WO2010119843A1 - 呼吸インピーダンス測定装置及び呼吸インピーダンス表示方法 - Google Patents

呼吸インピーダンス測定装置及び呼吸インピーダンス表示方法 Download PDF

Info

Publication number
WO2010119843A1
WO2010119843A1 PCT/JP2010/056541 JP2010056541W WO2010119843A1 WO 2010119843 A1 WO2010119843 A1 WO 2010119843A1 JP 2010056541 W JP2010056541 W JP 2010056541W WO 2010119843 A1 WO2010119843 A1 WO 2010119843A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
respiratory
respiratory impedance
frequency
impedance
Prior art date
Application number
PCT/JP2010/056541
Other languages
English (en)
French (fr)
Inventor
一 黒澤
芳雄 清水
敏明 保木
Original Assignee
チェスト株式会社
株式会社東北テクノアーチ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by チェスト株式会社, 株式会社東北テクノアーチ filed Critical チェスト株式会社
Priority to US13/264,075 priority Critical patent/US9022947B2/en
Publication of WO2010119843A1 publication Critical patent/WO2010119843A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0809Detecting, measuring or recording devices for evaluating the respiratory organs by impedance pneumography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/03Detecting, measuring or recording fluid pressure within the body other than blood pressure, e.g. cerebral pressure; Measuring pressure in body tissues or organs
    • A61B5/036Detecting, measuring or recording fluid pressure within the body other than blood pressure, e.g. cerebral pressure; Measuring pressure in body tissues or organs by means introduced into body tracts
    • A61B5/038Measuring oral pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/087Measuring breath flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6814Head
    • A61B5/682Mouth, e.g., oral cavity; tongue; Lips; Teeth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7253Details of waveform analysis characterised by using transforms
    • A61B5/7257Details of waveform analysis characterised by using transforms using Fourier transforms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/40Respiratory characteristics
    • A61M2230/46Resistance or compliance of the lungs

Definitions

  • the present invention relates to a respiratory impedance measuring apparatus and a respiratory impedance display method capable of continuously measuring respiratory impedance of a person or the like.
  • this type of device includes a sine wave pressurizing device for applying a sinusoidal air vibration pressure to the respiratory system, an airflow velocity detector for detecting the airflow velocity of the respiratory system, and a respiratory system
  • a sine wave pressurizing device for applying a sinusoidal air vibration pressure to the respiratory system
  • an airflow velocity detector for detecting the airflow velocity of the respiratory system
  • a respiratory system One having an atmospheric pressure detector for detecting atmospheric pressure, an airflow velocity detector and a resistance calculation unit for calculating a respiratory resistance from the airflow velocity and atmospheric pressure detected by the atmospheric pressure detector is known.
  • the above-mentioned conventional apparatus includes a reference signal converter for converting a sine wave air vibration pressure signal loaded by the sine wave pressurizing apparatus into a reference signal, and a sine wave air vibration pressure reference signal from the reference signal converter.
  • a vector calculator for processing the airflow velocity signal to extract only the component having the same frequency as the reference signal, and the airflow velocity signal obtained by the vector calculator and the atmospheric pressure detected by the atmospheric pressure detector.
  • the breathing resistance is calculated by the resistance calculation unit from the signal.
  • this device measures the respiratory resistance by the resistance calculation unit from the airflow velocity signal obtained by the vector calculator and the atmospheric pressure signal detected by the atmospheric pressure detector, so that the ventilation volume is small. Moreover, even if it is respiration with much ventilation rate, a noise can be removed and it has the advantage which can measure a respiratory resistance with high precision (refer patent document 1).
  • noise removal cannot be said to be sufficient even with the above-described conventional apparatus, and realization of a higher-performance respiratory impedance measuring apparatus is demanded.
  • the present invention has been made in view of the present situation in the measurement of respiratory impedance, and an object of the present invention is to measure the respiratory impedance with extremely high accuracy and to be widely applicable to the determination of respiratory diseases. And providing a respiratory impedance display method.
  • the respiratory impedance measuring apparatus includes a pressurizing unit for applying an air vibration pressure in the oral cavity, a pressure detecting unit for detecting the intraoral pressure, a flow rate detecting unit for detecting a flow rate due to respiration,
  • This is a pulse signal that drives the pressure means with different positive and negative pulses according to the time of expiration and inhalation, and is a pulse signal that is frequency-thinned so as to have only frequency components that are thinned out from a plurality of different frequencies.
  • a control means for generating an air vibration pressure due to an oscillation wave, and a signal obtained by the pressure detection means and the flow rate detection means under the pressurization state by the pressurization means are obtained, and the obtained signal is subjected to Fourier transform.
  • the Fourier transform means for obtaining the spectrum and the spectrum corresponding to the frequency component thinned out from the result of the transform by the Fourier transform means
  • An extraction means for obtaining a wave component and subtracting the oscillation wave component by subtracting from the spectrum corresponding to the frequency component remaining by the thinning, and an arithmetic means for dividing the pressure component by the flow rate component for each frequency of the extraction result by the extraction means It is characterized by comprising.
  • the control means provides an oscillation having only a frequency component of n / T 1 (n: integer, T 1 : real number) by giving a pulse wave of period T 1 as frequency thinning. It generates air vibration pressure due to waves.
  • the control means outputs an oscillation wave of a desired pressure waveform as an output signal based on an inverse operation using an input signal and an output signal of the pressurizing means and a transfer function of the pressurizing means.
  • the signal input means for giving an input signal to the pressurizing means is provided.
  • the signal input means adds a constant value to each frequency component of the signal obtained by the inverse operation or inversely calculates a signal obtained by adding an impulse to the onset portion of the output signal. Then, the obtained signal is given as an input signal to the pressurizing means.
  • a respiratory impedance display method is a respiratory impedance display method for displaying on a display device based on a respiratory impedance measured by a respiratory impedance measuring device.
  • the respiratory impedance is three-dimensionally represented by an impedance axis, a frequency axis, and a time axis. Take the value and display it in 3D, create an image that includes the respiratory impedance obtained by interpolating the thinned-out frequency in the 3D display, display the breath flow and inspiratory flow The flow waveform obtained by the flow detecting means for detecting is displayed together with the impedance.
  • the expiration period and the inspiration period are displayed in a color-coded manner in the vertical direction in the background of the screen.
  • the respiratory impedance in a plurality of breaths is averaged every elapsed time to obtain an average value, the average value is displayed as a three-dimensional image, and the average value at a predetermined number of frequencies is displayed.
  • the average value is displayed as a three-dimensional image, and the average value at a predetermined number of frequencies is displayed.
  • the respiratory impedance display method is characterized in that an image is generated and displayed with the length in the time axis direction as a length in which at least two pairs of exhalation and inspiration are repeated.
  • the respiratory impedance display method is characterized by creating and displaying an image in which the magnitude of the impedance value is expressed by a color change and / or a shading change.
  • air vibration pressure generated by an oscillation wave whose frequency is thinned in the oral cavity is applied, the pressure in the oral cavity is detected, the flow rate of breathing is detected, and the obtained signal is Fourier transformed to obtain the spectrum.
  • Obtain the respiratory high frequency component that contributes as noise from the spectrum corresponding to the frequency component thinned out about this Fourier transform result and extract the oscillation wave component by subtracting this respiratory high frequency component from the spectrum corresponding to the frequency component remaining by the thinning Since the extraction impedance is obtained by dividing the pressure component by the flow rate component for each frequency to obtain the respiratory impedance, the respiratory impedance can be obtained by using the oscillation wave component from which the respiratory high-frequency component is reliably removed.
  • a pulse signal is used for the air vibration pressure by the oscillation wave, and the positive and negative of the pulse are Since not driven differ depending upon the intake and time, can measure respiratory resistance in physiologically identical conditions inspiration and expiration, it is possible to respiratory impedance measured with extremely high precision by appropriate measurements.
  • an air oscillation pressure is generated by an oscillation wave having only n / T 1 (n: integer T 1 : real number) frequency components.
  • Respiratory high-frequency component is obtained from the component-corresponding spectrum, and the respiratory high-frequency component is subtracted from the remaining frequency component-corresponding spectrum (other than n / T 1 frequency) by thinning out, and the respiratory high-frequency component is reliably removed, with extremely high accuracy. Respiratory impedance measurement is possible.
  • an air vibration pressure is generated by the oscillation wave thinned out of the frequency components, so that the spectrum corresponding to the thinned frequency components includes only the respiratory high frequency component. It is. Therefore, the respiratory high frequency component included in the oscillation signal can be estimated from the respiratory high frequency component signal. Using this estimated signal, the respiratory high-frequency component can be reliably removed, and the respiratory impedance can be measured with extremely high accuracy.
  • the input signal is input to the pressurization execution portion so that the oscillation wave of the desired waveform becomes the output signal based on the inverse calculation using the pressurization input signal and output signal and the transfer function of the pressurization execution portion. Therefore, the measurement can be performed using the oscillation wave having a desired pressure waveform, and the respiratory impedance can be measured with extremely high accuracy.
  • a predetermined value is added to each frequency component of the signal obtained by the inverse operation, or the signal obtained by adding the impulse to the onset portion of the output signal is inversely operated, and the obtained signal is input. Since it is a signal, the signal waveform as a result of the inverse operation is stabilized, whereby it is possible to perform measurement using an oscillation wave having a desired waveform, and it is possible to measure respiratory impedance with extremely high accuracy.
  • the spectrum corresponding to the frequency component remaining after thinning and the thinned frequency component can be obtained appropriately and the required processing can be performed.
  • values are three-dimensionally represented by the impedance axis, the frequency axis, and the time axis.
  • the three-dimensional display is performed, and the respiratory impedance obtained by interpolating the thinned-out frequency is displayed by creating and displaying an image that is included when the respiratory impedance obtained by taking the three-dimensional value is displayed.
  • the flow waveform obtained by the flow detection means for detecting the flow and the intake flow is displayed together with the impedance, the result of the interpolation processing is also displayed as an image, so that the change in the impedance value is displayed finely and smoothly, and the entire frequency is displayed. It becomes possible to properly grasp the impedance. Flow waveform by expiratory flow and the intake flow are displayed together, it is possible widely applied to the determination of the respiratory system diseases.
  • the exhalation period and the inspiration period are displayed in a color band in the vertical direction in the background of the screen, so that the expiration period and the inspiration period are clearly visible in the display of the respiratory impedance. It is useful for determining respiratory diseases.
  • the respiratory impedance in a plurality of breaths is averaged every elapsed time to obtain an average value, the average value is displayed as a three-dimensional image, and the average value at a predetermined number of frequencies is displayed. Is displayed as a line segment, and the maximum value, minimum value and maximum / minimum difference at the predetermined number of frequencies are obtained and displayed in text, so that different respiratory impedances can be averaged for each breath and acquired in text. Useful for comparisons.
  • the length in the time axis direction is set to a length that repeats at least two pairs of exhaled air and inhaled air, an image is created and displayed. The observation with the span of is possible, and appropriate observation is secured.
  • the respiratory impedance display method creates and displays an image that expresses the magnitude of the impedance value by a change in color or light and shade, so that it is possible to easily identify the magnitude of the impedance value at a glance. It is expected to be extremely useful for various studies and examinations using respiratory impedance, and for visual explanation to patients.
  • the block diagram of the respiratory impedance measuring apparatus which concerns on the Example of this invention The figure which shows an example of the triangular pulse wave which is an oscillation wave used for the respiratory impedance measuring apparatus which concerns on the Example of this invention.
  • requiring respiratory impedance using the triangular pulse wave which is an oscillation wave with the respiratory impedance measuring apparatus which concerns on the Example of this invention The figure which shows the frequency characteristic of the filter employ
  • requiring respiratory impedance using the triangular pulse wave which is an oscillation wave with the respiratory impedance measuring apparatus which concerns on the Example of this invention The figure which shows the respiratory impedance obtained by the respiratory impedance measuring apparatus which concerns on the Example of this invention.
  • FIG. 1 shows a configuration diagram of an embodiment of a respiratory impedance measuring apparatus according to the present invention.
  • This respiratory impedance measuring apparatus has a tube 11 having a tip attached to the oral cavity of a person and through which a respiratory flow flows, a pressure sensor 12 that constitutes a pressure detection means that is attached to the tube 11 and detects pressure in the oral cavity, and a pressure sensor 12.
  • Main components are a flow rate sensor 13 constituting flow rate detection means for detecting a flow rate due to respiration at the same position, a loudspeaker 21 constituting pressurization means for applying air vibration pressure in the oral cavity, and a computer 30.
  • the output signal of the pressure sensor 12 is amplified by the amplifier 14, digitized by the A / D converter 15, and taken into the computer 30.
  • the output signal of the flow sensor 13 is amplified by the amplifier 16, digitized by the A / D converter 17, and taken into the computer 30.
  • the computer 30 includes a control unit 31, a Fourier transform unit 32, an extraction unit 33, and a calculation unit 34.
  • the control unit 31 includes a signal input unit 35.
  • the control means 31 outputs a signal for driving the loudspeaker 21 which is a pressurizing means, and generates an air vibration pressure due to an oscillation wave having only odd frequency components or even frequency components.
  • the output of the control means 31 is digitized by the D / A converter 22 and sent to the driver 23.
  • the driver 23 drives the loudspeaker 21, and air vibration pressure is applied to the oral cavity.
  • the control means 31 generates an air vibration pressure by an oscillation wave having a frequency component of n / T 1 (n: integer, T 1 : real number) by giving a pulse wave having a period of T 1 seconds.
  • Various waveforms can be used as the pulse wave.
  • the triangular pulse has a base level time width of about 25 ms as shown in FIG.
  • T 1 0.5 seconds
  • a triangular pulse wave having a spectrum of 2, 4, 6, 8 Hz,... can be given (FIG. 2B).
  • the Hanning pulse as another example of the pulse wave has a base level time width of about 25 ms as shown in FIG. It is created and output in the same way as for the triangular pulse wave.
  • the signal input means provided in the control means 31 is a loudspeaker so that an oscillation wave having a desired waveform becomes an output signal based on an inverse operation using an input signal and an output signal of the loudspeaker 21 and a transfer function of the loudspeaker 21. An input signal is given to the speaker 21.
  • the relationship between the positive / negative of the pulse wave and the direction of the flow (respiratory flow) is physiologically important.
  • the pulse wave be the negative pulse (convex downward) in the same direction as the direction of the expiratory flow in the negative region in the flow curve (convex downward).
  • the flow is accelerated and its speed is increased.
  • the bronchial pressure is attenuated by the influence of the oscillation wave by the pulse wave, and the diameter of the bronchus is shortened. The resulting respiratory resistance is increased.
  • the control means 31 outputs a pulse by changing the sign of the pulse according to expiration and inspiration.
  • the direction of the pulse wave (convex upward or convex downward) is set to the same direction as the flow in both inspiration and expiration. That is, in the case of exhalation in which the flow curve (FIG. 4C) is a negative region, a negative pulse wave is used, and in the case of inspiration in which the flow curve is a positive region, a positive pulse wave is used. Like that. FIG. 4A shows a case where the positive / negative of the pulse wave is switched in this way.
  • the direction of the pulse wave (convex upward or convex downward) is opposite to the flow in both inspiration and expiration. That is, a positive pulse wave is used in the case of exhalation where the flow curve (FIG. 4C) is a negative region, and a negative pulse wave is used in the case of inspiration where the flow curve is a positive region. Like that. FIG. 4B shows a case where the pulse wave is switched between positive and negative in this way.
  • the control means 31 detects the time of switching between expiration and inspiration based on the output of the flow sensor 13.
  • the output of the flow sensor 13 basically changes as shown in FIG. 4C in response to respiration, so that the pulse wave is output at the zero cross point of the output signal of the flow sensor 13 as a boundary. Switch between positive and negative.
  • an instruction can be given to the computer 30 by a keyboard (not shown) or the like, and the signal waveform selected by the control means 31 is output accordingly.
  • the Fourier transform means 32 obtains a signal from the pressure sensor 12 and the flow sensor 13 under the pressurized state in the oral cavity caused by the loudspeaker 21 being driven as described above, and the obtained signal is Fourier-transformed. A spectrum is obtained by conversion.
  • a CIC filter 36 is provided in the preceding stage of the Fourier transform means 32 to separate the respiration signal obtained from the pressure sensor 12 and the flow sensor 13 from the oscillation component. Further, if necessary before the processing, the Fourier transform means 32 extracts a signal through a Hanning window.
  • the extraction unit 33 obtains a respiratory high frequency component from the spectrum corresponding to the frequency component thinned out from the conversion result by the Fourier transform unit 32, and subtracts it from the spectrum corresponding to the frequency component remaining by the thinning, thereby extracting the oscillation wave component.
  • the respiratory high frequency component is obtained from the spectrum obtained by the Fourier transform means 32 using the spectrum corresponding to the frequency other than the frequency component of n / T 1 (n: integer), and the frequency component remaining by decimation is obtained.
  • the frequency component of n / T 1 is subtracted from the corresponding spectrum to extract the oscillation wave component.
  • the calculating means 34 calculates the respiratory impedance by dividing the pressure component by the flow rate component for each frequency of the extraction result by the extracting means 33. That is, the respiratory impedance is Z ( ⁇ ), the oscillation wave component of the intraoral pressure is P ( ⁇ ), the oscillation wave component of the flow rate is F ( ⁇ ), and the respiratory impedance Z ( ⁇ ) is the resistance component R ( ⁇ ). And the reactance component X ( ⁇ ), the respiratory impedance Z ( ⁇ ) is obtained by the following equation.
  • the respiratory impedance Z ( ⁇ ) obtained by the computing means 34 is output to the display unit 40 as a display signal for the display unit 40 such as an LCD connected to the computer 30 and displayed.
  • the controller 21 and the signal input means 35 drive the speaker 21 with a T 1 second period (for example, at intervals of 0.5 second) with the inversely calculated waveform.
  • the waveforms of the signals obtained by the pressure sensor 12 and the flow sensor 13 are both waveforms in which a triangular pulse wave is superimposed on the respiratory signal, as shown in FIG. 6A or 6B.
  • This is passed through the CIC filter 36 to separate the respiratory wave and the oscillation wave (triangular pulse wave).
  • FIG. 7 shows the frequency characteristics of the CIC filter 36. Separation can be performed by the CIC filter 36 without changing the phase. However, since the respiration signal contains high-frequency components (the same frequency band as the oscillation signal), it cannot be completely separated.
  • the oscillation wave in which the negative pulse is inverted to be all the positive pulses is 1 second (signal) from the middle point of the two triangular pulses.
  • a portion between the processing sections T 2 ) is taken out and used for signal processing.
  • a pulse is extracted by performing processing using a Hanning window on each pulse from which a T 2 second interval has been extracted.
  • the Fourier transform is performed by the Fourier transform means 32 to obtain a spectrum.
  • T 2 mT 1 (m is an integer of 1 or more)
  • FIG. the spectrum of odd-numbered frequencies of 1, 3, 5,... Corresponding to the thinned frequency components is a respiratory signal spectrum that does not include an oscillation wave component.
  • the spectrum of the even frequency of 2, 4, 6,... Corresponding to the frequency components remaining after thinning includes an oscillation wave component and a respiratory signal component.
  • the extracting means 33 subtracts the noise component estimated from the odd frequency spectrum from the even frequency spectrum to extract the oscillation wave component.
  • the processing by the extraction means 33 removes a high-frequency respiratory signal of 3 Hz or more, which has been conventionally not included in the respiratory signal, and enables highly accurate measurement of respiratory impedance.
  • the computing means 34 calculates the respiratory impedance by dividing the pressure component by the flow rate component as shown by the expression (3) for each frequency of the extraction result by the extracting means 33.
  • a display signal of the calculated respiratory impedance is created and output to the display unit 40 for display.
  • FIG. 11 shows the respiratory impedance of a healthy person measured and displayed in this way.
  • FIG. 12 shows the respiratory impedance when the respiratory high-frequency signal is not removed.
  • the horizontal axis is a frequency axis with one scale of 1 Hz
  • the vertical axis is impedance.
  • the diagonal axis is the time axis
  • the pure resistance component is displayed on the upper side of the diagram
  • the reactance component is displayed on the lower side of the diagram.
  • new impedance displays appear one after another, and the impedance is continuously measured.
  • FIGS. 11 and 12 according to the apparatus of the present embodiment, it is understood that noise is removed and highly accurate respiratory impedance measurement is possible.
  • the components remaining after subtraction are the components of even frequencies of 2, 4, 6,... Corresponding to the frequency components remaining after thinning, and correspond to the thinned frequency components. There are no odd frequency components of 1, 3, 5,. Therefore, the calculation means 34 performs an interpolation process, and the respiratory impedance can be displayed even for components that do not exist.
  • the calculation means 34 creates an image for display on the display device and displays it, thereby realizing a respiratory impedance display method. That is, the calculation means 34 determines coordinates (Y-axis) so that each frequency takes a value from the back side to the near side of the screen, for example, for the respiratory impedance calculated by itself as described above.
  • the component Rrs is extracted and plotted in the height direction on the screen of the display device (Z axis), and the measurement time is set to the right direction of the screen (X axis) to create and display a three-dimensional image as shown in FIG. Display on the device. That is, three-dimensional display is performed by taking values in three dimensions by using an impedance axis, a frequency axis, and a time axis.
  • an image is created and displayed when the respiratory impedance obtained by performing interpolation processing on the thinned frequencies is displayed in three dimensions. For example, when the odd frequency is thinned out, two respiratory impedance values corresponding to the even frequency adjacent to the thinned odd number are obtained. Therefore, the average of the two respiratory impedance values is obtained and thinned out. Use frequency-related respiratory impedance values. In this way, since the result of the interpolation processing is also displayed as an image, changes in the respiratory impedance value are displayed finely and smoothly, and it is possible to appropriately grasp the respiratory impedance for the entire frequency.
  • the time resolution of the signal processing is 0.5 seconds, and as shown in FIGS. 13 to 16, the length in the time axis direction is set to a length that repeats at least two pairs of expiration and inspiration.
  • the length of the set of exhalation and inspiration is repeated six times.
  • the expiration period and the inspiration period are displayed in a color-coded manner in the vertical direction in the background of the screen.
  • the flow waveform (respiration signal waveform) BS obtained by the flow sensor 13 and the pressure sensor 12 which are flow detection means for detecting the expiration flow and the inspiration flow is displayed together with the respiratory impedance value.
  • the resistance value Rrs is colored by the color scale CL shown on the lower side of FIGS. 13 to 16, and an image is created and displayed.
  • the subject can automatically generate and display images as shown in FIGS. 13 to 16 in time series only by repeating rest breathing, Moreover, it can be visually observed as an image expressed by a change in color and / or a change in shade, including a frequency-corresponding portion in which the change in respiratory impedance is thinned out.
  • Respiration resistance is the real part of the measured respiratory impedance, and its imaginary part is reactance.
  • both of them are displayed in a three-dimensional color and can be viewed in comparison with the flow waveform BS (FIGS. 13 to 16).
  • FIG. 14 shows the result of measurement for a normal person
  • FIG. 15 shows the result of measurement for a COPD patient (chronic obstructive pulmonary disease)
  • FIG. 16 shows a display example of the result of measurement for an asthma patient. Show.
  • FIG. 13 is a display example of the result of measurement for a COPD patient, but the respiratory resistance in the inspiratory section is displayed in green, which is displayed in the same color as that of a normal person. Thus, it is assumed that the patient does not feel dyspnea during the inspiration period. Thus, it can be determined that the patient is COPD stage 1 patient.
  • FIG. 15 is also a display example of the result of measurement for a COPD patient, and it is displayed that the resistance is high by a color close to red in the inhalation period. Therefore, it can be determined that the patient is severe and is a stage 2 patient in COPD.
  • the present display method (3D color graphic display) simultaneously expresses the frequency dependence and respiratory cycle dependence of respiratory impedance, and can easily determine the degree of abnormality as well as the normality and abnormality of the respiratory system. I understand that.
  • FIG. 13 showing a screen displayed according to the present embodiment is an example in which the respiratory impedance of a COPD patient is three-dimensionally displayed as described above.
  • the respiratory resistance of inspiration is green and is displayed in the same color as that of a healthy person, but in the exhalation portion, it is displayed in red and the respiratory resistance is very high. You can see that Therefore, it can be confirmed from this measured data (display) that the patient who exhibits the respiratory impedance displayed in FIG. 13 has difficulty in the case of expiration.
  • the calculation means 34 averages the respiratory impedance in a plurality of breaths every elapsed time to obtain an average value, and the average value is converted into a three-dimensional image and displayed on the display device. That is, since the respiratory impedance slightly changes for each breath, an addition average for each breath is performed to form a three-dimensional image and displayed on the display device as shown in FIG. This makes it possible to visually grasp the average respiratory impedance for one breath, which is suitable for comparative studies and the like.
  • the calculation means 34 displays the average value at a predetermined number of frequencies as a line segment, obtains the maximum value, the minimum value, and the maximum / minimum difference at the predetermined number of frequencies, and displays them on the display device using characters. To do.
  • This display example is shown in FIGS. Specifically, using the addition average pattern obtained in the above, 5 [Hz], 20 [Hz] as the representative value, and the time change of the resistance value of the resonance frequency (expressed as res) is calculated. .
  • green R5 indicates 5 [Hz]
  • red R20 indicates 20 [Hz]
  • blue Rres indicates the resistance value at the resonance frequency.
  • the table of FIG. 19 shows the minimum value (min), the maximum value (max), and the difference (sub) between the resistance values in the respiratory cycle. These numbers express the physiological meaning of the living body and are extremely useful clinically.
  • Fres represents the resonance frequency.
  • the calculation means 34 displays the average respiratory impedance for one breath shown in FIG. 17 on the left half side of one screen, displays the graph of FIG. 18 on the upper right side of one screen, and FIG. It functions to display the table at the bottom of the right half of one screen.
  • the fluctuation tendency of respiratory impedance can be grasped from an average display or a graph, and actual numerical values can be confirmed with reference to a table, so that it can be effectively used in clinical settings.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physiology (AREA)
  • Dentistry (AREA)
  • Pulmonology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Mathematical Physics (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Hematology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

 ノイズ除去を行って極めて高精度で呼吸インピーダンスの連続測定を可能とする。 ラウドスピーカ21により口腔内に複数の異なる周波数から間引きして残った周波数成分のみを有するように周波数間引きされたオシレーション波であって呼気時と吸気時に応じてパルスの正負を異ならせて駆動するパルス信号によるオシレーション波による空気振動圧を加え、口腔内の圧力を検出し、呼吸の流量を検出し、この得られた信号をフーリエ変換手段32にてフーリエ変換してスペクトルを得て、このフーリエ変換結果について間引きした周波数成分対応のスペクトルにより雑音として寄与する呼吸高周波成分を抽出手段33にて求め、間引きにより残った周波数成分対応のスペクトルからこの呼吸高周波成分を減算してオシレーション波成分を抽出し、この抽出結果について周波数毎に圧力成分を流量成分で除算する演算を演算手段34において行って呼吸インピーダンスを得る。

Description

呼吸インピーダンス測定装置及び呼吸インピーダンス表示方法
 この発明は、人などの呼吸インピーダンスを連続測定することが可能な呼吸インピーダンス測定装置及び呼吸インピーダンス表示方法に関するものである。
 従来、この種の装置は、呼吸器系に正弦波空気振動圧を負荷するための正弦波加圧装置と、呼吸器系の気流速度を検出するための気流速度検出器と、呼吸器系の気圧を検出するための気圧検出器と上記気流速度検出器および気圧検出器で検出した気流速度および気圧から呼吸抵抗を算出する抵抗演算部とを有したものが知られている。
 上記従来の装置は、正弦波加圧装置が負荷する正弦波空気振動圧の信号を基準信号に変換するための基準信号変換器と、この基準信号変換器からの正弦波空気振動圧の基準信号により気流速度の信号を処理して上記基準信号と同じ周波数の成分のみを取り出すベクトル演算器とが設けられ、このベクトル演算器で得られた気流速度の信号と上記気圧検出器で検出した気圧の信号とから抵抗演算部で呼吸抵抗を算出するように構成したものである。
 この装置は上記の通り、ベクトル演算器で得られた気流速度の信号と上記気圧検出器で検出した気圧の信号とから抵抗演算部で呼吸抵抗を測定するようにしているので、換気量が少なくまた換気数が多い呼吸であってもノイズを除去することができ、精度の高い呼吸抵抗の測定を行うことができる利点を有するものである(特許文献1参照)。
 しかしながら、上記従来の装置によってもノイズ除去は十分とは言えず、更に高性能な呼吸インピーダンス測定装置の実現が求められている。
特開平03-39140号公報
 本発明はこのような呼吸インピーダンス測定における現状に鑑みてなされたもので、その目的は、極めて高精度で呼吸インピーダンス測定が可能であり、呼吸系の疾患の判定に広く応用可能な呼吸インピーダンス測定装置及び呼吸インピーダンス表示方法を提供することである。
 本発明に係る呼吸インピーダンス測定装置は、口腔内に空気振動圧を加えるための加圧手段と、口腔内の圧力を検出する圧力検出手段と、呼吸による流量を検出する流量検出手段と、前記加圧手段を呼気時と吸気時に応じてパルスの正負を異ならせて駆動するパルス信号であって、複数の異なる周波数から間引きして残った周波数成分のみを有するように周波数間引きされたパルス信号であるオシレーション波による空気振動圧を生じさせる制御手段と、前記加圧手段による加圧状態下において前記圧力検出手段と前記流量検出手段により得られる信号を得て、この得られた信号をフーリエ変換してスペクトルを得るフーリエ変換手段と、このフーリエ変換手段による変換結果について間引きした周波数成分対応のスペクトルにより呼吸高周波成分を求め、間引きにより残った周波数成分対応のスペクトルから減算してオシレーション波成分を取り出す抽出手段と、この抽出手段による抽出結果について周波数毎に圧力成分を流量成分で除算する演算手段とを具備することを特徴とする。
 本発明に係る呼吸インピーダンス測定装置では、制御手段は周波数間引きとして、周期T1のパルス波を与えることにより、n/T1(n:整数、T1:実数)の周波数成分のみを有するオシレーション波による空気振動圧を生じさせることを特徴とする。
 本発明に係る呼吸インピーダンス測定装置では、制御手段は、加圧手段の入力信号と出力信号及び前記加圧手段の伝達関数を用いた逆演算に基づき所望の圧波形のオシレーション波が出力信号となるように前記加圧手段へ入力信号を与える信号入力手段を具備することを特徴とする。
 本発明に係る呼吸インピーダンス測定装置では、信号入力手段は、逆演算により得られた信号の各周波数成分に一定の値を加えるか、前記出力信号のオンセット部分にインパルスを加えた信号を逆演算して、得られた信号を前記加圧手段へ入力信号を与えることを特徴とする。
 本発明に係る呼吸インピーダンス測定装置では、信号処理区間T2(T2=mT1(mは1以上の整数))において、信号処理を行うことを特徴とする。
 本発明に係る呼吸インピーダンス表示方法は、呼吸インピーダンス測定装置により測定された呼吸インピーダンスに基づき表示装置に表示を行う呼吸インピーダンス表示方法において、インピーダンス軸と周波数軸と時間軸とにより三次元に呼吸インピーダンスの値をとって三次元の表示を行い、間引かれた周波数について補間処理を行って得られる呼吸インピーダンスを前記三次元の表示に含めた画像を作成して表示を行い、呼気フローと吸気フローを検出するフロー検出手段により得られるフロー波形を前記インピーダンスと共に表示することを特徴とする。
 本発明に係る呼吸インピーダンス表示方法では、呼気の期間と吸気の期間を、画面の背景において縦方向に帯状に色分けして表示を行うことを特徴とする。
 本発明に係る呼吸インピーダンス表示方法では、複数回の呼吸における呼吸インピーダンスを経過時間毎に平均して平均値を求め、この平均値を三次元画像化して表示し、所定数の周波数における前記平均値を、それぞれ線分として表示すると共に、前記所定数の周波数における最大値、最小値、最大最小差を求めて、文字により表示することを特徴とする。
 本発明に係る呼吸インピーダンス表示方法では、時間軸方向の長さを、呼気と吸気との組を少なくとも二組繰り返す長さとして、画像を作成して表示を行うことを特徴とする。
 本発明に係る呼吸インピーダンス表示方法では、インピーダンス値の大小を、色の変化及び/または濃淡変化により表現した画像を作成して表示を行うことを特徴とする。
 本発明によれば、口腔内に周波数間引きされたオシレーション波による空気振動圧を加え、口腔内の圧力を検出し、呼吸の流量を検出し、この得られた信号をフーリエ変換してスペクトルを得て、このフーリエ変換結果について間引きした周波数成分対応のスペクトルにより雑音として寄与する呼吸高周波成分を求め、間引きにより残った周波数成分対応のスペクトルからこの呼吸高周波成分を減算してオシレーション波成分を抽出し、この抽出結果について周波数毎に圧力成分を流量成分で除算する演算を行って呼吸インピーダンスを得るので、呼吸高周波成分を確実に除去したオシレーション波成分を用いて呼吸インピーダンスを得ることができる上に、オシレーション波による空気振動圧にパルス信号を採用し、該パルスの正負を呼気時と吸気時に応じて異ならせて駆動するので、吸気と呼気で生理学的に同一条件において呼吸抵抗を測定することができ、適切な測定により極めて高精度で呼吸インピーダンス測定が可能となる。
 本発明によれば、周期T1のパルスを与えることにより、n/T1(n:整数T1:実数)の周波数成分のみを有するオシレーション波による空気振動圧を生じさせるので、間引いた周波数成分対応のスペクトルにより呼吸高周波成分を求め、間引きにより残った周波数成分対応(n/T1周波数以外)のスペクトルからこの呼吸高周波成分を減算して呼吸高周波成分を確実に除去し、極めて高精度で呼吸インピーダンス測定が可能となる。
 本発明によれば、異なる複数周波数の正弦波を複数合成することにより、周波数成分間引きされたオシレーション波による空気振動圧を生じさせるので、間引きした周波数成分対応のスペクトルは呼吸高周波成分のみが含まれる。従って、オシレーション信号に含まれる呼吸高周波成分を、この呼吸高周波成分信号から推定できる。この推定した信号を用いて呼吸高周波成分を確実に除去し、極めて高精度で呼吸インピーダンス測定が可能となる。
 本発明によれば、加圧の入力信号と出力信号及び加圧実行部分の伝達関数を用いた逆演算に基づき所望波形のオシレーション波が出力信号となるように加圧実行部分へ入力信号を与えるので、所望の圧波形のオシレーション波を用いて測定を行うことが可能となり、極めて高精度で呼吸インピーダンス測定が可能となる。
 本発明によれば、逆演算により得られた信号の各周波数成分に一定の値を加えるか、前記出力信号のオンセット部分にインパルスを加えた信号を逆演算して、得られた信号を入力信号とするので、逆演算の結果の信号波形を安定させ、これによって所望波形のオシレーション波を用いて測定を行うことが可能となり、極めて高精度で呼吸インピーダンス測定が可能となる。
 本発明によれば、信号処理区間T2(T2=mT1(mは1以上の整数))において、信号処理を行うので、間引きにより残った周波数成分対応のスペクトルと、間引きされた周波数成分対応のスペクトルとを適切に得て所要の処理を行うことができる。
 本発明に係る呼吸インピーダンス表示方法によれば、呼吸インピーダンス測定装置により測定された呼吸インピーダンスに基づき表示装置に表示を行う呼吸インピーダンス表示方法において、インピーダンス軸と周波数軸と時間軸とにより三次元に値をとって三次元の表示を行い、間引かれた周波数について補間処理を行って得られる呼吸インピーダンスを前記三次元に値をとって表示する場合に含めた画像を作成して表示を行い、呼気フローと吸気フローを検出するフロー検出手段により得られるフロー波形を前記インピーダンスと共に表示するので、補間処理の結果についても画像化して表示するため、インピーダンス値の変化がきめ細かく滑らかに表示され、周波数全体についてインピーダンスの把握を適切に行うことが可能となり、呼気フローと吸気フローによるフロー波形が共に表示されており、呼吸系の疾患の判定に広く応用可能である。
 本発明に係る呼吸インピーダンス表示方法では、呼気の期間と吸気の期間を、画面の背景において縦方向に帯状に色分けして表示を行うので、呼吸インピーダンスの表示において呼気の期間と吸気の期間が一目瞭然となり、呼吸系の疾患の判定などに便利である。
 本発明に係る呼吸インピーダンス表示方法では、複数回の呼吸における呼吸インピーダンスを経過時間毎に平均して平均値を求め、この平均値を三次元画像化して表示し、所定数の周波数における前記平均値を、それぞれ線分として表示すると共に、前記所定数の周波数における最大値、最小値、最大最小差を求めて、文字により表示するので、各呼吸毎に異なる呼吸インピーダンスを平均化して文字により取得でき、比較などに便利である。
 本発明に係る呼吸インピーダンス表示方法は、時間軸方向の長さを、呼気と吸気との組を少なくとも二組繰り返す長さとして、画像を作成して表示を行うので、突発的な変化ではなくある程度のスパンをもった観測が可能となり、適切な観測が確保される。
 本発明に係る呼吸インピーダンス表示方法は、インピーダンス値の大小を、色の変化または濃淡変化により表現した画像を作成して表示を行うので、インピーダンス値の大小を一目瞭然に識別することが容易に可能となり、呼吸インピーダンスによる各種の研究、検査、更には患者への視角的な説明(アピール)に極めて役立つことが期待される。
本発明の実施例に係る呼吸インピーダンス測定装置の構成図。 本発明の実施例に係る呼吸インピーダンス測定装置に用いるオシレーション波である三角パルス波の一例を示す図。 本発明の実施例に係る呼吸インピーダンス測定装置に用いるオシレーション波であるハニングパルス波の一例を示す図。 本発明の実施例に係る呼吸インピーダンス測定装置において、パルスの正負を呼気時と吸気時に応じて異ならせて駆動する例を示す図。 本発明の実施例に係る呼吸インピーダンス測定装置に用いるオシレーション波を逆演算により生成する過程を説明するための図。 本発明の実施例に係る呼吸インピーダンス測定装置によりオシレーション波である三角パルス波を用いて呼吸インピーダンスを求める過程を示す図。 本発明の実施例に係る呼吸インピーダンス測定装置に採用されているフィルタの周波数特性を示す図。 本発明の実施例に係る呼吸インピーダンス測定装置によりオシレーション波である三角パルス波を用いて呼吸インピーダンスを求める過程を示す図。 本発明の実施例に係る呼吸インピーダンス測定装置によりオシレーション波である三角パルス波を用いて呼吸インピーダンスを求める過程を示す図。 本発明の実施例に係る呼吸インピーダンス測定装置によりオシレーション波である三角パルス波を用いて呼吸インピーダンスを求める過程を示す図。 本発明の実施例に係る呼吸インピーダンス測定装置により得られた呼吸インピーダンスを示す図。 本発明の手法を用いない呼吸インピーダンス測定装置により得られた呼吸インピーダンスを示す図。 本発明の実施例に係る呼吸インピーダンス測定装置を用いてCOPD患者(stage1)について呼吸インピーダンスを表示した一例を示す図。 本発明の実施例に係る呼吸インピーダンス測定装置を用いて正常者について呼吸インピーダンスを表示した一例を示す図。 本発明の実施例に係る呼吸インピーダンス測定装置を用いてCOPD患者(stage2)について呼吸インピーダンスを表示した一例を示す図。 本発明の実施例に係る呼吸インピーダンス測定装置を用いて喘息患者について呼吸インピーダンスを表示した一例を示す図。 本発明の実施例に係る呼吸インピーダンス測定装置を用いて呼吸同期毎に加算平均して平均値を求め、この平均値を三次元画像化して表示した一例を示す図。 図17の三次元画像の表示について、所定数の周波数における平均値を、それぞれ線分として表示した一例を示す図。 図18の表示について、所定数の周波数における最大値、最小値、最大最小差を求めて、文字により表示した一例を示す図。
 以下、添付図面を参照して本発明に係る呼吸インピーダンス測定装置及びその測定方法の実施例を説明する。図1に、本発明に係る呼吸インピーダンス測定装置の実施例構成図を示す。この呼吸インピーダンス測定装置は、人の口腔に先端が取り付けられ、呼吸流が流れるチューブ11と、チューブ11に取り付けられ口腔内の圧力を検出する圧力検出手段を構成する圧力センサ12と、圧力センサ12と同位置において呼吸による流量を検出する流量検出手段を構成する流量センサ13と、口腔内に空気振動圧を加えるための加圧手段を構成するラウドスピーカ21と、コンピュータ30とを主な構成要素とする。
 圧力センサ12の出力信号はアンプ14により増幅され、A/D変換器15によりディジタル化されてコンピュータ30に取り込まれる。また、流量センサ13の出力信号はアンプ16により増幅され、A/D変換器17によりディジタル化されてコンピュータ30に取り込まれる。
 コンピュータ30には、制御手段31、フーリエ変換手段32、抽出手段33、演算手段34が備えられている。また、制御手段31は、信号入力手段35を備えている。制御手段31は、加圧手段であるラウドスピーカ21を駆動する信号を出力し、奇数周波数成分または偶数周波数成分のみを有するオシレーション波による空気振動圧を生じさせるものである。制御手段31の出力はD/A変換器22によりディジタル化されてドライバ23へ送られ、ドライバ23がラウドスピーカ21を駆動して、口腔内に空気振動圧が加えられる。
 上記において、制御手段31は、T1秒周期のパルス波を与えることにより、n/T1(n:整数、T1:実数)の周波数成分を有するオシレーション波による空気振動圧を生じさせるものである(周波数間引き)。パルス波としては様々な波形を用いることができる。例えば三角パルスは、図2(a)に示すようにベースレベルの時間幅が25ms程度のものである。この三角パルスを例えばT1=0.5 秒周期で出力すると2,4,6,8Hz,・・・のスペクトルを有する三角パルス波を与えることができる(図2(b))。また、上記の三角パルスを例えばT1=0.333 秒周期で出力すると3,6,9,12Hz, ・・・のスペクトルを有する三角パルス波を与えることができる。勿論、T1=0.25秒周期で出力するようにしても良く、この場合には4,8,12,16Hz, ・・・のスペクトルを有する三角パルス波を与えることができる。
 また、他のパルス波の例としてのハニングパルスは、図3に示すようにベースレベルの時間幅が25ms程度のものである。三角パルス波の場合と同様にして作成され、出力される。
 制御手段31に備えられている信号入力手段は、ラウドスピーカ21の入力信号と出力信号及びラウドスピーカ21の伝達関数を用いた逆演算に基づき所望波形のオシレーション波が出力信号となるようにラウドスピーカ21へ入力信号を与えるものである。
上記において、パルス波の正負とフロー(呼吸流)の方向との関係は生理学的に重要である。今、フロー曲線において負の領域にある呼気フローの方向(下に凸)とパルス波が同一方向で負のパルス(下に凸)とする。この場合、フローは加速され、その速度は大きくなる。このため、気管支内圧がパルス波によるオシレーション波の影響で減衰し、気管支の径は短縮する。結果として得られる呼吸抵抗は増大する。一方、この負のパルスを吸気においても使用した場合、吸気フローはフロー曲線の正の領域にあり、方向は上に凸であり、呼気と逆向きであるから上記負のパルス波はフローを減速する方向に働き、気管支内圧は高くなり気管支径は拡張する。結果として得られる呼吸抵抗は小さくなる。
 斯して、呼気と吸気に拘りなく同一方向に凸のパルスを用いた場合には、測定される呼吸抵抗はオシレーション波として加えられるパルスの呼吸フローに対する方向性に依存してしまい、吸気と呼気で生理学的に異なる条件において呼吸抵抗の測定をしたことになり、正しい測定とならない。これを避けるために、制御手段31は、呼気と吸気とに応じてパルスの正負を異ならせてパルスを出力する。
 その第1の手法は、パルス波の方向(上に凸または下に凸)を吸気、呼気のいずれにおいてもフローと同一方向とする。即ち、フロー曲線(図4(c))が負の領域となる呼気の場合には、負のパルス波を用い、フロー曲線が正の領域となる吸気の場合には、正のパルス波を用いるようにする。図4(a)に、このようにしてパルス波の正負を切り換えた場合を示す。
 その第2の手法は、パルス波の方向(上に凸または下に凸)を吸気、呼気のいずれにおいてもフローと逆方向とする。即ち、フロー曲線(図4(c))が負の領域となる呼気の場合には、正のパルス波を用い、フロー曲線が正の領域となる吸気の場合には、負のパルス波を用いるようにする。図4(b)に、このようにしてパルス波の正負を切り換えた場合を示す。
 制御手段31は、流量センサ13の出力に基づき、呼気と吸気についてその切り替わり時点を検出する。すなわち、流量センサ13の出力は、呼吸に対応して基本的に図4(c)に示されるように変化するものであるから、上記流量センサ13の出力信号のゼロクロス点を境にしてパルス波の正負を切り換える。
 具体的に、例えば三角パルスを用いて測定を行う動作について詳細に説明する。以下では、正のパルス波についての説明であるが、負のパルス波についても正のパルス波と同様の処理が行われる。図5(a)に示されるような三角パルスを入力してラウドスピーカ21を駆動した場合には、ラウドスピーカ21の出力信号は、図5(b)に示されるようなゼロレベルの上下に極大点を有する信号となる。そこで、図5(c)に示されるようなモデルを考える。ラウドスピーカ21の伝達関数をH(ω)、入力信号をX(ω)、出力信号をY(ω)とすると、以下のようになるので、逆変換によりx’(t)を求めて駆動信号とする。
Figure JPOXMLDOC01-appb-M000001
 求めたY(ω)は、高い周波数までの成分を持たないので、(式1)から得られるx’(t)は不安定となる。このため(式2)のように分母に定数A0 を加えたものをフーリエ逆変換してx’(t)を求めて駆動信号とする。これはまた、図5(b)に示されるようなラウドスピーカ21の出力信号に対し、図5(d)に示されるようにオンセット部分にインパルスを加えた信号を逆演算して図5(e)に示される信号x’(t)を得ることも出来る。
 以上の説明では、三角パルスの場合を説明したが、ハニングパルスについても同様にして逆演算により信号を得て、この信号によりラウドスピーカ21を駆動することができる。
 パルス波のいずれを用いるかに関しては、図示しないキーボードなどによりコンピュータ30へ指示を与えることができ、これに応じて制御手段31が選択した信号波形を出力する。
 コンピュータ30に備えられているフーリエ変換手段32、抽出手段33、演算手段34について説明する。フーリエ変換手段32は、ラウドスピーカ21が上記のようにして駆動されることによって生じる口腔内の加圧状態下において、圧力センサ12と流量センサ13により信号を得て、この得られた信号をフーリエ変換してスペクトルを得るものである。フーリエ変換手段32の前段には、CICフィルタ36が設けられ、圧力センサ12と流量センサ13により得られる呼吸信号とオシレーション成分との分離が行われる。また、フーリエ変換手段32は処理の前に必要であれば、ハニング窓により信号の取り出しを行う。
 抽出手段33は、フーリエ変換手段32による変換結果について間引きした周波数成分対応のスペクトルにより呼吸高周波成分を求め、間引きにより残った周波数成分対応のスペクトルから減算してオシレーション波成分を取り出すものである。周波数間引きに対応して、フーリエ変換手段32により得られたスペクトルについてn/T1(n:整数)の周波数成分を除く他の周波数対応のスペクトルにより呼吸高周波成分を求め、間引きにより残った周波数成分(n/T1の周波数成分)対応のスペクトルから減算してオシレーション波成分を取り出すものである。
 演算手段34は、抽出手段33による抽出結果について周波数毎に圧力成分を流量成分で除算することにより呼吸インピーダンスを算出するものである。即ち、呼吸インピーダンスをZ(ω)、口腔内圧力のオシレーション波成分をP(ω)、流量のオシレーション波成分をF(ω)とし、呼吸インピーダンスZ(ω)が抵抗成分R(ω)とリアクタンス成分X(ω)からなるものとすると、次の式により呼吸インピーダンスをZ(ω)が求められる。
Figure JPOXMLDOC01-appb-M000002
 演算手段34により求められた呼吸インピーダンスZ(ω)は、コンピュータ30に接続されたLCDなどの表示部40用の表示信号とされて表示部40へ出力され、表示がなされる。
 以上の通りに構成された呼吸インピーダンス測定装置による動作を説明する。この例では、三角パルス波が選択されて測定動作が開始される。制御手段31及び信号入力手段35により、逆演算された波形によりスピーカ21がT1秒周期で(例えば0.5秒間隔で)駆動される。
 このとき、圧力センサ12と流量センサ13により得られる信号の波形は、いずれも図6(a)または図6(b)に示されるように、呼吸信号に三角パルス波が重畳した波形となっており、これがCICフィルタ36を通過させられて呼吸波とオシレーション波(三角パルス波)の分離が行われる。図7にCICフィルタ36の周波数特性を示す。CICフィルタ36により位相の変化なく、分離を行うことができる。但し、呼吸信号には高周波成分(オシレーション信号と同一の周波数帯)が含まれるために完全には分離できない。
 CICフィルタ36による分離の後には図6(c)に示されるように、負のパルスが反転されてすべて正のパルスとされたオシレーション波について、二つの三角パルスの中間点から1秒間(信号処理区間T2)の間を取り出し、信号処理に用いる。次に図8に示されるように、T2秒の区間を取り出した各パルスにハニング窓による処理を行い、パルスの取出しを行う。
 ハニング窓による処理に続き、フーリエ変換手段32によるフーリエ変換が行われてスペクトルが得られる。このとき、得られるスペクトルについては、例えば、T1=0.5秒、T2=1.0秒の場合(一般的には、T2=mT1(mは1以上の整数))の場合、図9に示されるように、間引きした周波数成分対応の1、3、5、・・・の奇数周波数のスペクトルにはオシレーション波成分が含まれない呼吸信号スペクトルとなっている。また、間引きにより残った周波数成分対応の2、4、6、・・・の偶数周波数のスペクトルにはオシレーション波成分と呼吸信号成分が含まれている。
 そこで、抽出手段33では、図10に示すように上記偶数周波数のスペクトルから、奇数周波数のスペクトルより推定された雑音成分を減算し、オシレーション波成分を取り出す。
 上記抽出手段33による処理によって、従来、呼吸信号に含まれていないとされていた3Hz以上の呼吸高周波信号が除去され、高精度な呼吸インピーダンス測定が可能となっている。次に演算手段34は、抽出手段33による抽出結果について周波数毎に式(3)により示した通り、圧力成分を流量成分で除算することにより呼吸インピーダンスを算出する。算出された呼吸インピーダンスの表示信号が作成され、表示部40へ出力され、表示がなされる。
 このようにして測定され表示された健常者の呼吸インピーダンスを図11に示す。また、図12に呼吸高周波信号の除去を行わない場合の呼吸インピーダンスを示す。これらの図では、横軸は1目盛りが1Hzの周波数軸であり、縦軸がインピーダンスである。斜めの軸が時間軸であり、図の上側に純抵抗分を表示し、図の下側にリアクタンス分を表示している。ここでは0.5秒毎に三角パスル波を与え続けることにより、新たなインピーダンスの表示が次々に現れ更新されることによりインピーダンスの連続測定が行われる。この図11と図12から明らかな通り、本実施例の装置によればノイズが除去され高精度な呼吸インピーダンス測定が可能となっていることが分かる。なお、上記抽出手段33による減算処理から明らかな通り、減算により残る成分は、間引きにより残った周波数成分対応の2、4、6、・・・の偶数周波数の成分であり、間引きした周波数成分対応の1、3、5、・・・の奇数周波数の成分は存在しない。そこで、演算手段34が補間処理を行い、存在しない成分に関しても呼吸インピーダンス表示が可能となっている。
 本発明の実施例では、演算手段34が表示装置に表示を行うための画像を作成して、表示を行うことにより、呼吸インピーダンス表示方法が実現される。即ち、演算手段34は、自らが前述の通りに算出した呼吸インピーダンスについて、例えば、各周波数を画面の奥側から手前側に値をとるように座標を定め(Y軸)、各周波数毎に抵抗成分Rrsを取り出し、これを表示装置の画面における高さ方向にプロットし(Z軸)、測定時間を画面の右方向として(X軸)、図13に示すような三次元画像を作成して表示装置に表示する。即ち、インピーダンス軸と周波数軸と時間軸とにより三次元に値をとって三次元の表示を行うものである。
 上記の画像作成に際しては、間引かれた周波数について補間処理を行って得られる呼吸インピーダンスを上記三次元に値をとって表示する場合に含めた画像を作成して表示を行う。例えば、奇数の周波数を間引いた場合には、間引いた奇数に隣接する偶数の周波数に対応する2つの呼吸インピーダンス値が求まっているから、この2つの呼吸インピーダンス値の平均を求め、これを間引いた周波数対応の呼吸インピーダンス値とする。このようにして、補間処理の結果についても画像化して表示するため、呼吸インピーダンス値の変化がきめ細かく滑らかに表示され、周波数全体について呼吸インピーダンスの把握を適切に行うことが可能となる。
 信号処理の時間分解能は0.5秒であり、図13~図16に示すように、時間軸方向の長さを、呼気と吸気との組を少なくとも二組繰り返す長さとして、画像を作成して表示を行う。図13~図16の例では、呼気と吸気との組を六組繰り返す長さとしている。また、この場合において、呼気の期間と吸気の期間を、画面の背景において縦方向に帯状に色分けして表示を行う。更に、呼気フローと吸気フローを検出するフロー検出手段である流量センサ13や圧力センサ12により得られるフロー波形(呼吸信号波形)BSを上記呼吸インピーダンス値と共に表示する。
 更に、呼吸インピーダンス値の大小を、色の変化及び(または)濃淡変化により表現した画像を作成して表示を行う。図13~図16では、抵抗値Rrsについて、図13~図16の下側に示すカラースケールCLによる色付けを行い、画像を作成して表示している。
 以上の各処理により得られる画像を表示するので、被検者は安静呼吸を繰り返しているだけで、自動的に図13~図16に示されるような画像が時系列に作成されて表示され、しかも呼吸インピーダンスの変化を間引いた周波数対応の部分を含めて、色の変化及び(または)濃淡変化により表現した画像として目視観察することができる。
 呼吸抵抗は計測される呼吸インピーダンスの実部であり、その虚部はリアクタンスである。本実施例に係る装置ではこの両者を三次元カラー表示し、さらにフロー波形BSと対比して見ることができるようにしている(図13~図16)。図14は正常者について測定を行った結果を示し、図15はCOPD患者(慢性閉塞性肺疾患)について測定を行った結果を示し、図16は喘息患者について測定を行った結果の表示例を示している。
 図13は、COPD患者について測定を行った結果の表示例であるが吸気区間における呼吸抵抗が緑色を呈して表示されており、これは正常者と同じ状態の色により表示されている。よって、該患者は吸気期間において呼吸困難を感じないと思料される。これによりCOPDのstage1 の患者と判断できる。図15もCOPD患者について測定を行った結果の表示例であるが、吸気期間において赤色に近い色によって抵抗が高いことが表示されている。よって、重症でありCOPDにおけるstage2の患者であると判断できる。このように本表示法(3Dカラーグラフィック表示)により呼吸インピーダンスの周波数依存性と呼吸周期依存性が同時に表現され、呼吸系に関する正常、異常の判定はもとより、異常の程度の判定も容易に行い得ることが理解できる。
 本実施例により表示がなされた画面を示す図13は、前述の通りCOPD患者の呼吸インピーダンスを三次元表示した例である。図13の表示例では、吸気の呼吸抵抗は緑色であり健常者と同一色で表示されているのであるが、呼気の部分においては赤色となって表示されており呼吸抵抗が非常に高い値となっていることが分る。よって、該図13により表示された呼吸インピーダンスを呈する患者は、呼気の場合に困難を伴うことがこの実測データ(表示)から確認することができる。一方、斯様な呼気の場合に困難を伴う患者について気管支のCTスキャンを撮り、気管支の径を調べて見ると吸気時において気管支が拡張し、呼気時においては狭窄していることが確認されるという知見が、例えば、文献(Kurosawa, et al. N Engl J Med.350:1036, 2004)などに紹介されている。よって、この呼吸抵抗の呼吸周期依存性は気管支の径の変化や狭窄などをかなり反映していると解釈でき、これが本実施例の装置により確認できるようになり、臨床上非常に有益である。
 ところで、臨床ではこれらの変化をできる限り少数のパラメータで表現し数値化することの要求がなされている。そこで、本実施例の装置においては、演算手段34が複数回の呼吸における呼吸インピーダンスを経過時間毎に平均して平均値を求め、この平均値を三次元画像化して表示装置に表示を行う。即ち、呼吸インピーダンスは1呼吸毎に多少変化するため、呼吸毎の加算平均を行って三次元画像化して表示装置に図17に示すように表示を行う。これにより、一呼吸に対する平均的な呼吸インピーダンスを視覚的に把握することができ、比較検討などの場合に好適である。
 更に、演算手段34は、所定数の周波数における上記平均値を、それぞれ線分として表示すると共に、上記所定数の周波数における最大値、最小値、最大最小差を求めて、文字により表示装置に表示する。この表示例を図18、図19に示す。具体的には、上記において得られた加算平均パターンを用いて、その代表値として5[Hz]、20[Hz]、共振周波数(resと表現)の抵抗値の時間変化を算出したものである。なお、ここで共振周波数とはリアクタンスが零(式(2)でX(ω)=0)となる周波数の値である。
 実際の表示にあっては、緑色のR5が5[Hz]を示し、赤色のR20が20[Hz]を示し、青色のRresが共振周波数における抵抗値を示している。図19のテーブルはそれらの抵抗値の呼吸周期における最小値(min)、最大値(max)、さらに両者の差(sub)を現すものである。これらの数値は生体の生理学的意味合いを表現しており、臨床上極めて有益である。図19のテーブルにおいて、Fresは共振周波数を表すものである。
 演算手段34は、例えば、図17に示される一呼吸に対する平均的な呼吸インピーダンスを一画面の左半分側に表示し、図18のグラフを一画面の右半分側上部に表示し、図19のテーブルを一画面の右半分側下部に表示するように機能する。このような表示により、呼吸インピーダンスの変動傾向を平均表示やグラフより把握し、実際の数値についてはテーブルを参照して確認できるので、臨床の場などにおいて有効に利用され得るものである。
11 チューブ
12 圧力センサ
13 流量センサ
21 ラウドスピーカ
30 コンピュータ
31 制御手段
32 フーリエ変換手段
33 抽出手段
34 演算手段
35 信号入力手段
36 CICフィルタ
40 表示部

Claims (10)

  1.  口腔内に空気振動圧を加えるための加圧手段と、
     口腔内の圧力を検出する圧力検出手段と、
     呼吸による流量を検出する流量検出手段と、
     前記加圧手段を呼気時と吸気時に応じてパルスの正負を異ならせて駆動するパルス信号であって、複数の異なる周波数から間引きして残った周波数成分のみを有するように周波数間引きされたパルス信号であるオシレーション波による空気振動圧を生じさせる制御手段と、
     前記加圧手段による加圧状態下において前記圧力検出手段と前記流量検出手段により得られる信号を得て、この得られた信号をフーリエ変換してスペクトルを得るフーリエ変換手段と、
     このフーリエ変換手段による変換結果について間引きした周波数成分対応のスペクトルにより呼吸高周波成分を求め、間引きにより残った周波数成分対応のスペクトルから減算してオシレーション波成分を取り出す抽出手段と、
     この抽出手段による抽出結果について周波数毎に圧力成分を流量成分で除算する演算手段と
     を具備することを特徴とする呼吸インピーダンス測定装置。
  2.  制御手段は周波数間引きとして、周期T1のパルス波を与えることにより、n/T1(n:整数、T1:実数)の周波数成分のみを有するオシレーション波による空気振動圧を生じさせることを特徴とする請求項1に記載の呼吸インピーダンス測定装置。
  3.  制御手段は、加圧手段の入力信号と出力信号及び前記加圧手段の伝達関数を用いた逆演算に基づき所望の圧波形のオシレーション波が出力信号となるように前記加圧手段へ入力信号を与える信号入力手段を具備することを特徴とする請求項1または2に記載の呼吸インピーダンス測定装置。
  4.  信号入力手段は、逆演算により得られた信号の各周波数成分に一定の値を加えるか、前記出力信号のオンセット部分にインパルスを加えた信号を逆演算して、得られた信号を前記加圧手段へ入力信号を与えることを特徴とする請求項3に記載の呼吸インピーダンス測定装置。
  5.  信号処理区間T2(T2=mT1(mは1以上の整数))において、信号処理を行うことを特徴とする請求項1乃至4のいずれか1項に記載の呼吸インピーダンス測定装置。
  6.  呼吸インピーダンス測定装置により測定された呼吸インピーダンスに基づき表示装置に表示を行う呼吸インピーダンス表示方法において、
     インピーダンス軸と周波数軸と時間軸とにより三次元に呼吸インピーダンスの値をとって三次元の表示を行い、
     間引かれた周波数について補間処理を行って得られる呼吸インピーダンスを前記三次元の表示に含めた画像を作成して表示を行い、
     呼気フローと吸気フローを検出するフロー検出手段により得られるフロー波形を前記インピーダンスと共に表示することを特徴とする呼吸インピーダンス表示方法。
  7.  呼気の期間と吸気の期間を、画面の背景において縦方向に帯状に色分けして表示を行うことを特徴とする請求項5に記載の呼吸インピーダンス表示方法。
  8.  複数回の呼吸における呼吸インピーダンスを経過時間毎に平均して平均値を求め、この平均値を三次元画像化して表示し、
     所定数の周波数における前記平均値を、それぞれ線分として表示すると共に、前記所定数の周波数における最大値、最小値、最大最小差を求めて、文字により表示することを特徴とする請求項5または請求項6に記載の呼吸インピーダンス表示方法。
  9.  時間軸方向の長さを、呼気と吸気との組を少なくとも二組繰り返す長さとして、画像を作成して表示を行うことを特徴とする請求項5乃至7のいずれか1項に記載の呼吸インピーダンス表示方法。
  10.  インピーダンス値の大小を、色の変化及び/または濃淡変化により表現した画像を作成して表示を行うことを特徴とする請求項5乃至8のいずれか1項に記載の呼吸インピーダンス表示方法。
PCT/JP2010/056541 2009-04-13 2010-04-12 呼吸インピーダンス測定装置及び呼吸インピーダンス表示方法 WO2010119843A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/264,075 US9022947B2 (en) 2009-04-13 2010-04-12 Respiration impedance measuring device and respiration impedance display method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009097028 2009-04-13
JP2009-097028 2009-04-13

Publications (1)

Publication Number Publication Date
WO2010119843A1 true WO2010119843A1 (ja) 2010-10-21

Family

ID=42982505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056541 WO2010119843A1 (ja) 2009-04-13 2010-04-12 呼吸インピーダンス測定装置及び呼吸インピーダンス表示方法

Country Status (3)

Country Link
US (1) US9022947B2 (ja)
JP (1) JP5583454B2 (ja)
WO (1) WO2010119843A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042007A1 (en) * 2011-09-21 2013-03-28 Koninklijke Philips Electronics N.V. Upper airway resistance measurement device
AU2012358370B2 (en) 2011-12-21 2017-05-18 Capnia, Inc. Collection and analysis of a volume of exhaled gas with compensation for the frequency of a breathing parameter
US20140228699A1 (en) * 2013-02-12 2014-08-14 Capnia, Inc. Sampling and storage registry device for breath gas analysis
MX2016002627A (es) 2013-08-30 2016-12-09 Capnia Inc Sistema de medicion de dioxido de carbono de neonatos.
WO2016132279A1 (en) * 2015-02-18 2016-08-25 Koninklijke Philips N.V. Enhancement of simultaneous estimation of respiratory parameters via superimposed pressure signal
EP3840807A4 (en) * 2018-08-23 2022-05-25 ResMed Pty Ltd METHOD AND DEVICE FOR CONTROLLING RESPIRATORY THERAPY
JP7054929B2 (ja) * 2019-02-15 2022-04-15 チェスト株式会社 呼吸抵抗測定装置及び検査結果予測方法
JP7045073B2 (ja) * 2019-02-15 2022-03-31 チェスト株式会社 呼吸抵抗測定装置及び表示制御方法
GB2583117B (en) * 2019-04-17 2021-06-30 Sonocent Ltd Processing and visualising audio signals
JP7472573B2 (ja) 2020-03-23 2024-04-23 コニカミノルタ株式会社 プログラム、動態解析装置及び診断支援システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0339140A (ja) * 1989-07-06 1991-02-20 Chiesuto Kk 呼吸抵抗測定装置
JPH03116807U (ja) * 1990-03-15 1991-12-03
JP2008541957A (ja) * 2005-06-10 2008-11-27 テレソン インスティテュート フォー チャイルド ヘルス リサーチ 呼吸器系の音響インピーダンスを測定する方法、呼吸器疾患若しくは呼吸器障害を診断する方法、及びその治療をモニタリングする方法
JP2009240752A (ja) * 2008-03-10 2009-10-22 Chest M I Inc 呼吸インピーダンス測定装置及びその測定方法、呼吸インピーダンス表示方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03116807A (ja) 1989-09-29 1991-05-17 Toshiba Lighting & Technol Corp インダクター素子
US6443907B1 (en) * 2000-10-06 2002-09-03 Biomedical Acoustic Research, Inc. Acoustic detection of respiratory conditions
US7662101B2 (en) * 2003-09-18 2010-02-16 Cardiac Pacemakers, Inc. Therapy control based on cardiopulmonary status
WO2005039679A1 (en) * 2003-10-23 2005-05-06 Maquet Critical Care Ab Combined positive and negative pressure assist ventilation
EP2056911B1 (en) * 2006-08-30 2016-03-09 ResMed Limited Apparatus for distinguishing between closed and open respiratory airway apneas by complex admittance values
US8100836B2 (en) * 2006-12-06 2012-01-24 Texas Christian University Augmented RIC model of respiratory systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0339140A (ja) * 1989-07-06 1991-02-20 Chiesuto Kk 呼吸抵抗測定装置
JPH03116807U (ja) * 1990-03-15 1991-12-03
JP2008541957A (ja) * 2005-06-10 2008-11-27 テレソン インスティテュート フォー チャイルド ヘルス リサーチ 呼吸器系の音響インピーダンスを測定する方法、呼吸器疾患若しくは呼吸器障害を診断する方法、及びその治療をモニタリングする方法
JP2009240752A (ja) * 2008-03-10 2009-10-22 Chest M I Inc 呼吸インピーダンス測定装置及びその測定方法、呼吸インピーダンス表示方法

Also Published As

Publication number Publication date
JP2010264235A (ja) 2010-11-25
US20120101400A1 (en) 2012-04-26
US9022947B2 (en) 2015-05-05
JP5583454B2 (ja) 2014-09-03

Similar Documents

Publication Publication Date Title
JP5583454B2 (ja) 呼吸インピーダンス測定装置及び呼吸インピーダンス表示方法
JP5198162B2 (ja) 呼吸インピーダンス測定装置及びその測定方法
JP4504383B2 (ja) 呼吸管の空気流を解析する方法およびシステム
RU2314751C2 (ru) Система для анализа и формирования изображения шума дыхательных путей
JP5408399B1 (ja) 画像生成装置
WO2018016113A1 (ja) 診断支援プログラム
CN108289779B (zh) 身体状况检查装置、身体状况检查方法以及床***
JP6742970B2 (ja) 肺換気の局所的特性を検出および視覚化するために、電気インピーダンストモグラフィ装置のデータを処理および視覚化する装置
US20190328346A1 (en) Radiographic image analysis apparatus and radiographic image analysis system
RU2346653C2 (ru) Способ и система для анализа сердечно-сосудистых звуков
Charleston-Villalobos et al. Linear and nonlinear analysis of base lung sound in extrinsic allergic alveolitis patients in comparison to healthy subjects
US6273855B1 (en) Method and device for compressed optical representation of medical data
JP2016042960A (ja) 超音波診断装置
JP6742620B2 (ja) 嚥下診断装置およびプログラム
JP7290241B2 (ja) 呼吸音検出装置及びプログラム
JP2019141597A (ja) 信号処理装置及び方法、並びにコンピュータプログラム及び記録媒体
WO2020090763A1 (ja) 処理装置、システム、処理方法、およびプログラム
JP3527302B2 (ja) Fv波形解析のためのfv波形の合成方法
US20240188844A1 (en) Method for characterizing the vibration of a surface
JP3527301B2 (ja) ライフスタイル管理のための換気、ガス交換機能の総合的評価および立体的表示装置
JP2019146775A (ja) 呼吸機能検査装置および呼吸機能検査プログラム
KR20190055548A (ko) 촬영 시점표시장치, 시점표시장치를 이용한 수면성 호흡장애 진단장치 및 방법
JP2015084849A (ja) 信号処理装置及び方法、並びにコンピュータプログラム及び記録媒体
JPH08173402A (ja) 気道閉塞に関わるライフスタイル管理のための換気能力評価方法および装置
MXPA05013006A (en) Method and system for analyzing cardiovascular sounds

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10764427

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13264075

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10764427

Country of ref document: EP

Kind code of ref document: A1