is formed on a Si substrate or a quartz substrate.
  • the Si film formed on the insulating layer may be a single crystal thin film or an amorphous or polycrystalline thin film.
  • the thickness of the Si film formed on the insulating layer is preferably 20 nm or less.
  • the carbonization treatment with a hydrocarbon gas of the silicon (Si) film formed on the insulating layer is preferably performed using a hydrocarbon gas having an unsaturated bond, and the temperature rising rate is 10 ° C./second or more. It is preferably carried out in the temperature range of 1200 to 1410 ° C. under rapid heating.
  • an inexpensive and high quality graphene film can be manufactured.
  • a substrate in which an SiC film having a graphene film or the like is formed on the surface of an insulating layer can be manufactured.
  • a silicon film on the insulating layer (as SiO 2 layer was formed on the Si substrate) to carbonization treatment is an explanatory view of a case of manufacturing a graphene film. It is explanatory drawing in the case of carbonizing the silicon film on an insulating layer (quartz substrate), and producing a graphene film. It is a figure which shows the value of G / D (graphene / diamond production ratio) when carbonizing with various hydrocarbon gas. It is a Raman spectrum figure of the board
  • a silicon (Si) film formed on an insulating layer is carbonized with a hydrocarbon gas to modify the silicon film into a silicon carbide (SiC) film, and the carbonization.
  • a method for manufacturing a graphene film in which a graphene film is formed over a silicon film More generally, however, the present invention involves carbonizing a metal M film formed on a layer made of a material that is inert to carbon or carbide at the application temperature with a hydrocarbon gas.
  • This method can be broadly defined as a method for producing a graphene film, in which a film of the reaction product MC is modified into a film of the reaction product MC and a graphene film is formed on the MC film.
  • the application temperature means a temperature at the time of carbonization treatment with a hydrocarbon gas. Generally, a temperature below the melting point of the metal M is employed.
  • the substance inert to carbon or carbide at the application temperature may be a layer made of a semiconductor such as carbon itself or SiC, but an insulating layer is preferable.
  • the insulating layer is particularly preferably a substrate in which a SiO 2 layer is formed on a Si substrate or a quartz substrate.
  • the metal M film that reacts with the carbide include metal films such as Al, Ti, Fe, Cr, Mo, W, and Co, but a Si film is preferable.
  • the application temperature is 1410 ° C. or lower.
  • a metal M film for example, a Si film formed on an insulating layer such as SiO 2 that does not react with carbon at an application temperature is carbonized with a hydrocarbon gas, and the metal M
  • the film is modified to an MC film, for example, a SiC film, and a graphene film is formed on the SiC film.
  • the Si film formed on the insulating layer may be a single crystal thin film or an amorphous or polycrystalline thin film.
  • the thickness of the Si film formed on the insulating layer is not particularly limited, but is preferably 20 nm or less.
  • hydrocarbon gas used in the present invention examples include ethylene, methane, acetylene, and propane, and those having an unsaturated bond are preferable, and ethylene is particularly preferable.
  • the conditions for the carbonization treatment with hydrocarbon gas are not particularly limited, but under rapid heating at a rate of temperature increase of 10 ° C./second or more, in a temperature range of 1200 to 1410 ° C., in a time range of 5 seconds to 5 minutes. It is preferred to do so. Particularly preferred is a temperature range of 1350 to 1405 ° C. and a time range of 10 seconds to 1 minute.
  • the heat treatment is preferably performed by, for example, infrared irradiation, and the heat treatment may be performed in a vacuum or in an inert atmosphere gas.
  • the inert gas high-purity argon gas is preferable.
  • quartz or SiO 2 is a substance that does not react with carbon and prevents carbon from diffusing.
  • the Si film formed on the material layer reacts with carbon and acts as a graphene production catalyst.
  • a SiC film is produced by carbonizing such a Si film with a hydrocarbon gas.
  • a graphene film is further formed thereon.
  • the thickness of the Si layer, the type of hydrocarbon gas, and the like affect the quality such as G / D (graphene / diamond production ratio).
  • the surface Si of the substrate was thinned, and the ultrathin Si layer was modified into an ultrathin SiC layer by carbonizing with ethylene as a hydrocarbon source.
  • ethylene as a hydrocarbon source.
  • using 5 nm-surface Si layer / buried oxide film / Si substrate (ultra-thin SOI substrate), flowing 10 slm of hydrogen and 20 ccm of ethylene in an atmospheric pressure atmosphere, and treating the substrate at 1350 ° C. for 15 seconds.
  • a graphene film was formed.
  • a graphene film having a thickness of about several nm was formed on the SiC film formed by the carbonization treatment.
  • FIG. 1 an arrow indicates a carbonization process.
  • the figure of the substrate on the left side of the carbonization process shows the state of the substrate in which the silicon film 10 is formed on the insulating layer in which the SiO 2 layer 11 is formed on the Si substrate 12.
  • the figure of the right substrate obtained by the carbonization treatment shows the state of the substrate in which the SiC film 13 is formed on the SiO 2 layer 11 and the graphene film 14 is further formed thereon.
  • An ultra-thin amorphous SiO 2 (quartz) / Si substrate is carbonized with ethylene gas using a rapid heating method, whereby the ultra-thin Si layer is transformed into an ultra-thin SiC layer, and a high-quality graphene film is formed on the surface.
  • Been formed Specifically, a graphene film was formed by using a 20 nm thick amorphous Si / SiO 2 / Si substrate, flowing hydrogen 10 slm and 20 ccm of ethylene in an atmospheric pressure atmosphere, and treating the substrate at 1350 ° C. for 15 seconds. A graphene film having a thickness of about several nm was formed on the SiC film formed by the carbonization treatment.
  • FIG. 2 the arrow has shown the carbonization process.
  • the figure of the substrate on the left side of the carbonization process shows the state of the substrate on which the silicon film 20 on the quartz substrate 21 is formed.
  • the figure of the right substrate obtained by the carbonization treatment shows a state of the substrate in which the SiC film 23 is formed on the quartz substrate 21 and the graphene film 24 is further formed thereon.
  • FIG. 3 shows G / D (graphene / diamond production ratio) when the surface Si film of the commercially available SOI (Silicon-on-Insulator) substrate used in Example 1 is carbonized with various hydrocarbon gases. .
  • SOI Silicon-on-Insulator
  • FIG. 3 shows G / D (graphene / diamond production ratio) when the surface Si film of the commercially available SOI (Silicon-on-Insulator) substrate used in Example 1 is carbonized with various hydrocarbon gases.
  • SOI Silicon-on-Insulator
  • FIG. 5 shows a cross-sectional TEM (transmission electron microscope) photograph of the substrate after the treatment. It can be seen that, by the carbonization treatment, in addition to the surface Si layer of the SOI substrate being modified to the SiC layer, a carbon film (graphene film) that is observed in a layer shape is further formed on the surface.
  • FIG. 6 shows a Raman spectrum near the G ′ band peak of the substrate after the treatment. The formation of a graphene film was demonstrated from the fact that a clear G ′ peak was observed.
  • FIG. 7 and FIG. 8 show the ratio between the G peak and D peak (G / D ratio) (graphene / diamond production ratio) calculated from the Raman spectrum and the carbonization temperature (surface Si layer thickness: constant at 5 nm).
  • G / D ratio graphene / diamond production ratio
  • a high-quality graphene film can be efficiently produced. Specifically, a substrate having a high-quality graphene film on an SiC film formed on the insulating layer is obtained. As a result, the obtained graphene film can be incorporated into the Si process of electronic devices that were impossible in the past, and in addition to active elements using the graphene film as a channel material, there are many applications such as application to wiring materials. It can be applied to devices.

