WO2010110567A2 - Solar cell, and method for manufacturing same - Google Patents

Solar cell, and method for manufacturing same Download PDF

Info

Publication number
WO2010110567A2
WO2010110567A2 PCT/KR2010/001750 KR2010001750W WO2010110567A2 WO 2010110567 A2 WO2010110567 A2 WO 2010110567A2 KR 2010001750 W KR2010001750 W KR 2010001750W WO 2010110567 A2 WO2010110567 A2 WO 2010110567A2
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
electrode
photoactive layer
light
layer
Prior art date
Application number
PCT/KR2010/001750
Other languages
French (fr)
Korean (ko)
Other versions
WO2010110567A3 (en
Inventor
박재근
이수환
김달호
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Publication of WO2010110567A2 publication Critical patent/WO2010110567A2/en
Publication of WO2010110567A3 publication Critical patent/WO2010110567A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/87Light-trapping means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/353Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising blocking layers, e.g. exciton blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solar cell and a method for manufacturing the same, and more particularly, a solar cell and a photovoltaic cell which improve light absorption and improve photoelectric conversion efficiency by reducing light loss emitted from the outside by reflecting light incident from the outside. It relates to a manufacturing method.
  • solar cells which are photovoltaic devices that convert sunlight into electrical energy, are endless and environmentally friendly, and their importance is increasing over time.
  • organic solar cells can be manufactured by spin coating, inkjet printing, roll coating, or doctor blade method, so the manufacturing process is simple, low manufacturing cost, large area can be coated, and thin film can be formed even at low temperature. It is possible to use almost all kinds of substrates such as glass substrates and plastic substrates.
  • various types of solar cells such as plastic molded products such as curved surfaces and spherical surfaces, may be manufactured without bending the substrate, and may be bent or folded to be convenient to carry. By utilizing these advantages, it is convenient to attach to clothes, bags, or portable electrical and electronic products.
  • the polymer blend thin film has high transparency to light and can be attached to a glass window of a building or a car window so that the outside can be produced while generating power, and thus may have a much higher application range than an opaque silicon solar cell.
  • organic solar cells are not suitable for practical applications because of their low power conversion efficiency. Accordingly, various studies for increasing the power conversion efficiency of the organic solar cell have been conducted.
  • the process of absorbing light by the organic solar cell according to the prior art as shown in Figure 1, the electron donor (doner, doner) in the photoactive layer while the light incident from the outside passes through the photoactive layer (3) ) Is absorbed by the second electrode, and the non-absorbed light is reflected by the second electrode 4 and again absorbed while passing through the photoactive layer.
  • the light that is not reabsorbed is emitted to the outside again as it causes light loss, which is a factor to reduce the photoelectric conversion efficiency of the solar cell.
  • the nanocrystal is preferably made of any one material selected from gold, aluminum, copper, silver, nickel or alloys thereof, calcium / aluminum alloys, magnesium / silver alloys, and aluminum / lithium alloys.
  • the nanocrystals have a diameter of 1 to 30 nm.
  • the photoactive layer preferably comprises an electron donor and an electron acceptor.
  • the electron donor may be P3HT (poly (3-hexylthiophene)), polysiloxane carbazole, polyaniline, polyethylene oxide, (poly (1-methoxy-4- (0-dispersed 1) -2,5- Phenylene-vinylene), polyindole, polycarbazole, polypyridazine, polyisothianaphthalene, polyphenylene sulfide, polyvinylpyridine, polythiophene, polyfluorene, polypyridine, and derivatives thereof
  • the electron acceptor is preferably a fullerene or a fullerene derivative.
  • It may include a hole transport layer formed between the first electrode and the photoactive layer.
  • It may include a blocking layer formed between the photoactive layer and the second electrode.
  • a method of manufacturing a solar cell having a photoactive layer formed between a first electrode and a second electrode comprising: (a) blending an electron donor, an electron acceptor, and a nanocrystal in an organic solvent to produce a photoactive layer material; (b) forming the prepared photoactive layer material as a photoactive layer between the first electrode and the second electrode.
  • the step (b) is preferably performed by spin coating the photoactive layer material on the first electrode and then annealing in a nitrogen atmosphere.
  • the nanocrystals are dispersed and formed in the photoactive layer, and the light is re-reflected by the nanocrystals a plurality of times to increase the optical path in the solar cell device, and as a result photoelectric conversion The efficiency can be improved.
  • FIG. 1 is a view showing an optical path in a solar cell according to the prior art.
  • FIG. 2 is a cross-sectional view showing a solar cell according to an embodiment of the present invention.
  • FIG 3 is a cross-sectional view showing a solar cell according to another embodiment of the present invention.
  • FIG. 4 is a view illustrating an optical path in a solar cell according to embodiments of the present invention.
  • FIG. 5 is a diagram illustrating a solar cell manufactured according to an embodiment of the present invention.
  • FIG. 6 is a graph showing the characteristics of a conventional solar cell device without a nanocrystal.
  • FIG. 7 is a graph showing device characteristics of a solar cell manufactured according to an embodiment of the present invention.
  • FIG. 8 is a graph showing the characteristics of the solar cell device of the present invention according to the weight ratio of nanocrystals.
  • FIG. 2 is a cross-sectional view showing a solar cell according to an embodiment of the present invention
  • Figure 3 is a cross-sectional view showing a solar cell according to another embodiment of the present invention
  • Figure 4 is a solar cell according to embodiments of the present invention
  • Figure 5 shows the optical path of Figure 5 shows a solar cell manufactured according to an embodiment of the present invention
  • Figure 6 is a graph showing the characteristics of a conventional solar cell device without nanocrystals
  • Figure 7 is the present invention
  • Graph showing the device characteristics of the solar cell manufactured according to an embodiment of Figure 8 is a graph showing the characteristics of the solar cell device of the present invention according to the weight ratio of the nanocrystals.
  • the solar cell according to the exemplary embodiment of the present invention includes a substrate 10, a first electrode 20, a photoactive layer 30, and a second electrode 40.
  • One or more nanocrystals 31 are dispersed in layer 30.
  • the substrate 10 is not particularly limited as long as it has transparency, and may be a transparent inorganic substrate such as quartz and glass, or polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), polystyrene (PS), poly It may be a transparent plastic substrate selected from the group consisting of propylene (PP), polyimide (PI), polyethylenesulfonate (PES), polyoxymethylene (POM), AS resin, ABS resin.
  • the substrate 10 preferably has a transmittance of at least 70% or more, preferably 80% or more in the visible light wavelength band.
  • the first electrode 20 is a path through which the light passing through the substrate 10 reaches the photoactive layer 30, a material having high transparency is preferable.
  • the conductive material forming the first electrode 20 include indium tin oxide (ITO), gold, silver, florin doped tin oxide (FTO), ZnO-Ga2O3, ZnO-Al2O3, SnO2-Sb2O3, and the like. But it is not limited thereto.
  • the photoactive layer 30 having the electron donor and the electron acceptor material blended is formed on the upper part of the first electrode 20 by spin coating or the like, and according to a preferred embodiment of the present invention, the photoactive layer At least one nanocrystal 31 is dispersed in 30.
  • the nanocrystal 31 is preferably made of a material with high reflectivity to light. Specifically, it is preferable that the reflectivity of light is made of a material of 50% or more. Here, the reflectivity of light means the ratio of the amount of light incident to the metal and the amount of reflected light.
  • Such materials include, but are not limited to, gold, aluminum, copper, silver, nickel or alloys thereof, calcium / aluminum alloys, magnesium / silver alloys, aluminum / lithium alloys, and the like.
  • the nanocrystals 31 may have a diameter of 1 to 30 nm.
  • the diameter of the nanocrystals is formed to be 1 nm or more, the light reflected from the second electrode 40 is not reflected again and the risk of loss is reduced, which is efficient in terms of light resorption.
  • the diameter of the nanocrystals is formed to be 30 nm or less, there is less fear that light loss is caused by reflecting light incident from the first electrode 20 to the photoactive layer 30.
  • the thickness of the photoactive layer 30 is 70-150 nm normally, when the diameter of a nanocrystal exceeds 30 nm, the space which a nanocrystal occupies is large, and there exists a possibility that the light absorption function in a photoactive layer will be impaired.
  • the nano crystal 31 may be dispersed in the photoactive layer 30.
  • the nanocrystals 31 are photoactive with the first electrode 20.
  • the layers 30 may be formed in the same plane in a form in which they are distributed to each other near the boundary surface of the layer 30.
  • the nanocrystal 31 may be positioned near the interface between the first electrode 20 and the photoactive layer 30 and near the interface between the second electrode 40 and the photoactive layer 30.
  • Examples of the electron donor include P3HT (poly (3-hexylthiophene)), polysiloxane carbazole, polyaniline, polyethylene oxide, (poly (1-methoxy-4- (0-dispersed 1) -2,5-phenylene -Vinylene), polyindole, polycarbazole, polypyridazine, polyisothianaphthalene, polyphenylene sulfide, polyvinylpyridine, polythiophene, polyfluorene, polypyridine, and derivatives thereof
  • the electron acceptor is preferably a fullerene or a fullerene derivative.
  • the second electrode 40 is formed using a material having high reflectivity and low resistance to reabsorb light that is incident through the first electrode but is not absorbed in the photoactive layer.
  • the material of the second electrode 40 may be a material having a lower work function than that of the first electrode, specifically magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, aluminum, silver, tin, and lead. Including, but not limited to, the same metals, or alloys thereof.
  • the solar cell according to another embodiment of the present invention includes a hole transport layer 50 formed between the first electrode 20 and the photoactive layer 30 in the structure of the solar cell described above;
  • a blocking layer 60 and an electron injection layer 70 formed between the photoactive layer 30 and the second electrode 40 may be included. That is, between the first electrode 20 and the second electrode 40, the hole transport layer 50 / photoactive layer 30, the photoactive layer 30 / electron injection layer 70, and the hole transport layer 50. ),
  • the photoactive layer 30 / the electron injection layer 70, or the hole transport layer 50 / photoactive layer 30 / blocking layer 60 / the electron injection layer 70, a variety of laminated structures can be formed Can be.
  • the hole transport layer 50 is preferably made of a material that can facilitate the movement of holes.
  • the conductive polymer forming the hole transport layer 50 include PEDOT (poly (3,4-ethylenedioxythiophene)), PSS (poly (styrenesulfonate)), polyaniline, phthalocyanine, pentacene, polydiphenylacetylene , Poly (t-butyl) diphenylacetylene, poly (trifluoromethyl) diphenylacetylene, Cu-PC (copper phthalocyanine) poly (bistrifluoromethyl) acetylene, polybis (T-butyldiphenyl) acetylene, Poly (trimethylsilyl) diphenylacetylene, poly (carbazole) diphenylacetylene, polydiacetylene, polyphenylacetylene, polypyridineacetylene, poly
  • the blocking layer 60 prevents holes separated from the photoactive layer 30 and excitons not separated from moving to the second electrode 40 to be recombined again.
  • the blocking layer 60 may be made of a material having a high highest occupied molecular orbital (HOMO) energy level, such as, for example, bathocuproine (BCP).
  • HOMO high highest occupied molecular orbital
  • the electron injection layer 70 allows electrons separated from the exciton to be well injected into the second electrode 40, and also improves the interfacial property between the photoactive layer or blocking layer and the second electrode, and is mainly LiF. , Liq and the like are used.
  • the solar cell according to the embodiments of the present invention is formed by dispersing one or more nanocrystals in the photoactive layer 30, as shown in FIG. 4, which is reflected by the second electrode 40.
  • the solar cell is formed by dispersing one or more nanocrystals in the photoactive layer 30, as shown in FIG. 4, which is reflected by the second electrode 40.
  • the solar cell of the present invention As shown in FIG. 4, light incident through the first electrode (not shown) is absorbed (first light absorption) in the photoactive layer 30, and light that is not absorbed is The light reflected by the second electrode 40 is absorbed by the photoactive layer again (second light absorption), and the light that is not absorbed by the second light absorption is reflected back by the nanocrystal and absorbed by the photoactive layer 30 again (the second light absorption). 3), and this process is repeated to maximize the light absorption rate.
  • the present invention has a light path in which the light flowing into the photoactive layer is reflected two or more times at both interface regions of the photoactive layer and absorbs the light three times or more, thereby minimizing the optical loss, and thereby the photoelectric conversion efficiency. Will improve.
  • the solar cell manufacturing method includes forming a first electrode on a substrate, forming a photoactive layer on the first electrode, and forming a second electrode on the photoactive layer.
  • forming the photoactive layer comprises (a) blending an electron donor, an electron acceptor, and a nanocrystal in an organic solvent to produce a photoactive layer material, and (b) the photoactive layer material prepared above. Forming a photoactive layer between the first electrode and the second electrode.
  • a material that can be used as an electron donor, a material that can be used as an electron acceptor, and nanocrystals are blended into an organic solvent.
  • an organic solvent such as chlorobenzene, benzene, chloroform or THF (Tetrahydrofuran) may be used.
  • Materials that can be used as the electron donor / electron acceptor are the same as described above, so a description thereof will be omitted.
  • the polythiophene derivative which is a conductive polymer material as the electron donor, the fullerene derivative, and the nanocrystal as the electron acceptor are blended at a predetermined ratio for a predetermined time.
  • the solar cell may be manufactured by forming a second electrode on the photoactive layer.
  • the method may further include forming a hole transport layer between the first electrode and the photoactive layer, and forming a blocking layer and an electron injection layer between the photoactive layer and the second electrode. Steps may be further included. This is not particularly limited in the present invention, and any method known in the art can be used without limitation.
  • silver nanocrystals are prepared by the method described below.
  • TOAB tetraoctylammonium bromide
  • nanocrystallization is promoted at a low temperature of about -18 ° C.
  • Silver nanocrystals prepared through the above steps have a diameter of about 3 ⁇ 7 nm.
  • P3HT, PCBM, and the prepared silver nanocrystals were blended in 10 ml of chlorobenzene for at least 72 hours at a weight ratio of 2: 1: 2, respectively, to prepare a photoactive layer material.
  • PEDOT-PSS which is a material of the hole transporting layer
  • IPA isopropyl alcohol
  • a BCP bathoproine
  • LiF lithium fluoride
  • Al aluminum
  • the characteristics of the solar cell are evaluated using open circuit voltage (Voc), short circuit current (Jsc), fill factor (FF) and efficiency.
  • the open circuit voltage Voc is a voltage generated when light is irradiated without an external electrical load, that is, a voltage when current is 0, and the short circuit current Jsc is generated when light is irradiated by a shorted electrical contact.
  • Current is defined as the current caused by light when no voltage is applied.
  • fidelity FF is defined as the product of the current and voltage to which the current and voltage are applied and changed according to the product of the open circuit voltage Voc and the short circuit current Jsc. This fidelity FF is always 1 or less because the open circuit voltage Voc and the short circuit current Jsc are not obtained at the same time.
  • the photoelectric conversion efficiency is a value obtained by dividing the product of the open circuit voltage (Voc), the short-circuit current (Jsc) and the fidelity (FF) by the intensity of the irradiated light is defined by Equation 1 below.
  • 6 and 7 compare the device characteristics of the conventional solar cell and the solar cell of the present invention prepared above.
  • 6 is a graph showing the characteristics of a conventional solar cell device without a nanocrystal.
  • Jsc is 15.34 mA / cm 2
  • Voc is 0.645 eV
  • FF is 0.672.
  • PCE power conversion efficiency
  • . 7 is a graph showing device characteristics of a solar cell manufactured according to an embodiment of the present invention. Referring to FIG. 7, Jsc is 17.46 mA / cm 2 , Voc is 0.665 eV, and FF is 0.635. Substituting this in Equation 1, the photoelectric conversion efficiency is 7.368%.
  • the optically active when the layer is nanocrystal is dispersed, or as compared to the case that in Jsc is 15.34 mA / cm 2 to 17.46 mA / cm 2 can confirm the improvement of about 14%, the efficiency of the solar cell is at 6.648% It can be seen that the improvement was about 10.3% to 7.368%.
  • FIG. 8 looks at the change in the characteristics of the solar cell device according to the weight ratio of the nanocrystals.
  • the graph shown in FIG. 8 shows the change in the weight ratio of silver nanocrystals (Ag) in the photoactive layer 'P3HT: PCBM: Ag' of the ITO / PEDOT: PSS / P3HT: PCBM: Ag / BCP / LiF / Al structured solar cell. It is a graph showing the change in light absorption rate for each wavelength region.
  • the parts shown as '- ⁇ -' are P3HT, PCBM, and silver nanocrystals are respectively 2: 1: 1 weight ratio (hereinafter '1 weight ratio'), and the parts shown as '- ⁇ -' are P3HT, PCBM,
  • the silver nanocrystals have a 2: 1: 2 weight ratio (hereinafter referred to as '2 weight ratio'), and the portions shown as '- ⁇ -' are P3HT, PCBM, and silver nanocrystals respectively have a 2: 1: 3 weight ratio (hereinafter '3').

Abstract

The present invention relates to a solar cell in which optical loss caused when light incident from an external source is reflected and discharged again to the outside is reduced so as to improve the light absorption and efficiency of photoelectric transformation, and to a method for manufacturing the solar cell. The solar cell according to the present invention comprises: a first electrode formed on a substrate; a photoactive layer which is formed on the first electrode, and in which nanocrystals are distributed; and a second electrode formed on the photoactive layer.

Description

태양 전지 및 그 제조 방법Solar cell and its manufacturing method
본 발명은 태양 전지 및 그 제조 방법에 관한 것으로, 보다 상세하게는 외부에서 입사된 빛이 반사되어 다시 외부로 방출되는 광손실을 감소시켜서 광흡수율을 개선하고 광전변환 효율을 향상시킨 태양 전지 및 그 제조 방법에 관한 것이다.The present invention relates to a solar cell and a method for manufacturing the same, and more particularly, a solar cell and a photovoltaic cell which improve light absorption and improve photoelectric conversion efficiency by reducing light loss emitted from the outside by reflecting light incident from the outside. It relates to a manufacturing method.
태양광을 전기에너지로 변환하는 광전변환 소자인 태양 전지는 다른 에너지원과는 달리 무한하고 환경친화적이므로 시간이 갈수록 그 중요성이 더해가고 있다.Unlike other energy sources, solar cells, which are photovoltaic devices that convert sunlight into electrical energy, are endless and environmentally friendly, and their importance is increasing over time.
종래에는 단결정 또는 다결정의 실리콘 태양 전지가 많이 사용되어 왔으나, 실리콘 태양 전지는 제조 비용이 높고 플렉서블 기판에는 적용할 수 없는 등의 문제점이 있어, 최근 이러한 단점을 해결하는 대안으로 유기물 태양 전지에 대한 연구가 활발하게 진행되고 있다.Conventionally, monocrystalline or polycrystalline silicon solar cells have been used a lot, but silicon solar cells have high manufacturing costs and are not applicable to flexible substrates. Is actively underway.
즉, 유기물 태양 전지는 스핀 코팅, 잉크젯 프린팅, 롤 코팅 또는 닥터 블레이드 방법 등으로 제조할 수 있어서 제조 공정이 간단하여 제조 비용이 낮으며, 넓은 면적을 코팅할 수 있고, 낮은 온도에서도 박막을 형성할 수 있으며, 유리 기판을 비롯하여 플라스틱 기판 등 거의 모든 종류의 기판을 사용할 수 있다.That is, organic solar cells can be manufactured by spin coating, inkjet printing, roll coating, or doctor blade method, so the manufacturing process is simple, low manufacturing cost, large area can be coated, and thin film can be formed even at low temperature. It is possible to use almost all kinds of substrates such as glass substrates and plastic substrates.
뿐만 아니라, 기판 형태의 제한 없이 곡면, 구면 등 플라스틱 성형품과 같은 다양한 형태의 태양 전지를 제작할 수 있고 구부리거나 접을 수도 있어서 휴대하기 편리하다. 이와 같은 장점을 활용하면 사람의 옷, 가방 등에 부착하거나 휴대용 전기, 전자 제품에 부착하여 사용하기 편리하다. 또한, 고분자 블렌드 박막은 빛에 대한 투명도가 높아서 건물의 유리창 또는 자동차의 유리창 등에 부착하여 밖을 볼 수 있게 하면서도 전력을 생산할 수 있어 불투명한 실리콘 태양 전지보다 응용 범위가 훨씬 높을 수 있다.In addition, various types of solar cells, such as plastic molded products such as curved surfaces and spherical surfaces, may be manufactured without bending the substrate, and may be bent or folded to be convenient to carry. By utilizing these advantages, it is convenient to attach to clothes, bags, or portable electrical and electronic products. In addition, the polymer blend thin film has high transparency to light and can be attached to a glass window of a building or a car window so that the outside can be produced while generating power, and thus may have a much higher application range than an opaque silicon solar cell.
그러나 이와 같은 장점에도 불구하고 유기물 태양 전지는 전력변환 효율이 낮아서 실용적 응용에는 적합하지 않았다. 따라서, 유기물 태양 전지의 전력변환 효율을 증가시키기 위한 다양한 연구가 진행되고 있다.However, despite these advantages, organic solar cells are not suitable for practical applications because of their low power conversion efficiency. Accordingly, various studies for increasing the power conversion efficiency of the organic solar cell have been conducted.
한편, 종래 기술에 따른 유기물 태양 전지에 의해 빛이 흡수되는 과정은, 도 1에 도시된 바와 같이, 외부에서 입사된 빛이 광활성층(3)을 통과하면서 광활성층에 있는 전자 공여체(도우너, doner)에 의해 흡수되고, 흡수되지 않은 빛은 제2 전극(4)에서 반사되어 다시 광활성층을 통과하면서 재흡수된다. 이때, 재흡수되지 않은 빛은 그대로 다시 외부로 방출되어 광손실을 유발하고, 이러한 광손실은 태양 전지의 광전변환 효율을 감소시키는 요인이 된다.On the other hand, the process of absorbing light by the organic solar cell according to the prior art, as shown in Figure 1, the electron donor (doner, doner) in the photoactive layer while the light incident from the outside passes through the photoactive layer (3) ) Is absorbed by the second electrode, and the non-absorbed light is reflected by the second electrode 4 and again absorbed while passing through the photoactive layer. In this case, the light that is not reabsorbed is emitted to the outside again as it causes light loss, which is a factor to reduce the photoelectric conversion efficiency of the solar cell.
상기한 바와 같은 문제점을 해결하기 위해, 외부에서 태양 전지로 입사되는 빛의 경로를 증가시켜서 광재흡수율을 높이고 광전변환 효율을 향상시킬 수 있는 태양 전지 및 그 제조 방법을 제공한다.In order to solve the above problems, it provides a solar cell and a method of manufacturing the same by increasing the path of light incident to the solar cell from the outside to increase the absorption of light ash and improve the photoelectric conversion efficiency.
상기한 바와 같은 목적을 달성하기 위한 본 발명에 따른 태양 전지는,A solar cell according to the present invention for achieving the above object,
기판 위에 형성되는 제1 전극; 상기 제1 전극 위에 형성되며, 나노 크리스탈이 분산된 광활성층; 및, 상기 광활성층 위에 형성되는 제2 전극을 포함한다.A first electrode formed on the substrate; A photoactive layer formed on the first electrode and having nanocrystals dispersed therein; And a second electrode formed on the photoactive layer.
상기 나노 크리스탈은 금, 알루미늄, 구리, 은, 니켈 또는 그들의 합금, 칼슘/알루미늄 합금, 마그네슘/은 합금, 알루미늄/리튬 합금 중에서 선택된 어느 하나의 물질로 이루어지는 것이 바람직하다.The nanocrystal is preferably made of any one material selected from gold, aluminum, copper, silver, nickel or alloys thereof, calcium / aluminum alloys, magnesium / silver alloys, and aluminum / lithium alloys.
상기 나노 크리스탈은 직경이 1 내지 30nm인 것이 바람직하다.It is preferable that the nanocrystals have a diameter of 1 to 30 nm.
상기 광활성층은 전자 공여체와 전자 수용체를 포함하는 것이 바람직하다. 이때, 상기 전자 공여체는 P3HT(폴리(3-헥실티오펜)), 폴리실록산 카르바졸, 폴리아닐린, 폴리에틸렌 옥사이드, (폴리(1-메톡시-4-(0-디스퍼스레드1)-2,5-페닐렌-비닐렌), 폴리인돌, 폴리카르바졸, 폴리피리디아진, 폴리이소티아나프탈렌, 폴리페닐렌 설파이드, 폴리비닐피리딘, 폴리티오펜, 폴리플루오렌, 폴리피리딘, 그리고 이들의 유도체 중 선택된 어느 하나인 것이 바람직하다. 또한 이때, 상기 전자 수용체는 플러렌 또는 플러렌 유도체인 것이 바람직하다.The photoactive layer preferably comprises an electron donor and an electron acceptor. In this case, the electron donor may be P3HT (poly (3-hexylthiophene)), polysiloxane carbazole, polyaniline, polyethylene oxide, (poly (1-methoxy-4- (0-dispersed 1) -2,5- Phenylene-vinylene), polyindole, polycarbazole, polypyridazine, polyisothianaphthalene, polyphenylene sulfide, polyvinylpyridine, polythiophene, polyfluorene, polypyridine, and derivatives thereof In this case, the electron acceptor is preferably a fullerene or a fullerene derivative.
상기 제1 전극과 광활성층 사이에 형성되는 정공 이동층을 포함할 수 있다.It may include a hole transport layer formed between the first electrode and the photoactive layer.
상기 광활성층과 제2 전극 사이에 형성되는 블로킹층을 포함할 수 있다.It may include a blocking layer formed between the photoactive layer and the second electrode.
또한, 본 발명에 따른 태양 전지 제조 방법은,In addition, the solar cell manufacturing method according to the present invention,
제1 전극과 제2 전극 사이에 광활성층이 형성된 태양 전지 제조 방법으로서, (a) 유기 용매에 전자 공여체와, 전자 수용체, 그리고 나노 크리스탈을 블랜딩(blending)하여 광활성층 재료를 제조하는 단계와, (b) 상기 제조된 광활성층 재료를 상기 제1 전극과 제2 전극 사이에 광활성층으로 형성하는 단계를 포함한다.A method of manufacturing a solar cell having a photoactive layer formed between a first electrode and a second electrode, the method comprising: (a) blending an electron donor, an electron acceptor, and a nanocrystal in an organic solvent to produce a photoactive layer material; (b) forming the prepared photoactive layer material as a photoactive layer between the first electrode and the second electrode.
상기 (b) 단계는 상기 제1 전극 위에 상기 광활성층 재료를 스핀 코팅한 후, 질소 분위기에서 어닐링하여 수행하는 것이 바람직하다.The step (b) is preferably performed by spin coating the photoactive layer material on the first electrode and then annealing in a nitrogen atmosphere.
상기한 바와 같은 본 발명에 의하면, 광활성층에 나노 크리스탈을 분산 형성시키고, 이 나노 크리스탈에 의해 빛이 복수회 재반사되도록 하여 태양 전지 소자 내에서의 광경로를 증가시킬 수 있고, 그 결과 광전변환 효율을 향상시킬 수 있다.According to the present invention as described above, the nanocrystals are dispersed and formed in the photoactive layer, and the light is re-reflected by the nanocrystals a plurality of times to increase the optical path in the solar cell device, and as a result photoelectric conversion The efficiency can be improved.
도 1은 종래 기술에 따른 태양 전지에서의 광경로를 도시한 도이다.1 is a view showing an optical path in a solar cell according to the prior art.
도 2는 본 발명의 일 실시예에 따른 태양 전지를 도시한 단면도이다.2 is a cross-sectional view showing a solar cell according to an embodiment of the present invention.
도 3은 본 발명의 다른 실시예에 따른 태양 전지를 도시한 단면도이다.3 is a cross-sectional view showing a solar cell according to another embodiment of the present invention.
도 4는 본 발명의 실시예들에 따른 태양 전지에서의 광경로를 도시한 도이다.4 is a view illustrating an optical path in a solar cell according to embodiments of the present invention.
도 5는 본 발명의 일 실시예에 따라 제조된 태양 전지를 도시한 도이다.5 is a diagram illustrating a solar cell manufactured according to an embodiment of the present invention.
도 6은 나노 크리스탈이 없는 종래의 태양 전지 소자 특성을 나타내는 그래프이다.6 is a graph showing the characteristics of a conventional solar cell device without a nanocrystal.
도 7은 본 발명의 일 실시예에 따라 제조된 태양 전지의 소자 특성을 나타내는 그래프이다.7 is a graph showing device characteristics of a solar cell manufactured according to an embodiment of the present invention.
도 8은 나노 크리스탈의 중량비에 따른 본 발명의 태양 전지 소자 특성 변화를 나타내는 그래프이다.8 is a graph showing the characteristics of the solar cell device of the present invention according to the weight ratio of nanocrystals.
이하, 첨부된 도면을 참조하여 본 발명의 실시 예를 상세히 설명하기로 한다. 그러나, 본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 도면에서 여러 층 및 각 영역을 명확하게 표현하기 위하여 두께를 확대하여 표현하였으며 도면상에서 동일 부호는 동일한 요소를 지칭하도록 하였다. 또한, 층, 막, 영역 등의 부분이 다른 부분 상부에 또는 상에 있다고 표현되는 경우는 각 부분이 다른 부분의 바로 상부 또는 바로 위에 있는 경우뿐만 아니라 각 부분과 다른 부분의 사이에 또 다른 부분이 있는 경우도 포함한다.Hereinafter, with reference to the accompanying drawings will be described an embodiment of the present invention; However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various forms, and only the embodiments are intended to complete the disclosure of the present invention and to those skilled in the art. It is provided for complete information. In the drawings, the thickness of layers, films, panels, regions, etc., may be exaggerated for clarity, and like reference numerals designate like elements. In addition, when a part such as a layer, a film, an area, or the like is expressed on or above another part, not only when each part is directly above or directly above the other part, but also another part between each part and another part This includes any case.
도 2는 본 발명의 일 실시예에 따른 태양 전지를 도시한 단면도, 도 3은 본 발명의 다른 실시예에 따른 태양 전지를 도시한 단면도, 도 4는 본 발명의 실시예들에 따른 태양 전지에서의 광경로를 도시한 도, 도 5는 본 발명의 일 실시예에 따라 제조된 태양 전지를 도시한 도, 도 6은 나노 크리스탈이 없는 종래의 태양 전지 소자 특성을 나타내는 그래프, 도 7은 본 발명의 일 실시예에 따라 제조된 태양 전지의 소자 특성을 나타내는 그래프, 도 8은 나노 크리스탈의 중량비에 따른 본 발명의 태양 전지 소자 특성 변화를 나타내는 그래프이다.2 is a cross-sectional view showing a solar cell according to an embodiment of the present invention, Figure 3 is a cross-sectional view showing a solar cell according to another embodiment of the present invention, Figure 4 is a solar cell according to embodiments of the present invention Figure 5 shows the optical path of Figure 5 shows a solar cell manufactured according to an embodiment of the present invention, Figure 6 is a graph showing the characteristics of a conventional solar cell device without nanocrystals, Figure 7 is the present invention Graph showing the device characteristics of the solar cell manufactured according to an embodiment of Figure 8 is a graph showing the characteristics of the solar cell device of the present invention according to the weight ratio of the nanocrystals.
도 2에 도시된 바와 같이, 본 발명의 일 실시예에 따른 태양 전지는, 기판(10), 제1 전극(20), 광활성층(30), 제2 전극(40)을 포함하며, 상기 광활성층(30)에는 하나 이상의 나노 크리스탈(31)이 분산되어 있다.As shown in FIG. 2, the solar cell according to the exemplary embodiment of the present invention includes a substrate 10, a first electrode 20, a photoactive layer 30, and a second electrode 40. One or more nanocrystals 31 are dispersed in layer 30.
상기 기판(10)은 투명성을 갖고 있는 것이면 특별히 한정되지 않으며 석영 및 유리와 같은 투명 무기 기판이거나 폴리에틸렌테레프탈레이트(PET), 폴리에틸렌나프탈레이트(PEN), 폴리카보네이트(PC), 폴리스티렌(PS), 폴리프로필렌(PP), 폴리이미드(PI), 폴리에틸렌설포네이트(PES), 폴리옥시메틸렌(POM), AS수지, ABS수지로 구성되는 군에서 선택되는 투명 플라스틱 기판일 수 있다. 또한, 상기 기판(10)은 가시광선 파장대에서 적어도 70% 이상, 바람직하게는 80% 이상의 투과율을 갖는것이 좋다.The substrate 10 is not particularly limited as long as it has transparency, and may be a transparent inorganic substrate such as quartz and glass, or polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), polystyrene (PS), poly It may be a transparent plastic substrate selected from the group consisting of propylene (PP), polyimide (PI), polyethylenesulfonate (PES), polyoxymethylene (POM), AS resin, ABS resin. In addition, the substrate 10 preferably has a transmittance of at least 70% or more, preferably 80% or more in the visible light wavelength band.
상기 제1 전극(20)은 기판(10)을 통과한 빛이 광활성층(30)에 도달하는 경로가 되므로 높은 투명도를 갖는 물질이 바람직하다. 상기 제1전극(20)을 형성하는 전도성 물질의 구체적인 예로는, 인듐틴 옥사이드(ITO), 금, 은, 플로린 도핑된 틴 옥사이드(FTO), ZnO-Ga2O3, ZnO-Al2O3, SnO2-Sb2O3 등을 들 수 있으나, 이들로 제한되는 것은 아니다.Since the first electrode 20 is a path through which the light passing through the substrate 10 reaches the photoactive layer 30, a material having high transparency is preferable. Specific examples of the conductive material forming the first electrode 20 include indium tin oxide (ITO), gold, silver, florin doped tin oxide (FTO), ZnO-Ga2O3, ZnO-Al2O3, SnO2-Sb2O3, and the like. But it is not limited thereto.
상기 제1 전극(20)의 상부에는 전자 공여체와 전자 수용체가 블랜딩된 물질이 스핀 코팅 등의 방법으로 적층된 광활성층(30)이 형성되는데, 본 발명의 바람직한 일 실시예에 따르면, 상기 광활성층(30)에는 적어도 하나 이상의 나노 크리스탈(31)이 분산되어 있다.The photoactive layer 30 having the electron donor and the electron acceptor material blended is formed on the upper part of the first electrode 20 by spin coating or the like, and according to a preferred embodiment of the present invention, the photoactive layer At least one nanocrystal 31 is dispersed in 30.
외부에서 제1 전극(20)을 통해 입사된 빛은 광활성층(30)에 형성된 전자 공여체에 의해 흡수된다. 흡수되지 않은 빛은 제2 전극(40)에서 반사되어 다시 전자 공여체에 의해 재흡수되는데, 이때 재흡수되지 않은 빛은 상기 나노 크리스탈에 재반사된다. 따라서, 광활성층(30)에서의 광흡수율이 증가하게 된다.Light incident from the outside through the first electrode 20 is absorbed by the electron donor formed in the photoactive layer 30. The unabsorbed light is reflected by the second electrode 40 and reabsorbed by the electron donor, wherein the unabsorbed light is reflected back to the nanocrystal. Therefore, the light absorption rate of the photoactive layer 30 is increased.
상기 나노 크리스탈(31)은 빛에 대한 반사도가 높은 물질로 이루어지는 것이 바람직하다. 구체적으로, 빛에 대한 반사도가 50% 이상인 물질로 이루어지는 것이 바람직하다. 여기서 빛에 대한 반사도라 함은 금속을 향해 입사되는 빛의 양과 반사되는 빛의 양을 비율을 의미한다. 이러한 물질은 예를 들면, 금, 알루미늄, 구리, 은, 니켈 또는 그들의 합금, 칼슘/알루미늄 합금, 마그네슘/은 합금, 알루미늄/리튬 합금 등이 있으며, 이에 한정되는 것은 아니다.The nanocrystal 31 is preferably made of a material with high reflectivity to light. Specifically, it is preferable that the reflectivity of light is made of a material of 50% or more. Here, the reflectivity of light means the ratio of the amount of light incident to the metal and the amount of reflected light. Such materials include, but are not limited to, gold, aluminum, copper, silver, nickel or alloys thereof, calcium / aluminum alloys, magnesium / silver alloys, aluminum / lithium alloys, and the like.
또한, 상기 나노 크리스탈(31)은 그 직경이 1 내지 30nm로 형성될 수 있다. 나노 크리스탈의 직경을 1nm 이상으로 형성하면, 제2 전극(40)에서 반사된 빛이 재반사되지 않고 손실될 염려가 작아져 광의 재흡수 관점에서 효율적이다. 나노 크리스탈의 직경을 30nm 이하로 형성하는 경우, 제1 전극(20)에서 광활성층(30)으로 입사되는 빛을 반사시켜서 광손실을 유발할 우려가 적어진다. 또한, 광활성층(30)의 두께가 통상 70 내지 150nm 인데, 나노 크리스탈의 직경이 30nm를 초과하는 경우, 나노 크리스탈이 차지하는 공간이 커서 광활성층에서의 광흡수 기능을 저해할 우려가 커진다.In addition, the nanocrystals 31 may have a diameter of 1 to 30 nm. When the diameter of the nanocrystals is formed to be 1 nm or more, the light reflected from the second electrode 40 is not reflected again and the risk of loss is reduced, which is efficient in terms of light resorption. When the diameter of the nanocrystals is formed to be 30 nm or less, there is less fear that light loss is caused by reflecting light incident from the first electrode 20 to the photoactive layer 30. Moreover, although the thickness of the photoactive layer 30 is 70-150 nm normally, when the diameter of a nanocrystal exceeds 30 nm, the space which a nanocrystal occupies is large, and there exists a possibility that the light absorption function in a photoactive layer will be impaired.
상기 나노 크리스탈(31)은 광활성층(30) 내에 분산될 수 있다. 또한, 상기 제2 전극(40)에 의해 반사되는 빛의 경로를 극대화하여 광활성층(30)에서의 광의 재흡수를 향상시키기 위해, 상기 나노 크리스탈(31)은 상기 제1 전극(20)과 광활성층(30)의 경계면 부근에 서로 분산된 형태로 동일한 평면 내에 형성될 수 있다. 또한, 상기 나노 크리스탈(31)은 상기 제1 전극(20)과 광활성층(30)의 경계면 부근 및 상기 제2 전극(40)과 광활성층(30)의 경계면 부근에 위치될 수도 있다.The nano crystal 31 may be dispersed in the photoactive layer 30. In addition, in order to maximize the path of light reflected by the second electrode 40 to improve resorption of light in the photoactive layer 30, the nanocrystals 31 are photoactive with the first electrode 20. The layers 30 may be formed in the same plane in a form in which they are distributed to each other near the boundary surface of the layer 30. In addition, the nanocrystal 31 may be positioned near the interface between the first electrode 20 and the photoactive layer 30 and near the interface between the second electrode 40 and the photoactive layer 30.
상기 전자 공여체로서는 P3HT(폴리(3-헥실티오펜)), 폴리실록산 카르바졸, 폴리아닐린, 폴리에틸렌 옥사이드, (폴리(1-메톡시-4-(0-디스퍼스레드1)-2,5-페닐렌-비닐렌), 폴리인돌, 폴리카르바졸, 폴리피리디아진, 폴리이소티아나프탈렌, 폴리페닐렌 설파이드, 폴리비닐피리딘, 폴리티오펜, 폴리플루오렌, 폴리피리딘, 그리고 이들의 유도체 중 선택된 어느 하나인 것이 바람직하다. 또한, 상기 전자 수용체로서는 플러렌 또는 플러렌 유도체인 것이 바람직하다.Examples of the electron donor include P3HT (poly (3-hexylthiophene)), polysiloxane carbazole, polyaniline, polyethylene oxide, (poly (1-methoxy-4- (0-dispersed 1) -2,5-phenylene -Vinylene), polyindole, polycarbazole, polypyridazine, polyisothianaphthalene, polyphenylene sulfide, polyvinylpyridine, polythiophene, polyfluorene, polypyridine, and derivatives thereof The electron acceptor is preferably a fullerene or a fullerene derivative.
상기 제2 전극(40)은 상기 제1 전극을 통해 입사되었으나, 광활성층에서 흡수되지 못한 광을 재흡수하기 위해 주로 반사도가 높고 저항이 적은 물질을 사용하여 형성된다. 상기 제2전극(40) 물질로는 상기 제1 전극의 물질보다는 낮은 일함수의 물질, 구체적으로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 알루미늄, 은, 주석 및 납과 같은 금속, 또는 이들의 합금을 포함하나 이에 한정되는 것은 아니다.The second electrode 40 is formed using a material having high reflectivity and low resistance to reabsorb light that is incident through the first electrode but is not absorbed in the photoactive layer. The material of the second electrode 40 may be a material having a lower work function than that of the first electrode, specifically magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, aluminum, silver, tin, and lead. Including, but not limited to, the same metals, or alloys thereof.
도 3에 도시된 바와 같이, 본 발명의 다른 실시예에 따른 태양 전지는, 전술한 태양 전지의 구조에서 제1 전극(20)과 광활성층(30) 사이에 형성된 정공 이동층(50)과, 광활성층(30)과 제2 전극(40) 사이에 형성된 블로킹층(60)과 전자 주입층(70)을 각각 포함할 수 있다. 즉, 상기 제1 전극(20)과 제2 전극(40) 사이에는, 정공 이동층(50)/광활성층(30), 광활성층(30)/전자 주입층(70), 정공 이동층(50)/광활성층(30)/전자 주입층(70), 또는 정공 이동층(50)/광활성층(30)/블로킹층(60)/전자 주입층(70) 등 다양한 형태의 적층 구조가 형성될 수 있다. As shown in FIG. 3, the solar cell according to another embodiment of the present invention includes a hole transport layer 50 formed between the first electrode 20 and the photoactive layer 30 in the structure of the solar cell described above; A blocking layer 60 and an electron injection layer 70 formed between the photoactive layer 30 and the second electrode 40 may be included. That is, between the first electrode 20 and the second electrode 40, the hole transport layer 50 / photoactive layer 30, the photoactive layer 30 / electron injection layer 70, and the hole transport layer 50. ), The photoactive layer 30 / the electron injection layer 70, or the hole transport layer 50 / photoactive layer 30 / blocking layer 60 / the electron injection layer 70, a variety of laminated structures can be formed Can be.
상기 광활성층(30)에서 분리된 정공은 상기 정공 이동층(50)을 통하여 제1 전극(20)에 도달한다. 따라서, 상기 정공 이동층(50)은 정공의 이동을 원활히 할 수 있는 물질을 사용하는 것이 바람직하다. 상기 정공 이동층(50)을 형성하는 전도성 고분자로는 PEDOT(폴리(3,4-에틸렌디옥시티오펜)), PSS(폴리(스티렌설포네이트)), 폴리아닐린, 프탈로시아닌, 펜타센, 폴리디페닐아세틸렌, 폴리(t-부틸)디페닐아세틸렌, 폴리(트리플루오로메틸)디페닐아세틸렌, Cu-PC(커퍼 프탈로시아닌) 폴리(비스트리플루오로메틸)아세틸렌, 폴리비스(T-부틸디페닐)아세틸렌, 폴리(트리메틸실릴)디페닐아세틸렌, 폴리(카르바졸)디페닐아세틸렌, 폴리디아세틸렌, 폴리페닐아세틸렌, 폴리피리딘아세틸렌, 폴리메톡시페닐아세틸렌, 폴리메틸페닐아세틸렌, 폴리(t-부틸)페닐아세틸렌, 폴리니트로페닐아세틸렌, 폴리(트리플루오로메틸)페닐아세틸렌, 폴리(트리메틸실릴)페닐아세틸렌, 및 이들의 유도체와 같은 전도성 고분자 등이 하나 또는 둘 이상의 조합으로 사용될 수 있으나, 이들로 제한되는 것은 아니며, 바람직하게는 PEDOT-PSS 혼합물을 사용하는 것이 좋다.Holes separated from the photoactive layer 30 reach the first electrode 20 through the hole transport layer 50. Therefore, the hole transport layer 50 is preferably made of a material that can facilitate the movement of holes. Examples of the conductive polymer forming the hole transport layer 50 include PEDOT (poly (3,4-ethylenedioxythiophene)), PSS (poly (styrenesulfonate)), polyaniline, phthalocyanine, pentacene, polydiphenylacetylene , Poly (t-butyl) diphenylacetylene, poly (trifluoromethyl) diphenylacetylene, Cu-PC (copper phthalocyanine) poly (bistrifluoromethyl) acetylene, polybis (T-butyldiphenyl) acetylene, Poly (trimethylsilyl) diphenylacetylene, poly (carbazole) diphenylacetylene, polydiacetylene, polyphenylacetylene, polypyridineacetylene, polymethoxyphenylacetylene, polymethylphenylacetylene, poly (t-butyl) phenylacetylene, poly Conductive polymers such as nitrophenylacetylene, poly (trifluoromethyl) phenylacetylene, poly (trimethylsilyl) phenylacetylene, and derivatives thereof may be used in one or two or more combinations, but There is no limitation, and it is preferable to use PEDOT-PSS mixture.
상기 블로킹층(60)은 상기 광활성층(30)에서 분리된 정공과 분리되지 않은 엑시톤들이 제2 전극(40)으로 이동하여 다시 재결합하는 것을 방지하는 역할을 수행한다. 따라서, 상기 블로킹층(60)은 예를 들면 BCP(bathocuproine)와 같이 HOMO(highest Occupied Molecular Orbital) 에너지 준위가 높은 물질을 사용하는 것이 바람직하다.The blocking layer 60 prevents holes separated from the photoactive layer 30 and excitons not separated from moving to the second electrode 40 to be recombined again. Accordingly, the blocking layer 60 may be made of a material having a high highest occupied molecular orbital (HOMO) energy level, such as, for example, bathocuproine (BCP).
상기 전자 주입층(70)은 엑시톤에서 분리된 전자들이 제2 전극(40)으로 잘 주입하게 하며, 또한 광활성층 또는 블로킹층과 제2 전극과의 계면 특성을 향상시키는 역할을 수행하며, 주로 LiF, Liq 등을 사용한다.The electron injection layer 70 allows electrons separated from the exciton to be well injected into the second electrode 40, and also improves the interfacial property between the photoactive layer or blocking layer and the second electrode, and is mainly LiF. , Liq and the like are used.
여기서, 기판(10), 제1 전극(20), 광활성층(30), 제2 전극(40)에 대한 설명은 전술한 바와 같으므로, 이에 대한 설명은 생략한다.Here, since the description of the substrate 10, the first electrode 20, the photoactive layer 30, and the second electrode 40 has been described above, the description thereof will be omitted.
상술한 바와 같은, 본 발명의 실시예들에 따른 태양 전지는 광활성층(30)에 하나 이상의 나노 크리스탈이 분산되어 형성됨으로써, 도 4에 도시된 바와 같이, 제2 전극(40)에 의해 반사되는 빛의 경로를 극대화하여 광활성층(30)에서의 광의 재흡수를 향상시킬 수 있으며, 이에 따라 태양 전지의 광전변환 효율을 향상시킬 수 있게 된다.As described above, the solar cell according to the embodiments of the present invention is formed by dispersing one or more nanocrystals in the photoactive layer 30, as shown in FIG. 4, which is reflected by the second electrode 40. By maximizing the path of the light it is possible to improve the resorption of light in the photoactive layer 30, thereby improving the photoelectric conversion efficiency of the solar cell.
즉, 종래 태양 전지의 경우, 도 1에 도시된 바와 같이, 제1 전극(미도시)을 통해 입사된 광이 광활성층(3)에서 흡수(제1 광흡수)되고, 흡수되지 않은 광이 제2 전극(4)에서 반사되어 다시 광활성층에서 흡수(제2 광흡수)되며, 재흡수되지 않은 광은 손실된다. 따라서, 총 광흡수량은 1회의 반사와 2회의 광흡수에 의해 이루어지게 되어, 광손실이 크고 이로 인해 광전변환 효율이 떨어진다.That is, in the conventional solar cell, as shown in FIG. 1, light incident through the first electrode (not shown) is absorbed (first light absorption) in the photoactive layer 3, and light that is not absorbed is removed. The light reflected by the second electrode 4 is again absorbed by the photoactive layer (second light absorption), and the light which is not reabsorbed is lost. Therefore, the total amount of light absorption is achieved by one reflection and two times light absorption, so that the light loss is large, thereby reducing the photoelectric conversion efficiency.
반면, 본 발명 태양 전지의 경우, 도 4에 도시된 바와 같이, 제1 전극(미도시)을 통해 입사된 광이 광활성층(30)에서 흡수(제1 광흡수)되고, 흡수되지 않은 광이 제2 전극(40)에서 반사되어 다시 광활성층에서 흡수(제2 광흡수)되며, 또한 제2 광흡수시 흡수되지 않은 광은 나노 크리스탈에 의해 재반사되어 다시 광활성층(30)에서 흡수(제3 흡수)되고, 이러한 과정이 반복되어 광흡수율이 극대화된다.On the other hand, in the solar cell of the present invention, as shown in FIG. 4, light incident through the first electrode (not shown) is absorbed (first light absorption) in the photoactive layer 30, and light that is not absorbed is The light reflected by the second electrode 40 is absorbed by the photoactive layer again (second light absorption), and the light that is not absorbed by the second light absorption is reflected back by the nanocrystal and absorbed by the photoactive layer 30 again (the second light absorption). 3), and this process is repeated to maximize the light absorption rate.
즉, 본 발명은 광활성층에 유입되는 광이 광활성층의 양측 계면 영역에서 2회 이상 반사되고, 3회 이상의 광흡수가 이루어지는 광 경로를 가지게 됨으로써 광손실을 최소화할 수 있고, 이로부터 광전변환 효율을 향상시키게 된다.That is, the present invention has a light path in which the light flowing into the photoactive layer is reflected two or more times at both interface regions of the photoactive layer and absorbs the light three times or more, thereby minimizing the optical loss, and thereby the photoelectric conversion efficiency. Will improve.
다음으로, 본 발명에 따른 태양 전지 제조 방법을 설명한다.Next, the solar cell manufacturing method which concerns on this invention is demonstrated.
본 발명에 따른 태양 전지 제조 방법은, 기판 상에 제1 전극을 형성하는 단계, 상기 제1 전극 위에 광활성층을 형성하는 단계, 상기 광활성층 위에 제2 전극을 형성하는 단계를 포함한다.The solar cell manufacturing method according to the present invention includes forming a first electrode on a substrate, forming a photoactive layer on the first electrode, and forming a second electrode on the photoactive layer.
여기서 상기 광활성층을 형성하는 단계는, (a) 유기 용매에 전자 공여체와, 전자 수용체, 그리고 나노 크리스탈을 블랜딩(blending)하여 광활성층 재료를 제조하는 단계와, (b) 상기 제조된 광활성층 재료를 상기 제1 전극과 제2 전극 사이에 광활성층으로 형성하는 단계를 포함한다.Wherein forming the photoactive layer comprises (a) blending an electron donor, an electron acceptor, and a nanocrystal in an organic solvent to produce a photoactive layer material, and (b) the photoactive layer material prepared above. Forming a photoactive layer between the first electrode and the second electrode.
광활성층 재료를 제조하기 위해, 전자 공여체로서 사용될 수 있는 물질과 전자 수용체로 사용될 수 있는 물질, 그리고 나노 크리스탈을 유기 용매에 블랜딩한다. 상기 유기 용매는, 예를 들면, 클로로벤젠, 벤젠, 클로로포름 또는 THF(Tetrahydrofuran) 등과 같은 유기 용매를 사용할 수 있다. 상기 전자 공여체/전자 수용체로 사용될 수 있는 물질은 전술한 바와 같으므로 이에 대한 설명은 생략한다. 예를 들면, 상기 전자 공여체로서 전도성 고분자 물질인 폴리티오펜 유도체와 전자 수용체로서 플러렌 유도체, 그리고 나노 크리스탈을 소정의 비율로 일정한 시간 동안 블랜딩한다.To prepare the photoactive layer material, a material that can be used as an electron donor, a material that can be used as an electron acceptor, and nanocrystals are blended into an organic solvent. As the organic solvent, for example, an organic solvent such as chlorobenzene, benzene, chloroform or THF (Tetrahydrofuran) may be used. Materials that can be used as the electron donor / electron acceptor are the same as described above, so a description thereof will be omitted. For example, the polythiophene derivative, which is a conductive polymer material as the electron donor, the fullerene derivative, and the nanocrystal as the electron acceptor are blended at a predetermined ratio for a predetermined time.
그 다음, 기판 위에 제1 전극을 형성한 후, 상기 제1 전극 위에 상기 제조된 광활성층 재료를 스핀 코팅한 후, 질소 분위기에서 어닐링하여 광활성층을 형성한다. 상기 광활성층 위에 제2 전극을 형성하여 태양 전지를 제조할 수 있다.Thereafter, after forming the first electrode on the substrate, spin-coating the prepared photoactive layer material on the first electrode, and then annealing in a nitrogen atmosphere to form a photoactive layer. The solar cell may be manufactured by forming a second electrode on the photoactive layer.
또한, 상기 제1 전극과 광활성층을 형성하는 단계 사이에 정공 이동층을 형성하는 단계가 더 포함될 수 있고, 상기 광활성층과 제2 전극을 형성하는 단계 사이에 블로킹층과 전자 주입층을 형성하는 단계가 더 포함될 수 있다. 이는 본 발명에서 특별히 한정되는 것은 아니며, 종래 기술에 알려져 있는 어느 방법이나 제한없이 사용할 수 있다.The method may further include forming a hole transport layer between the first electrode and the photoactive layer, and forming a blocking layer and an electron injection layer between the photoactive layer and the second electrode. Steps may be further included. This is not particularly limited in the present invention, and any method known in the art can be used without limitation.
이하에서는 본 발명의 태양 전지 및 그 제조 방법에 관하여 더욱 상세하게 설명할 것이나 이들은 단지 설명의 목적을 위한 것으로, 본 발명의 보호범위를 제한하는 것으로 해석되어서는 안된다.Hereinafter, the solar cell of the present invention and a manufacturing method thereof will be described in more detail, but they are only for the purpose of explanation and should not be construed as limiting the protection scope of the present invention.
측정용 전지 제조Measurement battery manufacturing
먼저, 하기에 기재된 방법으로 은 나노 크리스탈을 제조한다.First, silver nanocrystals are prepared by the method described below.
1) 0.0191g의 질산은(AgNO3)을 3.75ml의 초순수(Deionized Water; Di water)에 완전히 용해 될 때까지 교반하여 혼합한다.1) Mix 0.0191 g of silver nitrate (AgNO3) with 3.75 ml of deionized water (Di water) until it is completely dissolved.
2) 상온에서 0.2734g의 테트라옥틸암모늄브로마이드(tetraoctylammonium bromide, TOAB)를 10ml의 톨루엔(toluene)에 완전히 용해될 때까지 교반하여 혼합한다.2) Mix 0.2734 g of tetraoctylammonium bromide (TOAB) at room temperature until it is completely dissolved in 10 ml of toluene.
3) 상기 2)를 상기 1)에 30 drops/min으로 첨가한 후, 700 rpm의 교반 속도로 10분간 혼합한다.3) After 2) is added to 1) at 30 drops / min, the mixture is mixed for 10 minutes at a stirring speed of 700 rpm.
4) 0.0472g의 소듐보로하이드라이드(NaBH4)를 3.123ml의 초순수에 완전히 용해될 때까지 교반하여 혼합한다.4) Mix 0.0472 g of sodium borohydride (NaBH 4 ) until it is completely dissolved in 3.123 ml of ultrapure water.
5) 25.2㎕의 도데칸사이올(Dodecanethiol; DT)을 상기 3)에 첨가한다. 이때, 도데칸사이올과 은 이온(Ag+)의 몰랄 농도 비율이 1 : 1이 되도록 한다.5) 25.2 μl of Dodecanethiol (DT) is added to 3) above. At this time, the molar concentration ratio of dodecanethiol and silver ions (Ag + ) is 1: 1.
6) 시간차를 두지 않고 바로 상기 4)를 상기 5)에 첨가한 후, 700 rpm의 속도로 3시간 동안 교반하여 혼합한다.6) Add 4) directly to 5) without time difference, and then stir and mix for 3 hours at a speed of 700 rpm.
7) 상기 6)의 교반 혼합 후, 층분리가 일어나면 상측액인 톨루엔층을 분리하여 취하고, 하층액은 폐기한다. 이때, 톨루엔층에는 은 이온과 은 나노 크리스탈이 혼재한다.7) After stirring and mixing of 6) above, when layer separation occurs, the toluene layer, which is the supernatant, is separated off and the lower layer liquid is discarded. At this time, silver ions and silver nanocrystals are mixed in the toluene layer.
8) 상기 7)에 40 ml의 에탄올을 첨가한 후, 약 -18℃ 정도의 저온에서 나노 결정화를 촉진시킨다.8) After 40 ml of ethanol is added to 7), nanocrystallization is promoted at a low temperature of about -18 ° C.
9) 원심분리기를 이용하여 10000 rpm으로 약 700초 정도로 각각 3회 세척하여, 상기 8)에서 첨가된 에탄올을 제거하여 은 나노 크리스탈을 제조한다.9) After washing three times at about 10000 rpm each time using a centrifuge to remove the ethanol added in 8) to prepare a silver nanocrystal.
상기와 같은 단계를 거쳐 제조된 은 나노 크리스탈은 약 3 ~ 7 nm 정도의 직경을 가진다.Silver nanocrystals prepared through the above steps have a diameter of about 3 ~ 7 nm.
P3HT, PCBM, 그리고 상기 제조된 은 나노 크리스탈을 각각 2 : 1 : 2의 중량비로 클로로벤젠 10ml에 최소 72시간 동안 블랜딩하여 광활성층 재료를 준비한다.P3HT, PCBM, and the prepared silver nanocrystals were blended in 10 ml of chlorobenzene for at least 72 hours at a weight ratio of 2: 1: 2, respectively, to prepare a photoactive layer material.
그 다음, 정공 이동층의 재료 물질인 PEDOT-PSS와 이소프로필 알콜(Isopropyl Alcohol; IPA)을 1 : 2의 중량비로 최소 24시간 동안 블랜딩하여 준비한다. 그 다음, 기판 위에 제1 전극으로 ITO 등을 형성하고, 아세톤 등을 사용하여 세정한 후, 정공 이동층의 재료 물질을 60초간 2000rpm으로 스핀 코팅하고 140℃의 질소 분위기에서 약 10분 동안 어닐링한다. 그 다음, 정공 이동층 위에 상기와 같이 준비된 광활성층 재료를 60초간 1000rpm으로 스핀 코팅한 후, 125℃의 질소 분위기에서 약 10분 동안 어닐링한다. 그 다음, 스핀 코팅된 광활성층 위에 증착기를 사용하여 BCP(bathocuproine)를 12 nm 정도의 두께로 증착하여 블로킹층을 형성하고, 상기 블로킹층 위에 플루오르화 리튬(LiF)을 0.5 nm 정도의 두께로 증착한 후, 알루미늄(Al)을 80 nm 정도의 두께로 증착하여 제2 전극을 형성하여 도 5에 도시된 바와 같은 태양 전지를 제조한다.Then, PEDOT-PSS, which is a material of the hole transporting layer, and isopropyl alcohol (IPA) are prepared by blending for a minimum of 24 hours in a weight ratio of 1: 2. Then, ITO or the like is formed on the substrate with the first electrode, washed with acetone or the like, and then the material material of the hole transport layer is spin-coated at 2000 rpm for 60 seconds and annealed for about 10 minutes in a nitrogen atmosphere of 140 ° C. . Then, the photoactive layer material prepared as above on the hole transport layer is spin coated at 1000 rpm for 60 seconds, and then annealed for about 10 minutes in a nitrogen atmosphere at 125 ° C. Next, a BCP (bathocuproine) is deposited on the spin-coated photoactive layer to a thickness of about 12 nm to form a blocking layer, and lithium fluoride (LiF) is deposited to a thickness of about 0.5 nm on the blocking layer. Then, aluminum (Al) is deposited to a thickness of about 80 nm to form a second electrode to manufacture a solar cell as shown in FIG.
나노 크리스탈 유무에 따른 태양 전지의 특성 비교 Comparison of Characteristics of Solar Cells with or Without Nanocrystals
태양 전지의 특성은 개방 회로 전압(open circuit voltage; Voc), 단락 회로 전류(short circuit current; Jsc), 충실도(fill factor; FF) 및 효율을 이용하여 평가하게 된다. 개방 회로 전압(Voc)는 외부의 전기적 부하 없이 빛이 조사되었을 때 생성되는 전압, 즉 전류가 0일 때의 전압이고, 단락 회로 전류(Jsc)는 단락된 전기 접촉으로 빛이 조사되었을 때 생성되는 전류, 즉 전압이 인가되지 않을 경우 빛에 의한 전류로 정의된다. 또한, 충실도(FF)는 전류 및 전압이 인가되고 그에 따라 변화되는 전류 및 전압의 곱을 개방 회로 전압(Voc)과 단락 회로 전류(Jsc)의 곱으로 나눈 값으로 정의된다. 이러한 충실도(FF)는 개방 회로 전압(Voc)과 단락 회로 전류(Jsc)가 동시에 얻어지지 않기 때문에 항상 1 이하이다. 그렇지만 충실도(FF)가 1에 근접할수록 태양 전지의 효율이 보다 높아지고, 충실도(FF)가 낮아질수록 저항이 증가하는 것으로 평가된다. 한편, 광전변환 효율는 개방 회로 전압(Voc), 단락 회로 전류(Jsc) 및 충실도(FF)의 곱을 조사되는 빛의 세기로 나눈 값으로 아래의 [수학식 1]로 정의된다.The characteristics of the solar cell are evaluated using open circuit voltage (Voc), short circuit current (Jsc), fill factor (FF) and efficiency. The open circuit voltage Voc is a voltage generated when light is irradiated without an external electrical load, that is, a voltage when current is 0, and the short circuit current Jsc is generated when light is irradiated by a shorted electrical contact. Current is defined as the current caused by light when no voltage is applied. In addition, fidelity FF is defined as the product of the current and voltage to which the current and voltage are applied and changed according to the product of the open circuit voltage Voc and the short circuit current Jsc. This fidelity FF is always 1 or less because the open circuit voltage Voc and the short circuit current Jsc are not obtained at the same time. However, as the fidelity FF approaches 1, the efficiency of the solar cell increases, and as the fidelity FF decreases, the resistance increases. On the other hand, the photoelectric conversion efficiency is a value obtained by dividing the product of the open circuit voltage (Voc), the short-circuit current (Jsc) and the fidelity (FF) by the intensity of the irradiated light is defined by Equation 1 below.
[수학식 1][Equation 1]
η= FF*(Jsc*Voc/(조사되는 빛의 세기)) η = FF * (Jsc * Voc / (light intensity irradiated))
도 6 및 도 7을 참조하여 종래의 태양 전지와 상기에서 제조된 본 발명의 태양 전지의 소자 특성을 비교한다. 도 6은 나노 크리스탈이 없는 종래의 태양 전지 소자 특성을 나타내는 그래프이다. 도 6을 참조하면, Jsc는 15.34 mA/cm2, Voc는 0.645 eV, FF는 0.672이고 이를 상기 [수학식 1]에 대입하면 광전변환 효율(Power conversion efficiency; PCE)은 6.648%임을 알 수 있다. 도 7은 본 발명의 일 실시예에 따라 제조된 태양 전지의 소자 특성을 나타내는 그래프이다. 도 7을 참조하면, Jsc는 17.46 mA/cm2, Voc는 0.665 eV, FF는 0.635이고 이를 상기 [수학식 1]에 대입하면 광전변환 효율은 7.368%임을 알 수 있다. 즉, 광활성층에 은 나노 크리스탈이 분산되어 있을 때, 그렇지 않은 경우에 비하여 Jsc가 15.34 mA/cm2에서 17.46 mA/cm2으로 약 14% 향상됨을 확인할 수 있고, 태양 전지의 효율은 6.648%에서 7.368%로 약 10.3% 향상되었음을 확인할 수 있다.6 and 7 compare the device characteristics of the conventional solar cell and the solar cell of the present invention prepared above. 6 is a graph showing the characteristics of a conventional solar cell device without a nanocrystal. Referring to FIG. 6, Jsc is 15.34 mA / cm 2 , Voc is 0.645 eV, and FF is 0.672. Substituting this in Equation 1, the power conversion efficiency (PCE) is 6.648%. . 7 is a graph showing device characteristics of a solar cell manufactured according to an embodiment of the present invention. Referring to FIG. 7, Jsc is 17.46 mA / cm 2 , Voc is 0.665 eV, and FF is 0.635. Substituting this in Equation 1, the photoelectric conversion efficiency is 7.368%. That is, the optically active when the layer is nanocrystal is dispersed, or as compared to the case that in Jsc is 15.34 mA / cm 2 to 17.46 mA / cm 2 can confirm the improvement of about 14%, the efficiency of the solar cell is at 6.648% It can be seen that the improvement was about 10.3% to 7.368%.
도 8을 참조하여 나노 크리스탈의 중량비에 따른 태양 전지 소자 특성의 변화를 살펴본다. 도 8에 도시된 그래프는 ITO/PEDOT:PSS/P3HT:PCBM:Ag/BCP/LiF /Al 구조 태양 전지의 광활성층인 'P3HT:PCBM:Ag'에서 은 나노 크리스탈(Ag)의 중량비 변화에 따른 파장 영역별 광흡수율 변화를 도시한 그래프이다. 여기서, '-■-'로 도시된 부분은 P3HT, PCBM, 그리고 은 나노 크리스탈이 각각 2 : 1 : 1 중량비(이하 '1중량비'), '-▲-'로 도시된 부분은 P3HT, PCBM, 그리고 은 나노 크리스탈이 각각 2 : 1 : 2 중량비(이하 '2중량비'), '-▲-'로 도시된 부분은 P3HT, PCBM, 그리고 은 나노 크리스탈이 각각 2 : 1 : 3 중량비(이하 '3중량비')로 블랜딩되어 있는 태양 전지의 광흡수율을 도시한 그래프이다.Referring to Figure 8 looks at the change in the characteristics of the solar cell device according to the weight ratio of the nanocrystals. The graph shown in FIG. 8 shows the change in the weight ratio of silver nanocrystals (Ag) in the photoactive layer 'P3HT: PCBM: Ag' of the ITO / PEDOT: PSS / P3HT: PCBM: Ag / BCP / LiF / Al structured solar cell. It is a graph showing the change in light absorption rate for each wavelength region. Here, the parts shown as '-■-' are P3HT, PCBM, and silver nanocrystals are respectively 2: 1: 1 weight ratio (hereinafter '1 weight ratio'), and the parts shown as '-▲-' are P3HT, PCBM, The silver nanocrystals have a 2: 1: 2 weight ratio (hereinafter referred to as '2 weight ratio'), and the portions shown as '-▲-' are P3HT, PCBM, and silver nanocrystals respectively have a 2: 1: 3 weight ratio (hereinafter '3'). Is a graph showing the light absorption of the solar cell blended in the weight ratio ').
상기 그래프들을 살펴보면, 은 나노 크리스탈이 2중량비로 블랜딩되었을때 광흡수율이 가장 높은 것을 알 수 있으며, 3중량비로 블랜딩되었을때는 오히려 감소하는 것을 알 수 있다. 이는 광활성층에 은 나노 크리스탈이 과도하게 분산 형성되어 제1 전극과 광활성층의 계면에서 최초의 입사광이 은 나노 크리스탈에 의해 반사되기 때문인 것으로 추측된다. 따라서, 상기 광활성층에는 은 나노 크리스탈이 3중량비 이하로 포함되는 것이 바람직하다.Looking at the graphs, it can be seen that when the silver nanocrystals are blended at a weight ratio of 2, the light absorption is highest, and when blended at a weight ratio of 3, the weight decreases. This is presumably because the silver nanocrystals are excessively dispersed in the photoactive layer and the first incident light is reflected by the silver nanocrystals at the interface between the first electrode and the photoactive layer. Therefore, it is preferable that silver nanocrystal is contained in 3 weight ratio or less in the said photoactive layer.
이상과 같이 본 발명에 따른 태양 전지 및 그 제조 방법을 예시한 도면을 참조로 하여 설명하였으나, 본 명세서에 개시된 실시예와 도면에 의해 본 발명이 한정되는 것은 아니며, 본 발명의 기술사상 범위내에서 당업자에 의해 다양한 변형이 이루어질 수 있음은 물론이다.As described above with reference to the drawings illustrating a solar cell and a method for manufacturing the same according to the present invention, the present invention is not limited by the embodiments and drawings disclosed herein, but within the technical scope of the present invention Of course, various modifications may be made by those skilled in the art.

Claims (10)

  1. 기판 위에 형성되는 제1 전극;A first electrode formed on the substrate;
    상기 제1 전극 위에 형성되며, 나노 크리스탈이 분산된 광활성층; 및,A photoactive layer formed on the first electrode and having nanocrystals dispersed therein; And,
    상기 광활성층 위에 형성되는 제2 전극A second electrode formed on the photoactive layer
    을 포함하는 태양 전지.Solar cell comprising a.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 나노 크리스탈은 금, 알루미늄, 구리, 은, 니켈 또는 그들의 합금, 칼슘/알루미늄 합금, 마그네슘/은 합금, 알루미늄/리튬 합금 중에서 선택된 어느 하나의 물질을 포함하는 태양 전지.The nanocrystal is a solar cell comprising any one material selected from gold, aluminum, copper, silver, nickel or their alloys, calcium / aluminum alloys, magnesium / silver alloys, aluminum / lithium alloys.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 나노 크리스탈은 직경이 1 내지 30nm인 태양 전지.The nanocrystals have a diameter of 1 to 30nm solar cell.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 광활성층은 전자 공여체와 전자 수용체를 포함하는 태양 전지.The photoactive layer is a solar cell comprising an electron donor and an electron acceptor.
  5. 청구항 4에 있어서,The method according to claim 4,
    상기 전자 공여체는 P3HT(폴리(3-헥실티오펜)), 폴리실록산 카르바졸, 폴리아닐린, 폴리에틸렌 옥사이드, (폴리(1-메톡시-4-(0-디스퍼스레드1)-2,5-페닐렌-비닐렌), 폴리인돌, 폴리카르바졸, 폴리피리디아진, 폴리이소티아나프탈렌, 폴리페닐렌 설파이드, 폴리비닐피리딘, 폴리티오펜, 폴리플루오렌, 폴리피리딘, 그리고 이들의 유도체 중 선택된 어느 하나인 태양 전지.The electron donor is P3HT (poly (3-hexylthiophene)), polysiloxane carbazole, polyaniline, polyethylene oxide, (poly (1-methoxy-4- (0-dispersed 1) -2,5-phenylene -Vinylene), polyindole, polycarbazole, polypyridazine, polyisothianaphthalene, polyphenylene sulfide, polyvinylpyridine, polythiophene, polyfluorene, polypyridine, and derivatives thereof Solar cell.
  6. 청구항 4에 있어서,The method according to claim 4,
    상기 전자 수용체는 플러렌 또는 플러렌 유도체인 태양 전지.The electron acceptor is a solar cell or a fullerene derivative.
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 제1 전극과 광활성층 사이에 형성되는 정공 이동층을 포함하는 태양 전지.A solar cell comprising a hole transport layer formed between the first electrode and the photoactive layer.
  8. 청구항 1에 있어서,The method according to claim 1,
    상기 광활성층과 제2 전극 사이에 형성되는 블로킹층 포함하는 태양 전지.A solar cell comprising a blocking layer formed between the photoactive layer and the second electrode.
  9. 제1 전극과 제2 전극 사이에 광활성층이 형성된 태양 전지 제조 방법으로서,A solar cell manufacturing method in which a photoactive layer is formed between a first electrode and a second electrode,
    (a) 유기 용매에 전자 공여체와, 전자 수용체, 그리고 나노 크리스탈을 블랜딩(blending)하여 광활성층 재료를 제조하는 단계와,(a) blending an electron donor, an electron acceptor, and a nanocrystal in an organic solvent to produce a photoactive layer material,
    (b) 상기 제조된 광활성층 재료를 상기 제1 전극과 제2 전극 사이에 광활성층으로 형성하는 단계 (b) forming the prepared photoactive layer material as a photoactive layer between the first electrode and the second electrode
    를 포함하는 태양 전지 제조 방법.Solar cell manufacturing method comprising a.
  10. 청구항 9에 있어서,The method according to claim 9,
    상기 (b) 단계는 상기 제1 전극 위에 상기 광활성층 재료를 스핀 코팅한 후, 질소 분위기에서 어닐링하여 수행하는 태양 전지 제조 방법.The step (b) is performed by spin coating the photoactive layer material on the first electrode and then annealing in a nitrogen atmosphere.
PCT/KR2010/001750 2009-03-24 2010-03-22 Solar cell, and method for manufacturing same WO2010110567A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090024955A KR20100106779A (en) 2009-03-24 2009-03-24 Solar cell and the manufacturing method thereof
KR10-2009-0024955 2009-03-24

Publications (2)

Publication Number Publication Date
WO2010110567A2 true WO2010110567A2 (en) 2010-09-30
WO2010110567A3 WO2010110567A3 (en) 2010-12-09

Family

ID=42781648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/001750 WO2010110567A2 (en) 2009-03-24 2010-03-22 Solar cell, and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR20100106779A (en)
WO (1) WO2010110567A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013083713A1 (en) * 2011-12-06 2013-06-13 Novaled Ag Organic photovoltaic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101646727B1 (en) 2013-10-10 2016-08-08 한양대학교 산학협력단 Solar cell and method of manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020189666A1 (en) * 2001-06-11 2002-12-19 Forrest Stephen R. Solar cells using fullerenes
JP2006527490A (en) * 2003-06-12 2006-11-30 コナルカ テクノロジーズ インコーポレイテッド Tandem solar cell with shared organic electrode
KR20070059082A (en) * 2004-08-11 2007-06-11 더 트러스티즈 오브 프린스턴 유니버시티 Organic photosensitive devices
KR20080064438A (en) * 2007-01-05 2008-07-09 삼성전자주식회사 Polymer solar cell and preparation method thereof
JP2009505426A (en) * 2005-08-15 2009-02-05 コナルカ テクノロジーズ インコーポレイテッド Photovoltaic battery with interconnection to external circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020189666A1 (en) * 2001-06-11 2002-12-19 Forrest Stephen R. Solar cells using fullerenes
JP2006527490A (en) * 2003-06-12 2006-11-30 コナルカ テクノロジーズ インコーポレイテッド Tandem solar cell with shared organic electrode
KR20070059082A (en) * 2004-08-11 2007-06-11 더 트러스티즈 오브 프린스턴 유니버시티 Organic photosensitive devices
JP2009505426A (en) * 2005-08-15 2009-02-05 コナルカ テクノロジーズ インコーポレイテッド Photovoltaic battery with interconnection to external circuit
KR20080064438A (en) * 2007-01-05 2008-07-09 삼성전자주식회사 Polymer solar cell and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013083713A1 (en) * 2011-12-06 2013-06-13 Novaled Ag Organic photovoltaic device

Also Published As

Publication number Publication date
WO2010110567A3 (en) 2010-12-09
KR20100106779A (en) 2010-10-04

Similar Documents

Publication Publication Date Title
EP2210291B1 (en) Processing additives for fabricating organic photovoltaic cells
JP5655568B2 (en) Organic photoelectric conversion element, solar cell, and optical sensor array
JP5573066B2 (en) Organic photoelectric conversion element, solar cell and optical sensor array using the same
WO2011004807A1 (en) Organic photoelectric conversion element, solar cell using same, and optical sensor array
JP5772836B2 (en) Organic photoelectric conversion layer material composition, organic photoelectric conversion element, method for producing organic photoelectric conversion element, and solar cell
WO2010107261A2 (en) Solar cell and a production method therefor
JP5920341B2 (en) ORGANIC PHOTOELECTRIC CONVERSION DEVICE, ITS MANUFACTURING METHOD, AND SOLAR CELL
WO2011148717A1 (en) Organic photoelectric conversion element, solar cell, and optical sensor array
WO2010110590A2 (en) Solar cell, and method for producing same
JP2011082421A (en) Method for manufacturing organic photoelectric conversion element, and organic photoelectric conversion element
JP5699524B2 (en) Organic photoelectric conversion element and solar cell
KR101034466B1 (en) Organic photovolatic device with improved conversion efficiency by inserting thin layer of high hole transporting capability and method for fabricating the same
WO2010090123A1 (en) Organic photoelectric conversion element, solar cell using same, and optical sensor array
JP5447513B2 (en) Organic photoelectric conversion element, solar cell using the same, and optical sensor array
JP2011155185A (en) Organic photoelectric conversion element, solar cell using the same, and optical sensor array
JP2014053383A (en) Tandem organic photoelectric conversion element and solar cell using the same
WO2010110567A2 (en) Solar cell, and method for manufacturing same
JP5568972B2 (en) Organic photoelectric conversion element, solar cell using the same, and optical sensor array
JP2012109365A (en) Organic photoelectric conversion element and solar cell
JP5413055B2 (en) Organic photoelectric conversion element, solar cell using the same, and optical sensor array
JP2011060998A (en) Organic photoelectric conversion element, method of manufacturing the same, solar cell using the same, and optical sensor array
JP2012018958A (en) Organic photoelectric conversion element and solar cell using the same
JP2012015390A (en) Organic photoelectric conversion element, solar battery and optical sensor array
WO2015053578A1 (en) Solar cell and manufacturing method therefor
JP5515707B2 (en) Organic photoelectric conversion element, solar cell using the same, and optical sensor array

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10756322

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10756322

Country of ref document: EP

Kind code of ref document: A2