WO2010113254A1 - 二次電池および電池システム - Google Patents

二次電池および電池システム Download PDF

Info

Publication number
WO2010113254A1
WO2010113254A1 PCT/JP2009/056648 JP2009056648W WO2010113254A1 WO 2010113254 A1 WO2010113254 A1 WO 2010113254A1 JP 2009056648 W JP2009056648 W JP 2009056648W WO 2010113254 A1 WO2010113254 A1 WO 2010113254A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
electrode terminal
insulating
battery
positive electrode
Prior art date
Application number
PCT/JP2009/056648
Other languages
English (en)
French (fr)
Inventor
橋本 勉
小林 由則
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to JP2010539645A priority Critical patent/JP5506692B2/ja
Priority to US13/124,734 priority patent/US20110244319A1/en
Priority to EP09842609A priority patent/EP2416432A1/en
Priority to PCT/JP2009/056648 priority patent/WO2010113254A1/ja
Priority to CN2009801189677A priority patent/CN102047489A/zh
Priority to KR1020107026398A priority patent/KR101345446B1/ko
Publication of WO2010113254A1 publication Critical patent/WO2010113254A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a secondary battery in which a plurality of positive electrodes and negative electrodes are laminated via a separator, and a power feeding / storage system using the battery.
  • lithium ion secondary batteries in particular, have high energy density and high capacity, so they are used as power sources for household appliances. It is also attracting attention as a storage battery for surplus power storage such as power supplies and power plants.
  • a wound type lithium ion secondary battery in which a pair of belt-like positive electrode and negative electrode are spirally arranged with a separator interposed therebetween, and a plurality of sheet-like positive electrodes and sheet-like negative electrodes
  • a stacked lithium ion secondary battery that is stacked through a plurality of separators.
  • the electrode group composed of the plurality of sheet-like positive electrodes and sheet-like negative electrodes is enclosed in a rectangular battery can having a substantially rectangular cross section.
  • a wound type lithium ion secondary battery it may be enclosed in a cylindrical battery can having a substantially circular cross section, or may be enclosed in a square battery can.
  • the sheet-like positive electrode and the sheet-like negative electrode are stacked via a separator, so the positions of the positive electrode and the negative electrode are misaligned in the square battery can. In other words, stacking misalignment may occur.
  • this misalignment occurs, there is a risk of failure such as a short circuit in the battery due to contact between the positive electrode and the negative electrode.
  • the rectangular battery can is a conductor, it is necessary to insulate it from the positive electrode and the negative electrode. Therefore, a proposal has been made to provide an auxiliary sheet made of polypropylene, which is insulative, on both end faces of the electrode group and to fix the tape together with the electrode group (see Patent Document 1 below). JP 2008-91099 A
  • FIG. 8 shows a cross section of the rectangular battery can 1 cut along a plane parallel to the plane on which the positive electrode terminal and the negative electrode terminal (not shown) are formed.
  • An electrode group in which a sheet-like positive electrode 2 electrically connected to a positive electrode terminal via a positive electrode tab and a negative electrode 3 electrically connected to a negative electrode terminal via a negative electrode tab are stacked via a separator (not shown) It is inserted into the prismatic battery can 1.
  • the positive electrode 2 and the negative electrode 3 are laminated so that their surfaces are orthogonal to the surface on which the positive electrode terminal and the negative electrode terminal are formed, that is, the direction along the surface is the lamination direction.
  • auxiliary sheets 4 and 5 made of polypropylene are disposed as shown in the four corners of the electrode group.
  • the electrode surface width a is the same dimension as the inner method (inner) b in the long side direction X of the square battery can cross section, the square battery can corner 1a is rounded so that the electrode near the corner 1a is There is a high risk of causing a failure such as a short circuit as a result of being pressed and deformed, thereby causing separator breakage and the like.
  • the electrode surface width a is slightly smaller than the inner method b in the battery can cross-section long side direction X, and is designed to have a size that is not affected by the roundness of the battery can corner 1a.
  • the auxiliary sheet 5 is made of a thickness that can withstand at least the insulation, in other words, an extremely thin insulator without a beam.
  • the tape when used as a power source for an electric vehicle, if continuous vibration is applied to the prismatic battery can 1, the tape is used in an environment where the electrode group is immersed in an electrolyte solution even if the electrode group is fixed to the tape.
  • the auxiliary sheet 5 is deformed along the shape of the rectangular battery can 1 due to the weight of the electrode group, and the positive electrode 2 and the negative electrode 3 are displaced in the plane direction as shown in FIG. A direction along the surfaces of the positive electrode 2 and the negative electrode 3, that is, a direction orthogonal to the stacking direction is generated.
  • the positive electrode 2 and the negative electrode 3 at the end of the electrode group are deformed along the square battery can 1 as shown in FIG.
  • the present invention can prevent electrode deformation at the corners of a rectangular battery can as much as possible even when continuous vibration is applied, and maximize performance as designed. It is an object of the present invention to provide a secondary battery and a power feeding or power storage system using the battery.
  • the secondary battery of the present invention employs the following configuration. That is, a rectangular battery can provided with a positive electrode terminal and a negative electrode terminal, and a sheet-like positive electrode disposed in the rectangular battery can and electrically connected to the positive electrode terminal and electrically connected to the negative electrode terminal An electrode group in which sheet-like negative electrodes are laminated via a separator, and a cross-section in a plane in the same direction as the surface of the rectangular battery can on which the positive electrode terminal and the negative electrode terminal are formed is formed in a substantially U shape.
  • the first and second insulating auxiliary sheets, and the insulating tape, the first and second insulating auxiliary sheets are arranged at positions facing each other across the electrode group, and the insulating property It is connected with a tape.
  • An electric vehicle as a power feeding system includes a rectangular battery can provided with a positive electrode terminal and a negative electrode terminal, and a sheet-like shape disposed in the square battery can and electrically connected to the positive electrode terminal.
  • a first insulating auxiliary sheet having a substantially U-shaped cross section, and an insulating tape, and the first and second insulating auxiliary sheets sandwich the electrode group.
  • a secondary battery arranged at a position facing each other and connected by the insulating tape;
  • a motor for driving the wheels, The motor is driven by receiving power from the secondary battery.
  • the electric vehicle may be any vehicle that can be driven by electricity, and may be a hybrid vehicle.
  • the power storage system includes a rectangular battery can provided with a positive electrode terminal and a negative electrode terminal, a sheet-like positive electrode disposed in the rectangular battery can and electrically connected to the positive electrode terminal, and the negative electrode
  • the secondary battery stores power by receiving power from the power generation facility.
  • any power generation equipment such as a solar battery, a fuel cell, a windmill, a thermal power generation equipment, a hydroelectric power generation equipment, and a nuclear power generation equipment may be used. Good. Even if it is not a power plant, the power generation equipment installed in a general household may be sufficient.
  • the sheet-like electrodes near the corners of the square battery can are supported by one side of the U-shape formed by the insulating auxiliary sheet. It is possible to prevent deformation along. This effect can be obtained in any of a laminated type and a wound type secondary battery, for example, a laminated type lithium ion secondary battery or a wound type lithium ion secondary battery.