Abstract

Disclosed is a method for forming a graphene film, wherein a film of a metal M reactive with a carbide, such as an Si film, which is formed on an insulating layer that is formed from a substance not reactive with carbon, such as an Si/SiO2 insulating layer, is carbonized with a hydrocarbon gas such as an ethylene gas, thereby modifying the Si film into a film of SiC that is a reaction product, and a graphene film is formed on the SiC film. By using a material/process based on an Si substrate or the like, a high quality graphene film can be produced. A substrate comprising the graphene film is applicable to many devices.

Description

グラフェン膜の作製方法Method for producing graphene film
本発明は、電子デバイス等への応用が可能な、グラフェン膜の作製方法に関するものである。 The present invention relates to a method for manufacturing a graphene film that can be applied to electronic devices and the like.
半導体技術は、性能向上と高集積化を目的に微細化が図られているが、現在主に用いられているシリコン材料では、性能向上を目的とした微細化に限界がある。このため、代替材料の開発が望まれている。そして、炭素材料であるカーボンナノチューブ、フラーレン及びグラフェンに関して、特に近年、活発に次世代電子デバイス材料として研究開発がなされている。環状の立体構造を有するカーボンナノチューブ及びフラーレンは、能動箇所(主にトランジスタ部分)としての適用は構造上困難である。一方、グラフェンは、平面型構造を有しており、シリコンプロセスで用いられているプレーナー技術が、そのまま適用できることもあり、能動箇所への導入が可能である。グラフェンは、電子移動度及び電子有効質量などの特性においてかなり優れており、次世代デバイスとして注目されている。 Semiconductor technology has been miniaturized for the purpose of performance improvement and high integration, but silicon materials currently mainly used have limitations in miniaturization for the purpose of performance improvement. For this reason, development of alternative materials is desired. In recent years, carbon nanotubes, fullerenes and graphene, which are carbon materials, have been actively researched and developed as next-generation electronic device materials. Carbon nanotubes and fullerenes having a cyclic three-dimensional structure are structurally difficult to apply as active portions (mainly transistor portions). On the other hand, graphene has a planar structure, and the planar technology used in the silicon process can be applied as it is, so that it can be introduced into an active location. Graphene is considerably excellent in properties such as electron mobility and electron effective mass, and has attracted attention as a next-generation device.
グラフェン
(graphene) とは、1原子~数原子の厚さ(単層~数層)で緊密に詰め込まれた炭素原子のシート(膜)である。炭素原子とその結合からできたハニカム状の六角形格子構造をとっている。また、グラフェン膜は、カーボンナノチューブを広げたような形態を示している。また、グラフェン膜は、グラファイト膜の究極の形態であり、炭素原子1層~数層からなるグラファイト膜である。グラフェン単層の厚さは、量子化学的計算により求められた炭素原子の電子雲の広がりから、約0.15nmと見積もられており、グラフェン数層においても厚さが1nm以下なので、電界効果が作用し、電界効果トランジスタを製造することが可能であると言われている。例えば、グラフェン膜は、キャリア移動度がSiの1000倍位あり、高速素子として、「ポストSi」の有望新素材として期待されている。
Graphene
A (graphene) is a sheet (film) of carbon atoms closely packed with a thickness of one atom to several atoms (single layer to several layers). It has a honeycomb hexagonal lattice structure made of carbon atoms and their bonds. Further, the graphene film shows a form in which carbon nanotubes are expanded. The graphene film is the ultimate form of a graphite film, and is a graphite film composed of one to several layers of carbon atoms. The thickness of the graphene monolayer is estimated to be about 0.15 nm from the spread of the electron cloud of carbon atoms obtained by quantum chemical calculation, and the thickness of the graphene number layer is also 1 nm or less. It is said that it is possible to produce a field effect transistor. For example, the graphene film has carrier mobility about 1000 times that of Si, and is expected as a promising new material for “post-Si” as a high-speed device.
グラフェン膜の製法としては、SiC基板を用いた真空-超高温加熱(~1600℃以上)による作製法(SiC膜の高温真空処理により脱Siする方法)(例えば、特許文献1参照)か、グラファイト膜を剥離する方法(例えば、特許文献2参照)が一般的であった。しかしながら、SiC基板は非常に高価であり(~50万円/3インチウェーハ)であり、かつ、超高温プロセスを要することより、実用化は非常に困難な状況であり、また、グラファイト膜を剥離する方法は効率的ではなく、革新的な工業的作製方法の開発が切に望まれている。 As a method for producing a graphene film, a method of producing by vacuum-ultra high temperature heating (up to 1600 ° C. or higher) using a SiC substrate (a method of removing Si by high-temperature vacuum treatment of a SiC film) (for example, see Patent Document 1), graphite A method of peeling the film (for example, see Patent Document 2) has been common. However, the SiC substrate is very expensive (up to 500,000 yen / 3 inch wafer) and requires an ultra-high temperature process, so it is very difficult to put it to practical use, and the graphite film is peeled off. This method is not efficient, and the development of an innovative industrial production method is eagerly desired.
