WO2010110261A1 - Aluminum fin material for heat exchanger - Google Patents

Aluminum fin material for heat exchanger Download PDF

Info

Publication number
WO2010110261A1
WO2010110261A1 PCT/JP2010/054978 JP2010054978W WO2010110261A1 WO 2010110261 A1 WO2010110261 A1 WO 2010110261A1 JP 2010054978 W JP2010054978 W JP 2010054978W WO 2010110261 A1 WO2010110261 A1 WO 2010110261A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
hydrophilic layer
inorganic oxide
hydrophilic
fine particles
Prior art date
Application number
PCT/JP2010/054978
Other languages
French (fr)
Japanese (ja)
Inventor
高宏 清水
慶太 館山
陽介 太田
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN2010800112774A priority Critical patent/CN102378893A/en
Publication of WO2010110261A1 publication Critical patent/WO2010110261A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing

Definitions

  • the present invention relates to an aluminum fin material for a heat exchanger.
  • hydrophilicity is imparted to the aluminum fin material (fin) for the heat exchanger. This is because during condensation operation (operation in a state where water vapor is liquefied (water)), water droplets adhere to the fin surface and bridges are formed between the fins. Clogging occurs in the meantime, the ventilation resistance value increases, and the heat exchange efficiency decreases.
  • hydrophilicity is imparted to the fin surface, and condensed water (condensed water) is caused to flow down as a water film to suppress water droplets and frost formation.
  • Japanese Patent Publication No. 3-77440 page 2, left column, line 39 to page 3, left column, line 33
  • Japanese Patent No. 3191307 paragraphs 0009 to 0015
  • Japanese Patent Laid-Open No. 9-14888 paragraphs 0010 to 0025
  • Patent Documents 1 to 3 aluminum fin material for heat exchanger
  • hydrophilic hydrophilic sustainability
  • defrosting properties are not obtained. Inadequate in terms.
  • condensed water may freeze in a high humidity environment, frost may form on the entire surface of the heat exchanger, and heat exchange efficiency may decrease.
  • frost may form on the entire surface of the heat exchanger, and heat exchange efficiency may decrease.
  • heating operation is stopped and defrost operation is performed, it is inferior to comfort.
  • a heater may be applied, it leads to a cost increase.
  • the frost can be easily peeled off during the defrosting operation (to ensure comfort as much as possible) (defrosting), and the fin surface condenses after the defrosting. Since the amount of water retained is reduced, it is possible to prevent frost formation when performing heating operation again and re-frosting (re-frosting prevention). Furthermore, the fin (material) also requires excellent workability and corrosion resistance.
  • M Li, Na , K, b / a ⁇ 2
  • the inorganic oxide fine particles contain at least one of Al, Ti, Zn, Si, Sn, and Cu.
  • the substrate 2 is a plate material made of aluminum or an aluminum alloy, and is excellent in thermal conductivity and workability. Therefore, 1000 series aluminum specified in JIS H4000 is preferably used, and more preferably, alloy numbers 1050 and 1200 are used. Aluminum is used. In the aluminum fin material 1 for heat exchanger, a substrate 2 having a thickness of about 0.08 to 0.3 mm is used in consideration of strength, thermal conductivity, workability, and the like.
  • the base treatment layer 3 is formed on the surface (surface) of the substrate 2 and is made of an inorganic oxide or an organic-inorganic composite compound.
  • the inorganic oxide preferably contains Cr or Zr as a main component, and is formed by, for example, phosphoric acid chromate treatment, zirconium phosphate treatment, or chromate chromate treatment.
  • the present invention is not limited to this as long as it exhibits corrosion resistance.
  • the base treatment layer 3 can also be formed by performing zinc phosphate treatment or phosphate titanate treatment.
  • the organic-inorganic composite compound is formed by performing a coating type chromate treatment or a coating type zirconium treatment, and includes an acrylic-zirconium composite.
  • the hydrophilic layer 4 is formed with a film thickness of 0.05 to 2 ⁇ m on the surface (surface) of the base treatment layer 3.
  • one or more resins water-soluble organic polymer substance of polyacrylic acid, polyacrylamide, styrene maleic acid copolymer or salt thereof. Formation of the hydrophilic layer 4 imparts hydrophilicity (hydrophilic sustainability) to the fin material 1.
  • the mixture which consists of a silicate compound and resin which comprises the hydrophilic layer 4 is produced by a well-known method.
  • the film thickness of the hydrophilic layer 4 is less than 0.05 ⁇ m (thin film), since excellent hydrophilicity (hydrophilic sustainability) cannot be obtained, defrosting property (anti-frosting prevention property) is not obtained, When the thickness exceeds 2 ⁇ m (thick film), poor appearance (unevenness) after coating tends to occur, and workability (tool wearability) is poor.
  • the type of resin constituting the hydrophilic layer 4 is a resin composed of one or more of polyacrylic acid, polyacrylamide, styrene maleic acid copolymer or a salt thereof,
  • the mixture of the resin and the predetermined silicate compound is porous, and can impart hydrophilicity to the fin material 1.
  • the inorganic oxide fine particles 5 (for example, when the element (type) is Al, Al 2 O 3 or the like) is not particularly limited, but preferably, from the economical viewpoint, the types are Al, Ti, Zn Inorganic oxide fine particles 5 containing at least one of Si, Sn, and Cu are desirable.
  • the total adhesion amount of the inorganic oxide fine particles 5 is less than 1 mg / m 2 (the total adhesion amount is small), the surface of the fin material 1 is not sufficiently roughened (appropriate) (the effect of the inorganic oxide fine particles 5). Is not exhibited), hydrophilicity (hydrophilic sustainability) and defrosting properties (re-frosting prevention properties) are not improved. On the other hand, when it exceeds 200 mg / m 2 , hydrophilicity (hydrophilic durability) and defrosting property (anti-frosting prevention property) are improved, but excellent workability (tool wearability) cannot be obtained.
  • a dispersion liquid water and inorganic oxide fine particles 5 in which the inorganic oxide fine particles 5 are dispersed is applied on the hydrophilic layer 4 by, for example, roll coating ( It is done by applying by roll coating and baking in an oven.
  • roll coating it is done by applying by roll coating and baking in an oven.
  • it adjusts suitably with content of the inorganic oxide microparticles 5 contained in a dispersion liquid, and the application quantity at the time of apply
  • the average particle size is also adjusted as appropriate when the inorganic oxide fine particles 5 are pulverized.
  • the resin-based lubricating layer (lubricating layer) 6 is formed with a film thickness of 0.05 to 1 ⁇ m on the hydrophilic layer 4 (surface) to which the inorganic oxide fine particles 5 are adhered.
  • the resin-based lubricating layer (water-soluble resin lubricating layer) 6 is made of a resin that does not inhibit the hydrophilicity of the hydrophilic layer 4, for example, polyethylene glycol or polyvinyl alcohol.
  • the resin-based lubricating layer 6 is washed away by condensed water adhering to the surface of the aluminum fin formed by molding the fin material 1 during operation of the heat exchanger (water-soluble resin).
  • the workability can be improved without impairing the hydrophilicity (function) of the fin material 1 (hydrophilic layer 4).
  • the hydrophilic layer 4 is inorganic (mainly a silicate compound), it may stick to the mold when the fin material 1 is molded (for manufacturing aluminum fins). Sex can be suppressed.
  • the film thickness of the resin-based lubricating film 6 is less than 0.05 ⁇ m, an adhesive defect occurs during the production of the aluminum fin (adhesion cannot be suppressed), and excellent workability (tool wear)
  • the thickness exceeds 1 ⁇ m the surface of the fin material 1 becomes sticky due to the hygroscopic effect of the resin-based lubricating layer 6 itself, and the resin-based lubricating layer 6 is processed (press-molded). Wrapping around the tool (drinking) makes it difficult to process (prone to failure).
  • the inorganic oxide fine particles 5 having an average particle diameter of 0.001 to 0.3 ⁇ m are adhered on the surface (surface) of the predetermined hydrophilic layer 4 with a total adhesion amount of 1 to 200 mg / m 2.
  • the roughening of the surface of the aluminum fin material 1 for heat exchanger becomes sufficient (appropriate), and excellent hydrophilicity and defrosting properties (anti-frosting prevention property) can be obtained.
  • ⁇ Fin material manufacturing method> (1) Forming a base treatment layer 3 made of an inorganic oxide or an organic-inorganic composite compound on the surface (surface) of a substrate 2 made of aluminum or an aluminum alloy by subjecting it to a phosphate chromate treatment, a zirconium phosphate treatment, or the like. To do.
  • the phosphoric acid chromate treatment, the zirconium phosphate treatment, and the like are performed by applying a chemical conversion treatment liquid to the substrate 2 by spraying or the like.
  • the coating amount is preferably in the range of 1 to 100 mg / m 2 in terms of Cr or Zr, and the formed film thickness is preferably 10 to 1000 mm.
  • a resin (water) solution of a resin (water-soluble resin) that does not inhibit hydrophilicity is applied on the surface (surface) of the hydrophilic layer 4 to which the inorganic oxide fine particles 5 are adhered, and then baked to perform inorganic oxidation.
  • a resin-based lubricating layer 6 is formed on the hydrophilic layer 4 to which the product fine particles 5 are adhered.
  • This coating is performed by a conventionally known coating method such as a bar coater or a roll coater, and the coating amount is appropriately set (adjusted) so that the film thickness of the resin-based lubricating layer 6 is 0.05 to 1 ⁇ m.
  • the baking temperature (the temperature reached by the aluminum plate) is appropriately set depending on the resin solution to be applied.
  • the fin material 1 was produced by the following method.
  • As the substrate 2 an aluminum plate having a thickness of 0.1 mm made of aluminum having an alloy number of 1200 specified in JIS H4000 was used.
  • the surface of this aluminum plate was subjected to a phosphoric acid chromate treatment for forming the base treatment layer 3.
  • a chemical conversion treatment liquid Alsurf (registered trademark) 401/45, phosphoric acid, and chromic acid manufactured by Nippon Paint Co., Ltd. were used.
  • the film thickness of the base treatment layer 3 at this time was 400 mm (Cr conversion value measured by the fluorescent X-ray method was 20 mg / m 2 ).
  • a resin solution (coating material) for forming a hydrophilic layer 4 composed of a silicate compound and a resin (seed) of the types (b / a, M, ratio of silicate compound) shown in Table 1 on the base treatment layer 3 ) was applied and baked to form a hydrophilic layer 4 having the thickness shown in Table 1.
  • a resin aqueous solution of polyvinyl alcohol was applied onto the hydrophilic layer 4 to which the inorganic oxide fine particles 5 were adhered, and baked to form a (resin-based) lubricating layer 6 having a thickness shown in Table 1.
  • Table 1 shows the film thicknesses of the hydrophilic layer 4, the inorganic oxide fine particles 5, and the (resin-based) lubricating layer 6.
  • the underline in Table 1 indicates that the requirements defined in the present invention are not satisfied.
  • the produced fin material 1 (test material, sample) was evaluated for hydrophilicity, defrosting property (refrosting prevention property), workability and corrosion resistance by the following methods.
  • the hydrophilic property is determined by setting the contact angle at the time of dropping pure water to the fin material 1 after 5 cycles of treatment of 8 hours of immersion in ion-exchanged water and 16 hours of heating at 80 ° C. for 1 cycle. Evaluation was made by measuring with a goniometer. The case where the measured contact angle was 20 ° or less was regarded as acceptable ( ⁇ ), and the case where the contact angle exceeded 20 ° was regarded as unacceptable (x). The hydrophilicity evaluation results are shown in Table 2.
  • Corrosion resistance was evaluated in accordance with JIS Z 2371 using a rating number corresponding to the corrosion area ratio when the salt spray test was conducted for 200 hours. A case where the rating number was 9.5 or higher was evaluated as pass ( ⁇ ), and a case where the rating number was less than 9.5 was determined as reject (x). The evaluation results of this corrosion resistance are shown in Table 2.
  • samples (Examples) 1 to 16 in Table 2 satisfy the requirements of the present invention, so that they are hydrophilic (hydrophilic sustainability), defrosting (re-frosting prevention), processed All of the properties and corrosion resistance were good (pass).
  • Comparative Example 1 of Table 2 since the total amount of the inorganic oxide fine particles 5 is less than the lower limit (the inorganic oxide fine particles 5 are not attached), the surface of the fin material 1 is sufficiently roughened ( It was not appropriate (the effect of the inorganic oxide fine particles 5 was not exhibited), and the hydrophilicity (hydrophilic sustainability) and the defrosting property (refrosting prevention property) were not improved. Moreover, since the total adhesion amount of the inorganic oxide fine particles 5 exceeded the upper limit value in Comparative Example 9, hydrophilicity (hydrophilic sustainability) and defrosting property (refrosting prevention property) were improved, but excellent workability was achieved. (Tool wear) could not be obtained.
  • Comparative Example 2 since the thickness of the hydrophilic layer 4 is less than the lower limit value, excellent hydrophilicity (hydrophilic sustainability) by providing the hydrophilic layer 4 cannot be obtained, and excellent defrosting property (re-frosting prevention) ) was not obtained. Moreover, since the film thickness of the hydrophilic layer 4 exceeded the upper limit value in Comparative Example 3, the hydrophilicity (hydrophilic sustainability) and the defrosting property (refrosting prevention property) were improved, but the appearance defect after coating (unevenness) ) Is likely to occur, and workability (tool wearability) is poor.
  • the ratio of the silicate compound which comprises the hydrophilic layer 4 is less than a lower limit in the comparative example 4, since b / a of the silicate compound which comprises the hydrophilic layer 4 is less than a lower limit,
  • the hydrophilic layer 4 (mixture comprising a silicate compound and a resin) is not porous, and the hydrophilic performance (hydrophilicity) of the hydrophilic layer 4 is insufficient, and the inorganic oxide fine particles 5 are applied (attached) thereon. Even so, excellent hydrophilicity (hydrophilic sustainability) and defrosting properties (refrosting prevention properties) were not obtained.
  • Comparative Example 7 since the average particle size of the inorganic oxide fine particles 5 is less than the lower limit value, the average particle size of the inorganic oxide fine particles 5 is too small. Sustainability) and defrosting properties (refrosting prevention properties) were not improved, and excellent processability (moldability) was not obtained. Specifically, after 5 cycles of the treatment for evaluating hydrophilicity, the inorganic oxide fine particles 5 are peeled off from the hydrophilic layer 4. Further, even during processing, it peels off, accumulates in the mold, and adheres around the mold tool.
  • Comparative Example 10 since the film thickness of the resin-based lubricant layer 6 is less than the lower limit value (the resin-based lubricant layer 6 is not provided), an adhesive defect occurs during the production of the aluminum fin (adhesive property). Excellent workability (tool wearability) could not be obtained. Further, in Comparative Example 11, since the film thickness of the resin-based lubricant layer 6 exceeds the upper limit value, the surface of the fin material 1 becomes sticky due to the moisture absorption effect of the resin-based lubricant layer 6 itself, and the resin-based lubricant layer 6 is processed. At times (during press forming), the tool was bitten and could not be processed well (workability was poor).
  • the aluminum fin material for heat exchanger according to the present invention has been described in detail with reference to the best mode and examples, but the gist of the present invention is not limited to the above-described contents, Should be construed based on the claims. Needless to say, the contents of the present invention can be modified and changed based on the above description.

Abstract

An aluminum fin material (1) for a heat exchanger, which is characterized by comprising a base (2), a primer treatment layer (3), a hydrophilic layer (4) formed on the primer treatment layer (3), inorganic oxide microparticles (5) adhered on the hydrophilic layer (4), and a resin lubrication layer (6), wherein the hydrophilic layer (4) comprises a silicate compound that is represented by formula: aM2O·bSiO2 [wherein M = Li, Na or K; b/a ≥ 2] and contained in the hydrophilic layer (4) at a content higher than 50% by mass and at least one resin selected from polyacrylic acid, polyacrylamide, a styrene-maleic acid copolymer and salts of these compounds, the hydrophilic layer has a thickness of 0.05 to 2 μm, the inorganic oxide microparticles (5) have an average particle diameter of 0.001 to 0.3 μm, and the total amount of the inorganic oxide microparticles (5) adhered is 1 to 200 mg/m2.

Description

熱交換器用アルミニウムフィン材Aluminum fin material for heat exchanger
 本発明は、熱交換器用アルミニウムフィン材に関する。 The present invention relates to an aluminum fin material for a heat exchanger.
 熱交換器の熱交換率(熱交換効率)の向上策としては、熱交換器用アルミニウムフィン材(フィン)に親水性を付与することが行われている。これは、凝縮運転(水蒸気が液化する(水になる)状態での運転)時にフィン表面に水滴が付着しフィン間にブリッジが形成されたり、さらには、使用環境によっては、霜が形成しフィン間の目詰まりを起こしたりして、通風抵抗値が上昇し、熱交換効率が低下する。これを解消するために、フィン表面に親水性を付与し、凝縮水(凝縮された結果の水)を水膜として流下させ、水滴や霜形成を抑制しようとするものである。 As a measure for improving the heat exchange rate (heat exchange efficiency) of the heat exchanger, hydrophilicity is imparted to the aluminum fin material (fin) for the heat exchanger. This is because during condensation operation (operation in a state where water vapor is liquefied (water)), water droplets adhere to the fin surface and bridges are formed between the fins. Clogging occurs in the meantime, the ventilation resistance value increases, and the heat exchange efficiency decreases. In order to solve this problem, hydrophilicity is imparted to the fin surface, and condensed water (condensed water) is caused to flow down as a water film to suppress water droplets and frost formation.
 そこで、(熱交換器用)アルミニウムフィン材の親水性を向上させる方法としては、アルミニウムフィン材表面に、各種下地処理層を設けた後、水ガラスやコロイダルシリカ等の珪酸または珪酸塩を中心とする無機系親水性皮膜を塗布、焼付けにより形成させる方法や各種親水性樹脂を用いた樹脂系親水性皮膜を塗布、焼付けにより形成させる方法が広く行われている(特許文献1~3参照)。 Therefore, as a method for improving the hydrophilicity of the aluminum fin material (for heat exchangers), various surface treatment layers are provided on the surface of the aluminum fin material, and then silica or silicate such as water glass or colloidal silica is mainly used. A method of forming an inorganic hydrophilic film by applying and baking and a method of applying a resin hydrophilic film using various hydrophilic resins and baking are widely used (see Patent Documents 1 to 3).
特公平3-77440号公報(2頁左欄39行目~3頁左欄33行目)Japanese Patent Publication No. 3-77440 (page 2, left column, line 39 to page 3, left column, line 33) 特許第3191307号公報(段落0009~0015)Japanese Patent No. 3191307 (paragraphs 0009 to 0015) 特開平9-14888号公報(段落0010~0025)Japanese Patent Laid-Open No. 9-14888 (paragraphs 0010 to 0025)
 しかしながら、特許文献1~3に記載の方法(熱交換器用アルミニウムフィン材)では、フィン(材)表面の粗面化が不十分であることから、親水性(親水持続性)、除霜性の面で不十分となる。また、冬季のエアコン暖房運転時の室外機用熱交換器では、湿度の高い環境下において、凝縮水が凍結し、熱交換器全面に霜が形成され、熱交換効率の低下が起こることがある。そこで、この霜を除去するためには、暖房運転を停止して、除霜運転をしたりするため、快適性に劣る。また、霜をとかすためには、ヒーターを適用する場合もあるが、コストアップに繋がる。このようなことから、フィンの親水性をさらに向上させることで、除霜運転時には霜が剥がれ落ちやすくし(快適性をできるだけ確保)(除霜性)、また、除霜後にはフィン表面の凝縮水の保水量が少なくなるため、再度、暖房運転し、再着霜する際に、着霜し難くできる(再着霜防止性)。さらに、フィン(材)においては、優れた加工性及び耐食性も必要である。 However, in the methods described in Patent Documents 1 to 3 (aluminum fin material for heat exchanger), since the surface of the fin (material) is insufficiently roughened, hydrophilic (hydrophilic sustainability) and defrosting properties are not obtained. Inadequate in terms. In addition, in an outdoor unit heat exchanger during air conditioning heating operation in winter, condensed water may freeze in a high humidity environment, frost may form on the entire surface of the heat exchanger, and heat exchange efficiency may decrease. . Then, in order to remove this frost, since heating operation is stopped and defrost operation is performed, it is inferior to comfort. Moreover, in order to remove frost, although a heater may be applied, it leads to a cost increase. For this reason, by further improving the hydrophilicity of the fins, the frost can be easily peeled off during the defrosting operation (to ensure comfort as much as possible) (defrosting), and the fin surface condenses after the defrosting. Since the amount of water retained is reduced, it is possible to prevent frost formation when performing heating operation again and re-frosting (re-frosting prevention). Furthermore, the fin (material) also requires excellent workability and corrosion resistance.
 そこで、本発明は、加工性、耐食性に優れるとともに、親水性に優れ、着霜した熱交換器の除霜性(再着霜防止性)を向上させることができる熱交換器用アルミニウムフィン材を提供することを課題とする。 Then, this invention provides the aluminum fin material for heat exchangers which is excellent in workability and corrosion resistance, is excellent in hydrophilicity, and can improve the defrosting property (re-frosting prevention property) of the frosted heat exchanger. The task is to do.
 本発明に係る熱交換器用アルミニウムフィン材は、アルミニウムまたはアルミニウム合金からなる基板と、前記基板の上に形成された下地処理層と、前記下地処理層の上に形成された親水層と、前記親水層の上に付着させた無機酸化物微粒子と、前記無機酸化物微粒子を付着させた前記親水層の上に形成された樹脂系潤滑層と、を備え、前記親水層は、aM O・bSiO (ただし、M=Li、Na、K、b/a≧2)で示され、前記親水層の中に占める比率が50質量%を超える珪酸塩化合物と、ポリアクリル酸、ポリアクリルアミド、スチレンマレイン酸共重合体あるいはその塩のうちの1種または2種以上の樹脂と、を有し、当該親水層の膜厚が0.05~2μmであり、前記無機酸化物微粒子は、平均粒子径が0.001~0.3μmで、総付着量が1~200mg/mであり、前記樹脂系潤滑層は、膜厚が0.05~1μmであることを特徴とする。 An aluminum fin material for a heat exchanger according to the present invention includes a substrate made of aluminum or an aluminum alloy, a base treatment layer formed on the substrate, a hydrophilic layer formed on the base treatment layer, and the hydrophilic Inorganic oxide fine particles adhered on the layer, and a resin-based lubricating layer formed on the hydrophilic layer on which the inorganic oxide fine particles are adhered, the hydrophilic layer comprising aM 2 O · bSiO 2 (where M = Li, Na, K, b / a ≧ 2), and the proportion of the hydrophilic layer occupying more than 50% by mass, polyacrylic acid, polyacrylamide, styrene malee Acid copolymer or one or more of the salts thereof, the hydrophilic layer has a thickness of 0.05 to 2 μm, and the inorganic oxide fine particles have an average particle size of 0.001-0. In [mu] m, the total adhesion amount is 1 ~ 200mg / m 2, the resin-based lubricant layer, characterized in that the film thickness is 0.05 ~ 1 [mu] m.
 このような構成によれば、下地処理層の上に形成された膜厚が0.05~2μmの親水層を備え、この親水層が、aM O・bSiO(ただし、M=Li、Na、K、b/a≧2)で示され、親水層の中に占める比率が50質量%を超える珪酸塩化合物と、ポリアクリル酸、ポリアクリルアミド、スチレンマレイン酸共重合体あるいはその塩のうちの1種または2種以上の樹脂と、を有する(で構成される)ことによって、優れた親水性及び除霜性(再着霜防止性)を得ることができる。また、親水層の上に付着させた平均粒子径が0.001~0.3μmの無機酸化物微粒子を備え、その総付着量が1~200mg/mであることにより、熱交換器用アルミニウムフィン(材)表面の粗面化が十分(適切)となり、優れた親水性及び除霜性(再着霜防止性)を得ることができる。また、優れた加工性も得ることができる。また、無機酸化物微粒子を付着させた親水層の上に形成された膜厚が0.05~1μmの樹脂系潤滑層を備えることによって、優れた加工性を得ることができる。さらに、前記親水層及び樹脂系潤滑層を備えることによって、優れた耐食性も得ることができる。 According to such a configuration, the hydrophilic layer having a thickness of 0.05 to 2 μm formed on the base treatment layer is provided, and the hydrophilic layer is formed of aM 2 O · bSiO 2 (where M = Li, Na , K, b / a ≧ 2), the proportion of the silicate compound in the hydrophilic layer exceeding 50 mass%, and polyacrylic acid, polyacrylamide, styrene maleic acid copolymer or a salt thereof By having (consisting of) one type or two or more types of resins, it is possible to obtain excellent hydrophilicity and defrosting properties (re-frosting prevention properties). In addition, since the inorganic oxide fine particles having an average particle diameter of 0.001 to 0.3 μm deposited on the hydrophilic layer are provided and the total deposited amount is 1 to 200 mg / m 2 , the aluminum fin for heat exchanger (Material) Surface roughening is sufficient (appropriate), and excellent hydrophilicity and defrosting properties (re-frosting prevention properties) can be obtained. Also, excellent processability can be obtained. Also, excellent workability can be obtained by providing a resin-based lubricating layer having a film thickness of 0.05 to 1 μm formed on the hydrophilic layer to which inorganic oxide fine particles are adhered. Furthermore, excellent corrosion resistance can be obtained by providing the hydrophilic layer and the resin-based lubricating layer.
 また、前記無機酸化物微粒子が、Al、Ti、Zn、Si、Sn、Cuのうちの少なくとも1種を含むことが望ましい。 Further, it is desirable that the inorganic oxide fine particles contain at least one of Al, Ti, Zn, Si, Sn, and Cu.
 このような構成によれば、無機酸化物微粒子が、所定の元素を少なくとも1種含むことによって、熱交換器用アルミニウムフィン材の親水性及び除霜性(再着霜防止性)を向上させることができる。 According to such a configuration, the inorganic oxide fine particles contain at least one kind of predetermined element, thereby improving the hydrophilicity and defrosting property (re-frosting prevention property) of the aluminum fin material for heat exchanger. it can.
 前記下地処理層は、CrまたはZrを1~100mg/mの範囲で含有し、前記下地処理層の膜厚は、10~1000Åであることが好ましい。
 更に、前記樹脂系潤滑層は、ポリエチレングリコール、またはポリビニルアルコールからなることが好ましい。
The base treatment layer preferably contains Cr or Zr in a range of 1 to 100 mg / m 2 , and the thickness of the base treatment layer is preferably 10 to 1000 mm.
Furthermore, the resin-based lubricating layer is preferably made of polyethylene glycol or polyvinyl alcohol.
 本発明によれば、加工性、耐食性に優れるとともに、親水性に優れ、着霜した熱交換器の除霜性(再着霜防止性)を向上させることができる熱交換器用アルミニウムフィン材を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, while providing workability and corrosion resistance, it is excellent in hydrophilicity, and the aluminum fin material for heat exchangers which can improve the defrosting property (refrosting prevention property) of the frosted heat exchanger is provided. can do.
本発明に係る熱交換器用アルミニウムフィン材の断面を模式的に示す断面図である。It is sectional drawing which shows typically the cross section of the aluminum fin material for heat exchangers which concerns on this invention.
 本発明の一実施形態について、図1を参照して説明する。
<フィン材>
 本実施形態に係る熱交換器用アルミニウムフィン材(フィン材)1は、図1に示すように、基板2と、基板2の上に形成された下地処理層3と、下地処理層3の上に形成された親水層4と、親水層4の上に付着させた無機酸化物微粒子5と、無機酸化物微粒子5を付着させた親水層4の上に形成された樹脂系潤滑層6と、を備える。ここで、例えば、基板2の上とは、基板2の片面または両面(図示せず)を意味する。以下、各構成について説明する。
An embodiment of the present invention will be described with reference to FIG.
<Fin material>
As shown in FIG. 1, an aluminum fin material (fin material) 1 for a heat exchanger according to this embodiment is formed on a substrate 2, a ground treatment layer 3 formed on the substrate 2, and a ground treatment layer 3. The formed hydrophilic layer 4, the inorganic oxide fine particles 5 attached on the hydrophilic layer 4, and the resin-based lubricating layer 6 formed on the hydrophilic layer 4 on which the inorganic oxide fine particles 5 are attached, Prepare. Here, for example, “on the substrate 2” means one side or both sides (not shown) of the substrate 2. Each configuration will be described below.
(基板)
 基板2は、アルミニウムまたはアルミニウム合金からなる板材であって、熱伝導性及び加工性が優れることから、JIS H4000規定の1000系のアルミニウムが好適に用いられ、より好ましくは、合金番号1050、1200のアルミニウムが使用される。なお、基板2は、熱交換器用アルミニウムフィン材1においては、強度、熱伝導性及び加工性等を考慮して、板厚0.08~0.3mm程度のものが使用される。
(substrate)
The substrate 2 is a plate material made of aluminum or an aluminum alloy, and is excellent in thermal conductivity and workability. Therefore, 1000 series aluminum specified in JIS H4000 is preferably used, and more preferably, alloy numbers 1050 and 1200 are used. Aluminum is used. In the aluminum fin material 1 for heat exchanger, a substrate 2 having a thickness of about 0.08 to 0.3 mm is used in consideration of strength, thermal conductivity, workability, and the like.
(下地処理層)
 下地処理層3は、基板2の上(表面)に形成されており、無機酸化物または有機-無機複合化合物からなる。無機酸化物としては、主成分として、CrまたはZrを含むものが好ましく、例えば、リン酸クロメート処理、リン酸ジルコニウム処理、クロム酸クロメート処理を行うことにより形成されたものである。しかし、本発明においては、耐食性を奏するものであれば、これに限定されず、例えば、リン酸亜鉛処理、リン酸チタン酸処理を行うことによっても下地処理層3を形成することができる。また、有機-無機複合化合物としては、塗布型クロメート処理または塗布型ジルコニウム処理を行なうことにより形成されたもので、アクリル-ジルコニウム複合体等が挙げられる。
(Undercoat layer)
The base treatment layer 3 is formed on the surface (surface) of the substrate 2 and is made of an inorganic oxide or an organic-inorganic composite compound. The inorganic oxide preferably contains Cr or Zr as a main component, and is formed by, for example, phosphoric acid chromate treatment, zirconium phosphate treatment, or chromate chromate treatment. However, the present invention is not limited to this as long as it exhibits corrosion resistance. For example, the base treatment layer 3 can also be formed by performing zinc phosphate treatment or phosphate titanate treatment. The organic-inorganic composite compound is formed by performing a coating type chromate treatment or a coating type zirconium treatment, and includes an acrylic-zirconium composite.
 下地処理層3は、CrまたはZrを1~100mg/mの範囲で含有するものが好ましく、また、下地処理層3の膜厚としては、10~1000Åとするのが好ましいが、使用目的等に合わせて適宜変更が可能であることはいうまでもない。この下地処理層3の形成により、基板2と後記する親水層4との密着性が向上するとともに、フィン材1に耐食性が付与される。 The base treatment layer 3 preferably contains Cr or Zr in the range of 1 to 100 mg / m 2. The thickness of the base treatment layer 3 is preferably 10 to 1000 mm, but the purpose of use, etc. Needless to say, it can be changed as appropriate. The formation of the base treatment layer 3 improves the adhesion between the substrate 2 and the hydrophilic layer 4 described later, and imparts corrosion resistance to the fin material 1.
(親水層)
 親水層4は、下地処理層3の上(表面)に膜厚0.05~2μmで形成される。また、親水層4は、aM O・bSiO (ただし、M=Li、Na、K、b/a≧2)で示され、親水層の中に占める比率が50質量%を超える珪酸塩化合物と、ポリアクリル酸、ポリアクリルアミド、スチレンマレイン酸共重合体あるいはその塩のうちの1種または2種以上の樹脂(水溶性有機高分子物質)と、で構成される。この親水層4の形成により、フィン材1に親水性(親水持続性)が付与される。なお、親水層4を構成する珪酸塩化合物及び樹脂よりなる混合物は、周知の方法で作製される。
(Hydrophilic layer)
The hydrophilic layer 4 is formed with a film thickness of 0.05 to 2 μm on the surface (surface) of the base treatment layer 3. The hydrophilic layer 4 is represented by aM 2 O · bSiO 2 (where M = Li, Na, K, b / a ≧ 2), and the proportion of the hydrophilic layer in the hydrophilic layer exceeds 50% by mass. And one or more resins (water-soluble organic polymer substance) of polyacrylic acid, polyacrylamide, styrene maleic acid copolymer or salt thereof. Formation of the hydrophilic layer 4 imparts hydrophilicity (hydrophilic sustainability) to the fin material 1. In addition, the mixture which consists of a silicate compound and resin which comprises the hydrophilic layer 4 is produced by a well-known method.
 親水層4の膜厚が、0.05μm未満(薄膜)の場合では、優れた親水性(親水持続性)が得られないことから、除霜性(再着霜防止性)も得られず、また、2μmを超える(厚膜の)場合では、塗装後の外観不良(ムラ)が発生しやすく、加工性(工具磨耗性)が劣る。 In the case where the film thickness of the hydrophilic layer 4 is less than 0.05 μm (thin film), since excellent hydrophilicity (hydrophilic sustainability) cannot be obtained, defrosting property (anti-frosting prevention property) is not obtained, When the thickness exceeds 2 μm (thick film), poor appearance (unevenness) after coating tends to occur, and workability (tool wearability) is poor.
 珪酸塩化合物のb/aが2未満である場合、珪酸塩化合物の親水層4中に占める比率(珪酸塩化合物と樹脂との配合比)が50質量%未満である場合では、例えば、親水層4が多孔質とならず、親水層4の親水性能(親水性)が不十分なものとなり、その上に後記する無機酸化物微粒子5を適用(付着)しても、優れた親水性(親水持続性)及び除霜性(再着霜防止性)が得られない。 When b / a of the silicate compound is less than 2, when the proportion of the silicate compound in the hydrophilic layer 4 (mixing ratio of the silicate compound and the resin) is less than 50% by mass, for example, the hydrophilic layer 4 is not porous, and the hydrophilic performance (hydrophilicity) of the hydrophilic layer 4 becomes insufficient. Even when inorganic oxide fine particles 5 described later are applied (attached) thereon, excellent hydrophilicity (hydrophilicity) Sustainability) and defrosting properties (anti-frosting prevention properties) cannot be obtained.
 また、親水層4を構成する樹脂の種類(樹脂種)が、ポリアクリル酸、ポリアクリルアミド、スチレンマレイン酸共重合体あるいはその塩のうちの1種または2種以上からなる樹脂であることによって、当該樹脂と所定の前記珪酸塩化合物との混合物は多孔質となり、フィン材1に親水性を付与することができる。 Further, the type of resin constituting the hydrophilic layer 4 (resin type) is a resin composed of one or more of polyacrylic acid, polyacrylamide, styrene maleic acid copolymer or a salt thereof, The mixture of the resin and the predetermined silicate compound is porous, and can impart hydrophilicity to the fin material 1.
(無機酸化物微粒子)
 無機酸化物微粒子(微粒子)5は、親水層4の上(表面)に付着させるものであって、その総付着量は1~200mg/mである。また、無機酸化物微粒子5の平均粒子径は0.001~0.3μmである。ここで、平均粒子径とは、無機酸化物微粒子5を水系溶媒等に分散させた状態で、レーザー回折式粒度分布測定器等で測定した積算体積50%粒子径をいう。さらに、無機酸化物微粒子5(例えば、元素(種類)がAlの場合、Al O 等)としては、特に限定されないが、好ましくは、経済的な観点から、種類として、Al、Ti、Zn、Si、Sn、Cuのうちの少なくとも1種を含む無機酸化物微粒子5であることが望ましい。
(Inorganic oxide fine particles)
The inorganic oxide fine particles (fine particles) 5 are attached on the surface (surface) of the hydrophilic layer 4, and the total attached amount is 1 to 200 mg / m 2 . The average particle diameter of the inorganic oxide fine particles 5 is 0.001 to 0.3 μm. Here, the average particle diameter refers to the 50% cumulative volume particle diameter measured with a laser diffraction particle size distribution analyzer or the like in a state where the inorganic oxide fine particles 5 are dispersed in an aqueous solvent or the like. Further, the inorganic oxide fine particles 5 (for example, when the element (type) is Al, Al 2 O 3 or the like) is not particularly limited, but preferably, from the economical viewpoint, the types are Al, Ti, Zn Inorganic oxide fine particles 5 containing at least one of Si, Sn, and Cu are desirable.
 親水層4と後記する樹脂系潤滑層6との間に、無機酸化物微粒子5を散在(親水層4に付着)させることで、親水層4の粗面化した表面に、さらに微細な凹凸を形成させることができ(図示せず)、その結果、フィン材1表面の粗面化が十分(適切)なものとなって、親水性を向上させることができる。また、無機酸化物微粒子5は、親水層4が無機系(珪酸塩化合物が主)であるために、親水層4との密着性を確保することができ、例えば、運転中に発生する水により、無機酸化物微粒子5が流れてしまうことが少ない。よって、優れた(高)親水性を持続することができる(親水持続性)。 Finer irregularities are formed on the roughened surface of the hydrophilic layer 4 by interspersing the inorganic oxide fine particles 5 (adhering to the hydrophilic layer 4) between the hydrophilic layer 4 and the resin-based lubricating layer 6 described later. It can be formed (not shown), and as a result, the roughening of the surface of the fin material 1 becomes sufficient (appropriate), and the hydrophilicity can be improved. Moreover, since the inorganic oxide fine particle 5 is an inorganic type (mainly a silicate compound), the hydrophilic layer 4 can ensure adhesiveness with the hydrophilic layer 4, for example, by water generated during operation. The inorganic oxide fine particles 5 are less likely to flow. Therefore, excellent (high) hydrophilicity can be maintained (hydrophilic durability).
 無機酸化物微粒子5の平均粒子径が0.3μmを超える(粒子が大きい)と、フィン材1表面の粗面化が十分(適切)(水との関係が適切)なものとならず、親水性(親水持続性)及び除霜性(再着霜防止性)が向上せず、かつ、優れた加工性(工具磨耗性)も得られない。また、0.001μm未満では、無機酸化物微粒子5の平均粒子径が小さすぎることから、親水層4とうまく密着できず、親水性(親水持続性)及び除霜性(再着霜防止性)が向上せず、かつ、優れた加工性(成形性)も得られない。具体的には、親水性を評価する際の処理を実施した後では、無機酸化物微粒子5が親水層4から剥がれ落ちてしまう。また、加工時においても、剥がれてしまい、金型内に堆積し、金型工具まわりに付着してしまう。 When the average particle diameter of the inorganic oxide fine particles 5 exceeds 0.3 μm (particles are large), the surface of the fin material 1 is not sufficiently roughened (appropriate) (the relationship with water is appropriate) and hydrophilic. Properties (hydrophilic sustainability) and defrosting properties (re-frosting prevention properties) are not improved, and excellent workability (tool wearability) cannot be obtained. If the average particle size is less than 0.001 μm, the average particle size of the inorganic oxide fine particles 5 is too small to be able to adhere well to the hydrophilic layer 4, and hydrophilicity (hydrophilic sustainability) and defrosting properties (refrosting prevention property). Is not improved, and excellent workability (moldability) cannot be obtained. Specifically, after the treatment for evaluating hydrophilicity is performed, the inorganic oxide fine particles 5 are peeled off from the hydrophilic layer 4. Further, even during processing, it peels off, accumulates in the mold, and adheres around the mold tool.
 無機酸化物微粒子5の総付着量が1mg/m 未満(総付着量が少ない)では、フィン材1表面の粗面化が十分(適切)なものとならず(無機酸化物微粒子5の効果が発揮されず)、親水性(親水持続性)及び除霜性(再着霜防止性)が向上しない。また、200mg/mを超えると、親水性(親水持続性)及び除霜性(再着霜防止性)は向上するが、優れた加工性(工具磨耗性)が得られない。 When the total adhesion amount of the inorganic oxide fine particles 5 is less than 1 mg / m 2 (the total adhesion amount is small), the surface of the fin material 1 is not sufficiently roughened (appropriate) (the effect of the inorganic oxide fine particles 5). Is not exhibited), hydrophilicity (hydrophilic sustainability) and defrosting properties (re-frosting prevention properties) are not improved. On the other hand, when it exceeds 200 mg / m 2 , hydrophilicity (hydrophilic durability) and defrosting property (anti-frosting prevention property) are improved, but excellent workability (tool wearability) cannot be obtained.
 無機酸化物微粒子5を親水層4の上に付着させるには、無機酸化物微粒子5を分散させた分散液(水と無機酸化物微粒子5)を、親水層4上に、例えば、ロールコート(roll coating)で塗布して、オーブンで焼付けすることによって行う。なお、前記総付着量の範囲とするためには、分散液中に含まれる無機酸化物微粒子5の含有量と、ロールコートで塗布する際の塗布量と、によって、適宜調整される。また、平均粒子径についても、無機酸化物微粒子5を粉砕する際に適宜調整される。 In order to deposit the inorganic oxide fine particles 5 on the hydrophilic layer 4, a dispersion liquid (water and inorganic oxide fine particles 5) in which the inorganic oxide fine particles 5 are dispersed is applied on the hydrophilic layer 4 by, for example, roll coating ( It is done by applying by roll coating and baking in an oven. In addition, in order to set it as the range of the said total adhesion amount, it adjusts suitably with content of the inorganic oxide microparticles 5 contained in a dispersion liquid, and the application quantity at the time of apply | coating by roll coating. The average particle size is also adjusted as appropriate when the inorganic oxide fine particles 5 are pulverized.
(樹脂系潤滑層)
 樹脂系潤滑層(潤滑層)6は、無機酸化物微粒子5を付着させた親水層4の上(表面)に、膜厚0.05~1μmで形成される。また、樹脂系潤滑層(水溶性樹脂潤滑層)6は、親水層4の親水性を阻害しない樹脂、例えば、ポリエチレングリコール、ポリビニルアルコールからなる。この樹脂系潤滑層6は、熱交換器の運転時に、フィン材1を成形加工したアルミニウムフィンの表面に付着する凝縮水によって洗い流されることとなる(水溶性樹脂)。この樹脂系潤滑層6の形成により、フィン材1(親水層4)の親水性(機能)を損なうことなく、加工性(成形性)を向上させることができる。また、親水層4が無機系(珪酸塩化合物が主)であるために、フィン材1を成形加工する(アルミニウムフィン製造の)際に、金型と粘着したりすることがあるが、その粘着性を抑制することができる。
(Resin-based lubricant layer)
The resin-based lubricating layer (lubricating layer) 6 is formed with a film thickness of 0.05 to 1 μm on the hydrophilic layer 4 (surface) to which the inorganic oxide fine particles 5 are adhered. The resin-based lubricating layer (water-soluble resin lubricating layer) 6 is made of a resin that does not inhibit the hydrophilicity of the hydrophilic layer 4, for example, polyethylene glycol or polyvinyl alcohol. The resin-based lubricating layer 6 is washed away by condensed water adhering to the surface of the aluminum fin formed by molding the fin material 1 during operation of the heat exchanger (water-soluble resin). By forming the resin-based lubricating layer 6, the workability (moldability) can be improved without impairing the hydrophilicity (function) of the fin material 1 (hydrophilic layer 4). Further, since the hydrophilic layer 4 is inorganic (mainly a silicate compound), it may stick to the mold when the fin material 1 is molded (for manufacturing aluminum fins). Sex can be suppressed.
 樹脂系潤滑膜6の膜厚が0.05μm未満の場合では、アルミニウムフィンの製造の際に、粘着不具合が発生し(粘着性を抑制することができずに)、優れた加工性(工具磨耗性)が得られず、また、1μmを超える場合では、樹脂系潤滑層6自体の吸湿効果により、フィン材1の表面が粘着質となり、樹脂系潤滑層6が加工時(プレス成形時)に工具に巻きつく(食いついて)、うまく加工することができない(不具合が生じやすくなる)。 When the film thickness of the resin-based lubricating film 6 is less than 0.05 μm, an adhesive defect occurs during the production of the aluminum fin (adhesion cannot be suppressed), and excellent workability (tool wear) When the thickness exceeds 1 μm, the surface of the fin material 1 becomes sticky due to the hygroscopic effect of the resin-based lubricating layer 6 itself, and the resin-based lubricating layer 6 is processed (press-molded). Wrapping around the tool (drinking) makes it difficult to process (prone to failure).
 以上のように、所定の親水層4の上(表面)に、平均粒子径が0.001~0.3μmの無機酸化物微粒子5を、総付着量が1~200mg/mで付着させることにより、熱交換器用アルミニウムフィン材1表面の粗面化が十分(適切)となり、優れた親水性及び除霜性(再着霜防止性)を得ることができる。 As described above, the inorganic oxide fine particles 5 having an average particle diameter of 0.001 to 0.3 μm are adhered on the surface (surface) of the predetermined hydrophilic layer 4 with a total adhesion amount of 1 to 200 mg / m 2. Thus, the roughening of the surface of the aluminum fin material 1 for heat exchanger becomes sufficient (appropriate), and excellent hydrophilicity and defrosting properties (anti-frosting prevention property) can be obtained.
 次に、熱交換器用アルミニウムフィン材(フィン材)1の製造方法の一例について説明する。
<フィン材の製造方法>
(1)アルミニウムまたはアルミニウム合金よりなる基板2の上(表面)に、リン酸クロメート処理、リン酸ジルコニウム処理等を施すことにより、無機酸化物または有機-無機複合化合物よりなる下地処理層3を形成する。このリン酸クロメート処理、リン酸ジルコニウム処理等は、基板2に化成処理液をスプレー等により塗布することで行われる。その塗布量としては、CrまたはZr換算で1~100mg/mの範囲で塗布するのが好ましく、形成される膜厚としては、10~1000Åとするのが好ましい。また、下地処理層3を形成する前に、基板2の表面にアルカリ水溶液をスプレー等して、基板2の表面を予め脱脂するのが好ましい。脱脂により基板2と下地処理層3との密着性が向上する。
Next, an example of the manufacturing method of the aluminum fin material (fin material) 1 for heat exchangers is demonstrated.
<Fin material manufacturing method>
(1) Forming a base treatment layer 3 made of an inorganic oxide or an organic-inorganic composite compound on the surface (surface) of a substrate 2 made of aluminum or an aluminum alloy by subjecting it to a phosphate chromate treatment, a zirconium phosphate treatment, or the like. To do. The phosphoric acid chromate treatment, the zirconium phosphate treatment, and the like are performed by applying a chemical conversion treatment liquid to the substrate 2 by spraying or the like. The coating amount is preferably in the range of 1 to 100 mg / m 2 in terms of Cr or Zr, and the formed film thickness is preferably 10 to 1000 mm. In addition, before forming the base treatment layer 3, it is preferable to degrease the surface of the substrate 2 in advance by spraying an alkaline aqueous solution onto the surface of the substrate 2. The adhesion between the substrate 2 and the base treatment layer 3 is improved by degreasing.
(2)形成された下地処理層3の上(表面)に、所定の珪酸塩化合物及び樹脂よりなる混合物の樹脂溶液を塗布した後、焼付けを行い、下地処理層3の上に親水層4を形成する。この塗布は、バーコータ(bar coater)、ロールコータ等の従来公知の塗布方法で行い、塗布量は、親水層4の膜厚が0.05~2μmとなるように適宜設定(調整)する。焼付け温度(アルミニウム板の到達温度)は、塗布する樹脂溶液によって、適宜設定する。 (2) After applying a resin solution of a mixture made of a predetermined silicate compound and resin on the surface (surface) of the formed base treatment layer 3, baking is performed, and the hydrophilic layer 4 is formed on the base treatment layer 3. Form. This coating is performed by a conventionally known coating method such as a bar coater or a roll coater, and the coating amount is appropriately set (adjusted) so that the thickness of the hydrophilic layer 4 is 0.05 to 2 μm. The baking temperature (the temperature reached by the aluminum plate) is appropriately set depending on the resin solution to be applied.
(3)形成された親水層4の上(表面)に、所定の無機酸化物微粒子5を分散させた分散液を塗布した後、焼付けを行い、親水層4の上に無機酸化物微粒子5を付着させる。この塗布は、バーコータ、ロールコータ等の従来公知の塗布方法で行い、塗布量は、無機酸化物微粒子5の総付着量が1~200mg/mとなるように適宜設定(調整)する。焼付け温度(アルミニウム板の到達温度)は、塗布する分散液によって、適宜設定する。 (3) On the formed hydrophilic layer 4 (surface), after applying a dispersion liquid in which predetermined inorganic oxide fine particles 5 are dispersed, baking is performed, and the inorganic oxide fine particles 5 are formed on the hydrophilic layer 4. Adhere. This coating is performed by a conventionally known coating method such as a bar coater or a roll coater, and the coating amount is appropriately set (adjusted) so that the total adhesion amount of the inorganic oxide fine particles 5 is 1 to 200 mg / m 2 . The baking temperature (the temperature reached by the aluminum plate) is appropriately set depending on the dispersion to be applied.
(4)無機酸化物微粒子5を付着させた親水層4の上(表面)に、親水性を阻害しない樹脂(水溶性樹脂)の樹脂(水)溶液を塗布した後、焼付けを行い、無機酸化物微粒子5を付着させた親水層4の上に樹脂系潤滑層6を形成する。この塗布は、バーコータ、ロールコータ等の従来公知の塗布方法で行い、塗布量は、樹脂系潤滑層6の膜厚が0.05~1μmとなるように適宜設定(調整)する。焼付け温度(アルミニウム板の到達温度)は、塗布する樹脂溶液によって、適宜設定する。 (4) A resin (water) solution of a resin (water-soluble resin) that does not inhibit hydrophilicity is applied on the surface (surface) of the hydrophilic layer 4 to which the inorganic oxide fine particles 5 are adhered, and then baked to perform inorganic oxidation. A resin-based lubricating layer 6 is formed on the hydrophilic layer 4 to which the product fine particles 5 are adhered. This coating is performed by a conventionally known coating method such as a bar coater or a roll coater, and the coating amount is appropriately set (adjusted) so that the film thickness of the resin-based lubricating layer 6 is 0.05 to 1 μm. The baking temperature (the temperature reached by the aluminum plate) is appropriately set depending on the resin solution to be applied.
 さらに、実施例及び比較例を示しながら、本発明を具体的に説明する。 Further, the present invention will be specifically described with reference to examples and comparative examples.
 以下の方法により、フィン材1を作製した。基板2としては、いずれもJIS H4000に規定する合金番号1200のアルミニウムよりなる板厚0.1mmのアルミニウム板を用いた。 The fin material 1 was produced by the following method. As the substrate 2, an aluminum plate having a thickness of 0.1 mm made of aluminum having an alloy number of 1200 specified in JIS H4000 was used.
 このアルミニウム板の表面に、下地処理層3を形成するためのリン酸クロメート処理を行った。化成処理液としては、日本ペイント株式会社(NIPPON PAINT Co.,Ltd)製アルサーフ(ALSURF,登録商標)401/45、リン酸、クロム酸を使用した。このときの下地処理層3の膜厚は、400Åとした(蛍光X線法で測定したCr換算値は20mg/m2であった)。 The surface of this aluminum plate was subjected to a phosphoric acid chromate treatment for forming the base treatment layer 3. As the chemical conversion treatment liquid, Alsurf (registered trademark) 401/45, phosphoric acid, and chromic acid manufactured by Nippon Paint Co., Ltd. were used. The film thickness of the base treatment layer 3 at this time was 400 mm (Cr conversion value measured by the fluorescent X-ray method was 20 mg / m 2 ).
 この下地処理層3の上に、表1に示す種類(b/a、M、珪酸塩化合物の比率)の珪酸塩化合物及び樹脂(種)よりなる親水層4を形成するための樹脂溶液(塗料)を塗布し、焼付けを実施して、表1に示す膜厚の親水層4を形成した。 A resin solution (coating material) for forming a hydrophilic layer 4 composed of a silicate compound and a resin (seed) of the types (b / a, M, ratio of silicate compound) shown in Table 1 on the base treatment layer 3 ) Was applied and baked to form a hydrophilic layer 4 having the thickness shown in Table 1.
 この親水層4の上に、表1に示す種類(元素)及び平均粒子径の無機酸化物微粒子5を付着させるための分散液を塗布し、焼付けを実施して、表1に示す総付着量の無機酸化物微粒子5を親水層4上に付着させた。 On this hydrophilic layer 4, a dispersion for adhering inorganic oxide fine particles 5 having the types (elements) and average particle diameters shown in Table 1 is applied and baked, and the total adhesion amount shown in Table 1 The inorganic oxide fine particles 5 were deposited on the hydrophilic layer 4.
 この無機酸化物微粒子5を付着させた親水層4の上に、ポリビニルアルコールの樹脂水溶液を塗布し、焼付けを実施して、表1に示す膜厚の(樹脂系)潤滑層6を形成した。 A resin aqueous solution of polyvinyl alcohol was applied onto the hydrophilic layer 4 to which the inorganic oxide fine particles 5 were adhered, and baked to form a (resin-based) lubricating layer 6 having a thickness shown in Table 1.
 表1に親水層4、無機酸化物微粒子5及び(樹脂系)潤滑層6の膜厚等を示す。なお、表1中の下線は、本発明で規定する要件を満たさないことを示す。 Table 1 shows the film thicknesses of the hydrophilic layer 4, the inorganic oxide fine particles 5, and the (resin-based) lubricating layer 6. In addition, the underline in Table 1 indicates that the requirements defined in the present invention are not satisfied.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 作製したフィン材1(供試材、試料)については、以下の方法により、親水性、除霜性(再着霜防止性)、加工性及び耐食性を評価した。 The produced fin material 1 (test material, sample) was evaluated for hydrophilicity, defrosting property (refrosting prevention property), workability and corrosion resistance by the following methods.
<親水性>
 親水性(親水持続性)は、イオン交換水中に浸漬8時間と80℃で加熱16時間とを1サイクルとする処理を、フィン材1に、5サイクル実施後、純水滴下時の接触角をゴニオメータ(goniometer)にて測定することにより評価した。測定された接触角が20°以下である場合を合格(○)とし、接触角が20°を超える場合を不合格(×)とした。この親水性の評価結果を表2に示す。
<Hydrophilicity>
The hydrophilic property (hydrophilic durability) is determined by setting the contact angle at the time of dropping pure water to the fin material 1 after 5 cycles of treatment of 8 hours of immersion in ion-exchanged water and 16 hours of heating at 80 ° C. for 1 cycle. Evaluation was made by measuring with a goniometer. The case where the measured contact angle was 20 ° or less was regarded as acceptable (◯), and the case where the contact angle exceeded 20 ° was regarded as unacceptable (x). The hydrophilicity evaluation results are shown in Table 2.
<除霜性、再着霜防止性>
 各供試材(試料)の実機を作製し、着霜運転後、除霜、再着霜運転を実施し、霜の除去性及び再着霜状況を目視して評価した。比較例1の無機酸化物微粒子を適用していないものを基準として、除霜運転時に霜を除去するまでの時間がはやく、再着霜運転時に霜が全面付着するまでの時間がおそいものを合格(○)とし、除霜運転時に霜を除去するまでの時間が同じまたはおそく、再着霜運転時に霜が全面付着するまでの時間が同じまたははやいものを不合格(×)とした。この除霜性(再着霜防止性)の評価結果を表2に示す。
<Defrosting and re-frosting prevention properties>
An actual machine of each test material (sample) was prepared, and after defrosting operation, defrosting and refrosting operation were performed, and the frost removal property and refrosting condition were visually evaluated. Based on the sample not applied with the inorganic oxide fine particles of Comparative Example 1, the time to remove the frost during the defrosting operation is fast, and the time until the frost adheres to the entire surface during the refrosting operation is passed. (○), and the time until the frost was removed during the defrosting operation was the same or slow, and the time until the frost was completely adhered during the refrosting operation was the same or fast. The evaluation results of this defrosting property (refrosting prevention property) are shown in Table 2.
<加工性>
 加工性は、実機フィンプレス(ドローレス(drawless)加工)にて、連続10万ショットを実施した際(プレス時)の、カラー成形性(成形性)及びプレス金型内の工具磨耗状況(工具磨耗性)を目視して評価した。成形後のカラーに大きな割れがない、工具先端に著しい磨耗、欠損がない場合を合格(○)とし、成形後のカラーに連続して大きな割れがある、工具先端に著しい磨耗や欠損がある(認められる)場合を不合格(×)とした。この加工性(成形性、工具磨耗性)の評価結果を表2に示す。
<Processability>
As for workability, color formability (formability) and tool wear condition in the press die (tool wear) when 100,000 shots are performed continuously (during press) with an actual fin press (drawless process) Property) was evaluated visually. The case where there is no large crack in the collar after molding, and there is no significant wear or chipping on the tool tip is accepted (○). The collar after molding has large cracks continuously, and there is significant wear or chipping on the tool tip ( (Recognized) was determined to be rejected (x). Table 2 shows the evaluation results of the workability (formability, tool wearability).
<耐食性>
 耐食性は、JIS Z 2371に準じ、塩水噴霧試験を200時間実施した際の腐食面積率に応じたレイティングナンバー(rating number)にて評価した。レイティングナンバーが9.5以上の場合を合格(○)とし、レイティングナンバーが9.5未満の場合を不合格(×)とした。この耐食性の評価結果を表2に示す。
<Corrosion resistance>
Corrosion resistance was evaluated in accordance with JIS Z 2371 using a rating number corresponding to the corrosion area ratio when the salt spray test was conducted for 200 hours. A case where the rating number was 9.5 or higher was evaluated as pass (◯), and a case where the rating number was less than 9.5 was determined as reject (x). The evaluation results of this corrosion resistance are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2からわかるように、表2の試料(実施例)1~16は、本発明の要件を満たしているため、親水性(親水持続性)、除霜性(再着霜防止性)、加工性及び耐食性のすべてが良好(合格)であった。 As can be seen from Table 2, samples (Examples) 1 to 16 in Table 2 satisfy the requirements of the present invention, so that they are hydrophilic (hydrophilic sustainability), defrosting (re-frosting prevention), processed All of the properties and corrosion resistance were good (pass).
 一方、表2の比較例1は、無機酸化物微粒子5の総付着量が下限値未満である(無機酸化物微粒子5が付着されていない)ため、フィン材1表面の粗面化が十分(適切)なものとならず(無機酸化物微粒子5の効果が発揮されず)、親水性(親水持続性)及び除霜性(再着霜防止性)が向上しなかった。また、比較例9は、無機酸化物微粒子5の総付着量が上限値を超えるため、親水性(親水持続性)及び除霜性(再着霜防止性)は向上したが、優れた加工性(工具磨耗性)が得られなかった。 On the other hand, in Comparative Example 1 of Table 2, since the total amount of the inorganic oxide fine particles 5 is less than the lower limit (the inorganic oxide fine particles 5 are not attached), the surface of the fin material 1 is sufficiently roughened ( It was not appropriate (the effect of the inorganic oxide fine particles 5 was not exhibited), and the hydrophilicity (hydrophilic sustainability) and the defrosting property (refrosting prevention property) were not improved. Moreover, since the total adhesion amount of the inorganic oxide fine particles 5 exceeded the upper limit value in Comparative Example 9, hydrophilicity (hydrophilic sustainability) and defrosting property (refrosting prevention property) were improved, but excellent workability was achieved. (Tool wear) could not be obtained.
 比較例2は、親水層4の膜厚が下限値未満であるため、親水層4を備えることによる優れた親水性(親水持続性)が得られなくなり、優れた除霜性(再着霜防止性)も得られなかった。また、比較例3は、親水層4の膜厚が上限値を超えるため、親水性(親水持続性)及び除霜性(再着霜防止性)は向上したが、塗装後の外観不良(ムラ)が発生しやすく、加工性(工具磨耗性)が劣った。 In Comparative Example 2, since the thickness of the hydrophilic layer 4 is less than the lower limit value, excellent hydrophilicity (hydrophilic sustainability) by providing the hydrophilic layer 4 cannot be obtained, and excellent defrosting property (re-frosting prevention) ) Was not obtained. Moreover, since the film thickness of the hydrophilic layer 4 exceeded the upper limit value in Comparative Example 3, the hydrophilicity (hydrophilic sustainability) and the defrosting property (refrosting prevention property) were improved, but the appearance defect after coating (unevenness) ) Is likely to occur, and workability (tool wearability) is poor.
 比較例4は、親水層4を構成する珪酸塩化合物の比率が下限値未満であるため、比較例5は、親水層4を構成する珪酸塩化合物のb/aが下限値未満であるため、親水層4(珪酸塩化合物及び樹脂よりなる混合物)が多孔質とならず、親水層4の親水性能(親水性)が不十分なものとなり、その上に無機酸化物微粒子5を適用(付着)しても、優れた親水性(親水持続性)及び除霜性(再着霜防止性)が得られなかった。 Since the ratio of the silicate compound which comprises the hydrophilic layer 4 is less than a lower limit in the comparative example 4, since b / a of the silicate compound which comprises the hydrophilic layer 4 is less than a lower limit, The hydrophilic layer 4 (mixture comprising a silicate compound and a resin) is not porous, and the hydrophilic performance (hydrophilicity) of the hydrophilic layer 4 is insufficient, and the inorganic oxide fine particles 5 are applied (attached) thereon. Even so, excellent hydrophilicity (hydrophilic sustainability) and defrosting properties (refrosting prevention properties) were not obtained.
 比較例6は、親水層4を構成する樹脂の種類(樹脂種)が、所定の樹脂種とは異なる(ポリウレタンである)ため、親水層4(珪酸塩化合物及び樹脂よりなる混合物)が多孔質とならず、親水層4の親水性能(親水性)が不十分なものとなり、その上に無機酸化物微粒子5を適用(付着)しても、優れた親水性(親水持続性)及び除霜性(再着霜防止性)が得られなかった。 In Comparative Example 6, since the type of resin (resin type) constituting the hydrophilic layer 4 is different from the predetermined resin type (polyurethane), the hydrophilic layer 4 (mixture of silicate compound and resin) is porous. Therefore, even if the hydrophilic performance (hydrophilicity) of the hydrophilic layer 4 becomes insufficient, and the inorganic oxide fine particles 5 are applied (attached) thereon, excellent hydrophilicity (hydrophilic durability) and defrosting The property (anti-frosting prevention property) was not obtained.
 比較例7は、無機酸化物微粒子5の平均粒子径が下限値未満であるため、無機酸化物微粒子5の平均粒子径が小さすぎることから、親水層4とうまく密着できず、親水性(親水持続性)及び除霜性(再着霜防止性)が向上せず、かつ、優れた加工性(成形性)も得られなかった。具体的には、親水性を評価する際の処理を5サイクル実施した後では、無機酸化物微粒子5が親水層4から剥がれ落ちてしまう。また、加工時においても、剥がれてしまい、金型内に堆積し、金型工具まわりに付着してしまう。また、比較例8は、無機酸化物微粒子5の平均粒子径が上限値を超えるため、フィン材1表面の粗面化が十分(適切)なものとならず、親水性(親水持続性)及び除霜性(再着霜防止性)が向上せず、かつ、優れた加工性(工具磨耗性)も得られなかった。 In Comparative Example 7, since the average particle size of the inorganic oxide fine particles 5 is less than the lower limit value, the average particle size of the inorganic oxide fine particles 5 is too small. Sustainability) and defrosting properties (refrosting prevention properties) were not improved, and excellent processability (moldability) was not obtained. Specifically, after 5 cycles of the treatment for evaluating hydrophilicity, the inorganic oxide fine particles 5 are peeled off from the hydrophilic layer 4. Further, even during processing, it peels off, accumulates in the mold, and adheres around the mold tool. In Comparative Example 8, since the average particle diameter of the inorganic oxide fine particles 5 exceeds the upper limit value, the surface of the fin material 1 is not sufficiently roughened (appropriate), and hydrophilicity (hydrophilic sustainability) and Defrosting property (anti-frosting prevention property) was not improved, and excellent workability (tool wearability) was not obtained.
 比較例10は、樹脂系潤滑層6の膜厚が下限値未満である(樹脂系潤滑層6が備えられていない)ため、アルミニウムフィンの製造の際に、粘着不具合が発生し(粘着性を抑制することができずに)、優れた加工性(工具磨耗性)が得られなかった。また、比較例11は、樹脂系潤滑層6の膜厚が上限値を超えるため、樹脂系潤滑層6自体の吸湿効果により、フィン材1の表面が粘着質となり、樹脂系潤滑層6が加工時(プレス成形時)に工具に食いついて、うまく加工することができなかった(加工性が劣った)。 In Comparative Example 10, since the film thickness of the resin-based lubricant layer 6 is less than the lower limit value (the resin-based lubricant layer 6 is not provided), an adhesive defect occurs during the production of the aluminum fin (adhesive property). Excellent workability (tool wearability) could not be obtained. Further, in Comparative Example 11, since the film thickness of the resin-based lubricant layer 6 exceeds the upper limit value, the surface of the fin material 1 becomes sticky due to the moisture absorption effect of the resin-based lubricant layer 6 itself, and the resin-based lubricant layer 6 is processed. At times (during press forming), the tool was bitten and could not be processed well (workability was poor).
 以上、本発明に係る熱交換器用アルミニウムフィン材について、最良の実施の形態及び実施例を示して詳細に説明したが、本発明の趣旨は前記した内容に限定されることなく、その権利範囲は、特許請求の範囲の記載に基づいて解釈されなければならない。なお、本発明の内容は、前記した記載に基づいて改変・変更等することができることはいうまでもない。 As described above, the aluminum fin material for heat exchanger according to the present invention has been described in detail with reference to the best mode and examples, but the gist of the present invention is not limited to the above-described contents, Should be construed based on the claims. Needless to say, the contents of the present invention can be modified and changed based on the above description.
  1 熱交換器用アルミニウムフィン材(フィン材)
  2 基板
  3 下地処理層
  4 親水層
  5 無機酸化物微粒子
  6 樹脂系潤滑層
1 Aluminum fin material for heat exchanger (fin material)
2 Substrate 3 Ground treatment layer 4 Hydrophilic layer 5 Inorganic oxide fine particle 6 Resin-based lubricating layer

Claims (4)

  1.  アルミニウムまたはアルミニウム合金からなる基板と、
     前記基板の上に形成された下地処理層と、
     前記下地処理層の上に形成された親水層と、
     前記親水層の上に付着させた無機酸化物微粒子と、
     前記無機酸化物微粒子を付着させた前記親水層の上に形成された樹脂系潤滑層と、を備え、
     前記親水層は、aM O・bSiO (ただし、M=Li、Na、K、b/a≧2)で示され、前記親水層の中に占める比率が50質量%を超える珪酸塩化合物と、ポリアクリル酸、ポリアクリルアミド、スチレンマレイン酸共重合体あるいはその塩のうちの1種または2種以上の樹脂と、を有し、当該親水層の膜厚が0.05~2μmであり、
     前記無機酸化物微粒子は、平均粒子径が0.001~0.3μmで、総付着量が1~200mg/mであり、
     前記樹脂系潤滑層は、膜厚が0.05~1μmであることを特徴とする熱交換器用アルミニウムフィン材。
    A substrate made of aluminum or an aluminum alloy;
    A base treatment layer formed on the substrate;
    A hydrophilic layer formed on the base treatment layer;
    Inorganic oxide fine particles deposited on the hydrophilic layer;
    A resin-based lubricating layer formed on the hydrophilic layer to which the inorganic oxide fine particles are attached, and
    The hydrophilic layer is represented by aM 2 O · bSiO 2 (where M = Li, Na, K, b / a ≧ 2), and the proportion of the hydrophilic layer in the hydrophilic layer exceeds 50% by mass; One or two or more resins of polyacrylic acid, polyacrylamide, styrene maleic acid copolymer or a salt thereof, and the thickness of the hydrophilic layer is 0.05 to 2 μm,
    The inorganic oxide fine particles have an average particle diameter of 0.001 to 0.3 μm and a total adhesion amount of 1 to 200 mg / m 2 .
    An aluminum fin material for a heat exchanger, wherein the resin-based lubricating layer has a thickness of 0.05 to 1 μm.
  2.  前記無機酸化物微粒子が、Al、Ti、Zn、Si、Sn、Cuのうちの少なくとも1種を含むことを特徴とする請求項1に記載の熱交換器用アルミニウムフィン材。 The aluminum fin material for a heat exchanger according to claim 1, wherein the inorganic oxide fine particles contain at least one of Al, Ti, Zn, Si, Sn, and Cu.
  3.  前記下地処理層は、CrまたはZrを1~100mg/mの範囲で含有し、前記下地処理層の膜厚は、10~1000Åであることを特徴とする請求項1に記載の熱交換器用アルミニウムフィン材。 The heat exchanger according to claim 1, wherein the base treatment layer contains Cr or Zr in a range of 1 to 100 mg / m 2 , and the thickness of the base treatment layer is 10 to 1000 mm. Aluminum fin material.
  4.  前記樹脂系潤滑層は、ポリエチレングリコール、またはポリビニルアルコールからなることを特徴とする請求項1に記載の熱交換器用アルミニウムフィン材。 The aluminum fin material for a heat exchanger according to claim 1, wherein the resin-based lubricating layer is made of polyethylene glycol or polyvinyl alcohol.
PCT/JP2010/054978 2009-03-24 2010-03-23 Aluminum fin material for heat exchanger WO2010110261A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010800112774A CN102378893A (en) 2009-03-24 2010-03-23 Aluminum fin material for heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009072716A JP2010223520A (en) 2009-03-24 2009-03-24 Aluminum fin material for heat exchanger
JP2009-072716 2009-03-24

