WO2010113776A1 - 信号伝達用通信体及びカプラ - Google Patents

信号伝達用通信体及びカプラ Download PDF

Info

Publication number
WO2010113776A1
WO2010113776A1 PCT/JP2010/055318 JP2010055318W WO2010113776A1 WO 2010113776 A1 WO2010113776 A1 WO 2010113776A1 JP 2010055318 W JP2010055318 W JP 2010055318W WO 2010113776 A1 WO2010113776 A1 WO 2010113776A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal transmission
conductor
communication body
planar conductor
inductor
Prior art date
Application number
PCT/JP2010/055318
Other languages
English (en)
French (fr)
Inventor
天野信之
辻政則
三舩洋嗣
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201080013812.XA priority Critical patent/CN102365828B/zh
Priority to JP2011507139A priority patent/JP5170306B2/ja
Publication of WO2010113776A1 publication Critical patent/WO2010113776A1/ja
Priority to US13/246,698 priority patent/US8283990B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna

Definitions

  • the present invention relates to a communication body for a signal transmission device that performs communication in a proximity state and a coupler that is coupled to each other in a proximity state.
  • FIG. 1 is a perspective view of a communication body disclosed in Patent Document 1.
  • FIG. A coupling electrode 108 and a folded stub 103 are formed on the upper and lower surfaces of the insulating spacer 109, and the coupling electrode 108 is formed at the center portion of the stub 103 through a through hole 110 in the spacer 109. It is connected to the.
  • On the printed board 101 a signal line pattern drawn from the transmission / reception circuit module 105 and a conductor pattern 112 connected to the ground conductor 102 through the through hole 106 in the printed board 101 are formed.
  • both ends of the stub 103 are connected to the signal line pattern 111 and the conductor pattern 112, respectively.
  • FIG. 2 is an equivalent circuit diagram of a communication apparatus configured using two communication bodies shown in FIG.
  • the inductor L110 between the transmission / reception circuit module 105 and the coupling electrode 108 is an inductor formed by the through hole 110 shown in FIG.
  • An inductor L103 connected to the shunt between the line connected to the inductor L110 and the ground is an inductor generated by the stub 103 shown in FIG.
  • the conventional communication apparatus as shown in FIG. 1 has the following problems.
  • a predetermined height (length) is required for the through hole (columnar conductor) connected to the coupling electrode.
  • the height is 3 mm or more in the 4.5 GHz band, and it is difficult to reduce the height.
  • an object of the present invention is to provide a communication body for signal transmission and a coupler capable of reducing the occupied area and reducing the height.
  • the communication body for signal transmission includes a base on which a signal transmission line and a ground electrode are formed, a planar coupling planar conductor parallel to the base, the coupling planar conductor, and the signal.
  • An inductor circuit connected between the transmission line and an LC series circuit connected between a part (predetermined position) of the coupling plane conductor and the ground electrode, and in which a capacitor and an inductor are connected in series.
  • the inductor circuit is disposed between the coupling planar conductor and the base portion, and the LC series circuit is disposed between the coupling planar conductor and the base portion.
  • the base, the coupling planar conductor, the inductor circuit configuration unit, and the LC series circuit configuration unit are configured, for example, on a multilayer substrate in which a plurality of dielectric layers and a plurality of conductor layers are laminated.
  • the base portion is a mounting substrate on which the coupling planar conductor, the inductor circuit, and the LC series circuit are mounted, for example, and a ground electrode having an opening in a region facing the coupling planar conductor is formed on the mounting substrate. Is formed.
  • the coupling planar conductor, the inductor circuit, and the LC series circuit are configured as one module, for example.
  • the ground electrode there are two or more layers on which the ground electrode is formed, and the size of the opening closest to the coupling planar conductor among the openings of each ground electrode is the smallest.
  • the capacitor of the LC series circuit includes a planar conductor facing in parallel with the coupling planar conductor, and the planar conductor is formed in a rotationally symmetric shape with respect to the center of the coupling planar conductor, and the inductor circuit Are arranged symmetrically with respect to the center of the planar conductor.
  • the inductor circuit constituent part includes, for example, a spiral conductor that turns along a plane parallel to or perpendicular to the base part.
  • the LC series circuit constituent part includes, for example, a spiral conductor that turns along a plane parallel or perpendicular to the base part.
  • the LC series circuit constituent part includes, for example, a plurality of planar conductors that spread in a plane parallel to the base part and cause capacitance at opposing parts.
  • At least one of the inductor circuit configuration unit and the LC series circuit configuration unit is configured by a chip component mounted on the base portion, for example.
  • An attenuation pole can be provided at a desired frequency of transmission / reception transmission characteristics by the resonance frequency obtained by the magnitude of the capacitance component and the inductance component of the LC series circuit configuration unit.
  • the base portion, the coupling planar conductor, the inductor circuit, and the LC series circuit are configured in a multilayer substrate by stacking a plurality of dielectric layers and a plurality of conductor layers. It can be easily manufactured by a multi-layer substrate process.
  • the capacitor of the LC series circuit includes a planar conductor facing in parallel with the coupling planar conductor, the planar conductor being formed in a rotationally symmetric shape with respect to the center of the coupling planar conductor, By arranging the inductor circuit in a symmetric position with respect to the center of the planar conductor, the characteristic variation with respect to the positional deviation in the in-plane direction can be suppressed with the coupling planar conductors of the two signal transmission communication bodies facing each other. .
  • the inductance component per unit volume is increased, the position of the coupling planar conductor can be lowered, and the communication body is reduced in height.
  • the inductance component for forming the attenuation pole can be set over a wider range within the unit volume.
  • the capacitance component per unit volume is increased, the position of the coupling planar conductor can be lowered, and the communication body can be reduced in height.
  • the capacitance component for forming the attenuation pole can be set over a wider range within the unit volume.
  • FIG. 2 is an equivalent circuit diagram of a communication device configured using two communication bodies shown in FIG. 1.
  • 3A is a perspective view of the signal transmission communication body 201
  • FIG. 3B is a cross-sectional view of the main part thereof.
  • FIG. 4 is an equivalent circuit diagram of the signal transmission communication body 201 shown in FIG. 3.
  • FIG. 5A is a perspective view of the main part of the coupler 301 according to the second embodiment.
  • FIG. 5B is a cross-sectional view of the main part of the coupler 301.
  • FIG. 6 is an equivalent circuit diagram of the coupler 301 shown in FIG. 5.
  • FIG. 5A is a perspective view of the main part of the coupler 301 according to the second embodiment.
  • FIG. 5B is a cross-sectional view of the main part of the coupler 301.
  • FIG. 6 is an equivalent circuit diagram of the coupler 301 shown in FIG. 5.
  • FIG. 7A is a diagram illustrating the frequency characteristics of the reflection characteristics when the coupler 301 is viewed from the microstrip line of the first signal transmission communication body 201.
  • FIG. 7B is a diagram showing frequency characteristics of transmission characteristics from the microstrip line of the first signal transmission communication body 201 to the microstrip line of the second signal transmission communication body 202.
  • FIG. 8A is a perspective view of the main part of the coupler 302 according to the third embodiment.
  • FIG. 8B is a cross-sectional view of the main part of the coupler 302.
  • FIG. 9 is an equivalent circuit diagram of the coupler 302 illustrated in FIG. 8.
  • FIG. 8A is a diagram illustrating the frequency characteristics of the reflection characteristics when the coupler 301 is viewed from the microstrip line of the first signal transmission communication body 201.
  • FIG. 7B is a diagram showing frequency characteristics of transmission characteristics from the microstrip line of the first signal transmission communication body 201 to the microstrip line of the second signal transmission communication body 202.
  • FIG. 10A is a diagram showing the frequency characteristic of the reflection characteristic (S parameter S11) when the coupler 302 is viewed from the microstrip line of the first signal transmission communication body 203.
  • FIG. 10B is a diagram showing frequency characteristics of transmission characteristics from the microstrip line of the first signal transmission communication body 203 to the microstrip line of the second signal transmission communication body 204.
  • FIG. 11A is a partial perspective view of a coupler 303 according to the fourth embodiment.
  • FIG. 11B is a cross-sectional view of the main part of the coupler 303.
  • FIG. 12A is a diagram showing the frequency characteristic of the reflection characteristic (S parameter S11) when the coupler 303 is seen from the microstrip line of the first signal transmission communication body 205.
  • FIG. 12B is a diagram illustrating frequency characteristics of transmission characteristics from the microstrip line of the first signal transmission communication body 205 to the microstrip line of the second signal transmission communication body 206.
  • FIG. 13A is a perspective view of a signal transmission communication body 207 according to the fifth embodiment.
  • FIG. 13B is a perspective view of the Y-axis direction viewed from the XZ plane in FIG.
  • FIG. 13C is a perspective view of the ⁇ X axis direction viewed from the YZ plane in FIG. 13A.
  • FIG. 14A is a perspective view of a main part of a coupler 304 according to the sixth embodiment.
  • FIG. 14B is a cross-sectional view of the main part of the coupler 304.
  • FIG. 15 is an equivalent circuit diagram of the coupler 304 shown in FIG. 14.
  • FIG. 16A is a diagram illustrating a positional deviation amount of the second signal transmission communication body 209 with respect to the first signal transmission communication body 208 in the coupler 304 according to the sixth embodiment.
  • FIG. 16B is a diagram illustrating a positional deviation amount of the second signal transmission communication body 204 with respect to the first signal transmission communication body 203 in the coupler 302 according to the third embodiment.
  • FIGS. 17A and 17B are diagrams showing how the frequency characteristic of the transmission characteristic (S parameter S21) changes according to the positional deviation amount (dx, dy, dz).
  • FIG. 18A is a perspective view of a signal transmission communication body 210 according to the seventh embodiment.
  • FIG. 18A is a perspective view of a signal transmission communication body 210 according to the seventh embodiment.
  • FIG. 18B is a perspective view seen from the front in the direction of FIG. It is a perspective view of the communication body 211 for signal transmission which concerns on 8th Embodiment.
  • FIG. 20A is a perspective view of a signal transmission communication body 212 according to the ninth embodiment, and FIG. 20B is a cross-sectional view of the main part thereof.
  • FIG. 21A is a perspective view of a signal transmission communication body 213 according to the tenth embodiment, and FIG. 21B is a cross-sectional view of the main part thereof.
  • FIG. 22A is a diagram illustrating the frequency characteristics of the transmission characteristics of the coupler configured by the signal transmission communication body according to the tenth embodiment.
  • FIG. 22B is a diagram illustrating the frequency characteristics of the transmission characteristics of the coupler 301 illustrated in FIG. It is sectional drawing of the principal part of three communication bodies for signal transmission from which the relationship of the magnitude
  • FIG. 24A shows frequency characteristics of transmission characteristics (S21) of a coupler using the signal transmission communication body shown in FIG.
  • FIG. 24B shows frequency characteristics of transmission characteristics (S21) of a coupler using the signal transmission communication body shown in FIG.
  • FIG. 24C shows frequency characteristics of transmission characteristics (S21) of a coupler using the signal transmission communication body shown in FIG. 25A is a perspective view of the signal transmission communication body 214
  • FIG. 25B is a perspective view of FIG. 25A as viewed in the direction of the signal transmission line 13.
  • the configuration of the signal transmission communication body 201 according to the first embodiment will be described with reference to FIGS. 3 and 4.
  • 3A is a perspective view of the signal transmission communication body 201
  • FIG. 3B is a cross-sectional view of the main part thereof.
  • the signal transmission communication body 201 includes a substrate 11.
  • a ground electrode 12 is formed on the lower surface of the substrate 11, and a signal transmission line 13 is formed on the upper surface.
  • the substrate 11, the ground electrode 12, and the signal transmission line 13 constitute a microstrip line.
  • the layer in which the microstrip line is configured corresponds to the base portion 10.
  • the signal transmission communication body 201 is provided with a rectangular flat plate-like coupling conductor 21 parallel to the base portion 10. Between the coupling planar conductor 21 and the base portion 10, a columnar conductor 22 that connects the coupling planar conductor 21 and the signal transmission line 13 is provided.
  • the columnar conductor 22 constitutes an inductor circuit.
  • LC series circuits LC1 and LC2 connected between a part of the coupling planar conductor 21 and the ground electrode 12 are configured. That is, planar conductors 31 and 41 that face a part of the coupling planar conductor 21 with a predetermined gap and columnar conductors 32 and 42 that connect the planar conductors 31 and 41 and the ground electrode 12 are provided. Yes.
  • FIG. 4 is an equivalent circuit diagram of the signal transmission communication body 201 shown in FIG.
  • a resistor Ro is a resistor corresponding to the characteristic impedance of the microstrip line.
  • an inductor L22 is an inductor corresponding to the columnar conductor 22 shown in FIG.
  • the capacitor C31 is a capacitor composed of the planar conductor 31 and the coupling planar conductor 21.
  • the inductor L32 is an inductor formed by the columnar conductor 32.
  • the inductor L42 is an inductor formed by the columnar conductor 42.
  • the capacitor C41 is a capacitor composed of the planar conductor 41 and the coupling planar conductor 21.
  • the LC series circuits LC1 and LC2 each function as a trap filter.
  • the inductor L32 shown in FIG. 4 is determined by the height and diameter of the columnar conductor 32 in FIG. 3, the inductance can be determined by these settings.
  • the other inductor L42 is determined by the height and diameter of the columnar conductor 42, the inductance can be determined by these settings.
  • the series resonance frequency of the LC series circuits LC1 and LC2 can be set over a wide range with such many parameters.
  • the two One resonance frequency can be used as an attenuation pole, and a signal transmission communication body that can use a frequency band sandwiched between the two attenuation poles can be configured.
  • FIG. 5A is a perspective view of the main part of the coupler 301 according to the second embodiment.
  • FIG. 5B is a cross-sectional view of the main part of the coupler 301.
  • the coupler 301 includes a first signal transmission communication body 201 and a second signal transmission communication body 202.
  • the first signal transmission communication body 201 is the same as the signal transmission communication body 201 shown in FIG. 3 in the first embodiment.
  • the second signal transmission communication body 202 is also structurally the same as the first signal transmission communication body 201, and the two signal transmission communication bodies are such that the coupling planar conductors 21 face each other (face to face).
  • the coupler 301 is configured by arranging 201 and 202.
  • an insulating or dielectric layer may be formed on the surface of the coupling planar conductor 21. Even in such a structure, a predetermined capacitance is generated between the two coupling planar conductors 21 facing each other.
  • FIG. 6 is an equivalent circuit diagram of the coupler 301 shown in FIG.
  • a capacitor C0 is a capacitor constituted by the coupling planar conductor 21 of the first signal transmission communication body 201 and the coupling planar conductor 21 of the second signal transmission communication body 202 shown in FIG. is there.
  • FIG. 7A is a diagram showing the frequency characteristic of the reflection characteristic (S parameter S11) when the coupler 301 is viewed from the microstrip line of the first signal transmission communication body 201.
  • FIG. 7B shows the frequency characteristic of the transmission characteristic (S parameter S21) from the microstrip line of the first signal transmission communication body 201 to the microstrip line of the second signal transmission communication body 202.
  • the dimension (mm) of the gap dz between the two coupling planar conductors 21 facing each other is used as a parameter.
  • the frequency band indicated by Trp1 corresponds to the resonance frequency of the LC series circuit LC1 shown in FIG.
  • Trp2 corresponds to the resonance frequency of the LC series circuit LC2.
  • the frequency 4.5 GHz between the two trap frequencies is the design center of the frequency band for communication. It can be seen that even when the gap dz varies from 1 to 30 mm, low reflection characteristics and low insertion loss characteristics can be obtained at approximately 4.5 GHz.
  • the trap frequency changes depending on the value of the gap dz because the capacitance formed between the two coupling planar conductors 21 facing each other changes.
  • optimum characteristics of the reflection characteristic and the transmission characteristic can be obtained by appropriately determining the trap frequency on the low frequency side and the high frequency side according to the communication frequency band to be used.
  • FIG. 8A is a perspective view of the main part of the coupler 302 according to the third embodiment.
  • FIG. 8B is a cross-sectional view of the main part of the coupler 302.
  • the coupler 302 includes a first signal transmission communication body 203 and a second signal transmission communication body 204.
  • Both the first signal transmission communication body 203 and the second signal transmission communication body 204 do not have the planar conductor 41 and the columnar conductor 42 of the signal transmission communication body 201 shown in FIG. 3 in the first embodiment. It is a structure.
  • FIG. 9 is an equivalent circuit diagram of the coupler 302 shown in FIG. 9, a capacitor C0 is a capacitor constituted by the coupling planar conductor 21 of the first signal transmission communication body 203 and the coupling planar conductor 21 of the second signal transmission communication body 204 shown in FIG. is there.
  • FIG. 10A is a diagram illustrating the frequency characteristic of the reflection characteristic (S parameter S11) when the coupler 302 is viewed from the microstrip line of the first signal transmission communication body 203.
  • FIG. 10B shows the frequency characteristic of the transmission characteristic (S parameter S21) from the microstrip line of the first signal transmission communication body 203 to the microstrip line of the second signal transmission communication body 204.
  • the dimension (mm) of the gap dz between the two coupling planar conductors 21 facing each other is used as a parameter.
  • the frequency band indicated by Trp1 corresponds to the resonance frequency of the LC series circuit LC1 shown in FIG.
  • the frequency of 4.5 GHz is the design center of the communication frequency band. It can be seen that even when the gap dz varies from 1 to 30 mm, low reflection characteristics and low insertion loss characteristics can be obtained at approximately 4.5 GHz.
  • the optimum characteristics of the reflection characteristic and the transmission characteristic can be obtained by appropriately determining the trap frequency on the low band side according to the communication frequency band to be used.
  • optimum characteristics of the reflection characteristics and the transmission characteristics may be obtained by appropriately determining the trap frequency on the high frequency side according to the communication frequency band to be used.
  • FIG. 11A is a partial perspective view of a coupler 303 according to the fourth embodiment.
  • FIG. 11B is a cross-sectional view of the main part of the coupler 303.
  • the coupler 303 includes a first signal transmission communication body 205 and a second signal transmission communication body 206.
  • the two signal transmission communication bodies 205 and 206 are arranged so that the coupling planar conductors 21 of the first signal transmission communication body 205 and the second signal transmission communication body 206 face each other (face to face).
  • the coupler 303 is configured.
  • the signal transmission communication body 205 includes a substrate 11.
  • a ground electrode 12 is formed on the lower surface of the substrate 11, and a signal transmission line 13 is formed on the upper surface.
  • the substrate 11, the ground electrode 12, and the signal transmission line 13 constitute a microstrip line.
  • the layer in which the microstrip line is configured corresponds to the base portion 10.
  • the signal transmission communication body 205 is provided with a rectangular flat plate-like coupling conductor 21 parallel to the base portion 10. Between the coupling planar conductor 21 and the base portion 10, a columnar conductor 22 that connects the coupling planar conductor 21 and the signal transmission line 13 is provided.
  • the columnar conductor 22 constitutes an inductor circuit.
  • an LC series circuit LC ⁇ b> 1 connected between a part of the coupling planar conductor 21 and the ground electrode 12 is configured. That is, the coupling planar conductor 21, the capacitor planar conductors 21b and 21c, and the capacitor planar conductors 31a, 31b, and 31c are alternately arranged to generate a capacitance between the adjacent capacitor planar conductors. Therefore, a part of the coupling planar conductor 21 and the capacitor planar conductors 21b, 21c, 31a, 31b, 31c can constitute a relatively large capacity capacitor within a limited area.
  • the capacitor and the columnar conductor 32 constitute an LC series circuit LC1.
  • the configuration of the signal transmission communication body 206 is the same as that of the signal transmission communication body 205.
  • FIG. 12A is a diagram illustrating the frequency characteristic of the reflection characteristic (S parameter S11) when the coupler 303 is viewed from the microstrip line of the first signal transmission communication body 205.
  • FIG. 12B shows the frequency characteristic of the transmission characteristic (S parameter S21) from the microstrip line of the first signal transmission communication body 205 to the microstrip line of the second signal transmission communication body 206.
  • the dimension (mm) of the gap dz between the two coupling planar conductors 21 facing each other is used as a parameter.
  • the frequency band indicated by Trp1 corresponds to the resonance frequency of the LC series circuit LC1 shown in FIG.
  • the frequency of 4.5 GHz is the design center of the communication frequency band. It can be seen that even when the gap dz varies from 1 to 30 mm, low reflection characteristics and low insertion loss characteristics can be obtained at approximately 4.5 GHz.
  • FIG. 13A is a perspective view of a signal transmission communication body 208 according to the fifth embodiment.
  • FIG. 13B is a perspective view of the Y-axis direction viewed from the XZ plane in FIG.
  • FIG. 13C is a perspective view of the ⁇ X axis direction viewed from the YZ plane in FIG. 13A.
  • the signal transmission communication body 208 is configured on a multilayer substrate 50 in which a plurality of dielectric layers and a plurality of conductor layers are laminated.
  • a ground electrode 12 is formed on the lower surface of the multilayer substrate 50.
  • a signal transmission line 13 is formed inside the multilayer substrate 50. The signal transmission line 13, the ground electrode 12, and the dielectric layer therebetween constitute a microstrip line.
  • a rectangular plate-like coupling planar conductor 21 is formed inside the multilayer substrate 50, and the columnar conductor 22 ⁇ / b> A with which the first end is in contact with the substantially center, and the first end is electrically connected to the signal transmission line 13.
  • a columnar conductor 22B is formed.
  • a spiral inductor SP22 is formed between the second end of the columnar conductor 22A and the second end of the columnar conductor 22B.
  • the spiral inductor SP22 is configured by a plurality of spiral conductor patterns that swirl along a parallel plane of the base portion 10 by vias perpendicular to the conductor layer parallel to the base portion 10.
  • a capacitor is constituted by a part of the coupling planar conductor 21, the capacitor planar conductors 21b and 21c, and the capacitor planar conductor 31a.
  • a columnar conductor 32 having a first end conducting to the ground electrode 12 is formed inside the multilayer substrate 50.
  • a spiral inductor SP32 is formed between the second end of the columnar conductor 32 and the planar conductor for capacitor 21c.
  • the spiral inductor SP32 is also configured by a spiral conductor pattern that turns along a parallel plane of the base portion 10 by a via perpendicular to the conductor layer parallel to the base portion 10.
  • the dimensions of the multilayer substrate 50 are, for example, 3.5 to 4.5 mm ⁇ 3.5 to 4.5 mm ⁇ 0.95 mm.
  • the relative dielectric constant is 6.0, for example.
  • the base 10 the coupling planar conductor 21, the inductor circuit, and the LC series circuit are provided inside the multilayer substrate 50, and the signal transmission communication body 208 is configured.
  • the equivalent circuit of the signal transmission communication body 208 is the same as the equivalent circuit of one of the signal transmission communication bodies in the coupler 302 shown in FIG. 9 in the third embodiment.
  • the inductor by configuring the inductor with a spiral conductor pattern, the inductance component per unit volume is improved, and therefore the entire signal transmission communication body 207 can be reduced in height. Further, due to the wavelength shortening effect due to the dielectric constant of the multilayer substrate 50, the signal transmission communication body 207 can be reduced in area. Furthermore, since it can be manufactured by a multilayer substrate construction method, industrialization is easy.
  • two or more LC series circuits may be similarly configured.
  • FIG. 14A is a perspective view of a main part of a coupler 304 according to the sixth embodiment.
  • FIG. 14B is a cross-sectional view of the main part of the coupler 304.
  • the coupler 304 includes a first signal transmission communication body 208 and a second signal transmission communication body 209.
  • the first signal transmission communication body 208 includes a substrate 11.
  • a ground electrode 12 is formed on the lower surface of the substrate 11, and a signal transmission line 13 is formed on the upper surface.
  • the substrate 11, the ground electrode 12, and the signal transmission line 13 constitute a microstrip line in the base portion 10.
  • the first signal transmission communication body 208 is provided with a rectangular planar plate-like coupling conductor 21 parallel to the base portion 10. Further, a planar conductor 31 is provided to face the coupling planar conductor 21 with a predetermined gap. A rectangular opening RA is formed at the center of the planar conductor 31. The planar conductor 31 is formed in a rotationally symmetrical shape with respect to the center of the coupling planar conductor 21.
  • a columnar conductor 22 that connects the coupling planar conductor 21 and the signal transmission line 13 is provided.
  • the columnar conductor 22 passes through the opening RA of the planar conductor 31 and does not conduct to the planar conductor 31.
  • the columnar conductor 22 constitutes an inductor circuit.
  • the inductor circuit is disposed at a symmetrical position with respect to the center of the planar conductor 31.
  • LC series circuits LC1 and LC2 connected between a part of the coupling planar conductor 21 and the ground electrode 12 are configured. That is, a planar conductor 31 facing a part of the coupling planar conductor 21 with a predetermined gap and columnar conductors 32 and 42 connecting the planar conductor 31 and the ground electrode 12 are provided.
  • the second signal transmission communication body 209 is also structurally the same as the first signal transmission communication body 208, and the two signal transmission communication bodies are such that the coupling planar conductors 21 face each other (face to face).
  • the coupler 304 is configured by arranging 208 and 209.
  • FIG. 15 is an equivalent circuit diagram of the coupler 304 shown in FIG.
  • a resistor Ro is a resistor corresponding to the characteristic impedance of the microstrip line.
  • an inductor L22 is an inductor corresponding to the columnar conductor 22 shown in FIG.
  • the capacitor C31 is a capacitor composed of the planar conductor 31 and the vicinity of the columnar conductor 32 and the coupling planar conductor 21.
  • the capacitor C41 is a capacitor constituted by the vicinity of the columnar conductor 42 of the planar conductor 31 and the coupling planar conductor 21.
  • the inductor L32 is an inductor formed by the columnar conductor 32
  • the inductor L42 is an inductor formed by the columnar conductor.
  • the LC series circuit LC12 functions as a trap filter.
  • the capacitor C31 and the inductor L32 act as a first trap filter
  • the capacitor C41 and the inductor L42 act as a second trap filter.
  • a capacitor C0 is a capacitor constituted by the coupling planar conductor 21 of the first signal transmission communication body 208 and the coupling planar conductor 21 of the second signal transmission communication body 209 shown in FIG. is there.
  • FIG. 16A is a diagram illustrating a positional deviation amount of the second signal transmission communication body 209 with respect to the first signal transmission communication body 208 in the coupler 304 according to the sixth embodiment.
  • FIG. 16B is a diagram illustrating a positional deviation amount of the second signal transmission communication body 204 with respect to the first signal transmission communication body 203 in the coupler 302 according to the third embodiment.
  • the first signal transmission communication body 208 and the second signal transmission communication body 209 are both parallel to the xy plane, and the amount of positional deviation in the in-plane direction of the xy plane is (dx, dy, dz).
  • FIGS. 17A and 17B are diagrams showing how the frequency characteristic of the transmission characteristic (S parameter S21) changes according to the amount of positional deviation (dx, dy, dz).
  • S parameter S21 the frequency characteristic of the transmission characteristic
  • dx, dy, dz the amount of positional deviation
  • the transmission characteristic varies depending on the positional deviation amount in the in-plane direction according to (dx, dy, dz).
  • the coupler 304 according to the sixth embodiment as shown in FIG. 17A, it can be seen that there is no characteristic variation with a deviation of about 10 mm in the xy plane.
  • FIG. 18A is a perspective view of a signal transmission communication body 210 according to the seventh embodiment.
  • FIG. 18B is a perspective view seen from the front in the direction of FIG.
  • the signal transmission communication body 210 according to the seventh embodiment is configured on a multilayer substrate 50 in which a plurality of dielectric layers and a plurality of conductor layers are laminated.
  • a ground electrode 12 is formed on the lower surface of the multilayer substrate 50.
  • a signal transmission line 13 is formed inside the multilayer substrate 50.
  • a rectangular plate-like coupling planar conductor 21 is formed inside the multilayer substrate 50, and a columnar conductor 22 ⁇ / b> A whose first end is in contact with the center of the rectangular conductor 22 ⁇ / b> A, and the first end is electrically connected to the signal transmission line 13.
  • a columnar conductor 22B is formed.
  • a spiral inductor SP22 is formed between the second end of the columnar conductor 22A and the second end of the columnar conductor 22B.
  • the spiral inductor SP22 is configured by a plurality of spiral conductor patterns that swirl along a parallel plane of the base portion 10 by vias perpendicular to the conductor layer parallel to the base portion 10.
  • a columnar conductor 32 having a first end conducting to the ground electrode 12 is formed inside the multilayer substrate 50.
  • a spiral inductor SP 32 is formed between the second end of the columnar conductor 32 and the planar conductor 31.
  • the spiral inductor SP32 is also configured by a spiral conductor pattern that turns along a plane parallel to the base portion 10 by a via perpendicular to the conductor layer parallel to the base portion 10.
  • a columnar conductor 42 whose first end portion is electrically connected to the ground electrode 12 is formed in the multilayer substrate 50. Further, a spiral inductor SP 42 is formed between the second end of the columnar conductor 42 and the planar conductor 31.
  • the spiral inductor SP42 is also configured by a spiral conductor pattern that turns along a parallel plane of the base portion 10 by a via perpendicular to the conductor layer parallel to the base portion 10.
  • the dimensions of the multilayer substrate 50 are, for example, 4.0 mm ⁇ 4.0 mm ⁇ 1.0 mm.
  • the relative dielectric constant is 6.0, for example.
  • the base 10 the coupling planar conductor 21, the inductor circuit, and the LC series circuit are provided inside the multilayer substrate 50, and the signal transmission communication body 210 is configured.
  • the equivalent circuit of the signal transmission communication body 210 is the same as that shown in the sixth embodiment.
  • the inductor by configuring the inductor with a spiral conductor pattern, the inductance component per unit volume is improved, and therefore the entire signal transmission communication body 210 can be reduced in height. Further, the signal transmission communication body 210 can be reduced in area by the wavelength shortening effect due to the dielectric constant of the multilayer substrate 50. Furthermore, since it can be manufactured by a multilayer substrate construction method, industrialization is easy.
  • FIG. 19 is a perspective view of a signal transmission communication body 211 according to the eighth embodiment. Also in the eighth embodiment, the signal transmission communication body 211 is configured on the multilayer substrate 50 in which a plurality of dielectric layers and a plurality of conductor layers are laminated.
  • the inductor circuit connected between the coupling planar conductor 21 and the signal transmission line 13 extends along a plane perpendicular to the plane of the base (the lower surface of the multilayer substrate 50).
  • a spiral inductor SP22 that rotates is provided.
  • the spiral inductor SP22 includes a plurality of linear lower conductors SP22B, a plurality of linear upper conductors SP22U, and a plurality of vias SP22V. That is, the end portion of the linear lower conductor SP22B and the end portion of the linear upper conductor SP22U are sequentially connected by the via SP22V, so that an inductor with a spiral conductor is formed as a whole.
  • a columnar conductor 22B is formed between the signal transmission line 13 and the spiral inductor SP22.
  • a columnar conductor 22A is formed between the spiral inductor SP22 and the coupling planar conductor 21.
  • the columnar conductors 22A and 22B and the spiral inductor SP22 constitute an inductor circuit between the coupling planar conductor 21 and the signal transmission line 13.
  • a columnar conductor 42 whose first end portion is electrically connected to the ground electrode is formed inside the multilayer substrate 50.
  • a spiral inductor SP42 is formed between the second end of the columnar conductor 42 and the planar conductor 31.
  • the spiral inductor SP42 forms a spiral conductor pattern that swirls along a parallel plane of the base portion by a conductor layer and a via perpendicular to the base portion.
  • a columnar conductor having a first end conducting to the ground electrode is formed in the multilayer substrate 50.
  • a spiral inductor SP32 is formed between the second end of the columnar conductor and the planar conductor 31.
  • the spiral inductor SP32 also forms a spiral conductor pattern that swirls along a parallel plane of the base portion by a via perpendicular to the conductor layer parallel to the base portion.
  • the configuration of the spiral inductors SP32 and SP42 is the same as that shown in the seventh embodiment.
  • a part of the inductor circuit connected between the coupling planar conductor 21 and the signal transmission line 13 is constituted by the spiral inductor SP22 that rotates along a plane perpendicular to the plane of the base portion. can do.
  • the inductor of the LC series circuit connected between a part of the coupling planar conductor 21 and the ground electrode all or part of the inductor is swung along a plane perpendicular to the plane of the base part. You may comprise with a spiral-shaped inductor.
  • FIG. 20A is a perspective view of the signal transmission communication body 212
  • FIG. 20B is a cross-sectional view of the main part thereof.
  • the signal transmission communication body 212 includes a mounting substrate 60.
  • the mounting substrate 60 includes a base material 61, a lower surface ground electrode 62 formed on the lower surface of the base material 61, an upper surface ground electrode 63 formed on the upper surface of the base material 61, and an upper surface of the base material 61.
  • the signal transmission line 13 is formed.
  • the lower surface ground electrode 62 is formed with a rectangular lower surface ground electrode opening RA2
  • the upper surface ground electrode 63 is formed with an upper surface ground electrode opening RA3 having a substantially rectangular shape.
  • the signal transmission line 13 extends outward from the upper surface ground electrode opening RA3, and the signal transmission line 13, the upper surface ground electrode 63, and the lower surface ground electrode 62 constitute a grounded coplanar line.
  • the signal transmission communication body 212 is provided with a coupling plane conductor 21 having a rectangular plate shape parallel to the mounting substrate 60. Between the coupling planar conductor 21 and the mounting substrate 60, a columnar conductor 22 that connects the coupling planar conductor 21 and the signal transmission line 13 is provided.
  • the columnar conductor 22 constitutes an inductor circuit.
  • LC series circuits LC1 and LC2 connected between a part of the coupling planar conductor 21 and the upper surface ground electrode 63 are configured. That is, planar conductors 31 and 41 that face a part of the coupling planar conductor 21 with a predetermined gap and columnar conductors 32 and 42 that connect the planar conductors 31 and 41 and the ground electrode 12 are provided. Yes.
  • the lower surface ground electrode opening RA2 and the upper surface ground electrode opening RA3 are formed in a region facing the coupling planar conductor 21.
  • the center of the lower surface ground electrode opening RA2 and the center of the upper surface ground electrode opening RA3 coincide with the central axis of the columnar conductor 22. That is, they are almost coaxial.
  • the equivalent circuit of the signal transmission communication body 212 is the same as the equivalent circuit (see FIG. 4) of the signal transmission communication body 201 shown in the first embodiment.
  • a coupler is configured by using two signal transmission communication bodies 212 shown in FIG. 20 and arranging the coupling planar conductors 21 to face each other (facing each other).
  • the coupling planar conductor 21 and the lower surface ground electrode opening RA2 face each other, the parasitic capacitance generated between the coupling planar conductor 21 and the lower surface ground electrode 62 is reduced. Therefore, it is possible to suppress fluctuations in characteristics as a signal transmission communication body and characteristics as a coupler with respect to a change in the thickness dimension dt of the mounting substrate 60. That is, stable characteristics can be obtained even when various mounting substrates having different dielectric constants and thicknesses are used.
  • FIG. 21A is a perspective view of the signal transmission communication body 213, and FIG. 21B is a cross-sectional view of the main part thereof.
  • the signal transmission communication body 213 includes a module 70 formed of a multilayer board and a mounting board 60 on which the module 70 is mounted.
  • the coupling planar conductor 21, the inductor circuit, and the LC series circuit are configured as one module 70.
  • the module 70 is configured as a multilayer substrate formed by stacking a plurality of dielectric layers and a plurality of conductor layers.
  • the signal transmission communication body 212 of the ninth embodiment and the signal transmission communication body 213 of the tenth embodiment are electrically equivalent.
  • FIG. 22A is a diagram illustrating the frequency characteristics of the transmission characteristics (S parameter S21) of the coupler configured by the signal transmission communication body according to the tenth embodiment.
  • FIG. 22B is a diagram illustrating a frequency characteristic of the transmission characteristic (S parameter S21) of the coupler 301 illustrated in FIG.
  • FIG. 22B is a comparative example.
  • the thickness dimension dt of the mounting substrate 60 is used as a parameter.
  • the transmission characteristic (S21) changes greatly.
  • the transmission characteristic (S21) hardly fluctuates as shown in FIG.
  • the upper surface ground electrode opening RA3 close to the coupling planar conductor 21 is determined to be the smallest among all the ground electrode openings. deep.
  • the upper surface ground electrode 63 suppresses parasitic capacitance generated between the coupling planar conductor 21 and the lower surface ground electrode 62.
  • FIG. 24A shows the frequency characteristic of the transmission characteristic (S21) of the coupler using the signal transmission communication body shown in FIG.
  • FIG. 24B shows frequency characteristics of transmission characteristics (S21) of a coupler using the signal transmission communication body shown in FIG.
  • FIG. 24C shows frequency characteristics of transmission characteristics (S21) of a coupler using the signal transmission communication body shown in FIG.
  • the upper surface ground electrode 63 blocks the parasitic capacitance between the coupling planar conductor 21 and the lower surface ground electrode 62. Variations in characteristics with respect to changes in the amount are suppressed.
  • the mounting substrate 60 includes two ground electrode layers. However, even when there are three or more ground electrodes, the opening of the ground electrode closest to the coupling planar conductor 21 is It is determined to be the smallest among all the ground electrode openings. With this structure, the parasitic capacitance generated between the coupling planar conductor 21 and the lower surface ground electrode 62 is suppressed by the ground electrode closest to the coupling planar conductor 21.
  • FIG. 25A is a perspective view of the signal transmission communication body 214
  • FIG. 25B is a perspective view of FIG. 25A as viewed in the direction of the signal transmission line 13.
  • the signal transmission communicator 214 includes a module 70 formed of a multilayer board and a mounting board 60 on which the module 70 is mounted.
  • the configuration of the module 70 is different from the signal transmission communication body 213 shown in FIG. 21 in the tenth embodiment.
  • a rectangular plate-like coupling planar conductor 21 is formed inside a module 70 formed of a multilayer substrate, a columnar conductor 22A having a first end in contact with the center thereof, and a first end for signal transmission.
  • a columnar conductor 22 ⁇ / b> B that is electrically connected to the line 13 is formed.
  • a spiral inductor SP22 is formed between the second end of the columnar conductor 22A and the second end of the columnar conductor 22B.
  • the spiral inductor SP22 is configured by a plurality of spiral conductor patterns that rotate along a parallel surface of the mounting substrate 60 by vias perpendicular to the conductor layer parallel to the mounting substrate 60.
  • a multilayer capacitor C31 including a part of the coupling planar conductor 21 is configured.
  • a columnar conductor 32 having a first end conducting to the upper surface ground electrode 63 of the mounting substrate is formed inside the module 70.
  • a spiral inductor SP32 is formed between the second end of the columnar conductor 32 and the multilayer capacitor C31.
  • the spiral inductor SP32 is also configured by a spiral conductor pattern that swirls along a parallel surface of the mounting substrate 60 by a conductor layer and a via perpendicular to the mounting substrate 60.
  • the signal transmission communication body 214 is configured by the module 70 provided with the coupling planar conductor 21, the inductor circuit, and the LC series circuit and the mounting substrate 60.
  • a coupler is configured by using two signal transmission communication bodies 214 and arranging the coupling planar conductors 21 to face each other (facing each other).
  • the equivalent circuit of the coupler is the same as the equivalent circuit shown in FIG. 9 in the third embodiment.
  • the upper surface ground electrode opening RA3 of the mounting substrate 60 is substantially the same size as the bottom surface of the module 70, and the upper surface ground electrode opening RA3 is smaller than the lower surface ground electrode opening RA2. Therefore, the parasitic capacitance generated between the coupling planar conductor 21 and the lower surface ground electrode 62 is reduced, and the characteristics as the signal transmission communication body and the characteristics as the coupler with respect to the change in the thickness dimension dt of the mounting substrate 60 are reduced. Can be suppressed.
  • the inductor portion of the LC series circuit and the inductor circuit are configured by columnar conductors, and the capacitor portion of the LC series circuit is configured by a planar conductor.
  • the inductor circuit, the inductor portion of the LC series circuit, or the capacitor At least one of the portions may be constituted by a chip component. Further, the chip component may be mounted on the base portion.
  • couplers shown in the above-described embodiments, two signal transmission communication bodies having the same configuration are paired, but the planar conductors face each other in a non-contact state (face-to-face).
  • the coupler for signal transmission of the present invention may be applied to only one of the couplers that are capacitively coupled.

Landscapes

  • Near-Field Transmission Systems (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

 占有面積の縮小化及び低背化が図れる信号伝達用通信体及びカプラを構成する。 信号伝達用通信体(201)には、基板(11)の下面のグランド電極(12)、上面の信号伝送用線路(13)、及び基板(11)による基底部(10)が構成されている。信号伝達用通信体(201)には、前記基底部(10)に対して平行な矩形板状の結合用平面導体(21)が構成されている。結合用平面導体(21)と基底部(10)との間には、柱状導体(22)によるインダクタ回路が設けられている。また、結合用平面導体(21)と基底部(10)との間には、柱状導体(32,42)によるインダクタと平面導体(31,41)によるキャパシタとでLC直列回路(LC1,LC2)がそれぞれ構成されている。

Description

信号伝達用通信体及びカプラ
 この発明は、近接状態で通信を行う信号伝達装置用の通信体及び近接状態で互いに結合するカプラに関するものである。
 この発明の先行技術文献として特許文献1を挙げる。
 図1は特許文献1に示されている通信体の斜視図である。絶縁体のスペーサ109の上下の各表面に結合用電極108と折り畳み状のスタブ103が形成され、結合用電極108はスペーサ109内のスルーホール(plated through hole)110を介してスタブ103の中央部分に接続されている。プリント基板101上には、送受信回路モジュール105から引き出された信号線パターンと、プリント基板101内のスルーホール106を介してグランド導体102と接続した導体パターン112が形成されている。スペーサ109をプリント基板101上に実装すると、スタブ103の両端は信号線パターン111と導体パターン112にそれぞれ接続される。
 図2は、図1に示した通信体を二つ用いて構成した通信装置の等価回路図である。送受信回路モジュール105と結合用電極108との間のインダクタL110は、図1に示したスルーホール110によって形成されるインダクタである。またインダクタL110がつながるラインとグランドとの間にシャントに接続されるインダクタL103は、図1に示したスタブ103によって生じるインダクタである。
特開2008-154267号公報
 ところが、図1に示したような従来の通信装置においては次のような問題がある。
(a)周波数調整のためにプリント基板上に折り畳み状のスタブを形成する必要があり、プリント基板上にその分のスペースが必要である。
(b)送受で良好な結合特性を得るためには、結合用電極に接続するスルーホール(柱状導体)に所定の高さ(長さ)が必要である。例えば4.5GHz帯で高さは3mm以上となって、低背化が困難である。
 そこで、この発明の目的は、占有面積の縮小化及び低背化が図れる信号伝達用通信体及びカプラを提供することにある。
 この発明の信号伝達用通信体は、信号伝送用線路及びグランド電極が形成された基底部と、前記基底部に対して平行な平面状の結合用平面導体と、前記結合用平面導体と前記信号伝送用線路との間に接続されるインダクタ回路と、前記結合用平面導体の一部(所定位置)と前記グランド電極との間に接続され、且つキャパシタとインダクタとが直列接続されたLC直列回路と、を備え、
 前記インダクタ回路が前記結合用平面導体と前記基底部との間に配置され、前記LC直列回路が前記結合用平面導体と前記基底部との間に配置されたことを特徴としている。
 前記基底部、前記結合用平面導体、前記インダクタ回路構成部、及び前記LC直列回路構成部は、例えば複数の誘電体層と複数の導体層とが積層された多層基板に構成されている。
 前記基底部は、例えば前記結合用平面導体、前記インダクタ回路、及び前記LC直列回路を実装する実装基板であり、前記結合用平面導体が対向する領域に開口部を有するグランド電極が前記実装基板に形成されている。
 前記結合用平面導体、前記インダクタ回路、及び前記LC直列回路は、例えば一つのモジュールとして構成されている。
 例えば、前記グランド電極が形成された層は2層以上あり、各グランド電極の開口部のうち前記結合用平面導体に最も近い開口部の大きさは最小である。
 前記LC直列回路の前記キャパシタは、前記結合用平面導体に対して平行に対向する平面導体を備え、前記平面導体が前記結合用平面導体の中心に対して回転対称形に形成され、前記インダクタ回路が前記平面導体の中心に対して対称位置に配置される。
 前記インダクタ回路構成部は、例えば前記基底部に対して平行または垂直な面に沿って旋回するスパイラル状の導体を備える。
 前記LC直列回路構成部は、例えば前記基底部に対して平行または垂直な面に沿って旋回するスパイラル状の導体を備える。
 前記LC直列回路構成部は、例えば前記基底部に対して平行な面状に広がり、対向する部分でキャパシタンスを生じさせる複数の平面導体を備える。
 前記インダクタ回路構成部または前記LC直列回路構成部の少なくとも一方は、例えば前記基底部に実装されたチップ部品で構成される。
 この発明によれば、次のような効果を奏する。
(a)LC直列回路構成部のキャパシタンス成分とインダクタンス成分の大きさによって得られる共振周波数により、送受信透過特性の所望の周波数に減衰極を設けることができる。通信で使用する周波数帯域外の低周波数側または高周波数側またはその両方に減衰極を設定することで所望の使用周波数の通過帯域特性を得ることができる。
(b)前記基底部、前記結合用平面導体、前記インダクタ回路、及び前記LC直列回路が、複数の誘電体層と複数の導体層との積層による多層基板に構成されることによって、一般的な多層基板の工程で容易に製造できるようになる。
(c)特許文献1に示されているような折り畳み状スタブを誘電体基板上に形成する必要がなく、占有面積が縮小化できる。
(d)実装基板のグランド電極が、結合用平面導体と対向する領域に開口部を有することにより、結合用平面導体とグランド電極との間に発生する寄生容量が低減される。そのため、実装基板の厚さ寸法及び誘電率の違いによる特性変動を抑えることができる。
(e)特に、グランド電極が形成された層が2層以上あって、各グランド電極の開口部のうち結合用平面導体に最も近い開口部の大きさが最小であると、実装基板の厚さ寸法及び誘電率の違いによる特性変動がより効果的に低減される。
(f)前記LC直列回路のキャパシタが、前記結合用平面導体に対して平行に対向する平面導体を備え、その平面導体が前記結合用平面導体の中心に対して回転対称形に形成され、前記インダクタ回路が前記平面導体の中心に対して対称位置に配置されることにより、二つの信号伝達用通信体の結合用平面導体同士が対向した状態で面内方向の位置ずれに対する特性変動が抑えられる。
(g)前記インダクタ回路構成部または前記LC直列回路構成部にスパイラル状の導体を備えることにより、単位体積当たりのインダクタンス成分が大きくなり、結合用平面導体の位置を低くでき、通信体を低背化できる。また、減衰極形成のためのインダクタンス成分を単位体積内でより広範囲に亘って設定可能となる。
(h)前記LC直列回路構成部に複数の平面導体を構成することにより、単位体積当たりのキャパシタンス成分が大きくなり、結合用平面導体の位置を低くでき、通信体を低背化できる。また、減衰極形成のためのキャパシタンス成分を単位体積内でより広範囲に亘って設定可能となる。
特許文献1に示されている通信体の斜視図である。 図1に示した通信体を二つ用いて構成した通信装置の等価回路図である。 図3(A)は信号伝達用通信体201の斜視図、図3(B)はその主要部の断面図である。 図3に示した信号伝達用通信体201の等価回路図である。 図5(A)は第2の実施形態に係るカプラ301の主要部の斜視図である。図5(B)はカプラ301の主要部の断面図である。 図5に示したカプラ301の等価回路図である。 図7(A)は、第1の信号伝達用通信体201のマイクロストリップラインからカプラ301を見た反射特性の周波数特性を示す図である。図7(B)は、第1の信号伝達用通信体201のマイクロストリップラインから第2の信号伝達用通信体202のマイクロストリップラインへの透過特性の周波数特性を示す図である。 図8(A)は第3の実施形態に係るカプラ302の主要部の斜視図である。図8(B)はカプラ302の主要部の断面図である。 図8に示したカプラ302の等価回路図である。 図10(A)は、第1の信号伝達用通信体203のマイクロストリップラインからカプラ302を見た反射特性(SパラメータのS11)の周波数特性を示す図である。図10(B)は、第1の信号伝達用通信体203のマイクロストリップラインから第2の信号伝達用通信体204のマイクロストリップラインへの透過特性の周波数特性を示す図である。 図11(A)は第4の実施形態に係るカプラ303の部分斜視図である。図11(B)はカプラ303の主要部の断面図である。 図12(A)は、第1の信号伝達用通信体205のマイクロストリップラインからカプラ303を見た反射特性(SパラメータのS11)の周波数特性を示す図である。図12(B)は、第1の信号伝達用通信体205のマイクロストリップラインから第2の信号伝達用通信体206のマイクロストリップラインへの透過特性の周波数特性を示す図である。 図13(A)は第5の実施形態に係る信号伝達用通信体207の斜視図である。図13(B)は、図13(A)においてX-Z面からY軸方向を見た透視図である。また図13(C)は、図13(A)においてY-Z面から-X軸方向を見た透視図である。 図14(A)は第6の実施形態に係るカプラ304の主要部の斜視図である。また図14(B)はカプラ304の主要部の断面図である。 図14に示したカプラ304の等価回路図である。 図16(A)は、第6の実施形態に係るカプラ304における第1の信号伝達用通信体208に対する第2の信号伝達用通信体209の位置ずれ量を示す図である。図16(B)は、第3の実施形態に係るカプラ302における第1の信号伝達用通信体203に対する第2の信号伝達用通信体204の位置ずれ量を示す図である。 図17(A)、図17(B)は、透過特性(SパラメータのS21)の周波数特性が位置ずれ量(dx、dy、dz)に応じてどのように変化するかを示す図である。 図18(A)は第7の実施形態に係る信号伝達用通信体210の斜視図である。図18(B)は、図18(A)の向きで手前から見た透視図である。 第8の実施形態に係る信号伝達用通信体211の斜視図である。 図20(A)は第9の実施形態に係る信号伝達用通信体212の斜視図、図20(B)はその主要部の断面図である。 図21(A)は第10の実施形態に係る信号伝達用通信体213の斜視図、図21(B)はその主要部の断面図である。 図22(A)は、第10の実施形態に係る信号伝達用通信体で構成されるカプラの透過特性の周波数特性を示す図である。図22(B)は、図5に示したカプラ301の透過特性の周波数特性を示す図である。 実装基板の下面グランド電極開口部RA2と上面グランド電極開口部RA3の大きさの関係が異なる3つの信号伝達用通信体の主要部の断面図である。 図24(A)は、図23(A)に示した信号伝達用通信体を用いたカプラの透過特性(S21)の周波数特性である。図24(B)は、図23(B)に示した信号伝達用通信体を用いたカプラの透過特性(S21)の周波数特性である。同様に、図24(C)は、図23(C)に示した信号伝達用通信体を用いたカプラの透過特性(S21)の周波数特性である。 図25(A)は信号伝達用通信体214の斜視図、図25(B)は図25(A)を、信号伝送用線路13の向きに見た透視図である。
《第1の実施形態》
 第1の実施形態に係る信号伝達用通信体201の構成を図3・図4を参照して説明する。
 図3(A)は信号伝達用通信体201の斜視図、図3(B)はその主要部の断面図である。信号伝達用通信体201には基板11を備えている。基板11の下面にはグランド電極12、上面には信号伝送用線路13がそれぞれ形成されている。この基板11、グランド電極12、及び信号伝送用線路13によってマイクロストリップラインが構成されている。この例では、前記マイクロストリップラインが構成されている層が基底部10に相当する。
 信号伝達用通信体201には、前記基底部10に対して平行な矩形板状の結合用平面導体21を備えている。結合用平面導体21と基底部10との間には、結合用平面導体21と前記信号伝送用線路13との間を接続する柱状導体22が設けられている。この柱状導体22によってインダクタ回路が構成されている。
 結合用平面導体21と基底部10との間には、結合用平面導体21の一部とグランド電極12との間に接続されるLC直列回路LC1,LC2が構成されている。すなわち、結合用平面導体21の一部と所定の間隙を隔てて対向する平面導体31,41及びこの平面導体31,41とグランド電極12との間を接続する柱状導体32,42が設けられている。
 図4は、図3に示した信号伝達用通信体201の等価回路図である。図4において抵抗Roは前記マイクロストリップラインの特性インピーダンスに相当する抵抗である。また、図4においてインダクタL22は、図3に示した柱状導体22に相当するインダクタである。またキャパシタC31は前記平面導体31と結合用平面導体21とで構成されるキャパシタである。インダクタL32は前記柱状導体32によるインダクタである。同様に、インダクタL42は前記柱状導体42によるインダクタである。また、キャパシタC41は前記平面導体41と結合用平面導体21とで構成されるキャパシタである。
 このようにして、インダクタL22と結合用平面導体21とが接続されるラインに対して、二つのLC直列回路LC1,LC2がそれぞれシャントに接続された回路が構成されている。従って、LC直列回路LC1,LC2はそれぞれトラップフィルタとして作用する。
 図3に示した各部の寸法などの具体例は次のとおりである。
[結合用平面導体21]
 12×12mm
[平面導体31]
 5.0×5.0mm
[平面導体41]
 3.0×3.0mm
[柱状導体22]
 高さ3.0mm
[柱状導体32]
 高さ2.8mm
[柱状導体42]
 高さ2.5mm
 図4に示したキャパシタC31は平面導体31と結合用平面導体21との対向面積、間隙及び対向部分の比誘電率によって定まるので、それらの設定によってキャパシタンスを定めることができる。同様に、キャパシタC41は平面導体41と結合用平面導体21との対向面積、間隙及び対向部分の比誘電率によって定まるので、それらの設定によってキャパシタンスを定めることができる。
 また、図4に示したインダクタL32は図3における柱状導体32の高さおよび直径によって定まるので、それらの設定によってインダクタンスを定めることができる。同様に、もう一方のインダクタL42は柱状導体42の高さおよび直径によって定まるので、それらの設定によってインダクタンスを定めることができる。
 このように多くのパラメータによってLC直列回路LC1,LC2の直列共振周波数を広範囲に亘って設定できる
 このように信号伝送用のラインに、共振周波数の異なった二つのトラップ回路を設けることによって、その二つの共振周波数を減衰極とすることができ、この二つの減衰極で挟まれる周波数帯域を使用可能な信号伝達用通信体が構成できる。
《第2の実施形態》
 図5(A)は第2の実施形態に係るカプラ301の主要部の斜視図である。また図5(B)は前記カプラ301の主要部の断面図である。カプラ301は第1の信号伝達用通信体201及び第2の信号伝達用通信体202で構成される。第1の信号伝達用通信体201は第1の実施形態で図3に示した信号伝達用通信体201と同一である。第2の信号伝達用通信体202についても、構造上は第1の信号伝達用通信体201と同一であり、結合用平面導体21同士が対向(対面)するように二つの信号伝達用通信体201,202が配置されることによってカプラ301が構成される。
 なお、結合用平面導体21の表面には絶縁体または誘電体の層が形成されていてもよい。そのような構造であっても、互いに対向する二つの結合用平面導体21の間に所定のキャパシタンスが生じる。
 図6は、図5に示したカプラ301の等価回路図である。図6においてキャパシタC0は、図5に示した第1の信号伝達用通信体201の結合用平面導体21と第2の信号伝達用通信体202の結合用平面導体21とで構成されるキャパシタである。
 図7(A)は、第1の信号伝達用通信体201のマイクロストリップラインからカプラ301を見た反射特性(SパラメータのS11)の周波数特性を示す図である。また、図7(B)は、第1の信号伝達用通信体201のマイクロストリップラインから第2の信号伝達用通信体202のマイクロストリップラインへの透過特性(SパラメータのS21)の周波数特性を示す図である。いずれの図も、互いに対向する二つの結合用平面導体21間の間隙dzの寸法(mm)をパラメータとしている。
 図7(A)および図7(B)においてTrp1で示す周波数帯は、図6で示したLC直列回路LC1の共振周波数に相当する。同様にTrp2は、LC直列回路LC2の共振周波数に相当する。この例では二つのトラップ周波数の間の周波数4.5GHzが通信用の周波数帯の設計中心である。前記間隙dzが1~30mm変化しても、ほぼ4.5GHzで低反射特性及び低挿入損失特性が得られることがわかる。
 なお、前記間隙dzの値によってトラップ周波数が変化するのは、互いに対向する二つの結合用平面導体21の間に形成されるキャパシタンスが変化することに起因している。
 このように、使用する通信周波数帯に応じて低域側と高域側のトラップ周波数をそれぞれ適宜定めることによって反射特性及び透過特性について最適な特性が得られる。
《第3の実施形態》
 図8(A)は第3の実施形態に係るカプラ302の主要部の斜視図である。また図8(B)は前記カプラ302の主要部の断面図である。カプラ302は第1の信号伝達用通信体203及び第2の信号伝達用通信体204で構成される。
 第1の信号伝達用通信体203と第2の信号伝達用通信体204はいずれも、第1の実施形態で図3に示した信号伝達用通信体201の平面導体41及び柱状導体42が無い構造である。
 図9は、図8に示したカプラ302の等価回路図である。図9においてキャパシタC0は、図8に示した第1の信号伝達用通信体203の結合用平面導体21と第2の信号伝達用通信体204の結合用平面導体21とで構成されるキャパシタである。
 図10(A)は、第1の信号伝達用通信体203のマイクロストリップラインからカプラ302を見た反射特性(SパラメータのS11)の周波数特性を示す図である。また、図10(B)は、第1の信号伝達用通信体203のマイクロストリップラインから第2の信号伝達用通信体204のマイクロストリップラインへの透過特性(SパラメータのS21)の周波数特性を示す図である。いずれの図も、互いに対向する二つの結合用平面導体21間の間隙dzの寸法(mm)をパラメータとしている。
 図10(A)および図10(B)においてTrp1で示す周波数帯は、図9で示したLC直列回路LC1の共振周波数に相当する。この例では周波数4.5GHzが通信用の周波数帯の設計中心である。前記間隙dzが1~30mm変化しても、ほぼ4.5GHzで低反射特性及び低挿入損失特性が得られることがわかる。
 このように、使用する通信周波数帯に応じて低域側のトラップ周波数を適宜定めることによって反射特性及び透過特性について最適な特性が得られる。
 同様に、使用する通信周波数帯に応じて高域側のトラップ周波数を適宜定めることによって反射特性及び透過特性について最適な特性を得るようにしてもよい。
《第4の実施形態》
 図11(A)は第4の実施形態に係るカプラ303の部分斜視図である。また図11(B)は前記カプラ303の主要部の断面図である。カプラ303は第1の信号伝達用通信体205及び第2の信号伝達用通信体206で構成される。
 第1の信号伝達用通信体205と第2の信号伝達用通信体206のそれぞれの結合用平面導体21同士が対向(対面)するように二つの信号伝達用通信体205,206が配置されることによってカプラ303が構成される。
 信号伝達用通信体205には基板11を備えている。基板11の下面にはグランド電極12、上面には信号伝送用線路13がそれぞれ形成されている。この基板11、グランド電極12、及び信号伝送用線路13によってマイクロストリップラインが構成されている。前記マイクロストリップラインが構成されている層が基底部10に相当する。
 信号伝達用通信体205には、前記基底部10に対して平行な矩形板状の結合用平面導体21を備えている。結合用平面導体21と基底部10との間には、結合用平面導体21と前記信号伝送用線路13との間を接続する柱状導体22が設けられている。この柱状導体22によってインダクタ回路が構成されている。
 結合用平面導体21と基底部10との間には、結合用平面導体21の一部とグランド電極12との間に接続されるLC直列回路LC1が構成されている。すなわち、結合用平面導体21、キャパシタ用平面導体21b,21cと、キャパシタ用平面導体31a,31b,31cとが交互に配置されて、互いに隣接するキャパシタ用平面導体間に容量を生じさせている。したがって結合用平面導体21の一部及びキャパシタ用平面導体21b,21c,31a,31b,31cによって、限られた面積内に比較的大容量のキャパシタが構成できる。このキャパシタと柱状導体32とによってLC直列回路LC1が構成されている。
 信号伝達用通信体206の構成も信号伝達用通信体205の構成と同様である。
 図12(A)は、第1の信号伝達用通信体205のマイクロストリップラインからカプラ303を見た反射特性(SパラメータのS11)の周波数特性を示す図である。また、図12(B)は、第1の信号伝達用通信体205のマイクロストリップラインから第2の信号伝達用通信体206のマイクロストリップラインへの透過特性(SパラメータのS21)の周波数特性を示す図である。いずれの図も、互いに対向する二つの結合用平面導体21間の間隙dzの寸法(mm)をパラメータとしている。
 図12(A)および図12(B)においてTrp1で示す周波数帯は、図11で示したLC直列回路LC1の共振周波数に相当する。この例では周波数4.5GHzが通信用の周波数帯の設計中心である。前記間隙dzが1~30mm変化しても、ほぼ4.5GHzで低反射特性及び低挿入損失特性が得られることがわかる。
 このように、使用する通信周波数帯に応じて低域側のトラップ周波数を適宜定めることによって反射特性及び透過特性について最適な特性が得られる。
《第5の実施形態》
 図13(A)は第5の実施形態に係る信号伝達用通信体208の斜視図である。図13(B)は、図13(A)においてX-Z面からY軸方向を見た透視図である。また図13(C)は、図13(A)においてY-Z面から-X軸方向を見た透視図である。
 第5の実施形態に係る信号伝達用通信体208は複数の誘電体層と複数の導体層とが積層された多層基板50に構成されている。多層基板50の下面にはグランド電極12が形成されている。また、多層基板50の内部には信号伝送用線路13が形成されている。この信号伝送用線路13、グランド電極12及びその間の誘電体層によってマイクロストリップラインが構成されている。
 また多層基板50の内部には矩形板状の結合用平面導体21が形成され、そのほぼ中央に第1の端部が接する柱状導体22A、また第1の端部が信号伝送用線路13に導通する柱状導体22Bが形成されている。また、柱状導体22Aの第2の端部と柱状導体22Bの第2の端部との間にスパイラル状インダクタSP22が形成されている。このスパイラル状インダクタSP22は、基底部10に対して平行な導体層と垂直なビアによって、基底部10の平行な面に沿って旋回する複数のスパイラル状の導体パターンによって構成されている。
 また多層基板50の内部には、結合用平面導体21の一部、キャパシタ用平面導体21b、21c、及びキャパシタ用平面導体31aによってキャパシタが構成されている。
 また、多層基板50の内部には、第1の端部がグランド電極12に導通する柱状導体32が形成されている。さらに柱状導体32の第2の端部と前記キャパシタ用平面導体21cとの間にスパイラル状インダクタSP32が形成されている。このスパイラル状インダクタSP32も、基底部10に対して平行な導体層と垂直なビアによって、基底部10の平行な面に沿って旋回するスパイラル状の導体パターンによって構成されている。
 多層基板50の寸法は、例えば3.5~4.5mm×3.5~4.5mm×0.95mmである。比誘電率は例えば6.0である。
 このようにして多層基板50の内部に基底部10、結合用平面導体21、インダクタ回路、LC直列回路が設けられて、信号伝達用通信体208が構成される。この信号伝達用通信体208の等価回路は、第3の実施形態で図9に示したカプラ302のうち一方の信号伝達用通信体の等価回路と同様である。
 この第5の実施形態によれば、インダクタをスパイラル状の導体パターンで構成したことにより、単位体積あたりのインダクタンス成分が向上し、そのため信号伝達用通信体207全体が低背化できる。また、多層基板50の誘電率による波長短縮効果により、信号伝達用通信体207を小面積化できる。さらに、多層基板工法で製造できるので工業化が容易である。
 多層基板50の内部には、同様にして二つまたはそれ以上のLC直列回路を構成してもよい。
《第6の実施形態》
 図14(A)は第6の実施形態に係るカプラ304の主要部の斜視図である。また図14(B)は前記カプラ304の主要部の断面図である。カプラ304は第1の信号伝達用通信体208及び第2の信号伝達用通信体209で構成される。
 第1の信号伝達用通信体208には基板11を備えている。基板11の下面にはグランド電極12、上面には信号伝送用線路13がそれぞれ形成されている。この基板11、グランド電極12、及び信号伝送用線路13によって、基底部10にマイクロストリップラインが構成されている。
 第1の信号伝達用通信体208には、基底部10に平行な矩形板状の結合用平面導体21を備えている。また、結合用平面導体21と所定の間隙を隔てて対向する平面導体31が設けられている。この平面導体31の中央には矩形の開口RAが形成されている。この平面導体31は結合用平面導体21の中心に対して回転対称形に形成されている。
 結合用平面導体21と基底部10との間には、結合用平面導体21と信号伝送用線路13との間を接続する柱状導体22が設けられている。柱状導体22は平面導体31の開口RAを貫通し、平面導体31には導通しない。この柱状導体22によってインダクタ回路が構成されている。このインダクタ回路は平面導体31の中心に対して対称位置に配置されている。
 結合用平面導体21と基底部10との間には、結合用平面導体21の一部とグランド電極12との間に接続されるLC直列回路LC1,LC2が構成されている。すなわち、結合用平面導体21の一部と所定の間隙を隔てて対向する平面導体31及びこの平面導体31とグランド電極12との間を接続する柱状導体32,42が設けられている。
 第2の信号伝達用通信体209についても、構造上は第1の信号伝達用通信体208と同一であり、結合用平面導体21同士が対向(対面)するように二つの信号伝達用通信体208,209が配置されることによってカプラ304が構成される。
 図14に示した各部の寸法などの具体例は次のとおりである。
[結合用平面導体21]
 15×15mm
[平面導体31]
 15×15mm
[開口RA]
 2.0×2.0mm
[柱状導体22]
 高さ3.0mm
[柱状導体32]
 高さ2.8mm
[柱状導体42]
 高さ2.8mm
 図15は、図14に示したカプラ304の等価回路図である。図15において抵抗Roは前記マイクロストリップラインの特性インピーダンスに相当する抵抗である。また、図15においてインダクタL22は、図3に示した柱状導体22に相当するインダクタである。また、キャパシタC31は、平面導体31の柱状導体32近傍と結合用平面導体21とで構成されるキャパシタである。同様に、キャパシタC41は、平面導体31の柱状導体42近傍と結合用平面導体21とで構成されるキャパシタである。インダクタL32は前記柱状導体32によるインダクタ、インダクタL42は前記柱状導体42によるインダクタである。
 このようにして、インダクタL22と結合用平面導体21とが接続されるラインに対して、LC直列回路LC12がシャントに接続された回路が構成されている。従って、LC直列回路LC12はトラップフィルタとして作用する。ここで、キャパシタC31とインダクタL32とによって第1のトラップフィルタとして作用し、キャパシタC41とインダクタL42とによって第2のトラップフィルタとして作用する。
 図15においてキャパシタC0は、図14に示した第1の信号伝達用通信体208の結合用平面導体21と第2の信号伝達用通信体209の結合用平面導体21とで構成されるキャパシタである。
 図16・図17は、第6の実施形態に係るカプラの特性と第3の実施形態に係るカプラの特性を比較するための図である。
 図16(A)は、第6の実施形態に係るカプラ304における第1の信号伝達用通信体208に対する第2の信号伝達用通信体209の位置ずれ量を示す図である。また、図16(B)は、第3の実施形態に係るカプラ302における第1の信号伝達用通信体203に対する第2の信号伝達用通信体204の位置ずれ量を示す図である。
 第1の信号伝達用通信体208と第2の信号伝達用通信体209は、何れもx-y平面に平行であり、x-y平面の面内方向の位置ずれ量を(dx、dy、dz)で表す。
 図17(A)、図17(B)は、透過特性(SパラメータのS21)の周波数特性が位置ずれ量(dx、dy、dz)に応じてどのように変化するかを示す図である。ここでは、次の4つの位置ずれを例にしている。
 [a](dx,dy,dz)=(-10mm,  0mm, 10mm)
 [b](dx,dy,dz)=( 10mm,  0mm, 10mm)
 [c](dx,dy,dz)=(  0mm,-10mm, 10mm)
 [d](dx,dy,dz)=(  0mm, 10mm, 10mm)
 図17(B)において、曲線Ca,Cb,Cc,Cdはそれぞれ上記ずれ[a][b][c][d]での特性である。また、図17(A)においても、上記ずれ[a][b][c][d]での特性をプロットしているが、曲線は全て重なっている。
 第3の実施形態に係るカプラ302では、図17(B)のように、面内方向の位置ずれ量を(dx,dy,dz)に応じて、透過特性が変動する。これに対して、第6の実施形態に係るカプラ304では、図17(A)のように、x-y平面内の10mm程度のずれでは特性変動がないことが分かる。
《第7の実施形態》
 図18(A)は第7の実施形態に係る信号伝達用通信体210の斜視図である。図18(B)は、図18(A)の向きで手前から見た透視図である。
 第7の実施形態に係る信号伝達用通信体210は複数の誘電体層と複数の導体層とが積層された多層基板50に構成されている。多層基板50の下面にはグランド電極12が形成されている。また、多層基板50の内部には信号伝送用線路13が形成されている。
 多層基板50の内部には矩形板状の結合用平面導体21が形成され、そのほぼ中央に第1の端部が接する柱状導体22A、また第1の端部が前記信号伝送用線路13に導通する柱状導体22Bが形成されている。また、柱状導体22Aの第2の端部と柱状導体22Bの第2の端部との間にスパイラル状インダクタSP22が形成されている。このスパイラル状インダクタSP22は、基底部10に対して平行な導体層と垂直なビアによって、基底部10の平行な面に沿って旋回する複数のスパイラル状の導体パターンによって構成されている。
 また、多層基板50の内部には、第1の端部がグランド電極12に導通する柱状導体32が形成されている。さらに柱状導体32の第2の端部と平面導体31との間にスパイラル状インダクタSP32が形成されている。このスパイラル状インダクタSP32も、基底部10に対して平行な導体層と垂直なビアによって、基底部10の平行な面に沿って旋回するスパイラル状の導体パターンで構成されている。
 同様に、多層基板50の内部には、第1の端部がグランド電極12に導通する柱状導体42が形成されている。さらに柱状導体42の第2の端部と平面導体31との間にスパイラル状インダクタSP42が形成されている。このスパイラル状インダクタSP42も、基底部10に対して平行な導体層と垂直なビアによって、基底部10の平行な面に沿って旋回するスパイラル状の導体パターンによって構成されている。
 多層基板50の寸法は、例えば4.0mm×4.0mm×1.0mmである。比誘電率は例えば6.0である。
 このようにして多層基板50の内部に基底部10、結合用平面導体21、インダクタ回路、LC直列回路が設けられて、信号伝達用通信体210が構成される。この信号伝達用通信体210の等価回路は第6の実施形態で示したものと同様である。
 第7の実施形態によれば、インダクタをスパイラル状の導体パターンで構成したことにより、単位体積あたりのインダクタンス成分が向上し、そのため信号伝達用通信体210全体が低背化できる。また、多層基板50の誘電率による波長短縮効果により、信号伝達用通信体210を小面積化できる。さらに、多層基板工法で製造できるので工業化が容易である。
《第8の実施形態》
 図19は第8の実施形態に係る信号伝達用通信体211の斜視図である。第8の実施形態においても、信号伝達用通信体211は、複数の誘電体層と複数の導体層とが積層された多層基板50に構成されている。
 この第8の実施形態では、結合用平面導体21と信号伝送用線路13との間に接続されるインダクタ回路が、基底部の面(多層基板50の下面)に対して垂直な面に沿って旋回するスパイラル状インダクタSP22を備えている。このスパイラル状インダクタSP22は、複数の線状下部導体SP22B、複数の線状上部導体SP22U、及び複数のビアSP22Vで構成されている。すなわち、線状下部導体SP22Bの端部と線状上部導体SP22Uの端部がビアSP22Vで順次接続されることによって、全体にスパイラル状の導体によるインダクタが構成されている。
 信号伝送用線路13とスパイラル状インダクタSP22との間には柱状導体22Bが形成されている。また、スパイラル状インダクタSP22と結合用平面導体21との間には柱状導体22Aが形成されている。これらの柱状導体22A、22Bとスパイラル状インダクタSP22とによって、結合用平面導体21と信号伝送用線路13との間のインダクタ回路が構成されている。
 また、多層基板50の内部には、第1の端部がグランド電極に導通する柱状導体42が形成されている。この柱状導体42の第2の端部と平面導体31との間にスパイラル状インダクタSP42が形成されている。このスパイラル状インダクタSP42は、基底部に対して平行な導体層と垂直なビアによって、基底部の平行な面に沿って旋回するスパイラル状の導体パターンを構成している。
 同様に、多層基板50の内部には、第1の端部がグランド電極に導通する柱状導体が形成されている。この柱状導体の第2の端部と平面導体31との間にスパイラル状インダクタSP32が形成されている。このスパイラル状インダクタSP32も、基底部に対して平行な導体層と垂直なビアによって、基底部の平行な面に沿って旋回するスパイラル状の導体パターンを構成している。
 上記スパイラル状インダクタSP32,SP42の構成は第7の実施形態で示したものと同様である。
 このように、結合用平面導体21と信号伝送用線路13との間に接続されるインダクタ回路の一部を、基底部の面に対して垂直な面に沿って旋回するスパイラル状インダクタSP22で構成することができる。同様に、結合用平面導体21の一部とグランド電極との間に接続されるLC直列回路のインダクタについても、その全部又は一部を、基底部の面に対して垂直な面に沿って旋回するスパイラル状インダクタで構成してもよい。
《第9の実施形態》
 第9の実施形態に係る信号伝達用通信体及びカプラの構成について、図20を参照して説明する。
 図20(A)は信号伝達用通信体212の斜視図、図20(B)はその主要部の断面図である。信号伝達用通信体212は実装基板60を備えている。
 実装基板60は、基材61と、この基材61の下面に形成されている下面グランド電極62と、基材61の上面に形成されている上面グランド電極63と、同じく基材61の上面に形成されている信号伝送用線路13とで構成されている。下面グランド電極62には方形の下面グランド電極開口部RA2が形成されていて、上面グランド電極63には概略形状が方形である上面グランド電極開口部RA3が形成されている。
 信号伝送用線路13は、上面グランド電極開口部RA3より外方に延びていて、この信号伝送用線路13と上面グランド電極63及び下面グランド電極62とによってグラウンデッドコプレーナ線路が構成されている。
 信号伝達用通信体212には、実装基板60に対して平行な矩形板状の結合用平面導体21を備えている。結合用平面導体21と実装基板60との間には、結合用平面導体21と信号伝送用線路13との間を接続する柱状導体22が設けられている。この柱状導体22によってインダクタ回路が構成されている。
 結合用平面導体21と実装基板60との間には、結合用平面導体21の一部と上面グランド電極63との間に接続されるLC直列回路LC1,LC2が構成されている。すなわち、結合用平面導体21の一部と所定の間隙を隔てて対向する平面導体31,41及びこの平面導体31,41とグランド電極12との間を接続する柱状導体32,42が設けられている。
 下面グランド電極開口部RA2及び上面グランド電極開口部RA3は、結合用平面導体21と対向する領域に形成されている。特に、この例では、下面グランド電極開口部RA2の中心と上面グランド電極開口部RA3の中心は柱状導体22の中心軸と一致している。すなわち、これらがほぼ同軸関係にある。
 信号伝達用通信体212の等価回路は、第1の実施形態で示した信号伝達用通信体201の等価回路(図4参照)と同じである。
 図20に示した信号伝達用通信体212を二つ用い、それぞれの結合用平面導体21同士が対向(対面)するように配置されることによってカプラが構成される。
 このように、結合用平面導体21と下面グランド電極開口部RA2とが対向しているので、結合用平面導体21と下面グランド電極62との間に発生する寄生容量が低減される。そのため、実装基板60の厚さ寸法dtの変化に対する信号伝達用通信体としての特性及びカプラとしての特性の変動を抑えることができる。すなわち、誘電率及び厚みの異なる種々の実装基板を用いても、安定した特性が得られる。
《第10の実施形態》
 第10の実施形態に係る信号伝達用通信体及びカプラの構成と特性について、図21~図24を参照して説明する。
 図21(A)は信号伝達用通信体213の斜視図、図21(B)はその主要部の断面図である。信号伝達用通信体213は、多層基板で構成されたモジュール70とそれを実装する実装基板60とによって構成されている。
 第9の実施形態で図20に示した信号伝達用通信体212と異なり、結合用平面導体21、インダクタ回路、及びLC直列回路が一つのモジュール70として構成されている。このモジュール70は、複数の誘電体層と複数の導体層との積層による多層基板に構成されている。第9の実施形態の信号伝達用通信体212と第10の実施形態の信号伝達用通信体213とは電気的には等価である。
 図21に示した各部の寸法などの具体例は次のとおりである。
[結合用平面導体21]
 12×12mm
[平面導体31]
 5.0×5.0mm
[平面導体41]
 2.5×2.5mm
[柱状導体22]
 高さ2.1mm
[柱状導体32]
 高さ1.8mm
[柱状導体42]
 高さ1.5mm
[実装基板60]
 厚み0.5~1.5mm
[下面グランド電極開口部RA2]
 14×14mm
[上面グランド電極開口部RA3の外形]
 12×12mm
 図22(A)は、第10の実施形態に係る信号伝達用通信体で構成されるカプラの透過特性(SパラメータのS21)の周波数特性を示す図である。図22(B)は、図5に示したカプラ301の透過特性(SパラメータのS21)の周波数特性を示す図である。この図22(B)は比較例である。いずれの図も、実装基板60の厚み寸法dtをパラメータとしている。
 結合用平面導体と対向する領域にグランド開口部が形成されていないと、実装基板60の厚さ寸法dtを0.5~1.5mmの範囲で変化させると、図22(B)のように透過特性(S21)が大きく変化する。これに対して、第9の実施形態によれば、図22(A)のように、透過特性(S21)は殆ど変動しない。
 次に、実装基板の下面グランド電極開口部RA2と上面グランド電極開口部RA3の大きさと前記透過特性との関係について、図23・図24を用いて説明する。
 実装基板の2層以上のグランドが形成されている場合、各グランド層の開口部の大きさの関係によって、前述の浮遊容量の変化の抑制効果が異なる。図23(A)のように、下面グランド電極開口部RA2より上面グランド電極開口部RA3が小さいと、結合用平面導体21と下面グランド電極62との間に生じる浮遊容量は小さい。図23(B)のように、下面グランド電極開口部RA2と上面グランド電極開口部RA3が同じ大きさである場合も、結合用平面導体21と下面グランド電極62との間に生じる浮遊容量は小さい。しかし、図23(C)のように、下面グランド電極開口部RA2より上面グランド電極開口部RA3が大きいと、結合用平面導体21と下面グランド電極62との間に生じる浮遊容量が大きい。
 このように、実装基板にグランド電極が2層以上設けられた場合は、結合用平面導体21に近い上面グランド電極開口部RA3が、全てのグランド電極開口部の中で最小となるように定めておく。この構造により、上面グランド電極63によって、結合用平面導体21と下面グランド電極62との間に生じる寄生容量が抑制される。
 図24(A)は、図23(A)に示した信号伝達用通信体を用いたカプラの透過特性(S21)の周波数特性である。図24(B)は、図23(B)に示した信号伝達用通信体を用いたカプラの透過特性(S21)の周波数特性である。同様に、図24(C)は、図23(C)に示した信号伝達用通信体を用いたカプラの透過特性(S21)の周波数特性である。
 このように、図23(A)、図23(B)の構造であれば、上面グランド電極63によって、結合用平面導体21と下面グランド電極62との寄生容量が遮断されるため、基板厚さの変化に対する特性変動が抑制される。
 なお、以上に示した例では、実装基板60に2層のグランド電極層を備えたが、グランド電極が3層以上存在する場合についても、結合用平面導体21に最も近いグランド電極の開口が、全てのグランド電極開口部の中で最小となるように定めておく。この構造により、結合用平面導体21に最も近いグランド電極によって、結合用平面導体21と下面グランド電極62との間に生じる寄生容量が抑制される。
《第11の実施形態》
 第11の実施形態に係る信号伝達用通信体及びカプラについて、図25を参照して説明する。
 図25(A)は信号伝達用通信体214の斜視図、図25(B)は図25(A)を、信号伝送用線路13の向きに見た透視図である。信号伝達用通信体214は、多層基板で構成されたモジュール70とそれを実装する実装基板60とによって構成されている。
 第10の実施形態で図21に示した信号伝達用通信体213と異なるのはモジュール70の構成である。多層基板で構成されるモジュール70の内部には矩形板状の結合用平面導体21が形成され、そのほぼ中央に第1の端部が接する柱状導体22A、また第1の端部が信号伝送用線路13に導通する柱状導体22Bが形成されている。また、柱状導体22Aの第2の端部と柱状導体22Bの第2の端部との間にスパイラル状インダクタSP22が形成されている。このスパイラル状インダクタSP22は、実装基板60に対して平行な導体層と垂直なビアによって、実装基板60の平行な面に沿って旋回する複数のスパイラル状の導体パターンによって構成されている。
 また、モジュール70の内部には、結合用平面導体21の一部を含む積層キャパシタC31が構成されている。また、モジュール70の内部には、第1の端部が実装基板の上面グランド電極63に導通する柱状導体32が形成されている。さらに柱状導体32の第2の端部と積層キャパシタC31との間にスパイラル状インダクタSP32が形成されている。このスパイラル状インダクタSP32も、実装基板60に対して平行な導体層と垂直なビアによって、実装基板60の平行な面に沿って旋回するスパイラル状の導体パターンによって構成されている。
 このようにして、結合用平面導体21、インダクタ回路、及びLC直列回路が設けられたモジュール70と実装基板60とによって信号伝達用通信体214が構成される。この信号伝達用通信体214を二つ用い、それぞれの結合用平面導体21同士が対向(対面)するように配置されることによってカプラが構成される。
 そのカプラの等価回路は、第3の実施形態で図9に示した等価回路と同様である。
 実装基板60の上面グランド電極開口部RA3はモジュール70の底面とほぼ同じ大きさであり、この上面グランド電極開口部RA3は下面グランド電極開口部RA2より小さい。そのため、結合用平面導体21と下面グランド電極62との間に発生する寄生容量が低減され、実装基板60の厚さ寸法dtの変化に対する信号伝達用通信体としての特性及びカプラとしての特性の変動を抑えることができる。
《他の実施形態》
 以上に示した各実施形態では、LC直列回路のインダクタ部分及びインダクタ回路を柱状導体で構成し、LC直列回路のキャパシタ部分を平面導体で構成したが、インダクタ回路、LC直列回路のインダクタ部分またはキャパシタ部分の少なくともいずれかは、チップ部品で構成してもよい。また、そのチップ部品を前記基底部に実装してもよい。
 また、以上に示した各実施形態で示したカプラは、いずれも同一構成の2つの信号伝達用通信体が対を成すようにしたが、平面導体同士が非接触状態で対向(対面)して容量結合するカプラであれば、その一方にのみ本発明の信号伝達用通信体を適用してもよい。
LC1,LC2…LC直列回路
SP22,SP32…スパイラル状インダクタ
RA2…下面グランド電極開口部
RA3…上面グランド電極開口部
10…基底部
11…基板
12…グランド電極
13…信号伝送用線路
21…結合用平面導体
21b,21c…キャパシタ用平面導体
22…柱状導体
22A,22B…柱状導体
31,41…平面導体
31a,31b,31c…キャパシタ用平面導体
32,42…柱状導体
50…多層基板
60…実装基板
61…実装基板の基材
62…下面グランド電極
63…上面グランド電極
70…モジュール
201~214…信号伝達用通信体
301~304…カプラ

Claims (11)

  1.  信号伝送用線路及びグランド電極が形成された基底部と、
     前記基底部に対して平行な平面状の結合用平面導体と、
     前記結合用平面導体と前記信号伝送用線路との間に接続されるインダクタ回路と、
     前記結合用平面導体の一部と前記グランド電極との間に接続され、且つキャパシタとインダクタとが直列接続されたLC直列回路と、
     を備え、
     前記インダクタ回路が前記結合用平面導体と前記基底部との間に配置され、
     前記LC直列回路が前記結合用平面導体と前記基底部との間に配置された、信号伝達用通信体。
  2.  前記基底部、前記結合用平面導体、前記インダクタ回路、及び前記LC直列回路は、複数の誘電体層と複数の導体層との積層による多層基板に構成された、請求項1に記載の信号伝達用通信体。
  3.  前記基底部は、前記結合用平面導体、前記インダクタ回路、及び前記LC直列回路を実装する実装基板であり、前記結合用平面導体が対向する領域に開口部を有するグランド電極が前記実装基板に形成された、請求項1に記載の信号伝達用通信体。
  4.  前記結合用平面導体、前記インダクタ回路、及び前記LC直列回路が一つのモジュールとして構成された、請求項3に記載の信号伝達用通信体。
  5.  前記グランド電極が形成された層が2層以上あり、各グランド電極の開口部のうち前記結合用平面導体に最も近い開口部の大きさが最小である、請求項3または4に記載の信号伝達用通信体。
  6.  前記LC直列回路の前記キャパシタは、前記結合用平面導体に対して平行に対向する平面導体を備え、前記平面導体が前記結合用平面導体の中心に対して回転対称形に形成され、前記インダクタ回路が前記平面導体の中心に対して対称位置に配置された、請求項1~5のいずれかに記載の信号伝達用通信体。
  7.  前記インダクタ回路は、前記基底部に対して平行または垂直な面に沿って旋回するスパイラル状の導体を備えた、請求項1~6のいずれかに記載の信号伝達用通信体。
  8.  前記LC直列回路の前記インダクタは、前記基底部に対して平行または垂直な面に沿って旋回するスパイラル状の導体を備えた、請求項1~7のいずれかに記載の信号伝達用通信体。
  9.  前記LC直列回路の前記キャパシタは、前記基底部に対して平行な面状に広がり、対向する部分でキャパシタンスを生じさせる複数の平面導体を備えた、請求項1~8のいずれかに記載の信号伝達用通信体。
  10.  前記インダクタ回路または前記LC直列回路の少なくとも一方は、前記基底部に実装されたチップ部品で構成された、請求項1~9のいずれかに記載の信号伝達用通信体。
  11.  請求項1~10のいずれかに記載の前記信号伝達用通信体を送信側と受信側にそれぞれ少なくとも一つずつ備え、前記結合用平面導体同士を非接触状態で対向させたカプラ。
PCT/JP2010/055318 2009-03-31 2010-03-26 信号伝達用通信体及びカプラ WO2010113776A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080013812.XA CN102365828B (zh) 2009-03-31 2010-03-26 信号传输用通信体和耦合器
JP2011507139A JP5170306B2 (ja) 2009-03-31 2010-03-26 信号伝達用通信体及びカプラ
US13/246,698 US8283990B2 (en) 2009-03-31 2011-09-27 Signal transmission communication unit and coupler

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009086718 2009-03-31
JP2009-086718 2009-03-31
JP2009-276244 2009-12-04
JP2009276244 2009-12-04
JP2010014392 2010-01-26
JP2010-014392 2010-01-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/246,698 Continuation US8283990B2 (en) 2009-03-31 2011-09-27 Signal transmission communication unit and coupler

Publications (1)

Publication Number Publication Date
WO2010113776A1 true WO2010113776A1 (ja) 2010-10-07

Family

ID=42828068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055318 WO2010113776A1 (ja) 2009-03-31 2010-03-26 信号伝達用通信体及びカプラ

Country Status (4)

Country Link
US (1) US8283990B2 (ja)
JP (1) JP5170306B2 (ja)
CN (1) CN102365828B (ja)
WO (1) WO2010113776A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013008375A1 (ja) * 2011-07-12 2013-01-17 株式会社村田製作所 信号伝達用通信体及びカプラ
WO2013058076A1 (ja) * 2011-10-17 2013-04-25 株式会社村田製作所 信号伝達用通信体及びカプラ
JP2019219207A (ja) * 2018-06-18 2019-12-26 シチズン時計株式会社 電子時計
JP2021069003A (ja) * 2019-10-23 2021-04-30 学校法人慶應義塾 通信モジュール、及び通信回路

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8814903B2 (en) 2009-07-24 2014-08-26 Depuy Mitek, Llc Methods and devices for repairing meniscal tissue
US8828053B2 (en) 2009-07-24 2014-09-09 Depuy Mitek, Llc Methods and devices for repairing and anchoring damaged tissue
US9451938B2 (en) 2010-04-27 2016-09-27 DePuy Synthes Products, Inc. Insertion instrument for anchor assembly
US9597064B2 (en) 2010-04-27 2017-03-21 DePuy Synthes Products, Inc. Methods for approximating a tissue defect using an anchor assembly
JP4858733B1 (ja) * 2010-10-06 2012-01-18 横浜ゴム株式会社 送信装置
US10971789B2 (en) * 2018-08-30 2021-04-06 Qualcomm Incorporated Transmission-line filtering with enhanced frequency response

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003535542A (ja) * 2000-06-01 2003-11-25 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 二重バンドパッチアンテナ
JP2008148345A (ja) * 2006-01-19 2008-06-26 Murata Mfg Co Ltd 無線icデバイス及び無線icデバイス用部品
JP2008154198A (ja) * 2006-11-21 2008-07-03 Sony Corp 通信システム並びに通信装置
JP2009027734A (ja) * 2008-08-26 2009-02-05 Sony Corp 高周波結合器並びに電界信号放射エレメント

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004336250A (ja) * 2003-05-02 2004-11-25 Taiyo Yuden Co Ltd アンテナ整合回路、アンテナ整合回路を有する移動体通信装置、アンテナ整合回路を有する誘電体アンテナ
JP2005252366A (ja) * 2004-03-01 2005-09-15 Sony Corp 逆fアンテナ
US7519328B2 (en) 2006-01-19 2009-04-14 Murata Manufacturing Co., Ltd. Wireless IC device and component for wireless IC device
CN101351924A (zh) * 2006-01-19 2009-01-21 株式会社村田制作所 无线ic器件以及无线ic器件用零件
JP4893483B2 (ja) 2006-09-11 2012-03-07 ソニー株式会社 通信システム
JP4345851B2 (ja) 2006-09-11 2009-10-14 ソニー株式会社 通信システム並びに通信装置
CN101145811B (zh) 2006-09-11 2012-09-05 索尼株式会社 通信***、通信装置以及高频耦合器
JP4345850B2 (ja) 2006-09-11 2009-10-14 ソニー株式会社 通信システム及び通信装置
JP4752718B2 (ja) 2006-10-18 2011-08-17 ソニー株式会社 通信システム及び通信装置
JP4788562B2 (ja) 2006-10-19 2011-10-05 ソニー株式会社 通信システム
JP4923975B2 (ja) 2006-11-21 2012-04-25 ソニー株式会社 通信システム並びに通信装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003535542A (ja) * 2000-06-01 2003-11-25 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 二重バンドパッチアンテナ
JP2008148345A (ja) * 2006-01-19 2008-06-26 Murata Mfg Co Ltd 無線icデバイス及び無線icデバイス用部品
JP2008154198A (ja) * 2006-11-21 2008-07-03 Sony Corp 通信システム並びに通信装置
JP2008154267A (ja) * 2006-11-21 2008-07-03 Sony Corp 通信システム並びに通信装置
JP2009027734A (ja) * 2008-08-26 2009-02-05 Sony Corp 高周波結合器並びに電界信号放射エレメント

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013008375A1 (ja) * 2011-07-12 2013-01-17 株式会社村田製作所 信号伝達用通信体及びカプラ
WO2013058076A1 (ja) * 2011-10-17 2013-04-25 株式会社村田製作所 信号伝達用通信体及びカプラ
JP2019219207A (ja) * 2018-06-18 2019-12-26 シチズン時計株式会社 電子時計
JP7022013B2 (ja) 2018-06-18 2022-02-17 シチズン時計株式会社 電子時計
JP2021069003A (ja) * 2019-10-23 2021-04-30 学校法人慶應義塾 通信モジュール、及び通信回路
JP7302869B2 (ja) 2019-10-23 2023-07-04 慶應義塾 通信モジュール、及び通信回路

Also Published As

Publication number Publication date
US20120013422A1 (en) 2012-01-19
US8283990B2 (en) 2012-10-09
CN102365828A (zh) 2012-02-29
JP5170306B2 (ja) 2013-03-27
JPWO2010113776A1 (ja) 2012-10-11
CN102365828B (zh) 2014-04-16

Similar Documents

Publication Publication Date Title
JP5170306B2 (ja) 信号伝達用通信体及びカプラ
JP4579198B2 (ja) 多層帯域通過フィルタ
US7307829B1 (en) Integrated broadband ceramic capacitor array
US9190721B2 (en) Antenna device
US10110196B2 (en) Electronic component
TWI491101B (zh) 疊層型帶通濾波器
JP2001028318A (ja) 積層コンデンサ、ならびにこれを用いた電子装置および高周波回路
US7432786B2 (en) High frequency filter
JP4197032B2 (ja) 2ポート型非可逆回路素子及び通信装置
US7940226B2 (en) Surface-mount antenna and antenna device
JP5961813B2 (ja) コモンモードノイズフィルタ
WO2015059963A1 (ja) 複合lc共振器および帯域通過フィルタ
JP5110807B2 (ja) 積層コンデンサ
JP4345680B2 (ja) 2ポート型非可逆回路素子及び通信装置
US8018305B2 (en) Electronic component
JP2014107653A (ja) コモンモードノイズフィルタ
US20070085628A1 (en) Dielectric device
JP5637150B2 (ja) 積層型バンドパスフィルタ
US7782157B2 (en) Resonant circuit, filter circuit, and multilayered substrate
US8400236B2 (en) Electronic component
JP2008278361A (ja) 積層型バンドパスフィルタ及びそれを用いたダイプレクサ
JP4712074B2 (ja) アンテナ装置
JPH1197962A (ja) 高周波部品
JP2012169813A (ja) 帯域除去フィルタ
JP4209850B2 (ja) アンテナスイッチ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080013812.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10758548

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011507139

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10758548

Country of ref document: EP

Kind code of ref document: A1