  • the insulative auxiliary sheet does not necessarily have to be U-shaped, and two sheets of the insulative auxiliary sheet that contact at an angle of about 90 degrees support a plurality of sheet-like electrodes near the corners of the rectangular battery can. Since the above deformation can be prevented if possible, it may be a dogleg shape, a substantially square shape or a substantially rectangular shape. For the formation of these shapes, a desired mold shape may be formed from the beginning according to the mold by resin molding or the like, or a plurality of insulating auxiliary sheets are welded and fused to form a single mold. May be.
  • the above shape is substantially formed. May be.
  • the insulating tape has weak adhesive strength, the two surfaces of the insulating auxiliary sheet cannot sufficiently support the plurality of sheet-like electrodes near the corners of the rectangular battery can. Need to be.
  • the plurality of insulating auxiliary sheets may be connected with an insulating tape.
  • one mold may be formed by bending one insulating auxiliary sheet.
  • auxiliary sheet In the case of bending, it is desirable to make a cut at the bent portion so that the inside of the bent corner is not rounded. It is possible to use an insulating sheet that does not have a part of the plurality of insulating auxiliary sheets, but the insulating function that supports the sheet-like electrode so that it does not enter the rounded corners of the prismatic battery can.
  • the auxiliary sheet needs to be at least a material having a thickness and a thickness.
  • a through hole may be provided in the insulating auxiliary sheet to provide the permeation function.
  • the insulating auxiliary sheet may be increased in thickness to such an extent that deformation such as bending is difficult to form an insulating hard auxiliary plate.
  • the insulating tape is made of a material that does not easily deteriorate with the electrolytic solution. It is also desirable that the adhesive for the insulating tape be a material that does not easily deteriorate with the electrolyte. Natural rubber, synthetic rubber, acrylic, vinyl alkyl ether, silicone, polyester, polyamide, urethane Adhesives such as ethylene-acrylic acid ester system, styrene-butadiene block copolymer system, and styrene-isoprene block copolymer system can be used. However, it is also possible to use a method in which a fixing tape is heat-sealed and fixed to the insulating auxiliary sheet by heating from the outside even without an adhesive surface.
  • the assembled battery may be configured by connecting a plurality of the secondary batteries in series or in parallel.
  • the end of the electrode group Can prevent the sheet electrode of each part from being deformed along the roundness of the corners of the square battery can, and as a result, there are few failures and the secondary battery that demonstrates the performance as designed A power storage system can be obtained.
  • 1 is a cross-sectional view of a square battery can of a secondary battery according to a first embodiment of the present invention. It is tape position explanatory drawing of the secondary battery which concerns on the 1st Embodiment of this invention. It is square battery can sectional drawing of the secondary battery which concerns on the 2nd Embodiment of this invention. It is square battery can sectional drawing of the secondary battery which concerns on the 3rd Embodiment of this invention. It is tape position explanatory drawing of the secondary battery which concerns on the 3rd Embodiment of this invention. It is tape position explanatory drawing of the secondary battery which concerns on the 4th Embodiment of this invention.
  • FIG. 1 is a cross-sectional view of a rectangular battery can of a laminated secondary battery according to a prerequisite technology of the present invention.
  • FIG. 3 is a cross-sectional view of a square battery can of a laminated secondary battery showing the problems of the prerequisite technology of the present invention. It is an expanded sectional view of the square battery can corner of the laminated secondary battery showing the problems of the prerequisite technology of the present invention.
  • Square battery can 2 Sheet-like positive electrode (sheet-like electrode) 3 Sheet-like negative electrode (sheet-like electrode) 4 Insulating auxiliary sheet 5 in the direction of the long side of the square battery can cross section 5 Insulating auxiliary sheet 6 in the direction of the short side of the square battery can cross section 7 Hollow part 7
  • the member 8 in the long side direction of the square battery can cross section of the insulating auxiliary sheet
  • Auxiliary sheet square battery can cross section short side member 9
  • FIG. 1 shows a cross-sectional configuration of a stacked secondary battery.
  • a substantially rectangular sheet-like positive electrode 2 electrically connected via a positive electrode terminal (not shown) and a positive electrode tab of the square battery can 1 and a negative electrode terminal (not shown)
  • an electrode group in which a plurality of substantially rectangular sheet-like negative electrodes 3 electrically connected via negative electrode tabs are stacked via a separator (not shown), and the positive electrode terminal and the negative electrode terminal of the rectangular battery can 1 are formed.
  • Two U-shaped insulating auxiliary sheets which are arranged so as to sandwich the electrode group from the long side direction of the cross section cut along the one surface provided with the positive electrode terminal and the negative electrode terminal, are inserted.
  • the angle between the two sides in contact with each other is preferably about 90 degrees.
  • the tape position in FIG. 1 will be described later with reference to FIG.
  • the member 7 along the long side direction X of the cross section of the square battery can of the U-shaped insulating auxiliary sheet and the member 8 along the short side direction Y of the cross section of the square battery can can be manufactured inexpensively. It is desirable to form one insulating auxiliary sheet by bending. In this case, the material is the same. It is also possible to form the member 7 and the member 8 separately and to integrate them by fusing them later. In this case, the materials of both may be different.
  • the member 8 needs to have sufficient strength to support the sheet-like electrode, but the member 7 is not a part that supports the sheet-like electrode. It is not always necessary to have a beam.
  • the electrode surface width a is substantially the same as the width of the flat surface of the rectangular battery can 1 excluding the rounded portion of the corner 1a along the long side direction X of the cross section. It is desirable to design.
  • the length d of the member 8 along the short-side direction Y of the cross-section of the rectangular battery can is a sheet-like electrode (sheet-like positive electrode 2 and sheet-like negative electrode 3; From the viewpoint of preventing bending at the corner 1a of the rectangular battery can, the internal method along the short side direction Y of the cross section of the square electrode can is f, and along the short side direction Y of the cross section of the square battery can. It is desirable to design (f ⁇ g) / 2 ⁇ d ⁇ f / 2 where g is the width dimension of the flat surface excluding the rounded portion of the corner 1a.
  • the lower limit is set to prevent the member 8 from blocking the rounded portion of the corner 1a of the rectangular battery can 1 and the sheet electrodes 2 and 3 from being bent by the rounded portion as much as possible.
  • the upper limit is a setting for preventing each member 8 of each U-shaped insulating auxiliary sheet from overlapping. When the overlap occurs, the angle of two sides that contact each other out of the three sides forming the U-shape is not desirable because it is shifted from about 90 degrees. However, in the case where the influence when the overlap occurs is negligibly small, the design can be made so that the overlap occurs.
  • the length e of the member 7 along the long side direction X of the cross section of the rectangular battery can is substantially the same as the electrode surface width a.
  • FIG. 2 shows the tape position.
  • the insulating tape 10 By attaching the insulating tape 10 in two places so as to connect the two U-shaped insulating auxiliary sheets, in the enclosure connected by the two U-shaped insulating auxiliary sheets and the insulating tape 10
  • the electrode group 9 is located.
  • the insulating tape 10 is affixed in two places, but by winding and pasting a single tape around the electrode group 9, two U-shapes arranged in the electrode group 9 are attached.
  • An insulating auxiliary sheet may be connected.
  • the adhesive surface of the tape becomes large, the two U-shaped insulating auxiliary sheets can be more firmly connected to each other, and as a result, the strength of the member 8 supporting the plurality of sheet-like electrodes can be increased.
  • the plurality of sheet-like electrodes near the end face of the electrode group 9 can be supported at an angle of about 90 degrees with the electrode surface by the member 8 having a beam. It is possible to effectively prevent the material from entering and deforming the round portion.
  • the case of the stacked electrode group is shown, but it goes without saying that the same effect can be obtained when the wound electrode group is enclosed in a rectangular battery can.
  • a lithium ion secondary battery can be targeted.
  • the electrode group inserted into the rectangular battery can 1 is divided into two parts, and each electrode group 9 is sandwiched from the long side direction X of the square battery can cross section.
  • Two pairs of U-shaped insulating auxiliary sheets disposed on the side.
  • the dimension d is the same as that described in the first embodiment.
  • the dimension d is preferably designed as (f ⁇ g) ⁇ 2 ⁇ d ⁇ f ⁇ (2 ⁇ N). This is to eliminate the overlap between the members 8 of the U-shaped insulating auxiliary sheets. However, in the case where the influence when the overlap occurs is negligibly small, the design can be made so that the overlap occurs.
  • the insulating tape is attached to each of the plurality of electrode groups in the same manner as in FIG. 2 described in the first embodiment, so that the two U-shaped insulating auxiliary sheets and the insulating tape 10 are connected to each other. It is good also as a structure in which one electrode group is located inside.
  • a pair of U-shaped insulating auxiliary sheets so as to sandwich each electrode group from the cross-sectional long side direction X of each of the plurality of electrode groups.
  • FIGS. 4 and 5 A stacked secondary battery according to the third embodiment will be described with reference to FIGS. 4 and 5.
  • members that are the same as those used in the above-described embodiment are assigned the same reference numerals, and descriptions thereof are omitted.
  • the present embodiment can be implemented with appropriate modifications within a range that does not change the gist of the present invention.
  • pinched from the short side direction Y of the said square battery can cross section may be inserted.
  • the dimension of the member 8 along the short side direction Y is substantially the same as the internal method f along the short side direction Y of the cross section of the rectangular battery can.
  • the dimension of the member 7 arranged along the long side direction X and sandwiching the electrode group 9 is set to be equal to or less than half of the electrode surface width a so that the members 7 of the U-shaped insulating auxiliary sheets do not overlap each other. Is desirable.
  • the design can be made so that the overlap occurs. Except for these points, the configuration is the same as that described in the first embodiment. In this configuration, since the member 8 is a central side connecting both sides of the three U-shaped sides, all the sheet-like electrodes 2 and 3 of the electrode group 9 can be supported by the member 8. The prevention of misalignment can be strengthened as compared with the first embodiment.
  • FIG. 5 shows the tape position.
  • the insulating tape 10 By attaching the insulating tape 10 in two places so as to connect the two U-shaped insulating auxiliary sheets, in the enclosure connected by the two U-shaped insulating auxiliary sheets and the insulating tape 10
  • the electrode group 9 is located.
  • the insulating tape 10 is affixed in two places, but by winding and pasting a single tape around the electrode group 9, the two U-shapes arranged in the electrode group 9 can be obtained.
  • An insulating auxiliary sheet may be connected.
  • the adhesive surface of the tape becomes large, the two U-shaped insulating auxiliary sheets can be more firmly connected to each other, and as a result, the member 8 has the strength to support the plurality of sheet-like electrodes 2 and 3. Can be increased.
  • one electrode group 9 is provided, but the electrode group may be divided into a plurality of pieces and inserted into the prismatic battery can 1 as in the second embodiment. In this case, it is desirable to design the dimension d of the member 8 to be substantially f / N.
  • one substantially rectangular insulating auxiliary sheet disposed so as to surround the electrode group 9 when viewed from the cross section of the rectangular battery can 1 is formed in the rectangular battery can 1. Inserted into.
  • a substantially rectangular shape is formed by bending one insulating auxiliary sheet at three locations and connecting one end at both ends of the insulating auxiliary sheet with the insulating tape 10.
  • a substantially rectangular shape may be formed by bending one insulating auxiliary sheet at four locations and connecting one end of both ends of the insulating auxiliary sheet with the insulating tape 10.
  • the dimension d of the member 8 is substantially the same as the electrode stacking width
  • the dimension e of the member 7 is substantially the same as the electrode surface width. Except for these points, the configuration is the same as that described in the first embodiment. In this configuration, the electrode group 9 can be surrounded by only one insulating auxiliary sheet, so that it can be manufactured at a lower cost than other embodiments.
  • one electrode group 9 is provided, but the electrode group may be divided into a plurality of pieces and inserted into the prismatic battery can 1 as in the second embodiment.
  • the dimension d of the member 8 is substantially f / N.
  • the secondary battery 11 mounted on the electric vehicle 12 and the spare secondary battery 15 arranged outside the house 14 are the secondary batteries according to the present invention described in any of the first to fourth embodiments described above.
  • a laminated lithium ion secondary battery for example, a laminated lithium ion secondary battery.
  • Electric power generated from power generation facilities 18 such as wind power generation, thermal power generation, hydroelectric power generation, nuclear power generation, solar cells, and fuel cells is supplied to a control box 16 used by a user via a supply power system 17.
  • the electric power transmitted from the power generation facility 18 is supplied to any one of the secondary battery 11, the standby secondary battery 15, and the switchboard 13, which are driving power sources for the electric vehicle 12.
  • the standby secondary battery 15 or the secondary battery 11 of the electric vehicle 12 is charged and stored when electric power is supplied.
  • the control box may be programmed to supply power to the switchboard 13 during the day and to the secondary battery 11 of the standby secondary battery 15 or the electric vehicle 12 at night.
  • the spare secondary battery 15 charged by the power storage system is electrically connected to the switchboard 13 in the house 14 via the control box 16.
  • the switchboard 13 is electrically connected to electrical appliances such as air conditioners and televisions connected to plugs in the house 14.
  • the user can select whether to drive the electrical appliance in the house 14 by receiving power from the power feeding power system 17 or to drive the electrical appliance using the power of the standby secondary battery 15 stored by the power storage system, This selection / switching is performed by the control box 16.
  • the backup secondary battery 15 is electrically connected to the switchboard 13 by switching in the control box 16, power is supplied from the backup secondary battery 15 to the switchboard 13 so that the electrical appliance can be driven.
  • the electric vehicle 12 can run by supplying power to the motor that drives the wheels from the secondary battery 11 stored by the power storage system.
  • the electric vehicle 12 may be a vehicle capable of driving wheels with an electric motor, and may be a hybrid vehicle.
  • the power storage / power supply system using the secondary battery according to the present invention it is possible to prevent as much as possible the stacking deviation and the electrode bending at the corner of the rectangular battery can due to the vibration that is a cause of failure in the secondary battery.
  • a power supply system in a car with a lot of vibrations and a power supply / storage system in an earthquake-prone country stable operation with few failures is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

 本発明に係る二次電池は、正極端子および負極端子を備えた角型電池缶(1)と、角型電池缶内に配置され、正極端子に電気的に接続されたシート状正極(2)及び負極端子に電気的に接続されたシート状負極(3)がセパレータを介して積層された電極群(9)と、正極端子および負極端子が形成された角型電池缶の面と同一方向の面での断面が略コの字型に形成された第1および第2の絶縁性補助シートと、絶縁性テープ(10)とを備える。第1及び第2の絶縁性補助シートは、電極群を挟んで対向する位置に配置され且つ絶縁性テープ(10)で連結されている。

Description

二次電池および電池システム
 本発明は、複数の正極電極と負極電極とをセパレータを介して積層した二次電池および同電池を用いた給電・蓄電システムに関するものである。
 充電可能な電池としての二次電池のうち、特にリチウムイオン二次電池は、高いエネルギー密度を有し高容量であるため、家電製品の電源として用いられるほか、近年、電気自動車用電源、住宅用電源、発電所等の余剰電力保存用蓄電池としても着目されている。
 リチウムイオン二次電池の形態としては、一対の帯状の正極電極と負極電極とをセパレータを介して渦巻状とした巻回型リチウムイオン二次電池と、複数のシート状正極とシート状負極とを複数のセパレータを介して積層した積層型リチウムイオン二次電池がある。
 積層型リチウムイオン二次電池では、上記複数のシート状正極とシート状負極とからなる電極群は、断面が略長方形の角型の電池缶に封入される。巻回型リチウムイオン二次電池では、断面が略円形の円筒型の電池缶に封入される場合もあれば、角型電池缶に封入される場合もある。
 積層型、巻回型いずれのリチウムイオン二次電池においても、シート状正極とシート状負極がセパレータを介して積層される構造であるため、角型電池缶内で正極と負極との位置がズレる場合、すなわち積層ズレの生じる場合がある。この積層ズレが生じると、正極と負極が接触し電池内でショートするなど故障が発生する危険性がある。また、角型電池缶は導電体であるため、正極、負極との絶縁をする必要もある。そこで、絶縁性であるポリプロピレン製の補助シートを電極群の両端面に設け、電極群とともにテープ固定する提案がなされている(下記特許文献1参照)。
特開2008-91099号公報
 上記提案によれば積層面方向の絶縁を図るとともに、補助シートと積層された電極がテープ固定されることで積層ズレが防止できるとするが、これでは積層ズレ防止が不十分であって、このため設計通りの性能を十分に発揮できないとの知見を得た。これにつき図8、図9、図10を用いて説明する。
 図8に図示しない正極端子および負極端子が形成された面に平行な面で切断した角型電池缶1の断面を示す。正極端子に正極タブを介して電気的に接続されたシート状の正極2と負極端子に負極タブを介して電気的に接続された負極3とが図示しないセパレータを介して積層された電極群は角型電池缶1内に挿入されている。この際、正極2及び負極3は、自身の面が正極端子及び負極端子が形成された面に直交するように、すなわち当該面に沿う方向を積層方向として積層されている。そして、電極群と導電体である角型電池缶1との絶縁をするために、電極群の4隅にはポリプロピレン製の補助シート4、5が図のとおり配置される。電極面幅aを角型電池缶断面長辺方向Xの内法(うちのり)bと同一寸法にすると、角型電池缶角部1aが丸みを帯びているために角部1a付近の電極が圧迫され変形し、これによりセパレータ破れ等が発生し、結果としてショートなど故障を引き起こす危険性が高い。このような電極の変形を回避するため電極面幅aは電池缶断面長辺方向Xの内法bよりもやや小さく、電池缶角部1aの丸みの影響を受けない寸法に設計されている。
 また、角型電池缶1には電解液を蓄える必要があるため、電極群と角型電池缶1との間には一定の空間を設けなければならない。このため補助シート5は絶縁に最低限耐えられる程度の厚み、言い換えれば極めて薄くはりのない絶縁体が用いられる。
 ところが、この構成では、例えば電気自動車用電源として用いられた場合、角型電池缶1に継続的な振動が加えられると、電極群がテープ固定されていても電解液に浸された環境ではテープが緩むこともあり、補助シート5が電極群の重みにより角型電池缶1の形状に沿って変形するとともに、正極2、負極3が図9に示すように面方向にズレ、具体的には正極2、負極3の自身の面に沿う方向、すなわち積層方向に直交する方向を生じる。このズレが生じると、角型電池缶1の角部1aを拡大した図10に示すように、電極群の端部にある正極2、負極3が角型電池缶1に沿って変形し、この変形した状態でさらに振動が加えられるとセパレータ破れなどが発生し、結果としてショートなどの故障が生じることが判明した。なお、電極群の中央部の電極ズレは単に電極が平行に少々移動するだけであり、電極が曲がるなどの変形は生じがたいので、故障の原因となる可能性は小さい。
 本発明は、上記問題に鑑み、継続的な振動が加えられた場合であっても、角型電池缶角部での電極変形を極力防止し、設計通りの性能を最大限発揮することのできる二次電池および同電池を用いた給電または蓄電システムを提供することを目的とする。
 上記課題を解決するために、本発明の二次電池は以下の構成を採用する。
 すなわち、正極端子および負極端子が設けられた角型電池缶と、前記角型電池缶内に配置され、前記正極端子に電気的に接続されたシート状正極及び前記負極端子に電気的に接続されたシート状負極がセパレータを介して積層された電極群と、前記正極端子および前記負極端子が形成された前記角型電池缶の面と同一方向の面での断面が略コの字型に形成された第1および第2の絶縁性補助シートと、絶縁性テープとを有し、前記第1及び第2の絶縁性補助シートは前記電極群を挟んで対向する位置に配置され且つ前記絶縁性テープで連結されていることを特徴とする。
 また、本発明による給電システムとしての電気自動車は、正極端子および負極端子が設けられた角型電池缶と、前記角型電池缶内に配置され、前記正極端子に電気的に接続されたシート状正極及び前記負極端子に電気的に接続されたシート状負極がセパレータを介して積層された電極群と、前記正極端子および前記負極端子が形成された前記角型電池缶の面と同一方向の面での断面が略コの字型に形成された第1および第2の絶縁性補助シートと、絶縁性テープとを有し、前記第1及び第2の絶縁性補助シートは前記電極群を挟んで対向する位置に配置され且つ前記絶縁性テープで連結されている二次電池と、
 車輪を駆動するモーターとを有し、
 前記モーターは前記二次電池から給電を受けて駆動することを特徴とする。
 電気自動車としては、電気で駆動可能な自動車であればよく、ハイブリッド自動車でもよい。
 また、本発明による蓄電システムは、正極端子および負極端子が設けられた角型電池缶と、前記角型電池缶内に配置され、前記正極端子に電気的に接続されたシート状正極及び前記負極端子に電気的に接続されたシート状負極がセパレータを介して積層された電極群と、前記正極端子および前記負極端子が形成された前記角型電池缶の面と同一方向の面での断面が略コの字型に形成された第1および第2の絶縁性補助シートと、絶縁性テープとを有し、前記第1及び第2の絶縁性補助シートは前記電極群を挟んで対向する位置に配置され且つ前記絶縁性テープで連結されている二次電池と、
 発電設備とを有し、
 前記二次電池は前記発電設備から給電を受けて蓄電することを特徴とする。
 発電設備としては、太陽電池、燃料電池、風車、火力発電設備、水力発電設備、原子力発電設備など、発電を行う設備であればいずれのものでもよく、自動車、自転車などに備えられる単なる発電機でもよい。発電所でなくとも、一般家庭に設置される発電設備でもよい。
 角型電池缶角部付近のシート状電極が、絶縁性補助シートでほぼコの字に形成されたコの字の一辺で支えられることで、これら電極が角型電池缶の角の丸み部分に沿って変形することを防止することができる。この効果は、積層型と巻回型のいずれの二次電池でも、例えば積層型リチウムイオン二次電池や巻回型リチウムイオン二次電池のいずれにおいても得られるものである。
 絶縁性補助シートは必ずしもコの字型でなければならないわけでなく、約90度の角度で接する絶縁性補助シートの2面で角型電池缶角部付近の複数のシート状電極を支えることができれば上記変形を防止できるので、くの字型、略四角型または略長方形型でもよい。
 これらの形状の形成には、樹脂成型等で型に合わせて初めから所望の型形状に形成してもよく、または複数の絶縁性補助シートを溶着、融着等して1つの型を形成してもよい。
 電極群の角部で約90度になるように2つの絶縁性補助シートを配置し、電極群の角の形状に沿ってこれらを絶縁性テープで連結することによって、実質的に上記形状を形成してもよい。この場合には、絶縁性テープの粘着力が弱くては絶縁性補助シートの2面で角型電池缶角部付近の複数のシート状電極を十分に支えることができないので、上記粘着力が強力である必要がある。
 複数の絶縁性補助シートの一部が互いに重なった状態で、これら複数の絶縁性補助シート同士が絶縁性テープで連結されてもよい。
 また、1つの絶縁性補助シートを折り曲げて1つの型を形成してもよい。折り曲げる場合には、折り曲げた角部の内側が丸まらないように、折り曲げる箇所に切れ込みを入れるのが望ましい。
 複数の絶縁性補助シートの一部ははりのない絶縁性シートを用いることも可能であるが、シート状電極が上記角型電池缶の角の丸み部分に進入しないように支える役割を担う絶縁性補助シートははりのある材料、厚みであることが少なくとも必要である。
 また、電極群へ十分に電解液を浸透させるために、絶縁性補助シートそれ自体に電解液を浸透させる機能があるものが望ましい。絶縁性補助シートに貫通穴を設けて当該浸透機能をもたせてもよい。
 上記絶縁性補助シートはたわみ等の変形が困難な程度に厚みを増して絶縁性硬質補助板としてもよい。
 角型電池缶断面短辺方向に配置される絶縁性補助シートの幅を、角型電池缶断面短辺内法と実質的に同一寸法幅とすることで、振動により電極群から絶縁性補助シートに圧力が加えられた場合にも、絶縁性補助シートを角型電池缶の両角部にひっかけることができる。これにより、シート状電極の角型電池缶角部丸み部分への侵入をより強固に防止できる。絶縁性硬質補助板を使用すれば、さらに強固に防止できる。
 絶縁性テープは、電解液で容易に劣化しない材質であることが望ましい。また、絶縁性テープの粘着剤も電解液で容易に劣化しない材質であることが望ましく、天然ゴム系、合成ゴム系、アクリル系、ビニルアルキルエーテル系、シリコーン系、ポリエステル系、ポリアミド系、ウレタン系、エチレン-アクリル酸エステル系、スチレン-ブタジエンブロック共重合体系、スチレン-イソプレンブロック共重合体系等の粘着剤が使用可能である。ただし、粘着面がなくても外部からの加熱で固定用テープが絶縁性補助シートに熱融着して固定されるという方法も使用可能である。
 上記二次電池を直列または並列に複数接続することにより、組電池を構成してもよい。
 本発明によれば、角型電池缶に継続的な振動が加えられた場合や、充放電が繰り返されることで電極が膨れ、電極群を固定するテープがゆるんだ場合においても、電極群の端部の各シート電極が角型電池缶の角部の丸みに沿って変形することが防止できるため、結果として故障が少なく、設計通りの性能を発揮する二次電池および同電池を用いた給電・蓄電システムを得ることができる。
本発明の第1の実施形態に係る二次電池の角型電池缶断面図である。 本発明の第1の実施形態に係る二次電池のテープ位置説明図である。 本発明の第2の実施形態に係る二次電池の角型電池缶断面図である。 本発明の第3の実施形態に係る二次電池の角型電池缶断面図である。 本発明の第3の実施形態に係る二次電池のテープ位置説明図である。 本発明の第4の実施形態に係る二次電池のテープ位置説明図である。 本発明の第5の実施形態に係る二次電池を用いた給電・蓄電システム概要図である。 本発明の前提技術に係る積層型二次電池の角型電池缶断面図である。 本発明の前提技術の問題点を示す積層型二次電池の角型電池缶断面図である。 本発明の前提技術の問題点を示す積層型二次電池の角型電池缶角部の拡大断面図である。
符号の説明
1 角型電池缶
2 シート状正極(シート状電極)
3 シート状負極(シート状電極)
4 角型電池缶断面長辺方向の絶縁性補助シート
5 角型電池缶断面短辺方向の絶縁性補助シート
6 中空部分
7 絶縁性補助シートの角型電池缶断面長辺方向の部材
8 絶縁性補助シートの角型電池缶断面短辺方向の部材
9 電極群
10 絶縁性テープ
11 二次電池
12 電気自動車
13 配電盤
14 家屋
15 予備の二次電池
16 制御ボックス
17 給電電力系統
18 発電設備
発明を実施するための形態
(第1の実施形態)
 以下に、本発明の第1の実施形態に係る二次電池について、図面を参照して説明する。本発明は以下の最良の形態に限定されるものでなく、本発明の要旨を変更しない範囲内で適宜変更して実施できる。
 図1は、積層型二次電池の断面構成を示す。アルミ等で成型された角型電池缶1の内部には、角型電池缶1の図示しない正極端子と正極タブを介して電気的に接続された略長方形のシート状正極2と図示しない負極端子と負極タブを介して電気的に接続された略長方形のシート状負極3が図示しないセパレータを介してそれぞれ複数積層された電極群と、角型電池缶1の前記正極端子および負極端子が形成された面方向の断面、すなわち正極端子及び負極端子が設けられた一面に沿って切断した断面の長辺方向から電極群を挟み込むように配置された2つのコの字型絶縁性補助シートが挿入される。コの字を形成する3辺のうち、接する二辺の角度は約90度であることが望ましい。図1でのテープ位置は、図2を用いて後述する。
 コの字型絶縁性補助シートの上記角型電池缶断面の長辺方向Xに沿う部材7と上記角型電池缶断面の短辺方向Yに沿う部材8は、安価に製造できる点ではりのある1つの絶縁性補助シートを折り曲げて形成するのが望ましい。この場合、材質は同一となる。
 部材7と部材8とを別個に形成し、後に両者を融着等して一体化することも可能であり、この場合には両者の材質が異なってもよい。シート状電極の角型電池缶角部における折り曲げを防止する観点から、部材8はシート状電極を支えるのに充分な強度を有する必要があるが、部材7はシート状電極を支える部位ではないため必ずしもはりのある必要はない。
 電極面幅aは電気容量を極力大きくするために、角型電池缶1の上記断面長辺方向Xに沿って角部1aの丸み部分を除いた平らな面の幅寸法とほぼ同一となるよう設計するのが望ましい。
 角型電池缶1内の中空部分6には電解液が蓄えられるが、この中空部分6の上記角型電池缶断面の長辺方向Xに沿う長さcは、上記角型電池缶断面の長辺方向内法をbとすると、c=(b-a)÷2となる。電解液を充分に蓄えられるよう角の丸みを調整してcの値が設計される。
 部材8の上記角型電池缶断面の短辺方向Yに沿う長さdは、シート状電極(シート状正極2及びシート状負極3:以下必要に応じて、一括してシート状電極2、3と称する)の角型電池缶角部1aにおける折り曲げを防止する観点から、上記角型電極缶断面の短辺方向Yに沿う内法をf、上記角型電池缶断面の短辺方向Yに沿って角部1aの丸み部分を除いた平らな面の幅寸法をgとすると、(f-g)/2≦d ≦f/2と設計するのが望ましい。下限は部材8が角型電池缶1の角部1aの丸み部分を確実にふさいでシート状電極2,3が当該丸み部分によって曲がるのを極力防止するための設定である。上限は各コの字型絶縁性補助シートのそれぞれの部材8が重ならないようにするための設定である。当該重なりが生じると、コの字を形成する3辺のうち、接する二辺の角度が約90度からズレるため望ましくない。ただし、当該重なりが生じた場合の影響が無視できる程度に軽微な場合には、当該重なりが生じるように設計されうる。
 部材7の上記角型電池缶断面の長辺方向Xに沿う長さeは、実質的に電極面幅aと同一になる。
 図2にテープ位置を示す。2つのコの字型絶縁性補助シートを連結するように絶縁性テープ10を2箇所に貼ることで、2つのコの字型絶縁性補助シートおよび絶縁性テープ10で連結された囲いの中に電極群9が位置する。
 図2では絶縁性テープ10は2箇所に貼られているが、電極群9の周囲に1本のテープを切れ目なく巻いて貼ることで、当該電極群9に配置された2つのコの字型絶縁性補助シートを連結してもよい。この場合には、テープの接着面が大きくなることから、より強固に2つのコの字型絶縁性補助シート同士を連結でき、結果として部材8が複数のシート状電極を支える強度を増すことができる。
 本構成によれば、電極群9の端面付近の複数のシート状電極をはりのある部材8によって電極面と約90度の角度で支えることができるので、電極シートが角型電池缶1の角の丸み部分に進入して変形することを効果的に防ぐことができる。
 本実施形態では、積層型の電極群の場合を示したが、巻回型の電極群を角型電池缶に封入する場合にも同様の効果が得られることはいうまでもない。二次電池としては、例えばリチウムイオン二次電池を対象とできる。
  (第2の実施形態)
 第2の実施形態に係る積層型二次電池について、図3を参照して説明する。この実施形態において、前述した実施形態で用いた部材と共通の部材には同一の符号を付して、その説明を省略する。また、本実施形態は、本発明の要旨を変更しない範囲内で適宜変更して実施できる。
 図3では、上記第1の実施形態と異なり、角型電池缶1内に挿入される電極群を2分割にし、それぞれの電極群9を上記角型電池缶断面の長辺方向Xから挟み込むように配置された2対のコの字型絶縁性補助シートを有する。
 この場合、寸法dは、(f-g)/2 ≦d≦f/4と設計するのが望ましい。これらの点以外は、上記第1の実施形態で述べたと同様である。
 さらに電極群を分割することも可能であり、例えば電極群をN分割(Nは整数)する場合は、N対のコの字型絶縁性補助シートでそれぞれの電極群を挟み込むが、この場合の寸法dは、(f-g)÷2≦d≦f÷(2×N)と設計するのが望ましい。各コの字型絶縁性補助シートの部材8同士の重なりをなくすためである。ただし、当該重なりが生じた場合の影響が無視できる程度に軽微な場合には、当該重なりが生じるように設計されうる。
 絶縁性テープは、複数の各電極群について、上記第1の実施形態で示した図2と同様に貼ることで2つのコの字型絶縁性補助シートおよび絶縁性テープ10で連結された囲いの中に1つの電極群が位置する構成としてもよい。または、複数の各電極群のそれぞれについて角型電池缶1の断面長辺方向Xからそれぞれの電極群を挟み込むように1対のコの字型絶縁性補助シートを配置した後、複数または全ての電極群の周囲を1本の絶縁性テープで切れ目なく巻いて貼ることで、当該絶縁性テープで巻かれた複数の電極群に配置された全てのコの字型絶縁性補助シートを連結するとともに、当該電極群同士がずれないよう固着してもよい。当該電極群同士を固着してまとめることで、角型電池缶1への電極群の挿入が容易となる。
(第3の実施形態)
 第3の実施形態に係る積層型二次電池について、図4、図5を参照して説明する。この実施形態において、前述した実施形態で用いた部材と共通の部材には同一の符号を付して、その説明を省略する。また、本実施形態は、本発明の要旨を変更しない範囲内で適宜変更して実施できる。
 図4では、上記第1の実施形態と異なり、上記角型電池缶断面の短辺方向Yから電極群9を挟み込むように配置された2つのコの字型絶縁性補助シートが挿入される。短辺方向Yに沿う部材8の寸法は上記角型電池缶断面の短辺方向Yに沿う内法fと実質的に同一である。長辺方向Xに沿って配され、電極群9を挟み込む部材7の寸法については、各コの字型絶縁性補助シートの部材7同士が重ならないように、電極面幅aの半分以下とするのが望ましい。ただし、当該重なりが生じた場合の影響が無視できる程度に軽微な場合には、当該重なりが生じるように設計されうる。これらの点以外は、上記第1の実施形態で述べたと同様である。
 本構成では、部材8がコの字の3辺のうち両端の辺を繋ぐ中央の辺となることで、電極群9の全てのシート状電極2、3を部材8で支えることができ、上述の第1の実施形態よりも、積層ずれ防止を強化することができる。
 図5にテープ位置を示す。2つのコの字型絶縁性補助シートを連結するように絶縁性テープ10を2箇所に貼ることで、2つのコの字型絶縁性補助シートおよび絶縁性テープ10で連結された囲いの中に電極群9が位置する。
 図5では絶縁性テープ10は2箇所に貼られているが、電極群9の周囲に1本のテープを切れ目なく巻いて貼ることで、当該電極群9に配置された2つのコの字型絶縁性補助シートを連結してもよい。この場合には、テープの接着面が大きくなることから、より強固に2つのコの字型絶縁性補助シート同士を連結でき、結果として部材8が複数のシート状電極2、3を支える強度を増すことができる。
 本実施形態では電極群9を1つとしているが、第2の実施形態と同様に電極群を複数に分割して角型電池缶1内に挿入してもよい。この場合は、部材8の寸法dは実質的にf/Nと設計するのが望ましい。
  (第4の実施形態)
 第4の実施形態に係る積層型二次電池について、図6を参照して説明する。この実施形態において、前述した実施形態で用いた部材と共通の部材には同一の符号を付して、その説明を省略する。また、本実施形態は、本発明の要旨を変更しない範囲内で適宜変更して実施できる。
 図6では、上記第1の実施形態と異なり、角型電池缶1の断面から見て電極群9を取り囲むように配置された1つの略長方形型の絶縁性補助シートが角型電池缶1内に挿入される。1つの絶縁性補助シートを3箇所で折り曲げ、絶縁性テープ10にて同絶縁性補助シートの両端の1箇所を連結することで略長方形を形成する。1つの絶縁性補助シートを4箇所で折り曲げ、絶縁性テープ10にて同絶縁性補助シートの両端の1箇所を連結することで略長方形を形成してもよい。この場合、部材8の寸法dは実質的に電極積層幅と同一になり、部材7の寸法eは電極面幅と実質的に同一となる。これらの点以外は、上記第1の実施形態で述べたと同様である。
 本構成では、1つの絶縁性補助シートだけで電極群9を取り囲むことができるので、他の実施形態に比べ安価に製造ができる。
 本実施の形態では電極群9を1つとしているが、第2の実施形態と同様に電極群を複数に分割して角型電池缶1に挿入してもよい。この場合は、部材8の寸法dは実質的にf/Nとなる。
  (第5の実施形態)
 第5の実施形態に係る二次電池を利用した蓄電・給電システムについて、図7を参照して説明する。この実施形態において、前述した実施形態で用いた部材と共通の部材には同一の符号を付して、その説明を省略する。また、本発明は以下の実施形態に限定されるものでなく、本発明の要旨を変更しない範囲内で適宜変更して実施できる。
 電気自動車12に搭載された二次電池11および家屋14外に配置された予備二次電池15は、先述の第1~第4の実施形態のいずれかで述べた本発明に係る二次電池であり、例えば積層型リチウムイオン二次電池である。
 まず、蓄電システムにつき説明する。風力発電、火力発電、水力発電、原子力発電、太陽電池、燃料電池等の発電設備18から発電された電力は、供給電力系統17を経由してユーザーの利用する制御ボックス16へ供給される。制御ボックス16でユーザーが切り替え操作することで、電気自動車12の駆動用電源である二次電池11、予備二次電池15、配電盤13のいずれかに発電設備18から送電された電力を供給する。予備二次電池15または電気自動車12の二次電池11は電力供給がなされると充電・蓄電を行う。災害等により発電設備18からの給電が停止した場合に予備電源とするため、予備二次電池15には充分な蓄電を行っておくのが望ましい。
 昼間は配電盤13、夜間は予備二次電池15または電気自動車12の二次電池11へ電力供給するように制御ボックスをプログラム制御してもよい。
 次に給電システムにつき説明する。上記蓄電システムにより充電がなされた予備二次電池15は、制御ボックス16を介して家屋14内の配電盤13に電気的に接続されている。配電盤13は、家屋14内のプラグに接続されたエアコン、テレビ等の電化製品と電気的に接続されている。ユーザーは給電電力系統17からの電力を受けて家屋14内の電化製品を駆動するかまたは上記蓄電システムにより蓄電した予備二次電池15の電力を利用して電化製品を駆動するかを選択でき、この選択・切り替えを制御ボックス16により行う。
 制御ボックス16における切り替えにより、予備二次電池15が配電盤13に電気的に接続された場合には、予備二次電池15から配電盤13へ給電され、上記電化製品の駆動が可能となる。
  電気自動車12は、上記蓄電システムにより蓄電した二次電池11から車輪を駆動するモーターに給電することで、走行可能となる。電気自動車12は電気モーターで車輪を駆動することが可能な自動車であればよく、ハイブリッド自動車でもよい。
 本発明に係る二次電池を利用した蓄電・給電システムでは、同二次電池において故障の一因である振動による角型電池缶内角部での積層ズレ及び電極曲がりを極力防止することができるので、振動の多い自動車における給電システムとしても、地震の多発国における給電・蓄電システムとしても、故障の少ない安定した動作が可能となる。

Claims (8)

  1.   正極端子および負極端子が設けられた角型電池缶と、
      前記角型電池缶内に配置され、前記正極端子に電気的に接続されたシート状正極及び前記負極端子に電気的に接続されたシート状負極がセパレータを介して積層された電極群と、
      前記正極端子および前記負極端子が形成された前記角型電池缶の面と同一方向の面での断面が略コの字型に形成された第1および第2の絶縁性補助シートと、
      絶縁性テープとを有し、
      前記第1及び第2の絶縁性補助シートは前記電極群を挟んで対向する位置に配置され且つ前記絶縁性テープで連結されていることを特徴とする二次電池。
  2.   前記第1および第2の絶縁性補助シートは、それぞれ1つのシート状部材の端部を折り曲げることで前記略コの字型に形成されることを特徴とする請求項1に記載の二次電池。
  3.   正極端子および負極端子が設けられた角型電池缶と、
      前記角型電池缶内に配置され、前記正極端子に電気的に接続されたシート状正極及び前記負極端子に電気的に接続されたシート状負極がセパレータを介して積層された電極群と、
      前記正極端子および前記負極端子が形成された前記角型電池缶の面と同一方向の面での断面の短辺方向の前記電極群の幅と略同一の幅寸法または前記電極群の幅より小さい幅寸法を有し、前記短辺方向から前記電極群を挟んで対向する位置にそれぞれ配置された第1および第2の絶縁性補助シートと、
      前記断面の長辺方向の前記電極群の幅と略同一の幅または前記電極群の幅より小さい幅寸法を有し、前記長辺方向から前記電極群を挟んで対向する位置にそれぞれ配置された第3および第4の絶縁性補助シートと、
      絶縁性テープとを有し、
      前記第1、第2、第3および第4の絶縁性補助シート並びに前記絶縁性テープで連結された囲いの中に前記電極群が位置することを特徴とする二次電池。
  4.   前記第3および第4の絶縁性補助シートは少なくともそれぞれ第1部分および第2部分に分割され、前記第3および第4の絶縁性補助シートの各第1部分は前記第1の絶縁性補助シートと一体化しており、前記第3および第4の絶縁性補助シートの各第2部分は前記第2の絶縁性補助シートと一体化していることを特徴とする請求項3に記載の二次電池。
  5.   前記第1および第2の絶縁性補助シートは少なくともそれぞれ第1部分および第2部分に分割され、前記第1および第2の絶縁性補助シートの各第1部分は前記第3の絶縁性補助シートと一体化しており、前記第1および第2の絶縁性補助シートの各第2部分は前記第4の絶縁性補助シートと一体化していることを特徴とする請求項3に記載の二次電池。
  6.   前記第1、第2、第3および第4の絶縁性補助シートは1つのシート状に一体化されていることを特徴とする請求項3に記載の二次電池。
  7.   正極端子および負極端子が設けられた角型電池缶と、前記角型電池缶内に配置され、前記正極端子に電気的に接続されたシート状正極及び前記負極端子に電気的に接続されたシート状負極がセパレータを介して積層された電極群と、前記正極端子および前記負極端子が形成された前記角型電池缶の面と同一方向の面での断面が略コの字型に形成された第1および第2の絶縁性補助シートと、絶縁性テープとを有し、前記第1及び第2の絶縁性補助シートは前記電極群を挟んで対向する位置に配置され且つ前記絶縁性テープで連結されている二次電池と、
      車輪を駆動するモーターとを有し、
      前記モーターは前記二次電池から給電を受けて駆動することを特徴とする電気自動車。
  8.   正極端子および負極端子が設けられた角型電池缶と、前記角型電池缶内に配置され、前記正極端子に電気的に接続されたシート状正極及び前記負極端子に電気的に接続されたシート状負極がセパレータを介して積層された電極群と、前記正極端子および前記負極端子が形成された前記角型電池缶の面と同一方向の面での断面が略コの字型に形成された第1および第2の絶縁性補助シートと、絶縁性テープとを有し、前記第1及び第2の絶縁性補助シートは前記電極群を挟んで対向する位置に配置され且つ前記絶縁性テープで連結されている二次電池と、
      発電設備とを有し、
      前記二次電池は前記発電設備から給電を受けて蓄電することを特徴とする蓄電システム。
PCT/JP2009/056648 2009-03-31 2009-03-31 二次電池および電池システム WO2010113254A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2010539645A JP5506692B2 (ja) 2009-03-31 2009-03-31 二次電池、電気自動車および蓄電システム
US13/124,734 US20110244319A1 (en) 2009-03-31 2009-03-31 Secondary battery and battery system
EP09842609A EP2416432A1 (en) 2009-03-31 2009-03-31 Secondary battery and battery system
PCT/JP2009/056648 WO2010113254A1 (ja) 2009-03-31 2009-03-31 二次電池および電池システム
CN2009801189677A CN102047489A (zh) 2009-03-31 2009-03-31 二次电池及电池***
KR1020107026398A KR101345446B1 (ko) 2009-03-31 2009-03-31 2차 전지 및 전지 시스템

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/056648 WO2010113254A1 (ja) 2009-03-31 2009-03-31 二次電池および電池システム

Publications (1)

Publication Number Publication Date
WO2010113254A1 true WO2010113254A1 (ja) 2010-10-07

Family

ID=42827587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056648 WO2010113254A1 (ja) 2009-03-31 2009-03-31 二次電池および電池システム

Country Status (6)

Country Link
US (1) US20110244319A1 (ja)
EP (1) EP2416432A1 (ja)
JP (1) JP5506692B2 (ja)
KR (1) KR101345446B1 (ja)
CN (1) CN102047489A (ja)
WO (1) WO2010113254A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013515352A (ja) * 2011-01-06 2013-05-02 エルジー・ケム・リミテッド セルのサイドテープ自動付着方法及び装置
WO2013154155A1 (ja) * 2012-04-13 2013-10-17 株式会社 豊田自動織機 蓄電装置及び二次電池
JP2014011115A (ja) * 2012-07-02 2014-01-20 Toyota Industries Corp 蓄電装置
US8802283B2 (en) 2012-01-19 2014-08-12 Samsung Sdi Co., Ltd. Fabricating method of secondary battery

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015228359A (ja) * 2014-05-02 2015-12-17 住友電気工業株式会社 角型蓄電デバイス、および角型蓄電デバイスの製造方法
KR102629756B1 (ko) * 2014-07-18 2024-01-29 보드 오브 트러스티즈 오브 미시건 스테이트 유니버시티 산화환원 셔틀 첨가제를 포함하는 재충전 가능한 리튬이온 전지
JP6245142B2 (ja) * 2014-10-30 2017-12-13 トヨタ自動車株式会社 二次電池の製造方法および二次電池
JP7089295B2 (ja) 2016-11-22 2022-06-22 ボード オブ トラスティーズ オブ ミシガン ステイト ユニバーシティ 充電式電気化学セルおよび酸化還元フロー電池
US11545691B2 (en) 2017-07-20 2023-01-03 Board Of Trustees Of Michigan State University Redox flow battery
CN108847460A (zh) * 2018-06-26 2018-11-20 安徽相源新能源有限公司 一种圆柱形散热防爆锂电池
US20220367902A1 (en) * 2018-11-19 2022-11-17 Samsung Sdi Co., Ltd. Electrode assembly and method of manufacturing the same
KR102164003B1 (ko) * 2018-11-19 2020-10-12 삼성에스디아이 주식회사 전극 조립체 및 그의 제조 방법
US20210043881A1 (en) * 2019-08-07 2021-02-11 Apple Inc. Battery cell insulation and wettability

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000059063A1 (en) * 1999-03-26 2000-10-05 Matsushita Electric Industrial Co., Ltd. Laminate sheath type battery
JP2004047161A (ja) * 2002-07-09 2004-02-12 Nissan Motor Co Ltd 二次電池及びそれを用いた組電池
JP2008091079A (ja) * 2006-09-29 2008-04-17 Toshiba Corp 非水電解質電池用負極活物質、非水電解質電池、電池パック及び自動車
JP2008091099A (ja) 2006-09-29 2008-04-17 Sanyo Electric Co Ltd 積層式リチウムイオン電池
JP2008204706A (ja) * 2007-02-19 2008-09-04 Sony Corp 積層型非水電解質電池およびその作製方法ならびに積層装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100472504B1 (ko) * 2002-06-17 2005-03-10 삼성에스디아이 주식회사 보강구조가 개선된 파우치형 이차전지
EP1864344B1 (en) * 2005-04-01 2018-05-02 Lg Chem, Ltd. Lithium secondary battery comprising electrode additive
JP4806953B2 (ja) * 2005-04-14 2011-11-02 トヨタ自動車株式会社 燃料電池システムとその運転方法、及び燃料電池車両
JP4806270B2 (ja) * 2006-02-21 2011-11-02 三洋電機株式会社 角形電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000059063A1 (en) * 1999-03-26 2000-10-05 Matsushita Electric Industrial Co., Ltd. Laminate sheath type battery
JP2004047161A (ja) * 2002-07-09 2004-02-12 Nissan Motor Co Ltd 二次電池及びそれを用いた組電池
JP2008091079A (ja) * 2006-09-29 2008-04-17 Toshiba Corp 非水電解質電池用負極活物質、非水電解質電池、電池パック及び自動車
JP2008091099A (ja) 2006-09-29 2008-04-17 Sanyo Electric Co Ltd 積層式リチウムイオン電池
JP2008204706A (ja) * 2007-02-19 2008-09-04 Sony Corp 積層型非水電解質電池およびその作製方法ならびに積層装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013515352A (ja) * 2011-01-06 2013-05-02 エルジー・ケム・リミテッド セルのサイドテープ自動付着方法及び装置
US8802283B2 (en) 2012-01-19 2014-08-12 Samsung Sdi Co., Ltd. Fabricating method of secondary battery
WO2013154155A1 (ja) * 2012-04-13 2013-10-17 株式会社 豊田自動織機 蓄電装置及び二次電池
JP2013235818A (ja) * 2012-04-13 2013-11-21 Toyota Industries Corp 蓄電装置及び二次電池
US9905826B2 (en) 2012-04-13 2018-02-27 Kabushiki Kaisha Toyota Jidoshokki Electric storage device and rechargeable battery
JP2014011115A (ja) * 2012-07-02 2014-01-20 Toyota Industries Corp 蓄電装置

Also Published As

Publication number Publication date
EP2416432A1 (en) 2012-02-08
CN102047489A (zh) 2011-05-04
KR20110005891A (ko) 2011-01-19
JP5506692B2 (ja) 2014-05-28
US20110244319A1 (en) 2011-10-06
JPWO2010113254A1 (ja) 2012-10-04
KR101345446B1 (ko) 2013-12-27

Similar Documents

Publication Publication Date Title
JP5506692B2 (ja) 二次電池、電気自動車および蓄電システム
JP5244918B2 (ja) 二次電池および電池システム
JP5230801B2 (ja) 二次電池および電池システム
JP5244919B2 (ja) 二次電池および電池システム
JP5398273B2 (ja) 蓄電モジュール
JP5506693B2 (ja) 二次電池および電池システム
JP5699909B2 (ja) 二次電池用電極体及び二次電池並びに車両
WO2024114131A1 (zh) 电池及用电装置
JP2011054338A (ja) 電極接続構造および電極接続方法
JP2014524646A (ja) エネルギー貯蔵装置及びエネルギー貯蔵装置製造方法
WO2020261727A1 (ja) 電源装置とこの電源装置を備える電動車両及び蓄電装置
KR102564972B1 (ko) 이차 전지 및 이차 전지 적층체

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980118967.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010539645

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09842609

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20107026398

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009842609

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13124734

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE