WO2010118601A1 - 基于表面等离子体激元波导的集成光学光纤陀螺芯片 - Google Patents

基于表面等离子体激元波导的集成光学光纤陀螺芯片 Download PDF

Info

Publication number
WO2010118601A1
WO2010118601A1 PCT/CN2009/074158 CN2009074158W WO2010118601A1 WO 2010118601 A1 WO2010118601 A1 WO 2010118601A1 CN 2009074158 W CN2009074158 W CN 2009074158W WO 2010118601 A1 WO2010118601 A1 WO 2010118601A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
output
surface plasmon
beam splitter
output waveguide
Prior art date
Application number
PCT/CN2009/074158
Other languages
English (en)
French (fr)
Inventor
张彤
薛晓军
吴朋钦
张晓阳
陈秋月
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Priority to US13/264,615 priority Critical patent/US8532443B2/en
Publication of WO2010118601A1 publication Critical patent/WO2010118601A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/58Turn-sensitive devices without moving masses
    • G01C19/64Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
    • G01C19/72Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams with counter-rotating light beams in a passive ring, e.g. fibre laser gyrometers
    • G01C19/721Details

Definitions

  • the invention belongs to the field of integrated optics and inertial sensing technology, and particularly relates to an integrated optical fiber gyro chip of a surface plasmon waveguide and a polymer optical waveguide interconnection structure, which is applied to the field of fiber optic gyro. Background technique
  • fiber optic gyroscope relies on optical fiber as the carrier of the laser beam, and uses the Sagnac effect in the closed fiber loop to measure the rotational angular velocity of the rotating body.
  • the integrated optical chip currently widely used in fiber optic gyro systems is an integrated chip based on LiNbO 3 material.
  • This integrated chip is usually a proton-exchanged LiNbO 3 optical waveguide Y-splitting, so it is called Y-waveguide integrated optics (referred to as the multi-function integrated optical chip MFIOC), which integrates a Y-beam splitter and polarization on the same chip.
  • MFIOC Y-waveguide integrated optics
  • phase modulators for use in closed-loop fiber optic gyroscopes of all precisions are some shortcomings in the application:
  • LiNbO 3 optical waveguide fabrication method is proton exchange method, which has strict requirements on proton exchange time, temperature, characteristics of exchange medium and annealing temperature and time, and the preparation process is complicated and the cost is high;
  • a surface plasmon is a non-radiative electromagnetic wave propagating on a metal surface and confined to the surface.
  • the surface plasmons are constrained to the waveguide surface as a result of the free electron interaction of light and metal.
  • Surface plasmon waveguides have characteristics not found in ordinary optical waveguides: such as signal transmission at the nanometer scale; can maintain signal long-distance transmission
  • the single polarization state realizes single mode transmission under various sizes;
  • the metal core layer structure of the surface plasmon waveguide not only can propagate optical signals, but also can propagate electrical signals, which can realize photoelectric mixing on the same chip;
  • the electric constant is a complex number, and the imaginary part represents the ability of the metal to absorb light, and the signal is rapidly attenuated by designing the metal core layer; the metal core layer of the surface plasmon waveguide can be directly modulated to realize the surface plasmon waveguide Device
  • the object of the present invention is to overcome the deficiencies of the prior art, and to provide an integrated optical fiber gyro chip interconnecting a surface plasmon waveguide and a polymer optical waveguide, and realizing a signal by using a surface plasmon waveguide
  • the single polarization state of the transmission, the phase and beam split ratio can be controlled by the core layer modulation of the surface plasmon, and a specific structure is designed to eliminate the leakage light to reduce the detection noise of the fiber optic gyroscope.
  • the chip has a small device size. Low cost, high precision, and simple process.
  • the integrated optical fiber gyro chip based on the surface plasmon waveguide of the present invention is realized by the fiber optic gyro chip integrating the input waveguide and the third output waveguide, the directional coupler, and the symmetry from the input end to the output end.
  • the three-waveguide beam splitter and the first output waveguide and the second output waveguide have a positional relationship: the two ends of the directional coupler are respectively connected to the input waveguide of the input waveguide and the symmetrical three-waveguide beam splitter, and the lower branch waveguide The two ends are respectively connected to the third output waveguide and the third metal nanowire, and the two ends of the upper waveguide of the symmetric three-waveguide beam splitter are respectively connected with the first metal nanowire and the first output waveguide, and the two ends of the lower beam of the beam splitter are respectively respectively Connected to the second metal nanowire and the second output waveguide, the first modulation electrode, the second modulation electrode, and the first metal line gap and the second metal line gap are prepared on the upper end of the waveguide coupling end of the beam splitter, the third modulation The electrode, the fourth modulation electrode and the third metal line gap, and the fourth metal line gap are prepared on the output end of the lower beam waveguide of the beam splitter;
  • the input waveguide and the first output waveguide, the second output waveguide, and the third output waveguide are composed of a substrate, a polymer core layer, an upper cladding layer, and an under cladding layer, the core layer of which is an organic polymer having a thickness on the order of several micrometers; Coupler and symmetrical three-waveguide beam splitter are prepared by surface plasmon waveguide, surface plasma
  • the excimer waveguide is composed of a substrate, a metal core layer, an upper cladding layer and an under cladding layer, and the core layer is a metal nanowire with a thickness between 10 and 20 nanometers and a width of between 4 and 8 micrometers; Both the waveguide and the surface plasmon waveguide are prepared on the same substrate.
  • Both the upper cladding layer and the lower cladding layer are organic polymer dielectric materials, and the upper and lower cladding layers are between 10 and 20 micrometers thick.
  • the plasmonic waveguide core layer is located on the center plane of the polymer optical waveguide core layer.
  • the optical path of the integrated optical fiber gyro chip proposed by the present invention is as follows:
  • the optical fiber gyro optical system light source is a super luminescent light emitting diode (SLD), and the optical signal is coupled into the input waveguide through the input fiber and transmitted to the directional coupler interconnected therewith.
  • SLD super luminescent light emitting diode
  • the optical signal entering the symmetrical three-waveguide beam splitter 2, the optical signal is divided into two beams respectively into the first output waveguide and the second output waveguide interconnected with the beam splitter, and coupled to the first output fiber and the second output respectively
  • the optical fiber then enters the first depolarizer and the second depolarizer respectively, and forms a clockwise and counterclockwise propagation in the incoming fiber coil, and then returns along the respective optical paths, and the symmetric three-waveguide beam splitter recombines to form interference, interference.
  • the light is transmitted to the third output waveguide via the directional coupler and passes through the output fiber to the photodetector assembly to detect the angular velocity.
  • the present invention has the following advantages over the prior art:
  • the integrated optical fiber gyro chip proposed by the invention utilizes the absorption characteristics of the metal to design a new structure to eliminate the influence of the leakage mode on the precision of the fiber gyro, and realizes the long-distance transmission of the optical signal by utilizing the unique transmission characteristics of the surface plasmon waveguide.
  • the polarization-maintaining enables single-mode transmission under different core widths, and has higher precision and better polarization-maintaining performance compared with LiNbO 3 optical waveguide devices.
  • the integrated optical fiber gyro chip proposed by the present invention uses a surface plasmon waveguide and a polymer optical waveguide interconnect to transmit an optical signal, and adjusts the spot size of the surface plasmon waveguide to adjust the spot size to the waveguide. Inter-mode matching for low-loss docking between waveguides.
  • the integrated optical fiber gyro chip proposed by the invention can prepare the directional coupler, the symmetrical three-waveguide beam splitter and the modulation electrode at one time, and the preparation process is reduced and the cost is reduced, and the optical is improved compared with the preparation of the LiNbO 3 optical waveguide device.
  • FIG. 1 is a schematic view showing the structure of an integrated optical fiber gyro chip based on a surface plasmon waveguide.
  • Figure 2 is a cross-sectional view of an integrated optical fiber optic gyro chip based on surface plasmon waveguide Figure.
  • Figure 3 is a schematic diagram of an integrated optical fiber optic gyro chip optical gyro based on a surface plasmon waveguide.
  • a surface plasmon is a non-radiative electromagnetic wave propagating on a metal surface and confined to the surface.
  • the surface plasmons are constrained to the waveguide surface as a result of the free electron interaction of light and metal.
  • the surface plasmon waveguide is a metal optical waveguide based on surface plasmons.
  • Surface plasmon waveguides have different properties than ordinary optical waveguides:
  • the surface plasmon waveguide can maintain a single polarization of signal long-range transmission, and realize single-mode transmission of signals under various waveguide sizes.
  • the integrated optical fiber gyro chip proposed by the invention uses a surface plasmon waveguide to prepare a directional coupler and a symmetric three-waveguide The beamform achieves a single polarization of signal transmission across the integrated optical chip.
  • the dielectric constant of the metal is complex, and the wave vector of the surface plasmon is also complex.
  • the imaginary part of the dielectric constant of the metal determines the absorption property of the metal, and the wave vector of the surface plasmon.
  • the imaginary part determines the ohmic loss when the surface plasmons propagate, so the metal waveguide can absorb the optical signal in the form of ohmic loss without forming a significant leakage mode.
  • the integrated optical fiber gyro chip proposed by the present invention can be designed for the width and thickness of the nanowires 81, 82, 83 to distinguish it from the transmission waveguide and enhance the absorption of the optical signal.
  • the refractive index of the organic polymer waveguide core layer is slightly larger than that of the surface plasmon waveguide metal core layer, which can satisfy the optical signal transmission between the two waveguides.
  • Momentum matching realizing the direct docking propagation optical signal of the surface plasmon waveguide and the polymer optical waveguide.
  • the spot size of the surface plasmon waveguide is closely related to the width of the metal core layer. Therefore, the size of the waveguide core layer can be changed to adjust the spot size, and the polymer optical waveguide mode field is matched to realize the surface plasmon waveguide. Docks with low loss of polymer optical waveguides.
  • the integrated optical fiber gyro chip comprises an input waveguide 1, a directional coupler 2, a symmetric three-waveguide beam splitter 3, a first modulation electrode 41, a second modulation electrode 42, a third modulation electrode 43, and a fourth modulation Electrode 44, first metal line gap 51, second metal line gap 52, third metal line gap 53, fourth metal line gap 54, first output waveguide 61, second output waveguide 62, third output waveguide 7, and design
  • the first metal nanowire 81, the second metal nanowire 82, and the third metal nanowire 83 are formed, and the input waveguide 1 and the first output waveguide 61, the second output waveguide 62, and the third output waveguide 7 are composed of a substrate 9,
  • the polymer core layer 11, the upper cladding layer 12, the lower cladding layer 13, the directional coupler 2, the symmetric three-waveguide beam splitter 3 are prepared by a surface plasmon waveguide, and the surface plasmon waveguide is composed of a substrate 9
  • the third adjustment The electrode electrode 43, the fourth modulation electrode 44, the third metal line gap 53, and the fourth metal line gap 54 are formed on the output end of the beam splitter lower branch waveguide 33; wherein, the input waveguide 1, the first output waveguide 61, and the The two output waveguides 62, the third output waveguide 7 are polymer optical waveguides, the directional coupler 2 and the symmetric three-waveguide beam splitter 3 are prepared by surface plasmon waveguides, the input waveguide 1, the first output waveguide 61, and the second output The waveguide 62, the third output waveguide 7, the directional coupler 2, and the symmetrical three-waveguide beam splitter 3 are all fabricated on the same substrate 9.
  • the polymer optical waveguide forms a waveguide interconnection structure with the surface plasmon waveguide, and the surface plasmon waveguide core layer 10 is located on the center surface of the polymer optical waveguide core layer 11; the first modulation electrode 41, a metal forming a current loop between the second modulation electrode 42 and the first metal line gap 51 and the second metal line gap 5, and intensity modulation of the optical signal, the third modulation electrode 43, the fourth modulation electrode 44, and the third metal line gap 53,
  • the metal between the fourth metal line gap 54 forms a current loop for phase modulation of the optical signal; in order to prevent the optical signal from forming a leakage mode at the respective coupling null end during the coupling process of the directional coupler 2 and the symmetric three-waveguide beam splitter 3, the design
  • the first metal nanowire 81, the second metal nanowire 82, and the third metal nanowire 83 are formed to absorb the optical signal of the coupled null end, thereby improving the precision of the optical gyro.
  • the input waveguide 1 and the first output waveguide 61, the second output waveguide 62, and the third output waveguide 7 are composed of a substrate 9, a polymer core layer 11, an upper cladding layer 12, and an under cladding layer 13, the core layer of which is an organic polymer.
  • the cladding layer 13 is composed of a metal nanowire having a thickness of 10 to 20 nanometers and a width of 4 to 8 micrometers; the polymer optical waveguide and the surface plasmon waveguide are both formed on the same substrate 9
  • the upper cladding layer 12 and the lower cladding layer 13 are all organic polymer dielectric materials, and the upper and lower cladding layers have a thickness of 10 to 20 micrometers. as shown in picture 2.
  • Fiber optic gyro optical system uses fiber optic gyro common light source super luminescent diode (SLD) 14, SLD radiates short coherence length light, greatly reduces light scattering noise, and has a large enough output Power is the ideal source for fiber optic gyroscopes.
  • the optical signal is coupled to the input waveguide 1 through the input fiber 8 and transmitted to the directional coupler 2 interconnected thereto, into the symmetric three-waveguide beam splitter 3, which is prepared by the surface plasmon waveguide.
  • the bit and intensity modulator divides the beam into two beams of intensity ratio 50:50, and the phases are respectively entered into the first output waveguide 61 and the second output waveguide 62 interconnected with the beam splitter, and are respectively coupled to the first output fiber 161.
  • the second output fiber 162 is then decoupled into the first depolarizer 171 and the second depolarizer 172, respectively, and the depolarizer depolarizes the two polarization-maintaining optical signals.
  • the dual depolarizer technology can not only satisfy the reciprocity of the fiber optic gyro optical system, but also replace the polarization maintaining fiber coil with a common single mode fiber coil to reduce the cost.
  • the depolarization light After the depolarization light is transmitted to the optical fiber coil 18, it propagates clockwise and counterclockwise in the coil, and then returns along the respective optical paths, and the symmetric three-waveguide beam splitter 3 recombines to form interference, and the interference light is transmitted to the third output through the directional coupler 2
  • the waveguide 7, in each coupling process, the first metal nanowire 81, the second metal nanowire 82, and the third metal nanowire 83 absorb the optical signal of the coupled null end, eliminating the influence of the leakage mode on the accuracy of the fiber optic gyroscope, and finally the optical signal passes through
  • the output fiber 152 reaches the photodetector assembly 19 to enable detection of angular velocity.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Integrated Circuits (AREA)
  • Gyroscopes (AREA)

Description

基于表面等离子体激元波导的集成光学光纤陀螺芯片 技术领域
本发明属于集成光学和惯性传感技术领域, 特别涉及一种表面等离子体 激元波导与聚合物光波导互连结构的集成光学光纤陀螺芯片, 应用于光纤陀 螺领域。 背景技术
光纤陀螺作为新型陀螺仪, 依靠光纤作为激光束的载体, 利用闭合光纤 环路中的 Sagnac效应来测量旋转体的转动角速度。 光纤陀螺一问世就以其明 显的优点、 结构的灵活性以及诱人的前景, 引起了世界上许多国家的大学和 科研机构的普遍重视, 二十年来获得了很大的进展。 随着光纤陀螺需求的领 域和数量不断增大, 对光纤陀螺提出了小型化、 集成化、 成本低和稳定性高 的要求。
目前在光纤陀螺***中得到广泛应用的集成光学芯片是基于 LiNbO3材料 的集成芯片。这种集成芯片通常为质子交换 LiNbO3光波导 Y分路, 因此称为 Y波导集成光学器件(国外称多功能集成光学芯片 MFIOC), 该器件在同一芯 片上集成了 Y型分束器、 偏振器和相位调制器, 可应用于各种精度的闭环光 纤陀螺中。 这种集成光学芯片虽然在集成光学光纤陀螺的实用化程度最好, 但是在应用中也存在以下一些不足:
1. 当光信号从光纤线圈返回入射到 Y型波导时, 部分信号将泄漏并散失 到衬底中, 产生泄漏模式, 从而影响光纤陀螺的精度。
2. LiNbO3光波导制作方法为质子交换法, 对质子交换的时间、 温度、 交 换介质的特性及退火的温度和时间有严格要求, 制备工艺复杂且成本较高;
3. 要对 LiNbO3光波导进行相位调制, 需在光波导两侧制备调制电极, 通 过电光效应来实现, 使制备工艺更加复杂且调制效率相对不高;
近年来, 随着纳米科学和纳电子学的发展, 一种全新的波导结构--表面等 离子体激元 (Surface Plasmon Polaritons— SPPs ) 波导成为集成光学领域的新 兴研究方向。 表面等离子体激元是一种在金属表面传播的并且被约束在此表 面的一种非辐射电磁波。 表面等离子体激元被约束在波导表面是光和金属的 自由电子相互作用的结果。 表面等离子体激元波导具有普通光波导所不具备 的特性: 如可以实现在纳米尺度上的信号传输; 可保持信号长程传输过程中 的单一偏振态, 实现各种尺寸下单模传输; 表面等离子体激元波导的金属芯 层结构, 不但能够传播光信号, 还可以传播电信号, 可实现在同一芯片上光 电混合; 金属的介电常数为复数, 其虚部代表金属吸收光的能力, 通过对金 属芯层的设计实现信号的迅速衰减; 可对表面等离子体激元波导的金属芯层 直接调制以实现表面等离子体激元波导器
件的高效调谐等。 基于表面等离子体激元波导的这些特性, 表面等离子 体激元波导器件可在光通信、 光学传感领域发挥重要应用。 发明内容
技术问题: 本发明的目的是为了克服已有技术的不足之处, 提出一种表 面等离子体激元波导与聚合物光波导互连的集成光学光纤陀螺芯片, 利用表 面等离子体激元波导实现信号传输的单一偏振态, 通过对表面等离子体激元 的芯层调制实现相位和分束比可控, 并设计一种特定结构消除泄漏光, 以降 低光纤陀螺的检测噪声, 该芯片具有器件体积小、 低成本、 高精度、 工艺简 单等优点。
技术方案: 本发明的基于表面等离子体激元波导的集成光学光纤陀螺芯 片是这样实现的, 光纤陀螺芯片从输入端到输出端依次为集成了输入波导和 第三输出波导、 定向耦合器、 对称三波导分束器和第一输出波导、 第二输出 波导, 其位置关系为: 定向耦合器上支波导两端分别与其输入波导和对称三 波导分束器中支波导输入端相连, 下支波导两端分别与第三输出波导和第三 金属纳米线相连, 对称三波导分束器上支波导两端分别与第一金属纳米线和 第一输出波导相连, 分束器下支波导两端分别与第二金属纳米线和第二输出 波导相连, 第一调制电极、 第二调制电极和第一金属线间隙、 第二金属线间 隙制备在分束器上支波导耦合端之上, 第三调制电极、 第四调制电极和第三 金属线间隙、 第四金属线间隙制备在分束器下支波导输出端之上; 其中, 输 入波导、 第一输出波导、 第二输出波导、 第三输出波导为聚合物光波导, 定 向耦合器和对称三波导分束器由表面等离子体激元波导制备, 输入波导、 第 一输出波导、 第二输出波导、 第三输出波导、 定向耦合器和对称三波导分束 器均制备在同一衬底上。
输入波导和第一输出波导、 第二输出波导、 第三输出波导由衬底、 聚合 物芯层、 上包层、 下包层组成, 其芯层为有机聚合物, 厚度为数微米量级; 定向耦合器和对称三波导分束器由表面等离子体激元波导制备, 表面等离子 体激元波导由衬底、 金属芯层、 上包层、 下包层组成, 其芯层为金属纳米线, 厚度在 10到 20纳米之间, 宽度为 4至 8微米之间; 聚合物光波导与表面等 离子体激元波导均制备在同一衬底上, 上包层、 下包层均为有机聚合物介质 材料, 上、 下包层厚度在 10至 20微米之间。
制备输入波导和第一输出波导、 第二输出波导、 第三输出波导的聚合物 光波导与制备定向耦合器和对称三波导分束器的表面等离子体激元波导之间 形成互连结构, 表面等离子体激元波导芯层位于聚合物光波导芯层的中心面 上。
本发明提出的集成光学光纤陀螺芯片的光路如下: 光纤陀螺光学***光 源为超辐射发光二级管 (SLD), 光信号经过输入光纤耦合进入输入波导中, 传输至与之互连的定向耦合器 2中, 进入对称三波导分束器 2, 光信号被分成 两束光分别进入与分束器互连的第一输出波导、 第二输出波导, 再分别耦合 至第一输出光纤、 第二输出光纤, 之后分别进入第一消偏器、 第二消偏器, 传入光纤线圈中形成顺时针和逆时针方向传播, 然后沿各自光路返回, 在对 称三波导分束器再次会合形成干涉, 干涉光经定向耦合器传输至第三输出波 导, 经过输出光纤到达光探测器组件, 以实现对角速度的探测。
有益效果: 本发明与现有的技术相比具有以下的优点:
1、 本发明所提出的集成光学光纤陀螺芯片, 利用金属的吸收特性, 设计 新型结构消除泄漏模式对光纤陀螺精度的影响, 并利用表面等离子体激元波 导特有的传输特性, 实现光信号长程传输的保偏, 实现不同芯层宽度下单模 传输, 与 LiNbO3光波导器件相比, 精度更高, 其保偏性能更好。
2、 本发明所提出的集成光学光纤陀螺芯片, 采用表面等离子体激元波导 与聚合物光波导互连来传输光信号, 利用改变表面等离子体激元波导芯层宽 度来调节其光斑大小达到波导间模式匹配, 实现波导间低损耗对接。
3、 本发明所提出的集成光学光纤陀螺芯片, 可一次制备定向耦合器、 对 称三波导分束器和调制电极, 与制备 LiNbO3光波导器件相比, 精简了制备工 艺并降低成本, 提高光学***集成度, 而直接对表面等离子体激元波导芯层 进行相位调制和强度调制, 调制效率更高, 稳定性更好。 附图说明
图 1是基于表面等离子体激元波导的集成光学光纤陀螺芯片结构示意图。 图 2 是基于表面等离子体激元波导的集成光学光纤陀螺芯片横截面示意 图。
图 3 是应用基于表面等离子体激元波导的集成光学光纤陀螺芯片光学陀 螺示意图。
附图符号说明
1 输入波导 2 定向耦合器
3 对称三波导分束器 31 分束器上支波导
32 分束器中支波导 33 分束器下支波导
41 第一调制电极 42 第二调制电极
43 第三调制电极 44 第四调制电极
51 第一金属线间隙 52 第二金属线间隙
53 第三金属线间隙 54 第四金属线间隙
61 第一输出波导 62 第二输出波导
7 第三输出波导 81 第一金属纳米线
82 第二金属纳米线 83 第三金属纳米线
9 衬底 10 金属芯层
11 聚合物芯层 12 上包层
13 下包层 14 超辐射发光二级管
151 输入光纤 152 输出光纤
161 第一输出光纤 162 第二输出光纤
171 第一消偏器 172 第二消偏器
18 光纤线圈 19 光探测器组件 具体实施方式:
表面等离子体激元是一种在金属表面传播的并且被约束在此表面的一种 非辐射电磁波。 表面等离子体激元被约束在波导表面是光和金属的自由电子 相互作用的结果。 表面等离子体激元波导是一种基于表面等离子体激元的金 属光波导。 表面等离子体激元波导具有与普通光波导不同的性质:
1.根据麦克斯韦方程组及其边界条件可知,只有 TM横磁模可以垂直边界 传播, 能耦合激发表面等离子体激元, 产生表面等离子体激元, 而 TE横电模 不能产生耦合激发的现象, 因此表面等离子体激元波导可保持信号长程传输 的单一偏振性, 实现各种波导尺寸下信号的单模传输。 本发明提出的集成光 学光纤陀螺芯片利用表面等离子体激元波导制备定向耦合器和对称三波导分 束器可实现信号在集成光学芯片传输的单一偏振性。
2.在可见光和近红外区域, 金属的介电常数为复数, 表面等离子体激元的 波矢也为复数, 金属介电常数的虚部决定金属的吸收性质, 表面等离子体激 元的波矢的虚部决定了表面等离子体激元传播时地欧姆损耗, 因此金属波导 可以欧姆损耗的形式对光信号进行吸收, 而不形成明显泄漏模式。 本发明提 出的集成光学光纤陀螺芯片中可对纳米金属线 81、 82、 83的宽度和厚度设计, 从而与传输波导区分, 增强对光信号的吸收。
3.要激发表面等离子体激元必须满足动量匹配和模式匹配,有机聚合物波 导芯层折射率比表面等离子体激元波导金属芯层折射率略大, 可满足两种波 导间光信号传输的动量匹配, 实现表面等离子体激元波导与聚合物光波导的 直接对接传播光信号。 而表面等离子体激元波导的光斑大小与金属芯层的宽 度密切相关, 因此可利用改变波导芯层宽度大小来调节其光斑大小, 与聚合 物光波导模场匹配, 实现表面等离子体激元波导与聚合物光波导的低损耗对 接。
以下结合附图对本发明的技术方案作进一步描述。
本发明提出的基于表面等离子体激元波导的集成光学光纤陀螺芯片结构 如
图 1所示: 本集成光学光纤陀螺芯片由输入波导 1、 定向耦合器 2、 对称 三波导分束器 3、 第一调制电极 41、 第二调制电极 42、 第三调制电极 43、 第 四调制电极 44、 第一金属线间隙 51、 第二金属线间隙 52、 第三金属线间隙 53、 第四金属线间隙 54、 第一输出波导 61、 第二输出波导 62、 第三输出波导 7和设计制作的第一金属纳米线 81、 第二金属纳米线 82、 第三金属纳米线 83 组成, 输入波导 1和第一输出波导 61、 第二输出波导 62、 第三输出波导 7由 衬底 9、 聚合物芯层 11、 上包层 12、 下包层 13组成, 定向耦合器 2、 对称三 波导分束器 3 由表面等离子体激元波导制备而成, 表面等离子体激元波导由 衬底 9、 金属芯层 10、 上包层 12、 下包层 13组成, 其位置关系为: 定向耦合 器 2上支波导两端分别与其输入波导 1和对称三波导分束器 3分束器中支波 导 32输入端相连,下支波导两端分别与第三输出波导 7和第三金属纳米线 83 相连,对称三波导分束器 3分束器上支波导 31两端分别与第一金属纳米线 81 和第一输出波导 61相连, 分束器下支波导 33两端分别与第二金属纳米线 82 和第二输出波导 62相连, 第一调制电极 41、 第二调制电极 42和第一金属线 间隙 51、 第二金属线间隙 52制备在分束器上支波导 31耦合端之上, 第三调 制电极 43、 第四调制电极 44和第三金属线间隙 53、 第四金属线间隙 54制备 在分束器下支波导 33输出端之上; 其中, 输入波导 1、 第一输出波导 61、 第 二输出波导 62、 第三输出波导 7为聚合物光波导, 定向耦合器 2和对称三波 导分束器 3 由表面等离子体激元波导制备, 输入波导 1、 第一输出波导 61、 第二输出波导 62、 第三输出波导 7、 定向耦合器 2和对称三波导分束器 3均 制备在同一衬底 9上。
其中, 聚合物光波导与为表面等离子体激元波导之间形成波导互连结构, 表面等离子体激元波导芯层 10位于聚合物光波导芯层 11中心面上;第一调制 电极 41、 第二调制电极 42和第一金属线间隙 51、 第二金属线间隙 5间金属 形成电流回路, 对光信号进行强度调制, 第三调制电极 43、 第四调制电极 44 和第三金属线间隙 53、第四金属线间隙 54间金属形成电流回路, 对光信号进 行相位调制; 为了防止光信号在定向耦合器 2和对称三波导分束器 3 的耦合 过程中在各自耦合空端形成泄漏模式, 设计制作了第一金属纳米线 81、 第二 金属纳米线 82、第三金属纳米线 83用来吸收耦合空端的光信号, 提高光学陀 螺的精度。
输入波导 1和第一输出波导 61、 第二输出波导 62、 第三输出波导 7由衬 底 9、 聚合物芯层 11、 上包层 12、 下包层 13组成, 其芯层为有机聚合物, 厚 度为数微米量级; 定向耦合器 2和对称三波导分束器 3 由表面等离子体激元 波导制备, 表面等离子体激元波导由衬底 9、 金属芯层 10、 上包层 12、 下包 层 13组成, 其芯层为金属纳米线, 厚度在 10到 20纳米之间, 宽度为 4至 8 微米之间; 聚合物光波导与表面等离子体激元波导均制备在同一衬底 9 上, 上包层 12、 下包层 13均为有机聚合物介质材料, 上、 下包层厚度在 10至 20 微米之间。 如图 2所示。
本发明提出的集成光学光纤陀螺芯片应用于光纤陀螺领域, 应用本芯片 的光纤陀螺如图 3 所示。 其光路及各组件功能如下: 光纤陀螺光学***采用 光纤陀螺常用光源超辐射发光二级管 (SLD ) 14, SLD辐射出短相干长度光, 极大地降低光散射噪声, 同时又具有足够大的输出功率, 是光纤陀螺的理想 光源。 光信号经过输入光纤 8后耦合到输入波导 1 中, 传输至与之互连的定 向耦合器 2中, 进入对称三波导分束器 3, 对称三波导分束器由表面等离子体 激元波导制备, 可实现信号长程传输的单一偏振性, 提高光学陀螺精度。 对 第一调制电极 41、 第二调制电极 42加电压, 实现光信号强度调制, 对第三调 制电极 43、 第四调制电极 44加电压, 实现光信号相位调制, 这样分束器和相 位、 强度调制器将光束分成强度比 50: 50、 相位一致的两束光分别进入与分 束器互连的第一输出波导 61、 第二输出波导 62, 再分别耦合至第一输出光纤 161、 第二输出光纤 162, 之后分别进入第一消偏器 171、 第二消偏器 172消 偏, 消偏器将两束保偏光信号进行消偏。 采用双消偏器技术既可满足光纤陀 螺光学***互易, 又可使用普通单模光纤线圈代替保偏光纤线圈, 降低成本。 消偏光传入光纤线圈 18后在线圈中顺时针和逆时针方向传播, 然后沿各自光 路返回, 在对称三波导分束器 3 再次会合形成干涉, 干涉光经定向耦合器 2 传输至第三输出波导 7, 在每次耦合过程中第一金属纳米线 81、 第二金属纳 米线 82、第三金属纳米线 83吸收耦合空端的光信号, 消除泄漏模式对光纤陀 螺精度的影响, 最后光信号经过输出光纤 152到达光探测器组件 19, 实现对 角速度的探测。

Claims

利 要 求 书
1.一种基于表面等离子体激元波导的集成光学光纤陀螺芯片, 其特征在 于: 光纤陀螺芯片从输入端到输出端依次为集成了输入波导 (1) 和第三输出 波导 (7)、 定向耦合器 (2)、 对称三波导分束器 (3) 和第一输出波导 (61)、 第二输出波导 (62), 其位置关系为: 定向耦合器 (2) 上支波导两端分别与 其输入波导 (1) 和对称三波导分束器 (3) 分束器中支波导 (32) 输入端相 连, 下支波导两端分别与第三输出波导 (7) 和第三金属纳米线 (83) 相连, 对称三波导分束器(3)分束器上支波导(31)两端分别与第一金属纳米线(81) 和输出波导 (61) 相连, 分束器下支波导 (33) 两端分别与第二金属纳米线
(82) 和输出波导 (62) 相连, 第一调制电极 (41)、 第二调制电极 (42) 和 第一金属线间隙 (51)、 第二金属线间隙 (52) 制备在分束器上支波导 (31) 耦合端之上,第三调制电极(43)、第四调制电极(44)和第三金属线间隙(53)、 第四金属线间隙 (54) 制备在分束器下支波导 (33) 输出端之上; 其中, 输 入波导 (1)、 第一输出波导 (61)、 第二输出波导 (62)、 第三输出波导 (7) 为聚合物光波导, 定向耦合器 (2) 和对称三波导分束器 (3) 由表面等离子 体激元波导制备, 输入波导 (1)、 第一输出波导 (61)、 第二输出波导 (62)、 第三输出波导 (7)、 定向耦合器 (2) 和对称三波导分束器 (3) 均制备在同 一衬底 (9) 上。
2.据权利要求 1 所述的基于表面等离子体激元波导的集成光学光纤陀螺 芯片,其特征在于,输入波导(1)和第一输出波导(61)、第二输出波导(62)、 第三输出波导(7) 由衬底(9)、聚合物芯层(11)、上包层(12)、下包层(13) 组成, 其芯层为有机聚合物, 厚度为数微米量级; 定向耦合器 (2) 和对称三 波导分束器 (3) 由表面等离子体激元波导制备, 表面等离子体激元波导由衬 底 (9)、 金属芯层 (10)、 上包层 (12)、 下包层 (13) 组成, 其芯层为金属 纳米线, 厚度在 10到 20纳米之间, 宽度为 4至 8微米之间; 聚合物光波导 与表面等离子体激元波导均制备在同一衬底 (9) 上, 上包层 (12)、 下包层
(13) 均为有机聚合物介质材料, 上、 下包层厚度在 10至 20微米之间。
3.据权利要求 2 所述的基于表面等离子体激元波导的集成光学光纤陀螺 芯片, 其特征在于, 制备输入波导 (1 ) 和第一输出波导 (61 )、 第二输出波 导 (62)、 第三输出波导 (7) 的聚合物光波导与制备定向耦合器 (2) 和对称 三波导分束器 (3 ) 的表面等离子体激元波导之间形成互连结构, 表面等离子 体激元波导芯层 (10) 位于聚合物光波导芯层 (11 ) 的中心面上。
PCT/CN2009/074158 2009-04-15 2009-09-23 基于表面等离子体激元波导的集成光学光纤陀螺芯片 WO2010118601A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/264,615 US8532443B2 (en) 2009-04-15 2009-09-23 Integrated optical fiber gyroscope chip based on surface plasmon polariton waveguide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009100307856A CN101526354B (zh) 2009-04-15 2009-04-15 基于表面等离子体激元波导的集成光学光纤陀螺芯片
CN200910030785.6 2009-04-15

Publications (1)

Publication Number Publication Date
WO2010118601A1 true WO2010118601A1 (zh) 2010-10-21

Family

ID=41094349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/074158 WO2010118601A1 (zh) 2009-04-15 2009-09-23 基于表面等离子体激元波导的集成光学光纤陀螺芯片

Country Status (3)

Country Link
US (1) US8532443B2 (zh)
CN (1) CN101526354B (zh)
WO (1) WO2010118601A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101526354B (zh) * 2009-04-15 2010-12-01 东南大学 基于表面等离子体激元波导的集成光学光纤陀螺芯片
KR102255303B1 (ko) * 2014-10-13 2021-05-24 삼성전자주식회사 대상물을 인증하기 위한 구조 및 방법과 이를 적용한 장치
CN105841686B (zh) * 2016-03-21 2018-05-04 东南大学 基于有源级联表面等离激元谐振腔的激光陀螺
CN105973221B (zh) * 2016-05-10 2018-08-21 东南大学 一种基于表面等离子激元波导的可调谐自校准光学陀螺
US11054440B2 (en) * 2019-03-28 2021-07-06 The Regents Of The University Of California Device integrated with scanning probe for optical nanofocusing and near-field optical imaging
US11175140B2 (en) * 2019-09-10 2021-11-16 Honeywell International Inc. Resonator fiber optic gyroscope with integrated photonics interface
CN113284962B (zh) * 2020-01-17 2022-08-02 淮阴工学院 集成有多端口光波导的低维材料异质结光电探测器的制备方法
US11204469B1 (en) 2020-06-01 2021-12-21 Honeywell International Inc. Apparatus for high-efficiency fiber-to-chip coupling and mode-conversion to integrated photonics platform
CN113280803A (zh) * 2021-05-19 2021-08-20 北京航空航天大学 一种敏感单元及光学陀螺仪
CN113280804B (zh) * 2021-05-19 2023-02-17 北京航空航天大学 一种纳米光子陀螺仪
CN114527538B (zh) * 2022-03-09 2022-12-30 北京世维通科技股份有限公司 一种具有模式选择结构的铌酸锂薄膜芯片
CN117769114B (zh) * 2023-12-22 2024-06-21 上海傲世控制科技股份有限公司 一种光纤陀螺仪的波导集成结构以及一种三轴光纤陀螺仪
CN117606461B (zh) * 2024-01-24 2024-04-19 广东奥斯诺工业有限公司 双环差分式超高转速光子芯片光纤陀螺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1648604A (zh) * 2005-02-05 2005-08-03 浙江大学 干涉型硅基芯片微光学陀螺
CN1862228A (zh) * 2006-06-14 2006-11-15 浙江大学 化合物半导体集成光学光纤陀螺芯片
CN101294806A (zh) * 2008-04-25 2008-10-29 东南大学 表面等离子体激元慢光陀螺及其制备方法
DE102007031841A1 (de) * 2007-07-08 2009-01-15 Imst Gmbh Breitseiten-gekoppelte ultra-kompakte Multi-Band Kopplerstrukturen in Spalt-geführter Oberflächen Plasmon Polariton Wellenleitertechnik
CN101526354A (zh) * 2009-04-15 2009-09-09 东南大学 基于表面等离子体激元波导的集成光学光纤陀螺芯片

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6438280B1 (en) * 1999-12-23 2002-08-20 Litton Systems, Inc. Integrated optics chip having reduced surface wave propagation
CN100354604C (zh) * 2004-06-18 2007-12-12 东南大学 用有机聚合物材料实现的波导结构光学陀螺及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1648604A (zh) * 2005-02-05 2005-08-03 浙江大学 干涉型硅基芯片微光学陀螺
CN1862228A (zh) * 2006-06-14 2006-11-15 浙江大学 化合物半导体集成光学光纤陀螺芯片
DE102007031841A1 (de) * 2007-07-08 2009-01-15 Imst Gmbh Breitseiten-gekoppelte ultra-kompakte Multi-Band Kopplerstrukturen in Spalt-geführter Oberflächen Plasmon Polariton Wellenleitertechnik
CN101294806A (zh) * 2008-04-25 2008-10-29 东南大学 表面等离子体激元慢光陀螺及其制备方法
CN101526354A (zh) * 2009-04-15 2009-09-09 东南大学 基于表面等离子体激元波导的集成光学光纤陀螺芯片

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GENG FAN ET AL.: "Integrated Optic Multifunction Chip Fabrication for Fiber Optic Gyroscope", INFRARED AND LASER ENGINEERING, vol. 26, no. 1, February 1997 (1997-02-01), pages 54 - 56 *
ZHAO, HUAWEI ET AL.: "A Novel Y-Branch Waveguide Based on Surface Plasmon Polaritons", ACTA OPTICA SINICA, vol. 27, no. 9, September 2007 (2007-09-01), pages 1649 - 1652 *
ZHAO, HUAWEI ET AL.: "Optical Directional Coupler Based on Surface Plasmon Polariton", SCIENCE IN CHINA (SERIES G: PHYSICS; MECHANICS & ASTRONOMY), vol. 39, no. 2, February 2009 (2009-02-01), pages 191 - 195 *

Also Published As

Publication number Publication date
CN101526354A (zh) 2009-09-09
CN101526354B (zh) 2010-12-01
US8532443B2 (en) 2013-09-10
US20120051691A1 (en) 2012-03-01

Similar Documents

Publication Publication Date Title
WO2010118601A1 (zh) 基于表面等离子体激元波导的集成光学光纤陀螺芯片
Guo et al. Chip-integrated geometric metasurface as a novel platform for directional coupling and polarization sorting by spin–orbit interaction
Ohashi et al. On-chip optical interconnect
CN101566475B (zh) 二轴光学陀螺
JP2770834B2 (ja) 集積光学減相関器
CN112833873A (zh) 光子集成芯片以及干涉型光纤陀螺
CN114063212B (zh) 一种单片集成的基于薄膜铌酸锂的分束调制芯片
CN113280802B (zh) 一种谐振式集成光学陀螺用多功能铌酸锂芯片
CN102419175B (zh) 基于柔性表面等离子体激元波导的光学陀螺
JP2010078591A (ja) バイアスが低減した光ファイバジャイロスコープ
CN105865433B (zh) 单片集成的消偏型光纤陀螺光学芯片
CN112066973B (zh) 一种铌酸锂波导的集成光子晶体光纤陀螺
CN109579817B (zh) 一种硅基-ln基混合集成光学芯片的制备方法
WO2024000936A1 (zh) 光学陀螺双层SiN基集成驱动芯片
Zhang et al. Compact, broadband and low-loss polarization beam splitter on lithium-niobate-on-insulator using a silicon nanowire assisted waveguide
Zhao et al. High-performance silicon polarization switch based on a Mach–Zehnder interferometer integrated with polarization-dependent mode converters
Ji et al. Wavelength-polarization multiplexer for routing and detection of surface plasmon polaritons based on plasmonic gratings
CN113865578B (zh) 基于SiON起偏器的光纤陀螺用SiN基集成光学芯片
CN114397729B (zh) 基于连续曲率弯曲波导起偏器的SiN集成光学芯片
CN115755275B (zh) 一种基于亚波长结构的小型化狭缝波导模式转换器件
Feng et al. Design, fabrication and test of transmissive Si 3 N 4 waveguide ring resonator
JP5223092B2 (ja) 偏波無依存光アイソレータ
CN110220676A (zh) 基于分束器的波导传输损耗的测量装置及测量方法
CN105547276A (zh) 空气隙槽波导环形谐振腔集成光学陀螺
CN113884085A (zh) 基于SiO2-SiN耦合芯片结构的光纤陀螺用的集成光学芯片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09843235

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13264615

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09843235

Country of ref document: EP

Kind code of ref document: A1