Publications (1)

Publication Number Publication Date
WO2010110261A1 true WO2010110261A1 (en) 2010-09-30

Family

ID=42780954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054978 WO2010110261A1 (en) 2009-03-24 2010-03-23 Aluminum fin material for heat exchanger

Country Status (3)

Country Link
JP (1) JP2010223520A (en)
CN (1) CN102378893A (en)
WO (1) WO2010110261A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5060632B2 (en) 2010-09-03 2012-10-31 株式会社神戸製鋼所 Aluminum alloy fin material for heat exchanger and manufacturing method thereof
WO2012132784A1 (en) 2011-03-31 2012-10-04 株式会社神戸製鋼所 Drawless press aluminium alloy fin material for heat exchanger, and manufacturing method for same
EP2692882A4 (en) 2011-03-31 2014-11-05 Kobe Steel Ltd Combination press aluminium alloy fin material for heat exchanger, and manufacturing method for same
JP2017180961A (en) * 2016-03-30 2017-10-05 株式会社Uacj Hydrophilic film, heat exchanger fin using the same and heat exchanger
CN109945553A (en) * 2019-03-13 2019-06-28 广东美的制冷设备有限公司 Heat exchanger and air conditioner
JP2023114164A (en) 2022-02-04 2023-08-17 三菱重工業株式会社 Heat exchanger

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001050689A (en) * 1999-08-09 2001-02-23 Sky Alum Co Ltd Manufacture of precoat fin material for heat exchanger
JP2006078134A (en) * 2004-09-13 2006-03-23 Matsushita Electric Ind Co Ltd Aluminum fin material
JP2006138567A (en) * 2004-11-15 2006-06-01 Hitachi Home & Life Solutions Inc Heat exchanger and manufacturing method of the same
JP2007040686A (en) * 2005-06-27 2007-02-15 Kobe Steel Ltd Aluminum fin material
JP2008224204A (en) * 2007-02-16 2008-09-25 Kobe Steel Ltd Aluminum fin material for heat exchanger

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS618598A (en) * 1984-06-23 1986-01-16 Kobe Steel Ltd Fin material for heat exchanger whose surface hydrophilic nature is excellent

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001050689A (en) * 1999-08-09 2001-02-23 Sky Alum Co Ltd Manufacture of precoat fin material for heat exchanger
JP2006078134A (en) * 2004-09-13 2006-03-23 Matsushita Electric Ind Co Ltd Aluminum fin material
JP2006138567A (en) * 2004-11-15 2006-06-01 Hitachi Home & Life Solutions Inc Heat exchanger and manufacturing method of the same
JP2007040686A (en) * 2005-06-27 2007-02-15 Kobe Steel Ltd Aluminum fin material
JP2008224204A (en) * 2007-02-16 2008-09-25 Kobe Steel Ltd Aluminum fin material for heat exchanger

Also Published As

Publication number Publication date
JP2010223520A (en) 2010-10-07
CN102378893A (en) 2012-03-14

Similar Documents

Publication Publication Date Title
WO2010110261A1 (en) Aluminum fin material for heat exchanger
US20090252952A1 (en) Surface treated cr-free steel sheet for used in fuel tank, preparing method thereof and treatment composition therefor
JP5607946B2 (en) Aluminum fin material for heat exchanger
JP2011163715A (en) Aluminum fin material for heat exchanger
WO2013137004A1 (en) Aluminum fin material
JP6061755B2 (en) Aluminum fin material and manufacturing method thereof
JP5859895B2 (en) Aluminum fin material
JP5312699B1 (en) Aluminum fin material for heat exchanger
JP5937298B2 (en) Method for producing aluminum fin material for heat exchanger and method for producing heat exchanger
JP2003201577A (en) Aluminum or aluminum alloy material for heat exchanger fin, and fin for heat exchanger
JP5806805B2 (en) Aluminum fin material for heat exchanger
JP3383914B2 (en) Aluminum fin material for heat exchanger
JP5312700B1 (en) Aluminum fin material for heat exchanger
JP6218719B2 (en) Aluminum fin material
WO2021153495A1 (en) Aluminum fin material, heat exchanger, air conditioner, and method for producing aluminum fin material
JP7409895B2 (en) Aluminum fin material, heat exchanger, and method for manufacturing aluminum fin material
JPH10153395A (en) Heat exchanger fin material excellent in hydrophilic
JP7193443B2 (en) Aluminum fin stock
CN115507570B (en) Aluminum fin material
WO2023282111A1 (en) Pre-coated fin material and manufacturing method therefor
JP2024021422A (en) Aluminum fin material
CN115505330B (en) Aluminum fin material and icing and frosting inhibitor
WO2013146388A1 (en) Aluminum fin material for heat exchanger
JPS59153884A (en) Zinc or zinc alloy plated steel sheet for base metal for coating
WO2017159575A1 (en) Fin material formed from aluminum

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080011277.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10756057

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10756057

Country of ref document: EP

Kind code of ref document: A1