特開2007-335532号公報JP 2007-335532 A 特開2008-120660号公報JP 2008-120660 A
本発明の課題は、Si基板等をベースとした材料・プロセスを用いることによって、高品質なグラフェン膜を作製することにある。 An object of the present invention is to produce a high-quality graphene film by using a material / process based on a Si substrate or the like.
前記本発明の態様の一つは、絶縁層上に形成されたシリコン(Si)膜を、炭化水素ガスで炭化処理し、該シリコン膜を炭化珪素(SiC)膜に変性させると共に、該炭化珪素膜上にグラフェン膜を形成せしめることを特徴とするグラフェン膜の作製方法である。 In one aspect of the present invention, a silicon (Si) film formed on an insulating layer is carbonized with a hydrocarbon gas to modify the silicon film into a silicon carbide (SiC) film, and the silicon carbide. A graphene film manufacturing method is characterized in that a graphene film is formed over the film.
そして、本発明の他の態様は、絶縁層上に、表面にグラフェン膜を有するSiC膜が形成されてなる基板である。 Another embodiment of the present invention is a substrate in which an SiC film having a graphene film on the surface is formed on an insulating layer.
前記本発明の各態様において、絶縁層としては、Si基板上にSiO層が形成されたもの、又は、石英基板が好ましい。また、絶縁層上に形成されたSi膜は、単結晶薄膜であっても、アモルファス又は多結晶の薄膜であってもよい。絶縁層上に形成されたSi膜の膜厚は、20nm以下が好ましい。 In each aspect of the present invention, the insulating layer is preferably a substrate in which a SiO 2 layer is formed on a Si substrate or a quartz substrate. The Si film formed on the insulating layer may be a single crystal thin film or an amorphous or polycrystalline thin film. The thickness of the Si film formed on the insulating layer is preferably 20 nm or less.
本発明において、絶縁層上に形成されたシリコン(Si)膜の炭化水素ガスによる炭化処理は、好ましくは、不飽和結合を有する炭化水素ガスを用いて、昇温速度が10℃/秒以上の急速加熱下、1200~1410℃の温度範囲で行われるのが好ましい。 In the present invention, the carbonization treatment with a hydrocarbon gas of the silicon (Si) film formed on the insulating layer is preferably performed using a hydrocarbon gas having an unsaturated bond, and the temperature rising rate is 10 ° C./second or more. It is preferably carried out in the temperature range of 1200 to 1410 ° C. under rapid heating.
本発明によれば、安価で品質の良いグラフェン膜を製造でき、その結果、絶縁層の表面にグラフェン膜を有するSiC膜等が形成された基板を製造することができる。 According to the present invention, an inexpensive and high quality graphene film can be manufactured. As a result, a substrate in which an SiC film having a graphene film or the like is formed on the surface of an insulating layer can be manufactured.
絶縁層(Si基板上にSiO層が形成されたもの)上のシリコン膜を炭化処理して、グラフェン膜を作製する場合の説明図である。A silicon film on the insulating layer (as SiO 2 layer was formed on the Si substrate) to carbonization treatment is an explanatory view of a case of manufacturing a graphene film. 絶縁層(石英基板)上のシリコン膜を炭化処理して、グラフェン膜を作製する場合の説明図である。It is explanatory drawing in the case of carbonizing the silicon film on an insulating layer (quartz substrate), and producing a graphene film. 各種の炭化水素ガスで炭化処理したときの、G/D(グラフェン/ダイヤモンド生成比)の値を示す図である。It is a figure which shows the value of G / D (graphene / diamond production ratio) when carbonizing with various hydrocarbon gas. 炭化処理後の基板のラマンスペクトル図である。It is a Raman spectrum figure of the board | substrate after a carbonization process. 炭化処理後の基板の断面TEM(透過型電子顕微鏡)写真である。It is a cross-sectional TEM (transmission electron microscope) photograph of the board | substrate after a carbonization process. 炭化処理後の基板のG’バンドピーク付近のラマンスペクトル図である。It is a Raman spectrum figure of G 'band peak vicinity of the board | substrate after a carbonization process. ラマンスペクトルから算出したG/D比と、炭化処理温度との関係を示す図である。It is a figure which shows the relationship between G / D ratio computed from the Raman spectrum, and carbonization process temperature. ラマンスペクトルから算出したG/D比の表面Si層厚依存性を示す図である。It is a figure which shows the surface Si layer thickness dependence of G / D ratio computed from the Raman spectrum.
本発明は、具体的な態様としては、絶縁層上に形成されたシリコン(Si)膜を、炭化水素ガスで炭化処理し、該シリコン膜を炭化珪素(SiC)膜に変性させると共に、該炭化珪素膜上にグラフェン膜を形成せしめるグラフェン膜の作製方法として定義される。しかしながら、より一般的には、本発明は、適用温度において炭素又は炭化物に対して不活性な物質からなる層上に形成された金属Mの膜を、炭化水素ガスで炭化処理し、該金属Mの膜を反応生成物MCの膜に変性させると共に、該MCの膜上にグラフェン膜を形成せしめることを特徴とするグラフェン膜の作製方法として広く定義することができる。ここで、適用温度とは、炭化水素ガスによる炭化処理の際の温度を意味する。一般的には、金属Mの融点以下の温度が採用される。 As a specific aspect of the present invention, a silicon (Si) film formed on an insulating layer is carbonized with a hydrocarbon gas to modify the silicon film into a silicon carbide (SiC) film, and the carbonization. It is defined as a method for manufacturing a graphene film in which a graphene film is formed over a silicon film. More generally, however, the present invention involves carbonizing a metal M film formed on a layer made of a material that is inert to carbon or carbide at the application temperature with a hydrocarbon gas. This method can be broadly defined as a method for producing a graphene film, in which a film of the reaction product MC is modified into a film of the reaction product MC and a graphene film is formed on the MC film. Here, the application temperature means a temperature at the time of carbonization treatment with a hydrocarbon gas. Generally, a temperature below the melting point of the metal M is employed.
適用温度において炭素又は炭化物に対して不活性な物質とは、炭素自体やSiC等の半導体からなる層でもよいが、好ましいのは絶縁層である。中でも、絶縁層が、Si基板上にSiO層が形成されたものや石英基板が特に好ましい。また、炭化物と反応する金属Mの膜としては、例えば、Al、Ti、Fe、Cr、Mo、W、Co等の金属の膜が挙げられるが、好ましいのは、Si膜である。Siの場合は、適用温度は1410℃以下である。 The substance inert to carbon or carbide at the application temperature may be a layer made of a semiconductor such as carbon itself or SiC, but an insulating layer is preferable. Among them, the insulating layer is particularly preferably a substrate in which a SiO 2 layer is formed on a Si substrate or a quartz substrate. Examples of the metal M film that reacts with the carbide include metal films such as Al, Ti, Fe, Cr, Mo, W, and Co, but a Si film is preferable. In the case of Si, the application temperature is 1410 ° C. or lower.
本発明は、具体的には、適用温度で炭素と反応しないSiO等の絶縁層上に形成された、金属Mの膜、例えばSi膜を、炭化水素ガスで炭化処理し、該金属Mの膜をMC膜、例えば、SiC膜に変性させると共に、該SiC膜上にグラフェン膜を形成せしめるものである。絶縁層上に形成されたSi膜は、単結晶薄膜であっても、アモルファス又は多結晶の薄膜であってもよい。そして、絶縁層上に形成されたSi膜の膜厚は、特に制限されないが、20nm以下であるものが好ましい。 Specifically, in the present invention, a metal M film, for example, a Si film formed on an insulating layer such as SiO 2 that does not react with carbon at an application temperature is carbonized with a hydrocarbon gas, and the metal M The film is modified to an MC film, for example, a SiC film, and a graphene film is formed on the SiC film. The Si film formed on the insulating layer may be a single crystal thin film or an amorphous or polycrystalline thin film. The thickness of the Si film formed on the insulating layer is not particularly limited, but is preferably 20 nm or less.
本発明で用いられる炭化水素ガスとしては、例えば、エチレン、メタン、アセチレン、プロパンが挙げられるが、不飽和結合を有するものが好ましく、特に、エチレンが好ましい。 Examples of the hydrocarbon gas used in the present invention include ethylene, methane, acetylene, and propane, and those having an unsaturated bond are preferable, and ethylene is particularly preferable.
炭化水素ガスによる炭化処理の条件としては、特に制限はないが、昇温速度が10℃/秒以上の急速加熱下、1200~1410℃の温度範囲で、5秒以上5分以下の時間範囲で行うのが好ましい。特に好ましくは、1350~1405℃の温度範囲で、10秒から1分の時間範囲である。また、熱処理は、例えば、赤外線照射によって行うのが好ましく、熱処理は真空中で行ってよく、あるいは不活性雰囲気ガス中で行ってもよい。不活性ガスとしては、高純度のアルゴンガスが好ましい。 The conditions for the carbonization treatment with hydrocarbon gas are not particularly limited, but under rapid heating at a rate of temperature increase of 10 ° C./second or more, in a temperature range of 1200 to 1410 ° C., in a time range of 5 seconds to 5 minutes. It is preferred to do so. Particularly preferred is a temperature range of 1350 to 1405 ° C. and a time range of 10 seconds to 1 minute. The heat treatment is preferably performed by, for example, infrared irradiation, and the heat treatment may be performed in a vacuum or in an inert atmosphere gas. As the inert gas, high-purity argon gas is preferable.
本発明においては、石英あるいはSiOは炭素と反応しない物質であり、炭素の拡散を防止する。かかる物質の層上に形成された、Si膜は炭素と反応し、グラフェン生成触媒として働く。かかるSi膜を炭化水素ガスにより炭化することで、SiC膜が生成するが、その際、その上に更にグラフェン膜が形成されるものである。ラマン分光分析等で解析した結果、Si層の厚さや炭化水素ガスの種類等が、G/D(グラフェン/ダイヤモンド生成比)等の品質に影響することが推察される。 In the present invention, quartz or SiO 2 is a substance that does not react with carbon and prevents carbon from diffusing. The Si film formed on the material layer reacts with carbon and acts as a graphene production catalyst. A SiC film is produced by carbonizing such a Si film with a hydrocarbon gas. At this time, a graphene film is further formed thereon. As a result of analysis by Raman spectroscopic analysis or the like, it is presumed that the thickness of the Si layer, the type of hydrocarbon gas, and the like affect the quality such as G / D (graphene / diamond production ratio).
前記のようにして得られた本発明のグラフェン膜用いて、絶縁層上に、表面にグラフェン膜を有するSiC膜が形成されてなる基板を製造することができる。以下、実施例により本発明を説明する。 Using the graphene film of the present invention obtained as described above, a substrate in which an SiC film having a graphene film on the surface is formed on an insulating layer can be manufactured. Hereinafter, the present invention will be described by way of examples.
市販SOI(Silicon-on-Insulator)基板、即ち、シリコン基板上に薄い絶縁層(SiO層)を介してシリコンの単結晶薄膜が形成されている基板を用いて、実験を行った。炭化処理には、ハロゲンランプを赤外線源と有する急速加熱装置(処理基板の最大ウェーハ口径:8インチ)を用いて実施した。 Experiments were performed using a commercially available SOI (Silicon-on-Insulator) substrate, that is, a substrate in which a single crystal thin film of silicon is formed on a silicon substrate via a thin insulating layer (SiO 2 layer). The carbonization process was performed using a rapid heating apparatus (maximum wafer diameter of the processing substrate: 8 inches) having a halogen lamp as an infrared source.
先ず、基板の表面Siを薄層化し、その極薄Si層を、エチレンを炭化水素源として炭化処理することにより、極薄SiC層に変性した。具体的には、5nm-表面Si層/埋め込み酸化膜/Si基板(極薄SOI基板)を用いて、大気圧雰囲気で水素10slmとエチレン20ccmを流し、基板温度1350℃で15秒処理することにより、グラフェン膜を形成した。炭化処理によって形成されたSiC膜上に、厚さ数nm程度のグラフェン膜が形成された。 First, the surface Si of the substrate was thinned, and the ultrathin Si layer was modified into an ultrathin SiC layer by carbonizing with ethylene as a hydrocarbon source. Specifically, using 5 nm-surface Si layer / buried oxide film / Si substrate (ultra-thin SOI substrate), flowing 10 slm of hydrogen and 20 ccm of ethylene in an atmospheric pressure atmosphere, and treating the substrate at 1350 ° C. for 15 seconds. A graphene film was formed. A graphene film having a thickness of about several nm was formed on the SiC film formed by the carbonization treatment.
上記反応を図1に示した。図1において、矢印は炭化処理工程を示している。炭化処理工程の左側の基板の図は、Si基板12上にSiO層11が形成された絶縁層上に、シリコン膜10が形成されている基板の状態を示している。炭化処理によって得られた右側の基板の図は、SiO層11の上にSiC膜13が形成され、更にその上にグラフェン膜14が形成された基板の状態を示している。 The above reaction is shown in FIG. In FIG. 1, an arrow indicates a carbonization process. The figure of the substrate on the left side of the carbonization process shows the state of the substrate in which the silicon film 10 is formed on the insulating layer in which the SiO 2 layer 11 is formed on the Si substrate 12. The figure of the right substrate obtained by the carbonization treatment shows the state of the substrate in which the SiC film 13 is formed on the SiO 2 layer 11 and the graphene film 14 is further formed thereon.
極薄アモルファスSiO(石英)/Si基板を、急速加熱法を用いてエチレンガスで炭化処理することにより、極薄Si層が極薄SiC層に変性し、その表面に高品質なグラフェン膜を形成された。具体的には、20nm厚アモルファスSi/SiO/Si基板を用いて、大気圧雰囲気で水素10slmとエチレン20ccmを流し、基板温度1350℃で15秒処理することにより、グラフェン膜を形成した。炭化処理によって形成されたSiC膜上に、厚さ数nm程度のグラフェン膜が形成された。 An ultra-thin amorphous SiO 2 (quartz) / Si substrate is carbonized with ethylene gas using a rapid heating method, whereby the ultra-thin Si layer is transformed into an ultra-thin SiC layer, and a high-quality graphene film is formed on the surface. Been formed. Specifically, a graphene film was formed by using a 20 nm thick amorphous Si / SiO 2 / Si substrate, flowing hydrogen 10 slm and 20 ccm of ethylene in an atmospheric pressure atmosphere, and treating the substrate at 1350 ° C. for 15 seconds. A graphene film having a thickness of about several nm was formed on the SiC film formed by the carbonization treatment.
上記反応を図2に示した。図2において、矢印は炭化処理工程を示している。炭化処理工程の左側の基板の図は、石英基板21上のシリコン膜20が形成されている基板の状態を示している。炭化処理によって得られた右側の基板の図は、石英基板21の上にSiC膜23が形成され、更にその上にグラフェン膜24が形成された基板の状態を示している。 The above reaction is shown in FIG. In FIG. 2, the arrow has shown the carbonization process. The figure of the substrate on the left side of the carbonization process shows the state of the substrate on which the silicon film 20 on the quartz substrate 21 is formed. The figure of the right substrate obtained by the carbonization treatment shows a state of the substrate in which the SiC film 23 is formed on the quartz substrate 21 and the graphene film 24 is further formed thereon.
実施例1で用いた市販SOI(Silicon-on-Insulator)基板の表面Si膜を、各種の炭化水素ガスで炭化処理したときの、G/D(グラフェン/ダイヤモンド生成比)を図3に示した。具体的には、5nm-表面Si層/埋め込み酸化膜/Si基板(極薄SOI基板)を用いて、大気圧雰囲気で水素10slmと炭化水素ガス(エチレン、メタン、アセチレン又はプロパン)20ccmを流し、基板温度1350℃で15秒処理することにより、グラフェン膜を形成した。G/Dはエチレンの場合が最も大きいことが分かる。 FIG. 3 shows G / D (graphene / diamond production ratio) when the surface Si film of the commercially available SOI (Silicon-on-Insulator) substrate used in Example 1 is carbonized with various hydrocarbon gases. . Specifically, using 5 nm-surface Si layer / buried oxide film / Si substrate (ultra-thin SOI substrate), hydrogen 10 slm and hydrocarbon gas (ethylene, methane, acetylene, or propane) 20 ccm are flowed in an atmospheric pressure atmosphere, A graphene film was formed by processing at a substrate temperature of 1350 ° C. for 15 seconds. It can be seen that G / D is the largest in the case of ethylene.
表面Si層が5nmのSOI基板を用いて、水素5slmとプロパン20sccmを流し、基板温度1330℃にて炭化処理を実施した。処理後の基板のラマンスペクトルを図4に示した。図4において、1400cm-1付近のDバンドピーク、及び、1600cm-1付近のGバンドピークが観察されており、表面上に秩序性のある炭素膜が形成されていることを示している。 Using an SOI substrate having a surface Si layer of 5 nm, hydrogen 5 slm and propane 20 sccm were passed, and carbonization was performed at a substrate temperature of 1330 ° C. The Raman spectrum of the substrate after the treatment is shown in FIG. In FIG. 4, D-band peak near 1400 cm -1 and, are G-band peak near 1600 cm -1 was observed, indicating that the carbon film having the orderliness on the surface is formed.
図5に、前記処理後の基板の断面TEM(透過型電子顕微鏡)写真を示した。炭化処理により、SOI基板の表面Si層がSiC層に変性されたことに加えて、さらにその表面上に層状に観察される炭素膜(グラフェン膜)が形成されていることが分かる。 FIG. 5 shows a cross-sectional TEM (transmission electron microscope) photograph of the substrate after the treatment. It can be seen that, by the carbonization treatment, in addition to the surface Si layer of the SOI substrate being modified to the SiC layer, a carbon film (graphene film) that is observed in a layer shape is further formed on the surface.
図6に、前記処理後の基板のG’バンドピーク付近のラマンスペクトルを示した。明瞭なG’ピークが観察されていることより、グラフェン膜の形成が実証された。 FIG. 6 shows a Raman spectrum near the G ′ band peak of the substrate after the treatment. The formation of a graphene film was demonstrated from the fact that a clear G ′ peak was observed.
図7及び図8に、上記ラマンスペクトルから算出したGピークとDピークの比(G/D比)(グラフェン/ダイヤモンド生成比)と、炭化処理温度(表面Si層厚:5nmで一定)との関係、及び、G/D比の表面Si層厚依存性(炭化温度:1300℃で一定)を示した。両図から、炭化温度が高いほど、表面Si層厚が薄いほど、G/D比が大きくなり、グラフェン膜の品質が向上していることが分かる。 FIG. 7 and FIG. 8 show the ratio between the G peak and D peak (G / D ratio) (graphene / diamond production ratio) calculated from the Raman spectrum and the carbonization temperature (surface Si layer thickness: constant at 5 nm). The relationship and the dependence of the G / D ratio on the thickness of the surface Si layer (carbonization temperature: constant at 1300 ° C.) were shown. From both figures, it can be seen that the higher the carbonization temperature and the thinner the surface Si layer thickness, the larger the G / D ratio and the better the quality of the graphene film.
本発明の方法により、効率良く高品質のグラフェン膜を作製することができる。具体的には、絶縁層上に形成されたSiC膜の上に、高品質のグラフェン膜を有する基板が得られる。その結果、得られたグラフェン膜の、従来不可能であった電子デバイスのSiプロセスへの組み込みが可能となり、グラフェン膜をチャネル材とした能動素子に加えて、配線材料への適用等、多くのデバイスへの適用が可能である。
 
By the method of the present invention, a high-quality graphene film can be efficiently produced. Specifically, a substrate having a high-quality graphene film on an SiC film formed on the insulating layer is obtained. As a result, the obtained graphene film can be incorporated into the Si process of electronic devices that were impossible in the past, and in addition to active elements using the graphene film as a channel material, there are many applications such as application to wiring materials. It can be applied to devices.

Claims (9)

  1. 絶縁層上に形成されたシリコン(Si)膜を、炭化水素ガスで炭化処理し、該シリコン膜を炭化珪素(SiC)膜に変性させると共に、該炭化珪素膜上にグラフェン膜を形成せしめることを特徴とするグラフェン膜の作製方法。 The silicon (Si) film formed on the insulating layer is carbonized with a hydrocarbon gas to denature the silicon film into a silicon carbide (SiC) film and to form a graphene film on the silicon carbide film. A featured graphene film manufacturing method.
  2. 絶縁層が、Si基板上にSiO層が形成されたものであることを特徴とする請求項1記載のグラフェン膜の作製方法。 The method for producing a graphene film according to claim 1, wherein the insulating layer is a SiO 2 layer formed on a Si substrate.
  3. 絶縁層が、石英基板であることを特徴とする請求項1記載のグラフェン膜の作製方法。 The method for manufacturing a graphene film according to claim 1, wherein the insulating layer is a quartz substrate.
  4. 絶縁層上に形成されたSi膜が、単結晶薄膜であることを特徴とする請求項1記載のグラフェン膜の作製方法。 2. The method for producing a graphene film according to claim 1, wherein the Si film formed on the insulating layer is a single crystal thin film.
  5. 絶縁層上に形成されたSi膜が、アモルファス又は多結晶の薄膜であることを特徴とする請求項1記載のグラフェン膜の作製方法。 2. The method for producing a graphene film according to claim 1, wherein the Si film formed on the insulating layer is an amorphous or polycrystalline thin film.
  6. 絶縁層上に形成されたSi膜の膜厚が、20nm以下であることを特徴とする請求項1記載のグラフェン膜の作製方法。 2. The method for producing a graphene film according to claim 1, wherein the thickness of the Si film formed on the insulating layer is 20 nm or less.
  7. 炭化水素ガスが、不飽和結合を有するものであることを特徴とする請求項1記載のグラフェン膜の作製方法。 The method for producing a graphene film according to claim 1, wherein the hydrocarbon gas has an unsaturated bond.
  8. 炭化水素ガスによる炭化処理が、昇温速度が10℃/秒以上の急速加熱下、1200~1410℃の温度範囲で行われることを特徴とする請求項1記載のグラフェン膜の作製方法。 2. The method for producing a graphene film according to claim 1, wherein the carbonization treatment with the hydrocarbon gas is performed in a temperature range of 1200 to 1410 ° C. under rapid heating at a temperature rising rate of 10 ° C./second or more.
  9. 絶縁層上に、表面にグラフェン膜を有するSiC膜が形成されてなる基板。
     
     
    A substrate in which a SiC film having a graphene film on the surface is formed on an insulating layer.

PCT/JP2010/056653 2009-04-25 2010-04-14 Method for forming graphene film WO2010122928A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009107196 2009-04-25
JP2009-107196 2009-04-25

Publications (1)

Publication Number Publication Date
WO2010122928A1 true WO2010122928A1 (en) 2010-10-28

Family

ID=43011046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056653 WO2010122928A1 (en) 2009-04-25 2010-04-14 Method for forming graphene film

Country Status (1)

Country Link
WO (1) WO2010122928A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102051677A (en) * 2010-11-12 2011-05-11 山东大学 Method for growing graphene on large-diameter 6H-SiC carbon surface
JP2011146562A (en) * 2010-01-15 2011-07-28 Kyushu Institute Of Technology Substrate with graphene film
WO2012060468A1 (en) * 2010-11-04 2012-05-10 日本電気株式会社 Manufacturing method for graphene substrate, and graphene substrate
WO2012086387A1 (en) * 2010-12-21 2012-06-28 日本電気株式会社 Method for manufacturing graphene substrate, and graphene substrate
CN102530936A (en) * 2012-01-03 2012-07-04 西安电子科技大学 Method for producing graphene on silicon carbide (SiC) underlayer based on chlorine (Cl2) reaction
CN102653400A (en) * 2012-05-16 2012-09-05 西安电子科技大学 Method for preparing Ni film annealed graphene nanobelt by injecting silicon into 3C-SiC
CN102653399A (en) * 2012-05-16 2012-09-05 西安电子科技大学 Method for preparing copper film annealed graphene nanobelt by injecting silicon into 3C-SiC

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363751A (en) * 2001-06-06 2002-12-18 Osaka Prefecture Method and device for producing single crystal silicon carbide thin film
JP2009107921A (en) * 2007-10-29 2009-05-21 Samsung Electronics Co Ltd Graphene sheet and method of producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363751A (en) * 2001-06-06 2002-12-18 Osaka Prefecture Method and device for producing single crystal silicon carbide thin film
JP2009107921A (en) * 2007-10-29 2009-05-21 Samsung Electronics Co Ltd Graphene sheet and method of producing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MOTOI NAKAO ET AL.: "Kyusoku Kanetsuho ni yoru SOI Kiban Hyomen Si-so no SiC-so eno Hensei", EXTENDED ABSTRACTS, JAPAN SOCIETY OF APPLIED PHYSICS AND RELATED SOCIETIES, vol. 52, no. 1, 29 March 2005 (2005-03-29), pages 442 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011146562A (en) * 2010-01-15 2011-07-28 Kyushu Institute Of Technology Substrate with graphene film
JPWO2012060468A1 (en) * 2010-11-04 2014-05-12 日本電気株式会社 Graphene substrate manufacturing method and graphene substrate
WO2012060468A1 (en) * 2010-11-04 2012-05-10 日本電気株式会社 Manufacturing method for graphene substrate, and graphene substrate
JP5967486B2 (en) * 2010-11-04 2016-08-10 日本電気株式会社 Graphene substrate manufacturing method and graphene substrate
US8835286B2 (en) 2010-11-04 2014-09-16 Nec Corporation Manufacturing method of graphene substrate and graphene substrate
CN102051677A (en) * 2010-11-12 2011-05-11 山东大学 Method for growing graphene on large-diameter 6H-SiC carbon surface
JPWO2012086387A1 (en) * 2010-12-21 2014-05-22 日本電気株式会社 Graphene substrate manufacturing method and graphene substrate
US8980217B2 (en) 2010-12-21 2015-03-17 Nec Corporation Method of manufacturing graphene substrate, and graphene substrate
JP5871213B2 (en) * 2010-12-21 2016-03-01 日本電気株式会社 Graphene substrate manufacturing method and graphene substrate
WO2012086387A1 (en) * 2010-12-21 2012-06-28 日本電気株式会社 Method for manufacturing graphene substrate, and graphene substrate
CN102530936A (en) * 2012-01-03 2012-07-04 西安电子科技大学 Method for producing graphene on silicon carbide (SiC) underlayer based on chlorine (Cl2) reaction
CN102653400B (en) * 2012-05-16 2013-09-25 西安电子科技大学 Method for preparing Ni film annealed graphene nanobelt by injecting silicon into 3C-SiC
CN102653399A (en) * 2012-05-16 2012-09-05 西安电子科技大学 Method for preparing copper film annealed graphene nanobelt by injecting silicon into 3C-SiC
CN102653400A (en) * 2012-05-16 2012-09-05 西安电子科技大学 Method for preparing Ni film annealed graphene nanobelt by injecting silicon into 3C-SiC

Similar Documents

Publication Publication Date Title
Khan et al. Direct CVD growth of graphene on technologically important dielectric and semiconducting substrates
Wang et al. Direct CVD graphene growth on semiconductors and dielectrics for transfer‐free device fabrication
US9355842B2 (en) Direct and sequential formation of monolayers of boron nitride and graphene on substrates
WO2010122928A1 (en) Method for forming graphene film
US9187824B2 (en) Rapid synthesis of graphene and formation of graphene structures
Mattevi et al. A review of chemical vapour deposition of graphene on copper
EP2994933B1 (en) Direct and sequential formation of monolayers of boron nitride and graphene on substrates
JP5065336B2 (en) Method for producing carbon nanotube film
WO2010023934A1 (en) Method for producing graphene/sic composite material and graphene/sic composite material obtained by same
Lavin-Lopez et al. Synthesis and characterization of graphene: influence of synthesis variables
KR20100107403A (en) Method of production of graphene
JP2010241680A (en) Method for producing graphene
JP2011051801A (en) Method for producing graphene film
Kitaura et al. Chemical vapor deposition growth of graphene and related materials
Lu et al. A critical review of growth of low-dimensional carbon nanostructures on SiC (0 0 0 1): impact of growth environment
Yang et al. A new direct growth method of graphene on Si-face of 6H-SiC by synergy of the inner and external carbon sources
Hasegawa et al. In situ SR-XPS observation of Ni-assisted low-temperature formation of epitaxial graphene on 3C-SiC/Si
Jafari et al. Growth and characterization of boron doped graphene by Hot Filament Chemical Vapor Deposition Technique (HFCVD)
Varanasi et al. Growth of high-quality carbon nanotubes on free-standing diamond substrates
Bajpai et al. Facile one-step transfer process of graphene
Kolahdouz et al. Substrate engineering for Ni-assisted growth of carbon nano-tubes
Piazzi et al. Laser-induced etching of few-layer graphene synthesized by Rapid-Chemical Vapour Deposition on Cu thin films
Lee et al. Catalyst patterned growth of interconnecting graphene layer on SiO2/Si substrate for integrated devices
Lopes et al. Molecular beam epitaxy of graphene and hexagonal boron nitride
Barbosa et al. Direct synthesis of bilayer graphene on silicon dioxide substrates

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10766985

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10766985

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP